Sample records for time explorer rxte

  1. Advances in the RXTE Proportional Counter Array Calibration: Nearing the Statistical Limit

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nikolai; Jahoda, Keith; Markwardt, Craig; Swank, Jean; Strohmayer, Tod

    2012-01-01

    During its 16 years of service Rossi X-ray Timing Explorer (RXTE) mission has provided an extensive archive of data, which will serve as a primary source of high cadence observation of variable X-ray sources for fast timing studies. It is, therefore, very important to have the most reliable calibration of RXTE instruments. The Proportional Counter Array (PCA) is the primary instrument on-board RXTE which provides data in 2-50 keY with higher than millisecond time resolution in up to 256 energy channels. In 2009 RXTE team revised the response residual minimization method used to derive the parameters of the PCA physical model. The procedure is now based on the residual minimization between the model spectrum for Crab nebula emission and a calibration data set consisting of a number of spectra from the Crab and the on-board Am241 calibration source, uniformly covering a whole RXTE span. The new method led to a much more effective model convergence and allowed for better understanding of the behavior of the PCA energy-to-channel relationship. It greatly improved the response matrix performance. We describe the new version of the RXTE/PCA response generator PCARMF vll.7 along with the corresponding energy-to-channel conversion table (version e05v04) and their difference from the previous releases of PCA calibration. The new PCA response adequately represents the spectrum of the calibration sources and successfully predicts the energy of the narrow iron emission line in Cas-A throughout the RXTE mission.

  2. Investigating the Extraordinary X-Ray Variability of the Infrared Quasar IRAS 13349+2439

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    1999-01-01

    We observed the luminous quasar IRAS 13349+2439 using RXTE (X Ray Timing Explorer) in order to search for rapid variability. Unfortunately, the source was in a low state during the observation (PCA count rate approximately 1 - 2 counts/s). It was therefore somewhat weak for RXTE and detailed analysis proved to be difficult.

  3. XTE J1946+274 = GRO J1944+26 Observations with RXTE and BATSE

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Scott, D. Matthew

    2000-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8 second transient X-ray pulsar discovered simultaneously with the Rossi X-ray Timing Explorer (RXTE) and Burst and Transient Source Experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) during an outburst in September 1998. Since its discovery, XTE J1946+274 has undergone 7 regularly spaced outbursts, that were observed with BATSE and the RXTE All-Sky Monitor (ASM). The pulse frequency and pulsed flux measurements with BATSE suggest that XTE J1946+274 is in an about 170 day orbit and is outbursting twice per orbit. The first outburst, which was brighter and longer than subsequent outbursts, was also observed with the RXTE Proportional Counter Array (PCA). We present histories of pulse frequency, pulsed flux, and total flux measured in the 20-50 keV band with BATSE and a history of the 2-10 keV total flux measured with the RXTE ASM. From the first outburst, we present energy and power spectra and pulse profiles from RXTE PCA observations.

  4. RXTE Observations of A1744-361: Correlated Spectral and Timing Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.; Swank, Jean H.; Markwardt, Craig B.

    2007-01-01

    We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.

  5. XTE J1946+274: An Enigmatic X-Ray Pulsar

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Coe, M. J.; Negueruela, Ignacio; Six, N. Frank (Technical Monitor)

    2002-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8-s X-ray pulsar discovered simultaneously by the Rossi X-ray Timing Explorer (RXTE) and the Burst and Transient Source Experiment (BATSE) in September 1998. Follow-up optical/IR observations resulted in the discovery of a Be star companion. Our pulse timing analysis of BATSE and RXTE data indicates that the orbital period is approximately 169 days. Since its discovery in 1998, XTE J1946+274 has undergone 13 outbursts. These outbursts axe not regularly spaced. They occur approximately twice per orbit and are not locked in orbital phase, unlike most Be/X-ray transient systems. A possible explanation for this is a global-one armed oscillation or density perturbation propagating rapidly in the Be star's disk. We will investigate radial velocity variations in the central peak of the H-alpha line to look for evidence of such a perturbation. From 2001 March-September, we regularly monitored XTE J1946+274 with the RXTE PCA. We will demonstrate that the spectrum appears to be varying with orbital phase, based on the 2001 and 1998 RXTE PCA observations. We will also present histories of pulsed frequency and flux.

  6. Experience Gained From Launch and Early Orbit Support of the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Fink, D. R.; Chapman, K. B.; Davis, W. S.; Hashmall, J. A.; Shulman, S. E.; Underwood, S. C.; Zsoldos, J. M.; Harman, R. R.

    1996-01-01

    this paper reports the results to date of early mission support provided by the personnel of the Goddard Space Flight Center Flight Dynamics Division (FDD) for the Rossi X-Ray Timing Explorer (RXTE) spacecraft. For this mission, the FDD supports onboard attitude determination and ephemeris propagation by supplying ground-based orbit and attitude solutions and calibration results. The first phase of that support was to provide launch window analyses. As the launch window was determined, acquisition attitudes were calculated and calibration slews were planned. postlaunch, these slews provided the basis for ground determined calibration. Ground determined calibration results are used to improve the accuracy of onboard solutions. The FDD is applying new calibration tools designed to facilitate use of the simultaneous, high-accuracy star observations from the two RXTE star trackers for ground attitude determination and calibration. An evaluation of the performance of these tools is presented. The FDD provides updates to the onboard star catalog based on preflight analysis and analysis of flight data. The in-flight results of the mission support in each area are summarized and compared with pre-mission expectations.

  7. South Atlantic Anomaly Entry and Exit as Measured by the X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Smith, Evan; Stark, Michael; Giles, Barry; Antunes, Sandy; Gawne, Bill

    1996-01-01

    The Rossi X-ray Timing Explorer (RXTE) carries instruments that must switch off high voltages (HV) when passing through the South Atlantic Anomaly (SAA). The High Energy X-ray Timing Experiment (HEXTE) contains a particle monitor that detects the increased particle flux associated with the SAA and autonomously reduces its voltage. The Proportional Counter Array (PCA) relies on uplinked predictions of SAA entry/exit times based on ephemeris data provided by the Flight Dynamics Facility. A third instrument, the All-Sky Monitor (ASM) also uses a predicted SAA model to reduce voltage when passing through the SAA. Data collected from the HEXTE particle monitor, as well as other instrument readings near the times of SAA entry/exit offer the potential for refining models of the boundaries of the SAA. The SAA has an increased particle flux which causes high rates of detection in the RXTE instruments designed to observe x-rays. The high counting rates could degrade the PCA if HV is not reduced during SAA passages. On the other hand, PCA downtime can be minimized and the science return can be optimized by having the best possible model of the SAA boundary. Thus, the PCA team planned an extensive effort during in-orbit checkout to utilize both the HEXTE particle monitor data and instrument counting rates to refine the model of the SAA boundary. The times of SAA entry and exit are compared with the definitive epemeris to determine the precise location (latitude and longitude) of the SAA boundary. Over time, the SAA and its perimeter were mapped. The RXTE Science Operations Center is continuously working to feed back the results of this effort into the science scheduling process, improving the SAA model as it affects the RXTE instruments, thus obtaining more accurate estimates of the SAA entry/exit times.

  8. SPECTRAL SURVEY OF X-RAY BRIGHT ACTIVE GALACTIC NUCLEI FROM THE ROSSI X-RAY TIMING EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu

    2011-03-15

    Using long-term monitoring data from the Rossi X-ray Timing Explorer (RXTE), we have selected 23 active galactic nuclei (AGNs) with sufficient brightness and overall observation time to derive broadband X-ray spectra from 3 to {approx}>100 keV. Our sample includes mainly radio-quiet Seyferts, as well as seven radio-loud sources. Given the longevity of the RXTE mission, the greater part of our data is spread out over more than a decade, providing truly long-term average spectra and eliminating inconsistencies arising from variability. We present long-term average values of absorption, Fe line parameters, Compton reflection strengths, and photon indices, as well as fluxesmore » and luminosities for the hard and very hard energy bands, 2-10 keV and 20-100 keV, respectively. We find tentative evidence for high-energy rollovers in three of our objects. We improve upon previous surveys of the very hard X-ray energy band in terms of accuracy and sensitivity, particularly with respect to confirming and quantifying the Compton reflection component. This survey is meant to provide a baseline for future analysis with respect to the long-term averages for these sources and to cement the legacy of RXTE, and especially its High Energy X-ray Timing Experiment, as a contributor to AGN spectral science.« less

  9. RXTE Observations of LMC X-1 and LMC X-3

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.

    1999-01-01

    Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3 , we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200 d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.

  10. RXTE Observations of LMC X-1 and LMC X-3

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.

    1998-01-01

    Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3, we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.

  11. Timing Studies of X Persei and the Discovery of Its Transient Quasi-periodic Oscillation Feature

    NASA Technical Reports Server (NTRS)

    Acuner, Z.; Inam,S. C.; Sahiner, S.; Serim, M. M.; Baykal, A.; Swank, J.

    2014-01-01

    We present a timing analysis of X Persei (X Per) using observations made between 1998 and 2010 with the Proportional Counter Array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) and with the INTEGRAL Soft Gamma-Ray Imager (ISGRI). All pulse arrival times obtained from the RXTE-PCA observations are phase-connected and a timing solution is obtained using these arrival times. We update the long-term pulse frequency history of the source by measuring its pulse frequencies using RXTE-PCA and ISGRI data. From the RXTEPCA data, the relation between the frequency derivative and X-ray flux suggests accretion via the companion's stellar wind. However, the detection of a transient quasi-periodic oscillation feature, peaking at approximately 0.2 Hz, suggests the existence of an accretion disc. We find that doublebreak models fit the average power spectra well, which suggests that the source has at least two different accretion flow components dominating the overall flow. From the power spectrum of frequency derivatives, we measure a power-law index of approximately - 1, which implies that, on short time-scales, disc accretion dominates over noise, while on time-scales longer than the viscous time-scales, the noise dominates. From pulse profiles, we find a correlation between the pulse fraction and the count rate of the source.

  12. RXTE Observation of Cygnus X-1. Report 2; TIming Analysis

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, Brian A.; Wilms, Joern; Dove, James B.; Begelman, Mitchell C.

    1998-01-01

    We present timing analysis for a Rossi X-ray Timing Explorer (RXTE) observation of Cygnus X-1 in its hard/low state. This was the first RXTE observation of Cyg X-1 taken after it transited back to this state from its soft/high state. RXTE's large effective area, superior timing capabilities, and ability to obtain long, uninterrupted observations have allowed us to obtain measurements of the power spectral density (PSD), coherence function, and Fourier time lags to a decade lower in frequency and half a decade higher in frequency than typically was achieved with previous instruments. Notable aspects of our observations include a weak 0.005 Hz feature in the PSD coincident with a coherence recovery; a 'hardening' of the high-frequency PSD with increasing energy; a broad frequency range measurement of the coherence function, revealing rollovers from unity coherence at both low and high frequency; and an accurate determination of the Fourier time lags over two and a half decades in frequency. As has been noted in previous similar observations, the time delay is approximately proportional to f(exp -0.7), and at a fixed Fourier frequency the time delay of the hard X-rays compared to the softest energy channel tends to increase logarithmically with energy. Curiously, the 0.01-0.2 Hz coherence between the highest and lowest energy bands is actually slightly greater than the coherence between the second highest and lowest energy bands. We carefully describe all of the analysis techniques used in this paper, and we make comparisons of the data to general theoretical expectations. In a companion paper, we make specific comparisons to a Compton corona model that we have successfully used to describe the energy spectral data from this observation.

  13. Probing the Relativistic Jets of Active Galactic Nuclei with Multiwavelength Monitoring

    NASA Technical Reports Server (NTRS)

    Marscher, Alan P.; Jorstad, Svetlana G.; Aller, Margo

    2005-01-01

    The work completed includes the analysis of observations obtained during Cycle 7 (March 2002-February 2003) of the Rossi X-ray Timing Explorer (RXTE). The project was part of a longer-term, continuing program to study the X-ray emission process in blazars and radio galaxies in collaboration with Dr. Ian McHardy (U. of Southampton, UK) and Prof. Thomas Balonek (Colgate U.). The goals of the program are to study the X-ray emission mechanism in blazars and radio galaxies and the relation of the X-ray emission to changes in the relativistic jet. The program includes contemporaneous brightness and linear polarization monitoring at radio and optical wavelengths, total and polarized intensity imaging at at 43 GHz with a resolution of 0.1 milliarcseconds with the VLBA, and well-sampled X-ray light curves obtained from a series of approved RXTE programs. The objects studied in the time period covered by the grant were 3C 120, 3C 279, PKS 1510-089, and 3C 273, all with radio jets containing bright knots that appear to move at superluminal speeds. During RXTE Cycle 7, the project was awarded RXTE time to monitor PKS 1510-089 two times per week, 3C 273 and 3C 279 three times per week, and 3C 120 four times per week. In addition, 3C273 and 3C 279 were observed several times per day during a ten-day period in April 2002. The X-ray data, including those from earlier cycles, were compared with radio measurements obtained in the centimeter-wave band by the monitoring program of Drs. Margo and Hugh Aller at the University of Michigan Radio Astronomy Observatory, monthly imaging observations with the VLBA at 43 GHz, and optical observations obtained at several telescopes around the world.

  14. Timing Studies and QPO Detection for Transient Xray Pulsar 4u 0115+634 by RXTE.

    NASA Astrophysics Data System (ADS)

    Ram Dugair, Moti; Jaaffrey, S. N. A.

    We present results of timing analysis of data of the transient X-ray pulsar 4U 0115+634 (Neu-tron star with fast spin entry) taken by the Rossi X-ray Timing Explorer (RXTE) space satellite. We first time observed the occurrence of 3 QPOs of 3 m Hz, 8 m Hz and 60 m Hz of the X-ray outburst of 2008. In particular the frequencies of the QPO's may be attributed to those of oscillations of disturbance occuring in the inner region of the accreted disk of the neutron star during the truncation of viscous circum stellar disc around the Be-star. The role of the interaction between the neutron star and the circumstellar is very important. Appearance of three QPOs in X-ray Binary system is a new phenomenon and difficult to understand.

  15. Low Luminosity States of the Black Hole Candidate GX 339-4. 1; ASCA and Simultaneous Radio/RXTE Observations

    NASA Technical Reports Server (NTRS)

    Wilms, Joern; Nowak, Michael A.; Dove, James B.; Fender, Robert P.; DiMatteo, Tiziana

    1998-01-01

    We discuss a series of observations of the black hole candidate GX 339-4 in low luminosity, spectrally hard states. We present spectral analysis of three separate archival Advanced Satellite for Cosmology and Astrophysics (ASCA) data sets and eight separate Rossi X-ray Timing Explorer (RXTE) data sets. Three of the RXTE observations were strictly simultaneous with 843 Mega Hertz and 8.3-9.1 Giga Hertz radio observations. All of these observations have (3-9 keV) flux approximately less than 10(exp-9) ergs s(exp-1) CM(exp -2). The ASCA data show evidence for an approximately 6.4 keV Fe line with equivalent width approximately 40 eV, as well as evidence for a soft excess that is well-modeled by a power law plus a multicolor blackbody spectrum with peak temperature approximately equals 150-200 eV. The RXTE data sets also show evidence of an Fe line with equivalent widths approximately equal to 20-1OO eV. Reflection models show a hardening of the RXTE spectra with decreasing X-ray flux; however, these models do not exhibit evidence of a correlation between the photon index of the incident power law flux and the solid angle subtended by the reflector. 'Sphere+disk' Comptonization models and Advection Dominated Accretion Flow (ADAF) models also provide reasonable descriptions of the RXTE data. The former models yield coronal temperatures in the range 20-50 keV and optical depths of r approximately equal to 3. The model fits to the X-ray data, however, do not simultaneously explain the observed radio properties. The most likely source of the radio flux is synchrotron emission from an extended outflow of extent greater than O(10 (exp7) GM/c2).

  16. RXTE Observation of Cygnus X-1: III. Implications for Compton Corona and ADAF Models. Report 3; Implications for Compton Corona and ADAF Models

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Vaughan, Brian A.; Dove, James B.; Begelman, Mitchell C.

    1999-01-01

    We have recently shown that a 'sphere + disk' geometry Compton corona model provides a good description of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-1. Separately, we have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing analysis for our best-fit 'sphere + disk' Comptonization models. We focus our attention on the observed Fourier frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances through the corona. We find that the time delays are most likely created directly within the corona; however, it is currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius [or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical information. We show, however, that simple phenomenological propagation models for the observed time delays for these latter models imply extremely slow characteristic propagation speeds within the coronal region.

  17. RXTE observations of AGN

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Heindl, W. A.; Blanco, P. R.; Gruber, D. E.; Marsden, D. C.; Pelling, M. R.; Jahoda, K.; Madejski, G.; Swank, J. H.; Zdziarski, A. A.; hide

    1997-01-01

    The Rossi X-ray Timing Explorer (RXTE) observed three active galaxies during its in-orbit verification phase: NGC 4151; NGC 4945, and MCG 8-11-11. All three were detected from 2 keV to more than 100 keV by a combination of the proportional counter array (PCA) and the high energy X-ray timing experiment (HEXTE). The PCA contains five, xenon/methane, multilayer, multiwire, gas proportional counters covering the 2 to 60 keV range, while HEXTE is an array of eight NaI/CsI phoswich scintillation counters covering the 15 to 250 keV range. The three active galaxies represent the classes of Seyfert 1, Seyfert 2 and intermediate Seyfert galaxies. The results of the fitting of various models containing partial covering fractions, Compton reflection components and high energy spectral breaks are discussed.

  18. Changes in the Long-Term Intensity Variations in Cygnus X-2 and LMC X-3

    NASA Astrophysics Data System (ADS)

    Paul, B.; Kitamoto, S.; Makino, F.

    2000-01-01

    We report the detection of changes in the long-term intensity variations in two X-ray binaries, Cyg X-2 and LMC X-3. In this work, we have used the long-term light curves obtained with the All-Sky Monitors (ASMs) of the Rossi X-Ray Timing Explorer (RXTE), Ginga, Ariel 5, and Vela 5B and the scanning modulation collimator of HEAO 1. It is found that in the light curves of both the sources, obtained with these instruments at various times over the last 30 years, more than one periodic or quasi-periodic component is always present. The multiple prominent peaks in the periodograms have frequencies unrelated to each other. In Cyg X-2, RXTE-ASM data show strong peaks at 40.4 and 68.8 days, and Ginga-ASM data show strong peaks at 53.7 and 61.3 days. Multiple peaks are also observed in LMC X-3. The various strong peaks in the periodograms of LMC X-3 appear at 104, 169, and 216 days (observed with RXTE-ASM) and 105, 214, and 328 days (observed with Ginga-ASM). The present results, when compared with the earlier observations of periodicities in these two systems, demonstrate the absence of any stable long period. The 78 day periodicity detected earlier in Cyg X-2 was probably due to the short time base in the RXTE data that were used, and the periodicity of 198 days in LMC X-3 was due to a relatively short duration of observation with HEAO 1.

  19. Swift/BAT and RXTE Observations of the Peculiar X-ray Binary 4U 2206+54 - Disappearance of the 9.6 Day Modulation

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; Markwardt, C.; Tueller, J.

    2007-01-01

    Observations of the high-mass X-ray binary 4U 2206+54 with the Swift Burst Alert Telescope (BAT) do not show modulation at the previously reported period of 9.6 days found from observations made with the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Instead, the strongest peak in the power spectrum of the BAT light curve occurs at a period of 19.25+/-0.08 days, twice the period found with the RXTE ASM. The maximum of the folded BAT light curve is also delayed compared to the maximum of the folded ASM light curve. The most recent ASM data folded on twice the 9.6 day period show 'similar morphology to the folded BAT light curve. This suggests that the apparent period doubling is a recent secular change rather than an energy-dependent effect. The 9.6 day period is thus not a permanent strong feature of the light curve. We suggest that the orbital period of 4U 2206+54 may be twice the previously proposed value.

  20. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: RMS Spectrum Evolution, BH Mass and the Source Distance

    NASA Technical Reports Server (NTRS)

    Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  1. Shedding a New Light on the Universe: An Information and Activity Booklet. Grades 9-12.

    ERIC Educational Resources Information Center

    Masetti, Maggie

    This activity booklet is divided into two parts. Part One presents basic information about the electromagnetic spectrum and multiwavelength astronomy with an emphasis on X-ray astronomy. Part Two describes X-ray detectors at a more advanced level. An introduction to the Rossi X-ray Timing Explorer (RXTE) and its contributions to science is…

  2. Absolute Timing of the Crab Pulsar with RXTE

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Jahoda, Keith; Lyne, Andrew G.

    2004-01-01

    We have monitored the phase of the main X-ray pulse of the Crab pulsar with the Rossi X-ray Timing Explorer (RXTE) for almost eight years, since the start of the mission in January 1996. The absolute time of RXTE's clock is sufficiently accurate to allow this phase to be compared directly with the radio profile. Our monitoring observations of the pulsar took place bi-weekly (during the periods when it was at least 30 degrees from the Sun) and we correlated the data with radio timing ephemerides derived from observations made at Jodrell Bank. We have determined the phase of the X-ray main pulse for each observation with a typical error in the individual data points of 50 microseconds. The total ensemble is consistent with a phase that is constant over the monitoring period, with the X-ray pulse leading the radio pulse by 0.01025 plus or minus 0.00120 period in phase, or 344 plus or minus 40 microseconds in time. The error estimate is dominated by a systematic error of 40 microseconds, most likely constant, arising from uncertainties in the instrumental calibration of the radio data. The statistical error is 0.00015 period, or 5 microseconds. The separation of the main pulse and interpulse appears to be unchanging at time scales of a year or less, with an average value of 0.4001 plus or minus 0.0002 period. There is no apparent variation in these values with energy over the 2-30 keV range. The lag between the radio and X-ray pulses ma be constant in phase (i.e., rotational in nature) or constant in time (i.e., due to a pathlength difference). We are not (yet) able to distinguish between these two interpretations.

  3. EXTREME ULTRAVIOLET EXPLORER OBSERVATIONS OF HERCULES X-1 OVER A 35 DAY CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leahy, D. A.; Dupuis, Jean, E-mail: leahy@ucalgary.c

    2010-06-01

    Observations of Hercules X-1 by the Extreme Ultraviolet Explorer covering most of the 35 day cycle are reported here. This is the only long extreme ultraviolet (EUV) observation of Her X-1. Simultaneous X-ray observations with the Rossi X-ray Timing Explorer All-Sky Monitor (RXTE/ASM) X-ray show that Her X-1 is in an X-ray anomalous low state. The first 4 days are also observed with the RXTE proportional counter array (PCA), which shows that the X-ray properties are nearly the same as for normal low states in Her X-1 with flux reduced by a factor of 2. In contrast, the EUV emissionmore » from Her X-1 is reduced by a factor of {approx}4 compared to normal low states. The twisted-tilted accretion disk responsible for the normal 35 day X-ray cycle can be modified to explain this behavior. An increased disk twist reduces the X-ray illumination of HZ Her by a factor of {approx}2 and of the disk surface by a somewhat larger factor, leading to a larger reduction in EUV flux compared to X-ray flux.« less

  4. Variability and Spectral Studies of Luminous Seyfert 1 Galaxy Fairall 9. Search for the Reflection Component is a Quasar: RXTE and ASCA Observation of a Nearby Radio-Quiet Quasar MR 2251-178

    NASA Technical Reports Server (NTRS)

    Leighly, Karen M.

    1999-01-01

    Monitoring observations with interval of 3 days using RXTE (X Ray Timing Explorer) of the luminous Seyfert 1 galaxy Fairall 9 were performed for one year. The purpose of the observations were to study the variability of Fairall 9 and compare the results with those from the radio-loud object 3C 390.3. The data has been received and analysis is underway, using the new background model. An observation of the quasar MR 2251-178 was made in order to determine whether or not it has a reflection component. Older background models gave an unacceptable subtraction and analysis is underway using the new background model. The observation of NGC 6300 showed that the X-ray spectrum from this Seyfert 2 galaxy appears to be dominated by Compton reflection.

  5. XTE J1946+274 = GRO J1944+26: An Enigmatic Be/X-Ray Binary

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Coe, M. J.; Negueruela, Ignacio

    2003-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8 s Be/X-ray pulsar discovered simultaneously in 1998 September with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) and the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer (RXTE). Here we present new results from BATSE and RXTE including a pulse timing analysis, spectral analysis, and evidence for an accretion disk. Our pulse timing analysis yielded an orbital period of 169.2 days, a moderate eccentricity 0.33, and implied a mass function of 9.7 solar masses. We observed evidence for an accretion disk, a correlation between measured spin-up rate and flux, which was fitted to obtain a distance estimate of 9.5 +/- 2.9 kpc. XTE J1946+274 remained active from 1998 September to 2001 July, undergoing 13 outbursts that were not locked in orbital phase. Comparing RXTE Proportional Counter Array observations from the initial bright outburst in 1998 and the last pair of outbursts in 2001, we found energy and intensity-dependent pulse profile variations in both outbursts and hardening spectra with increasing intensity during the fainter 2001 outbursts. In 2001 July, optical H alpha observations indicated that a density perturbation appeared in the Be disk as the X-ray outbursts ceased. We propose that the equatorial plane of the Be star is inclined with respect to the orbital plane in this system and that this inclination may be a factor in the unusual outburst behavior of the system.

  6. AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E.

    2016-03-01

    We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37 million counts in total for Cluster A and 39 million counts for Cluster B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster A is free of instrumental artifacts while that of Clustermore » B contains significant features with amplitudes ∼1%; the most prominent is in the energy range 30–50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster B, via an iterative procedure we created the calibration tool hexBcorr for correcting any Cluster B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper.« less

  7. Neutron Stars and Black Holes Seen with the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Swank, Jean

    2008-01-01

    Astrophysical X-rays bring information about location, energy, time, and polarization. X-rays from compact objects were seen in the first explorations to vary in time. Eclipses and pulsations have simple explanations that identified the importance of X-ray binaries and magnetic neutron stars in the first decade of X-ray astronomy. The dynamics of accretion onto stellar and supermassive black holes and onto neutron stars with relatively low magnetic fields shows up as more complex variations, quasi-periodic oscillations, noise with characteristic frequency spectra, broad-band changes in the energy spectra. To study these variations, RXTE instruments needed to have large area and operational flexibility to find transient activity and observe when it was present. Proportional counters and Phoswich scintillators provided it in a modest mission that has made textbook level contributions to understanding of compact objects. The first seen, and the brightest known, X-ray binary, Sco X-1 is one of a class of neutron stars with low mass companions. Before RXTE, none of these had been seen to show pulsations, though they were hypothesized to be the precursors of radio pulsars with millisecond periods and low magnetic fields. RXTE's large area led to identifying coherent millisecond pulsars in a subset which are relatively faint transients. It also led to identifying short episodes of pulsation during thermonuclear bursts, in sources where a steady signal is not seen. The X-ray stage verifies the evolution that produces millisecond radio pulsars.Masses and radii of neutron stars are being determined by various techniques, constraining the equation of state of matter at nuclear densities. Accretion should lead to a range of neutron star masses. An early stage of superstrong magnetic field neutron stars is now known to produce X-ray and gamma-ray bursts in crust quakes and magnetic field reconnection releases of energy. Soft Gamma Repeaters, Anomolous X-ray Pulsars, and high magnetic field rotation-powered pulsars are all now called magnetars, because they have pulse periods indicating they are slowing down as they would with magnetic dipole radiation for a surface field above 5x1013 gauss. The accretion disk has been connected to the launching of radio jets from black holes, and even from neutron stars. Estimates of the angular momenta of black holes are being made from different approaches, modelling a high frequency oscillation that may be related to how close the inner part of the accretion disk is to the black hole, modelling the continua spectra of the X-ray emission, and modeling the emission of red-shifted iron that may be emitted from the accretion disk. These investigations require early discovery of the black hole transient with the All Sky Monitor on RXTE or other monitoring information, frequent extended observations, and coordinated observations with missions that give higher energy resolution, or radio and infrared information.

  8. RXTE/PCA and Swift/XRT observations of GRO J1655-40 during decay

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; Kong, Albert; Tomsick, John; Miller, Jon; Campana, Sergio; Wijnands, Rudy; Belloni, Tomaso; Lewin, Walter

    2005-10-01

    Following its transition to the hard state (ATels #607,#612), we have continued our daily RXTE/PCA observations of the black hole X-ray transient GRO J1655-40 (see http://tahti.mit.edu/opensource/1655). Between September 23, when the source reached the hard state, and October 10, the RXTE/ PCA count rate decreased exponentially, with an e-folding time of ~7 days. After October 10 the decrease started to slow down and data from the last few days suggest that the count rate may have reached a constant level.

  9. Consolidated RXTE Observing Grants on Observation of Neutron Stars and Black Holes in Binaries

    NASA Technical Reports Server (NTRS)

    Prince, Thomas A.; Vaughan, Brian A.

    1998-01-01

    This final report is a study of neutron stars and black holes in binaries. The activities focused on observation made with the Rossi X-ray Timing Explorer. The following areas were covered: long term observations of accreting binary pulsars with the All-Sky Monitor (ASM); observations of Centaurus X-3 with the Proportional Counter Array (PCA) and the High-Energy X-ray Timing Experiment (HEXTE); observations of accreting pulsars with the PCA and HEXTE; studies of quasi-periodic oscillations (QPO); and investigations of accreting black-hole candidates.

  10. WMAP C&DH Software

    NASA Technical Reports Server (NTRS)

    Cudmore, Alan; Leath, Tim; Ferrer, Art; Miller, Todd; Walters, Mark; Savadkin, Bruce; Wu, Ji-Wei; Slegel, Steve; Stagmer, Emory

    2007-01-01

    The command-and-data-handling (C&DH) software of the Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft functions as the sole interface between (1) the spacecraft and its instrument subsystem and (2) ground operations equipment. This software includes a command-decoding and -distribution system, a telemetry/data-handling system, and a data-storage-and-playback system. This software performs onboard processing of attitude sensor data and generates commands for attitude-control actuators in a closed-loop fashion. It also processes stored commands and monitors health and safety functions for the spacecraft and its instrument subsystems. The basic functionality of this software is the same of that of the older C&DH software of the Rossi X-Ray Timing Explorer (RXTE) spacecraft, the main difference being the addition of the attitude-control functionality. Previously, the C&DH and attitude-control computations were performed by different processors because a single RXTE processor did not have enough processing power. The WMAP spacecraft includes a more-powerful processor capable of performing both computations.

  11. An Efficient Algorithm for the Detection of Infrequent Rapid Bursts in Time Series Data

    NASA Astrophysics Data System (ADS)

    Giles, A. B.

    1997-01-01

    Searching through data for infrequent rapid bursts is a common requirement in many areas of scientific research. In this paper, we present a powerful and flexible analysis method that, in a single pass through the data, searches for statistically significant bursts on a set of specified short timescales. The input data are binned, if necessary, and then quantified in terms of probabilities rather than rates or ratios. Using a measure-like probability makes the method relatively count rate independent. The method has been made computationally efficient by the use of lookup tables and cyclic buffers, and it is therefore particularly well suited to real-time applications. The technique has been developed specifically for use in an X-ray astronomy application to search for millisecond bursts from black hole candidates such as Cyg X-1. We briefly review the few observations of these types of features reported in the literature, as well as the variety of ways in which their statistical reliability was challenged. The developed technique, termed the burst expectation search (BES) method, is illustrated using some data simulations and archived data obtained during ground testing of the proportional counter array (PCA) experiment detectors on the Rossi X-Ray Timing Explorer (RXTE). A potential application for a real-time BES method on board RXTE is also examined.

  12. "XMM/RXTE Observations of GX 339-4"

    NASA Technical Reports Server (NTRS)

    Nowak, M. A.; Corbel, S.; Fender, R.; Wilms, J.; Kuster, M.; Bailyn, C.; Coppi, P.

    2005-01-01

    In March 2003, we performed two simultaneous XMM/RXTE observations of the black hole candidate GX 339-4. Our goal is to compare these data to our prior simultaneous RXTE/ASCA observations (Nowak, Wilms & Dove, 2002). These observations were carried out in timing mode, as opposed to burst mode, and are more complex to analyze than we expected. Specifically, the data suffered from a number of telemetry dropouts (in fact, the standard archive processing failed on these data, and more than a year passed from the time of the observations before the data was delivered to us). Furthermore, the core of the EPIC PSF suffers slightly from pileup and gain shifts. We continue to work on this data, however, and anticipate publishing it within the next academic year. Here we highlight our ongoing work and outline our plans for publication.

  13. Long-Term Spectral and Timing Behavior of Black Hole Candidate XTE J1908+094

    NASA Technical Reports Server (NTRS)

    Gogus, E.; Finger, M. H.; Kouveliotou, C.; Woods, P. M.; Patel, S. K.; Rupen, M.; Swank, J. H.; Markwardt, C. B.; Van Der Klis, M.

    2003-01-01

    The X-ray transient XTE J1908+094 was serendipitously discovered during RXTE ToO observations of SGR 1900+14 in February 2002. Following the discovery, RXTE routinely monitored the region. At the onset, the source was found in a spectrally low/hard state lasting for approximately 40 days, followed by a quick transition to the highhoft state. At the highest X-ray intensity level (seen on 2002 April 6), the source flux (2-10 keV) reached approximately 105 mCrab, then decayed rapidly. Overall outburst characteristics resemble the transient behavior of galactic black hole candidates. Here, we present the long term light curves, and detailed spectral and timing investigations of XTE J1098+094 using the RXTE/PCA data. We also report the results of Chandra ACIS observations which were performed during the decay phase.

  14. The Nature and Cause of Spectral Variability in LMC X-1

    NASA Technical Reports Server (NTRS)

    Ruhlen, L.; Smith, D. M.; Scank, J. H.

    2011-01-01

    We present the results of a long-term observation campaign of the extragalactic wind-accreting black-hole X-ray binary LMC X-1, using the Proportional Counter Array on the Rossi X-Ray Timing Explorer (RXTE). The observations show that LMC X-1's accretion disk exhibits an anomalous temperature-luminosity relation. We use deep archival RXTE observations to show that large movements across the temperature-luminosity space occupied by the system can take place on time scales as short as half an hour. These changes cannot be adequately explained by perturbations that propagate from the outer disk on a viscous timescale. We propose instead that the apparent disk variations reflect rapid fluctuations within the Compton up-scattering coronal material, which occults the inner parts of the disk. The expected relationship between the observed disk luminosity and apparent disk temperature derived from the variable occultation model is quantitatively shown to be in good agreement with the observations. Two other observations support this picture: an inverse correlation between the flux in the power-law spectral component and the fitted inner disk temperature, and a near-constant total photon flux, suggesting that the inner disk is not ejected when a lower temperature is observed.

  15. When A Standard Candle Flickers

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, Michael L.; Case, Gary L.; Baumgartner, Wayne H.; Beklen Elif; Bhat, P. Narayana; Briggs, Michael S.; Camero-Arranz, Ascension; Chaplin, Vandiver; Connaughton, Valerie; hide

    2011-01-01

    The Crab Nebula is the only hard X-ray source in the sky that is both bright enough and steady enough to be easily used as a standard candle. As a result, it has been used as a normalization standard by most X-ray/gamma ray telescopes. Although small-scale variations in the nebula are well-known, since the start of science operations of the Fermi Gamma-ray Burst Monitor (GBM) in August 2008 a 7% (70 mcrab) decline has been observed in the overall Crab Nebula flux in the 15-50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the 15-50 keV band with three other instruments: the Swift Burst Alert Telescope (Swift/BAT), the Rossi X-ray Timing Explorer Proportional Counter Array (RXTE/PCA), and the INTErnational Gamma-Ray Astrophysics Laboratory Imager on Board INTEGRAL (IBIS). A similar decline is also observed in the 3 - 15 keV data from the RXTE/PCA and in the 50 - 100 keV band with GBM, Swift/BAT, and INTEGRAL/IBIS. The change in the pulsed flux measured with RXTE/PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a 3 year timescale are also seen independently with the PCA, BAT, and IBIS from 2005 to 2008, with a flux minimum in April 2007. As of August 2010, the current flux has declined below the 2007 minimum.

  16. A Comparison of the Variability of the Symbiotic X-ray Binaries GX 1+4, 4U 1954+31, and 4U 1700+24 from Swift/BAT and RXTE/ASM Observations

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; Sokoloski, J. L.; Mukai, K.; Markwardt, C. B.; Tueller, J.

    2007-01-01

    We present an analysis of the X-ray variability of three symbiotic X-ray binaries, GX 1+4, 4U 1700+24, and 4U 1954+31, using observations made with the Swift Burst Alert Telescope (BAT) and the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Observations of 4U 1954+31 with the Swift BAT show modulation at a period near 5 hours. Models to explain this modulation are discussed including the presence of an exceptionally slow X-ray pulsar in the system and accretion instabilities. We conclude that the most likely interpretation is that 4U 1954+31 contains one of the slowest known X-ray pulsars. Unlike 4U 1954+31, neither GX 1+4 nor 4U 1700+24 show any evidence for modulation on a timescale of hours. An analysis of the RXTE ASM light curves of GX l+4, 4U 1700+24, and 4U 1954+31 does not show the presence of periodic modulation in any source, although there is considerable variability on long timescales for all three sources. There is no modulation in GX 1+4 on either the optical 1161 day orbital period or a previously reported 304 day X-ray period. For 4U 1700+24 we do not confirm the 404 day period previously proposed for this source from a shorter duration ASM light curve.

  17. Comprehensive Analysis of RXTE Data from Cyg X-1. Spectral Index-Quasi-Periodic Oscillation Frequency-Luminosity Correlations

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nickolai; Titarchuk, Lev

    2006-01-01

    We present timing and spectral analysis of approx. 2.2 Ms of Rossi X-ray Time Explorer (RXTE) archival data from Cyg X-1. Using the generic Comptonization model we reveal that the spectrum of Cyg X-1 consists of three components: a thermal seed photon spectrum, a Comptonized part of the seed photon spectrum and the iron line. We find a strong correlation between 0.1-20 Hz frequencies of quasiperiodic oscillations (QPOs) and the spectral power-law index. Presence of two spectral phases (states) are clearly seen in the data when the spectral indices saturate at low and high values of QPO frequencies. This saturation effect was discovered earlier in a number of black hole candidate (BHC) sources and now we strongly confirm this phenomenon in Cyg X-1. In the soft state this index- QPO frequency correlation shows a saturation of the photon index Gamma approx. 2.1 at high values of the low frequency upsilon(sub L). The saturation level of Gamma approx. 2.1 is the lowest value found yet in BHCs. The bolometric luminosity does not show clear correlation with the index. We also show that Fe K(sub alpha) emission line strength (equivalent width, EW) correlates with the QPO frequency. EW increases from 200 eV in the low/hard state to 1.5 keV in the high/soft state. The revealed observational correlations allow us to propose a scenario for the spectral transition and iron line formation which occur in BHC sources. We also present the spectral state (the power-law index) evolution for eight years of Cyg X-1 observations by RXTE.

  18. Studies of Accreting Neutron Stars with RXTE Cycle 4 Observations: III: TOO Observations of Atoll Sources

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    2002-01-01

    NASA Grant NAG 5-9244 provided funds for the research projects 'ASM-Triggered TOO Observations of Kilohertz Oscillations in Five Atoll Sources' and 'Further Measurements of the Kilohertz Oscillations in 4U 1705-44' approved under the Rossi X-ray Timing Explorer (RXTE) Guest Observer Program Cycle 4 and funded under the 1999 NASA Astrophysics Data Program. The principal investigator of the observing time proposals was Dr. E. C. Ford (U. of Amsterdam). The grant was funded for one year beginning 3/15/2000. The original ADP proposal was submitted by Prof. Jan van Paradijs, who passed away in 1999 before the funds were distributed. Prof. Wilham S. Padesas administered the grant during the period of performance. In spite of a wealth of observational data on the kHz QPO in low-mass X-ray binaries (LMXBs), the interpretation of this phenomenon is currently uncertain because the pairs of kHz QPO peaks and the oscillations seen in some Type I X-ray bursts are almost, but not quite, connected by a simple beat frequency relation. Further systematic studies of systems with known QPOs are required in order to better understand the phenomenon. The proposals were intended to contribute to a solution to this confusion by observing the sources as they vary over a wide range of X-ray flux. RXTE target-of-opportunity observations of six transient atoll sources, 4U 0614+09, KS 1732-260, Ser X-1, 4U 1702-42, 4U 1820-30 and 4U 1705-44 were to be performed at various flux levels based on ASM measurements.

  19. THE LIGHT CURVE OF HERCULES X-1 AS OBSERVED BY THE ROSSI X-RAY TIMING EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leahy, D. A.; Igna, Ciprian, E-mail: leahy@ucalgary.ca

    2011-07-20

    Analysis of the light curve of Hercules X-1 using the full set of archival observations of Hercules X-1 by the Rossi X-Ray Timing Explorer/Proportional Counter Array (RXTE/PCA) is reported. The observations cover time periods that Her X-1 is in main high, short high, and low states, and an anomalous low state (ALS). They include over 1.4 Ms of net exposure time. We present 35 day and orbital phase folded light curves of the count rates and softness ratios, showing the range of behaviors of Her X-1 with the high sensitivity of the RXTE/PCA. New phenomena are uncovered and previous phenomenamore » are seen in greater detail. For both main high and short high states, the fraction of time in dips is found to be a function of orbital phase and of 35 day phase. It increases steadily with orbital phase past orbital phase 0.3 and is higher at the start and end of both main high and short high states. It is higher for short high state (62%) than for main high state (28%). The normal low state data and ALS data are compared: the low state count rate is {approx}twice as high as for ALS data. The 2-4 keV to 9-20 keV softness ratio changes smoothly with orbital phase for low states and ALSs, and is indistinguishable between the two, yet very different than for the high states. This supports models for which the cause of the ALS is changed disk geometry that prevents a direct line of sight from neutron star to observer at all 35 day phases.« less

  20. Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia

    2016-07-01

    LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.

  1. TWELVE AND A HALF YEARS OF OBSERVATIONS OF CENTAURUS A WITH THE ROSSI X-RAY TIMING EXPLORER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, R. E.; Markowitz, A.; Rivers, E.

    2011-05-20

    The Rossi X-ray Timing Explorer (RXTE) has observed the nearest radio galaxy, Centaurus A (Cen A), in 13 intervals from 1996 August to 2009 February over the 3-200 keV band. Spectra accumulated over the 13 intervals were well described with an absorbed power law and an iron line. Cutoff power laws and Compton reflection from cold matter did not provide a better description. For the 2009 January observation, we set a lower limit on the cutoff energy at over 2 MeV. The power spectral density function was generated from RXTE/All Sky Monitor and Proportional Counter Array data as well asmore » an XMM-Newton long look, and clear evidence for a break at 18{sup +18}{sub -7} days (68% conf.) was seen. Given Cen A's high black hole mass and very low value of L{sub X}/L{sub Edd}, the break was a factor of 17{sup +36}{sub -13} times higher than the break frequency predicted by the McHardy et al. relation, which was empirically derived for a sample of objects, which are radio-quiet and accreting at relatively high values of L{sub bol}/L{sub Edd}. We have interpreted our observations in the context of a clumpy molecular torus. The variability characteristics and the broadband spectral energy distribution, when compared to Seyferts, imply that the bright hard X-ray continuum emission may originate at the base of the jet, yet from behind the absorbing line-of-sight material, in contrast to what is commonly observed from blazars.« less

  2. ASM-Triggered Too Observations of Kilohertz Oscillations in Three Atoll Sources

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Swank, Jean (Technical Monitor)

    2000-01-01

    Three Rossi Timing Explorer (RXTE) observations were carried out for this proposal based on target of opportunity triggers derived from the All-Sky Monitor (ASM) on RXTE. We obtained short observations of 4U1636-536 (15ks) and 4U1735-44 (23ks) and a longer observation of 4U0614+091 (117ks). Our analysis of our observations of the atoll neutron star x-ray binary 4U1735-44 lead to the discovery of a second high frequency quasiperiodic oscillation (QPO) in this source. These results were published in the Astrophysical Journal Letters. The data obtained on the source 4U0614+091 were used in a comprehensive study of this source, which will be published in the Astrophysical Journal. The data from this proposal were particularly critical for that study as they lead to the detection of the highest QPO frequency every found in the x-ray emission from an x-ray binary which will be important in placing limits on the equation of state of nuclear matter.

  3. Eclipsing Pulsar Promises Clues to Crushed Matter

    NASA Image and Video Library

    2017-12-08

    NASA image release August 17, 2010 Astronomers using NASA's Rossi X-ray Timing Explorer (RXTE) have found the first fast X-ray pulsar to be eclipsed by its companion star. Further studies of this unique stellar system will shed light on some of the most compressed matter in the universe and test a key prediction of Einstein's relativity theory. Known as Swift J1749.4-2807 -- J1749 for short -- the system erupted with an X-ray outburst on April 10. During the event, RXTE observed three eclipses, detected X-ray pulses that identified the neutron star as a pulsar, and even recorded pulse variations that indicated the neutron star's orbital motion. To view a video of this pulsar go here: www.flickr.com/photos/gsfc/4901238111 To read more click here Credit: NASA/GSFC NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  4. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  5. Drop of coherence of the lower kilo-Hz QPO in neutron stars: Is there a link with the innermost stable circular orbit?

    NASA Astrophysics Data System (ADS)

    Barret, D.; Olive, J.-F.; Miller, M. Coleman

    2005-11-01

    Using all available archival data from the Rossi X-ray Timing Explorer (RXTE), we follow the frequency of the kilo-Hz QPOs in three low luminosity neutron star low mass X-ray binaries; namely 4U 1636-536, 4U 1608-522, and 4U 1735-44. Following earlier work by Barret et al. (2005a,b), we focus our analysis on the lower kilo-Hz QPO, for which we study the dependency of its quality factor (Q=\

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Güver, Tolga; Özel, Feryal; Psaltis, Dimitrios

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826–238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE /PCA as well as by XMM-Newton EPIC-pn and RXTE /PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE /PCA and the Chandra gratings measurements agree with each other withinmore » their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE /PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.« less

  7. A global study of type B quasi-periodic oscillation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Gao, H. Q.; Zhang, Liang; Chen, Yupeng; Zhang, Zhen; Chen, Li; Zhang, Shuang-Nan; Zhang, Shu; Ma, Xiang; Li, Zi-Jian; Bu, Qing-Cui; Qu, JinLu

    2017-04-01

    We performed a global study on the timing and spectral properties of type-B quasi-periodic oscillations (QPOs) in the outbursts of black hole X-ray binaries. The sample is built based on the observations of Rossi X-ray Timing Explorer (RXTE), via searching in the literature in RXTE era for all the identified type-B QPOs. To enlarge the sample, we also investigated some type-B QPOs that are reported but not yet fully identified. Regarding to the time lag and hard/soft flux ratio, we found that the sources with type-B QPOs behave in two subgroups. In one subgroup, type-B QPO shows a hard time lag that first decreases and then reverse into a soft time lag along with softening of the energy spectrum. In the other subgroup, type-B QPOs distribute only in a small region with hard time lag and relatively soft hardness. These findings may be understood with a diversity of the homogeneity showing up for the hot inner flow of different sources. We confirm the universality of a positive relation between the type-B QPO frequency and the hard component luminosity in different sources. We explain the results by considering that the type-B QPO photons are produced in the inner accretion flow around the central black hole, under a local Eddington limit. Using this relationship, we derived a mass estimation of 9.3-27.1 M⊙ for the black hole in H 1743-322.

  8. Granularity of the Diffuse Background Observed

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.; MacDonald, D.; Rothschild, R. E.; Boldt, E.; Mushotzky, R. F.; Fabian, A. C.

    1995-01-01

    First results are reported from a program for measuring the field-to-field fluctuation level of the cosmic diffuse background by using differences between the two background positions of each deep exposure with the High Energy X-ray Timing Experiment (HEXTE) instrument on the Remote X Ray Timing Explorer (RXTE). With 8 million live seconds accumulated to date a fluctuation level on the 15-25 keV band is observed which is consistent with extrapolations from the High Energy Astrophysical Observatory-1 (HEAO-1) measurements. Positive results are expected eventually at higher energies. Models of (active galactic nuclei) AGN origin will eventually be constrained by this program.

  9. The Physics Of The 'Heartbeat' State Of The Microquasar GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Lee, J. C.; Remillard, R.

    2010-03-01

    Approaching the 14th anniversary of the first observations of GRS 1915+105 with RXTE, we present new results from a joint RXTE/Chandra study of the remarkable X-ray spectral variability of this enigmatic microquasar. For the first time, we are able to show that changes in the broadband X-ray spectrum (RXTE) on timescales of seconds are associated with changes in absorption lines (Chandra HETGS) from the accretion disk wind, leading to new insights about accretion and ejection around the black hole. We will play a real-time movie of our X-ray data showing the black hole attempting and failing to launch a jet, driving a wind from the accretion disk, and finally ejecting the entire inner accretion flow into the corona, all in a bizarre cycle that repeats for days but lasts fewer than 60 seconds. We use these phenomena to probe the ionizing influence of the inner accretion flow on the environment of the black hole.

  10. Observation of Kilohertz Quasiperiodic Oscillations from the Atoll Source 4U 1702-429 by RXTE

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Strohmayer, Tod E.; Swank, Jean H.

    1998-01-01

    We present results of Rossi X-Ray Timing Explorer (RXTE) observations of the atoll source 4U 1702-429 in the middle of its luminosity range. Kilohertz-range quasiperiodic oscillations (QPOS) were observed first as a narrow (FWHM approximately 7 Hz) peak near 900 Hz, and later as a pair consisting of a narrow peak in the range 625 825 Hz and a faint broad (FWHM 91 Hz) peak. When the two peaks appeared simultaneously the separation was 333 +/- 5 Hz. Six type I thermonuclear bursts were detected, of which five exhibited almost coherent oscillations near 330 Hz, which makes 4U 1702-429 only the second source to show burst oscillations very close to the kilohertz QPO separation frequency. The energy spectrum and color-color diagram indicate that the source executed variations in the range between the "island" and "lower banana" atoll states. In addition to the kilohertz variability, oscillations at approximately 10, approximately 35, and 80 Hz were also detected at various times, superimposed on a red noise continuum. The centroid of the approximately 35 Hz QPO tracks the frequency of the kilohertz oscillation when they were both present. A Lense-Thirring gravitomagnetic precession interpretation appears more plausible in this case, compared to other atoll sources with low frequency QPOs.

  11. The 2014 X-Ray Minimum of Eta Carinae as Seen by Swift

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Liburd, J.; Morris, D.; Russell, C. M. P.; Hamaguchi, K.; Gull, T. R.; Madura, T. I.; Teodoro, M.; Moffat, A. F. J.; Richardson, N. D.

    2017-01-01

    We report on Swift X-ray Telescope observations of Eta Carinae ( Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimumperiastron passage. These observations show that Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer (RXTE), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days after the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the central constant emission component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P X equals 2023.7 +/- 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii lambda 4686 emission. The middle of the Deep Minimum interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii 4686 line variations.

  12. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    NASA Technical Reports Server (NTRS)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  13. Structure of the Circumnuclear Region of Seyfert 2 Galaxies Revealed by RXTE Hard X-Ray Observations of NGC 4945

    NASA Technical Reports Server (NTRS)

    Madejski, G.; Zycki, P.; Done, C.; Valinia, A.; Blanco, P.; Rothschild, R.; Turek, B.

    2000-01-01

    NGC 4945 is one of the brightest Se.yfert galaxies on the sky at 100 keV, but is completely absorbed below 10 keV, implying an optical depth of the absorber to electron scattering of a few; its absorption column is probably the largest which still allows a direct view of the nucleus at hard X-ray energies. Our observations of it with the Rossi X-ray Timing Explorer (RXTE) satellite confirm the large absorption, which for a simple phenomenological fit using an absorber with Solar abundances implies a column of 4.5(sup 0.4, sub -0.4) x 10(exp 24) /sq cm. Using a a more realistic scenario (requiring Monte Carlo modeling of the scattering), we infer the optical depth to Thomson scattering of approximately 2.4. If such a scattering medium were to subtend a large solid angle from the nucleus, it should smear out any intrinsic hard X-ray variability on time scales shorter than the light travel time through it. The rapid (with a time scale of approximately a day) hard X-ray variability of NGC 4945 we observed with the RXTE implies that the bulk of the extreme absorption in this object does not originate in a parsec-size, geometrically thick molecular torus. Limits on the amount of scattered flux require that the optically thick material on parsec scales must be rather geometrically thin, subtending a half-angle < 10 deg. This is only marginally consistent with the recent determinations of the obscuring column in hard X-rays, where only a quarter of Seyfert 2s have columns which are optically thick, and presents a problem in accounting for the Cosmic X-ray Background primarily with AGN possessing the geometry as that inferred by us. The small solid angle of the obscuring material, together with the black hole mass (of approximately 1.4 x 10(exp 6) solar mass) from megamaser measurements. allows a robust determination of the source luminosity, which in turn implies that the source radiates at approximately 10% of the Eddington limit.

  14. Swift and RXTE follow up observations of the transient currently active in the globular cluster Terzan 5

    NASA Astrophysics Data System (ADS)

    Altamirano, D.; Degenaar, N.; Heinke, C. O.; Homan, J.; Pooley, D.; Sivakoff, G. R.; Wijnands, R.

    2011-10-01

    Following the detection of an X-ray outburst in the direction of Terzan 5 (ATEL #3714), we obtained a Swift observation and additional RXTE observations. The XRT aboard Swift observed Terzan 5 on Oct. 26, 2011 in imaging mode for a total exposure time of 967 s. The source was detected at high count rates causing significant pile-up (the core is saturated), and a bad column intersects the point-spread function.

  15. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul

    2013-06-10

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 revealmore » a stacked, quiescent flux level decreasing from {approx}2 to <1 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.« less

  16. Burst Oscillations: A New Spin on Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2007-01-01

    Observations with NASA's Rossi X-ray Timing Explorer (RXTE) have shown that the X-ray flux during thermonuclear X-ray bursts fr-om accreting neutron stars is often strongly pulsed at frequencies as high as 620 Hz. We now know that these oscillations are produced by spin modulation of the thermonuclear flux from the neutron star surface. In addition to revealing the spin frequency, they provide new ways to probe the properties and physics of accreting neutron stars. I will briefly review our current observational and theoretical understanding of these oscillations and discuss what they are telling us about neutron stars.

  17. The Orbital Parameters and Nature of the X-ray Pulsar IGR J16393-4643 Using Pulse Timing Analysis

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Corbet, R. H. D.; Pottschmidt, K.; Skinner, G. K.

    2011-09-01

    A 3.7 day orbital period was previously suggested for the 910 s X-ray pulsar IGR J16393-4643 from a pulse timing study of widely separated X-ray observations (Thompson et al., 2006), placing the system in the supergiant wind-fed region of the Ppulse-Porb diagram. However, orbital periods of 50.2 and 8.1 days could not be excluded. Nespoli et al. (2010) refute this wind-accreting high-mass X-ray binary classification and suggest a symbiotic X-ray binary (SyXB) designation based on infrared spectroscopy of the proposed counterpart and the potential 50.2 day orbital solution. SyXBs are low-mass X-ray binaries in which a neutron star accretes from the inhomogeneous medium around an M-type giant companion. We find that two statistically independent light curves of IGR J16393-4643, from the Swift Burst Alert Telescope (15-50 keV) and the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) Galactic bulge scans (2-10 keV), show highly significant orbital modulation near 4.24 days. Making use of this precise orbital period, we present the results from pulse arrival time analysis on IGR J16393-4643 using RXTE PCA observations. We provide significantly improved phase-connected pulse timing results using archival observations presented in Thompson et al. (2006) and additional pulse timing data not included in their study to determine the orbital parameters of the system. The derived 7.5 M⊙ mass function is inconsistent with a SyXB identification.

  18. RXTE and BeppoSAX Observations of MCG-5-23-16: Reflection From Distant Cold Material

    NASA Technical Reports Server (NTRS)

    Mattson, B. J.; Weaver, K. A.

    2003-01-01

    We examine the spectral variability of the Seyfert 1.9 galaxy MCG-5-23-16 using RXTE and BeppoSAX observations spanning 2 years from April 1996 to April 1998. During the first year the X-ray source brightens by a factor of approximately 25% on timescales of days to months. During this time, the reprocessed continuum emission seen with RXTE does not respond measurably to the continuum increase. However, by the end of the second year during the BeppoSAX epoch the X-ray source has faded again. This time, the reprocessed emission has also faded, indicating that the reprocessed flux has responded to the continuum. If these effects are caused by time delays due to the distance between the X-ray source and the reprocessing region, we derive a light crossing time of between approximately 1 light day and approximately 1.5 light years. This corresponds to a distance of 0.001 pc to 0.55 pc, which implies that the reprocessed emission originates between 3 x 10(exp 15) cm and 1.6 x 10(exp l8) cm from the X-ray source. In other words, the reprocessing in MCG-5-23-16 is not dominated by the inner regions of a standard accretion disk.

  19. Estimating Attitude, Trajectory, and Gyro Biases in an Extended Kalman Filter using Earth Magnetic Field Data from the Rossi X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.

  20. XTE J1946+274 = GRO J1944+26: An Enigmatic Be/X-ray Binary

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Coe, M. J.; Negueruela, Ignacio; Six, N. Frank (Technical Monitor)

    2002-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8-s Be/X-ray pulsar discovered simultaneously in 1998 September with the, Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) and the All-Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE). Pulse timing analysis yielded an orbital period of 169.2 days, a moderate eccentricity of 0.33, and implied a mass function of 9.7 solar mass. We observed evidence for an accretion disk, a correlation between measured spin-up rate and flux, which was fitted to obtain a distance estimate of 9.2 +/- 1.0 kpc. XTE J1946+274 remained active from 1998 September - 2001 July, undergoing 13 outbursts that were not locked in orbital phase. Comparing RXTE PCA observations from the initial bright outburst in 1998 and the last pair of outburst in 2001, we found energy and intensity dependent pulse profile variations in both outbursts and hardening spectra with increasing intensity during the fainter 2001 outbursts. In 2001 July, optical H(alpha) observations indicate a density perturbation appeared in the Be disk as the X-ray outbursts ceased. We propose that the equatorial plane of the Be star is inclined with respect to the orbital plane in this system and that this inclination may produce the unusual outburst behavior of the system.

  1. The 2014 X-Ray Minimum of η Carinae as Seen by Swift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corcoran, M. F.; Hamaguchi, K.; Liburd, J.

    We report on Swift X-ray Telescope observations of Eta Carinae ( η Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimum/periastron passage. These observations show that η Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer ( RXTE ), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days aftermore » the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the “central constant emission” component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P {sub X} = 2023.7 ± 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii 4686 emission. The middle of the “Deep Minimum” interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii λ 4686 line variations.« less

  2. A decade of Rossi X-ray Timing Explorer Seyfert observations: An RXTE Seyfert spectral database

    NASA Astrophysics Data System (ADS)

    Mattson, Barbara Jo

    2008-10-01

    With over forty years of X-ray observations, we should have a grasp on the X- ray nature of active galactic nuclei (AGN). The unification model of Antonucci and Miller (1985) offered a context for understanding observations by defining a "typical" AGN geometry, with observed spectral differences explained by line- of-sight effects. However, the emerging picture is that the central AGN is more complex than unification alone can describe. We explore the unified model with a systematic X-ray spectral study of bright Seyfert galaxies observed by the Rossi X-Ray Timing Explorer (RXTE) over its first 10 years. We develop a spectral-fit database of 821 time-resolved spectra from 39 Seyfert galaxies fitted to a model describing the effects of an X-ray power-law spectrum reprocessed and absorbed by material in the central AGN region. We observe a relationship between radio and X-ray properties for Seyfert 1s, with the spectral parameters differing between radio-loud and radio-quiet Seyfert 1s. We also find a complex relationship between the Fe K equivalent width ( EW ) and the power-law photon index (Gamma) for the Seyfert 1s, with a correlation for the radio-loud sources and an anti-correlation for the radio- quiet sources. These results can be explained if X-rays from the relativistic jet in radio-loud sources contribute significantly to the observed spectrum. We observe scatter in the EW-Gamma relationship for the Seyfert 2s, suggesting complex environments that unification alone cannot explain. We see a strong correlation between Gamma and the reflection fraction ( R ) in the Seyfert 1 and 2 samples, but modeling degeneracies are present, so this relationship cannot be trusted as instructive of the AGN physics. For the Seyfert 1 sample, we find an anticorrelation between EW and the 2 to 10 keV luminosity ( L x ), also known as the X-ray Baldwin effect. This may suggest that higher luminosity sources contain less material or may be due to a time-lag effect. We do not observe the previously reported relationship between Gamma and the ratio of L x to the Eddington luminosity.

  3. Future Probes of the Neutron Star Equation of State Using X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2004-01-01

    Observations with NASA s Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 - 600 Hz), coherent X-ray intensity oscillations (hereafter, %urstoscillations ) during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). Although many of their detailed properties remain to be fully understood, it is now beyond doubt that these oscillations result from spin modulation of the thermonuclear burst flux from the neutron star surface. Among the new timing phenomena revealed by RXTE the burst oscillations are perhaps the best understood, in the sense that many of their properties can be explained in the framework of this relatively simple model. Because of this, detailed modelling of burst oscillations can be an extremely powerful probe of neutron star structure, and thus the equation of state (EOS) of supra-nuclear density matter. Both the compactness parameter beta = GM/c(sup 2)R, and the surface velocity, nu(sub rot) = Omega(sub spin)R, are encoded in the energy-dependent amplitude and shape of the modulation pulses. The new discoveries have spurred much new theoretical work on thermonuclear burning and propagation on neutron stars, so that in the near future it is not unreasonable to think that detailed physical models of the time dependent flux from burning neutron stars will be available for comparison with the observed pulse profiles from a future, large collecting area X-ray timing observatory. In addition, recent high resolution burst spectroscopy with XMM/Newton suggests the presence of redshifted absorption lines from the neutron star surface during bursts. This leads to the possibility of using large area, high spectral resolution measurements of X-ray bursts as a precise probe of neutron star structure. In this work I will explore the precision with which constraints on neutron star structure, and hence the dense matter EOS, can be made with the implementation of such programs.

  4. Low Luminosity States of the Black Hole Candidate GX 339-4. 2; Timing Analysis

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Wilms, Joern; Dove, James B.

    1999-01-01

    Here we present timing analysis of a set of eight Rossi X-ray Timing Explorer (RXTE) observations of the black hole candidate GX 339-4 that were taken during its hard/low state. On long time scales, the RXTE All Sky Monitor data reveal evidence of a 240 day periodicity, comparable to timescales expected from warped, precessing accretion disks. On short timescales all observations save one show evidence of a persistent f(qpo approximately equals 0.3 Hz quasi-periodic oscillations (QPO)). The broad band (10 (exp -3) to 10 (exp2) Hz) power appears to be dominated by two independent processes that can be modeled as very broad Lorentzians with Q approximately less than - 1. The coherence function between soft and hard photon variability shows that if these are truly independent processes, then they are individually coherent, but they are incoherent with one another. This is evidenced by the fact that the coherence function between the hard and soft variability is near unity between 5 x 10 (exp -3) but shows evidence of a dip at f approximately equals 1 Hz. This is the region of overlap between the broad Lorentzian fits to the Power Spectral Density (PSD). Similar to Cyg X-1, the coherence also drops dramatically at frequencies approximately greater than 1O Hz. Also similar to Cyg X-1, the hard photon variability is seen to lag the soft photon variability with the lag time increasing with decreasing Fourier frequency. The magnitude of this time lag appears to be positively correlated with the flux of GX 339-4. We discuss all of these observations in light of current theoretical models of both black hole spectra and temporal variability.

  5. X-Ray Pulsar Studies With RXTE

    NASA Technical Reports Server (NTRS)

    Rappaport, Saul

    2004-01-01

    Our activities here at MIT have largely concentrated on four different binary X-ray pulsars: LMC X-4; 4UO352+3O/XPer; 4U0115+63; and X1908+075. We have also recently initiated a search for millisecond X-ray pulsations in RXTE archival data for several bright LMXBs using a new technique. Since this study is just getting under way, we will not report any results here. Using RXTE timing observations of LMC X-4 we have definitively measured, for the first time, the orbital decay of this high-mass X-ray binary. The e-folding decay time scale is very close to lo6 years, comparable to, but somewhat longer than, the corresponding orbital decay times for SMC X-1 and Cen X-3. We find that the orbital decay in LMC X-4 is likely driven by tidal interactions, where the asynchronism between the orbital motion and the rotation of the companion star is maintained by the evolutionary expansion of the companion. Under NASA grant NAGS7479 we carried out RXTE observations of X Per/4U0352+30 in order to track the pulse phase over a one year interval. This effort was successful in tentatively identifying a N 250-day orbital period. However, due to the fact that the observing interval was only somewhat longer than the orbital period, we asked for the observations of X Per to continue as public, or non-proprietary observations. Dr. Jean Swank kindly agreed to the continuation of the observations and they were carried out on a less frequent basis over the next year and a half. After 72 separate observations of X Per, we have the orbital period and semimajor axis firmly determined. In addition, we were able to measure the orbital eccentricity-which turns out to be remarkably small (e = 0.10) for such a wide binary orbit. This has led us establish the birth of a neutron star with a very small (or zero) natal kick.

  6. Accreting Millisecond Pulsars: Neutron Star Masses and Radii

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2004-01-01

    High amplitude X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries. The recent discovery of X-ray burst oscillations from two accreting millisecond pulsars has confirmed this basic picture and provided a new route to measuring neutron star properties and constraining the dense matter equation of state. I will briefly summarize the current observational understanding of accreting millisecond pulsars, and describe recent attempts to determine the mass and radius of the neutron star in XTE J1814-338.

  7. A NON-PRE DOUBLE-PEAKED BURST FROM 4U 1636-536: EVIDENCE FOR BURNING FRONT PROPAGATION

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.

    2005-01-01

    We analyse Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of a double-peaked burst from the low mass X-ray binary (LMXB) 4U 1636-536 that shows no evidence for photospheric radius expansion (PRE). We find that the X-ray emitting area on the star increases with time as the burst progresses, even though the photosphere does not expand. We argue that this is a strong indication of thermonuclear flame spreading on the stellar surface during such bursts. We propose a model for such double-peaked bursts, based on thermonuclear flame spreading, that can qualitatively explain their essential features, as well as the rarity of these bursts.

  8. RXTE Observations of the 1A 1118-61 in an Outburst, and the Discovery of a Cyclotron Line

    NASA Technical Reports Server (NTRS)

    Doroshenko, V.; Suchy, S.; Santangelo, A; Staubert, R.; Kreykenbohm, I.; Rothschild, R.; Pottschmidt, K.; Wilms, J.

    2010-01-01

    We present the analysis of RXTE monitoring data obtained during the January 2009 outburst of the hard X-ray transient IA 1118-61. Using these observations the broadband (3.5-120 keV) spectrum of the source was measured for the first time ever. We have found that the broadband continuum spectrum of the source is similar to other accreting pulsars and is well described by several conventionally used phenomenological models. We have discovered that regardless of the applied continuum model, a prominent broad absorption feature at approx. 55 keV is observed. We interpret this feature as a Cyclotron Resonance Scattering Feature (CRSF). The observed CRSF energy is one of the highest known and corresponds to a magnetic field of B approx. 4.8 x 10(exp 12) G in the scattering region. Furthermore, our data suggests an iron emission line presence, which was not reported previously for lA 1118-61 as well. Timing properties of the source, including a strong spin-up, were found to be similar to those observed by CGRO/BATSE during the previous outburst, however the broadband capabilities of RXTE reveal a more complicated energy dependency of the pulse-profile.

  9. RXTE spectra of the Galactic microquasar GRO J1655-40 during the 2005 outburst

    NASA Astrophysics Data System (ADS)

    Saito, Koji; Yamaoka, K.; Fukuyama, M.; Miyakawa, T. G.; Yoshida, A.; Homan, J.

    We report on the results of a detailed spectral analysis of 389 RXTE observations of the Galac- tic microquasar GRO J1655-40, performed during its 2005 outburst. The maximum luminosity reached during this outburst was 1.4 times higher than in the previous (1996-1997) outburst. However, the spectral behavior during the two outbursts was very similar. In particular, L disk was 4 proportional to Tin up to the same critical luminosity and in both outbursts there were periods during which the energy spectra were very soft, but could not be fit with standard disk models.

  10. Neutron Star Masses and Radii as Inferred from Kilohertz Quasi-periodic Oscillations

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Strohmayer, T. E.; Swank, J. H.

    1997-06-01

    Kilohertz quasi-periodic oscillations (kHz QPOs) have been discovered in the X-ray fluxes of eight low-mass X-ray binaries (LMXBs) with the Rossi X-Ray Timing Explorer (RXTE). The characteristics of these QPOs are remarkably similar from one source to another. In particular, the highest observed QPO frequencies for six of the eight sources fall in a very narrow range: from 1066 to 1171 Hz. This is all the more remarkable when one considers that these sources are thought to have very different luminosities and magnetic fields and produce very different count rates in the RXTE detectors. Therefore, it is highly unlikely that this near-constancy of the highest observed frequencies is due to some unknown selection effect or instrumental bias. In this Letter we propose that the highest observed QPO frequency can be taken as the orbital frequency of the marginally stable orbit. This leads to the conclusions that the neutron stars in these LMXBs are inside their marginally stable orbits and have masses in the vicinity of 2.0 Msolar. This mass is consistent with the hypothesis that these neutron stars were born with about 1.4 Msolar and have been accreting matter at a fraction of the Eddington limit for 108 yr.

  11. Coordinated XTE Observations of Coronal Structure and Flares on the Rs CVn Binary Sigma(sup 2) CrB

    NASA Technical Reports Server (NTRS)

    Brown, Alexander

    1999-01-01

    This NASA grant supported my RXTE observing and data analysis during AO2. The research involved a 100 kilosecond observation of the active RS CVn binary sigma(sup 2) CrB obtained on 1997 March 11-13. This observation covered two orbits of the binary (2.5 days elapsed time) as part of a coordinated satellite and ground-based study of coronal structure and flaring within this system. Simultaneous data was obtained from the ASCA X-ray satellite and the Very Large Array radio telescope. The one month of effort funded for the PI was used to calibrate and analyze the RXTE data. Additional research effort on this project to lead to a final publication has been provided from LTSA and GSRP grants. An initial attempt was made to calibrate the RXTE data in May 1997 but the results were disappointing with poor background subtraction leading to a relatively noisy PCA light curve. Subsequently major improvements have been made in the calibration techniques for low count rate PCA data and we returned to Goddard Space Flight Center in February 1999 when we were able to produce vastly better calibrated data. The RXTE results are currently being integrated with the ASCA and VLA data and a paper should be submitted by the end of summer 1999.

  12. RXTE Monitoring of the Anomalous X-ray Pulsar 1E 1048.1-5937: Long-Term Variability and the 2007 March Event

    NASA Technical Reports Server (NTRS)

    Dib, Rim; Kaspi, Victoria M.; Gavriil, Fotis P.

    2009-01-01

    After three years of no unusual activity, Anomalous X-ray Pulsar 1E 1048.1-5937 reactivated in 2007 March. We report on the detection of a large glitch (deltav/v = 1.63(2) x 10(exp -5)) on 2007 March 26 (MJD 54185.9), contemporaneous with the onset of a pulsed-flux flare, the third flare observed from this source in 10 years of monitoring with the Rossi X-ray Timing Explorer. Additionally, we report on a detailed study of the evolution of the timing properties, the pulsed flux, and the pulse profile of this source as measured by RXTE from 1996 July to 2008 January. In our timing study, we attempted phase coherent timing of all available observations. We show that in 2001, a timing anomaly of uncertain nature occurred near the rise of the first pulsed flux flare; we show that a likely glitch (deltav/v = 2.91(9) x 10(exp -6)) occurred in 2002, near the rise of the second flare, and we present a detailed description of the variations in the spin-down. In our pulsed flux study, we compare the decays of the three flares and discuss changes in the hardness ratio. In our pulse profile study, we show that the profile exhibited large variations near the peak of the first two flares, and several small short-term profile variations during the most recent flare. Finally, we report on the discovery of a small burst 27 days after the peak of the last flare, the fourth burst discovered from this source. We discuss the relationships between the observed properties in the framework of the magnetar model.

  13. TIME-FREQUENCY ANALYSIS OF THE SUPERORBITAL MODULATION OF THE X-RAY BINARY SMC X-1 USING THE HILBERT-HUANG TRANSFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chin-Ping; Chou, Yi; Yang, Ting-Chang

    2011-10-20

    The high-mass X-ray binary SMC X-1 exhibits a superorbital modulation with a dramatically varying period ranging between {approx}40 days and {approx}60 days. This research studies the time-frequency properties of the superorbital modulation of SMC X-1 based on the observations made by the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE). We analyzed the entire ASM database collected since 1996. The Hilbert-Huang transform (HHT), developed for non-stationary and nonlinear time-series analysis, was adopted to derive the instantaneous superorbital frequency. The resultant Hilbert spectrum is consistent with the dynamic power spectrum as it shows more detailed information in both themore » time and frequency domains. The RXTE observations show that the superorbital modulation period was mostly between {approx}50 days and {approx}65 days, whereas it changed to {approx}45 days around MJD 50,800 and MJD 54,000. Our analysis further indicates that the instantaneous frequency changed to a timescale of hundreds of days between {approx}MJD 51,500 and {approx}MJD 53,500. Based on the instantaneous phase defined by HHT, we folded the ASM light curve to derive a superorbital profile, from which an asymmetric feature and a low state with barely any X-ray emissions (lasting for {approx}0.3 cycles) were observed. We also calculated the correlation between the mean period and the amplitude of the superorbital modulation. The result is similar to the recently discovered relationship between the superorbital cycle length and the mean X-ray flux for Her X-1.« less

  14. Timing Calibration of the USA Experiment

    NASA Astrophysics Data System (ADS)

    Ray, P. S.; Wood, K. S.; Bandyopadhyay, R. M.; Fritz, G.; Hertz, P.; Kowalski, M. P.; Lovellette, M. N.; Wolff, M. T.; Yentis, D.; Bloom, E.; Focke, W.; Giebels, B.; Godfrey, G.; Reilly, K. T.; Saz Parkinson, P.; Shabad, G.; Scargle, J.; Backer, D.; Somer, A.; USA Experiment Science Working Group

    2000-10-01

    The USA Experiment on ARGOS is an X-ray proportional counter timing experiment, launched in January 1999, which is carrying out a broad program studying X-ray binaries, rotation-powered pulsars, and other bright X-ray sources. Photon events are time tagged to an accuracy of 2 μ s by reference to an onboard GPS receiver built by Boeing (then Rockwell International). Unfortunately, the GPS receiver has an anomaly that causes it to drop out of lock after a few hours. We describe the procedures developed to work around the GPS anomaly and recover accurate absolute time. Simultaneous observations of several rotation-powered pulsars with RXTE were made for comparison with contemporaneous radio timing measurements and to explore time transfer from satellite to satellite. Basic research in X-ray Astronomy at the Naval Research Laboratory is supported by NRL/ONR. Work on USA at SLAC is supported by Department of Energy contract DE-AC03-76SF00515.

  15. Spectral State Evolution of 4U 1820-30: the Stability of the Spectral Index of Comptonization Tail

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev G.; Seifina, Elena; Frontera, Filippo

    2013-01-01

    We analyze the X-ray spectra and their timing properties of the compact Xray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996 - 2009), the source were approximately approximately 75% of its time in the soft state making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a composition of a thermal (blackbody) component, a Comptonization component (COMPTB) and a Gaussian-line component. Thus using this spectral analysis we find that the photon power-law index Gamma of the Comptonization component is almost unchangeable (Gamma approximately 2) while the electron temperature kTe changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of COMPTB component (which is proportional to mass accretion rate ?M) increases by factor 8 when kTe decreases from 21 keV to 2.9 keV. Before this index stability effect was also found analyzing X-ray data for Z-source GX 340+0 and for atolls, 4U 1728-34, GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand in a black hole binary G monotonically increases with ?Mand ultimately its value saturates at large ?M.

  16. Effects of magnetometer calibration and maneuvers on accuracies of magnetometer-only attitude-and-rate determination

    NASA Technical Reports Server (NTRS)

    Challa, M.; Natanson, G.

    1998-01-01

    Two different algorithms - a deterministic magnetic-field-only algorithm and a Kalman filter for gyroless spacecraft - are used to estimate the attitude and rates of the Rossi X-Ray Timing Explorer (RXTE) using only measurements from a three-axis magnetometer. The performance of these algorithms is examined using in-flight data from various scenarios. In particular, significant enhancements in accuracies are observed when' the telemetered magnetometer data are accurately calibrated using a recently developed calibration algorithm. Interesting features observed in these studies of the inertial-pointing RXTE include a remarkable sensitivity of the filter to the numerical values of the noise parameters and relatively long convergence time spans. By analogy, the accuracy of the deterministic scheme is noticeably lower as a result of reduced rates of change of the body-fixed geomagnetic field. Preliminary results show the filter-per-axis attitude accuracies ranging between 0.1 and 0.5 deg and rate accuracies between 0.001 deg/sec and 0.005 deg./sec, whereas the deterministic method needs a more sophisticated techniques for smoothing time derivatives of the measured geomagnetic field to clearly distinguish both attitude and rate solutions from the numerical noise. Also included is a new theoretical development in the deterministic algorithm: the transformation of a transcendental equation in the original theory into an 8th-order polynomial equation. It is shown that this 8th-order polynomial reduces to quadratic equations in the two limiting cases-infinitely high wheel momentum, and constant rates-discussed in previous publications.

  17. A Burst and Simultaneous Short-term Pulsed Flux Enhancement fom the Magnetar Candidate 1E 1048.1-5937

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Kaspi, Victoria M.; Woods, Peter M.; Lyutikov, Maxim

    2005-01-01

    We report on the latest X-ray burst detected from the direction of the Anomalous X-ray Pulsar (AXP) 1E 1048.1-5937 using the Rossi X-ray Timing Explorer (RXTE). Following the burst the AXP was observed further with RXTE, XMM-Newton and Chandra. We find a simultaneous increase of approx. 3.7 times the quiescent value (approx. 5 sigma) in the pulsed component of the pulsar's flux during the tail of the burst which identifies the AXP as the burst's origin. The burst was overall very similar to the two others reported from this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here suggests it was in 2001 as well. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source we find that this event was the most fluent (170+/-42 x 10(exp -10) erg cm-2), had the highest peak flux (71+/-16 x 10(exp -10) erg/s/sq cm), the longest duration (approx. 411 s). The epoch of the burst peak was consistent with the arrival time of 1E 1048.1-5937's pulse peak. The burst exhibited significant spectral evolution with the trend going from hard to soft. Although the average spectrum of the burst was comparable in hardness (Gamma approx. 1) to those of the 2001 bursts, the peak of this burst was much harder (Gamma approx. 0.5).

  18. When a Standard Candle Flickers: Crab Nebula Variations in Hard X-rays

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Collen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2012-01-01

    RXTE played a crucial role in our surprising discovery that the Crab Nebula is variable in hard X-rays. In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008-2010, a approx.7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed in the 15-50 keV band with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approx.3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003 and Swift/BAT starting in 2005. Before 2001 and since 2010, the Crab nebula 15-50 keV flux measured with RXTE/PCA appeared more stable, varying by less than 2% per year. In this talk I will present Crab light curves including RXTE data for the entire 16-year mission in multiple energy bands.

  19. Twelve and a Half Years of Observations of Centaurus A with RXTE

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Markowitz, A.; Rivers, L.; Suchy, S.; Pottschmidt, K.; Kadler, M.; Mueller, C.; Wilms, J.

    2011-01-01

    The Rossi X-ray Timing Explorer has observed the nearest radio galaxy, Centaurus A, in 13 intervals from 1996 August to 2009 February over the 3 - 200 keV band. Spectra accumulated over the 13 intervals were well described with an absorbed power law and an iron line. Cut-off power laws and Compton reflection from cold matter did not provide a better description. For the 2009 January observation we set a lower limit on the cutoff energy at over 2 MeV. The power spectral density function was generated from RXTE/ASM and PCA data as well as an XMM-Newton long look, and clear evidence for a break at 18(+18/-7) days (68% conf.) was seen. Given Cen A's high black hole mass and very low value of L(sub x)/L(sub Edd), the break was a factor of 17+/-9 times higher than the break frequency predicted by the McHardy and coworkers relation, which was empirically derived for a sample of objects, which are radio-quiet and accreting at relatively high values of L(sub bol)/L(sub Edd). We have interpreted our observations in the context of a clumpy molecular torus. The variability characteristics and the broadband spectral energy distribution, when compared to Seyferts, imply that the bright hard X-ray continuum emission may originate at the base of the jet, yet from behind the absorbing line of sight material, in contrast to what is commonly observed from blazars.

  20. RXTE and BeppoSAX Observations of the Transient X-ray Pulsar XTE J 18591+083

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; intZand, J. J. M.; Levine, A. M.; Marshall, F. E.

    2008-01-01

    We present observations of the 9.8 s X-ray pulsar XTE J159+083 made with the All-Sky Monitor (ASM) and Proportional Counter Array (PCA) on board the Rossi X-ray Timing Explorer (RXTE), and the Wide Field Cameras (WFC) on board BeppoSAX. The ASM data cover a 12 year time interval and show that an extended outburst occurred between approximately MJD50, 250, and 50, 460 (1996 June 16 to 1997 January 12). The ASM data excluding this outburst interval suggest a possible 61 day modulation. Eighteen sets of PCA observations were obtained over an approx. one month interval in 1999. The flux variability measured with the PCA appears consistent with the possible period found with the ASM. The PCA measurements of the pulse period showed it to decrease non-monotonically and then to increase significantly. Doppler shifts due to orbital motion rather than accretion torques appear to be better able to explain the pulse period changes. Observations with the WFC during the extended outburst give an error box which is consistent with a previously determined PCA error box but is significantly smaller. The transient nature of XTE J1859+083 and the length of its pulse period are consistent with it being a Be/neutral star binary. The possible 61 day orbital period would be of the expected length for a Be star system with a 9.8 s pulse period.

  1. RXTE Observations of Anomalous X-ray Pulsar 1E 1547.0-5408 During and After its 2008 and 2009 Outbursts

    NASA Technical Reports Server (NTRS)

    Dib, Rim; Kaspi, Victoria M.; Scholz, Paul; Gavriil, Fotis P.

    2012-01-01

    We present the results of Rossi X-ray Timing Explorer (RXTE) and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative upsilon-dot, such that upsilon-dot-dot was a factor of 60 larger than that reported in data from 2007. This upsilon-dot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, upsilon-dot-dot was consistent with zero, and upsilon-dot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening approx 15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.

  2. RXTE Detection of the Spin Period of Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Gogus, Ersin; Kouveliotou, Chryssa; Strohmayer, Tod

    2011-07-01

    RXTE/PCA observed the new source, Swift J1822.3-1606 (Cummings et al. GCN Circ. 12159) on 2011 July 16, for 6.7 ks. We performed a timing analysis on the barycentered data and detected a coherent pulsation at 0.1185149(2) Hz corresponding to 8.4377585 s. Pulsations are clearly visible in the PCA light curve. The peak-to-peak pulsed amplitude in the 2-10 keV band is 0.41. This pulsed fraction is highly unlikely from an SGR source, and very reminiscent of the outburst onset of Swift J1626.6-5156 (Palmer et al.

  3. Batse/Sax and Batse/RXTE-ASM Joint Spectral Studies of GRBs

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    2002-01-01

    We proposed to make joint spectral analysis of gamma-ray bursts (GRBs) in the BATSE data base that are located within the fields of view of either the BeppoSAX wide field cameras (WFCs) or the RXTE all-sky monitor (ASM). The very broad-band coverage obtained in this way would facilitate various studies of GRB spectra that are difficult to perform with BATSE data alone. Unfortunately, the termination of the CGRO mission in June 2000 was not anticipated at the time of the proposal, and the sample of common events turned out to be smaller than we would have liked.

  4. Oscillations During Thermonuclear X-ray Bursts: A New Probe of Neutron Stars

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Observations of thermonuclear (also called Type 1) X-ray bursts from neutron stars in low mass X-ray binaries (LMXB) with the Rossi X-ray Timing Explorer (RXTE) have revealed large amplitude, high coherence X-ray brightness oscillations with frequencies in the 300 - 600 Hz range. Substantial spectral and timing evidence point to rotational modulation of the X-ray burst flux as the cause of these oscillations, and it is likely that they reveal the spin frequencies of neutron stars in LMXB from which they are detected. Here we review the status of our knowledge of these oscillations and describe how they can be used to constrain the masses and radii of neutron stars as well as the physics of thermonuclear burning on accreting neutron stars.

  5. The classification of flaring states of blazars

    NASA Astrophysics Data System (ADS)

    Resconi, E.; Franco, D.; Gross, A.; Costamante, L.; Flaccomio, E.

    2009-08-01

    Aims: The time evolution of the electromagnetic emission from blazars, in particular high-frequency peaked sources (HBLs), displays irregular activity that has not yet been understood. In this work we report a methodology capable of characterizing the time behavior of these variable objects. Methods: The maximum likelihood blocks (MLBs) is a model-independent estimator that subdivides the light curve into time blocks, whose length and amplitude are compatible with states of constant emission rate of the observed source. The MLBs yield the statistical significance in the rate variations and strongly suppresses the noise fluctuations in the light curves. We applied the MLBs for the first time on the long term X-ray light curves (RXTE/ASM) of Mkn 421, Mkn 501, 1ES 1959+650, and 1ES 2155-304, more than 10 years of observational data (1996-2007). Using the MLBs interpretation of RXTE/ASM data, the integrated time flux distribution is determined for each single source considered. We identify in these distributions the characteristic level, as well as the flaring states of the blazars. Results: All the distributions show a significant component at negative flux values, most probably caused by an uncertainty in the background subtraction and by intrinsic fluctuations of RXTE/ASM. This effect concerns in particular short time observations. To quantify the probability that the intrinsic fluctuations give rise to a false identification of a flare, we study a population of very faint sources and their integrated time-flux distribution. We determine duty cycle or fraction of time a source spent in the flaring state of the source Mkn 421, Mkn 501, 1ES 1959+650 and 1ES 2155-304. Moreover, we study the random coincidences between flares and generic sporadic events such as high-energy neutrinos or flares in other wavelengths.

  6. XTE J1908+094

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Finger, M. H.; Gogus, E.; Swank, J.; Markwardt, C.; Strohmayer, T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Goddard Space Flight Center reports the serendipitous discovery of a new x-ray transient, XTE J1908+094, in RXTE (Rossi X-ray Timing Explorer) PCA (Proportional Counter Array) observations of the soft-gamma-ray repeater SGR 1900+14, triggered following the burst activity on Feb. 17-18 (GCN 1253). These observations failed to detect the 5.2-s SGR pulsations, pointing towards a possible new source as the origin of the high x-ray flux. An RXTE PCA scan of the region around SGR 1900+14 on Feb. 21 was consistent with emission only from known sources (and no new sources). However, the scans required SGR 1900+14 to be 20 times brighter than its quiescent flux level (GCN 1256). A Director's Discretionary Time Chandra observation on Mar. 11 showed that the SGR was quiescent and did not reveal any new source within the Chandra ACIS (Advanced CCD (charge coupled device) Imaging Spectrometer) field-of-view. A subsequent RXTE PCA scan on Mar. 17, taken in combination with the first scan, required that a new source be included in the fit. The best-fit position is R.A. 19h 08m 50s, Decl. = +9 22 deg .5 (equinox J2000.0; estimated 2 deg systematic error radius), or approximately 24 deg away from the SGR source. The source spectrum (2-30 kev) can be best fit with a power-law function including photoelectric absorption (column density N_h = 2.3 x 10(exp 22), photon index = 1.55). Iron line emission is present, but may be due to the Galactic ridge. Between Feb. 19 and Mar. 17, the source flux (2-10 keV) has risen from 26 to 64 mCrab. The power spectrum is flat between 1 mHz and 0.1 Hz, falling approximately as 1/f**0.5 up to 1 Hz. At 1 Hz is seen a broad quasiperiodic oscillation peak and a break to a 1/f**2 power law, which continues to 4 Hz. The fractional rms (root mean square) amplitude from 1 mHz to 4 Hz is 43 percent. No coherent pulsations are seen between 0.001 and 1024 Hz. The authors conclude that XTE J1908+094 is a new blackhole candidate.

  7. RXTE Observations M87: Investigating the Non-Thermal Continuum

    NASA Technical Reports Server (NTRS)

    Reynolds, Christopher S.

    2001-01-01

    This is the final report for NASA grant NAG5-7329, awarded for the RXTE Cycle 3 Guest Observer Program, "RXTE Observations of M87: Investigating the nonthermal continuum". This grant totaled $8000 and was spent over 3 years (4/1998-4/2001). It supported analysis of RXTE observations of the nearby giant elliptical galaxy M87 with the RXTE satellite. The main aim of these observations was to search for non-thermal emission from the core of M87 and the famous jet. This grant also partially funded supporting theoretical work. The observational campaign was performed in December 1997 and January 1998, and we were given the final data tape in April 1998. Sebastian Heinz (then a graduated student in our group) and I started to work on the data immediately. The results of our detailed analysis were submitted to the Astrophysical Journal in November 1998, and accepted for publication in March 1999. Tile paper was published in August, 1999. The journal reference is: A RXTE study of N187 and the core of the Virgo cluster, Reynolds C.S.,Heinx S., Fabian A.C., Begelman M.C., 1999, ApJ, 102, 1999. During this first year of the project, this grant supported Mr. Heinz's travel to the Paris Texas Symposium in December 1998, as well as providing funds for necessary maintenance of our computer system.

  8. Low-mass X-ray Binaries with RXTE

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Below are the publications which directly and indirectly evolved from this very successful program: 1) 'Search for millisecond periodicities in type I X-ray bursts of the Rapid Burster'; 2) 'High-Frequency QPOs in the 2000 Outburst of the Galactic Microquasar XTE J1550-564'; 3) 'Chandra and RXTE Spectroscopy of Galactic Microquasar XTE 51550-564 in Outburst'; 4) 'GX 339-4: back to life'; 5) 'Evidence for black hole spin in GX 339-4: XMM-Newton EPIC-PN and RXTE spectroscopy of the very high state'.

  9. Outbursts from the Transient X-Ray Pulsar Cep X-4 (GS 2138+56)

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Scott, D. Matthew

    1997-01-01

    Cep X-4 was discovered with the Orbiting Solar Observatory (OSO) 7 Satellite in 1973 June-July, but no pulsations were detected. In March 1988, an additional outburst was observed with Gingaq. Pulsations at a period of 66.2490 +/- .0001 s were detected during a month long outburst which peaked at about 100 mCrab (1-20 keV) in early April 1988. The source apparently did not appear again until June 1993 when it was detected by Roentgen Satellite (ROSAT) and Burst and Transient Source Experiment (BATSE). Pulsations at a period of 66.2499 +/- .0007 s were detected by BATSE. The outburst lasted about two weeks and had a peak pulsed flux of 15-20 mCrab (20-50 keV). In July 1997, BATSE and the All-Sky Monitor (ASM) on Rossi X-ray Timing Explorer (RXTE) observed a new outburst from Cep X-4. Pulsations at a period of 66.2743 +/- 0.0005 s were detected by BATSE. This outburst lasted about 2 weeks and peaked at a pulsed flux of about 10-15 mCrab (20-50 keV). Results of a search of BATSE data for additional outbursts will be presented. Pulse frequency and flux histories will be presented and compared to the flux history from the RXTE ASM. Implications of the apparent spin-down between outbursts will be discussed.

  10. SPECTRAL STATE EVOLUTION OF 4U 1820-30: THE STABILITY OF THE SPECTRAL INDEX OF THE COMPTONIZATION TAIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarchuk, Lev; Frontera, Filippo; Seifina, Elena, E-mail: titarchuk@fe.infn.it, E-mail: lev@milkyway.gsfc.nasa.gov, E-mail: frontera@fe.infn.it, E-mail: seif@sai.msu.ru

    We analyze the X-ray spectra and their timing properties of the compact X-ray binary 4U 1820-30. We establish spectral transitions in this source seen with BeppoSAX and the Rossi X-ray Timing Explorer (RXTE). During the RXTE observations (1996-2009), the source was in the soft state approximately {approx}75% of the time making the lower banana and upper banana transitions combined with long-term low-high state transitions. We reveal that all of the X-ray spectra of 4U 1820-30 are fit by a combination of a thermal (Blackbody) component, a Comptonization component (COMPTB), and a Gaussian-line component. Thus, using this spectral analysis, we findmore » that the photon power-law index {Gamma} of the Comptonization component is almost unchangeable ({Gamma} {approx} 2), while the electron temperature kT{sub e} changes from 2.9 to 21 keV during these spectral events. We also establish that for these spectral events the normalization of the COMPTB component (which is proportional to the mass accretion rate M-dot ) increases by a factor of eight when kT{sub e} decreases from 21 keV to 2.9 keV. Previously, this index stability effect was also found analyzing X-ray data for the Z-source GX 340+0 and for the atolls 4U 1728-34 and GX 3+1. Thus, we can suggest that this spectral stability property is a spectral signature of an accreting neutron star source. On the other hand, in a black hole binary {Gamma} monotonically increases with M-dot and ultimately its value saturates at large M-dot .« less

  11. X-Ray and UV Orbital Phase Dependence in LMC X-3

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Boyd, P. T.; Smale, A. P.

    2001-01-01

    The black-hole binary LMC X-3 is known to be variable on time scales of days to years. We investigated X-ray and ultraviolet variability in the system as a function of the 1.7 d binary orbit using a 6.4 day observation with the Rossi X-ray Timing Explorer (RXTE) in 1998 December. An abrupt 14 % flux decrease lasting nearly an entire orbit was followed by a return to previous flux levels. This behavior occurred twice at nearly the same binary phase, but is not present in consecutive orbits. When the X-ray flux is at lower intensity, a periodic amplitude modulation of 7 % is evident in data folded modulo the orbital period. The higher intensity data show weaker correlation with phase. This is the first report of X-ray variability at the orbital period of LMC X-3. Archival RXTE observations of LMC X-3 during a high flux state in 1996 December show similar phase dependence. An ultraviolet light curve obtained with the High Speed Photometer (HSP) on the Hubble Space Telescope (HST) shows a phase dependent variability consistent with that observed in the visible, ascribed to the ellipsoidal variation of the visible star. The X-ray spectrum of LMC X-3 is acceptably represented by a phenomenological disk black-body plus a power law. Changes in the spectrum of LMX X-3 during our observations are compatible with earlier observations during which variations in the 2-10 keV flux are closely correlated with the disk geometry spectral model parameter.

  12. Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the Comptonization in a bulk motion region near an accreting black hole by Laurent & Titarchuk (2010) strongly support this scenario. strongly support this scenario

  13. RXTE Observations of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    McCollough, M. L.; Robinson, C. R.; Zhang, S. N.; Harmon, B. A.; Paciesas, W. S.; Dieters, S. W.; Hjellming, R. M.; Rupen, M.; Mioduszewski, A. J.; Waltman, E. B.

    1997-01-01

    In the period between May 1997 and August 1997 a series of pointed RXTE observations were made of Cyg X-3. During this period Cyg X-3 made a transition from a quiescent radio state to a flare state (including a major flare) and then returned to a quiescent radio state. Analyses of the observations are made in the context of concurrent observations in the hard X-ray (CGRO/BATSE), soft X-ray (RXTE/ASM) and the radio (Green Bank Interferometer, Ryle Telescope, and RATAN-600). Preliminary analyses of the observations are presented.

  14. QPO detection in superluminal black hole GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Bhulla, Yashpal; Jaaffrey, S. N. A.

    2018-05-01

    We report on the first superluminal Black Hole GRS 1915+105 observed by the Rossi X-ray Timing Explorer - Proportion Counter Array (RXTE/PCA). We detect the Quasi Periodic Oscillations (QPOs) in the Power Density Spectrum (PDS) of source which have luminosity very near to Eddington limit and long variability in X-ray light curve. In power density spectrum, we deal with the study of highly variability amplitude, time evolution of the characteristic timescale, Quality Factor and Full Width at Half Maximum (FWHM). We find significant QPOs in 15 different observation IDs with frequency around 67 Hz although quality factor nearly 20 but in two IDs frequency is found just double. Typical fractional rms for GRS 1915+105 is dominating the hard band increasing steeply with energy more than 13% at 20-40 keV band.

  15. The Timing Evolution of 4U 1630-47 During its Outbursts

    NASA Technical Reports Server (NTRS)

    Dieters, S. W.; Belloni, T.; Kuulkers, E.; Woods, P.; vanParadijs, J.; Cui, W.; Swank, J. H.; Zhang, S.-N.

    1999-01-01

    We report on the timing analysis of Rossi X-ray Timing Explorer (RXTE) observations of 4U 1630-47 made during its 1998 outburst. In addition we use two BeepoSAX observation on the late decline. 4U1630-47 showed seven distinct types of timing behaviour, most of which show differences with the canonical black hole spectral/timing states. In marked contrast to previous outbursts we find quasi periodic oscillation (QPO) signals during nearly all stages of the outburst. In addition to 2 to 13 Hz QPO slow 0.01Hz QPO are observed. These slow QPO can dominate the light curve as quasi-regular 5 sec, 9--16% deep dips. During these dips we track the behaviour of two QPO's; one remaining constant near 13.5 Hz and the other varying between 7 and 4 Hz. The evolution of the timing and the concurrent spectral changes are mapped using a combination harness-intensity and colour-colour diagrams.

  16. GRO J2058+42 Observations with BATSE and RXTE

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, M. H.; Scott, D. M.

    1999-01-01

    GRO J2058+422 is a 196 second pulsar discovered with BATSE during a giant outburst in 1995. It underwent a series of 9 weaker outbursts from 1995 to 1997 which alternated in intensity, with a 110 day cycle in the 20-50 keV band. These outbursts did not show the same, intensity variations in the 2-10 keV observations with the RXTE ASM. Additional outbursts after this series were observed with BATSE, using a more sensitive search method which accounts for excess aperiodic noise from Cygnus X-1, and with the RXTE PCA and ASM. A set of two outbursts, one "periastron" and one "apastron" outburst (assuming a 110 day orbital period) were observed with the RXTE PCA. Pulse shape differences were found between the two outbursts. Histories of pulse frequency, pulsed flux. and total flux are presented. Pulse profiles and spectra from PCA observations are also presented.

  17. Long-Term Space Astrophysics Program

    NASA Technical Reports Server (NTRS)

    Nowark, Michael A.

    2001-01-01

    This is the final report for our Long-Term Space Astrophysics Program (NRA 94-OSS-12) grant NAG 5-3225. The proposal is entitled 'Spectral and Temporal Properties of Black Hole Candidates', and began funding in May 1995, and ran through 31 Aug 2000. The project summary from the original proposal was as follows: 'We will study the spectral and temporal properties of black hole candidates (BHC) by using data from archival sources (e.g., EXOSAT, Ginga, ROSAT) and proposed follow-up observations with modern instruments (e.g., ASCA, XTE). Our spectral studies will focus on identifying the basic characteristics and luminosities of the emission components in the various 'states' of BHC. We hope to understand and quantify the global energetics of these states. Our temporal studies will focus on expanding and classifying our knowledge of BHC variability properties in each state. We will explore the nature of quasi-periodic oscillations in BHC. We will combine our spectral and temporal studies by analyzing time lags and variability coherence between energy channels. In addition, we will investigate ways of correlating observed variability behavior with specific emission components.' We have accomplished many of these goals laid out within the original proposal. As originally proposed, we have utilized both archival and proprietary satellite data. In terms of archival data, we have utilized data from the Advanced Satellite for Cosmology and Astrophysics (ASCA), ROSAT, and the Rossi X-ray Timing Explorer (RXTE). We also obtained proprietary data from ASCA, RXTE, and the Extreme Ultraviolet Explorer (EUVE). In terms of sources, we have examined a wide variety of both galactic black hole candidates and extra-galactic black holes. For the galactic black holes we have observed and analyzed both the low/hard state and the high/soft state. We have performed both spectral and timing analyses on all of these objects. In addition, we have also examined a number of neutron stars or potential neutron stars. All of our research on the above mentioned objects has resulted in one or more publications in peer-reviewed journals. Attached is a list of refereed publications of research results which have been funded by this grant over approximately the past five and a half years. In addition, we have included a list of conference proceedings and other similar reports that have been associated with this grant.

  18. The Successful Synergy of Swift and Fermi/GBM in Magnetars

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2011-01-01

    The magnetar rate of discovery has increased dramatically in the last decade. Five sources were discovered in the last three years alone as a result of the very efficient synergy among three X- and .gamma-ray instruments on NASA satellites: the Swift/Burst Alert Telescope (BAT), the Fermi/Gamma ray Burst Monitor (GBM), and the Rossi X-Ray Timing Explorer; RXTE/Proportional Counter Array (PCA). To date, there are approx. 25 magnetar candidates, of which two are (one each) in the Large and Small Magellanic Cloud and the rest reside on the Galactic plane of our Milky Way. I will discuss here the main properties of the Magnetar Population and the common projects that can be achieved with the synergy of Swift and GBM.

  19. INTEGRAL and RXTE Observations of Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, Richard E.; /San Diego, CASS; Wilms, Joern

    2006-01-17

    INTEGRAL and RXTE performed three simultaneous observations of the nearby radio galaxy Centaurus A in 2003 March, 2004 January, and 2004 February with the goals of investigating the geometry and emission processes via the spectral/temporal variability of the X-ray/low energy gamma ray flux, and intercalibration of the INTEGRAL instruments with respect to those on RXTE. Cen A was detected by both sets of instruments from 3-240 keV. When combined with earlier archival RXTE results, we find the power law continuum flux and the line-of-sight column depth varied independently by 60% between 2000 January and 2003 March. Including the three archivalmore » RXTE observations, the iron line flux was essentially unchanging, and from this we conclude that the iron line emitting material is distant from the site of the continuum emission, and that the origin of the iron line flux is still an open question. Taking X-ray spectral measurements from satellite missions since 1970 into account, we discover a variability in the column depth between 1.0 x 10{sup 23} cm{sup -2} and 1.5 x 10{sup 23} cm{sup -2} separated by approximately 20 years, and suggest that variations in the edge of a warped accretion disk viewed nearly edge-on might be the cause. The INTEGRAL OSA 4.2 calibration of JEM-X, ISGRI, and SPI yields power law indices consistent with the RXTE PCA and HEXTE values, but the indices derived from ISGRI alone are about 0.2 greater. Significant systematics are the limiting factor for INTEGRAL spectral parameter determination.« less

  20. Serendipitous Detections of XTE J1906+09 with the Rossi X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa

    2002-01-01

    The 89 s X-ray pulsar XTE J1906+09 was discovered during Rossi X-Ray Timing Explorer (RXTE) observations of SGR 1900+14 in 1996. Because of monitoring campaigns of SGR 1900+14, XTE J1906+09 was also monitored regularly in 1996 September, 1998 May-June, 1998 August-1999 July, and 2000 March-2001 January. A search for pulsations resulted in detections of only the two previously reported outbursts in 1996 September and 1998 August-September. Pulsed flux upper limits for the rest of the observations show that XTE J1906+09 is a transient X-ray pulsar and likely has a Be star companion. The RXTE all-sky monitor did not reveal XTE J1906+09. Pulse-timing analysis of the second outburst discovered a sinusoidal signature in the pulse frequencies that is likely produced by an orbital periastron passage. Fits to pulse phases using an orbital model and quadratic phase model have chi(exp 2) minima at orbital periods of 26-30 days for fixed mass functions of 5, 10, 15, and 20 solar masses. The pulse shape showed energy- and intensity-dependent variations. Pulse-phase spectroscopy quantified the energy-dependent variations. The phase-averaged spectrum used the pulse minimum spectrum as the background spectrum to eliminate effects from SGR 1900+14 and the Galactic ridge and was well fitted by an absorbed power law with a high-energy cutoff with column density N(sub H) = 6 +/- 1 x 10(exp 22)/sq cm, a photon index of 1.01 +/- 0.08, cutoff energy E(sub cut) = 11 +/- 1 keV, and e-folding energy E(sub fold) = 19 +/- 4 keV. Estimated 2-10 keV peak fluxes, corrected for contributions from the Galactic ridge and SGR 1900+14, are 6 x l0(exp -12) and 1.1 x 10(exp -10) ergs/sq cm/s for the 1996 and 1998 outbursts, respectively. XTE J1906+09 may be part of an unusual class of Be/X-ray binaries that do not lie on the general spin period versus orbital period correlation with the majority of Be/X-ray binaries.

  1. The 2004 Hyperflare from SGR 1806-20: Further Evidence for Global Torsional Vibrations

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Watts, Anna L.

    2006-01-01

    We report an analysis of the archival Rossi X-ray Timing Explorer (RXTE) data from the December 2004 hyperflare from SGR 1806-20. In addition to the approx. equal to 90 Hz QPO first discovered by Israel et al., we report the detection of higher frequency oscillations at approx. equal to 150, 625, and 1,835 Hz. In addition to these frequencies there are indications of oscillations at approx. equal to 720, and 2,384 Hz, but with lower significances. The 150 Hz QPO has a width (FWHM) of about 17 Hz, an average amplitude (rms) of 6.5%, and is detected in average power spectra centered on the rotational phase of the strongest peak in the pulse profile. This is approximately half a rotational cycle from the phase at which the 90 Hz QPO is strongly detected. The 625 Hz oscillation was first detected in an average power spectrum from nine successive cycles beginning approximately 180 s after the initial hard spike. It has a width (FWHM) of approx. equal to 2 Hz and an average amplitude (rms) during this interval of 9%. We find a strong detection of the 625 Hz oscillation in a pair of successive rotation cycles beginning about 230 s after the start of the flare. In these cycles we also detect the 1,835 Hz QPO with the 625 Hz oscillation. The rotational phase in which the 625 Hz &PO is detected is similar to that for the 90 Hz QPO, indeed, this feature is seen in the same average power spectrum. During the time the 625 Hz QPO is detected we also confirm the simultaneous presence of 30 and 92 Hz QPOs, first reported by Israel et al. The centroid frequency of the 625 Hz QPO detected with RXTE is within 1 Hz of the M 626 Hz oscillation recently found in RHESSI data from this hyperflare by Watts & Strohmayer, however, the two detections were made in different phase and energy intervals. Nevertheless, we argue that the two results likely represent detections of the same oscillation frequency intrinsic to the source, but we comment on some of the difficulties in making direct comparisons between the RXTE and RHESSI measurements

  2. RXTE Observation of 4U 1630-47 During its 1998 Outburst

    NASA Technical Reports Server (NTRS)

    Dieters, Stefan W.

    1999-01-01

    During the 1998 outburst of 4U 1630-47 it was extensively observed with the Rossi X-ray Timing Explorer (RXTE). In order to cover the outburst more thoroughly our data (Obs. ID: 30178-0[1-2]- ) were combined with those of Cui et al. (Obs. ID: 30188-02-). These observations were later compared with the complementary observations. Power density and energy spectra have been made for each observation. The data was used to place radio and hard X-ray observations within context. Analysis of SAX (Satellite per Astronomia a raggi X) and BATSE (Burst and Transient Source Experiment) data was also included within the study. The count rate and position in hardness-intensity, color-color diagrams and simple spectral fits are used to track the concurrent spectral changes. The source showed seven distinct types of timing behavior, most of which show differences with the canonical black hole spectral/timing states. In marked contrast to previous outbursts, we find quasi-periodic oscillation (QPO) signals during nearly all stages of the outburst with frequencies between 0.06 Hz and 14 Hz and a remarkable variety of other characteristics. In particular we find large (up to 23% rms) amplitude QPO on the early rise. Later, slow 0.1 Hz semi- regular short (- 5 sec), 9 to 16% deep dips dominate the light curve. At this time there are two QPOS, one stable near 13.5 Hz and the other whose frequency drops from 6-8 Hz to - 4.5 Hz during the dips. BeppoSAX observations during the very late declining phase show 4U 1630-47 in a low state. These results will shortly be published. We are completing a detailed analysis of the energy spectra (in preparation). The QPO/noise properties are being correlated with the concurrent spectral changes. Detailed studies of the QPO are being undertaken using sophisticated timing analysis methods. Finally a comparison with the other outbursts of 1630-47 is being made.

  3. Managing the Implementation of Mission Operations Automation

    NASA Technical Reports Server (NTRS)

    Sodano, R.; Crouse, P.; Odendahl, S.; Fatig, M.; McMahon, K.; Lakin, J.

    2006-01-01

    Reducing the cost of mission operations has necessitated a high level of automation both on spacecraft and ground systems. While automation on spacecraft is implemented during the design phase, ground system automation tends to be implemented during the prime mission operations phase. Experience has shown that this tendency for late automation development can be hindered by several factors: additional hardware and software resources may need to be procured; software must be developed and tested on a non-interference basis with primary operations with limited manpower; and established procedures may not be suited for automation requiring substantial rework. In this paper we will review the experience of successfully automating mission operations for seven on-orbit missions: the Compton Gamma Ray Observatory (CGRO), the Rossi X-Ray Timing Explorer (RXTE), the Advanced Composition Explorer (ACE), the Far Ultraviolet Spectroscopic Explorer (FUSE), Interplanetary Physics Laboratory (WIND), Polar Plasma Laboratory (POLAR), and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). We will provide lessons learned in areas such as: spacecraft recorder management, procedure development, lights out commanding from the ground system vs. stored command loads, spacecraft contingency response time, and ground station interfaces. Implementing automation strategies during the mission concept and spacecraft integration and test phase as the most efficient method will be discussed.

  4. A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous H.E.S.S. and RXTE observations

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Context. Microquasars are potential γ-ray emitters. Indications of transient episodes of γ-ray emission were recently reported in at least two systems: Cyg X-1 and Cyg X-3. The identification of additional γ-ray-emitting microquasars is required to better understand how γ-ray emission can be produced in these systems. Aim. Theoretical models have predicted very high-energy (VHE) γ-ray emission from microquasars during periods of transient outburst. Observations reported herein were undertaken with the objective of observing a broadband flaring event in the γ-ray and X-ray bands. Methods: Contemporaneous observations of three microquasars, GRS 1915+105, Circinus X-1, and V4641 Sgr, were obtained using the High Energy Spectroscopic System (H.E.S.S.) telescope array and the Rossi X-ray Timing Explorer (RXTE) satellite. X-ray analyses for each microquasar were performed and VHE γ-ray upper limits from contemporaneous H.E.S.S. observations were derived. Results: No significant γ-ray signal has been detected in any of the three systems. The integral γ-ray photon flux at the observational epochs is constrained to be I(>560 GeV) < 7.3 × 10-13 cm-2 s-1, I(>560 GeV ) < 1.2 × 10-12 cm-2 s-1, and I(>240 GeV) < 4.5 × 10-12 cm-2 s-1 for GRS 1915+105, Circinus X-1, and V4641 Sgr, respectively. Conclusions: The γ-ray upper limits obtained using H.E.S.S. are examined in the context of previous Cherenkov telescope observations of microquasars. The effect of intrinsic absorption is modelled for each target and found to have negligible impact on the flux of escaping γ-rays. When combined with the X-ray behaviour observed using RXTE, the derived results indicate that if detectable VHE γ-ray emission from microquasars is commonplace, then it is likely to be highly transient.

  5. An Fe XXVI Absorption Line in the Persistent Spectrum of the Dipping Low Mass X-ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2009-01-01

    We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power-law (Gamma approx. 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of 7+/-1 x 10(exp 17)/sq cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10(exp 3.6) erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that IA 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.

  6. Discovery of the 198 s X-Ray Pulsar GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod

    1997-01-01

    GRO J2058+42, a transient 198 second x-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mCrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 s to 196 s during the 46-day outburst. The pulse shape evolved over the course of the outburst and exhibited energy dependent variations. BATSE observed five additional weak outbursts from GRO J2058+427 each with two week duration and peak pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) localized the source to within a 4' radius error circle (90% confidence) centered on R.A. = 20 h 59 m.0, Decl. = 41 deg 43 min (J2000). Additional shorter outbursts with peak pulsed fluxes of about 8 mCrab were detected by BATSE halfway between the first four 15 mCrab outbursts. The RXTE All-Sky Monitor detected 8 weak outbursts with approximately equal durations and intensities. GRO J2058+42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron. No optical counterpart has been identified to date and no x-ray source was present in the error circle in archival ROSAT observations.

  7. Discovery of the 198 Second X-Ray Pulsar GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod

    1998-01-01

    GRO J2058+42, a transient 198 s X-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mcrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 to 196 s during the 46 day outburst. The pulse shape evolved over the course of the outburst and exhibited energy-dependent variations. BATSE observed five additional weak outbursts from GRO J2058 + 42, each with a 2 week duration and a peak-pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) localized the source to within a 4 s radius error circle (90% confidence) centered on R.A. = 20h 59m.0, decl. = 41 deg 43 s (J2000). Additional shorter outbursts with peak-pulsed fluxes of about 8 mcrab were detected by BATSE halfway between the first four 15 mcrab outbursts. The RXTE All-Sky Monitor detected all eight weak outbursts with approximately equal durations and intensities. GRO J2058 + 42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron, No optical counterpart has been identified to date, and no X-ray source was present in the error circle in archival ROSAT observations.

  8. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this proposal is to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. NAG5-9104 is the successor grant to NAG5-8408. Observations using the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAX were performed of 4U1702-429, 4U1735-44, and Cyg X-2. Unfortunately, only a small fraction of the approved observing time was obtained for the first two targets and the data are of limited scientific value. Data analysis has been completed on the observations of Cyg X-2. We discovered a correlation between the frequency of the horizontal branch oscillations (HBO) and a soft, thermal component of the x-ray spectrum likely associated with emission from the accretion disk. This correlation may place constraints on models of the oscillations. A paper based on these results appeared in the Astrophysical Journal.

  9. Satellite Angular Rate Estimation From Vector Measurements

    NASA Technical Reports Server (NTRS)

    Azor, Ruth; Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    1996-01-01

    This paper presents an algorithm for estimating the angular rate vector of a satellite which is based on the time derivatives of vector measurements expressed in a reference and body coordinate. The computed derivatives are fed into a spacial Kalman filter which yields an estimate of the spacecraft angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It consists of two or three parallel Kalman filters whose individual estimates are fed to one another and are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the nonlinear differential equation that describes the rotation of a three dimensional body. Initial results, using simulated data, and real Rossi X ray Timing Explorer (RXTE) data indicate that the algorithm is efficient and robust.

  10. Neutron Star Spin Measurements and Dense Matter with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2011-01-01

    Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars

  11. TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Marco, B.; Ponti, G.; Nandra, K.

    2015-11-20

    We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less

  12. X-Ray modeling of η Carinae & WR 140 from SPH simulations

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Corcoran, Michael F.; Okazaki, Atsuo T.; Madura, Thomas I.; Owocki, Stanley P.

    2011-07-01

    The colliding wind binary (CWB) systems η Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we apply 3D hydrodynamic simulations of the wind-wind collision using smoothed particle hydrodynamics (SPH). We find adiabatic simulations that account for the absorption of X-rays from an assumed point source of X-ray emission at the apex of the wind-collision shock cone can closely match the RXTE light curves of both η Car and WR140. This point-source model can also explain the early recovery of η Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of η Car. Our more recent models account for the extended emission and absorption along the full wind-wind interaction shock front. For WR140, the computed X-ray light curves again match the RXTE observations quite well. But for η Car, a hot, post-periastron bubble leads to an emission level that does not match the extended X-ray minimum observed by RXTE. Initial results from incorporating radiative cooling and radiative forces via an anti-gravity approach into the SPH code are also discussed.

  13. X-ray Modeling of η Carinae & WR140 from SPH Simulations

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Corcoran, Michael F.; Okazaki, Atsuo T.; Madura, Thomas I.; Owocki, Stanley P.

    2011-01-01

    The colliding wind binary (CWB) systems η Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we model the wind-wind collision using 3D smoothed particle hydrodynamics (SPH) simulations. Adiabatic simulations that account for the emission and absorption of X-rays from an assumed point source at the apex of the wind-collision shock cone by the distorted winds can closely match the observed 2-10keV RXTE light curves of both η Car and WR140. This point-source model can also explain the early recovery of η Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of η Car. Our more recent models relax the point-source approximation and account for the spatially extended emission along the wind-wind interaction shock front. For WR140, the computed X-ray light curve again matches the RXTE observations quite well. But for η Car, a hot, post-periastron bubble leads to an emission level that does not match the extended X-ray minimum observed by RXTE. Initial results from incorporating radiative cooling and radiatively-driven wind acceleration via a new anti-gravity approach into the SPH code are also discussed.

  14. SGR 1822-1606: Constant Spin Period

    NASA Astrophysics Data System (ADS)

    Serim, M.; Baykal, A.; Inam, S. C.

    2011-08-01

    We have analyzed light curve of the new source SGR 1822-1606 (Cummings et al. GCN 12159) using the real time data of RXTE observations. We have extracted light curve for 11 pointings with a time span of about 20 days and employed pulse timing analysis using the harmonic representation of pulses. Using the cross correlation of harmonic representation of pulses, we have obtained pulse arrival times.

  15. SS 433: Total Coverage of 162-Day Precession Phase in Four Years

    NASA Technical Reports Server (NTRS)

    Band, David L.

    1997-01-01

    The observations prior to AO-4 covered a number of precession phases, leaving a gap at phase 0.8. In addition, ASCA and previous observations of SS 433 did not observe the spectrum above approx. 10 keV, and consequently the continuum underlying the spectral lines was poorly constrained. Therefore RXTE observations were scheduled for April 1997 to extend the observed spectrum to higher energies; these observations were planned to sample the X-ray lightcurve during the 13.08 day binary period, concentrating on the eclipse of the compact object which emits the jets. We proposed and were awarded ASCA observations simultaneous with the RXTE observations; the purpose of the ASCA observations was to provide greater spectral resolution at the low end of the spectrum observed by RXTE, and to complete the phase coverage of SS 433. As a result of scheduling difficulties early in the mission the RXTE observations were confined to a much shorter time range than originally planned, April 18-91 1997. Optical observations of SS 433 were performed at a number of observatories. The ASCA observations occurred from April 18 13:10 (UT) to April 21 13:20 (UT) for a total effective exposure of 120 ks. The continuum X-ray light curve shows that the ASCA observations started shortly before the ingress into the X-ray partial eclipse, and ended approximately at the time of the egress. Light curves were also obtained for the prominent Fe emission lines in the blue-shifted frame (approaching jet), red-shifted frame (receding jet), and the stationary frame (fluorescent line from the ambient matter). Through the eclipse mapping technique using the light curves, the parameters of the jet emission model were constrained, showing that the kinetic power in the jet exceeds 104? erg s-l. If the energy source is gravitational accretion, as is commonly believed, the derived l;inetic power implies extremely supercritical accretion even for a black; hole with 10M. These results will be described more fully in a major presentation of all the ASCA observations of SS 433.

  16. Cygnus X-1: A Case for a Magnetic Accretion Disk?

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.

    1996-01-01

    With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.

  17. High Energy Continuum of High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    Discussion with the RXTE team at GSFC showed that a sufficiently accurate background subtraction procedure had now, been derived for sources at the flux level of PKS 2126-158. However this solution does not apply to observations carried out before April 1997, including our observation. The prospect of an improved solution becoming available soon is slim. As a result the RXTE team agreed to re-observe PKS2126-158. The new observation was carried out in April 1999. Quasi-simultaneous optical observations were obtained, as Service observing., at the 4-meter Anglo-Australian Telescope, and ftp-ed from the AAT on 22April. The RXTE data was processed in late June, arriving at SAO in early July. Coincidentally, our collaborative Beppo-SAX observation of PKS2126-158 was made later in 1999, and a GTO Chandra observation (with which we are involved) was made on November 16. Since this gives us a unique monitoring data for a high redshift quasar over a broad pass-band we are now combining all three observations into a single comprehensive study Final publication of the RXTE data will thus take place under another grant.

  18. Long time scale hard X-ray variability in Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, Alex Gary

    This dissertation examines the relationship between long-term X-ray variability characteristics, black hole mass, and luminosity of Seyfert 1 Active Galactic Nuclei. High dynamic range power spectral density functions (PSDs) have been constructed for six Seyfert 1 galaxies. These PSDs show "breaks" or characteristic time scales, typically on the order of a few days. There is resemblance to PSDs of lower-mass Galactic X-ray binaries (XRBs), with the ratios of putative black hole masses and variability time scales approximately the same (106--7) between the two classes of objects. The data are consistent with a linear correlation between Seyfert PSD break time scale and black hole mass estimate; the relation extrapolates reasonably well over 6--7 orders of magnitude to XRBs. All of this strengthens the case for a physical similarity between Seyfert galaxies and XRBs. The first six years of RXTE monitoring of Seyfert 1s have been systematically analyzed to probe hard X-ray variability on multiple time scales in a total of 19 Seyfert is in an expansion of the survey of Markowitz & Edelson (2001). Correlations between variability amplitude, luminosity, and black hole mass are explored, the data support the model of PSD movement with black hole mass suggested by the PSD survey. All of the continuum variability results are consistent with relatively more massive black holes hosting larger X-ray emission regions, resulting in 'slower' observed variability. Nearly all sources in the sample exhibit stronger variability towards softer energies, consistent with softening as they brighten. Direct time-resolved spectral fitting has been performed on continuous RXTE monitoring of seven Seyfert is to study long-term spectral variability and Fe Kalpha variability characteristics. The Fe Kalpha line displays a wide range of behavior but varies less strongly than the broadband continuum. Overall, however, there is no strong evidence for correlated variability between the line and continuum, severely challenging models in which the line tracks continuum variations modified only by a light-travel time delay. This experiment yields further support for spectral softening as continuum flux increases.

  19. Spectral and Timing States in Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Wilms, J.

    Results on the long term variability of galactic black hole candidates are reviewed. I mainly present the results of a > 2 year long campaign with RXTE to monitor the canonical soft state black hole candidates LMC X-1 and LMC X-3 using monthly observations. These observations are presented within the context of the RXTE-ASM long term quasi-periodic variability on timescales of about 150d. For LMC X-3, times of low ASM count rate are correlated with a significant hardening of the X-ray spectrum. The observation with the lowest flux during the whole monitoring campaign can be modeled with a simple γ=1.7 power law -- a hard state spectrum. Since these spectral hardenings occur on the 150 d timescale it is probable that they are associated with periodic changes in the accretion rate. Possible causes for this behavior are discussed, e.g. a wind driven limit-cycle or long-term variability of the donor star.

  20. Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE

    NASA Technical Reports Server (NTRS)

    Wilms, Jorn; Felix, Furst; Rothschild, Richard E.; Pottschmidt, Katja; Smith, David M.; Lingenfelter, Richard

    2009-01-01

    The evolution of the particle background at an altitude of approx.540km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASA's Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by approx.1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earth's magnetic field. Key words: space radiation environment, South Atlantic Anomaly, radiation monitors, Rossi X-ray Timing Explorer

  1. The Power of SS 433's Jets

    NASA Technical Reports Server (NTRS)

    Band, David F.

    1999-01-01

    We observed SS 433 for the third time with RXTE, this time simultaneously with a Nobeyama millimeter band monitoring campaign. These observations extended the RXTE coverage of SS 433's precession phases. and once again monitored the source during a binary eclipse. Our AO-2 campaign of a joint RXTE-VLBA-VLA-MERLIN observation was delayed to little more than a month before the AO-3 observations. We also had an AO-1 observation of SS 433. In each case we observed an eclipse of the compact ob'ect by the companion star, and had contemporaneous optical observations. We are analyzing all three sets of observations together. A publication is in preparation; Its completion will be supported by the remaining AO-2 funds. Here I will summarize the general results and point out the relevant features of the AO-3 observations. The spectrum is detected to approx. 50 keV, which is entirely within the PCA energy band. We find that the HEXTE data do not add significantly to the spectrum, and most of our fits are without HEXTE. We find that the continuum can be fit with a power law with an exponential cutoff; the photon index is usually approx. 1.4. A line at approx. 6.4 keV is definitely required, and the fits improve significant, if we add a second line, also with an energy in the iron K(alpha) complex, and an absorption edge. The edge usually has an energy of approx. 5.8 keV, which does not correspond to any known physical feature. and may be an instrumental artifact. This is under further investigation.

  2. A Global Spectral Study of Stellar-Mass Black Holes with Unprecedented Sensitivity

    NASA Astrophysics Data System (ADS)

    Garci, Javier

    There are two well established populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, many millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range millions to billions of solar masses, which reside in the nucleus of most galaxies. Supermassive black holes play a leading role in shaping galaxies and are central to cosmology. However, they are hard to study because they are dim and they scarcely vary on a human timescale. Luckily, their variability and full range of behavior can be very effectively studied by observing their stellar-mass cousins, which display in miniature the full repertoire of a black hole over the course of a single year. The archive of data collected by NASA's Rossi X-ray Timing Explorer (RXTE) during its 16 year mission is of first importance for the study of stellar-mass black holes. While our ultimate goal is a complete spectral analysis of all the stellar-mass black hole data in the RXTE archive, the goal of this proposal is the global study of six of these black holes. The two key methodologies we bring to the study are: (1) Our recently developed calibration tool that increases the sensitivity of RXTE's detector by up to an order of magnitude; and (2) the leading X-ray spectral "reflection" models that are arguably the most effective means currently available for probing the effects of strong gravity near the event horizon of a black hole. For each of the six black holes, we will fit our models to all the archived spectral data and determine several key parameters describing the black hole and the 10-million-degree gas that surrounds it. Of special interest will be our measurement of the spin (or rate of rotation) of each black hole, which can be as high as tens of thousands of RPM. Profoundly, all the properties of an astronomical black hole are completely defined by specifying its spin and its mass. The main goal of this project is a global spectroscopic studies of six bright black holes using our reflection models and new calibration tools. These synoptic studies will provide a panoramic view of black hole behavior and advance the measurement of black hole spin. The relevance of our proposed study to this NASA Research Announcement is clear because our work represents a vital use of NASA's High Energy Astrophysics Science Archive Research Center (HEASARC); conversely, it is the HEASARC that makes our work possible. In addition, our work naturally responds to the following words in the NRA: ``...the development of tools for mining the vast reservoir of information locked within [the HEASARC]...is also eligible for funding under the Astrophysics Data Analysis Program.'' Specifically we will provide new data analysis tools to the community for the study of data collected by a wide range of past, current and future X-ray missions (e.g., RXTE, Chandra, XMM-Newton, NuSTAR, Swift, NICER). Finally, we are responsive to Objective 1.6 in NASA's Strategic Plan for 2014 that calls for ``exploring the extreme conditions of the universe'' and the continuing aspiration to ``probe the origin and destiny of the universe, including the first moments of the Big Bang and the nature of black holes...''. The proposed program will be carried out over the course of three years.

  3. Exploring the Hard and Soft X-ray Emission of Magnetic Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    de Martino, D.; Anzolin, G.; Bonnet-Bidaud, J.-M.; Falanga, M.; Matt, G.; Mouchet, M.; Mukai, K.; Masetti, N.

    2009-05-01

    A non-negligible fraction of galactic hard (>20 keV) X-ray sources were identified as CVs of the magnetic Intermediate Polar type in INTEGRAL, SWIFT and RXTE surveys, that suggests a still hidden but potentially important population of faint hard X-ray sources. Simbol-X has the unique potential to simultaneously characterize their variable and complex soft and hard X-ray emission thus allowing to understand their putative role in galactic populations of X-ray sources.

  4. Combined Spectral and Timing Analysis of the Black Hole Candidate MAXI J1659-152 Discovered by MAXI and Swift

    NASA Technical Reports Server (NTRS)

    Yamaoka, Kazutaka; Allured, Ryan; Kaaret, Philip; Kennea, Jamie A.; Kawaguchi, Toshihiro; Gandhi, Poshak; Shaposhnikov, Nicholai; Ueda, Yoshihiro; Nakahira, Satoshi; Kotani, Taro; hide

    2011-01-01

    We report on X-ray spectral and timing results of the new black hole candidate (BHC) MAXI J1659-152 with the orbital period of 2.41 hours (shortest among BHCs) in the 2010 outburst from 65 Rossi X-ray Timing Explorer (RXTE) observations and 8 simultaneous Swift and RXTE observations. According to the definitions of the spectral states in Remillard & McClintock (2006), most of the observations have been classified into the intermediate state. All the X-ray broadband spectra can be modeled by a multi-color disk plus a power-law with an exponential cutoff or a multi-color disk plus a Comptonization component. During the initial phase of the outburst, a high energy cutoff was visible at 30-40 keV. The innermost radius of the disk gradually decreased by a factor of more than 3 from the onset of the outburst and reached a constant value of 35 d(sub 10)cos(i sup -1/2) km, where d(sub 10) is the distance in units of 10 kpc and i is the inclination. The type-C quasi-periodic oscillation (QPO) frequency varied from 1.6 Hz to 7.3 Hz in association with a change of the innermost radius, while the innermost radius remained constant during the type-B QPO detections at 1.6-4.1 Hz. Hence, we suggest that the origin of the type-B QPOs is different from that of type-C QPOs, the latter of which would originate from the disk truncation radius. Assuming the constant innermost radius in the latter phase of the outburst as the innermost stable circular orbit, the black hole mass in MAXI J1659-152 is estimated to be 3.6-8.0 solar mass for a distance of 5.3-8.6 kpc and an inclination angle of 60-75 degrees.

  5. When a Standard Candle Flickers: Crab Nebula Variations in Hard X-rays

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We will miss RXTE, but will continue our monitoring program using Fermi/GBM, MAXI, and Swift/BAT.

  6. RXTE Observations of Cas A

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Lingenfelter, R. E.; Heindl, W. A.; Blanco, P. R.; Pelling, M. R.; Gruber, D. E.; Allen, G. E.; Jahoda, K.; Swank, J. H.; Woosley, S. E.; hide

    1997-01-01

    The exciting detection by the COMPTEL instrument of the 1157 keV Ti-44 line from the supernova remnant Cas A sets important new constraints on supernova dynamics and nucleosynthesis. The Ti-44 decay also produces x-ray lines at 68 and 78 keV, whose flux should be essentially the same as that of the gamma ray line. The revised COMPTEL flux of 4 x l0(exp -5) cm(exp -2)s(exp -1) is very near the sensitivity limit for line detection by the HEXTE instrument on RXTE. We report on the results from two RXTE observations - 20 ks during In Orbit Checkout in January 1996 and 200 ks in April 1996. We also find a strong continuum emission suggesting cosmic ray electron acceleration in the remnant.

  7. MULTIWAVELENGTH OBSERVATIONS OF 3C 454.3. III. EIGHTEEN MONTHS OF AGILE MONITORING OF THE 'CRAZY DIAMOND'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vercellone, S.; Romano, P.; D'Ammando, F.

    2010-03-20

    We report on 18 months of multiwavelength observations of the blazar 3C 454.3 (Crazy Diamond) carried out in the period 2007 July-2009 January. In particular, we show the results of the AGILE campaigns which took place on 2008 May-June, 2008 July-August, and 2008 October-2009 January. During the 2008 May-2009 January period, the source average flux was highly variable, with a clear fading trend toward the end of the period, from an average gamma-ray flux F{sub E>100{sub MeV}} {approx}> 200 x 10{sup -8} photons cm{sup -2} s{sup -1} in 2008 May-June, to F{sub E>100{sub MeV}} {approx} 80 x 10{sup -8} photonsmore » cm{sup -2} s{sup -1} in 2008 October-2009 January. The average gamma-ray spectrum between 100 MeV and 1 GeV can be fit by a simple power law, showing a moderate softening (from GAMMA{sub GRID} {approx} 2.0 to GAMMA{sub GRID} {approx} 2.2) toward the end of the observing campaign. Only 3sigma upper limits can be derived in the 20-60 keV energy band with Super-AGILE, because the source was considerably off-axis during the whole time period. In 2007 July-August and 2008 May-June, 3C 454.3 was monitored by Rossi X-ray Timing Explorer (RXTE). The RXTE/Proportional Counter Array (PCA) light curve in the 3-20 keV energy band shows variability correlated with the gamma-ray one. The RXTE/PCA average flux during the two time periods is F{sub 3-20{sub keV}} = 8.4 x 10{sup -11} erg cm{sup -2} s{sup -1}, and F{sub 3-20{sub keV}} = 4.5 x 10{sup -11} erg cm{sup -2} s{sup -1}, respectively, while the spectrum (a power law with photon index GAMMA{sub PCA} = 1.65 +- 0.02) does not show any significant variability. Consistent results are obtained with the analysis of the RXTE/High-Energy X-Ray Timing Experiment quasi-simultaneous data. We also carried out simultaneous Swift observations during all AGILE campaigns. Swift/XRT detected 3C 454.3 with an observed flux in the 2-10 keV energy band in the range (0.9-7.5) x 10{sup -11} erg cm{sup -2} s{sup -1} and a photon index in the range GAMMA{sub XRT} = 1.33-2.04. In the 15-150 keV energy band, when detected, the source has an average flux of about 5 mCrab. GASP-WEBT monitored 3C 454.3 during the whole 2007-2008 period in the radio, millimeter, near-IR, and optical bands. The observations show an extremely variable behavior at all frequencies, with flux peaks almost simultaneous with those at higher energies. A correlation analysis between the optical and the gamma-ray fluxes shows that the gamma-optical correlation occurs with a time lag of tau = -0.4{sup +0.6}{sub -0.8} days, consistent with previous findings for this source. An analysis of 15 GHz and 43 GHz VLBI core radio flux observations in the period 2007 July-2009 February shows an increasing trend of the core radio flux, anti-correlated with the higher frequency data, allowing us to derive the value of the source magnetic field. Finally, the modeling of the broadband spectral energy distributions for the still unpublished data, and the behavior of the long-term light curves in different energy bands, allow us to compare the jet properties during different emission states, and to study the geometrical properties of the jet on a time-span longer than one year.« less

  8. Automation of Coordinated Planning Between Observatories: The Visual Observation Layout Tool (VOLT)

    NASA Technical Reports Server (NTRS)

    Maks, Lori; Koratkar, Anuradha; Kerbel, Uri; Pell, Vince

    2002-01-01

    Fulfilling the promise of the era of great observatories, NASA now has more than three space-based astronomical telescopes operating in different wavebands. This situation provides astronomers with the unique opportunity of simultaneously observing a target in multiple wavebands with these observatories. Currently scheduling multiple observatories simultaneously, for coordinated observations, is highly inefficient. Coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Because they are time-consuming and expensive to schedule, observatories often limit the number of coordinated observations that can be conducted. In order to exploit new paradigms for observatory operation, the Advanced Architectures and Automation Branch of NASA's Goddard Space Flight Center has developed a tool called the Visual Observation Layout Tool (VOLT). The main objective of VOLT is to provide a visual tool to automate the planning of coordinated observations by multiple astronomical observatories. Four of NASA's space-based astronomical observatories - the Hubble Space Telescope (HST), Far Ultraviolet Spectroscopic Explorer (FUSE), Rossi X-ray Timing Explorer (RXTE) and Chandra - are enthusiastically pursuing the use of VOLT. This paper will focus on the purpose for developing VOLT, as well as the lessons learned during the infusion of VOLT into the planning and scheduling operations of these observatories.

  9. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  10. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgarter, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2012-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, a approx.7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approx.3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, and MAXI, and a 16-year long light curve from RXTE/PCA.

  11. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  12. Joint XMM-Newton, Chandra, and RXTE Observations of Cyg X-1 at Phase Zero

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    We present first results of simultaneous observations of the high mass X-ray binary Cyg X-1 for 50 ks with XMM-Newton, Chandra-HETGS and RXTE in 2008 April. The observations are centered on phase 0 of the 5.6 d orbit when pronounced dips in the X-ray emission from the black hole are known to occur. The dips are due to highly variable absorption in the accretion stream from the O-star companion to the black hole. Compared to previous high resolution spectroscopy studies of the dip and non-dip emission with Chandra, the addition of XMM-Newton data allows for a better determination of the continuum, especially through the broad iron line region (with RXTE constraining the greater than 10 keV continuum).

  13. Observation of Nonthermal Emission from the Supernova Remnant IC443 with RXTE

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Keohane, J. W.; Reimer, O.

    2002-01-01

    In this paper we present analysis of X-ray spectra from the supernova remnant IC443 obtained using the PCA on RXTE. The spectra in the 3 - 20 keV band are well fit by a two-component model consisting of thermal and nonthermal components. We compare these results with recent results of other X-ray missions and discuss the need for a cut-off in the nonthermal spectrum. Recent Chandra and XMM-Newton observations suggest that much of the nonthermal emission from IC443 can be attributed to a pulsar wind nebula. We present the results of our search for periodic emission in the RXTE PCA data. We then discuss the origin o f the nonthermal component and its possible association with the unidentified EGRET source.

  14. Swift, INTEGRAL, RXTE, and Spitzer Reveal IGR J16283-4838

    NASA Technical Reports Server (NTRS)

    Beckmann, V.; Gehrels, N.; Markwardt, C.; Barthelmy S.; Soldi, S.; Paizis, A.; Mowlavi, N.; Kennca, J. A.; Burrows, D. N.; Chester, M.

    2005-01-01

    We present the first combined study of the recently discovered source IGR J16283-4838 with Swift, INTEGRAL, and RXTE. The source, discovered by INTEGRAL on April 7, 2005, shows a highly absorbed (variable N(sub H) = 0.4-1.7 x 10(exp 23) /sq cm) and flat (Gamma approx. 1) spectrum in the Swift/XRT and RXTE/PCA data. No optical counterpart is detectable (V > 20 mag), but a possible infrared counterpart within the Swift/XRT error radius is detected in the 2MASS and Spitzer/GLIMPSE survey. The observations suggest that IGR J16283-4838 is a high mass X-ray binary containing a neutron star embedded in Compton thick material. This makes IGR J16283-4838 a member of the class of highly absorbed HMXBs, discovered by INTEGRAL.

  15. A DOUBLE-PEAKED OUTBURST OF A 0535+26 OBSERVED WITH INTEGRAL, RXTE, AND SUZAKU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caballero, I.; Pottschmidt, K.; Marcu, D. M.

    2013-02-20

    The Be/X-ray binary A 0535+26 showed a normal (type I) outburst in 2009 August. It is the fourth in a series of normal outbursts associated with the periastron, but is unusual because it presented a double-peaked light curve. The two peaks reached a flux of {approx}450 mCrab in the 15-50 keV range. We present results of the timing and spectral analysis of INTEGRAL, RXTE, and Suzaku observations of the outburst. The energy-dependent pulse profiles and their evolution during the outburst are studied. No significant differences with respect to other normal outbursts are observed. The centroid energy of the fundamental cyclotronmore » line shows no significant variation during the outburst. A spectral hardening with increasing luminosity is observed. We conclude that the source is accreting in the sub-critical regime. We discuss possible explanations for the double-peaked outburst.« less

  16. PSR J2022 plus 3842: An Energetic Radio and X-Ray Pulsar Associated with SNR G76.9 plus 1.0

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Gotthelf, E. V.; Ransom, S. M.; Kothes, R.; Landecker, T. L.

    2010-01-01

    We present Chandra X-ray Observatory, Robert C. Byrd Green Bank Radio Telescope (GBT), and Rossi X-ray Timing Explorer (RXTE) observations directed toward the radio supernova remnant (SNR) G76.9+1.0. The Chandra investigation reveals a hard, unresolved X-ray source coincident with the midpoint of the double-lobed radio morphology and surrounded by faint, compact X-ray nebulosity. These features suggest that an energetic neutron star is powering a pulsar wind nebula (PWN) seen in synchrotron emission. Indeed, the spatial relationship of the X-ray and radio emissions is remarkably similar to the extended emission around the Vela pulsar. A follow-up pulsation search with the GBT uncovered a highly-dispersed (DM = 427 +/- 1 pc/cu cm) and highly-scattered pulsar with a period of 24 ms. Its subsequently measured spin-down rate implies a characteristic age T(sub c) = 8.9 kyr, making PSR J2022+3842 the most rapidly rotating young radio pulsar known. With a spin-down luminosity E = 1.2 x 10(exp 38) erg/s, it is the second-most energetic Galactic pulsar known, after the Crab pulsar. The 24-ms pulsations have also been detected in the RXTE observation; the combined Chandra and RXTE spectral fit suggests that the Chandra point-source emission is virtually 100% pulsed. The 2-16 keV spectrum of the narrow (0.06 cycles FWHM) pulse is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.5) x 10(exp 22)/sq cm and photon index Gamma = 1.0 +/- 0.2, strongly suggestive of magnetospheric emission. For an assumed distance of 10 kpc, the 2-10 keV luminosity of L(sub X) = 6.9 x 10(exp 33) erg/s suggests one of the lowest known X-ray conversion efficiencies L(sub X)/ E = 5.8 x 10(exp -5), similar to that of the Vela pulsar. Finally, the PWN around PSR J2022+3842 revealed by Chandra is also underluminous, with F(sub PWN)/ F(sub PSR) < or approx.1 in the 2-10 keV band, a further surprise given the pulsar's high spin-down luminosity.

  17. The Orbit and Position of the X-ray Pulsar XTE J1855-026: An Eclipsing Supergiant System

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Mukai, Koji; White, Nicholas E. (Technical Monitor)

    2002-01-01

    A pulse timing orbit has been obtained for the X-ray binary XTEJ1855-026 using observations made with the Proportional Counter Array on board the Rossi X-ray Timing Explorer. The mass function obtained of approximately 16 solar mass together with the detection of an extended near-total eclipse confirm that the primary star is supergiant as predicted. The orbital eccentricity is found to be very low with a best fit value of 0.04 +/- 0.02. The orbital period is also refined to be 6.0724 +/- 0.0009 days using an improved and extended light curve obtained with RXTE's All Sky Monitor. Observations with the ASCA satellite provide an improved source location of R.A.= 18 hr 55 min 31.3 sec, decl.= -02 deg 36 min 24.0 sec (2000) with an estimated systematic uncertainty of less than 12 min. A serendipitous new source, AX J1855.4-0232, was also discovered during the ASCA observations.

  18. X-ray variability of Cygnus X-1 in its soft state

    NASA Technical Reports Server (NTRS)

    Cui, W.; Zhang, S. N.; Jahoda, K.; Focke, W.; Swank, J.; Heindl, W. A.; Rothschild, R. E.

    1997-01-01

    Observations from the Rossi X-ray Timing Explorer (RXTE) of Cyg X-1 in the soft state and during the soft to hard transition are examined. The results of this analysis confirm previous conclusions that for this source there is a settling period (following the transition from the hard to soft state during which the low energy spectrum varies significantly, while the high energy portion changes little) during which the source reaches nominal soft state brightness. This behavior can be characterized by a soft low energy spectrum and significant low frequency 1/f noise and white noise on the power density spectrum, which becomes softer upon reaching the true soft state. The low frequency 1/f noise is not observed when Cyg X-1 is in the hard state, and therefore appears to be positively correlated with the disk mass accretion rate. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a fluctuating corona model.

  19. Fast optical and X-ray variability in the UCXB 4U0614+09

    NASA Astrophysics Data System (ADS)

    Hakala, P. J.; Charles, P. A.; Muhli, P.

    2011-09-01

    We present results from several years of fast optical photometry of 4U0614+091 (V1055 Orionis), a candidate ultracompact X-ray binary most likely consisting of a neutron star and a degenerate secondary. We find evidence for strong accretion-driven variability at all epochs, which manifests itself as red noise. This flickering produces transient peaks in the observed power spectrum in the 15-65 min period range. Only in one of our 12 optical data sets can we see evidence for a period that cannot be reproduced using the red noise model. This period of 51 min coincides with the strongest period detected by Shahbaz et al. and can thus be taken as the prime candidate for the orbital period of the system. Furthermore, we find some tentative evidence for the X-ray versus optical flux anticorrelation discovered by Machin et al. using our data together with the all-sky X-ray monitoring data from RXTE/All Sky Monitor. We propose that the complex time series behaviour of 4U0614+09 is a result of drastic changes in the accretion disc geometry/structure on time-scales from hours to days. Finally, we want to draw attention to the interpretation of moderately strong peaks in the power spectra of especially accreting sources. Many of such 'periods' can probably be attributed to the presence of red noise (i.e. correlated events) in the data. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Uses results provided by the ASM/RXTE teams at MIT and at the RXTE SOF and GOF at NASA's GSFC.

  20. VizieR Online Data Catalog: The 2009 multiwavelength campaign on Mrk421 (Aleksic+, 2015)

    NASA Astrophysics Data System (ADS)

    Aleksic, J.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra Gonzalez, J.; Bednarek, W.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Carreto Fidalgo, D.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; da Vela, P.; Dazzi, F.; de Angelis, A.; de Caneva, G.; de Lotto, B.; Delgado Mendez, C.; Doert, M.; Dominguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher, D.; Elsaesser, D.; Farina, E.; Ferenc, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Garcia Lopez, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giavitto, G.; Godinovi, N.; Gonzalez Munoz, A.; Gozzini, S. R.; Hadamek, A.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Hose, J.; Hrupec, D.; Idec, W.; Kadenius, V.; Kellermann, H.; Knoetig, M. L.; Krause, J.; Kushida, J.; La Barbera, A.; Lelas, D.; Lewandowska, N.; Lindfors, E.; Longo, F.; Lombardi, S.; Lopez, M.; Lopez-Coto, R.; Lopez-Oramas, A.; Lorenz, E.; Lozano, I.; Makariev, M.; Mallot, K.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martinez, M.; Mazin, D.; Menzel, U.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Munar-Adrover, P.; Nakajima, D.; Niedzwiecki, A.; Nilsson, K.; Nowak, N.; Orito, R.; Overkemping, A.; Paiano, S.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Partini, S.; Persic, M.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Preziuso, S.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribo, M.; Rico, J.; Rodriguez Garcia, J.; Rugamer, S.; Saggion, A.; Saito, K.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpaa, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Spanier, F.; Stamatescu, V.; Stamerra, A.; Steinbring, T.; Storz, J.; Sun, S.; Suri, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzi, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Tibolla, O.; Torres, D. F.; Toyama, T.; Treves, A.; Uellenbeck, M.; Vogler, P.; Wagner, R. M.; Zandanel, F.; Zanin, R.

    2015-02-01

    Light Curves of Mrk 421 as shown in Figure 1 of the paper are presented for following instruments/observatories and bands (radio to very high energy gamma rays): Effelsberg (2.6, 4.6, 7.9, 10.3, 13.6, 21.7, 31GHz), Medicina (8.4GHz), Metsahovi (37GHz), OVRO (15GHz), Noto (8, 22GHz), OAGH (J, H, K bands), WIRO (J, K bands), MITSuME (g, Rc, Ic bands), ROVOR (B band), GRT (V, R, B, I bands), GASP (R band), Steward (V band), Swift/UVOT (UVW1, UVM2, UVW2), Swift/XRT (0.3-2 and 2-10keV), RXTE/PCA (2-10keV). RXTE/ASM (2-10keV), Swift/BAT (15-50keV), Fermi-LAT (>0.3keV), Whipple (>300GeV), MAGIC (>300GeV). The observation period is from 2009 January 19 (MJD 54850) to 2009 June 1st (MJD 54983), where Mrk 421 was observed approximately once every two days. The Fermi-LAT photon fluxes are integrated over a three-day-long time interval, the RXTE/ASM and Swift/BAT photon fluxes over a seven-day long time interval. The Whipple 10-meter data (with an energy threshold of 400GeV) were converted into fluxes above 300GeV using a power-law spectrum with index of 2.5. Host galaxy fluxes are given where a good estimate is available, which is the case for some optical bands only. In the infrared, e.g., the host galaxy flux is larger than in the R band, however, we do not have a good estimate of the galaxy flux and therefore it is not given in the table. (1 data file).

  1. Discovery and Evolution of the New Black Hole Candidate Swift J1539.2-6227 During Its 2008 Outburst

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Tomsick, J. A.; Markwardt, C. B.; Brocksopp, C.; Grise, F.; Kaaret, P.; Romano, P.

    2010-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a rare opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasiperiodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.

  2. A Multiwavelength Study of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    McCollough, M. L; Robinson, C. R.; Zhang, S. N.; Paciesas, W. S.; Harmon, B. A.; Hjellming, R. M.; Rupen, M.; Waltman, E. B.; Foster, R. S.; Ghigo, F. D.

    1997-01-01

    We present a global comparison of long term observations of the hard X-ray (20-100 keV), soft X-ray (1.5-12 keV), infrared (1-2 micron) and radio (2.25, 8.3 and 15 GHz) bands for the unusual X-ray binary Cygnus X-3. Data were obtained in the hard X-ray band from CGRO/BATSE, in the soft X-ray band from Rossi Xray Timing Explorer (RXTE)/ASM, in the radio band from the Green Bank Interferometer and Ryle Telescope and in the infrared band from various ground based observatories. Radio flares, quenched radio states and quiescent radio emission can all be associated with changes in the hard and soft X-ray intensity. The injection of plasma into the radio jet is directly related to changes in the hard and soft X-ray emission. The infrared observations are examined in the context of these findings.

  3. The 2001 April Burst Activation of SGR 1900-14: Pulse Properties and Torque

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Goegues, E.; Finger, M. H.; Feroci, M.; Mereghetti, S.; Swank, J. H.; Hurley, K.; Heise, J.; Smith D.

    2003-01-01

    We report on observations of SGR 1900+14 made with the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAXduring the 2001 April burst activation of the source. Using these data, we measure the spin-down torque on the star and confirm earlier findings that the torque and burst activity are not directly correlated. We compare the X-ray pulse profile to the gamma-ray profile during the April 18 intermediate flare and show that (1) their shapes are similar and (1) the gamma-ray profile aligns closely in phase with the X-ray pulsations. The good phase alignment of the gamma-ray and X-ray profiles suggests that there was no rapid spin-down following this flare of the magnitude inferred for the August 27 giant flare. We discuss how these observations further constrain magnetic field reconfiguration models for the large flares of SGRs.

  4. Variable neutron star free precession in Hercules X-1 from evolution of RXTE X-ray pulse profiles with phase of the 35-d cycle

    NASA Astrophysics Data System (ADS)

    Postnov, K.; Shakura, N.; Staubert, R.; Kochetkova, A.; Klochkov, D.; Wilms, J.

    2013-10-01

    Accretion of matter on to the surface of a freely precessing neutron star (NS) with a complex non-dipole magnetic field can explain the change of X-ray pulse profiles of Her X-1 observed by RXTE with the phase of the 35-d cycle. We demonstrate this using all available measurements of X-ray pulse profiles in the 9-13 keV energy range obtained with the RXTE/Proportional Counter Array (PCA). The measured profiles guided the elaboration of a geometrical model and the definition of locations of emitting poles, arcs and spots on the NS surface which satisfactorily reproduce the observed pulse profiles and their dependence on free precession phase. We have found that the observed trend of the times of the 35-d turn-ons on the O-C diagram, which can be approximated by a collection of consecutive linear segments around the mean value, can be described by our model by assuming a variable free precession period, with a fractional period change of about a few per cent. Under this assumption and using our model, we have found that the times of phase zero of the NS free precession (which we identify with the maximum separation of the brightest spot on the NS surface with the NS spin axis) occur about 1.6 d after the mean turn-on times inside each `stable' epoch, producing a linear trend on the O-C diagram with the same slope as the observed times of turn-ons. We propose that the 2.5 per cent changes in the free precession period that occur on time scales of several to tens of 35-d cycles can be related to wandering of the principal inertia axis of the NS body due to variations in the patterns of accretion on to the NS surface. The closeness of periods of the disc precession and the NS free precession can be explained by the presence of a synchronization mechanism in the system, which modulates the dynamical interaction of the gas streams and the accretion disc with the NS free precession period.

  5. Recent X-ray Variability of eta Carinae: the Quick Road to Recovery

    NASA Technical Reports Server (NTRS)

    Corcoran, M. Francis; Hamaguchi, K.; Pittard, J. M.; Russell, C. M. P.; Owocki, S. P.; Parkin, E. R.; Okazaki, A.

    2010-01-01

    We report continued monitoring of the superluminous binary system eta Car by the Proportional Counter Array on the Rossi X-ray Timing Observatory (RXTE) through the 2009 X-ray minimum. The RXTE campaign shows that the minimum began on 2009 January 16, consistent with the phasings of the two previous minima, and overall, the temporal behavior of the X-ray emission was similar to that observed by RXTE in the previous two cycles. However, important differences did occur. The 2-10 keV X-ray flux and X-ray hardness decreased in the 2.5-year interval leading up to the 2009 minimum compared to the previous cycle. Most intriguingly, the 2009 X-ray minimum was about one month shorter than either of the previous two minima. During the egress from the 2009 minimum the X-ray hardness increased markedly as it had during egress from the previous two minima, although the maximum X-ray hardness achieved was less than the maximum observed after the two previous recoveries. We suggest that the cycle-to-cycle variations, especially the unexpectedly early recovery from the 2009 X-ray minimum, might have been the result of a decline in eta Car's wind momentum flux produced by a drop in eta Car's mass loss rate or wind terminal velocity (or some combination), though if so the change in wind momentum flux required to match the X-ray variation is surprisingly large.

  6. The 2004 outburst of BHC H1743-322: analysis of spectral and timing properties using the TCAF solution

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Ayan; Banerjee, Indrani; Banerjee, Anuvab; Debnath, Dipak; Chakrabarti, Sandip K.

    2017-04-01

    The black hole transient H1743-322 exhibited several outbursts with temporal and spectral variability since its discovery in 1977. These outbursts occur at a quasi-regular recurrence period of around 0.5-2 yr, since its rediscovery in 2003 March. We investigate accretion flow dynamics around the low-mass X-ray binary H1743-322 during its 2004 outburst using the RXTE (Rossi X-Ray Timing Explorer)/PCA archival data. We use two component advective flow (TCAF) solution to analyse the spectral data. From the fits with TCAF solution, we obtain day-to-day variation of physical accretion rates of Keplerian and sub-Keplerian components, size of the Compton cloud and its other properties. Analysis of the spectral properties of the 2004 outburst by keeping fitted normalization to be in a narrow range and its timing properties in terms of the presence and absence of quasi-periodic oscillations, enable us to constrain the mass of the black hole in a range of 10.31 M⊙-14.07 M⊙ that is consistent with other estimates reported in the literature.

  7. On the Nature of the Variability Power Decay towards Soft Spectral States in X-Ray Binaries. Case Study in Cyg X-1

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhinikov, Nikolai

    2007-01-01

    A characteristic feature of the Fourier Power Density Spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broad band-limited noise, characterized by a constant below some frequency (a "break" frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time to is related to the phenomenological break frequency, while the PDS power-law slope above the "break" is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black hole and neutron star) during an evolution of theses sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power P(sub x), decreases approximately as a square root of the characteristic frequency of the driving oscillations v(sub dr). The RXTE observations of Cyg X-1 allow us to infer P(sub dr), and t(sub o) as a function of v(sub dr). We also apply the basic parameters of observed PDSs, power-law index and low frequency quasiperiodic oscillations. to infer Reynolds (Re) number from the observations using the method developed in our previous paper. Our analysis shows that Re-number increases from values about 10 in low/hard state to that about 70 during the high/soft state. Subject headings: accretion, accretion disks-black hole physics-stars:individual (Cyg X-1) :radiation mechanisms: nonthermal-physical data and processes

  8. NuSTAR OBSERVATIONS OF MAGNETAR 1E 1048.1–5937

    DOE PAGES

    Yang, C.; Archibald, R. F.; Vogel, J. K.; ...

    2016-10-28

    We report on simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and XMM-Newton observations of the magnetar 1E 1048.1-5937, along with Rossi X-ray Timing Explorer (RXTE) data for the same source. The NuSTAR data provide a clear detection of this magnetar’s persistent emission up to 20 keV. We detect a previously unreported small secondary peak in the average pulse profile in the 7–10 keV band, which grows to an amplitude comparable to that of the main peak in the 10–20 keV band. We show using RXTE data that this secondary peak is likely transient. We find that the pulsed fraction increases withmore » energy from a value of ~0.55 at ~2 keV to a value of ~0.75 near 8 keV but shows evidence of decreasing at higher energies. After filtering out multiple bright X-ray bursts during the observation, we find that the phase-averaged spectrum from combined NuSTAR and XMM data is well described by an absorbed double blackbody plus power-law model, with no evidence for the spectral turn-up near ~10 keV as has been seen in some other magnetars. Our data allow us to rule out a spectral turn-up similar to those seen in magnetars 4U 0142+61 and 1E 2259+586 of ΔΓ≳2, where ΔΓ is the difference between the softband and hard-band photon indexes. The lack of spectral turn-up is consistent with what has been observed from an active subset of magnetars given previously reported trends suggesting that the degree of spectral turn-up is correlated with spin-down rate and/or spin-inferred magnetic field.« less

  9. Discovery of the Neutron Star Spin Frequency in EXO 0748-676

    NASA Technical Reports Server (NTRS)

    Villarreal, Adam R.; Strohmayer, Tod E.

    2004-01-01

    We report the results of a search for burst oscillations during thermonuclear X-ray bursts from the low mass X-ray binary (LMXB) EXO 0748-676. With the proportional counter array (PCA) onboard the Rossi X-ray Timing Explorer (RXTE) we have detected a 45 Hz oscillation in the average power spectrum of 38 thermonuclear X-ray bursts from this source. We computed power spectra with 1 Hz frequency resolution for both the rising and decaying portions of 38 X-ray bursts from the public RXTE archive. We averaged the 1 Hz power spectra and detected a significant signal at 45 Hz in the decaying phases of the bursts. The signal is detected at a significance level of 4 x 10 (exp -8) similar signal was detected in the rising intervals. The oscillation peak is unresolved at 1 Hz frequency resolution, indicating an oscillation quality factor, Q = nu (sub 0)/Delta nu (sub fwhm) greater than 45, and the average signal amplitude is approximately equal to 3% (rms) The detection of 45 Hz burst oscillations from EXO 0748-676 provides compelling evidence that this is the neutron star spin frequency in this system. We use the inferred spin frequency to model the widths of absorption lines from the neutron star surface and show that the widths of the absorption lines from EXO 0748-676 recently reported by Cottam et al. are consistent with a 45 Hz spin frequency as long as the neutron star radius is in the range from about 9.5 - 15 km. With a known spin frequency, precise modelling of the line profiles from EXO 0748-676 holds great promise for constraining the dense matter equation of state.

  10. X-Ray Spectral Analysis of the Steady States of GRS1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-05-01

    We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.

  11. The Chaotic Long-term X-ray Variability of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-04-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through May 2014. The combined ASM-MAXI data provide a continuous time series over fifty times the length of the timescale of interest. Topological analysis can help us identify 'fingerprints' in the phase-space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled nonlinear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  12. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the radio through X-ray spectra. I will conclude with an outlook on a truly multi-instrument observing campaign of Cygnus X-1 that was performed in 2008 April in order to better constrain the jet models mentioned above (and provide a unique data set for cross-calibration).

  13. When a Standard Candle Flickers: Hard X-Ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camaro-Arranz, A.; Connaughton, V.; Diehl, R.; hide

    2014-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, an approximately 7% (70 mcrab) decline was discovered in the overall Crab nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. At higher energies, above 50 keV, the Crab flux appears to be slowly recovering to its 2008 levels. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL, MAXI, and NuSTAR and a 16-year long light curve from RXTE/PCA.

  14. When a Standard Candle Flickers: Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen; Cherry, Michael L.; Case, Gary L.; Baumgartner, Wayne H.; Beklen, Elif; Bhat, Narayana P.; Briggs, Michael S.; Buehler, Rolf; Camero-Arranz, Ascension; Connaughton, Valerie; hide

    2014-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, an approximately 7% (70 mcrab) decline was discovered in the overall Crab nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approximately3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. At higher energies, above 50 keV, the Crab flux appears to be slowly recovering to its 2008 levels. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL, MAXI, and NuSTAR and a 16-year long light curve from RXTE/PCA. We will compare these variations to higher energies as well, e.g. Fermi LAT.

  15. The spin-down rate of Swift J1822.3-1606 finally measured: confirmation as magnetar

    NASA Astrophysics Data System (ADS)

    Kuiper, L.; Hermsen, W.

    2011-09-01

    Data from monitoring observations of magnetar-candidate Swift J1822.3-1606 with RXTE PCA covering a time span of about 10 weeks (MJD 55758-55826) since its discovery on July 14, 2011 (ATEL #3488; GCN #12159) have been used to construct an accurate phase-coherent timing solution. Barycentered pulse arrival times (ToA's; see ATEL #3493 for the adopted source location) have been obtained by a cross-correlation method with a high-statistics pulse-profile template.

  16. Proposed US Contributions to LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen

    2013-01-01

    Proposed US Enhancements include:Tantalum X -ray collimator, Additional ground station, Large Observatory for X-Ray Timing (LOFT) instrument team participation, US science support center & data archive, and Science enabled by US hardware. High-Z material with excellent stopping power. Fabricated using a combination of laser micromachining and chemical etching. Known technology capable of producing high-aspect ratio holes and large open fractions. Reduces LOFT LAD background by a factor of 3. Telemetry formats for LOFT based upon RXTE/EDS experience. Ground system software and strategies for WFM based upon RXTE/ASM automated pipeline software. MSFC engineering trade studies supporting the Ta collimator. Burst alert triggers based upon Fermi/GBM and HETE-2. Science Enhancements Enabled by US Hardware include: Tantalum collimator: Reduces background by factor of 3. Improves sensitivity to faint sources such as AGN. Eliminates contamination by bright/variable sources. outside the LAD field of view. US Ground Station: Enables continuous telemetry of all events from the WFM. Allows LAD to observe very bright >500 mCrab sources with full event resolution.

  17. RXTE Observation of Cygnus X-1: Spectra and Timing

    NASA Technical Reports Server (NTRS)

    Wilms, J.; Dove, J.; Nowak, M.; Vaughan, B. A.

    1997-01-01

    We present first results from the analysis of an RXTE observation of Cyg X-1 in its low state, taken about two months after the end of the high state. With Gamma approx. equal to 1.45 the spectrum is considerably harder than previous low-state measurements. The observed spectrum can be explained by a Comptonization spectrum as that emitted from a spherical corona surrounded by a cold accretion disk. The optical depth of the corona is between 2 and 2.5 and the temperature is between 60 and 80 keV. Temporal analysis shows a typical Root Mean Square (RMS) noise of approximately 25%. The Pulse Shape Discrimination (PSD) can be described as consisting of a flat component followed by an 1/f power-law, followed by an f(sup -1.6) power-law. The lag of the hard photons with respect to the soft photons is consistent with prior observations. The coherence function is remarkably close to unity from 0.01 Hz to 10 Hz.

  18. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the form of a discrete, transient blob of ejected material.

  19. X-ray Variability of the Magnetic Cataclysmic Variable V1432 Aql and the Seyfert Galaxy NGC 6814

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Hellier, C.; Madejski, G.; Patterson, J.; Skillman, D. R.

    2003-01-01

    V1432 Aquilae (=RX J1940.2-1025) is the X-ray bright, eclipsing magnetic cataclysmic variable approximately 37 (sup) away from the Seyfert galaxy, NGC 6814. Due to a 0.3% difference between the orbital (12116.3 s) and the spin (12150 s) periods: the accretion geometry changes over the approximately 50 day beat period. Here we report the results of an RXTE campaign to observe the eclipse 25 times, as well as of archival observations with ASCA and BeppoSAX. Having confirmed that the eclipse is indeed caused by the secondary, we use the eclipse timings and profiles to map the accretion geometry as a function of the beat phase. We find that the accretion region is compact, and that it moves relative to the center of white dwarf on the beat period. The amplitude of this movement suggest a low-mass white dwarf, in contrast to the high mass previously estimated from its X-ray spectrum. The size of the X-ray emission region appears to be larger than in other eclipsing magnetic CVs. We also report on the RXTE data as well as the long-term behavior of NGC 6814, indicating flux variability by a factor of at least 10 on time scales of years.

  20. Evidence for Harmonic Content and Frequency Evolution of Oscillations During the Rising Phase of X-ray Bursts From 4U 1636-536

    NASA Technical Reports Server (NTRS)

    Bgattacharyya, Sudip; Strohmayer, E.

    2005-01-01

    We report on a study of the evolution of burst oscillation properties during the rising phase of X-ray bursts from 4U 1636-536 observed with the proportional counter array (PCA) on board the Rossi X-Ray Timing Explorer (RXTE) . We present evidence for significant harmonic structure of burst oscillation pulses during the early rising phases of bursts. This is the first such detection in burst rise oscillations, and is very important for constraining neutron star structure parameters and the equation of state models of matter at the core of a neutron star. The detection of harmonic content only during the initial portions of the burst rise is consistent with the theoretical expectation that with time the thermonuclear burning region becomes larger, and hence the fundamental and harmonic amplitudes both diminish. We also find, for the first time from this source, strong evidence of oscillation frequency increase during the burst rise. The timing behavior of harmonic content, amplitude, and frequency of burst rise oscillations may be important in understanding the spreading of thermonuclear flames under the extreme physical conditions on neutron star surfaces.

  1. The chaotic long-term X-ray variability of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-07-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a time-scale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from 1995 December through 2014 May. The combined ASM-MAXI data provide a continuous time series over 50 times the length of the time-scale of interest. Topological analysis can help us identify `fingerprints' in the phase space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled non-linear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  2. The Nature of the X-Ray Binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift Observations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Tomsick, J. A.; Bodaghee, A.; ZuritaHeras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-01-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).

  3. Swift does not detect a source near H 1743-322

    NASA Astrophysics Data System (ADS)

    Motta, S.; Belloni, T.; Campana, S.; Munoz-Darias, T.

    2011-04-01

    A low-frequency oscillation with a period of approximately 91 s was visible in the RXTE/PCA light curve of the black-hole candidate H1743-322 (ATel #3277), in outburst since April 6, 2011 (ATel #32763) and currently in hard state. The oscillation was detected only in the first RXTE observation (performed 16:05:01 (UTC) on April 12, 2011). The hypothesis that the oscillations are due to a second active source in the PCA field of view was put forward.

  4. X-Ray Dips In Black Hole Candidates

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Swank, Jean (Technical Monitor)

    2000-01-01

    A total of 52 Rossi Timing Explorer (RXTE) observations of the black hole candidate 4UI630-47 were carried out during the source's bright outburst during 1998. After the data tapes arrived in August 1998, we began analyzing these data to characterize the spectral and timing behavior of the source. A preliminary report on our analysis of the data was at the Second Workshop on Relativistic Jet Sources in the Galaxy. held in Paris presented in December 1998. The most interesting result from this analysis is the discovery of quasi- periodic oscillations (QPOs) at frequencies varying from 3 Hz to 0.1 Hz during the latter part of the outburst. The QPOs turn on abruptly and simultaneously with a sharp change in the x-ray spectrum. The results have been published in the Astrophysical Journal. This work formed a major part of the Ph.D. thesis of John Tomsick, who received his Ph.D. in Physics at Columbia University in the summer of 1999 and subsequently received a postdoctoral fellowship at the University of California, San Diego.

  5. Improved Modeling in a Matlab-Based Navigation System

    NASA Technical Reports Server (NTRS)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.

    1999-01-01

    An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.

  6. STUDIES OF THE ORIGIN OF HIGH-FREQUENCY QUASI-PERIODIC OSCILLATIONS OF MASS-ACCRETING BLACK HOLES IN X-RAY BINARIES WITH NEXT-GENERATION X-RAY TELESCOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beheshtipour, Banafsheh; Hoormann, Janie K.; Krawczynski, Henric, E-mail: b.beheshtipour@wustl.edu

    Observations with RXTE ( Rossi X-ray Timing Explorer ) revealed the presence of high-frequency quasi-periodic oscillations (HFQPOs) of the X-ray flux from several accreting stellar-mass black holes. HFQPOs (and their counterparts at lower frequencies) may allow us to study general relativity in the regime of strong gravity. However, the observational evidence today does not yet allow us to distinguish between different HFQPO models. In this paper we use a general-relativistic ray-tracing code to investigate X-ray timing spectroscopy and polarization properties of HFQPOs in the orbiting Hotspot model. We study observational signatures for the particular case of the 166 Hz quasi-periodicmore » oscillation (QPO) in the galactic binary GRS 1915+105. We conclude with a discussion of the observability of spectral signatures with a timing-spectroscopy experiment such as the LOFT ( Large Observatory for X-ray Timing ) and polarization signatures with space-borne X-ray polarimeters such as IXPE ( Imaging X-ray Polarimetry Explorer ), PolSTAR ( Polarization Spectroscopic Telescope Array ), PRAXyS ( Polarimetry of Relativistic X-ray Sources ), or XIPE ( X-ray Imaging Polarimetry Explorer ). A mission with high count rate such as LOFT would make it possible to get a QPO phase for each photon, enabling the study of the QPO-phase-resolved spectral shape and the correlation between this and the flux level. Owing to the short periods of the HFQPOs, first-generation X-ray polarimeters would not be able to assign a QPO phase to each photon. The study of QPO-phase-resolved polarization energy spectra would thus require simultaneous observations with a first-generation X-ray polarimeter and a LOFT -type mission.« less

  7. Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bult, Peter; Doesburgh, Marieke van; Klis, Michiel van der

    We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with themore » Rossi X-ray Timing Explorer and XMM-Newton . We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.« less

  8. Quasi-Periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    NASA Technical Reports Server (NTRS)

    Bult, Peter; van Doesburgh, Marieke; van der Klis, Michiel

    2017-01-01

    We introduce a new method for analyzing the a periodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain lightcurve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and a periodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton. We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  9. X-ray Pulsations from AXP 1E 1547-5407 Detected with RXTE

    NASA Astrophysics Data System (ADS)

    Dib, R.; Kaspi, V. M.; Gavriil, F. P.; Woods, P. M.

    2008-10-01

    We observed AXP 1E 1547-5407 which is currently in outburst (see ATELs #1756, #1761, #1763) with RXTE on October 4 (4 ks), and 6 (1.4 ks, 1.6 ks). The 2-20 keV pulse profile of these observations (October 04 UT 21:51:04, October 06 UT 01:46:04, and October 06 UT 23:31:04) shows a single broad pulse that is qualitatively similar to that reported in Halpern et al. (2008, ApJ, 676, 1178), though there is a possible hint of additional peaks.

  10. Low Frequency Quasi-periodic Oscillations in the High-eccentric LMXB Cir X-1: Extending the WK Correlation for Z Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bu, Qingcui; Chen, Li; Belloni, T. M.

    Using archival Rossi X-ray Timing Explorer ( RXTE ) data, we studied the low-frequency quasi-periodic oscillations (LFQPOs) in the neutron star low-mass X-ray binary (LMXB) Cir X-1 and examined their contribution to frequency–frequency correlations for Z sources. We also studied the orbital phase effects on the LFQPO properties and found them to be phase independent. Comparing LFQPO frequencies in different classes of LMXBs, we found that systems that show both Z and atoll states form a common track with atoll/BH sources in the so-called WK correlation, while persistent Z systems are offset by a factor of about two. We foundmore » that neither source luminosity nor mass accretion rate is related to the shift of persistent Z systems. We discuss the possibility of a misidentification of fundamental frequency for horizontal branch oscillations from persistent Z systems and interpreted the oscillations in terms of models based on relativistic precession.« less

  11. Observations of the Non-Thermal X-ray Emission from the Galactic Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Pannuti, Thomas G.; Allen, Glenn E.

    2002-01-01

    G347.3-0.5 (ALEX J1713.7-3946) is a member of the new class of shell-type Galactic supernova remnants (SNRs) that feature non-thermal components to their X-ray emission. We have analyzed the X-ray spectrum of this SNR over a broad energy range (0.5 to 30 key) using archived data from observations made with two satellites, the R6ntgensatellit (ROSA I) and the Advanced Satellite for Cosmology and Astrophysics (ASCA), along with data from our own observations made with the Rossi X-ray Timing Explorer (RXTE) Using a combination of the models EQUIL and SRCUT to fit thermal and non-thermal emission, respectively, from this SNR, we find evidence for a modest thermal component to G347.30.5's diffuse emission with a corresponding energy of kT approx. = 1.4 key. We also obtain an estimate of 70 Texas for the maximum energy of the cosmic-ray electrons that, have been accelerated by this SNR.

  12. An RXTE Study of M87 and the Core of the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.

    1998-01-01

    We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray Timing Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT approx. = 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma(sub core) greater than 1.90 and Gamma(sub jet) greater than 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.

  13. AstroSat/LAXPC Detection of Millisecond Phenomena in 4U 1728-34

    NASA Astrophysics Data System (ADS)

    Verdhan Chauhan, Jai; Yadav, J. S.; Misra, Ranjeev; Agrawal, P. C.; Antia, H. M.; Pahari, Mayukh; Sridhar, Navin; Dedhia, Dhiraj; Katoch, Tilak; Madhwani, P.; Manchanda, R. K.; Paul, B.; Shah, Parag

    2017-05-01

    The low-mass X-ray binary 4U 1728-24 was observed with AstroSat/LAXPC on 2016 March 8th. Data from a randomly chosen orbit of over 3 ks was analyzed for detection of rapid intensity variations. We found that the source intensity was nearly steady but, toward the end of the observation, a typical Type-1 burst was detected. Dynamical power spectrum of the data in the 3-20 keV band, reveals the presence of a kHz Quasi-Periodic Oscillation (QPO) for which the frequency drifted from ˜815 Hz at the beginning of the observation to about 850 Hz just before the burst. The QPO is also detected in the 10-20 keV band, which was not obtainable by earlier RXTE observations of this source. Even for such a short observation with a drifting QPO frequency, the time lag between the 5-10 and 10-20 keV bands can be constrained to be less than 100 microseconds. The Type-1 burst that lasted for about 20 s had a typical profile. During the first four seconds, dynamic power spectra reveal a burst oscillation for which the frequency increased from ˜361.5 to ˜363.5 Hz. This is consistent with the earlier results obtained with RXTE/PCA, showing the same spin frequency of the neutron star. The present results demonstrate the capability of the LAXPC instrument for detecting millisecond variability even from short observations. After RXTE ceased operation, LAXPC on AstroSat is the only instrument at present with the capability of detecting kHz QPOs and other kinds of rapid variations from 3 keV to 20 keV and possibly at higher energies as well.

  14. Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

    NASA Astrophysics Data System (ADS)

    Falanga, M.; Kuiper, L.; Poutanen, J.; Galloway, D. K.; Bozzo, E.; Goldwurm, A.; Hermsen, W.; Stella, L.

    2012-09-01

    Context. IGR J17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims: We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. Methods: We studied the broad-band spectrum of the persistent emission in the 0.6-300 keV energy band using simultaneous INTEGRAL, RXTE, and Swift data obtained in August-September 2011. We also describe the timing properties in the 2-100 keV energy range such as the outburst lightcurve, pulse profile, pulsed fraction, pulsed emission, time lags, and study the properties of X-ray bursts discovered by RXTE, Swift, and INTEGRAL and the recurrence time. Results: The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kTe ~ 50 keV, soft seed photons of kTbb ~ 1 keV, and Thomson optical depth τT ~ 1 in a slab geometry. The slab area corresponds to a black body radius of Rbb ~ 9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 ms up to ~65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ~-60 μs with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen-deficient, or that the CNO metallicity is up to a factor of about two times solar. However, the variation in the burst recurrence time as a function of ṁ (inferred from the X-ray flux) is much smaller than predicted by helium-ignition models.

  15. Orbital evolution and search for eccentricity and apsidal motion in the eclipsing HMXB 4U 1700-37

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-09-01

    In the absence of detectable pulsations in the eclipsing high-mass X-ray binary 4U 1700-37, the orbital period decay is necessarily determined from the eclipse timing measurements. We have used the earlier reported mid-eclipse time measurements of 4U 1700-37 together with the new measurements from long-term light curves obtained with the all sky monitors RXTE-ASM, Swift-BAT and MAXI-GSC, as well as observations with RXTE-PCA, to measure the long-term orbital evolution of the binary. The orbital period decay rate of the system is estimated to be {dot{P}}/P = -(4.7 ± 1.9) × 10^{-7} yr-1, smaller compared to its previous estimates. We have also used the mid-eclipse times and the eclipse duration measurements obtained from 10-years-long X-ray light curve with Swift-BAT to separately put constraints on the eccentricity of the binary system and attempted to measure any apsidal motion. For an apsidal motion rate greater than 5 deg yr-1, the eccentricity is found to be less than 0.008, which limits our ability to determine the apsidal motion rate from the current data. We discuss the discrepancy of the current limit of eccentricity with the earlier reported values from radial velocity measurements of the companion star.

  16. The Long-term Light Curves of X-ray Binaries Contain Simultaneous Periodic and Random Components

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Boyd, Patricia T.; Smale, Alan P.

    2002-01-01

    LMC X-3 and Cyg X-2 show large amplitude X-ray fluctuations that have been attributed to a warped accretion disk. Cyg X-3 displays high amplitude, apparently non-periodic oscillations. We reanalyze these systems using RXTE ASM data and time-frequency decomposition techniques. We find that the long-term variations in Cyg X-2 can be completely characterized by excursions whose durations are integer multiples of the orbital period, including one essentially identical to the reported "period" of 78 days. Cyg X-3 can be characterized in terms of integer multiples of a 71-day fundamental period unrelated to the 4.8 day orbital period, but suggestively close to the approximately equal to greater than 60 day reported precession period of the relativistic jet inferred from recent radio observations. The long-term excursions of LMC X-3 are related to each other by rational fractions, suggesting the characteristic time scale is 10.594 days, shorter than any observed excursion to date. We explore the phase space evolution of the light curves using a natural embedding and find that all three systems possess two rotation centers that organize the phase space trajectories, one of low luminosity and the other of high luminosity. The implications of this repeatable behavior on generic models of accretion disk dynamics and mass transfer variability are explored.

  17. RXTE Observation of the Tycho Supernova Remnant

    NASA Technical Reports Server (NTRS)

    The, Lih-Sin

    1998-01-01

    SN1006 [4] and Cas A [1, 9] supernova remnants have been shown convincingly to have a hard X-ray power-law continuum. This continuum is thought to be the synchrotron radiation from accelerated electrons of approx. 100 TeV at the shock fronts. Our goal of AO2 RXTE observation is to detect the hard X-ray continuum and to determine the nature of the continuum from Tycho SNR. A detection of a power-law continuum from Tycho SNR can strongly argue for SNRs are the source of cosmic rays with the first order Fermi acceleration as the energizing process. We report the results of our AO2 RXTE 1 x 10(exp 5) sec observation of Tycho SNR. We detect two components of the X-ray spectrum from Tycho SNR both at better than 3 omega confidence. The best two component models are: bremsstrahlung (kT=2.67 +/- 0.13 keV) + bremsstrahlung (kT=7.07 +/- 2.21/1.72 keV) or bremsstrahlung (kT=2.36 +/- 0.21/0.57 keV) + power-law (gamma=2.58 +/- 0.12/0.09 ). This result is an improvement compaxed with the previous most sensitive X-ray measurements by Ginga which shows Tycho's observed X-ray continuum requires a two-component model to yield acceptable fits with the hard component parameters being highly uncertain. Our RXTE measurements constrain all parameter within 3o, ranges. However, we cannot yet distinguish between thermal and nonthermal models for the hard component. In the followings, we describe what we accomplished in the period covered by the grant proposal.

  18. Monitoring MRK 509: The Origin of the Reprocessor and Broad Band X-ray Spectrum of Narrow Line Seyfert 1 AKN 564

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Leighly, Karen M.

    1998-01-01

    The ten monitoring observations of Mrk 509 were made successfully between October 20 and November 26 last year. These observations were simultaneously with RXTE observations. A preliminary analysis of the RXTE observations has been done, and the light curve is shown in figure 1. Our aim in this experiment is to determine the location of the emission region of the reflection component by reverberation mapping. This component could be emitted from the accretion disk, within 100 Scwartzschild radii (R(sub s)) from the source. Note that the monitoring interval of 2.5 days corresponds to 100 R(sub s) for a 2 x 10(exp 8) solar mass black hole, which may be appropriate for this luminous object. In that case, we would expect the reflected component to vary along the direct flux, and there should be no spectral variability between observations. Alternatively, the reflected emission could come from the molecular torus, several parsecs from the nucleus. In that case, the reflection component flux should not vary. The light curve in figure 1 shows that during the monitoring period, the target varied in an ideal way, since significant variability was observed between observations and yet the most rapid variability is apparently sampled. The analysis of this data is not yet completed. The measurement of the reflection component in the combined ASCa and RXTE spectra depends critically on the RXTE background subtraction and calibration, but these have not yet progressed to the point where the analysis can be done.

  19. A 0535+26: a historical tour

    NASA Astrophysics Data System (ADS)

    Camero-Arranz, Ascension; Finger, M. H.; Wilson-Hodge, C.; Caballero, I.; Kretschmar, P.; Jenke, P. A.; Beklen, E.

    2010-03-01

    We present a long-term timing analysis of the accreting X-ray pulsar A 0535+26 using data from Fermi/GBM, RXTE and Swift/BAT. A new orbital ephemeris is obtained from normal outbursts experienced by this source since 2005, and a long-term pulse profile study is carried out. In this study we include results from the current outburst. This outburst is believed to be much larger than the previous ones.

  20. Connection Between X-Ray Dips and Superluminal Ejections in the Radio Galaxy 3C 120

    NASA Technical Reports Server (NTRS)

    Aller, Margo F.

    2005-01-01

    This work represents a part of a long-term study of the X-ray flux variability of 3C 120 and its relation to flux and structural changes in the radio jet of this galaxy. The grant included fiinding for the rediiction and analysis of data obt,ained during the time pwiod of Rossi XTE cycle 8 (March 1, 2003-February 29, 2004). Prior RXTE observations, combined with single dish monitoring at centimeter wavelengths and 43 GHz mapping (monthly until February 1999 and bimonthly thereafter) of the inner jet with the VLBA, had identified the presence of X-ray dips in the light curves and X-ray spectral hardening 4 weeks prior to the ejection of new VLBI components in the radio jet. This suggested a picture in which the radio jet was fed by accretion events near the black hole. The specific goals of the cycle 8 observations were to better define the relation between the X-ray dips and the radio events using higher sampling, to include more events in the correlation and hence improve the statistics, to look for a possible optical X-ray connection, and to search for quasi periodicities on timescales of 1-3 days. In cycle 8 this project was awarded time for 4 pointings weekly with RXTE.

  1. On the Nature of the Variability Power Decay toward Soft Spectral States in X-Ray Binaries: Case Study in Cygnus X-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2008-05-01

    A characteristic feature of the Fourier power density spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broadband-limited noise characterized by a constant below some frequency (a "break" frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time t0 is related to the phenomenological break frequency, while the PDS power-law slope above the "break" is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black holes and neutron stars) during an evolution of these sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-Ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power Px decreases approximately as the square root of the characteristic frequency of the driving oscillations νdr. The RXTE observations of Cyg X-1 allow us to infer Pdr and t0 as a function of νdr. Using the inferred dependences of the integrated power of the driving oscillations Pdr and t0 on νdr we demonstrate that the power predicted by the model also decays as Px,diff propto ν-0.5dr, which is similar to the observed Px behavior. We also apply the basic parameters of observed PDSs, power-law indices, and low-frequency quasi-periodic oscillations to infer the Reynolds number (Re) from the observations using the method developed in our previous paper. Our analysis shows that Re increases from values of about 10 in low/hard state to about 70 during the high/soft state.

  2. On the nature of the variability power decay towards soft spectral states in X-ray binaries. Case study in Cyg X-1

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2008-01-01

    A characteristic feature of the Fourier Power Density Spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broad band-limited noise, characterized by a constant below some frequency (a ``break'' frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time t0 is related to the phenomenological break frequency, while the PDS power-law slope above the ``break'' is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black hole and neutron star) during an evolution of theses sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power Px decreases approximately as a square root of the characteristic frequency of the driving oscillations νdr. The RXTE observations of Cyg X-1 allow us to infer Pdr and t0 as a function of νdr. Using the inferred dependences of the integrated power of the driving oscillations Pdr and t0 on νdr we demonstrate that the power predicted by the model also decays as Px,diff~νdr-0.5 that is similar to the observed Px behavior. We also apply the basic parameters of observed PDSs, power-law index and low frequency quasiperiodic oscillations, to infer Reynolds (Re) number from the observations using the method developed in our previous paper. Our analysis shows that Re-number increases from values about 10 in low/hard state to that about 70 during the high/soft state.

  3. The Orbit of X Persei and Its Neutron Star Companion

    NASA Astrophysics Data System (ADS)

    Delgado-Martí, Hugo; Levine, Alan M.; Pfahl, Eric; Rappaport, Saul A.

    2001-01-01

    We have observed the Be/X-ray pulsar binary system X Per/4U 0352+30 on 61 occasions spanning an interval of 600 days with the PCA instrument on board the Rossi X-Ray Timing Explorer (RXTE). Pulse timing analyses of the 837 s pulsations yield strong evidence for the presence of orbital Doppler delays. We confirm the Doppler delays by using measurements made with the All Sky Monitor (ASM) on RXTE. We infer that the orbit is characterized by a period Porb=250 days, a projected semimajor axis of the neutron star axsini=454 lt-s, a mass function f(M)=1.61 Msolar, and a modest eccentricity e=0.11. The measured orbital parameters, together with the known properties of the classical Be star X Per, imply a semimajor axis a=1.8-2.2 AU and an orbital inclination i~26deg-33deg. We discuss the formation of the system in the context of the standard evolutionary scenario for Be/X-ray binaries. We find that the system most likely formed from a pair of massive progenitor stars and probably involved a quasi-stable and nearly conservative transfer of mass from the primary to the secondary. We find that the He star remnant of the primary most likely had a mass <~6 Msolar after mass transfer. If the supernova explosion was completely symmetric, then the present orbital eccentricity indicates that <~4 Msolar was ejected from the binary. If, on the other hand, the neutron star received at birth a ``kick'' of the type often inferred from the velocity distribution of isolated radio pulsars, then the resultant orbital eccentricity would likely have been substantially larger than 0.11. We have carried out a Monte Carlo study of the effects of such natal kicks and find that there is less than a 1% probability of a system like that of X Per forming with an orbital eccentricity e<~0.11. We speculate that there may be a substantial population of neutron stars formed with little or no kick. Finally, we discuss the connected topics of the wide orbit and accretion by the neutron star from a stellar wind.

  4. Revisit to the RXTE and ASCA Data for GRO J1655-40: Effects of Radiative Transfer in Corona and Color Hardening in the Disk

    NASA Technical Reports Server (NTRS)

    Zhang, S. Nan; Zhang, Xiaoling; Wu, Xuebing; Yao, Yangsen; Sun, Xuejun; Xu, Haiguang; Cui, Wei; Chen, Wan; Harmon, B. A.; Robinson, C. R.

    1999-01-01

    The results of spectral modeling of the data for a series of RXTE observations and four ASCA observations of GRO J1655-40 are presented. The thermal Comptonization model is used instead of the power-law model for the hard component of the two-component continuum spectra. The previously reported dramatic variations of the apparent inner disk radius of GRO J1655-40 during its outburst may be due to the inverse Compton scattering in the hot corona. A procedure is developed for making the radiative transfer correction to the fitting parameters from RXTE data and a more stable inner disk radius is obtained. A practical process of determining the color correction (hardening) factor from observational data is proposed and applied to the four ASCA observations of GRO J1655-40. We found that the color correction factor may vary significantly between different observations and the finally corrected physical inner disk radius remains reasonably stable over a large range of luminosity and spectral states.

  5. Spectral-Timing Analysis of Kilohetrz Quasi-Periodic Osciallations in Neutron Star Low-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Cackett, Edward; Troyer, Jon; Peille, Philippe; Barret, Didier

    2018-01-01

    Kilohertz quasi-periodic oscillations or kHz QPOs are intensity variations that occur in the X-ray band observed in neutron star low-mass X-ray binary (LMXB) systems. In such systems, matter is transferred from a secondary low-mass star to a neutron star via the process of accretion. kHz QPOs occur on the timescale of the inner accretion flow and may carry signatures of the physics of strong gravity (c2 ~ GM/R) and possibly clues to constraining the neutron star equation of state (EOS). Both the timing behavior of kHz QPOs and the time-averaged spectra of these systems have been studied extensively. No model derived from these techniques has been able to illuminate the origin of kHz QPOs. Spectral-timing is an analysis technique that can be used to derive information about the nature of physical processes occurring within the accretion flow on the timescale of the kHz QPO. To date, kHz QPOs of (4) neutron star LMXB systems have been studied with spectral-timing techniques. We present a comprehensive study of spectral-timing products of kHz QPOs from systems where data is available in the RXTE archive to demonstrate the promise of this technique to gain insights regarding the origin of kHz QPOs. Using data averaged over the entire RXTE archive, we show correlated time-lags as a function of QPO frequency and energy, as well as energy-dependent covariance spectra for the various LMXB systems where spectral-timing analysis is possible. We find similar trends in all average spectral-timing products for the objects studied. This suggests a common origin of kHz QPOs.

  6. Discovery of a Transient Magnetar: XTE J1810-197

    NASA Technical Reports Server (NTRS)

    Ibrahim, Alaa I.; Markwardt, Craig B.; Swank, Jean H.; Ransom, Scott; Roberts, Mallory; Kaspi, Victoria; Woods, Peter M.; Safi-Harb, Samar; Balman, Solen; Parke, William C.

    2004-01-01

    We report the discovery of a new X-ray pulsar, XTE J1810-197, that was serendipitously discovered on 2003 July 15 by the Rossi X-Ray Timing Explorer (RXTE) while observing the soft gamma repeater SGR 1806-20. The pulsar has a 5.54 s spin period, a soft X-ray spectrum (with a photon index of approx. = 4). and is detectable in earlier RXTE observations back to 2003 January but not before. These show that a transient outburst began between 2002 November 17 and 2003 January 23 and that the source's persistent X-ray flux has been declining since then. The pulsar exhibits a high spin-down rate P approx.= l0(exp -11) s/s with no evidence of Doppler shifts due to a binary companion. The rapid spin-down rate and slow spin period imply a supercritical characteristic magnetic field B approx. = 3 x l0(exp 14) G and a young age tau less than or = 7600 yr. Follow-up Chandra observations provided an accurate position of the source. Within its error radius, the 1.5 m Russian-Turkish Optical Telescope found a limiting magnitude R(sub c) = 21.5. All such properties are strikingly similar to those of anomalous X-ray pulsars ad soft gamma repeaters, providing strong evidence that the source is a new magnetar. However, archival ASCA and ROSAT observations found the source nearly 2 orders of magnitude fainter. This transient behavior and the observed long-term flux variability of the source in absence of an observed SGR-like burst activity make it the first confirmed transient magnetar and suggest that other neutron stars that share the properties of XTE 51810- 197 during its inactive phase may be unidentified transient magnetars awaiting detection via a similar activity. This implies a larger population of magnetars than previously surmised and a possible evolutionary connection between magnetars and other neutron star families. Subject headings: pulsars: general -pulsars: individual (XTE 51810- 197) - stars: magnetic fields -

  7. Eddington-limited X-Ray Bursts as Distance Indicators. I. Systematic Trends and Spherical Symmetry in Bursts from 4U 1728-34

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.

    2003-06-01

    We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.

  8. Start of Eta Car's X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Liburd, Jamar; Hamaguchi, Kenji; Gull, Theodore; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; hide

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using quicklook data from the XRay Telescope on Swift shows that the flux on July 30, 2014 was 4.9 plus or minus 2.0×10(exp-12) ergs s(exp-1)cm(exp-2). This flux is nearly equal to the X-ray minimum flux seen by RXTE in 2009, 2003.5, and 1998, and indicates that Eta Car has reached its X-ray minimum, as expected based on the 2024-day period derived from previous 2-10 keV observations with RXTE.

  9. RXTE PCA Detection of a New Outburst of XTE J1728-295 (probably IGR J17285-2922)

    NASA Astrophysics Data System (ADS)

    Markwardt, Craig B.; Swank, Jean H.

    2010-08-01

    We report the detection of a new outburst of a source designated XTE J1728-295 in the RXTE PCA scans, which is probably the same as IGR J17285-2922. This source was first detected in August-October 2003 with PCA scans of the galactic center region, and is speculated to be a black hole candidate (Barlow et al. 2005, A&A, 437, L27). In PCA scans on 2010-08-28 near 09:35 UTC, the source rose to a flux of 6.5 mCrab (2-10 keV).

  10. SMC X-3 Identified with RXTE 7.78s Pulsar from Archive Chandra Data.

    NASA Astrophysics Data System (ADS)

    Edge, W. R. T.; Coe, M. J.; Corbet, R. H. D.; Markwardt, C. B.; Laycock, S.

    2004-01-01

    SMC X-3 (Clark et al. 1978, ApJ, 221, L37) has been identified with a previously detected 7.78s RXTE pulsar by using archive Chandra Data. An examination of Chandra Observation ID 2947, which took place between 2002-07-20 23:03:50 and 2002-07-21 01:46:41 (Zezas et al. astro-ph/0310562, 2003), shows SMC X-3 at R.A. = 00h52m05.7s Decl. = -72d26m05s (equinox 2000) with a 90% confidence radial uncertainty of 0.6 arcsec.

  11. NASA EM Followup of LIGO-Virgo Candidate Events

    NASA Technical Reports Server (NTRS)

    Blackburn, Lindy L.

    2011-01-01

    We present a strategy for a follow-up of LIGO-Virgo candidate events using offline survey data from several NASA high-energy photon instruments aboard RXTE, Swift, and Fermi. Time and sky-location information provided by the GW trigger allows for a targeted search for prompt and afterglow EM signals. In doing so, we expect to be sensitive to signals which are too weak to be publicly reported as astrophysical EM events.

  12. An Expanded RXTE Survey of Long-Term X-ray Variability in Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.

    2004-01-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogenous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from approx. 1 day to approx. 3.5 years. 2-10 keV variability on time scales of approx. 1 day, as probed by ASCA, are included. All sources exhibit stronger X-ray variability towards longer time scales, with variability amplitudes saturating at the longest time scales, but the increase is greater for relatively higher luminosity sources. The well-documented anticorrelation between variability amplitude and luminosity is confirmed on all time scales. However, anticorrelations between variability amplitude and black hole mass estimate are evident on only the shortest time scales probed. The data are consistent with the models of power spectral density (PSD) movement described in Markowitz et al. (2003) and McHardy et al. (2004), whereby Seyfert 1 galaxies variability can be described by a single, universal PSD shape whose cutoff frequency scales with black hole mass. The best-fitting scaling relations between variability time scale, black hole mass and X-ray luminosity support an average accretion rate of 2% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all time scales. Color-flux diagrams support also Seyfert 1s' softening as they brighten. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  13. GRO J1655-40: Early Stages of the 2005 Outburst

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, N.; Swank, Jean; Shrader, C. R.; Rupen, M.; Beckmann, V.; Markwardt, C. B.; Smith, D. A.

    2007-01-01

    The black-hole X-ray binary transient GRO J1655-40 underwent an outburst beginning in early 2005. We present the results of our multi-wavelength observational campaign to study the early outburst spectral and temporal evolution, which combines data from X-ray (RXTE, INTEGRAL), radio (VLA) and optical (ROTSE, SMARTS) instruments. During the reported period the source left quiescence and went through four major accreting black hole states: low-hard, hard intermediate, soft intermediate and high-soft. We investigated dipping behavior in the RXTE band and compare our results to the 1996-1997 case, when the source was predominantly in the high-soft state, finding significant differences. We consider the evolution of the low frequency quasi-periodic oscillations and find that the frequency strongly correlates with the spectral characteristics, before shutting off prior to the transition to the high-soft state. We model the broad-band high-energy spectrum in the context of empirical models, as well as more physically motivated thermal and bulk-motion Comptonization and Compton reflection models. RXTE and INTEGRAL data together support a statistically significant high energy cut-off in the energy spectrum at approximately equal to 100 - 200 keV during the low-hard state. The RXTE data alone also show it very significantly during the transition, but cannot see one in the high-soft state spectra. We consider radio, optical and X-ray connections in the context of possible synchrotron and synchrotron self-Compton origins of X-ray emission in low-hard and intermediate states. In this outburst of GRO J1655-40, the radio flux does not rise strongly with the X-ray flux.

  14. Energy Spectra and High Frequency Oscillations in 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.

  15. The Complete Z-diagram of LMC X-2

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Smale, A. P.; Homan, J.; Kuulkers, E.

    2003-01-01

    We present results from four Rossi X-ray Timing Explorer (RXTE) observations of the bright low mass X-ray binary LMC X-2. During these observations, which span a year and include over 160 hrs of data, the source exhibits clear evolution through three branches on its hardness-intensity and color-color diagrams, consistent with the flaring, normal, and horizontal branches (FB, NB, HB) of a Z-source, and remarkably similar to Z-tracks derived for GX 17+2, Sco X-1 and GX 349+2. LMC X-2 was observed in the FB, NB, and HB for roughly 30%, 40%, and 30% respectively of the total time covered. The source traces out the full extent of the Z in approximately 1 day, and the Z-track shows evidence for secular shifts on a timescale in excess of a few days. Although the count rate of LMC X-2 is low compared with the other known 2-sources due to its greater distance, the power density spectra selected by branch show very-low-frequency noise characteristics at least consistent with those from other Z-sources. We thus confirm the identification of LMC X-2 as a Z-source, the first identified outside our Galaxy.

  16. Orbital Parameters for the X-Ray Pulsar IGR J16393-4643

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas W. J.; Tomsick, John A.; Rothschild, Richard E.; in't Zand, J. J. M.; Walter, Roland

    2006-09-01

    With recent and archival Rossi X-Ray Timing Explorer (RXTE) X-ray measurements of the heavily obscured X-ray pulsar IGR J16393-4643, we carried out a pulse timing analysis to determine the orbital parameters. Assuming a circular orbit, we phase-connected data spanning over 1.5 yr. The most likely orbital solution has a projected semimajor axis of 43+/-2 lt-s and an orbital period of 3.6875+/-0.0006 days. This implies a mass function of 6.5+/-1.1 Msolar and confirms that this INTEGRAL source is a high-mass X-ray binary (HMXB) system. By including eccentricity in the orbital model, we find e<0.25 at the 2 σ level. The 3.7 day orbital period and the previously known ~910 s pulse period place the system in the region of the Corbet diagram populated by supergiant wind accretors, and the low eccentricity is also consistent with this type of system. Finally, it should be noted that although the 3.7 day solution is the most likely one, we cannot completely rule out two other solutions with orbital periods of 50.2 and 8.1 days.

  17. When a Standard Candle Flickers: Crab Nebula Variations in Hard X-rays

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2011-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM) since August 2008, a 7% (70 mcrab) decline was observed in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline is independently confirmed in the 15-50 keV band with four other instruments: Swift/BAT, the RXTE/PCA, INTEGRAL/IBIS, and INTEGRAL/SPI. A similar decline is also observed in the 3-15 keV data from the RXTE/PCA and in the 50-100 keV band with GBM, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA since 1999 is consistent with the pulsar spin-down, indicating that the observed changes are nebular. Correlated variations in the Crab Nebula flux on a 3 year timescale are also seen independently with the PCA, BAT, IBIS, and SPI from 2005 to 2008, with a flux minimum in April 2007. As of April 2011, the Crab nebula flux has stopped declining and may be beginning to increase. We will present updated results on our multi-instrument study of long-term Crab nebula variations.

  18. X-ray Observations of the Bright Old Nova V603 Aquilae

    NASA Technical Reports Server (NTRS)

    Mukai, K.; Orio, M.

    2004-01-01

    We report on our Chandra and RXTE observations of the bright old nova, V603 Aql, performed in 2001 April, supplemented by our analysis of archival X-ray data on this object. We find that the RXTE data are contaminated by the Galactic Ridge X-ray emission. After accounting for this effect, we find a high level of aperiodic variability in the RXTE data, at a level consistent with the uncontaminated Chandra data. The Chandra HETG spectrum clearly originates in a multi-temperature plasma. We constrain the possible emission measure distribution of the plasma through a combination of global and local fits. The X-ray luminosity and the spectral shape of V603 Aql resemble those of SS Cyg in transition between quiescence and outburst. The fact that the X-ray flux variability is only weakly energy dependent can be interpreted by supposing that the variability is due to changes in the maximum temperature of the plasma. The plasma density is likely to be high, and the emission region is likely to be compact. Finally, the apparent overabundance of Ne is consistent with V603 Aql being a young system.

  19. The Be/X-Ray Binary A0535+26 During Its Recent 2009/2010 Outbursts

    NASA Technical Reports Server (NTRS)

    Caballero, I.; Pottschmidt, K.; Santangelo, A.; Barragan, L.; Klochkov, D.; Ferrigno, C.; Rodriguez, J.; Kretschmar, P.; Suchy, S.; Marcu, D. M.; hide

    2011-01-01

    The Be/X-ray binary A0535+26 showed a giant outburst in December 2009 that reached approximately 5.14 Crab in thc 15-50 keV range. Unfortunately, due to Sun constraints it could not be observed by most X-ray satellites. The outburst was preceded by four weaker outbursts associated with the periastron passage of the neutron star. The fourth of them, in August 2009, presented a peculiar double-peaked light curve, with a first peak lasting about 9 days that reached a (15- 50 keV) flux of 440 mCrab. The tl ux then decreased to less than 220 mCrab, and increased again reaching 440 mCrab around the periastron. The outburst was monitored with INTEGRAL, RXTE, and Suzaku TOO observations. One orbital period (approximately 111 days) after the 2009 giant outburst, a new and unexpectedly bright outburst took place (approximately 1.4Crab in the 15-50 keV range). It was monitored with TOO observations with INTEGRAL, RXTE, Suzaku, and Swift. First results of the spectral and timing analysis of these observations are presented. with a specific focus on the cyclotron lines present in thc system and its variation with the mass accretion rate.

  20. Monitoring the Black Hole Binary GRS 1758-258 with INTEGRAL and RXTE

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja; Chernyakova, Masha; Lubinski, Piotr; Migliari, Simone; Smith, David M.; Zdziarski, Andrzej A.; Tomsick, John A.; Bezayiff, N.; Kreykenbohm, Ingo; Kretschmar, Peter; hide

    2008-01-01

    The microquasar GRS 1758-258 is one of only three persistent black hole binaries that spend most of their time in the hard spectral state, the other two being Cyg X-l and 1E 1741.7-2942. It therefore provides the rare opportunity for an extensive long term study of this important black hole state which is associated with strong variability and radio jet emission. INTEGRAL has been monitoring the source since the first Galactic Center Deep Exposure season in spring 2003 during two 2-3 months long Galactic Center viewing epochs each year, amounting to 11 epochs including spring of 2008. With the exception of the last epoch quasi-simultaneous RXTE monitoring observations are available as well. Here we present an analysis of the epoch averaged broad band spectra which display considerable long term variability, most notably the occurrence of two soft/off states, extreme examples for the hysteretic behavior of black hole binaries. The hard source spectrum and long exposures allow us to extend the analysis for several epochs to approximately 800 keV using PICsIT data and address the question of the presence of a non-thermal Comptonization component.

  1. A Multi-Year Light Curve of Scorpius X-1 Based on CGRO BATSE Spectroscopy Detector Observations

    NASA Technical Reports Server (NTRS)

    McNamara, B. J.; Harrison, T. E.; Mason, P. A.; Templeton, M.; Heikkila, C. W.; Buckley, T.; Galvan, E.; Silva, A.; Harmon, B. A.

    1998-01-01

    A multi-year light curve of the low mass X-ray binary, Scorpius X-1, is constructed based on the Compton Gamma-ray Observatory (CGRO) Burst and Transient Source Experiment (BATSE) Spectroscopy Detector (SD) data in the nominal energy range of 10-20 keV. A detailed discussion is given of the reduction process of the BATSE/SD data. Corrections to the SD measurements are made for off-axis pointings, spectral and bandpass changes, and differences in the eight SD sensitivities. The resulting 4.4 year Sco X-1 SD light curve is characterized in terms of the time scales over which various types of emission changes occur. This light curve is then compared with Sco X-1 light curves obtained by Axiel 5, the BATSE Large Area Detectors (LADs), and the RXTE all-sky monitor (ASM). Coincident temporal coverage by the BATSE/SD and RXTE/ASM allows a direct comparison of the behavior of Sco X-1 over a range of high energies to be made. These ASM light curves are then used to discuss model constraints on the Sco X-1 system.

  2. Signature of Two-Component Advective Flow in several Black Hole candidates obtained through time-of-arrival analysis of RXTE/ASM Data

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam; Chakrabarti, Sandip K.

    2018-05-01

    We study several Galactic black hole candidates using long-time RXTE/ASM X-ray data to search for telltale signatures of differences in viscous timescales in the two components used in the Two-Component Advective Flow (TCAF) paradigm. In high-mass X-ray binaries (HMXBs) mainly winds are accreted. This nearly inviscid and dominant sub-Keplerian flow falls almost freely towards the black hole. A standard Keplerian disc can form out of this sub-Keplerian matter in presence of a significant viscosity and could be small in size. However, in low-mass X-ray binaries (LMXBs), highly viscous and larger Keplerian accretion disc is expected to form inside the sub-Keplerian disc due to the Roche-lobe overflow. Due to two viscous timescales in these two components, it is expected to have a larger lag between the times-of-arrival of these components in LMXBs than that in HMXBs. Direct cross-correlation between the photon fluxes will not reveal this lag since they lack linear dependence; however, they are coupled through the viscous processes which bring in both matter. To quantify the aforesaid time lag, we introduce an index (Θ), which is a proxy of the usual photon index (Γ). Thus, when Θ, being dynamically responsive to both fluxes, is considered as a reference, the arrival time lag between the two fluxes in LMXBs is found to be much larger than that in HMXBs. Our result establishes the presence of two dynamical components in accretion and shows that the Keplerian disc size indeed is smaller in HMXBs as compared to that in LMXBs.

  3. The 2001 April Burst Activation of SGR 1900+14: Pulse Properties and Torque

    NASA Technical Reports Server (NTRS)

    Woods, P. M.; Kouveliotou, C.; Goegues, E.; Finger, M. H.; Feroci, M.; Mereghetti, S.; Swank, J. H.; Hurley, K.; Heise, J.; Smith, D.; hide

    2002-01-01

    We report on observations of SGR 1900+14 made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX during the April 2001 burst activation of the source. Using these data, we measure the spindown torque on the star and confirm earlier findings that the torque and burst activity are not directly correlated. We compare the X-ray pulse profile to the gamma-ray profile during the April 18 intermediate flare and show that (i) their shapes are similar and (ii) the gamma-ray profile aligns closely in phase with the X-ray pulsations. The good phase alignment of the gamma-ray and X-ray profiles suggests that there was no rapid spindown following this flare, in contrast to the August 27 giant flare. The absence of rapid spindown in the hours following the April 18 flare suggests that there was no significant outflow of material as was believed to be present following the August 27 flare. Finally, we discuss how these observations further constrain magnetic field reconfiguration models for the large flares of SGRs.

  4. Monitoring the Crab Nebula with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  5. Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.

    2000-01-01

    This is the final performance report for our grant 'Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar.' In the first year of this grant, we received the 50,000-second ROSAT (German acronym for X-ray satellite) High Resolution Images (HRI) observation of the Crab Nebula pulsar. We used the data to create a 65-ms-resolution pulse profile and compared it to a similar pulse profile obtained in 1991. No statistically significant differences were found. These results were presented at the January 1998 meeting of the American Astronomical Society. Since then, we have performed more sensitive analyses to search for potential changes in the pulse profile shape between the two data sets. Again, no significant variability was found. In order to augment this long (six-year) baseline data set, we have analyzed archival observations of the Crab Nebula pulsar with the Rossi X-Ray Timing Explorer (RXTE). While these observations have shorter time baselines than the ROSAT data set, their higher signal-to-noise offers similar sensitivity to long-term variability. Again, no significant variations have been found, confirming our ROSAT results. This work was done in collaboration with Prof. Stephen Eikenberry, Cornell University. These analyses will be included in Cornell University graduate student Dae-Sik Moon's doctoral thesis.

  6. Local constraints on cosmic string loops from photometry and pulsar timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pshirkov, M. S.; Tuntsov, A. V.; Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, 119992

    2010-04-15

    We constrain the cosmological density of cosmic string loops using two observational signatures--gravitational microlensing and the Kaiser-Stebbins effect. Photometry from RXTE and CoRoT space missions and pulsar timing from Parkes Pulsar Timing Array, Arecibo and Green Bank radio telescopes allow us to probe cosmic strings in a wide range of tensions G{mu}/c{sup 2}=10{sup -16} divide 10{sup -10}. We find that pulsar timing data provide the most stringent constraints on the abundance of light strings at the level {Omega}{sub s{approx}}10{sup -3}. Future observational facilities such as the Square Kilometer Array will allow one to improve these constraints by orders of magnitude.

  7. Estudo espectral em raios-X duros de fontes do tipo Z com o HEXTE/RXTE

    NASA Astrophysics Data System (ADS)

    D'Amico, F.; Heindl, W. A.; Rothschild, R. E.

    2003-08-01

    Apresentam-se os resultados de um estudo espectral em raios-X de fontes do tipo Z. As fontes do tipo Z são binárias de raios-X de baixa massa (BXBM) com campo magnético intermediário (B~109G). Esta classe de fontes é composta por apenas 6 fontes Galácticas (a saber: ScoX-1, 9, 7, CygX-2, 5 e 0). A nossa análise se concentra na faixa de raios-X duros (E ~ 20keV), até cerca de 200keV, faixa ótima de operação do telescópio "High Energy X-ray Timing Experiment" (HEXTE), um dos três telescópios de raios-X à bordo do Rossi X-ray Timing Explorer (RXTE). Nossa motivação para tal estudo, uma busca de caudas em raios-X duros em fontes do tipo Z, foi o pouco conhecimento sobre a emissão nesta faixa de energia das referidas fontes quando comparadas, por exemplo, as fontes do tipo atoll (também BXBM). Apresentam-se a análise/redução de dados e explicita-se a maneira como o HEXTE mede o ru1do de fundo. Especial atenção é direcionada a este item devido a localização das fontes do tipo Z e também ao problema de contaminação por fontes próximas. Com exceção de ScoX-1, nenhuma cauda em raios-X duros foi encontrada para as outras fontes, a despeito de resultados de detecção dessas caudas em algumas fontes pelo satélite BeppoSAX. As interpretações deste resultado serão apresentadas. Do ponto de vista deste estudo, nós deduzimos que a produção de caudas de raios-X duros em fontes do tipo Z é um processo disparado quando, pelo menos, uma condição é satisfeita: o brilho da componente térmica do espectro precisa estar acima de um certo valor limiar de ~4´1036ergs-1.

  8. X-Ray and Radio Studies of Black Hole X-Ray Transients During Outburst Decay

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.

    2005-01-01

    Black hole (BH) and black hole candidate (BHC) transients are X-ray binary systems that typically undergo bright outbursts that last a couple months with recurrence times of years to decades. For this ADP project, we are studying BH/BHC systems during the decaying phases of their outbursts using the Rossi X-ray Taming Explorer (RXTE), the Chandra X-ray Observatory, and multi-wavelength facilities. These systems usually undergo state transitions as they decay, and our observations are designed to catch the state transitions. The specific goals of this proposal include: 1. To determine the evolution of the characteristic frequencies present in the power spectrum (such as quasi-periodic oscillations, QPOs) during state transitions in order to place constraints on the accretion geometry; 2. To contemporaneously measure X-ray spectral and timing properties along with flux measurements in the radio band to determine the relationship between the accretion disk and radio jets; 3. To extend our studies of X-ray properties of BHCs to very low accretion rates using RXTE and Chandra. The work performed under this proposal has been highly successful, allowing the PI to lead, direct, or assist in the preparation of 7 related publications in refereed journals and 6 other conference presentations or reports. These items are listed below, and the abstracts for the refereed publications have also been included. Especially notable results include our detailed measurements of the characteristic frequencies and spectral parameters of BH/BHCs after the transition to the hard state (see All A3, and A5) and at low flux levels (see A4). Our measurements provide one of the strongest lines of evidence to date that the inner edge of the optically thick accretion disk gradually recedes from the black hole at low flux levels. In addition, we have succeeded in obtaining excellent multi-wavelength coverage of a BH system as its compact jet turned on (see Al). Our results show, somewhat unexpectedly, that the radio jet does not turn on until the hard X-ray emission is well past its peak hard state level, strongly constraining theoretical models for hard X-ray production and the spectrum emitted by the jet. Finally, the X-ray/radio results in A2 led us to propose a general picture about the relationship between jet production and X-ray spectral states .

  9. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.; hide

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained

  10. STROBE-X: X-Ray Timing Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Ray, P. S.; Gendreau, K.; Arzoumanian, Z.; Chakrabarty, D.; Remillard, R.; Feroci, M.; Maccarone, T.; Wood, K.; Jenke, P.

    2017-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.

  11. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Thomas J.; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; Jenke, Peter

    2017-08-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.

  12. The Early X-ray Emission From V382 Velorum (=Nove Vel 1999): An Internal Shock Model

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Ishida, Manabu

    2000-01-01

    We present the results of ASCA and RXTE observations of the early X-ray emission from the classical nova V382 Velorum. Its ASCA spectrum was hard (kT approximately 10 KeV) with a strong (10(exp 13)/sq cm) intrinsic absorption. In the subsequent RXTE data, the spectra became softer both due to a declining temperature and a diminishing column. We argue that this places the X-ray emission interior to the outermost ejecta produced by V382 Vel in 1999, and therefore must have been the result of a shock internal to the nova ejecta. The weakness of the Fe K.alpha lines probably indicates that the X-ray emitting plasmas are not in ionization equilibrium.

  13. X-ray fluctuation timescale and Black Hole mass relation in AGN

    NASA Astrophysics Data System (ADS)

    Wandel, Amri; Malkan, Mathew

    We analyze the fluctuations in the X-ray flux of 20 AGN (mainly Seyfert 1 galaxies) monitored by RXTE and XMM-Newton with a sampling frequency ranging from hours to years, using structure function (SF) analysis. We derive SFs over four orders of magnitude in the time domain (0.03-300 days). Most objects show a characteristic time scale, where the SF flattens or changes slope. For 10 objects with published power-spectral density (PSD) the break time scales in the SF and PSD are similar and show a good correlation. We also find a significant correlation between the SF timescale and the mass of the central black hole, determined for most objects by reverberation mapping.

  14. Oscillations During Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290Hz) has, been claimed.

  15. RXTE, VLBA, Optical, and Radio Monitoring of the Quasars 3C 279, PKS 1510--089, and 3C 273

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.; Jorstad, S. G.; Aller, M. F.; McHardy, I. M.; Balonek, T. J.

    2001-01-01

    We are continuing our combined RXTE X-ray, VLBA imaging (at 43 GHz), optical (several observatories), and radio (University of Michigan Radio Astronomy Observatory) monitoring of the quasars 3C 279 and PKS 1510-089, and have started similar monitoring of 3C 273. X-ray flares in 3C 279 and PKS 1510-089 are associated with ejections of superluminal components. In addition, there is a close connection between the optical and X-ray variability of 3C 279. There is a strong correlation between the 14.5 GHz and X-ray variability of PKS 1510-089 in 1997 and 1998 (with the radio leading the X-ray) that becomes weaker in subsequent years. X-ray fluctuations occur on a variety of timescales in 3C 273, with a major prolonged outburst in mid-2001. The lead author will discuss the correlations in terms of inverse Compton models for the X-ray emission coupled with synchrotron models for the lower-frequency radiation. Synchrotron self-Compton models can explain the "reverse" time lag in PKS 1510-089 is well as the variable correlation between the X-ray variations and those at lower frequencies in this object and in 3C 279.

  16. Study of 23 day periodicity of Blazar Mkn501 in 1997

    NASA Astrophysics Data System (ADS)

    Osone, S.

    2006-10-01

    We confirm a 23 day periodicity during a large flare in 1997 for X-ray data of X-ray satellite RXTE all sky monitor (ASM), 2 TeV gamma ray data from Utah Seven Telescope and HEGRA, with a Fourier analysis. We found the three results to be the same with a newly estimated error. We confirm the presence of a frequency dependent power (1/ f noise) in a frequency-power diagram. Further, we calculated a chance probability of the occurrence of the 23 day periodicity by considering the 1/ f noise and obtained a chance probability 4.88 × 10 -3 for the HEGRA data: this is more significant than the previous result by an order. We also obtained an indentical periodicity with another kind of timing analysis-epoch folding method for the ASM data and HEGRA data. We strongly suggest an existence of the periodicity. We divided the HEGRA data into two data sets, analyzed them with a Fourier method, and found an unstableness of the periodicity with a 3.4 sigma significance. We also analyzed an energy spectra of the X-ray data of a RXTE proportional counter array and we found that a combination of three physical parameters—a magnetic field, a Lorentz factor, and a beaming factor—is related to the periodicity.

  17. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank

    2009-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).

  18. The Long-term Post-outburst Spin Down and Flux Relaxation of Magnetar Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Kaspi, V. M.; Cumming, A.

    2014-05-01

    The magnetar Swift J1822.3-1606 entered an outburst phase in 2011 July. Previous X-ray studies of its post-outburst rotational evolution yielded inconsistent measurements of the spin-inferred magnetic field. Here we present the timing behavior and flux relaxation from over two years of Swift, RXTE, and Chandra observations following the outburst. We find that the ambiguity in previous timing solutions was due to enhanced spin down that resembles an exponential recovery following a glitch at the outburst onset. After fitting out the effects of the recovery, we measure a long-term spin-down rate of \\dot{\

  19. PCA/HEXTE Observations of Coma and A2319

    NASA Technical Reports Server (NTRS)

    Rephaeli, Yoel

    1998-01-01

    The Coma cluster was observed in 1996 for 90 ks by the PCA and HEXTE instruments aboard the RXTE satellite, the first simultaneous, pointing measurement of Coma in the broad, 2-250 keV, energy band. The high sensitivity achieved during this long observation allows precise determination of the spectrum. Our analysis of the measurements clearly indicates that in addition to the main thermal emission from hot intracluster gas at kT=7.5 keV, a second spectral component is required to best-fit the data. If thermal, it can be described with a temperature of 4.7 keV contributing about 20% of the total flux. The additional spectral component can also be described by a power-law, possibly due to Compton scattering of relativistic electrons by the CMB. This interpretation is based on the diffuse radio synchrotron emission, which has a spectral index of 2.34, within the range allowed by fits to the RXTE spectral data. A Compton origin of the measured nonthermal component would imply that the volume-averaged magnetic field in the central region of Coma is B =0.2 micro-Gauss, a value deduced directly from the radio and X-ray measurements (and thus free of the usual assumption of energy equipartition). Barring the presence of unknown systematic errors in the RXTE source or background measurements, our spectral analysis yields considerable evidence for Compton X-ray emission in the Coma cluster.

  20. A 4.2 Day Period in the X-ray Pulsar IGR J16393-4643 from Swift/BAT and RXTE/PCA Observations

    NASA Astrophysics Data System (ADS)

    Corbet, R. H. D.; Krimm, H. A.; Barthelmy, S. D.; Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Tueller, J.

    2010-04-01

    The 910s X-ray pulsar IGR J16393-4643 was reported by Thompson et al. (2006, ApJ 649, 373) to have a 3.6875 ±0.0006 day orbital period from a pulse timing analysis, although other solutions with orbital periods of 50.2 and 8.1 days could not be excluded. Thompson et al. proposed, on the basis of their orbital parameters, that IGR J16393-4643 is a supergiant wind-accretion powered HMXB. Nespoli et al.

  1. RXTE All-Sky Monitor Localization of SGR 1627-41

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Bradt, H. V.; Levine, A. M.

    1999-09-01

    The fourth unambiguously identified Soft Gamma Repeater (SGR), SGR 1627--41, was discovered with the BATSE instrument on 1998 June 15 (Kouveliotou et al. 1998). Interplanetary Network (IPN) measurements and BATSE data constrained the location of this new SGR to a 6(deg) segment of a narrow (19('') ) annulus (Hurley et al. 1999; Woods et al. 1998). We report on two bursts from this source observed by the All-Sky Monitor (ASM) on RXTE. We use the ASM data to further constrain the source location to a 5(') long segment of the BATSE/IPN error box. The ASM/IPN error box lies within 0.3(') of the supernova remnant (SNR) G337.0--0.1. The probability that a SNR would fall so close to the error box purely by chance is ~ 5%.

  2. The Discovery Outburst of the X-Ray Transient IGR J17497-2821 Observed with RXTE and ATCA

    NASA Technical Reports Server (NTRS)

    Rodriquez, Jerome; Bel, Marion Cadolle; Tomsick, John A.; Corbel, Stephane; Brocksopp, Catherine; Paizis, Ada; Shaw, Simon E.; Bodaghee, Arash

    2007-01-01

    We report the results of a series of RXTE and ATCA observations of the recently discovered X-ray transient IGR J17497-2821. Our 3-200 keV PCA+HEXTE spectral analysis shows very little variations over a period of approx.10 days around the maximum of the outburst. IGR J17497-2821 is found in a typical low-hard state (LHS) of X-ray binaries (XRBs), well represented by an absorbed Comptonized spectrum with an iron edge at about 7 keV. The high value of the absorption (approx.4 x 10(exp 22/sq cm suggests that the source is located at a large distance, either close to the Galactic center or beyond. The timing analysis shows no particular features, while the shape of the power density spectra is also typical of the LHS of XRBs, with apprrox.36% rms variability. No radio counterpart is found down to a limit of 0.21 mJy at 4.80 and 8.64 GHz. Although the position of IGR J17497-2821 in the radio to X-ray flux diagram is well below the correlation usually observed in the LHS of black holes, the comparison of its X-ray properties with those of other sources leads us to suggest that it is a black hole candidate.

  3. VizieR Online Data Catalog: List of 1254 X-ray bursts (in't Zand+, 2017)

    NASA Astrophysics Data System (ADS)

    in't Zand, J. J. M.; Visser, M. E. B.; Galloway, D. K.; Chenevez, J.; Keek, L.; Kuulkers, E.; Sanchez-Fernandez, C.; Worpel, H.

    2017-09-01

    The list of thermonuclear X-ray bursts that RXTE detected was obtained from the Multi-INstrument Burst ARchive (MINBAR; Galloway et al. 2010, in COSPAR Meeting, Vol. 38, 38th COSPAR Scientific Assembly, 6). In addition to RXTE/PCA data, MINBAR contains the bursts detected with BeppoSAX/WFC (Jager et al., 1997A&AS..125..557J) and the still operational INTEGRAL/JEM-X (Lund et al., 2003A&A...411L.231L). The PCA list in MINBAR consists of 2288 bursts from 60 sources (i.e., this is slightly more than half the currently known burster population). Some sources only exhibited one burst in the PCA (e.g., KS 1741-293), while others had close to 400 (e.g., 4U 1636-536). (2 data files).

  4. Evidence for an Ionized Accretion Disk in the Seyfert 2 Galaxy NGC 1068

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Weaver, K. A.; Mulchaey, J. S.; Mushotzky, R. F.

    2000-10-01

    We present results from analyses of RXTE, ASCA and BeppoSAX X-ray spectral data from the archetypal Seyfert 2 galaxy NGC 1068. Simultaneous RXTE and ASCA data (spanning 4 - 100 keV) are best fit with a power-law continuum with photon index Γ ~ 1.7 (in agreement with the canonical value for type 1 Seyferts), plus reflection from ionized matter with ξ ~ 1000. Reflection from ionized matter is significantly preferred over reflection from cold matter (Δ χ2 ≈ 50 for 320 dof). When the Fe line complex is modelled with three narrow Gaussians at 6.4, 6.7 and 6.97 keV, we find that the 6.7 keV line flux increases by a factor of ≈ 2 in four months, between the RXTE/ASCA and BeppoSAX observations. Thus we argue that the 6.7 keV line emission comes to us directly from the accretion disk, and not from the electron scattering region further out from the nucleus. We find no evidence for variability in the line fluxes at 6.4 and 6.97 keV. Although ionized accretion disks are thought to be present in NLS1 nuclei, we are only now finding evidence for them in ``broad-line'' Seyfert nuclei (type 1: 1E 1615+061 and type 2: NGC 1068, this work). We shall discuss the implications of these results on the particular geometry required in NGC 1068.

  5. A Study of Pulse Shape Evolution and X-Ray Reprocessing in Her X-1

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1998-01-01

    This study focused on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium". More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in HerX-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  6. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Maccarone, Thomas J.; Chakrabarty, Deepto; Gendreau, Keith C.; Arzoumanian, Zaven; Jenke, Peter; Ballantyne, David; Bozzo, Enrico; Brandt, Soren; Brenneman, Laura; Christophersen, Marc; DeRosa, Alessandra; Feroci, Marco; Goldstein, Adam; Hartmann, Dieter; Hernanz, Margarita; McDonald, Michael; Phlips, Bernard; Remillard, Ronald; Stevens, Abigail; Tomsick, John; Watts, Anna; Wood, Kent S.; Zane, Silvia; STROBE-X Collaboration

    2018-01-01

    We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. We include updated instrument designs resulting from the GSFC IDL run in November 2017.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO/Virgo and neutrino events. Extragalactic science, such as constraining bulk metalicity of medium to high redshift clusters and nearby compact groups and unprecedented timing investigations of active galactic nuclei, is also obtained.

  7. STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Tom; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; STROBE-X Collaboration

    2017-01-01

    We describe a proposed probe-class mission concept that will provide an unprecedented view of the X-ray sky, performing timing and spectroscopy over a broad band (0.2-30 keV) probing timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises two primary instruments. The soft band (0.2-12 keV) will be covered by an array of lightweight optics (3-m focal length) that concentrate incident photons onto small solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates. This technology, fully developed for NICER, would be scaled up with enhanced optics to take advantage of the longer focal length of STROBE-X. The harder band (2 to at least 30 keV) would be covered by large-area collimated silicon drift detectors,developed for the European LOFT mission concept. Each instrument would provide an order of magnitude improvement in effective area compared with its predecessor (NICER in the soft band and RXTE in the hard band). A sensitive sky monitor would act as a trigger for pointed observations, provide high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enable multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.The broad coverage will enable thermal components, non-thermal components, iron lines, and reflection features to be studied simultaneously from a single platform for the first time in accreting black holes at all scales. The enormous collecting area will enable studies of the dense matter equation of state using both soft thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. Revolutionary science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, would also be obtained.We describe the mission concept and the planned trade studies that will optimize the mission to maximize the science return. This mission is being developed in collaboration with members of the European LOFT team, and a hardware contribution from Europe is expected.

  8. LIGO Triggered Search for Coincidence with High Energy Photon Survey Missions

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2009-01-01

    LIGO is about to begin a new, higher sensitivity science run, where gravitational detection is plausible. A possible candidate for detection is a compact binary merger, which would also be likely to emit a high energy electromagnetic signal. Coincident observation of the gw signal from a compact merger with an x-ray or gamma-ray signal would add considerable weight to the claim for gw detection. In this talk I will consider the possibility of using LIGO triggers with time and sky position to perform a coincident analysis of EM signals from the RXTE, SWIFT, and FERMI missions.

  9. BL Lacertae: X-ray spectral evolution and a black-hole mass estimate

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2017-06-01

    We present an analysis of the spectral properties observed in X-rays from active galactic nucleus BL Lacertae using RXTE, Suzaku, ASCA, BeppoSAX, and Swift observations. The total time covered by these observations is approximately 20 yr. We show strong observational evidence that this source undergoes X-ray spectral transitions from the low hard state (LHS) through the intermediate state (IS) to the high soft state (HSS) during these observations. During the RXTE observations (1997-2001, 180 ks, for a total 145 datasets), the source was approximately 75%, 20% and only 5% of the time in the IS, LHS, and HSS, respectively. We also used Swift observations (470 datasets, for a total 800 ks), which occurred during 12 yr (2005-2016), the broadband (0.3-200 keV) data of BeppoSAX (1997-2000, 160 ks), and the low X-ray energy (0.3-10 keV) data of ASCA (1995-1999, 160 ks). Two observations of Suzaku (2006, 2013; 50 ks) in combinations with long-term RXTE and Swift data-sets fortunately allow us to describe all spectral states of BL Lac. The spectra of BL Lac are well fitted by the so-called bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Γsat = 2.2 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ - Ṁ correlation allows us to estimate the black-hole (BH) mass in BL Lac to be MBH 3 × 107M⊙ for a distance of 300 Mpc. For the BH mass estimate, we use the scaling method taking stellar-mass Galactic BHs 4U 1543-47 and GX 339-4 as reference sources. The Γ - Ṁ correlation revealed in BL Lac is similar to those in a number of stellar-mass Galactic BHs and two recently studied intermediate-mass extragalactic BHs. It clearly shows the correlation along with the very extended Γ saturation at 2.2. This is robust observational evidence for the presence of a BH in BL Lac. We also reveal that the seed (disk) photon temperatures are relatively low, of order of 100 eV, which are consistent with a high BH mass in BL Lac. It is worthwhile to emphasize that we found particular events when X-ray emission anti-correlates with radio emission. This effect indicates that mass accretion rate (and thus X-ray radiation) is higher when the mass outflow is lower.

  10. Long-Term X-Ray Variability of Circinus X-1

    NASA Technical Reports Server (NTRS)

    Saz Parkinson, P. M.; Tournear, D. M.; Bloom, E. D.; Focke, W. B.; Reilly, K. T.

    2003-01-01

    We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms to search for the approx. 16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. We obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.

  11. Pulsed Thermal Emission from the Accreting Pulsar XMMU J054134.7-682550

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonis; Walter, Roland; Audard, Marc; Lanz, Thierry

    2009-05-01

    XMMU J054134.7-682550, located in the LMC, featured a type II outburst in August 2007. We analyzed XMM-Newton (EPIC-MOS) and RXTE (PCA) data in order to derive the spectral and temporal characteristics of the system throughout the outburst. Spectral variability, spin period evolution, energy dependent pulse shape are discussed. The outburst (LX~3×1038 erg/s~LEDD) spectrum can be modeled using, cutoff power law, soft X-ray blackbody, disk emission, and cyclotron absorption line. The blackbody component shows a sinusoidal behavior, expected from hard X-ray reprocessing on the inner edge of the accretion disk. The thickness of the inner accretion disk (width of ~75 km) can be constrained. The spin-up of the pulsar during the outburst is the signature of a (huge) accretion rate. Simbol-X will provide similar capabilities as XMM-Newton and RXTE together, for such bright events.

  12. Black-hole Binaries: Life Begins at 40 keV

    NASA Astrophysics Data System (ADS)

    Belloni, Tomaso M.; Motta, Sara

    2009-05-01

    In the study of black-hole transients, an important problem that still needs to be answered is how the high-energy part of the spectrum evolves from the low-hard to the high-soft state, given that they have very different properties. Recent results obtained with RXTE and INTEGRAL have given inconsistent results. With RXTE, we have found that the high-energy cutoff in GX 339-4 during the transition first decreases (during the low-hard state), then increases again across the Hard-Intermediate state, to become unmeasurable in the soft states (possibly because of statistical limitations). We show Simbol-X will be able to determine the spectral shape with superb accuracy. As the high-energy part of the spectrum is relatively less known than the one below 20 keV, Simbol-X will provide important results that will help out understanding of the extreme physical conditions in the vicinity of a stellar-mass black hole.

  13. Peculiar Outburst of A 0535+26 Observed with INTEGRAL, RXTE and Suzaku

    NASA Technical Reports Server (NTRS)

    Caballero, I.; Pottschmidt, K.; Barragan, L.; Ferrigno, C.; Kretschmar, P.; Suchy, S.; Wilms, J.; Santangelo, A.; Kreykenbohm, I.; Rothschild, R.; hide

    2009-01-01

    A normal outburst of the Be/X-ray binary system A0535+26 has taken place in August 2009. It is the fourth in a series of normal outbursts that have occurred around the periastron passage of the source. but is unusual by starting at an earlier orbital phase and by presenting a peculiar double-peaked light curve. A first "flare" (lasting about 9 days from M.ID 55043 on) reached a flux of 440 mCrab. The flux then decreased to less than 220 mCrab. and increased again reaching 440 mCrab around the periastron at MJD 55057. Target of Opportunity observations have been performed with INTEGRAL. RXTE and Suzaku. First results of these observations are presented. with special emphasis on the cyclotron lines present in the X-ray spectrum of the source. as well as in the pulse period and energy dependent pulse profiles of the source

  14. Pulse Shape Evolution, HER X-1

    NASA Technical Reports Server (NTRS)

    VanParadijs, Johannes A.

    1998-01-01

    This study focuses on the pulse shape evolution and spectral properties of the X-ray binary Her X-1 with regard to the well known 35-day cycle of Her X-1. A follow-up set of RXTE observations has been conducted in RXTE AO-2 phase and the two observation sets are being analyzed together. We presented results of early analysis of pulse shape evolution in "Proceedings of the Fourth Compton Symposium." More advanced analysis was presented at the HEAD meeting in November, 1997 in Estes Park, Colorado. A related study of the 35-day cycle using RXTE/ASM data, which laid out the overall picture within which the more detailed PCA observations could be placed has also been conducted. The results of this study have been published in The Astrophysical Journal, vol. 510, 974. A pair of papers on the detailed pulse evolution and the spectral/color evolution are currently being prepared for publication. Some of the significant results of this study have been a confirmation of the detailed pulse profile changes at the end of the Main High state in Her X-1 first observed by GINGA, observations of the pulse evolution in several Short High states which agree with the pulse evolution pattern predicted using a disk occultation model in the PhD Thesis of Scott 1993, observation of a systematic lengthening of the eclipse egress during the Main High state of the 35-day phase and observation of a new type of extended eclipse ingress during which pulsations cease to observed during the Short High state.

  15. Discovery of an Energetic Pulsar Associated with SNR G76.9+1.0

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Zaven; Gotthelf, E. V.; Ransom, S. M.; Safi-Harb, S.; Kothes, R.; Landecker, T. L.

    2012-01-01

    We report the discovery of PSR J2022-<-3842, a 24 ms radio and X-ray pulsar in the supernova remnant G76.9+i.0, in observations with the Chandra X-ray telescope, the Robert C. Byrd Green Bank Radio Telescope, and the Rossi X-ray Timing Explorer (RXTE). The pulsar's spin-down rate implies a rotation-powered luminosity E = 1.2 X 10(exp 38) erg/s, a surface dipole magnetic field strength B(sub S), = 1.0 X 10(exp 12) G, and a characteristic age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar known, after the Crab, as well as the most rapidly-rotating young, radio-bright pulsar known. The radio pulsations are highly dispersed and broadened by interstellar scattering, and we find that a large (delta f/f approximates 1.9 x 10(exp -6)) spin glitch must have occurred between our discovery and confirmation observations. The X-ray pulses are narrow (0.06 cycles FWHM) and visible up to 20 keV, consistent with magnetospheric emission from a rotation-powered pulsar. The Chandra X-ray image identifies the pulsar with a hard, unresolved source at the midpoint of the double-lobed radio morphology of G76.9+ 1.0 and embedded within faint, compact X-ray nebulosity. The spatial relationship of the X-ray and radio emissions is remarkably similar to extended structure seen around the Vela pulsar. The combined Chandra and RXTE pulsar spectrum is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.3) x 10(exp 22) / sq cm and photon index Gamma = 1.0 +/- 0.2; it implies that the Chandra point-source flux is virtually 100% pulsed. For a distance of 10 kpc, the X-ray luminosity of PSR J2022+3842 is L(sub x){2-1O keV) = 7.0 x 10(exp 33) erg/s. Despite being extraordinarily energetic, PSR J2022+3842 lacks a bright X-ray wind nebula and has an unusually low conversion efficiency of spin-down power to X-ray luminosity, Lx/E = 5.9 X 10(exp-5).

  16. A Multiwavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution

    NASA Astrophysics Data System (ADS)

    Błażejowski, M.; Blaylock, G.; Bond, I. H.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L.; Gammell, S.; Gibbs, K.; Gillanders, G. G.; Grube, J.; Gutierrez, K.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Humensky, B.; Kenny, G.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M.; LeBohec, S.; Linton, E.; Lloyd-Evans, J.; Maier, G.; Mendoza, D.; Milovanovic, A.; Moriarty, P.; Nagai, T. N.; Ong, R. A.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Reynolds, P. T.; Rebillot, P.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Valcarel, L.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; White, R.; Zweerink, J.; VERITAS Collaboration; Mochejska, B.; Smith, B.; Aller, M.; Aller, H.; Teräsranta, H.; Boltwood, P.; Sadun, A.; Stanek, K.; Adams, E.; Foster, J.; Hartman, J.; Lai, K.; Böttcher, M.; Reimer, A.; Jung, I.

    2005-09-01

    We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.

  17. RXTE/ASCA Monitoring Observations of the Luminous Seyfert 1 Galaxy Mrk 509

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Leighly, K. M.; Matsuoka, M.

    We present the results from ten coordinated RXTE and ASCA observations of the luminous Seyfert 1 galaxy Mrk 509 conducted over a time period of 27 days in late 1996. Well-resolved flux variability of about 50 % was observed over the monitoring period. The spectra are generally well described by a model consisting of a power law plus reflection and an iron line. We find that the photon index is generally positively correlated with the reflection ratio R, where R is 1 when an isotropically emitting X-ray source illuminates optically thick material subtending 2π steradians. This result seems to be similar to that discovered by Zdziarski, Lubinski & Smith 1999 to generally hold true for AGN and black hole candidates. Because an increase in the soft photon flux can cause an increase in the photon index, this result is most simply interpreted as evidence for a physical connection between the reflecting material and the origin of the soft photons. Interpretation is complicated, however, by the fact that there is evidence for hysteresis in the photon index/reflection ratio dependence. It is possible that the hysteresis is a result of a lag in the response of the reflector to a change in the flux. We find that the equivalent width of the narrow component of the iron line is anticorrelated with the flux, indicating that part of the iron line is emitted by material far from the X-ray source.

  18. Successor to the RXTE PCA based upon focusing optics

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    2002-01-01

    There is broad interest in a next generation timing mission to succeed the PCA of RXTE which will provide more effective area than its 0.6 square meters and much better energy resolution. Currently prospective missions are, like the PCA, based upon large area detectors. Serious consideration should also be given to a focusing system. The focusing system would be a modular array of relatively small diameter imaging telescopes or concentrators with solid state detectors in their focal planes. For areas exceeding a square meter a focusing system could actually be less complex, more reliable, and for one particular optical design perhaps not much more massive. The total detector area would be only a few percent of the telescope aperture, which makes the acquisition of detectors much less challenging. Today it is possible to obtain commercially a sufficient number of detectors with good energy resolution for all the focal planes of the focusing array. They require only modest cooling and that could be accomplished passively in space. Several optical designs are possible. The disadvantages of an optical system are larger mass, more difficultly obtaining broad bandwidth, smaller field of view, and larger volume to accommodate the focal length distance and a larger diameter. On the other hand, the focusing system is more sensitive to fainter sources, is much more efficient below 2 keV, is less sensitive to background and is likely to be less costly overall than an array of solid state area detectors with equally good energy resolution.

  19. SGR 1822-1606 (Swift 1822.3-1606): Spin-down rate and inferred dipole field strength

    NASA Astrophysics Data System (ADS)

    Gogus, Ersin; Strohmayer, Tod; Kouveliotou, Chryssa

    2011-07-01

    We have been monitoring the new source Swift 1822.3-1606 (Cummings et al. GCN 12159) with RXTE. We acquired a total exposure of 20.6 ks in 5 pointings, spanning a time baseline of 5 days. We clearly detect the 8.44 s pulsations reported earlier (Pagani et al. ATel #3489, Gogus et al ATel #3491, Rea et al Atel #3501). We employed an epoch folding technique to determine the spin ephemeris. Our preliminary analysis reveal the spin period, P = 8.4377158(9) s and the spin-down rate, Pdot = 2.2(5) x 10-11 s/s (Epoch: 55758.5 MJD).

  20. Probable superbursts in 4U 0614+091 and 4U 1608-522

    NASA Astrophysics Data System (ADS)

    Kuulkers, E.

    2005-05-01

    Inspection of the RXTE/ASM database of 4U 0614+091 reveals a recent flare which occurred on March 12, 2005. The 1.5-12 keV flux increased by a factor of 5-6 up to 0.3 Crab within ~7.5 hours. About 1.5 hours later the flux had dropped to 0.17 Crab; ~9.5 hours later it had reached the pre-flare flux level again. The exponential decay time of the flare is about 2.2 hours. During the peak of the flare the X-ray emission significantly hardens with respect to the pre- and post-flare level.

  1. Angular-Rate Estimation Using Delayed Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.

  2. X1908+075: An X-Ray Binary with a 4.4 Day Period

    NASA Astrophysics Data System (ADS)

    Wen, Linqing; Remillard, Ronald A.; Bradt, Hale V.

    2000-04-01

    X1908+075 is an optically unidentified and highly absorbed X-ray source that appeared in early surveys such as Uhuru, OSO 7, Ariel 5, HEAO-1, and the EXOSAT Galactic Plane Survey. These surveys measured a source intensity in the range 2-12 mcrab at 2-10 keV, and the position was localized to ~0.5d. We use the Rossi X-Ray Timing Explorer (RXTE) All-Sky Monitor (ASM) to confirm our expectation that a particular Einstein/IPC detection (1E 1908.4+0730) provides the correct position for X1908+075. The analysis of the coded mask shadows from the ASM for the position of 1E 1908.4+0730 yields a persistent intensity ~8 mcrab (1.5-12 keV) over a 3 yr interval beginning in 1996 February. Furthermore, we detect a period of 4.400+/-0.001 days with a false-alarm probability less than 10-7. The folded light curve is roughly sinusoidal, with an amplitude that is 26% of the mean flux. The X-ray period may be attributed to the scattering and absorption of X-rays through a stellar wind combined with the orbital motion in a binary system. We suggest that X1908+075 is an X-ray binary with a high-mass companion star.

  3. Did LMC X-3 Undergo a 'Her X-1-like' Anomalous Low State?

    NASA Technical Reports Server (NTRS)

    Boyd, Patricia t.

    2008-01-01

    The black hole X-ray binary LMC X-3 has been monitored by the Rossi X-ray Timing Explorer (RXTE) from its launch to the present by the All-Sky Monitor (ASM). This well-sampled light curve is supplemented by frequent pointed observations with the PCA and HEXTE instruments which provide improved sensitivity, time resolution and spectral information. The long-term X-ray luminosity of the system is strongly modulated on timescales of hundreds of days. The mean 2-10 kev X-ray flux varies by a factor of more than 100 during this long-term cycle. This variability has been attributed to the precession of a bright, tilted, and warped accretion disk---the mechanism also invoked to explain the 35-day super-orbital period in the X-ray binary pulsar system Her X-1. The ASM light curve displays a unique episode, starting in December 2003, during which LMC X-3 displayed a very low, nearly constant flux, for about 80 days. This is markedly different from the typical low-flux excursions in LMC X-3, which smoothly evolve toward and then away from a minimum flux on about a 10-day time scale. The character of the long-term variability, as measured by amplitude and characteristic time scale, is not the same after this long low state as it was before. Similar shifts in long-term period and amplitude are seen after the so-called "anomalous low states" in Her X-1, when the 35-day X-ray modulation ceases for an unpredictable length of time. These similar shifts in the long-term amplitude and timescale in the two systems suggests they share a similar mechanism which gives rise to the anomalous low states

  4. Broadband Spectral Investigations of Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki; Göğüş, Ersin

    2017-09-01

    We present our broadband (2-250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550-5418, SGR 1900+14, and SGR 1806-20 detected with the Rossi X-ray Timing Explorer (RXTE) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6% of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kırmızıbayrak, Demet; Şaşmaz Muş, Sinem; Kaneko, Yuki

    We present our broadband (2–250 keV) time-averaged spectral analysis of 388 bursts from SGR J1550−5418, SGR 1900+14, and SGR 1806−20 detected with the Rossi X-ray Timing Explorer ( RXTE ) here and as a database in a companion web-catalog. We find that two blackbody functions (BB+BB), the sum of two modified blackbody functions (LB+LB), the sum of a blackbody function and a power-law function (BB+PO), and a power law with a high-energy exponential cutoff (COMPT) all provide acceptable fits at similar levels. We performed numerical simulations to constrain the best fitting model for each burst spectrum and found that 67.6%more » of burst spectra with well-constrained parameters are better described by the Comptonized model. We also found that 64.7% of these burst spectra are better described with the LB+LB model, which is employed in the spectral analysis of a soft gamma repeater (SGR) for the first time here, than with the BB+BB and BB+PO models. We found a significant positive lower bound trend on photon index, suggesting a decreasing upper bound on hardness, with respect to total flux and fluence. We compare this result with bursts observed from SGR and AXP (anomalous X-ray pulsar) sources and suggest that the relationship is a distinctive characteristic between the two. We confirm a significant anticorrelation between burst emission area and blackbody temperature, and find that it varies between the hot and cool blackbody temperatures differently than previously discussed. We expand on the interpretation of our results in the framework of a strongly magnetized neutron star.« less

  6. LONG-TERM EVOLUTION OF THE MAIN-ON STATES IN HERCULES X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šimon, Vojtech, E-mail: simon@asu.cas.cz

    2015-07-15

    Rossi X-ray Timing Explorer All-sky Monitor (RXTE ASM) observations and American Association of Variable Star Observers (AAVSO) optical data were used for a time-series analysis of the long-term activity of Her X-1. The problem of measuring the long-term evolution of the X-ray intensity in the light curve which consists only of separated intense spikes was addressed. For this purpose, the fluence of each Main-On state was determined. The fluences vary generally (not only in the transitions into/from anomalous low states (ALSs)) by tens of percent on timescales of at least several epochs of the cycle length of the superorbital cyclemore » (but without any stable cycle) while irradiation of the donor producing the optical modulation remains considerably more stable. ALS1 and ALS2 are extensions of the tail in the statistical distribution of these fluences. In this interpretation, the variations of the fluences are caused by the changes of the structure of the inner disk region, which produces variable obscuration of the beams (emitting in the ASM band) at the neutron star. A small change of obscuration of these beams by the inner disk region suffices to change the fluences largely. However, the irradiation of the donor is changed significantly less because this inner disk region (which emits beyond the ASM band and acts as the occulting region of the beams) also irradiates the donor.« less

  7. Pulse Profiles, Accretion Column Dips and a Flare in GX 1+4 During a Faint State

    NASA Technical Reports Server (NTRS)

    Giles, A. B.; Galloway, D. K.; Greenhill, J. G.; Storey, M. C.; Wilson, C. A.

    1999-01-01

    The Rossi X-ray Timing Explorer (RXTE) spacecraft observed the X-ray GX 1+4 for it period of 34 hours on July 19/20 1996. The source faded front an intensity of approximately 20 mcrab to a minimum of <= 0.7 mcrab and then partially recovered towards the end of the observation. This extended minimum lasted approximately 40,000 seconds. Phase folded light curves at a barycentric rotation period of 124.36568 +/- 0.00020 seconds show that near the center of the extended minimum the source stopped pulsing in the traditional sense but retained a weak dip feature at the rotation period. Away from the extended minimum the dips are progressively narrower at higher energies and may be interpreted as obscurations or eclipses of the hot spot by the accretion column. The pulse profile changed from leading-edge bright before the extended minimum to trailing-edge bright after it. Data from the Burst and Transient Source Experiment (BATSE) show that a torque reversal occurred < 10 days after our observation. Our data indicate that the observed rotation departs from a constant period with a P/P value of approximately -1.5% per year at a 4.5sigma significance. We infer that we may have serendipitously obtained data, with high sensitivity and temporal resolution about the time of an accretion disk spin reversal. We also observed a rapid flare which had some precursor activity close to the center of the extended minimum.

  8. Observational aspects of outbursting black hole sources: Evolution of spectro-temporal features and X-ray variability

    NASA Astrophysics Data System (ADS)

    Sreehari, H.; Nandi, Anuj; Radhika, D.; Iyer, Nirmal; Mandal, Samir

    2018-02-01

    We report on our attempt to understand the outbursting profile of Galactic Black Hole sources, keeping in mind the evolution of temporal and spectral features during the outburst. We present results of evolution of quasi-periodic oscillations, spectral states and possible connection with jet ejections during the outburst phase. Further, we attempt to connect the observed X-ray variabilities (i.e., `class'/`structured' variabilities, similar to GRS 1915+105) with spectral states of black hole sources. Towards these studies, we consider three black hole sources that have undergone single (XTE J1859+226), a few (IGR J17091-3624) and many (GX 339-4) outbursts since the start of RXTE era. Finally, we model the broadband energy spectra (3-150 keV) of different spectral states using RXTE and NuSTAR observations. Results are discussed in the context of two-component advective flow model, while constraining the mass of the three black hole sources.

  9. Monitoring the Violent Activity from the Inner Accretion Disk of the Seyfert 1.9 Galaxy NGC 2992 with RXTE

    NASA Technical Reports Server (NTRS)

    Mruphy, Kendrah D.; Yaqoob, Tahir; Terashima, Yuichi

    2007-01-01

    We present the results of a one year monitoring campaign of the Seyfert 1.9 galaxy NGC 2992 with RXTE. Historically, the source has been shown to vary dramatically in 2-10 keV flux over timescales of years and was thought to be slowly transitioning between periods of quiescence and active accretion. Our results show that in one year the source continuum flux covered almost the entire historical range, making it unlikely that the low-luminosity states correspond to the accretion mechanism switching off. During flaring episodes we found that a highly redshifted Fe K line appears, implying that the violent activity is occurring in the inner accretion disk, within 100 gravitational radii of the central black hole. We also found that the Compton y parameter for the X-ray continuum remained approximately constant during the large amplitude variability. These observations make NGC 2992 well-suited for future multi-waveband monitoring, as a test-bed for constraining accretion models.

  10. RXTE OBSERVATIONS OF ANOMALOUS X-RAY PULSAR 1E 1547.0-5408 DURING AND AFTER ITS 2008 AND 2009 OUTBURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Rim; Kaspi, Victoria M.; Scholz, Paul

    2012-03-20

    We present the results of Rossi X-ray Timing Explorer and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative {nu}-dot, such that {nu}-ddot was a factor of {approx}60 larger than that reported in datamore » from 2007. This {nu}-dot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, {nu}-ddot was consistent with zero, and {nu}-dot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening {approx}15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.« less

  11. A study of the cross-correlation and time lag in black hole X-ray binary XTE J1859+226

    NASA Astrophysics Data System (ADS)

    Pei, Songpeng; Ding, Guoqiang; Li, Zhibing; Lei, Yajuan; Yuen, Rai; Qu, Jinlu

    2017-07-01

    With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. Anti-correlations and positive correlations and their respective soft and hard X-ray lags are only detected in the first 100 days of the outburst when the luminosity is high. This suggests that the cross-correlations may be related to high luminosity. Positive correlations are detected in every state of XTE J1859+226, viz., hard state, hard-intermediate state (HIMS), soft-intermediate state (SIMS) and soft state. However, anti-correlations are only detected in HIMS and SIMS, anti-correlated hard lags are only detected in SIMS, while anti-correlated soft lags are detected in both HIMS and SIMS. Moreover, the ratio of the observations with anti-correlated soft lags to hard lags detected in XTE J1859+226 is significantly different from that in neutron star low-mass X-ray binaries (NS LMXBs). So far, anti-correlations are never detected in the soft state of BHXBs but detected in every branch or state of NS LMXBs. This may be due to the origin of soft seed photons in BHXBs is confined to the accretion disk and, for NS LMXBs, from both accretion disk and the surface of the NS. We notice that the timescale of anti-correlated time lags detected in XTE J1859+226 is similar with that of other BHXBs and NS LMXBs. We suggest that anti-correlated soft lag detected in BHXB may result from fluctuation in the accretion disk as well as NS LMXB.

  12. Analysis of RXTE data on Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Petrosian, Vahe

    2004-01-01

    This grant provided support for the reduction, analysis and interpretation of of hard X-ray (HXR, for short) observations of the cluster of galaxies RXJO658--5557 scheduled for the week of August 23, 2002 under the RXTE Cycle 7 program (PI Vahe Petrosian, Obs. ID 70165). The goal of the observation was to search for and characterize the shape of the HXR component beyond the well established thermal soft X-ray (SXR) component. Such hard components have been detected in several nearby clusters. distant cluster would provide information on the characteristics of this radiation at a different epoch in the evolution of the imiverse and shed light on its origin. We (Petrosian, 2001) have argued that thermal bremsstrahlung, as proposed earlier, cannot be the mechanism for the production of the HXRs and that the most likely mechanism is Compton upscattering of the cosmic microwave radiation by relativistic electrons which are known to be present in the clusters and be responsible for the observed radio emission. Based on this picture we estimated that this cluster, in spite of its relatively large distance, will have HXR signal comparable to the other nearby ones. The planned observation of a relatively The proposed RXTE observations were carried out and the data have been analyzed. We detect a hard X-ray tail in the spectrum of this cluster with a flux very nearly equal to our predicted value. This has strengthen the case for the Compton scattering model. We intend the data obtained via this observation to be a part of a larger data set. We have identified other clusters of galaxies (in archival RXTE and other instrument data sets) with sufficiently high quality data where we can search for and measure (or at least put meaningful limits) on the strength of the hard component. With these studies we expect to clarify the mechanism for acceleration of particles in the intercluster medium and provide guidance for future observations of this intriguing phenomenon by instrument on GLAST. The details of the nonthermal particle population has important implications for the theories of cluster formation, mergers and evolution. The results of this work were first presented at the High Energy Division meeting of the American astronomical Society at Mt. Tremblene, Canada (Petrosian et al. 2003). and in an invited review talk at the General Assembly of the International Astronomical Union at Sydney, Australia (Petrosian, 2003). A paper describe the observations, the data analysis and its implication is being prepared for publication in the Astrophysical Journal.

  13. Finding a 24 Day Orbital Period for the X-Ray Binary 1A 1118-616

    NASA Technical Reports Server (NTRS)

    Staubert, R.; Pottschmidt, K.; Doroshenko, V.; Wilms, J.; Suchy, S.; Rothschild, R.; Santangelo, A.

    2010-01-01

    We report the first determination of the binary period and the orbital ephemeris of the Be X-ray binary containing the pulsar IA 1118-616 (35 years after the discovery of the source). The orbital period is found to be P(sub orb) = 24.0+/-0.4 days. The source was observed by RXTE during its last big X-ray outburst in January 2009, peaking at MJD 54845.4. This outburst was sampled by taking short observations every few days, covering an elapsed time comparable to the orbital period. Using the phase connection technique, pulse arrival time delays could be measured and an orbital solution determined. The data are consistent with a circular orbit, the time of 90 degrees longitude was found to be T,/2 = MJD 54845.37(10), coincident with the peak X-ray flux.

  14. Orbital Parameters and Spectroscopy of the Transient X-Ray Pulsar 4U 0115+63

    NASA Technical Reports Server (NTRS)

    Mueller, Sebastian; Obst,Maria; Kreykenbohm, Ingo; Fuerst, Felix; Kuehnel, Matthias; Wilms, Joern; Klochkov, Dmitry; Staubert, Ruediger; Santangelo, Andrea; Pottschmidt, Katja; hide

    2011-01-01

    We report on an outburst of the high mass X-ray binary 4U 0115+63 with a pulse period of 3.6s in spring 2008 as observed with INTEGRAL and RXTE. By analyzing the lightcurves we derive an updated orbital- and pulse period ephemeris of the neutron star. We also study the pulse profile variations as a function of time and energy as well as the variability of the spectral parameters. We find clear evidence for at least three cyclotron line features. In agreement with previous observations of 4U 0115+63, we detect an anti-correlation between the luminosity and the fundamental cyclotron line energy.

  15. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    NASA Astrophysics Data System (ADS)

    Caballero, I.

    2009-04-01

    Neutron stars are compact objects, characterized by R~10-14 km radius, M~1.4Msun and extremely high central densities ~10e15 g/cm^3. If they are part of a binary system, a flow of matter can take place from the companion star onto the neutron star. The accretion of matter onto neutron stars is one of the most powerful sources of energy in the universe. The accretion of matter takes place under extreme physical conditions, with magnetic fields in the range B~10^(8-15)G, which are impossible to reproduce on terrestrial laboratories. Therefore, accreting neutron stars are unique laboratories to study the matter under extreme conditions. In this thesis, X-ray observations of the accreting Be/X-ray binary A 0535+26 during a normal (type I) outburst are presented. In this system, the neutron star orbits around the optical companion HDE 245770 in an eccentric orbit, and sometimes presents X-ray outbursts (giant or normal) associated with the passage of the neutron star through the periastron. After more than eleven years of quiescence, A 0535+26 showed outbursting activity in 2005. The normal outburst analyzed in this work took place in August/September 2005, and reached a maximum X-ray flux of ~400 mCrab in the 5-100 kev range. The outburst, which lasted for ~30 days, was observed with the RXTE and INTEGRAL observatories. We have measured the spectrum of the source. In particular, two absorption-like features, interpreted as fundamental and first harmonic cyclotron resonant scattering features, have been detected at E~46 kev and E~102 kev with INTEGRAL and RXTE. Cyclotron lines are the only direct way to measure the magnetic field of a neutron star. Our observations have allowed to confirm the magnetic field of A 0535+26 at the site of the X-ray emission to be B~5x10^12 G. We studied the luminosity dependence of the cyclotron line in A 0535+26, and contrary to other sources, we found no significant variation of the cyclotron line energy with the luminosity. Changes of the cyclotron line energy with the X-ray luminosity are thought to be related to a change in the height of the accretion column as the mass accretion rate varies. A detailed timing analysis has been performed, and we find for the first time the onset of a spin-up, at a phase close to the periastron passage, during a normal outburst, providing evidence for an accretion disk around the neutron star. Energy-dependent pulse profiles of the source have been studied and compared to historical observations. During the rising part of the outburst a series of flares were observed. RXTE observed one of these flares, and we found during the flare the energy of the fundamental cyclotron line shifted to a significantly higher position compared to the rest of the outburst. Also, the energy-dependent pulse profiles during the flare were found to vary significantly from the rest of the outburst. These differences have been interpreted in terms of a theoretical model, based on the presence of magnetospheric instabilities at the onset of the accretion. We applied a decomposition method to A 0535+26 energy-dependent pulse profiles. Basic assumptions of the method are that the asymmetry observed in the pulse profiles is caused by non-antipodal magnetic poles, and that the emission regions have axisymmetric beam patterns. Using pulse profiles obtained from RXTE observations, the contribution of the two emission regions has been disentangled. Constraints on the geometry of the pulsar and a possible solution of the beam pattern are given. The reconstructed beam pattern is interpreted in terms of a geometrical model that includes relativistic light deflection.

  16. Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Fukuyama, T.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pearson, T. J.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Yang, Z.; Yatsu, Y.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi LAT Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; de Angelis, A.; De Cea del Pozo, E.; Delgado Mendez, C.; De Lotto, B.; De Maria, M.; De Sabata, F.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinovi, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, E.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, J.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, T.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L. O.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Chen, W. P.; Jordan, B.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; McBreen, B.; Larionov, V. M.; Lin, C. S.; Nikolashvili, M. G.; Reinthal, R.; Angelakis, E.; Capalbi, M.; Carramiñana, A.; Carrasco, L.; Cassaro, P.; Cesarini, A.; Falcone, A.; Gurwell, M. A.; Hovatta, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.; Krimm, H. A.; Lister, M. L.; Moody, J. W.; Maccaferri, G.; Mori, Y.; Nestoras, I.; Orlati, A.; Pace, C.; Pagani, C.; Pearson, R.; Perri, M.; Piner, B. G.; Ros, E.; Sadun, A. C.; Sakamoto, T.; Tammi, J.; Zook, A.

    2011-08-01

    We report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(> 0.3 GeV) = (7.23 ± 0.16) × 10-8 ph cm-2 s-1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  17. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MARKARIAN 421: THE MISSING PIECE OF ITS SPECTRAL ENERGY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    We report on the {gamma}-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) {gamma}-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index {Gamma} = 1.78 {+-} 0.02 and average photon flux F(> 0.3 GeV) = (7.23 {+-} 0.16) x 10{sup -8} ph cm{sup -2} s{sup -1}. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations inmore » the photon flux (up to a factor {approx}3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in {gamma}-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.« less

  18. Fermi Large Area Telescope observations of Markarian 421: The missing piece of its spectral energy distribution

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2011-07-15

    Here, we report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(> 0.3 GeV) = (7.23 ± 0.16) × 10 –8 ph cm –2 s –1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variationsmore » in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.« less

  19. The Bursting Behavior of 4U 1728-34: Parameters of a Neutron Star and Geometry of a NS-disk system

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nickolai; Titarchuk, Lev; Haber, Frank

    2003-01-01

    We analyze a set of Type I X-ray bursts from the low mass X-ray binary 4U 1728-34, observed with Rossi X-ray Timing Explorer (RXTE). We infer the dependence of the neutron star (NS) mass and radius with respect to the assumed distance to the system using an analytical model of X-ray burst spectral formation. The model behavior clearly indicates that the burster atmosphere is helium-dominated. Our results strongly favor the soft equation of state (EOS) of NS for 4U 1728-34. We find that distance to the source should be within 4.5-5.0 kpc range. We obtain rather narrow constrains for the NS radius in 8.7-9.7 km range and interval 1.2-1.6 Ma for NS mass for this particular distance range. We uncover a temporal behavior of red-shift corrected burst flux for the radial expansion episodes and we put forth a dynamical evolution scenario for the NS accretion disk geometry during which an expanded envelope affects the accretion disk and increases the area of the neutron star exposed to the Earth observer. In the framework of this scenario we provide a new method for the estimation of the inclination angle which leads to the value of approximately 50 degrees for 4U 1728-34.

  20. Evidence for Doppler-Shifted Iron Emission Lines in Black Hole Candidate 4U 1630-47

    NASA Technical Reports Server (NTRS)

    Cui, Wei; Chen, Wan; Zhang, Shuang Nan

    2000-01-01

    We report the first detection of a pair of correlated the X-ray spectrum of black hole candidate 4U 1630-47 outburst, based on Rossi X-Ray Timing Explorer (RXTE) emission lines in during its 1996 observations of the source. At the peak plateau of the outburst, the emission lines are detected, centered mostly at approx. 5.7 and approx. 7.7 keV, respectively, while the line energies exhibit random variability approx. 5%. Interestingly, the lines move in a concerted manner to keep their separation roughly constant. The lines also vary greatly in strength, but with the lower energy line always much stronger than the higher energy one. The measured equivalent width ranges from approx. 50 to approx. 270 eV for the former, and from insignificant detection to approx. 140 eV for the latter; the two are reasonably correlated. The correlation between the lines implies a causal connection; perhaps they share a common origin. Both lines may arise from a single K & alpha; line of highly ionized iron that is Doppler shifted either in a Keplerian accretion disk or in a bipolar outflow or even both. In both scenarios, a change in the line energy might simply reflect a change in the ionization state of line-emitting matter. We discuss the implication of the results and also raise some questions about such interpretations.

  1. Swift J045106.8-694803: A Highly Magnetised Neutron Star in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Klus, H.; Bartlett, E. S.; Bird, A. J.; Coe, M.; Corbet, R. H. D.; Udalski, A.

    2013-01-01

    We report the analysis of a highly magnetised neutron star in the Large Magellanic Cloud (LMC). The high mass X-ray binary pulsar Swift J045106.8-694803 has been observed with Swift X-ray telescope (XRT) in 2008, The Rossi X-ray Timing Explorer (RXTE) in 2011 and the X-ray Multi-Mirror Mission - Newton (XMM-Newton) in 2012. The change in spin period over these four years indicates a spin-up rate of 5.010.06 s/yr, amongst the highest observed for an accreting pulsar. This spin-up rate can be accounted for using Ghosh and Lambs (1979) accretion theory assuming it has a magnetic field of (1.2 +/= 0.20/0.7) x 10(exp 14) Gauss. This is over the quantum critical field value. There are very few accreting pulsars with such high surface magnetic fields and this is the first of which to be discovered in the LMC. The large spin-up rate is consistent with Swift Burst Alert Telescope (BAT) observations which show that Swift J045106.8-694803 has had a consistently high X-ray luminosity for at least five years. Optical spectra have been used to classify the optical counterpart of Swift J045106.8-694803 as a B0-1 III-V star and a possible orbital period of 21.631 +/- 0.005 days has been found from MACHO optical photometry.

  2. Angular-Rate Estimation Using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  3. Angular-Rate Estimation using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  4. NICER Discovers the Ultracompact Orbit of the Accreting Millisecond Pulsar IGR J17062–6143

    NASA Astrophysics Data System (ADS)

    Strohmayer, T. E.; Arzoumanian, Z.; Bogdanov, S.; Bult, P. M.; Chakrabarty, D.; Enoto, T.; Gendreau, K. C.; Guillot, S.; Harding, A. K.; Ho, W. C. G.; Homan, J.; Jaisawal, G. K.; Keek, L.; Kerr, M.; Mahmoodifar, S.; Markwardt, C. B.; Ransom, S. M.; Ray, P. S.; Remillard, R.; Wolff, M. T.

    2018-05-01

    We present results of recent Neutron Star Interior Composition Explorer (NICER) observations of the accreting millisecond X-ray pulsar (AMXP) IGR J17062‑6143 that show that it resides in a circular, ultracompact binary with a 38-minute orbital period. NICER observed the source for ≈26 ks over a 5.3-day span in 2017 August, and again for 14 and 11 ks in 2017 October and November, respectively. A power spectral analysis of the August exposure confirms the previous detection of pulsations at 163.656 Hz in Rossi X-ray Timing Explorer (RXTE) data, and reveals phase modulation due to orbital motion of the neutron star. A coherent search for the orbital solution using the Z 2 method finds a best-fitting circular orbit with a period of 2278.21 s (37.97 minutes), a projected semimajor axis of 0.00390 lt-s, and a barycentric pulsar frequency of 163.6561105 Hz. This is currently the shortest known orbital period for an AMXP. The mass function is 9.12 × 10‑8 M ⊙, presently the smallest known for a stellar binary. The minimum donor mass ranges from ≈0.005 to 0.007 M ⊙ for a neutron star mass from 1.2 to 2 M ⊙. Assuming mass transfer is driven by gravitational radiation, we find donor mass and binary inclination bounds of 0.0175–0.0155 M ⊙ and 19° < i < 27.°5, where the lower and upper bounds correspond to 1.4 and 2 M ⊙ neutron stars, respectively. Folding the data accounting for the orbital modulation reveals a sinusoidal profile with fractional amplitude 2.04 ± 0.11% (0.3–3.2 keV).

  5. First X-ray Statistical Tests for Clumpy Torii Models: Constraints from RXTE monitoring of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Markowitz, A.

    2015-09-01

    We summarize two papers providing the first X-ray-derived statistical constraints for both clumpy-torus model parameters and cloud ensemble properties. In Markowitz, Krumpe, & Nikutta (2014), we explored multi-timescale variability in line-of-sight X-ray absorbing gas as a function of optical classification. We examined 55 Seyferts monitored with the Rossi X-ray Timing Explorer, and found in 8 objects a total of 12 eclipses, with durations between hours and years. Most clouds are commensurate with the outer portions of the BLR, or the inner regions of infrared-emitting dusty tori. The detection of eclipses in type Is disfavors sharp-edged tori. We provide probabilities to observe a source undergoing an absorption event for both type Is and IIs, yielding constraints in [N_0, sigma, i] parameter space. In Nikutta et al., in prep., we infer that the small cloud angular sizes, as seen from the SMBH, imply the presence of >10^7 clouds in BLR+torus to explain observed covering factors. Cloud size is roughly proportional to distance from the SMBH, hinting at the formation processes (e.g. disk fragmentation). All observed clouds are sub-critical with respect to tidal disruption; self-gravity alone cannot contain them. External forces (e.g. magnetic fields, ambient pressure) are needed to contain them, or otherwise the clouds must be short-lived. Finally, we infer that the radial cloud density distribution behaves as 1/r^{0.7}, compatible with VLTI observations. Our results span both dusty and non-dusty clumpy media, and probe model parameter space complementary to that for short-term eclipses observed with XMM-Newton, Suzaku, and Chandra.

  6. Crab Nebula Variations in Hard X-rays

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    The Crab Nebula was surprisingly variable from 2001-2010, with less variability before 2001 and since mid-2010. We presented evidence for spectral softening from RXTE, Swift/BAT, and Fermi GBM during the mid-2008-2010 flux decline. We see no clear connections between the hard X-ray variations and the GeV flares

  7. Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.; hide

    2009-01-01

    We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.

  8. Long-Term Properties of Accretion Discs in X-ray Binaries. 1; The Variable Third Period in SMC X-1

    NASA Technical Reports Server (NTRS)

    Charles, P. A.; Clarkson, W. I.; Coe, M. J.; Laycock, S.; Tout, M.; Wilson, C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Long term X-ray monitoring data from the RXTE All Sky Monitor (ASM) reveal that the third (superorbital) period in SMC X-1 is not constant but varies between 40-60 days. A dynamic power spectrum analysis indicates that the third period has been present continuously throughout the five years of ASM observations. This period changed smoothly from 60 days to 45 days and then returned to its former value, on a timescale of approximately 1600 days. During the nearly 4 years of overlap between the CGRO & RXTE missions, the simultaneous BATSE hard X-ray data confirm this variation in SMC X-1. Sources of systematic error and possible artefacts are investigated and found to be incapable of reproducing the results reported here. Our disco cry of such an instability in the superorbital period of SMC X-1 is interpreted in the context of recent theoretical studies of warped, precessing accretion discs. We find that the behaviour of SMC X-1 is consistent with a radiation - driven warping model.

  9. An RXTE Study of M87 and the Core of the Virgo Cluster

    NASA Technical Reports Server (NTRS)

    Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.

    1998-01-01

    We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray 7Tming Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT is approximately equal to 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma (sub core) > 1.90 and Gamma (sub jet) > 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.

  10. Discovery of Fast X-ray Oscillations During the 1998 Giant Flare from SGR 1900+14

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.; Watts, A.

    2005-01-01

    We report the discovery of complex high frequency variability during the August 27, 1998 giant flare from SGR 1900+14 using the Rossi X-ray Timing Explorer (RXTE). We detect an approx. equals 84 Hz oscillation (QPO) during a 1 s interval beginning approximately 1 min after the initial hard spike. The amplitude is energy dependent, reaching a maximum of 26% (rms) for photons above 30 keV, and is not detected below 11 keV, with a 90% confidence upper limit of 14% (rms). Remarkably, additional QPOs are detected in the average power spectrum of data segments centered on the rotational phase at which the 84 Hz signal was detected. Two signals, at 53.5 and 155.1 Hz, are strongly detected, while a third feature at 28 Hz is found with lower significance. These QPOs are not detected at other rotational phases. The phenomenology seen in the SGR 1900+14 flare is similar to that of QPOs recently reported by Israel et al. (2005) from the December 27, 2004 flare from SGR 1806-20, suggesting they may have a common origin, perhaps torsional vibrations of the neutron star crust. Indeed, an association of the four frequencies (in increasing order) found in SGR 1900+14 with l = 2, 4, 7, and 13 toroidal modes appears plausible. We discuss our findings in the context of this model and show that if the stars have similar masses then the magnetic field in SGR 1806-20 must be about twice as large as in SGR 1900+14, broadly consistent with estimates from pulse timing.

  11. INTEGRAL Studies of Nonthermal Emission From the Supernova Remnants Cassiopeia A, CTA 1, and MSH 11-61A

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Beckmann, V.; Bykov, A.; Lebrun, F.; Terrier, R.

    2004-01-01

    We present the initial results from our study of the nonthermal continuum emission from the supernova remnants Cassiopeia A, MSB 11-61-4, a d CT-4 1. We used the INTEGRAL Core Program data to conduct this study. During the INTEGRAL mission a significant fraction of the total observing time (e.g. 35% in year one) is allocated to the Core Program and is analyzed under the auspices of the INTEGRAL Science Working Team. We report no statistically significant detections thus far but we will continue to analyze the data as more is taken. The results so far are consistent with previous measurements from e.g. RXTE and ASCA.

  12. Evidence for a QPO structure in the TeV and X-ray light curve during the 1997 high state γ emission of Mkn 501

    NASA Astrophysics Data System (ADS)

    Kranich, D.

    1999-08-01

    The BL Lac Object Mkn 501 was in a state of high activity in the TeV range in 1997. During this time Mkn 501 was observed by all Cherenkov-Telescopes of the HEGRA-Collaboration. Part of the data were also taken during moonshine thus providing a nearly continuous coverage for this object in the TeV-range. We have carried out a QPO analysis and found evidence for a 23 day periodicity. We applied the same analysis on the 'data by dwell' x-ray lightcurve from the RXTE/ASM database and found also evidence for the 23 day periodicity. The combined probability was -.

  13. RXTE Observations of the Seyfert 2 Galaxy MrK 348

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Georgantopoulos, Ioannis; Warwick, Robert S.

    2000-01-01

    We present RXTE monitoring observations of the Seyfert 2 galaxy Mrk 348 spanning a 6 month period. The time-averaged spectrum in the 3-20 keV band shows many features characteristic of a Compton-thin Seyfert 2 galaxy, namely a hard underlying power-law continuum (Gamma approximately equal 1.8) with heavy soft X-ray absorption (N(sub H) approximately 10(exp 23)/sq cm) plus measurable iron K.alpha emission (equivalent width approximately 100 eV) and, at high energy, evidence for a reflection component (R approximately < 1). During the first half of the monitoring period the X-ray continuum flux from Mrk 348 remained relatively steady. However this was followed by a significant brightening of the source (by roughly a factor of 4) with the fastest change corresponding to a doubling of its X-ray flux on a timescale of about 20 days. The flux increase was accompanied by a marked softening of X-ray spectrum most likely attributable to a factor approximately 3 decline in the intrinsic line-of-sight column density. In contrast the iron K.alpha line and the reflection components showed no evidence of variability. These observations suggest a scenario in which the central X-ray source is surrounded by a patchy distribution of absorbing material located within about a light-week of the nucleus of Mrk 348. The random movement of individual clouds within the absorbing screen, across our line of sight, produces substantial temporal variations in the measured column density on timescales of weeks to months and gives rise to the observed X-ray spectral variability. However, as viewed from the nucleus the global coverage and typical thickness of the cloud layer remains relatively constant.

  14. Synchronization Timescale and Accretion Geometry in the Nearly-Synchronous Polar RX J1940.1-1025 (V1432 Aql)

    NASA Astrophysics Data System (ADS)

    Geckeler, R. D.; Staubert, R.

    The magnetic Cataclysmic Variable RX J1940.1-1025 (V1432 Aql) belongs to the four-member subclass of polars (together with V1500 Cyg, BY Cam and RX J2115.7-5840) with a slight (<2 %) but significant non-synchronous rotation of the white dwarf with respect to the secondary. We present the results of our analysis of new CCD and X-ray data (RXTE) of the system. For the first time, we have detected a significant dP_spin/dt for the WD of the order of -10^{-8} s/s with a corresponding synchronization timescale tau_sync of 100 yrs, as expected from the dominant magnetic torque on the WD in this system. The application of our dipole accretion model allowed us to determine the parameter (R_t0'/R_wd)^{1/2}sinβ 3.6 thus constraining the accretion geometry, where R_t0 is the radius, at which the matter is captured by the magnetic field and beta is the colatitude of the magnetic axis. The 'dips' ( 700 s full width duration) in the optical and X-ray light curves, which follow the orbital period of the system, are most probably caused by the secondary, not by the accretion funnel. The RXTE X-ray data show, that a compact X-ray emitting source located near/on the surface of the WD is totally eclipsed by the secondary. It's position shows no significant variation with phase of the beat period. The center of light of the extended (a few WD diameter) optical emission shows a significant change of its position with beat phase with a half-amplitude of 100 s, corresponding to the diameter of the WD.

  15. Understanding The Time Evolution Of Luminosity And Associated Accretion Structures In X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Laycock, Silas

    We propose to analyze the large archive of RXTE, XMM-Newton and Chandra observations of X-ray Binary Pulsars in the Magellanic Clouds and Milky Way. There are some 2000 individual RXTE PCA pointings on the SMC spanning 15 years, and a smaller number on the LMC. Each PCA observation covers a large fraction of the whole SMC (or LMC) population, and we are able to deconvolve the sometimes simultaneous signals to create an unrivaled record of pulsar temporal behavior. More than 200 XMM- Newton and Chandra observations of the SMC/LMC and individual Galactic pulsars provide information at lower luminosity levels. Together, these datasets cover the entire range of variability timescales and accretion regimes in High Mass X-ray Binaries. We will produce a comprehensive library of energy- resolved pulse profiles covering the entire luminosity and spin-period parameter space, and make this available to the community. We will then model these pulse profiles using state of the art techniques to parameterize the morphology, and publish the resulting data-cube. This result will include for example the distribution of offsets between magnetic and spin axes. These products are needed for the next generation of advances in neutron star theory and modeling. The unique dataset will also enable us to determine the upper and lower limits of accretion powered luminosity in a large statistically complete sample of neutron stars, and hence make several direct tests of fundamental NS parameters and accretion physics. In addition the long-duration of the dataset and "whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray Binary (HMXB) populations.

  16. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; West, Donald K. (Technical Monitor)

    2001-01-01

    The goal of this proposal was to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. Observations of the neutron star binaries 4U0614+091, 4U1728-34, 4U1820-30, and Cyg X-2 were carried out with RXTE and BeppoSAX, ASCA, and Chandra (not all simultaneously). In addition, archival data were analyzed for 4U0614+091 and 4U1820-30. This investigation led to publication of three papers in peer-reviewed journals. These are listed below. In addition, the results were presented at several meetings including the two poster presentations listed below. Dr. Santina Piraino visited SAO for 4 months during 2000 to collaborate on analysis of the data from NAG5-8408 and NAG5-9104.

  17. Observatory Science with the NICER X-ray Timing Instrument

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald A.

    2016-04-01

    This presentation is submitted on behalf of the NICER Observatory Science Working Group. NICER will be deployed on the International Space Station later in 2016. The X-ray sensitivity spans 0.2-12 keV, with CCD-like spectral resolution, low background rates, and unprecedented timing accuracy. A Guest Observer (GO) Program has been approved by NASA as one of the proposed Science Enhancement Options, contingent on NICER meeting its Prime Mission Science Objectives. The NICER Science team will observe limited Observatory Science targets (i.e., sources other than neutron stars) in year 1, and GO observations will constitute 50% of the exposures in year 2. Thereafter, NICER will compete for continuation via the NASA Senior Review process. NICER Instrument performance is compared with Missions such as XMM-Newton and RXTE. We briefly highlight the expected themes for Observatory Science relating to accreting black holes on all mass scales, magnetic CVs, active stars, and clusters of galaxies.

  18. The new magnetar Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Ng, C.-Y.; Livingstone, M. A.; Kaspi, V. M.; Cumming, A.; Archibald, R.

    2013-03-01

    On 2011 July 14, a transient X-ray source, Swift J1822.3-1606, was detected by Swift BAT via its burst activities. It was subsequently identified as a new magnetar upon the detection of a pulse period of 8.4 s. Using follow-up RXTE, Swift, and Chandra observations, we have determined a spin-down rate of Ṗ ~ 3 × 10-13, implying a dipole magnetic field of ~ 5 × 1013 G, second lowest among known magnetars, although our timing solution is contaminated by timing noise. The post-outburst flux evolution is well modelled by surface cooling resulting from heat injection in the outer crust, although we cannot rule out other models. We measure an absorption column density similar to that of the open cluster M17 at 10' away, arguing for a comparable distance of ~1.6 kpc. If confirmed, this could be the nearest known magnetar.

  19. Simultaneous Multiwavelength Observations of PKS 2155-304

    NASA Astrophysics Data System (ADS)

    Osterman, M. A.; Miller, H. R.; Marshall, K.; Ryle, W. T.; Aller, H.; Aller, M.; Wagner, S.

    2005-12-01

    The TeV blazar PKS 2155-304 was the subject of an intensive two week optical and infrared observing campaign in August 2004 at the CTIO 0.9m telescope. During this time, simultaneous X-ray data from RXTE was also obtained. Over the course of these observations, two large flares occurred at these wavelengths. In the weeks following the CTIO campaign, more flux increases were observed at X-ray, optical, and radio wavelengths. We present an analysis of the relative sizes, shapes, and time delays of the various flares in order to constrain various models for blazar physics (e.g. shock in jet, accelerating or decelerating jet) assuming a synchrotron self-Compton model for the production of X-ray and higher energy emission. MAO, HRM, KM, and WTR are supported in part by the Program for Extragalactic Astronomy's Research Program Enhancement funds from GSU.

  20. Coordinated Multiwavelength Observations of PKS 0528+134 in Quiescence

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Palma, N.

    2011-01-01

    We report results of an intensive multiwavelength campaign on the prominent high-redshift (z = 2.06) gamma-ray bright blazar PKS 0528+134 in September - October 2009. The campaign was centered on four 30 ksec pointings with XMM-Newton, supplemented with ground-based optical (MDM, Perkins) and radio (UMRAO, Medicina, Metsaehovi, Noto, SMA) observations as well as long-term X-ray monitoring with RXTE and gamma-ray monitoring by Fermi. We find significant variability on 1 day time scales in the optical regime, accompanied by a weak redder-when-brighter trend. X-ray variability is found on longer ( 1 week) time scales, while the Fermi light curve shows no evidence for variability, neither in flux nor spectral index. We constructed four simultaneous spectral energy distributions, which can all be fit satisfactorily with a one-zone leptonic jet model. This work was supported by NASA through XMM-Newton Guest Observer Grant NNX09AV45G.

  1. Did the Crab Pulsar Undergo a Small Glitch in 2006 Late March/Early April?

    NASA Astrophysics Data System (ADS)

    Vivekanand, M.

    2016-08-01

    On 2006 August 23 the Crab Pulsar underwent a glitch, which was reported by the Jodrell Bank and the Xinjiang radio observatories. Neither data are available to the public. However, the Jodrell group publishes monthly arrival times of the Crab Pulsar pulse (their actual observations are done daily), and using these, it is shown that about 5 months earlier the Crab Pulsar probably underwent a small glitch, which has not been reported before. Neither observatory discusses the detailed analysis of data from 2006 March to August; either they may not have detected this small glitch, or they may have attributed it to timing noise in the Crab Pulsar. The above result is verified using X-ray data from RXTE. If this is indeed true, this is probably the smallest glitch observed in the Crab Pulsar so far, whose implications are discussed. This work addresses the confusion possible between small-magnitude glitches and timing noise in pulsars.

  2. The Broad Iron K-alpha line of Cygnus X-1 as Seen by XMM-Newton in the EPIC-pn Modified Timing Mode

    NASA Technical Reports Server (NTRS)

    Duro, Refiz; Dauser, Thomas; Wilms, Jorn; Pottschmidt, Katja; Nowak, Michael A.; Fritz, Sonja; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Reynolds, Christopher S.; Staubert, Rudiger

    2011-01-01

    We present the analysis of the broadened, flourescent iron K(alpha) line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-I. The XMM-Newton data were taken in a modified version of the Timing Mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal to noise ratio in the Fe K(alpha) band. We find that the best-fit spectrum consists of the sum of an exponentially cut-off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe K(alpha) feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to maximally rotating. Key words. X-rays: binaries - black hole physics - gravitation

  3. DID THE CRAB PULSAR UNDERGO A SMALL GLITCH IN 2006 LATE MARCH/EARLY APRIL?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivekanand, M., E-mail: viv.maddali@gmail.com

    2016-08-01

    On 2006 August 23 the Crab Pulsar underwent a glitch, which was reported by the Jodrell Bank and the Xinjiang radio observatories. Neither data are available to the public. However, the Jodrell group publishes monthly arrival times of the Crab Pulsar pulse (their actual observations are done daily), and using these, it is shown that about 5 months earlier the Crab Pulsar probably underwent a small glitch, which has not been reported before. Neither observatory discusses the detailed analysis of data from 2006 March to August; either they may not have detected this small glitch, or they may have attributedmore » it to timing noise in the Crab Pulsar. The above result is verified using X-ray data from RXTE . If this is indeed true, this is probably the smallest glitch observed in the Crab Pulsar so far, whose implications are discussed. This work addresses the confusion possible between small-magnitude glitches and timing noise in pulsars.« less

  4. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    NASA Astrophysics Data System (ADS)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  5. The Spin Pulse of the Intermediate Polar V1062 Tauri

    NASA Technical Reports Server (NTRS)

    Hellier, Coel; Beardmore, A. P.; Mukai, Koji; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We combine ASCA and RXTE data of V1062 Tau to confirm the presence of a 62-min X-ray pulsation. We show that the pulsation is caused largely by the variation of dense partial absorption, in keeping with current models of accretion onto magnetic white dwarfs. Further parameterisation of the spin pulse is, however, hampered by ambiguities in the models.

  6. The Fall and the Rise of X-Rays from Dwarf Novae in Outburst: RXTE Observations of VW Hydri and WW Ceti

    NASA Technical Reports Server (NTRS)

    Fertig, D.; Mukai, K.; Nelson, T.; Cannizzo, J. K.

    2011-01-01

    In a dwarf nova, the accretion disk around the white dwarf is a source of ultraviolet, optical, and infrared photons, but is never hot enough to emit X-rays. Observed X-rays instead originate from the boundary layer between the disk and the white dwarf. As the disk switches between quiescence and outburst states, the 2-10 keV X-ray flux is usually seen to be anti-correlated with the optical brightness. Here we present RXTE monitoring observations of two dwarf novae, VW Hyi and WW Cet, confirming the optical/X-ray anti-correlation in these two systems. However, we do not detect any episodes of increased hard X-ray flux on the rise (out of two possible chances for WW Cet) or the decline (two for WW Cet and one for VW Hyi) from outburst, attributes that are clearly established in SS Cyg. The addition of these data to the existing literature establishes the fact that the behavior of SS Cyg is the exception, rather than the archetype as is often assumed. We speculate that only dwarf novae with a massive white dwarf may show these hard X-ray spikes.

  7. Discovery of a Transition to Global Spin-Up in EXO 2030+375

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Fabregat, Juan; Coburn, Wayne

    2005-01-01

    EXO 2030+375, a 42 second transient X-ray pulsar with a Be star companion, has been observed to undergo an outburst at nearly every periastron passage for the last 13.5 years. From 1994 through 2002, the global trend in the pulsar spin frequency was spin-down. Using RXTE data from 2003 September, we have observed a transition to global spin-up in EXO 203G+375. Although the spin frequency observations are sparse, the relative spin-up between 2002 June and 2003 September observations along with an overall brightening of the outbursts since mid 2002 observed with the RXTE ASM accompanied by an increase in density of the disk indicated by infrared magnitudes suggest that the pattern observed with BATSE of a roughly constant spin frequency, followed by spin-up, followed by spin-down is repeating. If so this pattern has approximately an 11 year period, similar to the 15 plus or minus 3 year period derived by Wilson et al. (2002) for the precession period of a one-armed oscillation in the Be disk. If this pattern is indeed repeating, we predict a transition from spin-up to spin-down in 2005.

  8. Discovery of a Be/X-Ray Binary Consistent with the Location of GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen; Weisskopf, Martin; Finger, Mark H.; Coe, M. J.; Greiner, Jochen; Reig, Pablo; Papamastorakis, Giannis

    2005-01-01

    GRO J2058+42 is a 195 s transient X-ray pulsar discovered in 1995 with BATSE. In 1996, RXTE located GRO J2058+42 to a 90% confidence error circle with a 4 radius. On 2004 February 20, the region including the error circle was observed with Chandra ACIS-I. No X-ray sources were detected within the error circle; however, two faint sources were detected in the ACIS-I field of view. We obtained optical observations of the brightest object, CXOU J205847.5+414637, which had about 64 X-ray counts and was just 013 outside the error circle. The optical spectrum contains a strong Ha line and corresponds to an inhued object in the Two Micron All Sky Survey catalog, indicating a Be/X-ray binary system. Pulsations were not detected in the Chandra observations, but similar flux variations and distance estimates suggest that CXOU J205847.5+414637 and GRO J2058+42 are the same object. We present results from the Chandra observation, optical observations, new and previously unreported RXTE observations, and a reanalysis of a ROSAT observation.

  9. Extremely Rapid X-Ray Flares of TeV Blazars in the RXTE Era

    NASA Astrophysics Data System (ADS)

    Zhu, S. F.; Xue, Y. Q.; Brandt, W. N.; Cui, W.; Wang, Y. J.

    2018-01-01

    Rapid flares from blazars in very high-energy (VHE) γ-rays challenge the common understanding of jets of active galactic nuclei (AGNs). The same population of ultra-relativistic electrons is often thought to be responsible for both X-ray and VHE emission. We thus systematically searched for X-ray flares at sub-hour timescales of TeV blazars in the entire Rossi X-ray Timing Explorer archival database. We found rapid flares from PKS 2005‑489 and S5 0716+714, and a candidate rapid flare from 1ES 1101‑232. In particular, the characteristic rise timescale of PKS 2005‑489 is less than half a minute, which, to our knowledge, is the shortest among known AGN flares at any wavelengths. The timescales of these rapid flares indicate that the size of the central supermassive black hole is not a hard lower limit on the physical size of the emission region of the flare. PKS 2005‑489 shows possible hard lags in its flare, which could be attributed to particle acceleration (injection); its flaring component has the hardest spectrum when it first appears. For all flares, the flaring components show similar hard spectra with {{Γ }}=1.7{--}1.9, and we estimate the magnetic field strength B ∼ 0.1–1.0 G by assuming synchrotron cooling. These flares could be caused by inhomogeneity of the jets. Models that can only produce rapid γ-ray flares but little synchrotron activity are less favorable.

  10. Quasi-periodic oscillations in short recurring bursts of magnetars SGR 1806–20 and SGR 1900+14 observed with RXTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huppenkothen, D.; Heil, L. M.; Watts, A. L.

    2014-11-10

    Quasi-periodic oscillations (QPOs) observed in the giant flares of magnetars are of particular interest due to their potential to open up a window into the neutron star interior via neutron star asteroseismology. However, only three giant flares have been observed. We therefore make use of the much larger data set of shorter, less energetic recurrent bursts. Here, we report on a search for QPOs in a large data set of bursts from the two most burst-active magnetars, SGR 1806-20 and SGR 1900+14, observed with Rossi X-ray Timing Explorer. We find a single detection in an averaged periodogram comprising 30 burstsmore » from SGR 1806–20, with a frequency of 57 Hz and a width of 5 Hz, remarkably similar to a giant flare QPO observed from SGR 1900+14. This QPO fits naturally within the framework of global magneto-elastic torsional oscillations employed to explain giant flare QPOs. Additionally, we uncover a limit on the applicability of Fourier analysis for light curves with low background count rates and strong variability on short timescales. In this regime, standard Fourier methodology and more sophisticated Fourier analyses fail in equal parts by yielding an unacceptably large number of false-positive detections. This problem is not straightforward to solve in the Fourier domain. Instead, we show how simulations of light curves can offer a viable solution for QPO searches in these light curves.« less

  11. An Expanded Rossi X-Ray Timing Explorer Survey of X-Ray Variability in Seyfert 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Markowitz, A.; Edelson, R.

    2004-12-01

    The first seven years of RXTE monitoring of Seyfert 1 active galactic nuclei have been systematically analyzed to yield five homogeneous samples of 2-12 keV light curves, probing hard X-ray variability on successively longer durations from ~1 day to ~3.5 yr. The 2-10 keV variability on timescales of ~1 day, as probed by ASCA, is included. All sources exhibit stronger X-ray variability toward longer timescales, but the increase is greater for relatively higher luminosity sources. Variability amplitudes are anticorrelated with X-ray luminosity and black hole mass, but amplitudes saturate and become independent of luminosity or black hole mass toward the longest timescales. The data are consistent with the models of power spectral density (PSD) movement described by Markowitz and coworkers and McHardy and coworkers, whereby Seyfert 1 galaxies' variability can be described by a single, universal PSD shape whose break frequency scales with black hole mass. The best-fitting scaling relations between variability timescale, black hole mass, and X-ray luminosity imply an average accretion rate of ~5% of the Eddington limit for the sample. Nearly all sources exhibit stronger variability in the relatively soft 2-4 keV band compared to the 7-12 keV band on all timescales. There are indications that relatively less luminous or less massive sources exhibit a greater degree of spectral variability for a given increase in overall flux.

  12. Distance Estimation for Eclipsing X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Paul, B.; Raichur, H.

    2006-06-01

    Recent interest in eclipsing binaries as distance indicators leads naturally into direct distance estimation for X-ray pulsars by combination of pulse arrival times, radial velocities, X-ray eclipse duration, and spectra. Optical light curves may help in some cases by measuring tides and irradiation, although dynamical tides in eccentric systems limit light curve usefulness. Pulse arrivals give an absolute scale and also orbit shape and orientation, which may be poorly known from radial velocities. For example, orbital eccentricity of 0.09 is known from Vela X1 pulse arrivals, although optical velocities are too noisy to measure eccentricity accurately. Combined pulse and optical velocity data give mass information. A lower limit to sin i from eclipse duration sets a lower limit to R2, and for the general eccentric case. A mass ratio sets lobe size and thus an upper limit to R2, so boxing R2 within a narrow range may be possible. T2 can be assessed from spectra so EB distance estimation can work if magnitude is known in one or more standard bands such as B or V. Realistic distance uncertainties are explored. In regard to new observations, Vela X-1 was observed by RXTE over about nine days in January 2005, including an eclipse of about 3.5 days. We extracted the light curves with time resolution 0.125 s. Spin period measurements by the Chi square criterion show Doppler variation with orbital phase and mean spin period 283.5 s. Pulse profiles of that period were averaged in sets of 10 at 138 phases. Cross correlation for the first 40 pulses show the expected Doppler arrival time variation. As the Vela X-1 pulse period is large compared to light travel time across the orbit, the pulses are already phase connected. Support is by U.S. National Science Foundation grant 0307561.

  13. Comparison of the X-Ray and Radio Light Curves of Quasar PKS 1510--089

    NASA Technical Reports Server (NTRS)

    Aller, M. F.; Marscher, A. P.; Marchenko-Jorstad, S. G.; McHardy, I. M.; Aller, H. D.

    1998-01-01

    We present results for the X-ray-bright superluminal AGN PKS 1510-089 (z=0.36) monitored weekly with the Rossi X-Ray Timing Explorer for the past four years in order to study the origin of X-ray emission from this extremely variable blazer. These RXTE data are compared with weekly cm-band flux and polarization observations from the Michigan Diameter telescope, to identify correlated activity and associated frequency-dependent time delays for constraining X-ray emission models; and bimonthly 7mm VLBA total and linearly polarized intensity imaging to identify temporal associations between X-ray events and the ejection of superluminal components and disturbances in the magnetic field, to test if the X-ray energy release is related to changes in the inner jet flow. Both the X-ray (2-20 keV) and radio flux are highly variable on timescales of weeks. The VLBA mas structure is dominated by a bright core with a weak jet; both the ejection of very fast superluminal knots and changes in the fractional polarization and EVPA of the core on timescales of one to four months are identified. Two outbursts in 1997 are well-resolved in both the centimeter and X-ray bands. Both the strong temporal association and the similar outburst shape support a causal relation, and a discrete cross-correlation analysis identifies that the X-ray lags the radio by 16 days during the bursts. Starting in 1998 the behavior changes: the correlation is weaker with the X-ray possibly leading the radio by six days. During the full time window there is a correlation between bands as expected if the radio photons are upscattered to X-ray energies. The time correlations and difference between the flat X-ray spectral index (0.0 <= alpha <= 0.5 where F(sub v) is proportional to v(exp -alpha)), and the mm-wave synchrotron spectrum (alpha = 0.8) are discussed within the framework of viable SSC models.

  14. X-ray Bursts in Neutron Star and Black Hole Binaries from USA Data: Detections and Upper Limits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournear, Derek M

    Narayan and Heyl (2002) have developed a theoretical framework to convert suitable upper limits on type I X-ray bursts from accreting black hole candidates (BHCs) into evidence for an event horizon. However, no appropriate observational limit exists in the literature. In this paper we survey 2101.2 ks of data from the Unconventional Stellar Aspect (USA) X-ray timing experiment and 5142 ks of data from the Rossi X-ray Timing Explorer (RXTE) experiment to obtain a formal constraint of this type. 1122 ks of neutron star data yield a population averaged mean burst rate of 1.69 x 10{sup -5} bursts s{sup -1}more » while 6081 ks of BHC data yield a 95% confidence level upper limit of 4.9 x 10{sup -7} bursts s{sup -1}. This is the first published limit of this type for Black Hole Candidates. Applying the theoretical framework of Narayan and Heyl (2002) we calculate regions of unstable luminosity where the neutron stars are expected to burst and the BHCs would be expected to burst if they had a surface. In this unstable luminosity region 464 ks of neutron star data yield an averaged mean burst rate of 4.1 x 10{sup -5} bursts s{sup -1} and 1512 ks of BHC data yield a 95% confidence level upper limit of 2.0 x 10{sup 6} bursts s{sup -1}, and a limit of > 10 {sigma} that BHCs do not burst with a rate similar to the rate of neutron stars in these unstable regions. This gives further evidence that BHCs do not have surfaces unless there is some new physics occurring on their surface.« less

  15. VizieR Online Data Catalog: WATCHDOG: an all-sky database of Galactic BHXBs (Tetarenko+, 2016)

    NASA Astrophysics Data System (ADS)

    Tetarenko, B. E.; Sivakoff, G. R.; Heinke, C. O.; Gladstone, J. C.

    2016-03-01

    With the advent of more sensitive all-sky instruments, the transient universe is being probed in greater depth than ever before. Taking advantage of available resources, we have established a comprehensive database of black hole (and black hole candidate) X-ray binary (BHXB) activity between 1996 and 2015 as revealed by all-sky instruments, scanning surveys, and select narrow-field X-ray instruments on board the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), Monitor of All-Sky X-ray Image (MAXI), Rossi X-ray Timing Explorer (RXTE), and Swift telescopes; the Whole-sky Alberta Time-resolved Comprehensive black-Hole Database Of the Galaxy or WATCHDOG. Over the past two decades, we have detected 132 transient outbursts, tracked and classified behavior occurring in 47 transient and 10 persistently accreting BHs, and performed a statistical study on a number of outburst properties across the Galactic population. We find that outbursts undergone by BHXBs that do not reach the thermally dominant accretion state make up a substantial fraction (~40%) of the Galactic transient BHXB outburst sample over the past ~20 years. Our findings suggest that this "hard-only" behavior, observed in transient and persistently accreting BHXBs, is neither a rare nor recent phenomenon and may be indicative of an underlying physical process, relatively common among binary BHs, involving the mass-transfer rate onto the BH remaining at a low level rather than increasing as the outburst evolves. We discuss how the larger number of these "hard-only" outbursts and detected outbursts in general have significant implications for both the luminosity function and mass-transfer history of the Galactic BHXB population. (9 data files).

  16. A Burst and Simultaneous Short-Term Pulsed Flux Enhancement From The Magnetar Candidate 1E 1048.1-5937

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Kaspi, Victoria M.; Woods, Peter M.

    2006-01-01

    We report on the 2004 June 29 X-ray burst detected from the direction of the AXP 1E 1048.1-5937 using the RXTE. We find a simultaneous increase of approx. 3.5 times the quiescent value in the 2-10 keV pulsed flux of 1E 1048.1-5937 during the tail of the burst, which identifies the AXP as the burst s origin. The burst was overall very similar to the two others reported from the direction of this source in 2001. The unambiguous identification of 1E 1048.1-5937 as the burster here confirms that it was the origin of the 2001 bursts as well. The epoch of the burst peak was very close to the arrival time of 1E 1048.1-5937 s pulse peak. The burst exhibited significant spectral evolution, with the trend going from hard to soft. Although the average spectrum of the burst was comparable in hardness (Lambda approx. 1.6) to those,of the 2001 bursts, the peak of this burst was much harder (Lambda approx. 0.3). During the 11 days following the burst, the AXP was observed further with RXTE, XMM-Newton, and Chandra. Pre- and post-burst observations revealed no change in the total flux or spectrum of the quiescent emission. Comparing all three bursts detected thus far from this source, we find that this event was the most fluent (>3.3 x 10(exp-8 ergs/sq cm) in the 2-20 keV band), had the highest peak flux (59+/-9 x 10(exp -10)ergs/s/sq cm) in the 2-20 keV band), and had the longest duration (>699 s). The long duration of the burst difFerentiates it from SGR bursts, which have typical durations of approx.0.1 s. Bursts that occur preferentially at pulse maximum, have fast rises, and long X-tails containing the majority of the total burst energy have been seen uniquely from AXPs. The marked differences between AXP and SGRs bursts may provide new clues to help understand the physical differences between these objects.

  17. The intermediate polar GK Persei: An unstable relation of the X-ray and the optical intensities in a series of outbursts

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    2015-03-01

    Context. GK Per is an intermediate polar that has been displaying dwarf nova outbursts since the middle of the twentieth century. Aims: I analyzed a series of such outbursts in the optical and X-ray bands. I pay attention to the relation of intensities of the optical and X-ray emissions, and its reproducibility in a series of these consecutive outbursts. Methods: This analysis uses the data from the BAT/Swift, ASM/RXTE, AAVSO, and AFOEV databases. It investigates the relation of the time evolution of the profiles of outbursts in the individual bands (hard X-ray, medium/hard X-ray, and optical). Results: This analysis shows that the X-ray intensity steeply rises only in the start of the optical outburst and steeply declines only when the optical outburst comes to its end. However, the 1.5-50 keV band intensity saturates and balances on a plateau during the outburst. (The longer the outburst, the longer its plateau.) The peak X-ray intensities of this series display a significantly narrower range than the optical ones (a factor of about two versus a factor of about eight). This implies a discrepancy between the mass flow through the disk and the production of the X-ray emission via bremsstrahlung at the polar caps of the white dwarf. This discrepancy is the largest in the time of the peak optical intensity when the whole disk (or at least its inner part) is in the hot state and the flow of matter through the disk is the greatest. This study shows that a series of outbursts constitutes more general properties of this discrepancy. I argue that the saturation of the X-ray luminosity in outburst cannot be caused by a dominant increase in X-ray absorption. In the interpretation, large structural changes of the accreting regions at the magnetic poles of the white dwarf occur during the outburst. A buried shock proposed by some authors for polars is also promising for explaining the X-ray light curves of outbursts of GK Per. This research made use of the BAT/Swift, ASM/RXTE, AAVSO, and AFOEV databases.

  18. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, A.; André, M.; Anton, G.

    2017-04-01

    ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008–2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional andmore » temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.« less

  19. Low-Luminosity AGN As Analogues of Galactic Black Holes in the Low/Hard State: Evidence from X-Ray Timing of NGC 4258

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Uttley, P.

    2005-01-01

    We present a broadband power spectral density function (PSD) measured from extensive RXTE monitoring data of the low-luminosity AGN NGC 4258, which has an accurate, maser-determined black hole mass of (3.9 plus or minus 0.1) x 10(exp 7) solar mass. We constrain the PSD break time scale to be greater than 4.5 d at greater than 90% confidence, which appears to rule out the possibility that NGC 4258 is an analogue of black hole X-ray binaries (BHXRBs) in the high/soft state. In this sense, the PSD of NGC 4258 is different to that of some more-luminous Seyferts, which appear similar to the PSDs of high/soft state X-ray binaries. This result supports previous analogies between LLAGN and X-ray binaries in the low/hard state based on spectral energy distributions, indicating that the AGN/BHXRB analogy is valid across a broad range of accretion rates.

  20. Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2017-04-01

    ANTARES is currently the largest neutrino telescope operating in the Northern Hemisphere, aiming at the detection of high-energy neutrinos from astrophysical sources. Neutrino telescopes constantly monitor at least one complete hemisphere of the sky, and are thus well-suited to detect neutrinos produced in transient astrophysical sources. A time-dependent search has been applied to a list of 33 X-ray binaries undergoing high flaring activities in satellite data (RXTE/ASM, MAXI and Swift/BAT) and during hardness transition states in the 2008-2012 period. The background originating from interactions of charged cosmic rays in the Earth's atmosphere is drastically reduced by requiring a directional and temporal coincidence with astrophysical phenomena. The results of this search are presented together with comparisons between the neutrino flux upper limits and the neutrino flux predictions from astrophysical models. The neutrino flux upper limits resulting from this search limit the jet parameter space for some astrophysical models.

  1. Day-Scale Variability of 3C 279 and Searches for Correlations in Gamma-Ray, X-Ray and Optical Bands

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Villata, M.; Balonek, T. J.; Bertsch, D. L.; Bock, H.; Boettcher, M.; Carini, M. T.; Collmar, W.; DeFrancesco, G.; Ferrera, E. C.; hide

    2001-01-01

    Light curves of 3C 279 are presented in optical (R-band), X-rays (RXTE/PCA), and gamma rays (CGRO/EGRET) for 1999 Jan-Feb and 2000 Jan-Mar. During both of those epochs the gamma-ray levels were high, and all three observed bands demonstrated substantial variation, on time scales as short as one day. Correlation analyses provided no consistent pattern, although a rather significant optical/gamma-ray correlation was seen in 1999, with a gamma-ray lag of approximately 2.5 days, and there are other suggestions of correlations in the light curves. For comparison, correlation analysis is also presented for the gamma-ray and X-ray light curves during the large gamma-ray flare in 1996 Feb and the two gamma-bright weeks leading up to it; the correlation at that time was strong, with a gamma-ray/X-ray offset of no more than one day.

  2. On the X-Ray Variability of Magnetar 1RXS J170849.0-400910

    NASA Technical Reports Server (NTRS)

    Scholz, P.; Archibald, R. F.; Kaspi, V. M.; Ng, C.-Y.; Beardmore, A. P.; Gehrels, C.; Kennea, J. A.

    2014-01-01

    We present a long-term X-ray flux and spectral analysis for 1RXS J170849.0-400910 using Swift/XRT spanning over 8 years from 2005-2013. We also analyze two observations from Chandra and XMM in the period from 2003-2004. In this 10-yr period, 1RXS J170849.0-400910 displayed several rotational glitches. Previous studies have claimed variations in the X-ray emission associated with some of the glitches. From our analysis we find no evidence for significant X-ray flux variations and evidence for only low-level spectral variations. We also present an updated timing solution for 1RXS J170849.0-400910, from RXTE and Swift observations, which includes a previously unreported glitch at MJD 56019. We discuss the frequency and implications of radiatively quiet glitches in magnetars.

  3. A New, Low Braking Index for the LMC Pulsar B0540-69

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Guillemot, L.; Harding, A. K.; Martin, P.; Smith, D. A.

    2016-01-01

    We report the results of a 16-month monitoring campaign using the Swift satellite of PSR 0540, a young pulsar in the Large Magellanic Cloud. Phase connection was maintained throughout the campaign so that a reliable ephemeris could be determined, and the length of the campaign is adequate to accurately determine the spin frequency and its first and second derivatives. The braking index n is 0.031 +/- 0.013 (90% confidence), a value much lower than previously reported for 0 540 and almost all other young pulsars. We use data from the extensive monitoring campaign with RXTE to showt hat timing noise is unlikely to significantly affect the measurement. This is the first measurement of the braking index in the pulsars recently discovered high spin-down state. We discuss possible mechanisms for producing the low braking index.

  4. Two Decades in the Life of EXO 2030+375

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Jenke, Pete; Finger, Mark; Camero-Arranz, Ascension; Fabregat, Juan; Reig, Pablo; Steele, Iain

    2011-01-01

    EXO 2030+375, a 42-s accreting pulsar in a 46-day orbit around a Be star, has undergone a detected outburst at nearly every periastron passage since 1991. It has been monitored with BATSE, RXTE, and Fermi/GBM. We will present preliminary results of long-term monitoring, including a long-term frequency history, long-term pulsed flux measurements, and available long ]term optical/ir monitoring results.

  5. State Transition and Flaring Activity of IGR J17464-3213/H1743-322 with INTEGRAL SPI

    NASA Astrophysics Data System (ADS)

    Joinet, A.; Jourdain, E.; Malzac, J.; Roques, J. P.; Schönfelder, V.; Ubertini, P.; Capitanio, F.

    2005-08-01

    IGR J17464-3213, already known as the HEAO 1 transient source H1743-322, has been detected during a state transition by INTEGRAL SPI. We describe the spectral evolution and flaring activity of IGR J17464-3213/H1743-322 from 2003 March 21 to 2003 April 22. During the first part, the source followed a continuous spectral softening, with the peak of the spectral energy distribution shifting from 100 keV down to ~a few keV. However, the thermal disk and the hard X-ray components had a similar intensity, indicating that the source was in an intermediate state throughout our observations and evolving toward the soft state. In the second part of our observations, the RXTE ASM and INTEGRAL SPI light curves showed a strong flaring activity. Two flare events lasting about 1 day each have been detected with SPI and are probably due to instabilities in the accretion disk associated with the state transition. During these flares, the low (1.5-12 keV) and high (20-200 keV) energy fluxes monitored with the RXTE ASM and INTEGRAL SPI are correlated, and the spectral shape (above 20 keV) remains unchanged while the luminosity increases by a factor greater than 2.

  6. Very high energy outburst of Markarian 501 in May 2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Archer, A.

    We observed the very high energy (VHE; E> 100 GeV) blazar Markarian 501 between April 17 and May 5 (MJD 54 938–54 956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE γ-ray activity was detected on May 1st with Whipple and VERITAS, when the flux (E> 400 GeV) increased to 10 times the pre-flare baseline flux (3.9 × 10 -11 ph cm -2 s -1), reaching five times the flux of the Crab Nebula. Furthermore, this coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15°. Thismore » VHE flare showed a fast flux variation with an increase of a factor ~4 in 25 min, and a falling time of ~50 min. We also present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.« less

  7. Very high energy outburst of Markarian 501 in May 2009

    DOE PAGES

    Aliu, E.; Archambault, S.; Archer, A.; ...

    2016-10-14

    We observed the very high energy (VHE; E> 100 GeV) blazar Markarian 501 between April 17 and May 5 (MJD 54 938–54 956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE γ-ray activity was detected on May 1st with Whipple and VERITAS, when the flux (E> 400 GeV) increased to 10 times the pre-flare baseline flux (3.9 × 10 -11 ph cm -2 s -1), reaching five times the flux of the Crab Nebula. Furthermore, this coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15°. Thismore » VHE flare showed a fast flux variation with an increase of a factor ~4 in 25 min, and a falling time of ~50 min. We also present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.« less

  8. Very High Energy Outburst of Markarian 501 in May 2009

    NASA Technical Reports Server (NTRS)

    Aliu, E.; Archambault, S.; Archer, A.; Arlen, T.; Aune, T.; Barnacka, A.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; hide

    2016-01-01

    The very high energy (VHE; E great than 100 GeV) blazar Markarian 501 was observed between April 17 and May 5 (MJD 5493854956), 2009, as part of an extensive multi-wavelength campaign from radio to VHE. Strong VHE -ray activity was detected on May 1st with Whipple and VERITAS, when the flux (E greater than 400 GeV) increased to 10 times the pre-flare baseline flux (3.9 x 10(exp -11 ph cm(exp -2 S(exp -1), reaching five times the flux of the Crab Nebula. This coincided with a decrease in the optical polarization and a rotation of the polarization angle by 15deg. This VHE flare showed a fast flux variation with an increase of a factor approximately 4 in 25 min, and a falling time of approximately 50 min. We present the observations of the quiescent state previous to the flare and of the high state after the flare, focusing on the flux and spectral variability from Whipple, VERITAS, Fermi-LAT, RXTE, and Swift combined with optical and radio data.

  9. RXTE All-Sky Slew Survey. Catalog of X-Ray Sources at B Greater Than 10 deg

    NASA Technical Reports Server (NTRS)

    Revnivtsev, M.; Sazonov, S.; Jahoda, K.; Gilfanov, M.

    2004-01-01

    We report results of a serendipitous hard X-ray (3-20 keV), nearly all-sky (absolute value of b greater than l0 deg.) survey based on RXTE/PCA observations performed during satellite reorientations in 1996-2002. The survey is 80% (90%) complete to a 4(sigma) limiting flux of approx. = 1.8 (2.5) x 10(exp -l1) erg/s sq cm in the 3-20 keV band. The achieved sensitivity in the 3-8 keV and 8-20 keV subbands is similar to and an order of magnitude higher than that of the previously record HEAO-1 A1 and HEAO-1 A4 all-sky surveys, respectively. A combined 7 x 10(exp 3) sq. deg area of the sky is sampled to flux levels below l0(exp -11) erg/ s sq cm (3-20 keV). In total 294 sources are detected and localized to better than 1 deg. 236 (80%) of these can be confidently associated with a known astrophysical object; another 22 likely result from the superposition of 2 or 3 closely located known sources. 35 detected sources remain unidentified, although for 12 of these we report a likely soft X-ray counterpart from the ROSAT all-sky survey bright source catalog. Of the reliably identified sources, 63 have local origin (Milky Way, LMC or SMC), 64 are clusters of galaxies and 100 are active galactic nuclei (AGN). The fact that the unidentified X-ray sources have hard spectra suggests that the majority of them are AGN, including highly obscured ones (N(sub H) greater than l0(exp 23)/sq cm). For the first time we present a log N-log S diagram for extragalactic sources above 4 x l0(exp -12) erg/ s sq cm at 8-20 keV. Key words. cosmo1ogy:observations - diffuse radiation - X-rays general

  10. RESULTS FROM LONG-TERM OPTICAL MONITORING OF THE SOFT X-RAY TRANSIENT SAX J1810.8-2609

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Ling; Di Stefano, Rosanne; Wyrzykowski, Lukasz, E-mail: zhul04@mails.tsinghua.edu.cn

    2012-12-20

    In this paper, we report the long-term optical observation of the faint soft X-ray transient SAX J1810.8-2609 from the Optical Gravitational Lensing Experiment (OGLE) and Microlensing Observations in Astrophysics (MOA). We have focused on the 2007 outburst, and also cross-correlated its optical light curves and quasi-simultaneous X-ray observations from RXTE/Swift. Both the optical and X-ray light curves of the 2007 outburst show multi-peak features. Quasi-simultaneous optical/X-ray luminosity shows that both the X-ray reprocessing and viscously thermal emission can explain the observed optical flux. There is a slight X-ray delay of 0.6 {+-} 0.3 days during the first peak, while themore » X-ray emission lags the optical emission by {approx}2 days during the rebrightening stage, which suggests that X-ray reprocessing emission contributes significantly to the optical flux in the first peak, but the viscously heated disk origin dominates it during rebrightening. This implies variation of the physical environment of the outer disk, with even the source remaining in a low/hard state during the entire outburst. The {approx}2 day X-ray lag indicates a small accretion disk in the system, and its optical counterpart was not detected by OGLE and MOA during quiescence, which constrained it to be fainter than M{sub I} = 7.5 mag. There is a suspected short-time optical flare detected at MJD = 52583.5 with no detected X-ray counterpart; this single flux increase implies a magnetic loop reconnection in the outer disk, as proposed by Zurita et al. The observations cover all stages of the outburst; however, due to the low sensitivity of RXTE/ASM, we cannot conclude whether it is an optical precursor at the initial rise of the outburst.« less

  11. AXTAR: Mission Design Concept

    NASA Technical Reports Server (NTRS)

    Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.; hide

    2010-01-01

    The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study

  12. HIgh-speed flickering and jet formation in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Lasso Cabrera, Nestor M.

    In this dissertation we study the different phenomena of accretion and relativistic jet formation observed in the microquasar GRS 1915+105. Our final goal is to understand the processes producing the relativistic outflows, as well as their relation with the inflow mechanisms. Initially, we analyze X-ray emission (RXTE PCA and HEXTE) from GRS 1915+105 during and after an X-ray/radio plateau epoch. The high signal-to-noise levels in our observations allow the first published measurement of quasi-periodic oscillations (QPO) RMS values using RXTE/HEXTE data. We find that the spectral energy distribution of the QPO strongly indicates an origin in the hard non-thermal emission component, suggesting a second spectral component to the hard non-thermal X-ray emission. Given the association of the QPOs with the observed jet activity in GRS 1915+105, we suggest that this additional non-thermal X-ray spectral component may be directly linked to the relativistic jet formation process. We also analyze simultaneous X-ray (RXTE/PCA) and near-IR (Palomar 200-inch) observations from the microquasar GRS 1915+105 during two similar low/hard state epochs and two different high X-ray variability epochs -- X-ray classes alpha and beta. The X-ray to IR cross-correlation function (CCF) shows that both low/hard state observations as well as the class beta observations present little or null interaction between the X-ray and IR fluxes, while the class alpha observations present a strong correlation between the X-ray (inner accretion disk) and the IR (compact jet) light curves. We also use the X-ray to IR CCF to study the relative evolution of the two signals and find no significant evolutionary track in any of the epochs. Simulated IR light curves confirm the results of the CCF, showing a flickering IR emission during the class beta high X-ray variability period that strengthens ˜10 s after every X-ray subflare. The existence of a flickering IR emission with frequencies in the range 0.1 to 0.3 Hz that is strongly correlated with the X-ray emission allow us to place the origin of the IR emission in a synchrotron emitting relativistic jet with the IR launch site located at ˜0.02 AU from the accretion disk. These results will be especially relevant for constraining the current models of relativistic jet production in GRS 1915+105 and other microquasars. The second part of this work is dedicated to overcoming the limitation in the acquisition of high time resolution infrared data of microquasars. We introduce the Canarias InfraRed Camera Experiment (CIRCE), a new IR instrument for the 10-meter Gran Telescopio Canarias (GTC). Among other properties, CIRCE is specifically designed for the observation of relativistic jet events in microquasars, and along with the capabilities of the GTC, will enable us to observe any microquasar in the J, H, and K IR bands, with a time resolution of ˜12 Hz and a signal-to-noise level never achieved before. We plan to use CIRCE in the future to confirm the final results of the jet production study of this dissertation. We present the electronics design of CIRCE, including the housekeeping electronics, the Logic Control Unit (LCU), and the readout electronics. We also present the result of the analysis of the image quality tests performed on the CIRCE optical system.

  13. Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone

    2009-01-01

    Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.

  14. When a Standard Candle Flickers

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Case, G. L.; Chaplin, V.; Connaughton, V.; Finger, M. H.; hide

    2010-01-01

    The Crab is the only bright steady source in the X-ray sky. The Crab consists of a pulsar wind nebula, a synchrotron nebula, and a cloud of expanding ejecta. On small scales, the Crab is extremely complex and turbulent. X-ray astronomers have often used the Crab as a standard candle to calibrate instruments, assuming its spectrum and overall flux remains constant over time. Four instruments (Fermi/GBM, RXTE/PCA, Swift/BAT, INTEGRAL/ISGRI) show a approx.5% (50 m Crab) decline in the Crab from 2008-2010. This decline appears to be larger with increasing energy and is not present in the pulsed flux, implying changes in the shock acceleration, electron population or magnetic field in the nebula. The Crab is known to be dynamic on small scales, so it is not too surprising that its total flux varies as well. Caution should be taken when using the Crab for in-orbit calibrations.

  15. Secular Decrease of the Spin Period of the White Dwarf in the Asynchronous AM HER Binary RX J1940.1-1025

    NASA Astrophysics Data System (ADS)

    Staubert, Ruediger

    We propse to perform four 1 day observations of the near-synchronous AM Her binary RX J1940.1-1025, spread equally over Cycle 6, and at phases near 0.25 with respect to its 50 day beat period. The orbital period is 12116.3 s and the spin period of the white dawarf is 12150.7 s. We have evidence for a secular decrease of this spin period at a rate of 5 10^(-9), which is mainly based on optical data. X-ray data (from ROSAT and RXTE) are sparse, but indicate that there might be a systematic phase shift of a feature (the so-called "trough") in the flux profiles between optical and X-rays. If this shift is confirmed and measured accurately, optical and X-ray data can be confidently combined and the synchronisation time scale (about 200 years) determined.

  16. Evolution of Spin and Superorbital Modulation in 4U 0114+650

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Ng, Chi-Yung; Chou, Yi

    2016-09-01

    We report on a systematic analysis of the spin and superorbital modulations of the high-mass X-ray binary 4U 0114+650, which consists of the slowest spinning neutron star known. Utilizing dynamic power spectra, we found that the spin period varied dramatically during the RXTE ASM and Swift BAT observations. This variation consists of a long-term spin-up trend, and two ~1,000 day and one ~600 day random walk epochs previously, MJD 51,000, ~MJD 51,400-52,000, and ~MJD 55,100-56,100. We further found that the events appear together with depressions of superorbital modulation amplitude. This provides evidence of the existence of an accretion disk, although the physical mechanism of superorbital modulation remains unclear. Furthermore, the decrease of the superorbital modulation amplitude may be associated with the decrease of mass accretion rate from the disk, and may distribute the accretion torque of the neutron star randomly in time.

  17. The Physics of AGN, a Deep Understanding of the Quasar 3C 273

    NASA Technical Reports Server (NTRS)

    Courvoisier, T.; Bottcher, Markus

    2004-01-01

    Upon our successful AO-1 proposal no. 120023, the quasar 3C 273 has been observed with INTEGRAL in 3 epochs in January 2003. The first observation, on January 5, 2003, with a total INTEGRAL exposure of 1.2 x 10(exp 5) s, was simultaneous with RXTE and XMM- Newton observations. Two more INTEGRAL observations were carried out on January 11, 2003 (exposure: lo4 s) and January 17, 2003 (exposure: 1.1 x 10(exp 5) s). The source was detected with high significance by all INTEGRAL instruments, the OMC, JEM-X, SPI, and IBIS/ISGRI. Being one of the first INTEGRAL observations simultaneous with XMM and RXTE, our observations were also used to fix the cross calibration with those instruments. The combined spectrum resulting from the XMM-Newton, JEM-X, RXTE, SPI and ISGRI X-ray / soft gamma-ray observations is consistent with a straight power-law of photon index Gamma = (1.73 +/- 0.015) between 3 keV and at least 200 keV. A possible detection in the 200 keV - 500 keV band by SPI can not be confirmed with our observations. The normalization of the X/gamma-ray spectrum is (2.24 +/- 0.05) x 10(exp -2) photons /sq cm keV at 1 keV. The source showed a moderate amount of optical variability as observed with the OMC onboard INTEGRAL. No evidence for variability at X-rays and gamma-rays could be reported, which may have been a result of insufficient photon statistics. The X-/gamma-ray spectrum observed in our 2003 observations is consistent with previously measured and modelled broadband spectral energy distributions of 3C 273. It has been included in the U.S. lead Col's work on spectral and variability modelling of gamma-ray blazars, supporting the trend of flat-spectrum radio quasars such as 3C 273 being 7-ray dominated due to a strong contribution from Compton upscattering of external radiation by ultrarelativistic electrons in a relativistic jet. 3C 273 is a particularly convincing example for such a picture since it provides very direct evidence for a strong external radiation field by virtue of its obvious big blue bump, most likely originating in a very luminous accretion disk.

  18. Using 3D dynamic models to reproduce X-ray properties of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Russell, Christopher Michael Post

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The two massive stars contained in these systems have powerful radiatively driven stellar winds, and the conversion of their kinetic energy to heat (up to 108 K) at the wind-wind collision region generates hard thermal X-rays (up to 10 keV). Rich data sets exist of several multi-year-period systems, as well as key observations of shorter period systems, and detailed models are required to disentangle the phase-locked emission and absorption processes in these systems. To interpret these X-ray light curves and spectra, this dissertation models the wind-wind interaction of CWBs using 3D smoothed particle hydrodynamics (SPH), and solves the 3D formal solution of radiative transfer to synthesize the model X-ray properties, allowing direct comparison with the colliding-wind X-ray spectra observed by, e.g., RXTE and XMM. The multi-year-period, highly eccentric CWBs we examine are eta Carinae and WR140. For the commonly inferred primary mass loss rate of ˜10 -3 Msun/yr, eta Carinae's 3D model reproduces quite well the 2-10 keV RXTE light curve, hardness ratio, and dynamic spectra in absolute units. This agreement includes the ˜3 month X-ray minimum associated with the 1998.0 and 2003.5 periastron passages, which we find to occur as the primary wind encroaches into the secondary wind's acceleration region. This modeling provides further evidence that the observer is mainly viewing the system through the secondary's shock cone, and suggests that periastron occurs ~1 month after the onset of the X-ray minimum. The model RXTE observables of WR140 match the data well in absolute units, although the decrease in model X-rays around periastron is less than observed. There is very good agreement between the observed XMM spectrum taken on the rise before periastron and the model. We also model two short-period CWBs, HD150136, which has a wind-star collision, and delta Orionis A, the closest eclipsing CWB. The asymmetry predicted in the unobserved portion of HD150136's orbit, and the line profile variations due to the cavity carved into the primary wind by the secondary in delta Orionis A, helped provide a basis for newly approved Chandra observations of both systems.

  19. Analysis and Interpretation of Hard X-ray Emission fromthe Bullet Cluster (1E0657-56), the Most Distant Cluster of Galaxies Observed by the RXTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosian, Vahe; /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept.; Madejski, Greg

    2006-08-16

    Evidence for non-thermal activity in clusters of galaxies is well established from radio observations of synchrotron emission by relativistic electrons. New windows in the Extreme Ultraviolet and Hard X-ray ranges have provided for more powerful tools for the investigation of this phenomenon. Detection of hard X-rays in the 20 to 100 keV range have been reported from several clusters of galaxies, notably from Coma and others. Based on these earlier observations we identified the relatively high redshift cluster 1E0657-56 (also known as RX J0658-5557) as a good candidate for hard X-ray observations. This cluster, also known as the bullet cluster,more » has many other interesting and unusual features, most notably that it is undergoing a merger, clearly visible in the X-ray images. Here we present results from a successful RXTE observations of this cluster. We summarize past observations and their theoretical interpretation which guided us in the selection process. We describe the new observations and present the constraints we can set on the flux and spectrum of the hard X-rays. Finally we discuss the constraints one can set on the characteristics of accelerated electrons which produce the hard X-rays and the radio radiation.« less

  20. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Yang, Jun; Christodoulou, Dimitris; Coe, Malcolm; Cappallo, Rigel; Zezas, Andreas; Ho, Wynn C. G.; Hong, JaeSub; Fingerman, Samuel; Drake, Jeremy J.; Kretschmar, Peter; Antoniou, Vallia

    2017-08-01

    We present our multi-satellite library of X-ray Pulsar observations to the community, and highlight recent science results. Available at www.xraypulsars.space the library provides a range of high-level data products, including: activity histories, pulse-profiles, phased event files, and a unique pulse-profile modeling interface. The initial release (v1.0) contains some 15 years of RXTE-PCA, Chandra ACIS-I, and XMM-PN observations of the Small Magellanic Cloud, creating a valuable record of pulsar behavior. Our library is intended to enable new progress on fundamental NS parameters and accretion physics. The major motivations are (1) Assemble a large homogeneous sample to enable population statistics. This has so far been used to map the propeller transition, and explore the role of retrograde and pro-grade accretion disks. (2) Obtain pulse-profiles for the same pulsars on many different occasions, at different luminosities and states in order to break model degeneracies. This effort has led to preliminary measurements of the offsets between magnetic and spin axes. With the addition of other satellites, and Galactic pulsars, the library will cover the entire available range of luminosity, variability timescales and accretion regimes.

  1. The long-term post-outburst spin down and flux relaxation of magnetar swift J1822.3–1606

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, P.; Kaspi, V. M.; Cumming, A., E-mail: pscholz@physics.mcgill.ca

    2014-05-01

    The magnetar Swift J1822.3–1606 entered an outburst phase in 2011 July. Previous X-ray studies of its post-outburst rotational evolution yielded inconsistent measurements of the spin-inferred magnetic field. Here we present the timing behavior and flux relaxation from over two years of Swift, RXTE, and Chandra observations following the outburst. We find that the ambiguity in previous timing solutions was due to enhanced spin down that resembles an exponential recovery following a glitch at the outburst onset. After fitting out the effects of the recovery, we measure a long-term spin-down rate of ν-dot =(−3.0 ± 0.3)×10{sup −16} s{sup –2} which impliesmore » a dipolar magnetic field of 1.35 × 10{sup 13} G, lower than all previous estimates for this source. We also consider the post-outburst flux evolution, and fit it with both empirical and crustal cooling models. We discuss the flux relaxation in the context of both crustal cooling and magnetospheric relaxation models.« less

  2. Eta Carinae - A Demanding Mistress

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2011-01-01

    Over the past 15 years, a number of observers and modelers have increasingly focused on this massive system that is approaching its end stage, a supernova? a hypernova? When? The discovery by Augusto Damineli that Eta Carinae had a 5.5-year period proved timely as the newly-installed STIS was primed to observe its properties in the visible and ultraviolet. Initial observations occurred on January 1998, and through multiple programs, including the multi-cycle Hubble Treasury program, have sampled changes across two cycles. Now a multi-cycle program, focused on mapping variations in the extended wind-wind collision zones through early 2015, will test 3-D models of the interacting winds. In parallel, studies have been accomplished in X-rays with RXTE and CHANDRA, now in the far infrared with Herschel and from the ground with VLT. Each new observation is helping to peel back the veil of mystery on this massive binary system, but also opening up more questions to be answered. Timely inclusion of laboratory studies and models have greatly enhanced the observational results. We will summarize the latest results including submitted papers and very recent results with Herschel.

  3. Radio and X-Ray Observations of the 1998 Outburst of the Recurrent X-Ray Transient 4U 1630-47

    NASA Technical Reports Server (NTRS)

    Hjellming, R. M.; Rupen, M.; Mioduszewski, A. J.; Kuulkers, E.; McCollough, M. L.; Harmon, B. Alan; Buxton, M.; Sood, R.; Tzioumis, A.

    1998-01-01

    We report radio (VLA and ATCA), soft X-ray (RXTE ASM), and hard X-ray (CGRO BATSE) observations of a 1998 outburst in the recurring X-ray transient 4U 1630-47 where radio emission was detected for the first time. The radio observations identify the position of 4U 1630-47 to within 1". Because the radio emission is optically thin with a spectral index of approximately -0.6 during the rise and approximately -1 during the peak and decay of the initial radio event, the emission is probably coming from an optically thin radio jet ejected over a period of time. The 20-100 keV emission first appeared 1998 January 28 (MJD 50841), the 2-12 keV emission first appeared February 3 (MJD 50847), and the first radio emission was detected February 12.6 (MJD 50856.6). The rise of the radio emission probably began about February 7 (MJD 50851) when the X-rays were in a very hard, fluctuating hardness state, just before changing to a softer, more stable hardness state.

  4. Taking the Pulse of a Black Hole System

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Using two NASA X-ray satellites, astronomers have discovered what drives the "heartbeats" seen in the light from an unusual black hole system. These results give new insight into the ways that black holes can regulate their intake and severely curtail their growth. This study examined GRS 1915+105 (GRS 1915 for short), a binary system in the Milky Way galaxy containing a black hole about 14 times more massive than the Sun that is feeding off material from a companion star. As this material falls towards the black hole, it forms a swirling disk that emits X-rays. The black hole in GRS 1915 has been estimated to rotate at the maximum possible rate, allowing material in the inner disk to orbit very close to the black hole, at a radius only 20% larger than the event horizon, where the material travels at 50% the speed of light. Using the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer (RXTE), researchers monitored this black hole system over a period of eight hours. As they watched, GRS 1915 gave off a short, bright pulse of X-ray light approximately every 50 seconds, varying in brightness by a factor of about three. This type of rhythmic cycle closely resembles an electrocardiogram of a human heart -- though at a slower pace. "Trying to understand the physics of this 'heartbeat state' is a little like trying to understand how a person's heart beats by watching changes in the blood flow through their veins," said Joey Neilsen, a graduate student at Harvard University, who presented these results from his dissertation at the American Astronomical Society (AAS) meeting in Seattle, Wash. It was previously known that GRS 1915 can develop such heartbeats when its mass consumption rate is very high. After monitoring it with the special combination of Chandra and RXTE, Neilsen and his collaborators realized that they could use the pulses to figure out what controls how much material the black hole consumes. "With each beat, the black hole pumps an enormous amount of energy into its surroundings," said Neilsen. "All that energy has profound consequences for the disk, even very far from the black hole." Changes in the X-ray spectrum observed by RXTE during each heartbeat reveal that the inner region of the disk, at only a few times the radius of the black hole's event horizon, emits enough radiation to push material away from the black hole. Eventually the disk gets so bright and so hot that it essentially disintegrates and plunges towards the black hole. Then the cycle begins again. "This behavior is a clear and startling demonstration of the power of radiation in the fight against gravity," said co-author Ron Remillard of the Massachusetts Institute of Technology. "During the heartbeat state, radiation prevents the black hole from ingesting as much material as it would otherwise." Neilsen and his colleagues estimated that the rate at which material falls onto the black hole changes by about a factor of ten during each cycle, with the maximum rate coinciding with the X-ray pulse. Between pulses, the inner part of the disk refills from material farther away from the black hole. The astronomers also used Chandra's high-resolution spectrograph to study the effects of this heartbeat variation on regions of the disk very far from the black hole, at distances of about 100,000 to a million times the radius of the event horizon. By analyzing the Chandra spectrum, they found a very strong wind being driven away from the outer parts of the disk. The wind changed significantly in just 5 seconds, nearly 100 times faster than has ever been seen in a wind from a stellar-mass black hole. The researchers concluded that the strong X-ray pulse from the inner disk must heat the outer disk. This heating process launches a wind, so that each new pulse drives more wind from the disk. The rate of mass expelled in this wind is remarkably high, as much as 25 times the maximum rate at which matter falls onto the black hole. "All that energy blows away an enormous amount of matter, equivalent to one third the mass of the Moon per day! This effectively forces the black hole onto a severe diet, and we think it eventually has real consequences for the system's heartbeat," said co-author Julia Lee, associate professor in the Astronomy department at Harvard and Neilsen's thesis advisor. This massive wind drains material from the outer disk and after a couple weeks, this depletion affects the inner disk, causing the black hole to feed much more slowly and its X-ray brightness to decrease substantially. Unable to power such strong variations in the disk and the wind, GRS 1915's 'heart' ceases to beat. This remarkable system then likely begins one of its 13 other known patterns of variation. Neilsen is a winner of the Roger Doxsey Travel Prize, which provides graduate students within one year of receiving or receipt of their PhD a monetary prize to enable the oral presentation of their dissertation research at an AAS meeting. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  5. New X-ray Outburst in X1744-361 (A1744-36)

    NASA Astrophysics Data System (ADS)

    Remillard, Ronald A.

    2009-11-01

    The recurrent transient and accreting neutron star, X1744-361, has begun the fourth outburst observed with RXTE (see ATel #1587). The ASM data rate for this source is impeded by the angular proximity of the Sun, but the outburst appears to have begun near MJD 55145. The intensity seems to have leveled off quickly, and the the average flux during the last week is 65(7) mCrab at 2-12 keV. Followup observations are encouraged.

  6. A variable-density absorption event in NGC 3227 mapped with Suzaku and Swift

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A. G.; Krauß, F.; Miniutti, G.; Longinotti, A. L.; Guainazzi, M.; de La Calle Pérez, I.; Malkan, M.; Elvis, M.; Miyaji, T.; Hiriart, D.; López, J. M.; Agudo, I.; Dauser, T.; Garcia, J.; Kreikenbohm, A.; Kadler, M.; Wilms, J.

    2015-12-01

    Context. The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of active galactic nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Aims: Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Eclipse events by clumps transiting the line of sight allow us to explore the properties of the clumps over a wide range of radial distances from the optical/UV broad line region (BLR) to beyond the dust sublimation radius. Time-resolved absorption events have been extremely rare so far, but suggest a range of density profiles across Seyferts. We resolve a weeks-long absorption event in the Seyfert NGC 3227. Methods: We examine six Suzaku and 12 Swift observations from a 2008 campaign spanning five weeks. We use a model accounting for the complex spectral interplay of three absorbers with different levels of ionization. We perform time-resolved spectroscopy to discern the absorption variability behavior. We also examine the IR to X-ray spectral energy distribution (SED) to test for reddening by dust. Results: The 2008 absorption event is due to moderately-ionized (log ξ ~ 1.2-1.4) gas covering 90% of the line of sight. We resolve the density profile to be highly irregular, in contrast to a previous symmetric and centrally-peaked event mapped with RXTE in the same object. The UV data do not show significant reddening, suggesting that the cloud is dust-free. Conclusions: The 2008 campaign has revealed a transit by a filamentary, moderately-ionized cloud of variable density that is likely located in the BLR, and possibly part of a disk wind.

  7. Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2016-09-01

    Aims: We study the multi-band variability and correlations of the TeV blazar Mrk 421 on year timescales, which can bring additional insight on the processes responsible for its broadband emission. Methods: We observed Mrk 421 in the very high energy (VHE) γ-ray range with the Cherenkov telescope MAGIC-I from March 2007 to June 2009 for a total of 96 h of effective time after quality cuts. The VHE flux variability is quantified using several methods, including the Bayesian Block algorithm, which is applied to data from Cherenkov telescopes here for the first time. The 2.3 yr long MAGIC light curve is complemented with data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO, and Metsähovi telescopes from February 2007 to July 2009, allowing for an excellent characterisation of the multi-band variability and correlations over year timescales. Results: Mrk 421 was found in different γ-ray emission states during the 2.3 yr long observation period: The flux above 400 GeV spans from the minimum nightly value of (1.3 ± 0.4)×10-11 cm-2 s-1 to the maximum flux, that is about 24 times higher, at (3.1 ± 0.1)×10-10 cm-2 s-1. Flares and different levels of variability in the γ-ray light curve could be identified with the Bayesian Block algorithm. The same behaviour of a quiet and active emission was found in the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct correlation in time. The behaviour of the optical light curve of GASP-WEBT and the radio light curves by OVRO and Metsähovi are different as they show no coincident features with the higher energetic light curves and a less variable emission. Overall, the fractional variability increases with energy. The comparable variability in the X-ray and VHE bands and their direct correlation during both high- and low-activity periods spanning many months show that the electron populations radiating the X-ray and γ-ray photons are either the same, as expected in the synchrotron-self-Compton mechanism, or at least strongly correlated, as expected in electromagnetic cascades. The complete data set shown in Fig. 2 and the data points shown in Figs. 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A91

  8. Improved instrumental magnitude prediction expected from version 2 of the NASA SKY2000 master star catalog

    NASA Technical Reports Server (NTRS)

    Sande, C. B.; Brasoveanu, D.; Miller, A. C.; Home, A. T.; Tracewell, D. A.; Warren, W. H., Jr.

    1998-01-01

    The SKY2000 Master Star Catalog (MC), Version 2 and its predecessors have been designed to provide the basic astronomical input data needed for satellite acquisition and attitude determination on NASA spacecraft. Stellar positions and proper motions are the primary MC data required for operations support followed closely by the stellar brightness observed in various standard astronomical passbands. The instrumental red-magnitude prediction subsystem (REDMAG) in the MMSCAT software package computes the expected instrumental color index (CI) [sensor color correction] from an observed astronomical stellar magnitude in the MC and the characteristics of the stellar spectrum, astronomical passband, and sensor sensitivity curve. The computation is more error prone the greater the mismatch of the sensor sensitivity curve characteristics and those of the observed astronomical passbands. This paper presents the preliminary performance analysis of a typical red-sensitive CCDST during acquisition of sensor data from the two Ball CT-601 ST's onboard the Rossi X-Ray Timing Explorer (RXTE). A comparison is made of relative star positions measured in the ST FOV coordinate system with the expected results computed from the recently released Tycho Catalogue. The comparison is repeated for a group of observed stars with nearby, bright neighbors in order to determine the tracker behavior in the presence of an interfering, near neighbor (NN). The results of this analysis will be used to help define a new photoelectric photometric instrumental sensor magnitude system (S) that is based on several thousand bright star magnitudes observed with the PXTE ST's. This new system will be implemented in Version 2 of the SKY2000 MC to provide improved predicted magnitudes in the mission run catalogs.

  9. A Robust Test of the Unified Model for Seyfert Galaxies with Implications for the Starburst Phenomenon

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.

    1997-01-01

    My research involves detailed analysis of X-ray emission from Active Galactic Nuclei (AGN). For over a decade, the paradigm for AGN has rested soundly on the unified model hypothesis, which posits that the only difference between broad-line objects (e.g., Type 1 Seyfert galaxies) and narrow-line objects (e.g., Type 2 Seyferts) is that in the former case our line of sight evades toroidal obscuration surrounding the nucleus, while in the latter, our line of sight is blocked by the optically thick torus. It is well established that some Seyfert 2s contain Seyfert I nuclei (i.e., a hidden broad line region), but whether or not all Seyfert 2s contain obscured Seyfert 1 nuclei or whether some Seyfert 2s are intrinsically Seyfert 2s is not known. Optical, IR, and UV surveys are not appropriate to examine this hypothesis because such emissions are either anisotropic or subject to the effects of obscuration, and thus depend strongly on viewing angle. Hard X-rays, on the other hand, can penetrate gas with column densities as high as 10( exp 24.5) cm(-2) and thus provide reliable, direct probes of the cores of heavily obscured AGN. Combining NASA archival data from the Advanced Satellite of Cosmology and Astrophysics (ASCA), the Rossi X-ray Timing Explorer (RXTE), and Rosat, I am accumulating X-ray data between 0.1 and 60 keV to produce a catalog of the broad-band X-ray spectral properties of Seyfert galaxies. These data will be used to perform concrete tests of the unified model, and (compared with similar data on Starbursts) to examine a possible evolutionary connection between Seyfert and Starburst galaxies.

  10. Long term variability of Cygnus X-1. VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Leutenegger, M. A.; Hell, N.; Pottschmidt, K.; Böck, M.; García, J. A.; Hanke, M.; Nowak, M. A.; Sundqvist, J. O.; Townsend, R. H. D.; Wilms, J.

    2015-04-01

    Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object's X-rays to probe the wind structure. We analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability is most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. A qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure. Appendix A is available in electronic form at http://www.aanda.org

  11. Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?

    NASA Astrophysics Data System (ADS)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-11-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”

  12. Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?

    NASA Technical Reports Server (NTRS)

    Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.

    2017-01-01

    We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."

  13. Long term variability of Cygnus X-1: VII. Orbital variability of the focussed wind in Cyg X-1/HDE 226868 system

    DOE PAGES

    Grinberg, V.; Leutenegger, M. A.; Hell, N.; ...

    2015-04-16

    Binary systems with an accreting compact object offer a unique opportunity to investigate the strong, clumpy, line-driven winds of early-type supergiants by using the compact object’s X-rays to probe the wind structure. In this paper, we analyze the two-component wind of HDE 226868, the O9.7Iab giant companion of the black hole Cyg X-1, using 4.77 Ms Rossi X-ray Timing Explorer (RXTE) observations of the system taken over the course of 16 years. Absorption changes strongly over the 5.6 d binary orbit, but also shows a large scatter at a given orbital phase, especially at superior conjunction. The orbital variability ismore » most prominent when the black hole is in the hard X-ray state. Our data are poorer for the intermediate and soft state, but show signs for orbital variability of the absorption column in the intermediate state. We quantitatively compare the data in the hard state to a toy model of a focussed Castor-Abbott-Klein wind: as it does not incorporate clumping, the model does not describe the observations well. Finally, a qualitative comparison to a simplified simulation of clumpy winds with spherical clumps shows good agreement in the distribution of the equivalent hydrogen column density for models with a porosity length on the order of the stellar radius at inferior conjunction; we conjecture that the deviations between data and model at superior conjunction could either be due to lack of a focussed wind component in the model or to a more complicated clump structure.« less

  14. Discovery of Soft Spectral Component and Transient 22.7s Quasi Periodic Oscillations of SAX J2103.5+4545

    NASA Technical Reports Server (NTRS)

    Inam, S. C.; Baykal, A.; Swank, J.; Stark, M. J.

    2003-01-01

    XMM-Newton observed SAX J2103.5+4545 on January 6, 2003, while RXTE was monitoring the source. Using RXTE-PCA dataset between December 3, 2002 and January 29, 2003, the spin period and average spin-up rate during the XMM-Newton observations were found to be 354.7940+/-0.0008 s and (7.4 +/- 0.9) x 10(exp -13) Hz/s respectively. In the power spectrum of the 0.9-11 keV EPIC-PN lightcurve, we found quasi periodic oscillations around 0.044 Hz (22.7 s) with an rms fractional amplitude approx. 6.6 %. We interpreted this QPO feature as the Keplerian motion of inhomogeneities through the inner disk. In the X-ray spectrum, in addition to the power law component with high energy cutoff and approx. 6.4 keV fluorescent iron emission line, we discovered a soft component consistent with a blackbody emission with kT approx. 1.9 keV. The pulse phase spectroscopy of the source revealed that the blackbody flux peaked at the peak of the pulse with an emission radius approx. 0.3 km, suggesting the polar cap on the neutron star approx. 6.42 keV was shown to peak at the off-pulse phase, supporting the idea that this feature arises from fluorescent emission of the circumstellar material around the neutron star rather than the hot region in the vicinity of the neutron star polar cap.

  15. Energy-dependent Orbital Modulation of X-rays and Constraints on Emission of the Jet in Cyg X-3

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Maitra, Chandreyee; Frankowski, Adam; Skinner, Gerald K.; Misra, Ranjeev

    2012-01-01

    We study orbital modulation of X-rays from Cyg X-3, using data from Swift, INTEGRAL and RXTE. Using the wealth of the presently available data and an improved averaging method, we obtain energy-dependent folded and averaged light curves with unprecedented accuracy. We find that above 5 keV, the modulation depth decreases with the increasing energy, which is consistent with the modulation being caused by both bound-free absorption and Compton scattering in the stellar wind of the donor, with minima corresponding to the highest optical depth, which occurs around the superior conjunction. We find a decrease of the depth below 3 keV, which appears to be due to re-emission of the absorbed continuum by the wind in soft X-ray lines. Based on the shape of the folded light curves, any X-ray contribution from the jet in Cyg X-3, which emits ?-rays detected at energies > 0.1 GeV in soft spectral states, is found to be minor up to 100 keV. This implies the presence of a rather sharp low-energy break in the jet MeV-range spectrum.We also calculate phase-resolved RXTE X-ray spectra, and show the difference between the spectra corresponding to phases around the superior and inferior conjunctions can indeed be accounted for by a combined effect of bound-free absorption in an ionized medium and Compton scattering.

  16. PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbet, Robin H. D.; Pearlman, Aaron B.; Buxton, Michelle

    2010-08-10

    A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum insteadmore » of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations.« less

  17. 4U 1909+07: A Well-Hidden Pearl

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Rothschild, R. E.; Suchy, S.; Pottschmidt, K.

    2009-01-01

    We present the first detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB) 4U 1909+07 with INTEGRAL and RXTE. 4U 1909+07 is detected with an average of 2.4 cps in ISGRI. but shows flares up to approx.50 cps. The system shows a pulse period of 605 s, but we found that the period changes erratically around this value. The pulse profile is extremely energy dependent: while it shows a double peaked structure at low energies, the secondary pulse decreases rapidly with increasing energy and above 20 ke V only the primary pulse is visible. This evolution is consistent between peA, HEXTE and ISGRI. We find that the phase averaged spectrum can be well fitted with a photo-absorbed power law with a cutoff at high energies and a blackbody component. To investigate the peculiar pulse profile, we performed phase resolved spectral analysis. We find that a change in the cutoff energy is required to fit the changing spectrum of the different pulse phases

  18. LIGO-VIRGO Triggered Follow-Up with NASA High Energy Photon Survey Missions

    NASA Technical Reports Server (NTRS)

    Camp, Jordan

    2010-01-01

    We discuss the proposed use of LIGO-VIRGO S6 triggers from comparatively loud events to search for both prompt and afterglow EM counterparts with RXTE, SWIFT and FERMI. Using a 2 or 3-fold coincident trigger from the two LIGO and one VIRGO detectors to provide sky position information, we can search the data from these missions within a limited time window and a constrained portion of their respective FOVs, allowing us to look at a level below the threshold normally used to publicly indicate an event. Since we propose to use these missions in their survey mode, no re-pointing of the missions is envisioned. The search for a coincidence between the data from LIGO-VIRGO and the EM survey missions can then be analyzed off-line; if a coincident EM signal is found it would have a significant effect in establishing the validity of the GW trigger. We discuss some relevant aspects of the NASA missions and give some preliminary estimates of thresholds and coincident background rates.

  19. On Calibrations Using the Crab Nebula as a Standard Candle

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin; Guainazzi, Matteo; Jahoda, Keith; Shaposhnikov, Nikolai; ODell, Stephen; Zavlin, Vyacheslav; Wilson-Hodge, Colleen; Elsner, Ronald

    2009-01-01

    Inspired by a recent paper (Kirsch et al. 2005) on possible use of the Crab Nebula as a standard candle for calibrating X-ray response func tions, we examine possible consequences of intrinsic departures from a single (absorbed) power law upon such calibrations. We limited our analyses to three more modern X-ray instruments -- the ROSAT/PSPC, th e RXTE/PCA, and the XMM-Newton/EPIC-pn. The results are unexpected an d indicate a need to refine two of the three response functions studi ed. The implications for Chandra will be discussed.

  20. The HEASARC in 2013 and Beyond: NuSTAR, Astro-H, NICER..

    NASA Astrophysics Data System (ADS)

    Drake, Stephen A.; Smale, A. P.; McGlynn, T. A.; Arnaud, K. A.

    2013-04-01

    The High Energy Astrophysics Archival Research Center or HEASARC (http://heasarc.gsfc.nasa.gov/) is in its third decade as the NASA astrophysics discipline node supporting multi-mission cosmic X-ray and gamma-ray astronomy research. It provides a unified archive and software structure aimed both at 'legacy' missions such as Einstein, EXOSAT, ROSAT and RXTE, contemporary missions such as Fermi, Swift, Suzaku, Chandra, etc., and upcoming missions, such as NuSTAR, Astro-H and NICER. The HEASARC's high-energy astronomy archive has grown so that it presently contains 45 TB of data from 28 orbital missions. The HEASARC is the designated archive which supports NASA's Physics of the Cosmos theme (http://pcos.gsfc.nasa.gov/). We discuss some of the upcoming new initiatives and developments for the HEASARC, including the arrival of public data from the hard X-ray imaging NuSTAR mission in the summer of 2013, and the ongoing preparations to support the JAXA/NASA Astro-H mission and the NASA MoO Neutron Star Interior Composition Explorer (NICER), which are expected to become operational in 2015-2016. We also highlight some of the new software capabilities of the HEASARC, such as Xamin, a next-generation archive interface which will eventually supersede Browse, and the latest update of XSPEC (v 12.8.0).

  1. Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection

    NASA Technical Reports Server (NTRS)

    Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff

    2010-01-01

    The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.

  2. Pulsed Gamma Rays From The Original Millisecond And Black Widow Pulsars: A Case For Caustic Radio Emission?

    DOE PAGES

    Guillemot, L.; Johnson, T. J.; Venter, C.; ...

    2011-12-12

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, con rming the X-ray emission properties of PSR B1937+21 and nding evidence (~ 4σ) for pulsed emission from PSR B1957+20 for the rst time. In both cases the gamma-ray emission pro le is characterized bymore » two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.« less

  3. My 35 Years in X-ray Astronomy (Not)

    NASA Astrophysics Data System (ADS)

    Urry, C. M.

    2013-01-01

    My contact with X-ray astronomy started with HEAO-1, just before launch, when I was a summer student at the Harvard/Smithsonian Center for Astrophysics. Another summer position followed at NASA’s Goddard Space Flight Center, where I later did my PhD thesis on HEAO1 and HEAO2 (and IUE) data. Next I was a postdoc at MIT working with Einstein and Ginga observations, and I then continued observing blazars and other AGN with ASCA, Exosat, RXTE, Chandra, XMM, Swift, Suzaku, and Fermi. I have also witnessed or participated in many proposals for future X-ray missions. Fortunately for the audience, I will not recall all these times... So many photons, so little time! But this long history does mean I met most of the great figures in X-ray astronomy when they were young and I probably have embarrassing stories to tell about many of them. For my 2-minute vignette in a panel discussion, I will entertain you with one of the more interesting (and pertinent) memories. Acknowledgement: Thank you to all my high-energy astrophysics colleagues, who taught me a great deal, and to NASA for the hit parade of high-energy missions.

  4. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; hide

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  5. Identification of a Likely Radio Counterpart to the Rapid Burster (MXB 1730-335)

    NASA Astrophysics Data System (ADS)

    Rutledge, R.; Moore, C.; Fox, D.; Lewin, W. H. G.; van Paradijs, J.

    1997-12-01

    We have identified a likely radio counterpart to the X-ray low-mass-X-ray-binary MXB 1730-335 (The Rapid Burster; RB). The counterpart, which is between 4-5.6sigma away from the X-ray position, has during our five observations shown radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM -- the chance probabilty of an unrelated background source duplicating this is 1.6%. If the radio and X-ray flux are correlated on ~ seconds timescales, then observations of radio bursts are well within current instrumentation capability.

  6. The Relativistic Iron Line Profile in the Seyfert 1 Galaxy IC4329a

    NASA Technical Reports Server (NTRS)

    Done, C.; Madejski, G. M.; Zycki, P. T.

    2000-01-01

    We present simultaneous ASCA and RXTE data on the bright Seyfert 1 galaxy IC4329a. The iron line is significantly broadened, but not to the extent expected from an accretion disk which extends down to the last stable orbit around a black hole. We marginally detect a narrow line component, presumably from the molecular torus, but, even including this gives a line profile from the accretion disk which is significantly narrower that that seen in MCG-6-30-15, and is much more like that seen from the low/hard state galactic black hole candidates. This is consistent with the inner disk being truncated before the last stable orbit, forming a hot flow at small radii as in the ADAF models. However. we cannot rule out the presence of an inner disk which does not contribute to the reflected spectrum. either because of extreme ionisation suppressing the characteristic atomic features of the reflected spectrum or because the X-ray source is intrinsically anisotropic, so it does not illuminate the inner disk. The source was monitored by RXTE every 2 days for 2 months, and these snapshot spectra show that there is intrinsic spectral variability. The data are good enough to disentangle the power law from the reflected continuum and we see that the power law softens as the source brightens. The lack of a corresponding increase in the observed reflected spectrum implies that either the changes in disk inner radial extent/ionization structure are small, or that the variability is actually driven by changes in the seed photons which are decoupled from the hard X-ray mechanism.

  7. Systematic analysis of low/hard state RXTE spectra of GX 339–4 to constrain the geometry of the system

    NASA Astrophysics Data System (ADS)

    Bagri, Kalyani; Misra, Ranjeev; Rao, Anjali; Singh Yadav, Jagdish; Pandey, Shiv Kumar

    2018-05-01

    One of the popular models for the low/hard state of black hole binaries is that the standard accretion disk is truncated and the hot inner region produces, via Comptonization, hard X-ray flux. This is supported by the value of the high energy photon index, which is often found to be small, ∼ 1.7(< 2), implying that the hot medium is starved of seed photons. On the other hand, the suggestive presence of a broad relativistic Fe line during the hard state would suggest that the accretion disk is not truncated but extends all the way to the innermost stable circular orbit. In such a case, it is a puzzle why the hot medium would remain photon starved. The broad Fe line should be accompanied by a broad smeared reflection hump at ∼ 30 keV and it may be that this additional component makes the spectrum hard and the intrinsic photon index is larger, i.e. >2. This would mean that the medium is not photon deficient, reconciling the presence of a broad Fe line in the observed hard state. To test this hypothesis, we have analyzed the RXTE observations of GX 339–4 from the four outbursts during 2002–2011 and identify observations when the system was in the hard state and showed a broad Fe line. We have then attempted to fit these observationswith models,which include smeared reflection, to understandwhether the intrinsic photon index can indeed be large. We find that, while for some observations the inclusion of reflection does increase the photon index, there are hard state observations with a broad Fe line that have photon indices less than 2.

  8. The Rates of Type I X-ray Bursts from Transients Observed with RXTE: Evidence for Black Hole Event Horizons

    NASA Astrophysics Data System (ADS)

    Remillard, R. A.; Lin, D.; Cooper, R. L.; Narayan, R.

    2005-12-01

    We measure the rates of type I X-ray bursts from a likely complete sample of 37 non-pulsing Galactic X-ray transients observed with the RXTE ASM during 1996-2004. Our strategy is to test the prevailing paradigms for these sources, which are well-categorized in the literature as either neutron-star systems or black hole candidates. Burst rates are measured as a function of the bolometric luminosity, and the results are compared with burst models for neutron stars and for heavy compact objects with a solid surface. We use augmented versions of the models developed by Narayan & Heyl (2002; 2003). For a given mass, we consider a range of conditions in both the radius and the temperature at the boundary below the accretion layer. We find 135 type I bursts in 3.7 Ms of PCA light curves for the neutron-star group, and the burst rate function is generally consistent with the model predictions for bursts from accreting neutron stars. On the other hand, none of the (20) bursts candidates passed spectral criteria for type I bursts in 6.5 Ms of PCA light curves for black-hole binaries and candidates. The burst function upper limits are inconsistent with the predictions of the burst model for heavy compact objects with a solid surface. The consistency probability is found to be below 10-7 for dynamical black-hole binaries, falling to below 10-13 for the additional exposures of black-hole candidates. These results provide indirect evidence that black holes do have event horizons. This research was supported, in part, by NASA science programs.

  9. Discovery of Photon Index Saturation in the Black Hole Binary GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Seifina, Elena

    2009-01-01

    We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature < or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of < or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.

  10. A study of outburst ephemeris and burst properties of blackhole candidate 4U 1630-47 with ASM, MAXI and Suzaku data

    NASA Astrophysics Data System (ADS)

    Abraham, Lalitha; Agrawal, V. K.

    4U 1630-47 is a soft X-ray transient which is thought to be a blackhole candidate. This source exhibits quasi-periodic outbursts on time scales of 500-700 days. In addition to the normal outbursts which usually last for a few months, the source displays superoutbursts, lasting for one to two years, seen to recur in every 10-12 years. The outburst ephemeris has been studied previously upto 1996 outbursts. In this work we present the updated ephemeris using 16 years data obtained from All Sky Monitor (ASM) onboard RXTE and one years data from MAXI satellite. The data covers 7 outbursts seen from ASM and one outburst seen by MAXI. We study morphology of each of these outbursts. We find that most of the bursts can be classified in basic three categories: flat top, FRED (Fast Rise Exponential Decay) and triangular. We also investigate relation between burst properties with quiescent flux level using Suzaku data, a study which has not been done previously.

  11. Suzaku Observation of the Dwarf Nova V893 Scorpii: The Discovery of a Partial X-Ray Eclipse

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Zietsman, E.; Still, M.

    2008-01-01

    V893 Sco is an eclipsing dwarf nova that had attracted little attention from X-ray astronomers until it was proposed as the identification of an RXTE all-sky slew survey (XSS) source. Here we report on the po inted X-ray observations of this object using Suzaku. We confirm V893 Sco to be X-ray bright, whose spectrum is highly absorbed for a dwar f nova. We have also discovered a partial X-ray eclipse in V893 Sco. This is the first time that a partial eclipse is seen in Xray light c urves of a dwarf nova. We have successfully modeled the gross features of the optical and X-ray eclipse light curves using a boundary layer geometry of the X-ray emission region. Future observations may lead to confirmation of this basic picture, and allow us to place tight co nstraints on the size of the X-ray emission region. The partial X-ray eclipse therefore should make V893 Sco a key object in understanding the physics of accretion in quiescent dwarf nova.

  12. Science Goals for an All-sky Viewing Observatory in X-rays

    NASA Astrophysics Data System (ADS)

    Remillard, R. A.; Levine, A. M.; Morgan, E. H.; Bradt, H. V.

    2003-03-01

    We describe a concept for a NASA SMEX Mission that will provide a comprehensive investigation of cosmic explosions. These range from the short flashes at cosmological distances in Gamma-ray bursts, to the moments of relativistic mass ejections in Galactic microquasars, to the panorama of outbursts used to identify the stellar-scale black holes in our Galaxy. With an equatorial launch, an array of 31 cameras can cover 97% of the sky with an average exposure efficiency of 65%. Coded mask cameras with Xe detectors (1.5-12 keV) are chosen for their ability to distinguish thermal and non-thermal processes, while providing high throughput and msec time resolution to capture the detailed evolution of bright events. This mission, with 1' position accuracy, would provide a long-term solution to the critical needs for monitoring services for Chandra and GLAST, with possible overlap into the time frame for Constellation-X. The sky coverage would create additional science opportunities beyond the X-ray missions: "eyes" for LIGO and partnerships for time-variability with LOFAR and dedicated programs at optical observatories. Compared to the RXTE ASM, AVOX offers improvements by a factor of 40 in instantaneous sky coverage and a factor of 10 in sensitivity to faint X-ray sources (i.e. to 0.8 mCrab at 3 sigma in 1 day).

  13. Dramatic change of the recurrence time and outburst parameters of the intermediate polar GK Persei

    NASA Astrophysics Data System (ADS)

    Šimon, V.

    2002-02-01

    This analysis has shown that the intermediate polar GK Per experienced a very striking evolution. Its outbursts became wider and brighter in the last five decades. These changes were accompanied by striking variations of the recurrence time T_C, from 385 days within the years 1948-1967 to 890 days in 1970. Nowadays, T_C displays a strong trend of linear increase. Decrease of irradiation of the disk by the WD, combined with the decrease of viscosity, offers a plausible explanation. It is argued that variations of the mass transfer rate are unlikely to play a major role. The morphology of the outburst light curves in the optical and the X-ray region is also studied. The decay branch in the optical remains remarkably similar for all the events while the largest changes of the light curve occur in the rising branch. This can be explained if the thermal instability may start at different distances from the disk center. The quiescent level of brightness does not display any secular trend in recent decades but a wave on the time scale of about 30 years with the full amplitude of 0.3 m_v, probably due to activity of the cool star, is detected. This research has made use of the AFOEV database, operated at CDS, France, and the observations provided by the ASM/RXTE team.

  14. Early X- and HE γ-ray emission from the symbiotic recurrent novae V745 Sco & RS Oph.

    NASA Astrophysics Data System (ADS)

    Delgado, L.; Hernanz, M.

    2017-10-01

    RS Oph was the first nova for which evidence of particle acceleration during its 2006 outburst was found. In recent years, several nova explosions - eight classical and two symbiotic recurrent novae - have been detected by Fermi/LAT at E>100 MeV. In most cases, this emission has been observed early after the explosion, around the optical maximum, and for a short period of time. The high-energy γ-ray emission is a consequence of π^{0} decay and/or Inverse Compton, which are related to particle (p and e^{-}) acceleration in the strong shock between the nova ejecta and the circumstellar matter. Our aim is to understand the acceleration process through the analysis of contemporaneous X-ray emission, and in particular, through the evolution of the shock wave. A deep analysis of early X-ray observations of the symbiotic recurrent novae V745 Sco (2014) by Swift/XRT, Chandra/HETG and NuStar, and RS Oph (2006) by XMM-Newton/EPIC and RGS, Swift/XRT and BAT and RXTE/PCA is presented taking into account the contemporaneous information from the IR and radio observations. This provides for the first time a global view of the early evolution of a nova remnant and its relationship with particle acceleration.

  15. A Cutoff in the X-Ray Fluctuation Power Density Spectrum of the Seyfert 1 Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Edelson, Rick; Nandra, Kirpal

    1999-01-01

    During 1997 March-July, RXTE observed the bright, strongly variable Seyfert 1 galaxy NGC 3516 once every approx. 12.8 hr for 4.5 months and nearly continuously (with interruptions due to SAA passage but not Earth occultation) for a 4.2 day period in the middle. These were followed by ongoing monitoring once every approx. 4.3 days. These data are used to construct the first well-determined X-ray fluctuation power density spectrum (PDS) of an active galaxy to span more than 4 decades of usable temporal frequency. The PDS shows no signs of any strict or quasi-periodicity, but does show a progressive flattening of the power-low slope from -1.74 at short time scales to -0.73 at longer time scales. This is the clearest observation to date of the long-predicted cutoff in the PDS. The characteristic variability time scale corresponding to this cutoff temporal frequency is approx. 1 month. Although it is unclear how this time scale may be interpreted in terms of a physical size or process, there are several promising candidate models. The PDS appears similar to those seen for Galactic black hole candidates such as Cyg X-1, suggesting that these two classes of objects with very different luminosities and putative black hole masses (differing by more than a factor of 10(exp 5)) may have similar X-ray generation processes and structures.

  16. RXTE Observation of Cygnus X-1. 1; Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Nowak, Michael A.; Vaughan, Brian A.; Begelman, Mitchell C.

    1998-01-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200 keV, using data from a 10 ksec observation by the Rossi X-ray Timing Explorer. The spectrum can be well described phenomenologically by an exponentially cut-off power law with a photon index Gamma = 1.45(+0.01 -0.02) (a value considerably harder 0.02 than typically found), e-folding energy E(sub f) = 162(+9 -8) keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody with temperature kT(sub bb) = 1.2(+0.0 -0.1) keV. Although the 3-30 keV portion of the spectrum can be fit with a reflected power law with Gamma = 1.81 + or - 0.01 and covering fraction f = 0.35 + or - 0.02, the quality of the fit is significantly reduced when the HEXTE data in the 30-100 keV range is included, as there is no observed hardening in the power law within this energy range. As a physical description of this system, we apply the accretion disc corona models of Dove, Wilms & Begelman (1997a) - where the temperature of the corona is determined self-consistently. A spherical corona with a total optical depth pi = 1.6 + or - 0.1 and an average temperature kT(sub c) = 87 + or - 5 keV, surrounded by an exterior cold disc, does provide a good description of the data (X(exp 2 sub red) = 1.55). These models deviate from red the data by up to 7% in the 5 - 10 keV range, and we discuss possible reasons for these discrepancies. However, considering bow successfully the spherical corona reproduces the 10 - 200 keV data, such "pboton-starved" coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  17. Rossi X-Ray Timing Explorer Observations of the First Transient Z Source XTE J1701-462: Shedding New Light on Mass Accretion in Luminous Neutron Star X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil

    2007-02-01

    We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.

  18. Evidence of Black Hole Spin in GX 339-4: XMM-Newton/EPIC-pn and RXTE Spectroscopy of the Very High State

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; Reynolds, C. S.; Nowak, M. A.; Homan, J.; Freyberg, M. J.; Ehle, M.; Belloni, T.; Wijnands, R.; van der Klis, M.; Charles, P. A.; Lewin, W. H. G.

    2004-05-01

    We have analyzed spectra of the Galactic black hole GX 339-4 obtained through simultaneous 76 ks XMM-Newton/EPIC-pn and 10 ks Rossi X-Ray Timing Explorer observations during a bright phase of its 2002-2003 outburst. An extremely skewed, relativistic Fe Kα emission line and ionized disk reflection spectrum are revealed in these spectra. Self-consistent models for the Fe Kα emission-line profile and disk reflection spectrum rule out an inner disk radius compatible with a Schwarzschild black hole at more than the 8 σ level of confidence. The best-fit inner disk radius of (2-3)rg suggests that GX 339-4 harbors a black hole with a>=0.8-0.9 (where rg=GM/c2 and a=cJ/GM2, and assuming that reflection in the plunging region is relatively small). This confirms indications for black hole spin based on a Chandra spectrum obtained later in the outburst. The emission line and reflection spectrum also rule out a standard power-law disk emissivity in GX 339-4 a broken power-law form with enhanced emissivity inside ~6rg gives improved fits at more than the 8 σ level of confidence. The extreme red wing of the line and the steep emissivity require a centrally concentrated source of hard X-rays that can strongly illuminate the inner disk. Hard X-ray emission from the base of a jet-enhanced by gravitational light-bending effects-could create the concentrated hard X-ray emission; this process may be related to magnetic connections between the black hole and the inner disk. We discuss these results within the context of recent results from analyses of XTE J1650-500 and MCG -6-30-15, and of models for the inner accretion flow environment around black holes.

  19. Eta Carinae: What We have learned recently with HST/STIS, VLT/UVES and VLTI: What We Might Learn with VLT/VLTI across the 2008/9 Minimum

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2005-01-01

    Eta Carinae, the LBV that we have learned to love and hate, has revealed many clues of its character over the past seven years by studies with HST and VLT. Based upon X-Ray, optical and IR observations, Eta Carinae is convincingly a massive binary system that uniquely has major nebular ejecta that are connected with historical outbursts. We have successhlly followed the stellar and nebular changes over the 5.5 year cycle, especially with STIS and RXTE, and across the spectroscopic minimum in 2003.5 with STIS, CHANDRA, RXTE, FUSE, and VLT/UVES. The HST/STIS high spatial resolution, combined with appropriate spectral resolving powers from 1150 to 10300 A, has revealed much about the Central Source and especially the spatially resolved extended stellar atmosphere and the ejecta, known as the Homunculus. Indeed the neutral, dusty outer Homunculus, ejected in the 1840s, envelops the newly discovered ionized Little Homunculus, ejected in the 1890s. In line of sight, multiple hot clumps, both ionized and neutral, are seen in absorption and provide much information on the physical conditions of these massive ejecta. Against the nebular-scattered starlight, wind and nebular absorptions provide views at different angles from line of sight. The VLT/UVES studies from 2002 through 2004 provided very important time-sampled spectra of both the star as seen directly and as seen by the SE lobe viewing the polar region of the star. The VLTI 2.2 micron measures of the central source are consistent with a prolate spheroid with its axis extending along the axis of the Homunculus. This is consistent with the noticeably larger wind mass and higher terminal velocity along the axis of the Homunculus compared to that measured in line of sight at about 45 degrees from the polar axes. We understand the system to be a massive primary with an O or WR companion in a very highly elliptical orbit. The spectroscopic minimum occurs during periastron, when the greatly extended primary atmosphere and wind bottles up the ionizing uv radiation of the companion star. This transient drop in uv photons leads to recombination of much of the wind structure and of the nearby ejecta. Doubly-ionized elements (iron, neon, argon, vanadium) recombine to singly ionized forms and extended structures on the scales of below 0.03 arcseconds to an arcsecond change, appear, or disappear. With the loss of the STIS on HST, ground-based observations, especially with high spatial-resolution facilities, including the VLT and VLTI will be key to further studies across the minimum centered on 2009.0. Now is the time to plan for these studies.

  20. No Compton Reflection In a Chandra/RXTE Observation of Mkn 509: Implications for the Fe-K Line Emission From Accreting X-Ray Sources

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Padmanabhan, Urmila; Kraemer, Steven B.; Crenshaw, D. Michael; Mckernan, Barry; George, Ian M.; Turner, T. Jane; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the results of simultaneous Chandra and RXTE observations of the Seyfert 1 galaxy Mkn 509. We deconvolve the broad and narrow Fe-K emission-line components for which we measure rest-frame equivalent widths of 119+/-18 eV and 57+/-13 eV respectively. The broad line has a FWHM of 57,600((sup 14,400)(sub -21,000)) km/s and the narrow line is unresolved, with an upper limit on the FWHM of 4,940 km/s. Both components must originate in cool matter since we measure rest-frame center energies of 6.36((sup +0.13)(sub -0.12)) keV and 6.42+/-0.01 keV for the broad and narrow line respectively. This rules out He-like and H-like Fe for the origin of both the broad and narrow lines. If, as is widely accepted, the broad Fe-K line originates in Thomson-thick matter (such as an accretion disk), then one expects to observe spectral curvature above approximately 10 keV, (commensurate with the observed broad line), characteristic of the Compton-reflection continuum. However our data sets very stringent limits on deviations of the observed continuum from a power law. Light travel-time delays cannot be invoked to explain anomalies in the relative strengths of the broad Ferry line and Compton-reflection continuum since they are supposed to originate in the same physical location. We are forced to conclude that both the broad and narrow Fe-K lines had to originate in Thomson-thin matter during our observation. This result, for a single observation of just one source, means that our understanding of Fe K line emission and Compton reflection from accreting X-ray sources in general needs to be re-examined. For example, if an irradiated accretion disk existed in Mkn 509 at the time of the observations, the lack of spectral curvature above approximately 10 keV suggests two possibilities. Either the disk was Thomson-thick and highly ionized, having negligible Fe-K line emission and photoelectric absorption or the disk was Thomson-thin producing some or all of the broad Fe-K line emission. In the former case, the broad Fe-K line had to have produced in a Thomson-thin region elsewhere. In both cases the predicted spectral curvature above approximately 10 keV is negligible. An additional implication of our results is that any putative obscuring torus in the system, required by unification models of active galaxies, must also be Thomson-thin. The same applies to the optical broad line region (BLR) if it has a substantial covering factor.

  1. Characterization of the infrared/X-ray subsecond variability for the black hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.

    2018-07-01

    We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in 2008 August. Thanks to simultaneous high time resolution observations made with the VLT and RXTE, we performed the first characterization of the subsecond variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on time-scales of 16 s, with a marginally variable slope, steeper than the one found on time-scales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis, we found an approximately constant infrared time lag of ≈0.1 s, and a very high coherence of ˜90 per cent on time-scales of tens of seconds, slowly decreasing towards higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on time-scales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.

  2. The 2008 outburst of IGR J17473-2721: evidence for a disk corona?

    NASA Astrophysics Data System (ADS)

    Chen, Y.-P.; Zhang, S.; Torres, D. F.; Zhang, S.-N.; Li, J.; Kretschmar, P.; Wang, J.-M.

    2011-10-01

    Context. The 2008 outburst of the atoll source IGR J17473-2721 was observed by INTEGRAL, RXTE and Swift. Tens of type-I X-ray bursts were found in this outburst. Aims: Joint observations by INTEGRAL, RXTE, and Swift provide sufficient data to look into the behavior of IGR J17473-2721 at the rising part of the 2008 outburst. The relation between the duration of the bursts and the accretion rate and the nature of the corona producing the observed power-law component can therefore be studied in detail. Methods: We analyze observational data of IGR J17473-2721, focusing on the spectral evolution during the state transition from quiescent to low hard state (LHS), and on the flux dependence of the type-I X-ray bursts along the outburst. Results: We find that the joint INTEGRAL, RXTE and Swift energy spectrum can be well fitted with a model composed of a blackbody and a cutoff power-law, with a cutoff energy decreasing from ~150 keV to ~40 keV as the source leaves the quiescent state toward the low hard state. This fits into a scenario in which the corona is cooled by the soft X-rays along the outburst evolution, as observed in several other atoll sources. Fifty-seven type-I bursts were reported in the 2008 outburst of IGR J17473-2721. By using the flux measured in the 1.5-30 keV band, we find that the linear relationship between the burst duration and the flux still holds for those bursts that occur at the decaying part of the low hard state, but with a different slope than the overall one that was estimated with the bursts happening in the whole extent of, and for the rest of the low hard state. The significance of such a dichotomy in the type-I X-ray bursts is ~3σ under an F-test. Similar results are hinted at as well with the broader energy-band that was adopted recently. This dichotomy may be understood in a scenario where part of the accreting material forms a corona on the way of falling onto the surface of the neutron star during the decaying part of the low hard state.Based on the accretion rates of the preceding LHS, estimated from type-I X-ray bursts and from persistent emission, at least for IGR J17473-2721, most of the accretion material may fall on the neutron star (NS) surface in the LHS. Considering the burst behavior in the context of the outburst indicates a corona formed on top of the disk rather than on the NS surface. Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Poland and with the participation of Russia and the USA.

  3. TEMPORAL VARIABILITY FROM THE TWO-COMPONENT ADVECTIVE FLOW SOLUTION AND ITS OBSERVATIONAL EVIDENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-10

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclinationmore » black hole source GX 339-4 during its 2006–07 outburst using RXTE /PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν {sub c}) of ∼3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.« less

  4. Smearing of mass accretion rate variation by viscous processes in accretion disks in compact binary systems

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Chakrabarti, Sandip K.

    2016-09-01

    Variation of mass supply rate from the companion can be smeared out by viscous processes inside an accretion disk. Hence, by the time the flow reaches the inner edge, the variation in X-rays need not reflect the true variation of the mass supply rate at the outer edge. However, if the viscosity fluctuates around a mean value, one would expect the viscous time scale t_{{visc}} also to spread around a mean value. In high mass X-ray binaries, which are thought to be primarily wind-fed, the size of the viscous Keplerian disk is smaller and thus such a spread could be lower as compared to the low mass X-ray binaries which are primarily fed by Roche lobe overflow. If there is an increasing or decreasing trend in viscosity, the interval between enhanced emission would be modified systematically. In the absence of a detailed knowledge about the variation of mass supply rates at the outer edge, we study ideal circumstances where modulation must take place exactly in orbital time scales, such as when there is an ellipticity in the orbit. We study a few compact binaries using long term All Sky monitor (ASM) data (1.5-12 keV) of Rossi X-ray Timing Explorer (RXTE) and all sky survey data (15-50 keV) of Swift satellites by different methods to look for such smearing effects and to infer what these results can tell us about the viscous processes inside the respective disks. We employ three different methods to seek imprints of periodicity on the X-ray variation and found that in all the cases, the location of the peak in the power density spectra is consistent with the orbital frequencies. Interestingly, in high mass X-ray binaries the peaks are sharp with high rms values, consistent with a small Keplerian disk in a wind fed system. However, in low mass X-ray binaries with larger Keplerian disk component, the peaks are spreaded out with much lower rms values. X-ray reflections, or superhump phenomena which may also cause such X-ray modulations would not be affected by the size of the Keplerian disk component. Our result thus confirms different sizes of Keplerian disks in these two important classes of binaries. If the orbital periods of any binary system is not known, they may be obtained with reasonable accuracy for HMXBs and with lesser accuracy for LMXBs by our method.

  5. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here preliminary results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8m Perkins telescope at Lowell Observatory. The K-band data presented herein provide the first long-term well-sampled IR light curve of GRS 1915+105. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  6. VizieR Online Data Catalog: Spectral evolution of 4U 1543-47 in 2002 (Lipunova+, 2017)

    NASA Astrophysics Data System (ADS)

    Lipunova, G. V.; Malanchev, K. L.

    2017-08-01

    Evolution of the spectral parameters obtained from the fitting of the spectral data obtained with RXTE/PCA in the 2.9-25keV energy band. Some spectral parameters are plotted in Figure 1 of the paper. The black hole mass is 9.4 solar masses, the Kerr parameter is 0.4, the disc inclination is 20.7 grad. The spectral fitting is done using XSPEC 12.9.0. The XSPEC spectral model consists of the following spectral components: TBabs((simpl*kerrbb+laor)smedge). Full description of the spectral parameters can be found in Table A1 and Appendix A of the paper. (1 data file).

  7. Superorbital Period in the high mass X-ray binary 2S 0114+650

    NASA Astrophysics Data System (ADS)

    Farrell, S.; Sood, R.; O'Neill, P.

    2004-05-01

    We report the identification of a superorbital period in the high mass X-ray binary 2S 0114+650. RXTE ASM observations of this object from 1996 Jan 5 to 2003 May 26 show the presence of a modulation at a period of 30.7 +/- 0.2 days. This period is detected using a Lomb-Scargle periodogram, and has a false-alarm probability of 5E-12. Epoch folding of the data gives an ephemeris of JD 2450079.4 (+/- 0.7) +30.7 (+/- 0.2)N, where N is the cycle number, with phase zero defined as the modulation minimum, and a full amplitude of 60 +/- 20%.

  8. X-Ray Bursts from NGC 6652

    NASA Astrophysics Data System (ADS)

    Morgan, Edward

    The possibly transient X-ray Source in the globular cluster NGC 6652 has been seen by BeppoSax and the ASM on RXTE to undergo X-ray bursts, possibly Type I. Very little is known about this X-ray source, and confirmation of its bursts type-I nature would identify it as a neutron star binary. Type I bursts in 6 other sources have been shown to exhibit intervals of millisecond ocsillation that most likely indicate the neutron star spin period. Radius-expansion bursts can reveal information about the mass and size of the neutron star. We propose to use the ASM to trigger an observation of this source to maximize the probability of catching a burst in the PCA.

  9. Rapid timing studies of black hole binaries in Optical and X-rays: correlated and non-linear variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandhi, P.; Dhillon, V. S.; Durant, M.

    2010-07-15

    In a fast multi-wavelength timing study of black hole X-ray binaries (BHBs), we have discovered correlated optical and X-ray variability in the low/hard state of two sources: GX 339-4 and SWIFT J1753.5-0127. After XTE J1118+480, these are the only BHBs currently known to show rapid (sub-second) aperiodic optical flickering. Our simultaneous VLT/Ultracam and RXTE data reveal intriguing patterns with characteristic peaks, dips and lags down to very short timescales. Simple linear reprocessing models can be ruled out as the origin of the rapid, aperiodic optical power in both sources. A magnetic energy release model with fast interactions between the disk,more » jet and corona can explain the complex correlation patterns. We also show that in both the optical and X-ray light curves, the absolute source variability r.m.s. amplitude linearly increases with flux, and that the flares have a log-normal distribution. The implication is that variability at both wavelengths is not due to local fluctuations alone, but rather arises as a result of coupling of perturbations over a wide range of radii and timescales. These 'optical and X-ray rms-flux relations' thus provide new constraints to connect the outer and inner parts of the accretion flow, and the jet.« less

  10. Long term variability of Cygnus X-1. V. State definitions with all sky monitors

    NASA Astrophysics Data System (ADS)

    Grinberg, V.; Hell, N.; Pottschmidt, K.; Böck, M.; Nowak, M. A.; Rodriguez, J.; Bodaghee, A.; Cadolle Bel, M.; Case, G. L.; Hanke, M.; Kühnel, M.; Markoff, S. B.; Pooley, G. G.; Rothschild, R. E.; Tomsick, J. A.; Wilson-Hodge, C. A.; Wilms, J.

    2013-06-01

    We present a scheme for determining the spectral state of the canonical black hole Cyg X-1 using data from previous and current X-ray all sky monitors (RXTE-ASM, Swift-BAT, MAXI, and Fermi-GBM). Determinations of the hard/intermediate and soft state agree to better than 10% between different monitors, facilitating the determination of the state and its context for any observation of the source, potentially over the lifetimes of different individual monitors. A separation of the hard and the intermediate states, which strongly differ in their spectral shape and short-term timing behavior, is only possible when data in the soft X-rays (<5 keV) are available. A statistical analysis of the states confirms the different activity patterns of the source (e.g., month- to year-long hard-state periods or phases during which numerous transitions occur). It also shows that the hard and soft states are stable, with the probability of Cyg X-1 remaining in a given state for at least one week to be larger than 85% in the hard state and larger than 75% in the soft state. Intermediate states are short lived, with a 50% probability that the source leaves the intermediate state within three days. Reliable detection of these potentially short-lived events is only possible with monitor data that have a time resolution better than 1 d.

  11. 3D Modeling of Forbidden Line Emission in the Binary Wind Interaction Region of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Madura, Thomas; Gull, T. R.; Owocki, S.; Okazaki, A. T.; Russell, C. M. P.

    2010-01-01

    We present recent work using three-dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations to model the high ([Fe III], [Ar III], [Ne III] and [S III]) and low ([Fe II], [Ni II]) ionization forbidden emission lines observed in Eta Carinae using the HST/STIS. These structures are interpreted as the time-averaged, outer extensions of the primary wind and the wind-wind interaction region directly excited by the FUV of the hot companion star of this massive binary system. We discuss how analyzing the results of the 3D SPH simulations and synthetic slit spectra and comparing them to the spectra obtained with the HST/STIS helps us determine the absolute orientation of the binary orbit and helps remove the degeneracy inherent to models based solely on the observed RXTE X-ray light curve. A key point of this work is that spatially resolved observations like those with HST/STIS and comparison to 3D models are necessary to determine the alignment or misalignment of the orbital angular momentum axis with the Homunculus, or correspondingly, the alignment of the orbital plane with the Homunculus skirt.

  12. The Microquasar Cyg X-1: A Short Review

    NASA Technical Reports Server (NTRS)

    Nowak, M. A.; Wilms, J.; Hanke, M.; Pottschmidt, K.; Markoff, S.

    2011-01-01

    We review the spectral properties of the black hole candidate Cygnus X-I. Specifically, we discuss two recent sets of multi-satellite observations. One comprises a 0.5-500 keY spectrum, obtained with eve!)' flying X-ray satellite at that time, that is among the hardest Cyg X-I spectra observed to date. The second set is comprised of 0.5-40 keV Chandra-HETG plus RXTE-PCA spectra from a radio-quiet, spectrally soft state. We first discuss the "messy astrophysics" often neglected in the study of Cyg X-I, i.e., ionized absorption from the wind of the secondary and the foreground dust scattering halo. We then discuss components common to both state extremes: a low temperature accretion disk, and a relativistically broadened Fe line and reflection. Hard state spectral models indicate that the disk inner edge does not extend beyond > or approx.= 40 GM/sq c , and may even approach as close as approx. = 6GM/sq c. The soft state exhibits a much more prominent disk component; however, its very low normalization plausibly indicates a spinning black hole in the Cyg X-I system. Key words. accretion, accretion disks - black hole physics - X-rays:binaries

  13. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  14. Tandem Swift and INTEGRAL Data to Revisit the Orbital and Superorbital Periods of 1E 1740.7–2942

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stecchini, Paulo Eduardo; Castro, Manuel; Jablonski, Francisco

    2017-07-01

    The black hole candidate 1E 1740.7−2942 is one of the strongest hard X-ray sources in the Galactic Center region. No counterparts in longer wavelengths have been identified for this object yet. The presence of characteristic timing signatures in the flux history of X-ray sources has been shown to be an important diagnostic tool for the properties of these systems. Using simultaneous data from NASA’s Swift and ESA’s INTEGRAL missions, we have found two periodic signatures at 12.61 ± 0.06 days and 171.1 ± 3.0 days in long-term hard X-ray light curves of 1E 1740.7−2942. We interpret those as the orbitalmore » and superorbital periods of the object, respectively. The reported orbital period is in good agreement with previous studies of 1E 1740.7−2942 using NASA’s RXTE data. We present here the first firm evidence of a superorbital period for 1E 1740.7−2942, which has important implications for the nature of the binary system.« less

  15. High-Energy Electromagnetic Offline Follow-Up of Ligo-Virgo Gravitational-Wave Binary Coalescence Candidate Events

    NASA Technical Reports Server (NTRS)

    Blackburn, L.; Briggs, M. S.; Camp, J.; Christensen, N.; Connaughton, V.; Jenke, P.; Remillard, R. A.; Veitch, J.

    2015-01-01

    We present two different search methods for electromagnetic counterparts to gravitational-wave (GW) events from ground-based detectors using archival NASA high-energy data from the Fermi Gamma-ray Burst Monitor (GBM) and RXTE All-sky Monitor (ASM) instruments. To demonstrate the methods, we use a limited number of representative GW background noise events produced by a search for binary neutron star coalescence over the last two months of the LIGO-Virgo S6/VSR3 joint science run. Time and sky location provided by the GW data trigger a targeted search in the high-energy photon data. We use two custom pipelines: one to search for prompt gamma-ray counterparts in GBM, and the other to search for a variety of X-ray afterglow model signals in ASM. We measure the efficiency of the joint pipelines to weak gamma-ray burst counterparts, and a family of model X-ray afterglows. By requiring a detectable signal in either electromagnetic instrument coincident with a GW event, we are able to reject a large majority of GW candidates. This reduces the signal-to-noise ratio of the loudest surviving GW background event by around 15-20 percent.

  16. HIGH-ENERGY ELECTROMAGNETIC OFFLINE FOLLOW-UP OF LIGO-VIRGO GRAVITATIONAL-WAVE BINARY COALESCENCE CANDIDATE EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackburn, L.; Camp, J.; Briggs, M. S.

    2015-03-15

    We present two different search methods for electromagnetic counterparts to gravitational-wave (GW) events from ground-based detectors using archival NASA high-energy data from the Fermi Gamma-ray Burst Monitor (GBM) and RXTE All-sky Monitor (ASM) instruments. To demonstrate the methods, we use a limited number of representative GW background noise events produced by a search for binary neutron star coalescence over the last two months of the LIGO-Virgo S6/VSR3 joint science run. Time and sky location provided by the GW data trigger a targeted search in the high-energy photon data. We use two custom pipelines: one to search for prompt gamma-ray counterpartsmore » in GBM, and the other to search for a variety of X-ray afterglow model signals in ASM. We measure the efficiency of the joint pipelines to weak gamma-ray burst counterparts, and a family of model X-ray afterglows. By requiring a detectable signal in either electromagnetic instrument coincident with a GW event, we are able to reject a large majority of GW candidates. This reduces the signal-to-noise ratio of the loudest surviving GW background event by around 15–20%.« less

  17. VizieR Online Data Catalog: V1357 Cyg spectroscopic monitoring in 2002-04 (Karitskaya+, 2008)

    NASA Astrophysics Data System (ADS)

    Karitskaya, E. A.; Bochkarev, N. G.; Bondar, A. V.; Galazutdinov, G. A.; Lee, B.-K.; Musaev, F. A.; Sapar, A. A.; Shimansky, V. V.

    2008-11-01

    The results of Cyg X-1 = HDE 226868/V1357 Cyg optical spectral monitoring in 2002-2004 are discussed. Spectral observations were carried out on Peak Terskol Observatory (Kabardino-Balkaria, Russia, resolution R=45000 and 13000) and Bohyunsan Optical Astronomy Observatory (BOAO, Korea, R=30000, 44000). Each spectrum covers the main part of optical spectral range. During 33 observational nights 75 echelle spectra were obtained in the times of the "soft" and "hard" states of Cyg X-1. The X-ray influence on spectral line profiles was studied. The RXTE/ASM data were used for this purpose. The X-ray flare resulted in strong variations of Halpha and HeII4686{AA} emission component profiles during night. This behaviour we connect with variations of ionization structure of matter in the system. Line profile variations with the orbital phase were observed. The spectral atlas for Cyg X-1 was constructed. The contented line identification was done. There were revealed 172 lines and blends which belong to 12 chemical elements: H, He, C, N, O, Ne, Mg, Al, Si, S, Fe, Zn. The HDE 226868 spectral classification as ON star was confirmed. (2 data files).

  18. Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays

    NASA Technical Reports Server (NTRS)

    Thorstensen, John; Remillard, Ronald A.

    2000-01-01

    There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.

  19. 4U 1909+07: A Hidden Pearl

    NASA Technical Reports Server (NTRS)

    Kreykenbohm, Ingo; Fuerst, Felix; Barragan, Laura; Wilms, Joern; Rothschild, Richard E.; Suchy, Slawomir; Pottschmidt, Katja

    2010-01-01

    We present a detailed spectral and timing analysis of the High Mass X-ray Binary (HMXB) 4U 1909+07 with INTEGRAL and RXTE. 4U 1909+07 is a persistent accreting X-ray pulsar with a period of approximately 605 s. The period changes erratically consistent with a random walk expected for a wind accreting system. INTEGRAL detects the source with an average of 2.4 cps (corresponding to 15 mCrab), but sometimes exhibits flaring activity up to 50 cps (i.e. 300 mCrab). The strongly energy dependent pulse profile shows a double peaked structure at low energies and only a single narrow peak at energies above 20 keV. The phase averaged spectrum is well described by a powerlaw modified at higher energies by an exponential cutoff and photoelectric absorption at low energies. In addition at 6.4 keV a strong iron fluorescence line and at lower energies a black body component are present. We performed phase resolved spectroscopy to study the pulse phase dependence of the spectral parameters: while most spectral parameters are constant within uncertainties, the blackbody normalization and the cutoff folding energy vary strongly with phase.

  20. In-depth study of long-term variability in the X-ray emission of the Be/X-ray binary system AX J0049.4-7323

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Romano, P.; Malacaria, C.; Ji, L.; Bozzo, E.; Santangelo, A.

    2018-06-01

    AX J0049.4-7323 is a Be/X-ray binary in the Small Magellanic Cloud hosting a 750 s pulsar which has been observed over the last 17 years by several X-ray telescopes. Despite numerous observations, little is known about its X-ray behaviour. Therefore, we coherently analysed archival Swift, Chandra, XMM-Newton, RXTE, and INTEGRAL data, and we compared them with already published ASCA data, to study its X-ray long-term spectral and flux variability. AX J0049.4-7323 shows a high X-ray variability, spanning more than three orders of magnitudes, from L ≈ 1.6 × 1037 erg s-1 (0.3-8 keV, d = 62 kpc) down to L ≈ 8 × 1033 erg s-1. RXTE, Chandra, Swift, and ASCA observed, in addition to the expected enhancement of X-ray luminosity at periastron, flux variations by a factor of 270 with peak luminosities of ≈2.1 × 1036 erg s-1 far from periastron. These properties are difficult to reconcile with the typical long-term variability of Be/XRBs, traditionally interpreted in terms of type I and type II outbursts. The study of AX J0049.4-7323 is complemented with a spectral analysis of Swift, Chandra, and XMM-Newton data which showed a softening trend when the emission becomes fainter, and an analysis of optical/UV data collected by the UVOT telescope on board Swift. In addition, we measured a secular spin-up rate of Ṗ = (-3.00 ± 0.12) × 10-3 s day-1, which suggests that the pulsar has not yet achieved its equilibrium period. Assuming spherical accretion, we estimated an upper limit for the magnetic field strength of the pulsar of ≈3 × 1012 G.

  1. Predictive Mining of Time Series Data

    NASA Astrophysics Data System (ADS)

    Java, A.; Perlman, E. S.

    2002-05-01

    All-sky monitors are a relatively new development in astronomy, and their data represent a largely untapped resource. Proper utilization of this resource could lead to important discoveries not only in the physics of variable objects, but in how one observes such objects. We discuss the development of a Java toolbox for astronomical time series data. Rather than using methods conventional in astronomy (e.g., power spectrum and cross-correlation analysis) we employ rule discovery techniques commonly used in analyzing stock-market data. By clustering patterns found within the data, rule discovery allows one to build predictive models, allowing one to forecast when a given event might occur or whether the occurrence of one event will trigger a second. We have tested the toolbox and accompanying display tool on datasets (representing several classes of objects) from the RXTE All Sky Monitor. We use these datasets to illustrate the methods and functionality of the toolbox. We have found predictive patterns in several ASM datasets. We also discuss problems faced in the development process, particularly the difficulties of dealing with discretized and irregularly sampled data. A possible application would be in scheduling target of opportunity observations where the astronomer wants to observe an object when a certain event or series of events occurs. By combining such a toolbox with an automatic, Java query tool which regularly gathers data on objects of interest, the astronomer or telescope operator could use the real-time datastream to efficiently predict the occurrence of (for example) a flare or other event. By combining the toolbox with dynamic time warping data-mining tools, one could predict events which may happen on variable time scales.

  2. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  3. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  4. Continued X-ray Monitoring of Magnetar Candidate SWIFT J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Livingstone, M. A.; Kaspi, V. M.

    2011-08-01

    We report on Swift/XRT and RXTE/PCA observations of the new 8.4-s Galactic magnetar candidate SWIFT J1822.3-1606, also referred to as SGR J1822.3-1606 (ATELs #3488, #3489, #3490, #3493, #3495, #3496, #3501, #3503, #3543). The persistent X-ray flux from the source continues to fade in ongoing XRT monitoring observations. For data in the MJD range 55757 to 55781, the best-fit power-law index, alpha, for the decay of the absorbed 1-10 keV flux is -0.47 ± 0.02, assuming a decay of functional form F(t) = F0 + F0*(t-T)^alpha, where T is the epoch of the Swift/BAT trigger (ATEL #3488).

  5. Multi-Wavelength Monitoring of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.

    1997-01-01

    Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here first results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8 m Perkins telescope at Lowell Observatory. The first long-term well-sampled IR light curve of GRS 1915+105 is presented herein and is consistent with the interpretation of this source as a long-period binary. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.

  6. EVOLUTION OF THE CROSS-CORRELATION AND TIME LAG OF 4U 1735-44 ALONG THE BRANCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei Yajuan; Zhang Haotong; Zhang Chengmin

    We analyze the cross-correlation function between the soft and hard X-rays of atoll source 4U 1735-44 with RXTE data, and find anti-correlated soft and hard time lags of about a hecto-second. In the island state, the observations do not show any obvious correlations, and most observations of the banana branch show a positive correlation. However, anti-correlations are detected in the upper banana branch. These results are different from those of Z-sources (Cyg X-2, GX 5-1), where anti-correlations are detected in the horizontal branch and upper normal branch. In this case, the lag timescales of both this atoll and Z-sources aremore » found to be similar, at a magnitude of several tens to hundreds of seconds. As a comparison, it is noted that anti-correlated lags lasting thousands of seconds have been reported from several black hole candidates in their intermediate states. In addition, for an observation containing four segments that show positive or anti-correlation, we analyze the spectral evolution with the hybrid model. In the observation, the anti-correlation is detected at the highest flux. The fitting results show that the Comptonized component is not the lowest at the highest flux, which suggests that the anti-correlation corresponds to the transition between the soft and hard states. Finally, we compare the corresponding results of atoll source 4U 1735-44 with those observed in Z-sources and black hole candidates, and the possible origins of the anti-correlated time lags are discussed.« less

  7. Burst Oscillation Periods from 4U 1636-53: A Constraint on the Binary Doppler Modulation

    NASA Technical Reports Server (NTRS)

    Giles, A. B.; Hill, K. M.; Strohmayer, T. E.; Cummings, N.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The burst oscillations seen during Type 1 X-ray bursts from low mass X-ray binaries (LMXB) typically evolve in period towards an asymptotic limit that likely reflects the spin of the underlying neutron star. If the underlying period is stable enough, measurement of it at different orbital phases may allow a detection of the Doppler modulation caused by the motion of the neutron star with respect to the center of mass of the binary system. Testing this hypothesis requires enough X-ray bursts and an accurate optical ephemeris to determine the binary phases at which they occurred. We present here a study of the distribution of asymptotic burst oscillation periods for a sample of 26 bursts from 4U 1636-53 observed with the Rossi X-ray Timing Explorer (RXTE). The burst sample includes both archival and proprietary data and spans more than 4.5 years. We also present new optical light curves of V801 Arae, the optical counterpart of 4U 1636-53, obtained during 1998-2001. We use these optical data to refine the binary period measured by Augusteijn et al. to 3.7931206(152) hours. We show that a subset of approx. 70% of the bursts form a tightly clustered distribution of asymptotic periods consistent with a period stability of approx. 1 x 10(exp -4). The tightness of this distribution, made up of bursts spanning more than 4 years in time, suggests that the underlying period is highly stable, with a time to change the period of approx. 3 x 10(exp 4) yr. This is comparable to similar numbers derived for X-ray pulsars. We investigate the period and orbital phase data for our burst sample and show that it is consistent with binary motion of the neutron star with v(sub ns) sin i < 38 and 50 km/s at 90 and 99% confidence, respectively. We use this limit as well as previous radial velocity data to constrain the binary geometry and component masses in 4U 1636-53. Our results suggest that unless the neutron star is significantly more massive than 1.4 solar masses the secondary is unlikely to have a mass as large as 0.36 solar masses, the mass estimated assuming it is a main sequence star which fills its Roche lobe. We show that a factor of 3 increase in the number of bursts with asymptotic period measurements should allow a detection of the neutron star velocity.

  8. A Broad-band Spectral and Timing Study of the X-Ray Binary System Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Audley, Michael Damian

    1998-01-01

    This dissertation describes a multi-mission investigation of the high mass X-ray binary pulsar Centaurus X-3. Cen X-3 was observed with the Broad Band X-Ray Telescope (BBXRT) in December 1990. This was the first high-resolution solid state X-ray spectrometer to cover the iron K fluorescence region. The Fe K emission feature was resolved into two components for the first time. A broad 6.7 keV feature was found to be a blend of lines from Fe XXI-Fe XXVI with energies ranging from 6.6 to 6.9 keV due to photoionization of the companion's stellar wind. A narrow line at 6.4 keV due to fluorescence of iron in relatively low ionization states was also found. The quasi-periodic oscillations (QPO) at about 40 mHz were used to estimate the surface magnetic field of Cen X-3 as approx. 2.6 x 10(exp 12) G and to predict that there should be a cyclotron scattering resonance absorption feature (CSRF) near 30 keV. In order to further resolve the iron line complex and to investigate the pulse-phase dependence of the iron line intensities, Cen X-3 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA). Using ASCA's state-of-the-art non-dispersive X-ray spectrometers the 6.4 keV fluorescent iron line was found to be pulsing while the intensities of the 6.7 and 6.9 keV recombination lines do not vary with pulse phase. This confirms that the 6.4 keV line is due to reflection by relatively neutral matter close to the neutron star while the recombination lines originate in the extended stellar wind. The continuum spectrum was found to be modified by reflection from matter close to the neutron star. Observations with the EXOSAT GSPC were used to search for a CSRF. The EXOSAT spectra were consistent with the presence of a CSRF but an unambiguous detection was not possible because of a lack of sensitivity at energies higher than the cyclotron energy. Cen X-3 was then observed with the Rossi X-Ray Timing Explorer (RXTE) and evidence for a CSRF at 25.1 +/- 0.3 keV was found. This corresponds to a magnetic field of (2.16 +/- 0.03) X 10(exp 12) G and is consistent with the value obtained from the QPO analysis.

  9. A New Low Magnetic Field Magnetar: The 2011 Outburst of Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Rea, N.; Israel, G. L.; Esposito, P.; Pons, J. A.; Camero-Arranz, A.; Mignani, R. P.; Turolla, R.; Zane, S.; Burgay, M.; Possenti, A.; Campana, S.; Enoto, T.; Gehrels, N.; Göǧüş, E.; Götz, D.; Kouveliotou, C.; Makishima, K.; Mereghetti, S.; Oates, S. R.; Palmer, D. M.; Perna, R.; Stella, L.; Tiengo, A.

    2012-07-01

    We report on the long-term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3-1606 (SGR 1822-1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April). We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3-1606's radio-pulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative \\dot{P}=8.3(2)\\times 10^{-14} s s-1, which implies an inferred dipolar surface magnetic field of B ~= 2.7 × 1013 G at the equator. This measurement makes Swift J1822.3-1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3-1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ~ 1.5 × 1014 G and B tor ~ 7 × 1014 G, respectively, and if its current age is ~550 kyr.

  10. Characterization of the Infrared/X-ray sub-second variability for the black-hole transient GX 339-4

    NASA Astrophysics Data System (ADS)

    Vincentelli, F. M.; Casella, P.; Maccarone, T. J.; Uttley, P.; Gandhi, P.; Belloni, T.; De Marco, B.; Russell, D. M.; Stella, L.; O'Brien, K.

    2018-03-01

    We present a detailed analysis of the X-ray/IR fast variability of the Black-Hole Transient GX 339-4 during its low/hard state in August 2008. Thanks to simultaneous high time-resolution observations made with the VLT and RXTE, we performed the first characterisation of the sub-second variability in the near-infrared band - and of its correlation with the X-rays - for a low-mass X-ray binary, using both time- and frequency-domain techniques. We found a power-law correlation between the X-ray and infrared fluxes when measured on timescales of 16 seconds, with a marginally variable slope, steeper than the one found on timescales of days at similar flux levels. We suggest the variable slope - if confirmed - could be due to the infrared flux being a non-constant combination of both optically thin and optically thick synchrotron emission from the jet, as a result of a variable self-absorption break. From cross spectral analysis we found an approximately constant infrared time lag of ≈0.1s, and a very high coherence of ˜90 per cent on timescales of tens of seconds, slowly decreasing toward higher frequencies. Finally, we report on the first detection of a linear rms-flux relation in the emission from a low-mass X-ray binary jet, on timescales where little correlation is found between the X-rays and the jet emission itself. This suggests that either the inflow variations and jet IR emission are coupled by a non-linear or time-variable transform, or that the IR rms-flux relation is not transferred from the inflow to the jet, but is an intrinsic property of emission processes in the jet.

  11. On the Nature of the Compact Object in SS 433. Observational Evidence of X-Ray Photon Index Saturation

    NASA Technical Reports Server (NTRS)

    Seifina, Elena; Titarchuk, Lev

    2010-01-01

    We present an analysis of the X-ray spectral properties observed from black hole , candidate (BHC) binary SS 433. We have analyzed Rossi X-ray Time Explorer (RXTE) data from this source, coordinated with Green Bank Interferometer/RATAN-600. We show that SS 433 undergoes a X-ray spectral transition from the low hard state (LHS) to the intermediate state (IS). We show that the X-ray broad-band energy spectra during all spectral states are well fit by a sum of so called "Bulk Motion Comptonization (BMC) component" and by two (broad and narrow) Gaussians for the continuum and line emissions respectively. In addition to these spectral model components we also find a strong feature that we identify as a" blackbody-like (BB)" component which color temperature is in the range of 4-5 keV in 24 IS spectra during the radio outburst decay in SS 433. Our observational results on the "high temperature BB" bump leads us to suggest the presence of gravitationally redshifted annihilation line emission in this source. In fact this spectral feature has been recently reproduced in Monte Carlo simulations by Laurent and Titarchuk. We have also established the photon index saturation at about 2.3 in index vs mass accretion correlation. This index-mass accretion correlation allows us to evaluate the low limit of black hole (BH) mass of compact object in SS 433, M(sub bh) approximately > 2 solar masses, using the scaling method using BHC GX 339-4 as a reference source. Our estimate of the BH mass in SS 433 is consistent with recent BH mass measurement using the radial-velocity measurements of the binary system by Hillwig & Gies who find that M(sub x)( = (4.3 +/- 0.8) solar masses. This is the smallest BH mass found up to now among all BH sources. Moreover, the index saturation effect versus mass accretion rate revealed in SS 433, like in a number of other BH candidates, is the strong observational evidence for the presence of a BH in SS 433.

  12. The HEASARC in 2016: 25 Years and Counting

    NASA Astrophysics Data System (ADS)

    Drake, Stephen Alan; Smale, Alan P.

    2016-04-01

    The High Energy Astrophysics Archival Research Center or HEASARC (http://heasarc.gsfc.nasa.gov/) has been the NASA astrophysics discipline archive supporting multi-mission cosmic X-ray and gamma-ray astronomy research for 25 years, and, through its LAMBDA (Legacy Archive for Microwave Background Data Analysis: http://lambda.gsfc.nasa.gov/) component, the archive for cosmic microwave background data for the last 8 years. The HEASARC is the designated archive which supports NASA's Physics of the Cosmos theme (http://pcos.gsfc.nasa.gov/).The HEASARC provides a unified archive and software structure aimed both at 'legacy' high-energy missions such as Einstein, EXOSAT, ROSAT, RXTE, and Suzaku, contemporary missions such as Fermi, Swift, XMM-Newton, Chandra, NuSTAR, etc., and upcoming missions, such as Astro-H and NICER. The HEASARC's high-energy astronomy archive has grown so that it presently contains more than 80 terabytes (TB) of data from 30 past and present orbital missions. The user community downloaded 160 TB of high-energy data from the HEASARC last year, i.e., an amount equivalent to twice the size of the archive.We discuss some of the upcoming new initiatives and developments for the HEASARC, including the arrival of public data from the JAXA/NASA Astro-H mission, expected to have been launched in February 2016, and the NASA mission of opportunity Neutron Star Interior Composition Explorer (NICER), expected to be deployed in late summer 2016. We also highlight some of the new software and web initiatives of the HEASARC, and discuss our plans for the next 3 years.

  13. A new low-B magnetar: Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Camero-Arranz, A.; Rea, N.; Israel, G. L.; Esposito, P.; Pons, J. A.; Mignani, R. P.; Turolla, R.; Zane, S.; Burgay, M.; Possenti, A.; Campana, S.; Enoto, T.; Gehrels, N.; Göğüş, E.; Götz, D.; Kouveliotou, C.; Makishima, K.; Mereghetti, S.; Oates, S. R.

    2013-03-01

    We report on the long term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3-1606 (SGR 1822-1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery (July 2011), through the first stages of its outburst decay (April 2012). Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative Ṗ = 8.3(2) × 10-14 ss-1, which entails an inferred dipolar surface magnetic field of B ≃ 2.7 × 1013 G at the equator. This measurement makes Swift J1822.3-1606 the second lowest magnetic field magnetar (after SGR 0418+5729; Rea et al. 2010). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3-1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of Bp ~ 1.5 × 1014 G and Btor ~ 7 × 1014 G, respectively, and if its current age is ~550 kyr (Rea et al. 2012).

  14. The Anomalous Low State of LMC X-3

    NASA Technical Reports Server (NTRS)

    Smale, A. P.; Boyd, P. T.; Markwardt, C. B.

    2009-01-01

    Archival RXTE ASM and PCA observations of the black hole binary LMC X-3 reveal a dramatic and extended low state lasting from December 8, 2003 until March 18, 2004, unprecedented both in its Low luminosity (Lx(2-10keV)=4.2x 1035 ergs s-1, approximately 4 times fainter than ever before seen from LMC X-3 in its low/hard state, and representing 0.15% of its X-ray luminosity during the high/soft state); and Long duration (approximately equal to 100 days, as compared with 5-20 days for 'normal' low/hard state excursions). During this anomalous low state no significant variability is observed on timescales of days-weeks, and the spectrum is well described by a simple power law with index 1.7 plus or minus 0.2. We examine the variability characteristics of LMC X-3 before and after this event using conventional and topological methods, and show that with the exception of the anomalous low state itself the long-term behavior of the source in topological phase space can be completely described in terms of a well-understood nonlinear dynamics system known as the Duffing oscillator, implying that the accretion disk in LMC X-3 is a driven, dissipative system with two solutions competing for control of its time evolution. This work shows that dynamical information and constraints revealed by topological analysis methods can provide a valuable addition to traditional studies of accretion disk behavior.

  15. X-ray variability of SS 433: Evidence for supercritical accretion

    NASA Astrophysics Data System (ADS)

    Atapin, K. E.; Fabrika, S. N.

    2016-08-01

    We study the X-ray variability of SS 433 based on data from the ASCA observatory and the MAXI and RXTE/ASM monitoring missions. Based on the ASCA data, we have constructed the power spectrum of SS 433 in the frequency range from 10-6 to 0.1 Hz, which confirms the presence of a flat portion in the spectrum at frequencies 3 × 10-5-10-3 Hz. The periodic variability (precession, nutation, eclipses) begins to dominate significantly over the stochastic variability at lower frequencies, which does not allow the stochastic variability to be studied reliably. The model in which the flat portion extends to 9.5 × 10-6 Hz, while a power-law rise with an index of 2.6 occurs below provides the best agreement with the observations. The nutational oscillations of the jets with a period of about three days suggests that the time for the passage of material through the disk is less than this value. At frequencies below 4 × 10-6 Hz, the shape of the power spectrum probably does not reflect the disk structure but is determined by external factors, for example, by a change in the amount of material supplied by the donor. The flat portion can arise from a rapid decrease in the viscous time in the supercritical or radiative disk zones. The flat spectrum is associated with the variability of the X-ray jets that are formed in the supercritical disk region.

  16. Investigating Dueling Scenarios in NGC 7582 with Broadband X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rivers, E.

    2015-09-01

    NGC 7582 is a well-studied X-ray bright Seyfert 2 with moderately heavy (NH = 10^{23} - 10^{24} cm^{-2}), highly variable absorption and unusually strong reflection spectral features. The spectral shape changed around the year 2000, dropping in observed flux and becoming much more highly absorbed. Two scenarios have been put forth to explain this spectral change: 1) the source "shut off" around this time, decreasing in intrinsic luminosity, with a delayed decrease in reflection features due to the light crossing time of the Compton-thick material or 2) the source is a "hidden nucleus" which has recently become more heavily obscured, with only a portion of the power law continuum leaking through. NuSTAR observed NGC 7582 twice in 2012 two weeks apart in order to quantify the reflection using high-quality data above 10 keV. We analyze both NuSTAR observations placing them in the context of historical X-ray, infrared and optical observations, including re-analysis of RXTE data from 2003-2005. We find that the most plausible scenario is that NGC 7582 has a hidden nucleus which has recently become more heavily absorbed by a patchy torus with a covering fraction of 80-90% and a column density of 3.6 x 10^{24} cm^{-2}. We find the need for an additional highly variable full-covering absorber with NH= 4-6 x 10^{23} cm^{-2}, possibly associated with a hidden broad line region or a dust lane in the host galaxy.

  17. Is there a highly magnetized neutron star in GX 301-2?

    NASA Astrophysics Data System (ADS)

    Doroshenko, V.; Santangelo, A.; Suleimanov, V.; Kreykenbohm, I.; Staubert, R.; Ferrigno, C.; Klochkov, D.

    2010-06-01

    We present the results of an in-depth study of the long-period X-ray pulsar GX 301-2. Using archival data of INTEGRAL, RXTE ASM, and CGRO BATSE, we study the spectral and timing properties of the source. Comparison of our timing results with previously published work reveals a secular decay of the orbital period at a rate of ≃ - 3.25 × 10-5 d yr-1, which is an order of magnitude faster than for other known systems. We argue that this is probably result either of the apsidal motion or of gravitational coupling of the matter lost by the optical companion with the neutron star, although current observations do not allow us to distinguish between those possibilities. We also propose a model to explain the observed long pulse period. We find that a very strong magnetic field B ~ 1014 G can explain the observed pulse period in the framework of existing models for torques affecting the neutron star. We show that the apparent contradiction with the magnetic field strength BCRSF ~ 4 × 1012 G derived from the observed cyclotron line position may be resolved if the line formation region resides in a tall accretion column of height ~2.5-3 RNS. The color temperature measured from the spectrum suggests that such a column may indeed be present, and our estimates show that its height is sufficient to explain the observed cyclotron line position.

  18. Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state

    DOE PAGES

    Abramowski, A.

    2011-09-01

    The high-frequency peaked BL Lac object PKS 2005-489 was the target of amulti-wavelength campaignwith simultaneous observations in the TeV γ-ray (H.E.S.S.), GeV γ-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E> 100 GeV) spectrum measured with H.E.S.S. with a peak energy between ~ 5 and 500 GeV. Compared to observations with contemporaneousmore » coverage in the VHE and X-ray bands in 2004, the X-ray flux was ~ 50 times higher during the 2009 campaign while the TeV γ-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.« less

  19. NuSTAR Observations of the Magnetar 1E 2259+586

    NASA Technical Reports Server (NTRS)

    Vogel, Julia K.; Hascoet, Romain; Kaspi, Victoria M.; An, Hongjun; Archibald, Robert; Beloborodov, Andrei M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Gotthelf, Eric V.; hide

    2014-01-01

    We report on new broad band spectral and temporal observations of the magnetar 1E 2259+586, which is located in the supernova remnant CTB 109. Our data were obtained simultaneously with the Nuclear Spectroscopic Telescope Array (NuSTAR) and Swift, and cover the energy range from 0.5-79 keV. We present pulse profiles in various energy bands and compare them to previous RXTE results. The NuSTAR data show pulsations above 20 keV for the first time and we report evidence that one of the pulses in the double-peaked pulse profile shifts position with energy. The pulsed fraction of the magnetar is shown to increase strongly with energy. Our spectral analysis reveals that the soft X-ray spectrum is well characterized by an absorbed double blackbody or blackbody plus power-law model in agreement with previous reports. Our new hard X-ray data, however, suggest that an additional component, such as a power law, is needed to describe the NuSTAR and Swift spectrum. We also fit the data with the recently developed coronal outflow model by Beloborodov for hard X-ray emission from magnetars. The outflow from a ring on the magnetar surface is statistically preferred over outflow from a polar cap.

  20. Simultaneous Constraints on the Mass and Radius of Aql X–1 from Quiescence and X-Ray Burst Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhaosheng; Falanga, Maurizio; Chen, Li

    The measurement of neutron star mass and radius is one of the most direct ways to distinguish between various dense matter equations of state. The mass and radius of accreting neutron stars hosted in low-mass X-ray binaries can be constrained by several methods, including photospheric radius expansion from type I X-ray bursts and from quiescent spectra. In this paper, we apply for the first time these two methods simultaneously to constrain the mass and radius of Aql X–1. The quiescent spectra from Chandra and XMM-Newton , and photospheric radius expansion bursts from RXTE are used. The determination of the massmore » and radius of Aql X–1 is also used to verify the consistency between the two methods and to narrow down the uncertainties of the neutron star mass and radius. It is found that the distance to Aql X–1 should be in the range of 4.0–5.75 kpc, based on the overlapping confidence regions between photospheric radius expansion burst and quiescent spectra methods. In addition, we show that the mass and radius determined for the compact star in Aql X–1 are compatible with strange star equations of state and conventional neutron star models.« less

  1. M/R estimates for two neutron stars in LMXBs with possible r-mode frequencies detected

    NASA Astrophysics Data System (ADS)

    Chirenti, Cecilia; Jasiulek, Michael

    2018-05-01

    The puzzling existence of a number of neutron stars that appear to be in the r-mode instability window supports further investigations of the r-mode frequencies, damping times and saturation amplitudes, especially now in light of the much anticipated and exciting results from LIGO and NICER. It has been suggested by Mahmoodifar and Strohmayer that coherent frequencies found in the RXTE data of the accreting millisecond pulsar XTE J1751-305 and during the 2001 superburst of 4U 1636-536 (one of the accreting sources to be observed by NICER) could, in fact, be r-modes. Based on these observations, we expand here the results of a previous work on relativistic, rotational, and differential rotation corrections to the r-mode frequency in order to provide more accurate estimates of the M-R relation for these neutron stars. Finally, we compare our results with predictions from a few realistic tabulated equations of state, providing further constraints that favour more compact models. We find that, if the observed frequencies indeed correspond to r-modes, then the masses of XTE J1751-305 and 4U 1636-536 should lie in the approximate ranges 1.48-1.56 and 1.60-1.68 M⊙, respectively.

  2. A PROPELLER-EFFECT INTERPRETATION OF MAXI/GSC LIGHT CURVES OF 4U 1608-52 AND Aql X-1 AND APPLICATION TO XTE J1701-462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asai, K.; Matsuoka, M.; Mihara, T.

    2013-08-20

    We present the luminosity dwell-time distributions during the hard states of two low-mass X-ray binaries containing a neutron star (NS), 4U 1608-52 and Aql X-1, observed with MAXI/GSC. The luminosity distributions show a steep cutoff on the low-luminosity side at {approx}1.0 Multiplication-Sign 10{sup 36} erg s{sup -1} in both sources. The cutoff implies a rapid luminosity decrease in their outburst decay phases and this decrease can be interpreted as being due to the propeller effect. We estimate the surface magnetic field of 4U 1608-52 to be (0.5-1.6) Multiplication-Sign 10{sup 8} G and Aql X-1 to be (0.6-1.9) Multiplication-Sign 10{sup 8}more » G from the cutoff luminosity and apply the same propeller mechanism to the similar rapid luminosity decrease observed in the transient Z source, XTE J1701-462, with RXTE/ASM. Assuming that the spin period of the NS is on the order of milliseconds, the observed cutoff luminosity implies a surface magnetic field on the order of 10{sup 9} G.« less

  3. The X-ray Reflectors in the Nucleus of the Seyfert Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Weaver, Kimberly A.; Krolik, Julian H.; Mulchaey, John S.; Mushotzky, Richard F.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Based on observations of the Seyfert nucleus in NGC 1068 with ASCA, RXTE and BeppoSAX, we report the discovery of a flare (increase in flux by a factor of approximately 1.6) in the 6.7 keV Fe K line component between observations obtained four months apart, with no significant change in the other (6.21, 6.4, and 6.97 keV) Fe Kalpha line components. During this time, the continuum flux decreased by approximately 20%. The RXTE spectrum requires an Fe K absorption edge near 8.6 keV (Fe XXIII- XXV). The spectral data indicate that the 2-10 keV continuum emission is dominated (approximately 2/3 of the luminosity) by reflection from a previously unidentified region of warm, ionized gas located approximately or less than 0.2 pc from the AGN. The remaining approximately 1/3 of the observed X-ray emission is reflected from optically thick, neutral gas. The coronal gas in the inner Narrow-Line Region (NLR) and/or the cold gas at the inner surface of the obscuring 'torus' are possible cold reflectors. The inferred properties of the warm reflector are: size (diameter) approximately or less than 0.2 pc, gas density n approximately or greater than 10(exp 5.5)/cu cm, ionization parameter xi is approximately 10(exp 3.5) erg cm s(exp -1), and covering fraction 0.003 (L(sub 0)/ 10(exp 43.5) erg s(exp -1)(exp -1) less than (omega/4pi) less than 0.024 (L(sub 0)/ 10(exp 43.5) erg s(exp -1) (exp -1) where L(sub 0) is the intrinsic 2-10 keV X-ray luminosity of the AGN. We suggest that the warm reflector gas is the source of the (variable) 6.7 keV Fe line emission, and the 6.97 keV Fe line emission. The 6.7 keV line flare is assumed to be due to an increase in the emissivity of the warm reflector gas from a decrease (by 20-30%) in L(sub 0). The properties of the warm reflector are most consistent with an intrinsically X-ray weak AGN with L(sub 0) approximately equals 10(exp 43.0) erg s(exp -1). The optical and UV emission that scatters from the warm reflector into our line of sight is required to suffer strong extinction, which can be reconciled if the line-of-sight skims the outer surface of the torus. Thermal bremsstrahlung radio emission from the warm reflector may be detectable in VLBA radio maps of the NGC 1068 nucleus.

  4. The Astrophysics Science Division Annual Report 2008

    NASA Technical Reports Server (NTRS)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  5. Acyclic High-Energy Variability in Eta Carinae and WR 140

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.

    2012-01-01

    Eta Carinae and WR 140 are similar long-period colliding wind binaries in which X-ray emission is produced by a strong shock due to the collision of the powerful stellar winds. The change in the orientation and density of this shock as the stars revolve in their orbits influences the X-ray flux and spectrum in a phase dependent way. Monitoring observations with RXTE and other X-ray satellite observatories since the 1990s have detailed this variability but have also shown significant deviations from strict phase dependence (short-term brightness changes or "flares", and cyc1e-to-cyc1e average flux differences). We examine these acylic variations in Eta Car and WR 140 and discuss what they tell us about the stability of the wind-wind collision shock.

  6. Short-Term Variability and Power Spectral Density Analysis of the Radio-Loud Active Galactic Nucleus 3C 390.3

    NASA Astrophysics Data System (ADS)

    Gliozzi, Mario; Papadakis, Iossif E.; Eracleous, Michael; Sambruna, Rita M.; Ballantyne, David R.; Braito, Valentina; Reeves, James N.

    2009-09-01

    We investigate the short-term variability properties and the power spectral density (PSD) of the broad-line radio galaxy (BLRG) 3C 390.3 using observations made by XMM-Newton, RXTE, and Suzaku on several occasions between 2004 October and 2006 December. The main aim of this work is to derive model-independent constraints on the origin of the X-ray emission and on the nature of the central engine in 3C 390.3. On timescales of the order of few hours, probed by uninterrupted XMM-Newton light curves, the flux of 3C 390.3 is consistent with being constant in all energy bands. On longer timescales, probed by the 2-day RXTE and Suzaku observations, the flux variability becomes significant. The latter observation confirms that the spectral variability behavior of 3C 390.3 is consistent with the spectral evolution observed in (radio-quiet) Seyfert galaxies: the spectrum softens as the source brightens. The correlated variability between soft and hard X-rays, observed during the Suzaku exposure and between the two XMM-Newton pointings, taken 1 week apart, argues against scenarios characterized by the presence of two distinct variable components in the 0.5-10 keV X-ray band. A detailed PSD analysis carried out over five decades in frequency suggests the presence of a break at T br = 43+34 -25 days at a 92% confidence level. This is the second tentative detection of a PSD break in a radio-loud, non-jet dominated active galactic nucleus (AGN), after the BLRG 3C 120, and appears to be in general agreement with the relation between T br, M BH, and L bol, followed by Seyfert galaxies. Our results indicate that the X-ray variability properties of 3C 390.3 are broadly consistent with those of radio-quiet AGN, suggesting that the X-ray emission mechanism in 3C 390.3 is similar to that of nearby Seyfert galaxies without any significant contribution from a jet component.

  7. Intensive HST, RXTE, and ASCA Monitoring of NGC 3516: Evidence against Thermal Reprocessing

    NASA Technical Reports Server (NTRS)

    Edelson, Rick; Koratkar, Anuradha; Nandra, Kirpal; Goad, Michael; Peterson, Bradley M.; Collier, Stefan; Krolik, Julian; Malkan, Matthew; Maoz, Dan; OBrien, Paul

    2000-01-01

    During 1998 April 1316, the bright, strongly variable Seyfert 1 galaxy NGC 3516 was monitored almost continuously with HST for 10.3 hr at ultraviolet wavelengths and 2.8 days at optical wavelengths, and simultaneous RXTE and ASCA monitoring covered the same period. The X-ray fluxes were strongly variable with the soft (0.5-2 keV) X-rays showing stronger variations (approx. 65% peak to peak) than the hard (2-10 keV) X-rays (approx. 50% peak to peak). The optical continuum showed much smaller but still highly significant variations: a slow approx. 2.5% rise followed by a faster approx. 3.5% decline. The short ultraviolet observation did not show significant variability. The soft and hard X-ray light curves were strongly correlated, with no evidence for a significant interband lag. Likewise, the optical continuum bands (3590 and 5510 A) were also strongly correlated, with no measurable lag, to 3(sigma) limits of approx. less than 0.15 day. However, the optical and X-ray light curves showed very different behavior, and no significant correlation or simple relationship could be found. These results appear difficult to reconcile with previous reports of correlations between X-ray and optical variations and of measurable lags within the optical band for some other Seyfert 1 galaxies. These results also present serious problems for "reprocessing" models in which the X-ray source heats a stratified accretion disk, which then reemits in the optical/ultraviolet : the synchronous variations within the optical would suggest that the emitting region is approx. less than 0.3 It-day across, while the lack of correlation between X-ray and optical variations would indicate, in the context of this model, that any reprocessing region must be approx. greater than 1 It-day in size. It may be possible to resolve this conflict by invoking anisotropic emission or special geometry, but the most natural explanation appears to be that the bulk of the optical luminosity is generated by some mechanism other than reprocessing.

  8. The X-Ray Lightcurve of Eta Carinae: Refinement of the Orbit and Evidence for Phase Dependent Mass Loss

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Ishibashi, K.; Swank, J. H.; Petre, R.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    We solve the RXTE X-ray lightcurve of the extremely luminous and massive star eta Carinae with a colliding wind emission model to refine the ground-based orbital elements. The sharp decline to X-ray minimum at the end of 1997 fixes the date of the last periastron passage at 1997.95 +/- 0.05, not 1998.13 as derived from ground-based radial velocities. This helps resolve a discrepancy between the ground-based radial velocities and spatially-resolved velocity measures obtained by STIS. The X-ray data are consistent with a mass function f(M) approx. = 1.5, lower than the value f(M) approx. = 7.5 previously reported, so that the masses of eta Carinae and the companion are M(sub eta) greater than or = 80 solar mass and M(sub c) approx. 30 solar mass respectively. In addition the X-ray data suggest that the mass loss rate from eta Carinae is generally less than 3 x 10(exp -4) solar mass/yr, about a factor of 5 lower than that derived from some observations in other wavebands. We could not match the duration of the X-ray minimum with any standard colliding wind model in which the wind is spherically symmetric and the mass loss rate is constant. However we show that we can match the variations around X-ray minimum if we include an increase of a factor of approx. 20 in the mass loss rate from eta Carinae for approximately 80 days following periastron. If real, this excess in M would be the first evidence of enhanced mass flow off the primary when the two stars are close (presumably driven by tidal interactions). Our interpretation of the X-ray data suggest that the ASCA and RXTE X-ray spectra near the X-ray minimum are significantly contaminated by unresolved hard emission (E greater than or = 2 keV) from sonic other nearby source, probably associated with scattering of tile colliding wind emission by circumstellar dust. Based on the X-ray fluxes the distance to n Carinae is 2300 pc with formal uncertainties of only approx. 10%.

  9. Long-term monitoring of PKS0558­-504, a highly accreting AGN with a radio jet

    NASA Astrophysics Data System (ADS)

    Gliozzi, Mario

    Mario Gliozzi, mgliozzi@gmu.edu George Mason University, Fairfax, Virginia, United States The radio-loud Narrow-Line Seyfert 1 galaxy PKS 0558-504 is a highly variable, X-ray bright source with super-Eddington accretion rate and a powerful radio jet that does not dominate the emission beyond the radio band. Hence this source represents an ideal laboratory to study the link between accretion and ejection phenomena. Here we present the preliminary results from a 5-year monitoring campaign with RXTE as well as from a 1.5-year multi-wavelength campaign with Swift, complemented with radio observations from the ATCA and VLBI. We combine several pieces of information from different energy bands to shed some light on the energetics of accretion and ejection phenomena in this extreme black hole system.

  10. Fe XXV and Fe XXVI Diagnostics of the Black Hole and Accretion Disk in Active Galaxies: Chandra Time-Resolved Spectroscopy of NGC 7314

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; George, Ian M.; Kallman, Timothy R.; Padmanabhan, Urmila; Weaver, Kimberly A.; Turner, T. Jane

    2003-01-01

    We report the detection of Fe xxv and Fe XXVI Ka emission lines from a Chandra High Energy Grating Spectrometer (HETGS) observation of the narrow-line Seyfert 1 galaxy NGC 7314, made simultaneously with RXTE. The lines are redshifted (cz approximately 1500 kilometers per second) relative to the systemic velocity and unresolved by the gratings. We argue that the lines originate in a near face-on (less than 7 deg) disk having a radial line emissivity flatter than r(exp -2). Line emission from ionization states of Fe in the range approximately Fe I a up to Fe XXVI is observed. The ionization balance of Fe responds to continuum variations on timescales less than 12.5 ks, supporting an origin of the lines close to the X-ray source. We present additional, detailed diagnostics from this rich data set. These results identify NGC 7314 as a key source to study in the future if we are to pursue reverberation mapping of space-time near black-hole event horizons. This is because it is first necessary to understand the ionization structure of accretion disks and the relation between the X-ray continuum and Fe Ka line emission. However, we also describe how our results are suggestive of a means of measuring black-hole spin without a knowledge of the relation between the continuum and line emission. Finally, these data emphasize that one can study strong gravity with narrow (as opposed to very broad) disk lines. In fact narrow lines offer higher precision, given sufficient energy resolution.

  11. X-ray outbursts and high-state episodes of HETE J1900.1-2455

    NASA Astrophysics Data System (ADS)

    Šimon, Vojtěch

    2018-06-01

    HETE J1900.1-2455 is an ultra-compact low-mass X-ray binary that underwent a long-lasting (about 10 yr) active state. The analysis presented here of its activity uses the observations of RXTE/ASM, Swift/BAT, and ISS/MAXI for investigating this active state and the relation of time evolution of fluxes in the hard and medium X-ray bands. We show that the variations of the flux of HETE J1900.1-2455 on the time-scales of days and weeks have the form both of the outbursts and occasional high-state episodes. These outbursts are accompanied by the large changes of the hardness of the spectrum in the surroundings of the peaks of their soft X-ray flux. The very strong peaks of these outbursts occur in the soft X-ray band (2-4 keV) and are accompanied by a large depression in the 15-50 keV band flux. We interpret these events as an occasional occurrence of a thermal-viscous instability of the accretion disc that gives rise to the outbursts similar to those in the soft X-ray transients. On the other hand, the 2-4 and the 15-50 keV band fluxes are mutually correlated in the high-state episodes, much longer than the outbursts. In the interpretation, the episodes of the X-ray high states of HETE J1900.1-2455 during the active state bear some analogy with the standstills in the Z Cam type of cataclysmic variables.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauche, C W; Brickhouse, N S; Hoogerwerf, R

    Recent satellite observations demonstrate that the phase of maximum flux of the 67 min spin modulation of the white dwarf in the cataclysmic variable EX Hya is drifting away from the optical quadratic ephemeris of Hellier & Sproats (1992, hereafter HS92). Relative to that ephemeris, the peak of the spin-phase extreme ultraviolet (EUV) flux modulation measured with the Extreme Ultraviolet Explorer (EUVE) was {phi}{sub 67} = 0.040 {+-} 0.002 in 1994 May (Mauche 1999) and {phi}{sub 67} = 0.115 {+-} 0.001 in 2000 May (Belle et al. 2002). Similarly, the peak of the spin-phase X-ray flux modulation measured with themore » Chandra X-ray Observatory was {phi}{sub 67} {approx} 0.1 in 2000 May (Hoogerwerf, Brickhouse, & Mauche 2004) and {phi}{sub 67} {approx} 0.2 in 2007 May (Luna, Brickhouse, & Mauche 2008). Because the discrepancy between the observed O and calculated C phases of the spin-phase flux modulation of EX Hya is now approaching a significant fraction of a spin cycle, we have undertaken the task of updating the ephemeris. Toward that end, we have combined the optical data of Vogt, Krzeminski, & Sterken (1980, hereafter VKS80), Gilliland (1982), Sterken et al. (1983), Hill & Watson (1984), Jablonski & Busko (1985), Bond & Freeth (1988), HS92, Walker & Allen (2000), and Belle et al. (2005) with the optical, EUV, and X-ray data listed in Table 1. The optical data were obtained by CS at ESO La Silla using the Danish 1.5-m telescope and the DFOSC CCD camera. Differential V-band magnitudes were obtained by aperture photometry extracted from flat-fielded and bias-corrected CCD frames. Other than the EXOSAT and Ginga data, which have been taken from the given references, all other times of spin maximum in the table have been derived by us from the various datasets. In the processes, we have corrected an error in the (spin and orbit) phases of the ASCA data published by Ishida, Mukai, & Osborne (1994) and the RXTE data published by Mukai et al. (1998). We note that our result for the second EUVE observation agrees within the errors with the result derived independently by Belle et al. (2002). Table 1 lists the observed times of spin maximum in Barycentric Julian Date, the corresponding cycle number derived from the HS92 quadratic ephemeris, and the O-C residuals relative to the VKS80 linear ephemeris, the HS92 quadratic ephemeris, and our cubic ephemeris (eqn. 1).« less

  13. Chandra Phase-Resolved Spectroscopy of the High-Magnetic-Field Pulsar B1509-58

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Ping; Ng, Chi-Yung

    2016-04-01

    We report on timing and spectral analysis of the young, high-magnetic-field pulsar B1509-58 using Chandra continuous-clocking mode observation. The on-pulsed X-ray spectrum can be described by a power law with a photon index of 1.16(2), which is flatter than those determined with RXTE/PCA and NuSTAR. This result supports the log-parabolic model for the broadband X-ray spectrum. With the unprecedented angular resolution of Chandra, we clearly identified off-pulsed X-ray emission from the pulsar. The spectrum is best fitted by a power law plus blackbody model. The latter component has a temperature of ~0.14 keV, which is similar to those of other young and high-magnetic-field pulsars, and lies between those of magnetars and typical rotational-powered pulsars. For the non-thermal emission of PSR B1509-58, we found that the power law component of the off-pulsed emission is significantly steeper than that of the on-pulsed one. We further divided the data into 24 phase bins and found that the photon index varies between 1.0 and 2.0 and anti-correlating with the flux. A similar correlation was also found in the Crab Pulsar, and this requires further theoretical interpretations. This work is supported by a GRF grant of Hong Kong Government under 17300215.

  14. Disk Disruptions and X-ray Intensity Excursions in Cyg X-2, LMC X-3 and Cyg X-3

    NASA Astrophysics Data System (ADS)

    Boyd, P. T.; Smale, A. P.

    2001-05-01

    The RXTE All Sky Monitor soft X-ray light curves of many X-ray binaries show long-term intensity variations (a.k.a "superorbital periodicities") that have been ascribed to precession of a warped, tilted accretion disk around the X-ray source. We have found that the excursion times between X-ray minima in Cyg X-2 can be characterized as a series of integer multiples of the 9.8 binary orbital period, (as opposed to the previously reported stable 77.7 day single periodicity, or a single modulation whose period changes slowly with time). While the data set is too short for a proper statistical analysis, it is clear that the length of any given intensity excursion cannot be used to predict the next (integer) excursion length in the series. In the black hole candidate system LMC X-3, the excursion times are shown to be related to each other by rational fractions. We find that the long term light curve of the unusual galactic X-ray jet source Cyg X-3 can also be described as a series of intensity excursions related to each other by integer multiples of a fundamental underlying clock. In the latter cases, the clock is apparently not related to the known binary periods. A unified physical model, involving both an inclined accretion disk and a fixed-probability disk disruption mechanism is presented, and compared with three-body scattering results. Each time the disk passes through the orbital plane it experiences a fixed probability P that it will disrupt. This model has testable predictions---the distribution of integers should resemble that of an atomic process with a characteristic half life. Further analysis can support or refute the model, and shed light on what system parameters effectively set the value of P.

  15. PKS 2005-489 at VHE: four years of monitoring with HESS and simultaneous multi-wavelength observations

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Costamante, L.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Marandon, V.; Martineau-Huynh, O.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Renaud, M.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Superina, G.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.

    2010-02-01

    Aims: Our aim is to study the very high energy (VHE; E>100 GeV) γ-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods: VHE observations of the high-frequency peaked BL Lac object PKS 2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results: A strong VHE signal, ~17σ total, from PKS 2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ~3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ~300 GeV to ~5 TeV is characterized by a power law with a photon index, Γ = 3.20± 0.16_stat± 0.10_syst. At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (ΔΓX ≈ 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions: The SED of PKS 2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005. Supported by CAPES Foundation, Ministry of Education of Brazil.Now at Harvard-Smithsonian Center for Astrophysics, Cambridge, USA.Now at W.W. Hansen Experimental Physics Laboratory & Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA.

  16. The reawakening of the sleeping X-ray pulsar XTE J1946+274

    NASA Astrophysics Data System (ADS)

    Müller, S.; Kühnel, M.; Caballero, I.; Pottschmidt, K.; Fürst, F.; Kreykenbohm, I.; Sagredo, M.; Obst, M.; Wilms, J.; Ferrigno, C.; Rothschild, R. E.; Staubert, R.

    2012-10-01

    We report on a series of outbursts of the high-mass X-ray binary XTE J1946+274 in 2010/2011 observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron Kα fluorescence line at 6.4 keV, which are variable in flux and pulse phase. We find possible evidence for a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst that was confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE J1946+274 is variable between individual outbursts.

  17. Is the Ejecta of ETA Carinae Overabundant or Overexcited

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Davidson, Kris; Johansson, Sveneric; Damineli, Augusto; Ishibashi, Kaxunori; Corcoran, Michael; Hartman, Henrick; Viera, Gladys; Nielsen, Krister

    2003-01-01

    The ejecta of Eta Carinae, revealed by HST/STIS, are in a large range of physical conditions. As Eta Carinae undergoes a 5.52 period, changes occur in nebular emission and nebular absorption. "Warm" neutral regions, partially ionized regions, and fully ionized regions undergo significant changes. Over 2000 emission lines, most of Fe-like elements, have been indentified in the Weigelt blobs B and D. Over 500 emission lines have been indentified in the Strontium Filament. An ionized Little Homunculus is nestled within the neutral-shelled Homunculus. In line of sight, over 500 nebular absorption lines have been identified with up to twenty velocity components. STIS is following changes in many nebular emission and absorption lines as Eta Carinae approaches the minimum, predicted to be in June/July 2003, during the General Assembly. Coordinated observations with HST, CHANDRA, RXTE, FUSE, UVES/VLT, Gemini and other observatories are following this minimum.

  18. Three Decades of Magnetars

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.

    2012-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10^14 Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 24) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11, 2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from several magnetar sources. In total, six new sources were discovered between 2008 and 2011, with a synergy between Swift, RXTE, Fermi and the Interplanetary Network (IPN). In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi and Chandra in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.

  19. Spin and Flux Evolution of the New Magnetar Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Ng, Stephen C.-Y.; Kaspi, Victoria; Cumming, Andrew; Livingstone, Margaret; Scholz, Paul; Archibald, Robert

    2012-07-01

    On 2011 July 14, a transient X-ray source, Swift J1822.3-1606, was first detected by Swift BAT via its burst activities. It was subsequently identified as a new magnetar upon the detection of a pulse period of 8.4s. Using follow-up RXTE, Swift, and Chandra observations, we determined a spin-down rate of ~1.6e-13, giving a dipole magnetic field of ~3.8e13G, second lowest among known magnetars. The post-outburst flux evolution can be model by a double exponential decay with timescales of 11 and 58 days. We found an absorption column density similar to that of the open cluster M17 at 16' away, arguing a comparable distance of ~1.6kpc for Swift J1823.3-1606. If confirmed, this will be the nearest magnetar observed. We also discuss the possibility that the magnetar progenitor was born in M17.

  20. Fine-Tuning the Accretion Disk Clock in Hercules X-1

    NASA Technical Reports Server (NTRS)

    Still, M.; Boyd, P.

    2004-01-01

    RXTE ASM count rates from the X-ray pulsar Her X-1 began falling consistently during the late months of 2003. The source is undergoing another state transition similar to the anomalous low state of 1999. This new event has triggered observations from both space and ground-based observatories. In order to aid data interpretation and telescope scheduling, and to facilitate the phase-connection of cycles before and after the state transition, we have re-calculated the precession ephemeris using cycles over the last 3.5 years. We report that the source has displayed a different precession period since the last anomalous event. Additional archival data from CGRO suggests that each low state is accompanied by a change in precession period and that the subsequent period is correlated with accretion flux. Consequently our analysis reveals long-term accretion disk behaviour which is predicted by theoretical models of radiation-driven warping.

  1. MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARS

    DOE PAGES

    Medin, Zachary James; Steinkirch, Marina von; Calder, Alan C.; ...

    2016-11-21

    The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Also, observations from X-raymore » telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Lastly, here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.« less

  2. Understanding the X-ray Flaring from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Moffat, A.F.J.; Corcoran, Michael F.

    2009-01-01

    We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.

  3. Retrograde Accretion Discs in High-Mass Be/X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-01-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.

  4. The Reawakening of the Sleeping X-ray Pulsar XTE J1946+274

    NASA Technical Reports Server (NTRS)

    Mueller, Sebastian; Mueller, Sebastian; Kuechnel, Matthias; Fuerst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Joern; Caballero, Isabel; Potttschmidt, Katja; hide

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE 11946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE 11946+274 is variable between individual outbursts.

  5. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-7 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 10^5 c/s/5PCU levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  6. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-8 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 10^5 c/s/5PCU levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  7. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-9 proposal. The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life og the satallire probably only one black-hole transient (if any) will reach 10^5 cps/5PCU levels. when this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state of the art high count rate observations covering all of the most crucial aspects of the source variability.

  8. Asm-Triggered too Observations of 100,000 C/s Black Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-5 proposal. - The PCA is unique by the high count rates (~100,000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black-hole transient (if any) will reach 100,000 c/s levels. When this occurs, a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state-of- the-art high count rate observations covering all of the most crucial aspects of the source variability.

  9. ASM Triggered too Observations of 100,000 C/s Black-Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-10 proposal. The PCA is unique by the high count rates (~100.000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black hole transient (if any) will reach 10^5 cps/5 PCU levels. When this occurs a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state of the art high count rate observations covering all of the most crusial aspects of the source variability.

  10. ASM Triggered too Observations of 100,000 C/s Black-Hole Candidates (core Program)

    NASA Astrophysics Data System (ADS)

    Resubmission accepted Cycle 2-11 proposal. The PCA is unique by the high count rates (~100.000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black hole transient (if any) will reach 10^5 cps/5 PCU levels. When this occurs a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state of the art high count rate observations covering all of the most crusial aspects of the source variability.

  11. ASM Triggered too Observations of 100,000 C/s Black-Hole Candidates

    NASA Astrophysics Data System (ADS)

    van der Klis, Michiel

    Resubmission accepted Cycle 2-11 proposal. The PCA is unique by the high count rates (~100.000 c/s) it can record, and its resulting extreme sensitivity to weak variability. Only few sources get this bright. Our RXTE work on Sco X-1 and 1744-28 shows that high count rate observations are very rewarding, but also difficult and not without risk. In the life of the satellite probably only one black hole transient (if any) will reach 10^5 cps/5 PCU levels. When this occurs a window of discovery will be opened on black holes, which will nearly certainly close again within a few days. This proposal aims at ensuring that optimal use is made of this opportunity by performing state of the art high count rate observations covering all of the most crusial aspects of the source variability.

  12. A Remarkable Three Hour Thermonuclear Burst from 4U 1820-30

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Brown, Edward F.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present a detailed observational and theoretical study of an approximately three hour long X-ray burst (the "super burst") observed by the Rossi X-ray Timing Explorer (RXTE) from the low mass X-ray binary (LMXB) 4U 1820-30. This is the longest X-ray burst ever observed from this source, and perhaps one of the longest ever observed in great detail from any source. We show that the super burst is thermonuclear in origin. Its peak luminosity of approximately 3.4 x 10(exp 38) ergs s(exp -1) is consistent with the helium Eddington limit for a neutron star at approximately 7 kpc, as well as the peak luminosity of other, shorter, thermonuclear bursts from the same source. The super burst begins in the decaying tail of a more typical (approximately equal to 20 s duration) thermonuclear burst. These shorter, more frequent bursts are well known helium flashes from this source. The level of the accretion driven flux as well as the observed energy release of upwards of 1.5 x 10(exp 42) ergs indicate that helium could not be the energy source for the super burst. We outline the physics relevant to carbon production and burning on helium accreting neutron stars and present calculations of the thermal evolution and stability of a carbon layer and show that this process is the most likely explanation for the super burst. Ignition at the temperatures in the deep carbon "ocean" requires greater than 30 times the mass of carbon inferred from the observed burst energetics unless the He flash is able to trigger a deflagration from a much smaller mass of carbon. We show, however, that for large columns of accreted carbon fuel, a substantial fraction of the energy released in the carbon burning layer is radiated away as neutrinos, and the heat that is conducted from the burning layer in large part flows inward, only to be released on timescales longer than the observed burst. Thus the energy released during the event possibly exceeds that observed in X-rays by more than a factor of ten, making the scenario of burning a large mass of carbon at great depths consistent with the observed fluence without invoking any additional trigger. A strong constraint on this scenario is the recurrence time: to accrete an ignition column of 1013 g cm (exp -1) takes approximately 13/(M/3 x 10(exp 17) g s(exp -1) yr. Spectral analysis during the super burst reveals the presence of a broad emission line between 5.8 - 6.4 keV and an edge at 8 - 9 keV likely due to reflection of the burst flux from the inner accretion disk in 4U 1820-30. We believe this is the first time such a signature has been unambiguously detected in the spectrum of an X-ray burst.

  13. Correlação de longo alcance em sistemas binários de raios-x usando remoção de flutuações

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Moret, M. A.; Zebende, G. F.; Nogueira, E., Jr.

    2003-08-01

    Neste trabalho é proposta uma metodologia de analise de series temporais de fontes astrofísicas, baseada no método proposto por Peng et al. (1994) e Liu et al. (1999), o qual consiste na idéia de que uma série temporal correlacionada pode ser mapeada por um processo de busca de auto-similaridades em diversas escalas de tempo n. Removendo as eventuais tendências e integrando o sinal observado, é obtida uma medida do desvio médio quadrático das flutuações do sinal integrado F(n)~na, onde a representa o fator de escala associado com a auto-similaridade da correlação de longo alcance do sinal. Baseado nos valores obtidos de a, é possível distinguir entre os casos de sinais não-correlacionados, tipo ruído branco (a = 0,5), sinal anti-persistentes (a < 0,5) e sinal persistente (a > 0,5). Usando esta metodologia, foram analisadas 129 curvas de luz de sistemas binários de raios-X, provenientes do banco de dados públicos de observações feitas pelo instrumento All Sky Monitor, a bordo do satélite Rossi X-Ray Timing Explorer (ASM-RXTE). Foram identificadas a presença de a'0,5 em mais de 90% dos sistemas estudados, implicando em dizer que as flutuações de intensidade observadas apresentam correlação de auto-similaridade, sem entretanto, indícios de apresentarem uma escala de tempo característica das flutuações de intensidade. Sistemas onde são observadas erupções (flares), apresentam sistematicamente a > 0,5, característica esta, possivelmente associada com persistência das flutuações de densidade de disco ou taxa de acréscimo de massa. Os sistemas com curvas de luz onde nao são observadas as erupções apresentam uma distribuição normal centrada em a~0,62+/-0,10. Referências ¾ Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., e Goldberg, A.L., Phys. Rev. E, (49), 1685 (1994). ¾ Liu, Y., Gopikrishnan, P., Cizeau, P., Meyer, M., Peng,C.-K., e Stanley, H.E., Phys. Rev. E, (60), 1390 (1999).

  14. Using 3D Dynamic Models to Reproduce X-ray Properties of Colliding Wind Binaries

    NASA Astrophysics Data System (ADS)

    Russell, C. M. P.; Okazaki, A. T.; Owocki, S. P.; Corcoran, M. F.; Madura, T. I.; Leyder, J.-C.; Hamaguchi, K.

    2013-06-01

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, such as RXTE, XMM, and Chandra. To interpret these X-ray light curves and spectra, we model the wind-wind interaction using 3D smoothed particle hydrodynamics (SPH), which incorporates radiative cooling and uses an anti-gravity approach to accelerate the winds according a β-law, and then solve the 3D formal solution of radiative transfer to synthesize the model X-ray properties. The results for the multi-year-period, highly eccentric CWBs η Carinae and WR140 match well the 2-10 keV RXTE light curve, hardness ratio, and dynamic spectra. This includes η Car's ˜3-month-long X-ray minimum associated with the 1998.0 and 2003.5 periastron passages, which we find to occur as the primary wind encroaches into the secondary wind's acceleration region, and thus quenches the high temperature gas between the stars. Furthermore, the η Car modeling suggests the commonly inferred primary mass loss rate of ˜10^-3 Mo/yr, provides further evidence that the observer is mainly viewing the system through the secondary's shock cone, and suggests that periastron occurs ˜1 month after the onset of the X-ray minimum. For WR140, the decrease in model X-rays around periastron is less than observed, but there is very good agreement with the observed XMM spectrum taken on the rise before periastron. We also model the short-period (2.67 day) CWB HD150136, which harbors the nearest O3 star. The imbalance of the wind strengths suggests a ``wind-star'' collision as the primary wind reaches the secondary star's surface, even when accounting for radiative braking, thus producing high-temperature, X-ray-emitting gas in a shock cone flowing around the surface of the secondary star. This model qualitatively reproduces the dip in X-ray emission associated with superior conjunction observed by Chandra, as well as an asymmetry around inferior conjunction due to the difference in occulting the leading and trailing-arms of the wind-star shock. We also discuss our preliminary results of accelerating the stellar winds according to CAK theory in the SPH code.

  15. Longterm lightcurves of X-ray binaries

    NASA Astrophysics Data System (ADS)

    Clarkson, William

    The X-ray Binaries (XRB) consist of a compact object and a stellar companion, which undergoes large-scale mass-loss to the compact object by virtue of the tight ( P orb usually hours-days) orbit, producing an accretion disk surrounding the compact object. The liberation of gravitational potential energy powers exotic high-energy phenomena, indeed the resulting accretion/ outflow process is among the most efficient energy-conversion machines in the universe. The Burst And Transient Source Experiment (BATSE) and RXTE All Sky Monitor (ASM) have provided remarkable X-ray lightcurves above 1.3keV for the entire sky, at near-continuous coverage, for intervals of 9 and 7 years respectively (with ~3 years' overlap). With an order of magnitude increase in sensitivity compared to previous survey instruments, these instruments have provided new insight into the high-energy behaviour of XRBs on timescales of tens to thousands of binary orbits. This thesis describes detailed examination of the long-term X-ray lightcurves of the neutron star XRB X2127+119, SMC X-1, Her X- 1, LMC X-4, Cyg X-2 and the as yet unclassified Circinus X-1, and for Cir X-1, complementary observations in the IR band. Chapters 1 & 2 introduce X-ray Binaries in general and longterm periodicities in particular. Chapter 3 introduces the longterm datasets around which this work is based, and the chosen methods of analysis of these datasets. Chapter 4 examines the burst history of the XRB X2127+119, suggesting three possible interpretations of the apparently contradictory X-ray emission from this system, including a possible confusion of two spatially distinct sources (which was later vindicated by high-resolution imaging). Chapters 5 and 6 describe the characterisation of accretion disk warping, providing observational verification of the prevailing theoretical framework for such disk-warps. Chapters 7 & 8 examine the enigmatic XRB Circinus X-1 with high-resolution IR spectroscopy (chapter 7) and the RXTE/ASM (chapter 8), establishing an improved orbital ephemeris and suggesting the system may be in a state of rapid post- supernova evolution. In chapter 8 we follow this up with a direct search for the X-ray supernova remnant expected from such a system, concluding that with present observations the diffuse emission from Cir X-1 is indistinguishable from scattering by dust-grains in the interstellar medium.

  16. Long-term lightcurves from combined unified very high energy γ-ray data

    NASA Astrophysics Data System (ADS)

    Tluczykont, M.; Bernardini, E.; Satalecka, K.; Clavero, R.; Shayduk, M.; Kalekin, O.

    2010-12-01

    Context. Very high-energy (VHE, E > 100 GeV) γ-ray data are a valuable input for multi-wavelength and multi-messenger (e.g. combination with neutrino data) studies. Aims: We aim at the conservation and homogenization of historical, current, and future VHE γ-ray-data on active galactic nuclei (AGN). Methods: We have collected lightcurve data taken by major VHE experiments since 1991 and combined them into long-term lightcurves for several AGN, and now provide our collected datasets for further use. Due to the lack of common data formats in VHE γ-ray astronomy, we have defined relevant datafields to be stored in standard data formats. The time variability of the combined VHE lightcurve data was investigated, and correlation with archival X-ray data collected by RXTE/ASM tested. Results: The combination of data on the prominent blazar Mrk 421 from different experiments yields a lightcurve spanning more than a decade. From this combined dataset we derive an integral baseline flux from Mrk 421 that must be lower than 33% of the Crab Nebula flux above 1 TeV. The analysis of the time variability yields log-normal flux variations in the VHE-data on Mrk 421. Conclusions: Existing VHE data contain valuable information concerning the variability of AGN and can be an important ingredient for multi-wavelength or multi-messenger studies. In the future, upcoming and planned experiments will provide more data from many transient objects, and the interaction of VHE astronomy with classical astronomy will intensify. In this context a unified and exchangeable data format will become increasingly important. Our data collection is available at the url: http://nuastro-zeuthen.desy.de/magic_experiment/projects/light_curve_archive/index_eng.html

  17. ACCRETION FLOW DYNAMICS OF MAXI J1836-194 DURING ITS 2011 OUTBURST FROM TCAF SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jana, Arghajit; Debnath, Dipak; Chakrabarti, Sandip K.

    2016-03-20

    The Galactic transient X-ray binary MAXI J1836-194 was discovered on 2011 August 29. Here we make a detailed study of the spectral and timing properties of its 2011 outburst using archival data from the RXTE Proportional Counter Array instrument. The evolution of accretion flow dynamics of the source during the outburst through spectral analysis with Chakrabarti–Titarchuk’s two-component advective flow (TCAF) solution as a local table model in XSPEC. We also fitted spectra with combined disk blackbody and power-law models and compared it with the TCAF model fitted results. The source is found to be in hard and hard-intermediate spectral states onlymore » during the entire phase of this outburst. No soft or soft-intermediate spectral states are observed. This could be due to the fact that this object belongs to a special class of sources (e.g., MAXI J1659-152, Swift J1753.5-0127, etc.) that have very short orbital periods and that the companion is profusely mass-losing or the disk is immersed inside an excretion disk. In these cases, flows in the accretion disk are primarily dominated by low viscous sub-Keplerian flow and the Keplerian rate is not high enough to initiate softer states. Low-frequency quasi-periodic oscillations (QPOs) are observed sporadically although as in normal outbursts of transient black holes, monotonic evolutions of QPO frequency during both rising and declining phases are observed. From the TCAF fits, we find the mass of the black hole in the range of 7.5–11 M{sub ⊙}, and from time differences between peaks of the Keplerian and sub-Keplerian accretion rates we obtain a viscous timescale for this particular outburst, ∼10 days.« less

  18. The soft γ-ray pulsar population: a high-energy overview

    NASA Astrophysics Data System (ADS)

    Kuiper, L.; Hermsen, W.

    2015-06-01

    At high-energy γ-rays (>100 MeV), the Large Area Telescope (LAT) on the Fermi satellite already detected more than 145 rotation-powered pulsars (RPPs), while the number of pulsars seen at soft γ-rays (20 keV-30 MeV) remained small. We present a catalogue of 18 non-recycled RPPs from which presently non-thermal pulsed emission has been securely detected at soft γ-rays above 20 keV, and characterize their pulse profiles and energy spectra. For 14 of them, we report new results, (re)analysing mainly data from RXTE, INTEGRAL, XMM-Newton and Chandra. The soft γ-pulsars are all fast rotators and on average ˜9.3 times younger and ˜43 times more energetic than the Fermi LAT sample. The majority (11 members) exhibits broad, structured single pulse profiles, and only six have double (or even multiple, Vela) pulses. 15 soft γ-ray pulsar show hard power-law spectra in the hard X-ray band and reach maximum luminosities typically in the MeV range. For only 7 of the 18 soft γ-ray pulsars, pulsed emission has also been detected by the LAT, but 12 have a pulsar wind nebula (PWN) detected at TeV energies. For six pulsars with PWNe, we present also the spectra of the total emissions at hard X-rays, and for IGR J18490-0000, associated with HESS J1849-000 and PSR J1849-0001, we used our Chandra data to resolve and characterize the contributions from the point source and PWN. Finally, we also discuss a sample of 15 pulsars which are candidates for future detection of pulsed soft γ-rays, given their characteristics at other wavelengths.

  19. The properties of cross-correlation and spectra of the low-mass X-ray binary 4U 1608-52

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Ya-Juan; Yuan, Hai-Long; Dong, Yi-Qiao

    With RXTE data, we analyzed the cross-correlation function between the soft and hard X-rays of the transient atoll source 4U 1608-52. We found anti-correlations in three outbursts occurred in 1998, 2002, and 2010, and we found significant time lags of several hundreds of seconds in the latter two outbursts. Our results show no correlation between the soft and hard X-rays in the extreme island state and a dominated positive correlation in the lower banana state. Anti-correlations are presented at the upper banana state for the outburst of 2010 and at the island and the lower left banana states for themore » other two outbursts. So far for atoll sources, the cross-correlation has been studied statistically only for 4U 1735-44, where anti-correlations showed up in the upper banana state. Here our investigation on 4U 1608-52 provides a similar result in its 2010 outburst. In addition, we notice that the luminosities in the upper banana of the 1998 and 2002 outbursts are about 1.5 times that of the 2010 outburst whose luminosity in the upper banana is close to that of 4U 1735-44. The results suggest that the states in the color-color diagram of a source could be correlated with the luminosity of the source. A further spectral analysis during the 2010 outburst is also shown, which suggests that the disk can be a little truncated in the upper banana. The feature on the upper banana is similar to the previous results of the flaring branch in Z sources.« less

  20. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  1. A study of Tycho's SNR at TeV energies with the HEGRA CT-System

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Barrio, J. A.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Gonzalez, J. C.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Ibarra, A.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lorenz, E.; Lucarelli, F.; Magnussen, N.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Pühlhofer, G.; Rauterberg, G.; Röhring, A.; Rhode, W.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Schröder, F.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C.; Wittek, W.

    2001-07-01

    Tycho's supernova remnant (SNR) was observed during 1997 and 1998 with the HEGRA Čerenkov Telescope System in a search for gamma-ray emission at energies above ~ 1 TeV. An analysis of these data, ~ 65 hours in total, resulted in no evidence for TeV gamma-ray emission. The 3sigma upper limit to the gamma-ray flux (>1 TeV) from Tycho is estimated at 5.78x 10-13 photons cm-2 s-1, or 33 milli-Crab. We interpret our upper limit within the framework of the following scenarios: (1) that the observed hard X-ray tail is due to synchrotron emission. A lower limit on the magnetic field within Tycho may be estimated B>=22 mu G, assuming that the RXTE-detected X-rays were due to synchrotron emission. However, using results from a detailed model of the ASCA emission, a more conservative lower limit B>=6 mu G is derived. (2) The hadronic model of Drury and (3) the more recent time-dependent kinetic theory of Berezhko & Völk. Our upper limit lies within the range of predicted values of both hadronic models, according to uncertainties in physical parameters of Tycho, and shock acceleration details. In the latter case, the model was scaled to suit the parameters of Tycho and re-normalised to account for a simplification of the original model. We find that we cannot rule out Tycho as a potential contributor at an average level to the Galactic cosmic-ray flux.

  2. XTE Observations of PSR 1259-63 and a Test of Spin Orbit Coupling in the 4U0115+63 System

    NASA Technical Reports Server (NTRS)

    Cominsky, Lynn R.

    1999-01-01

    During this report period, Mallory Roberts went to GSFC to analyze the data from two minor outbursts, which occurred from 4UO115+63. Unfortunately, the outbursts were not of sufficient duration to do a unique orbital determination (which was the scientific goal of the experiment). As this report is being written, 4UO115+63 is undergoing its first major outburst in four years. We are planning on adding our RXTE PCA data to any public ASM or PCA data that is obtained through the duration of this outburst, and combining it with our BATSE data from 1994 and 1995 outbursts in order to learn something about the orbital evolution in this system. We have formed a collaboration with colleagues at MIT who are working on the ASM data for this outburst. Thus, work on the original data will continue, with no further funding, and we are hopeful that some important questions with regard to the orbital timing will finally be resolved. The PSR 1259-63 data were originally analyzed by Barry Giles, who reported that no pulsations or flux were seen from this source near apastron. Recently, a new background model for low-count rate sources has been developed for the PCA. We intend to use this new background model to reanalyze these data to see if we can improve the upper limit to the flux. This work will also continue with no further funding.

  3. Accretion geometry in the persistent Be/X-ray binary RXJ0440.9+4431

    NASA Astrophysics Data System (ADS)

    Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.

    2014-01-01

    The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL). We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~ 2 × 1036 erg s-1. The luminosity dependency of the size of the black body emission region is found to be rBB ∝ LX0.39±0.02. This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the size of the black-body emitting hotspot is larger than the footprint of the accretion column. This phenomenon can be due to illumination of the surface by a growing column or by a a structure of the neutron star magnetic field more complicated than a simple dipole at least close to the surface.

  4. The Fermi-LAT detection of magnetar-like pulsar PSR J1846-0258 at high-energy gamma-rays

    NASA Astrophysics Data System (ADS)

    Kuiper, L.; Hermsen, W.; Dekker, A.

    2018-03-01

    We report the detection of the pulsed signal of the radio-quiet magnetar-like pulsar PSR J1846-0258 in the high-energy γ-ray data of the Fermi Large Area Telescope (Fermi LAT). We produced phase-coherent timing models exploiting RXTE PCA and Swift XRT monitoring data for the post- (magnetar-like) outburst period from 2007 August 28 to 2016 September 4, with independent verification using INTEGRAL ISGRI and Fermi GBM data. Phase-folding barycentric arrival times of selected Fermi LAT events from PSR J1846-0258 resulted in a 4.2σ detection (30-100 MeV) of a broad pulse consistent in shape and aligned in phase with the profiles that we measured with Swift XRT (2.5-10 keV), INTEGRAL ISGRI (20-150 keV), and Fermi GBM (20-300 keV). The pulsed flux (30-100 MeV) is (3.91 ± 0.97) × 10-9 photons cm-2 s-1 MeV-1. Declining significances of the INTEGRAL ISGRI 20-150 keV pulse profiles suggest fading of the pulsed hard X-ray emission during the post-outburst epochs. We revisited with greatly improved statistics the timing and spectral characteristics of PSR B1509-58 as measured with the Fermi LAT. The broad-band pulsed emission spectra (from 2 keV up to GeV energies) of PSR J1846-0258 and PSR B1509-58 can be accurately described with similarly curved shapes, with maximum luminosities at 3.5 ± 1.1 MeV (PSR J1846-0258) and 2.23 ± 0.11 MeV (PSR B1509-58). We discuss possible explanations for observational differences between Fermi LAT detected pulsars that reach maximum luminosities at GeV energies, like the second magnetar-like pulsar PSR J1119-6127, and pulsars with maximum luminosities at MeV energies, which might be due to geometric differences rather than exotic physics in high-B fields.

  5. A New Low Magnetic Field Magnetar: The 2011 Outburst of Swift J1822.3-1606

    NASA Technical Reports Server (NTRS)

    Rea, N.; Israel, G.L.; Esposito, P.; Pons, J. A.; Camero-Arramz, A.; Mignani, R. P.; Turolla, R.; Zane, S..; Burgay, M.; Possenti, A.; hide

    2012-01-01

    We report on the long-term X-ray monitoring with Swift, RXTE, Suzaku, Chandra, and XMM-Newton of the outburst of the newly discovered magnetar Swift J1822.3-1606 (SGR 1822-1606), from the first observations soon after the detection of the short X-ray bursts which led to its discovery, through the first stages of its outburst decay (covering the time span from 2011 July until the end of 2012 April).We also report on archival ROSAT observations which detected the source during its likely quiescent state, and on upper limits on Swift J1822.3-1606's radio-pulsed and optical emission during outburst, with the Green Bank Telescope and the Gran Telescopio Canarias, respectively. Our X-ray timing analysis finds the source rotating with a period of P = 8.43772016(2) s and a period derivative P-dot = 8.3(2)×10(exp -14) s/ s, which implies an inferred dipolar surface magnetic field of B approx. = 2.7×10(exp 13) G at the equator. This measurement makes Swift J1822.3-1606 the second lowest magnetic field magnetar (after SGR 0418+5729). Following the flux and spectral evolution from the beginning of the outburst, we find that the flux decreased by about an order of magnitude, with a subtle softening of the spectrum, both typical of the outburst decay of magnetars. By modeling the secular thermal evolution of Swift J1822.3-1606, we find that the observed timing properties of the source, as well as its quiescent X-ray luminosity, can be reproduced if it was born with a poloidal and crustal toroidal fields of B(sup p) approx.. 1.5×10(exp 14) G and B(sub tor) approx.. 7×10(exp 14) G, respectively, and if its current age is approx. 550 kyr.

  6. Broadband Spectral Investigations of SGR J1550-5418 Bursts

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Goegues, Ersin; Baring, Matthew G.; Granot, Jonathan; Kouveliotou, Chryssa; Kaneko, Yuki; van der Horst, Alexander; Gruber, David; von Kienlin, Andreas; Younes, George; hide

    2012-01-01

    We present the results of our broadband spectral analysis of 42 SGR J1550-5418 bursts simultaneously detected with the Swift/X-ray Telescope (XRT) and the Fermi/Gamma-ray Burst Monitor (GBM), during the 2009 January active episode of the source. The unique spectral and temporal capabilities of the XRT windowed timing mode have allowed us to extend the GBM spectral coverage for these events down to the X-ray domain (0.5-10 keV). Our earlier analysis of the GBM data found that the SGR J1550-5418 burst spectra were described equally well with either a Comptonized model or with two blackbody functions; the two models were statistically indistinguishable. Our new broadband (0.5-200 keV) spectral fits show that, on average, the burst spectra are better described with two blackbody functions than with the Comptonized model. Thus, our joint XRT-GBM analysis clearly shows for the first time that the SGR J1550-5418 burst spectra might naturally be expected to exhibit a more truly thermalized character, such as a two-blackbody or even a multi-blackbody signal. Using the Swift and RXTE timing ephemeris for SGR J1550-5418 we construct the distribution of the XRT burst counts with spin phase and find that it is not correlated with the persistent X-ray emission pulse phase from SGR J1550-5418. These results indicate that the burst emitting sites on the neutron star need not to be co-located with hot spots emitting the bulk of the persistent X-ray emission. Finally, we show that there is a significant pulse phase dependence of the XRT burst counts, likely demonstrating that the surface magnetic field of SGR J1550-5418 is not uniform over the emission zones, since it is anticipated that regions with stronger surface magnetic field could trigger bursts more efficiently.

  7. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, J. Y.; Lu, X. L.; Zhao, Q. W.; Dong, D. Q.; Lao, B. Q.; Lu, Y.; Wei, Y. H.; Wu, X. C.; An, T.

    2016-03-01

    SS 433 is the only X-ray binary to date that was detected to have a pair of well-collimated jets, and its orbital period, super orbital period, and nutation period were all detected at the same time. The study on the periodic X-ray variabilities is helpful for understanding its dynamic process of the central engine and the correlation with other bands. In the present paper, two time series analysis techniques, Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periodicities from the Swift/BAT (Burst Alert Telescope)(15--50 keV) and RXTE/ASM (Rossi X-Ray Timing Explorer/All-Sky Monitor)(1.5--3, 3--5 and 5--12 keV) light curves of SS 433, and the Monte Carlo simulation is performed. For the 15--50 keV energy band, five significant periodic signals are detected, which are P_1(˜6.29 d), P_2 (˜6.54 d), P_3 (˜13.08 d), P_4 (˜81.50 d), and P_5 (˜162.30 d). For the 3--5 and 5--12 keV energy bands, periodic signals P_3 (˜13 d) and P_5 (˜162 d) are detected in both energy bands. However, for the 1.5--3 keV energy band, no significant periodic signal is detected. P_5 has the strongest periodic signal in the power spectrum for all the energy bands of 3--5, 5--12, and 15--50 keV, and it is consistent with that obtained by previous study in optical band. Further, due to the existence of relativistic radio jets, the X-ray and optical band variability of P_5 (˜162 d) is probably related to the precession of the relativistic jets. High coherence between X-ray and optical light curves may also imply that the X-ray and optical emissions are of the same physical origin. P_3 shows a good agreement with the orbital period (˜13.07 d) first obtained by previous study, and P_2 and P_4 are the high frequency harmonic components of P_3 and P_5, respectively. P_1 is detected from the power spectrum of 15--50 keV energy band only, and it is consistent with the systematic nutation period. As the power of energy band decreases (from hard X-ray to soft X-ray), less periodicities are detected, which provides an evidence that the emission from high energy band (hard X-ray) comes primarily from jets, and the emission from low energy band (soft X-ray) may originate from the medium around binary systems. The multiple X-ray periods obtained from the present studies provide the necessary basis for the analysis of multi-wavelength data and the dynamics of the central engine system of SS 433.

  8. Probing the Environment of Accreting Compact Objects

    NASA Astrophysics Data System (ADS)

    Hanke, Manfred

    2011-04-01

    X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since 1996 with the RXTE satellite's all-sky monitor, is investigated in the context of the binary system's orbital phase. The stellar wind is here noticed via absorption of the soft X-radiation. This analysis has not only shown that the mean column density in the wind is -- as already known -- larger along lines of sight passing close by the star, but also that the wind is more clumpy there. The evaluation of more than 2 000 spectra from RXTE's proportional counter, taken within 14.5 years and mostly in the framework of a monitoring campaign, has lead to the same result. Compared to previous studies, the accuracy of the measurements could be improved by a careful investigation of the quality of the low-energy spectrum, which was required to register the scatter due to the clumpiness. In the next part, several high-resolution X-ray sepectra were analyzed, which were recorded with the gratings spectrometer of the highly requested Chandra satellite. The modulation of the absorption could, for the first time, be ascribed to the highly ionized wind, which has consequences for its quantitative interpretation due to the reduced cross sections compared to neutral absorption. Moreover, the acceleration of the wind with increasing distance from the star could be demonstrated, which constitutes an important observational evidence in terms of the wind structure. A conjecture published in 2008, according to which no wind might develop in the ionized environment of the X-ray source, is therewith disproved. By means of spectroscopy of strong absorption events, it was for the first time unequivocally demonstrated that these can be ascribed to a shift of the ionization balance to less strongly ionized gas, due to the enhanced density of the clumps. The increase of the column density of lower ionization stages is also confirmed by the spectroscopic analysis of the contemporaneous observation with the XMM-Newton satellite. Since these simultaneous observations were, in the framework of the largest observational campaign to date, accompanied by all available X-ray satellites, the effect of the absorption events on hard X-rays could be investigated as well. A flux reduction was detected in light curves at high energies, not affected by absorption, which coincides with the time of the strongest absorption event. This effect could be confirmed by time resolved spectroscopy of the XMM data, and be interpreted as due to scattering on a fully ionized cloud. The evolution of the light curve constitutes therefore a tomography of this cloud, and reveals further structure in the stellar wind. The strong absorption event is caused by the cloud's core, which is sufficiently dense that its ionization balance is shifted. Results from the analysis of another source are briefly presented in chapter 3. For the X-ray binary system LMC X-1 in the Large Magellanic Cloud, six spectra have been analyzed in view of their absorption. A connection with the orbital phase was suggested, which indicates absorption by material within the system itself. Concluding this thesis, the detailed results are summarized and discussed in chapter 4, and an outlook on future research possibilities is given.

  9. NGC 4051: Black hole mass and photon index-mass accretion rate correlation

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Chekhtman, Alexandre; Titarchuk, Lev

    2018-05-01

    We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in an active galactic nucleus, NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM-Newton, Suzaku and RXTE. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6 × 105 solar masses.

  10. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  11. X-Ray Continua of Broad Absorption Line Quasars

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    The targets for this program, PG1416-129 and LBQS 2212-1759 were known to be Broad Absorption Line Quasars (BALQSOs). BALQSOs are highly absorbed in soft X-rays. Good high energy response of Rossi-XTE made them ideal targets for observation. We observed LBQS 2212-1759 with PCA. We have now analyzed the data and found that the source was not detected. Since our target was expected to be faint, reliable estimate of background was very important. With the release of new FTOOLS (version 4.1) we were able to do so. We also analyzed a well known bright object and verified our results with the published data. This gave us confidence in the non-detection of our target LBQS 2212-1759. We are currently investigating the implications of this non-detection. Due to some scheduling problems, our second target PG1416-129 was not observed in A01. It was observed on 06/26/98. This target was detected with RXTE. We are now working on the spectral analysis with XSPEC.

  12. RXJ0440.9+4431: a Persistent Be-x-ray Binary in Outburst

    NASA Technical Reports Server (NTRS)

    Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.

    2013-01-01

    The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL).We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity and the dynamical properties of the system. We have determined the orbital period from the long-term Swift/BAT light curve, but our determinations of the spin-period are not precise enough to constrain any orbital solution. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of approx 2 × 10(exp 36) erg/ s. The luminosity dependency of the size of the black body emission region is found to be r(sub BB) varies as L(sub x) (exp 0.39 +/- 0.02). This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the structure of the Neutron star magnetic field is more complicated than a simple dipole close to the surface.

  13. Can the 62 Day X-ray Period of ULX M82 X-1 Be Due to a Precessing Accretion Disk?

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We have analyzed all the archival RXTE/PCA monitoring observations of the ultraluminous X-ray source (ULX) M82 X-1 in order to study the properties of its previously discovered 62 day X-ray period (Kaaret & Feng 2007). Based on the high coherence of the modulation it has been argued that the observed period is the orbital period of the binary. Utilizing a much longer data set than in previous studies we find: (1) The phase-resolved X-ray (3-15 keV) energy spectra - modeled with a thermal accretion disk and a power-law corona - suggest that the accretion disk's contribution to the total flux is responsible for the overall periodic modulation while the power-law flux remains approximately constant with phase. (2) Suggestive evidence for a sudden phase shift-of approximately 0.3 in phase (20 days)-between the first and the second halves of the light curve separated by roughly 1000 days. If confirmed, the implied timescale to change the period is approx. = 10 yrs, which is exceptionally fast for an orbital phenomenon. These independent pieces of evidence are consistent with the 62 day period being due to a precessing accretion disk, similar to the so-called super-orbital periods observed in systems like Her X-1, LMC X-4, and SS433. However, the timing evidence for a change in the period needs to be confirmed with additional observations. This should be possible with further monitoring of M82 with instruments such as the X-ray telescope (XRT) on board Swift.

  14. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} ergmore » s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).« less

  15. The Outburst Decay of the Low Magnetic Field Magnetar SGR 0418+5729

    NASA Astrophysics Data System (ADS)

    Rea, N.; Israel, G. L.; Pons, J. A.; Turolla, R.; Viganò, D.; Zane, S.; Esposito, P.; Perna, R.; Papitto, A.; Terreran, G.; Tiengo, A.; Salvetti, D.; Girart, J. M.; Palau, Aina; Possenti, A.; Burgay, M.; Göğüş, E.; Caliandro, G. A.; Kouveliotou, C.; Götz, D.; Mignani, R. P.; Ratti, E.; Stella, L.

    2013-06-01

    We report on the long-term X-ray monitoring of the outburst decay of the low magnetic field magnetar SGR 0418+5729 using all the available X-ray data obtained with RXTE, Swift, Chandra, and XMM-Newton observations from the discovery of the source in 2009 June up to 2012 August. The timing analysis allowed us to obtain the first measurement of the period derivative of SGR 0418+5729: \\dot{P}=4(1)\\times 10^{-15} s s-1, significant at a ~3.5σ confidence level. This leads to a surface dipolar magnetic field of B dip ~= 6 × 1012 G. This measurement confirms SGR 0418+5729 as the lowest magnetic field magnetar. Following the flux and spectral evolution from the beginning of the outburst up to ~1200 days, we observe a gradual cooling of the tiny hot spot responsible for the X-ray emission, from a temperature of ~0.9 to 0.3 keV. Simultaneously, the X-ray flux decreased by about three orders of magnitude: from about 1.4 × 10-11 to 1.2 × 10-14 erg s-1 cm-2. Deep radio, millimeter, optical, and gamma-ray observations did not detect the source counterpart, implying stringent limits on its multi-band emission, as well as constraints on the presence of a fossil disk. By modeling the magneto-thermal secular evolution of SGR 0418+5729, we infer a realistic age of ~550 kyr, and a dipolar magnetic field at birth of ~1014 G. The outburst characteristics suggest the presence of a thin twisted bundle with a small heated spot at its base. The bundle untwisted in the first few months following the outburst, while the hot spot decreases in temperature and size. We estimate the outburst rate of low magnetic field magnetars to be about one per year per galaxy, and we briefly discuss the consequences of such a result in several other astrophysical contexts.

  16. Interplay Between Theory and Observation

    NASA Astrophysics Data System (ADS)

    Hebb Swank, Jean

    2013-01-01

    In the early 1970’s, after the rocket flights had identified some sources, Uhuru was surveying the sky, and neutron stars, black holes, supernova remnants, clusters of galaxies had been tentatively identified as responsible. Coming from a theoretical particle physics background, I was especially interested in the astrophysical manifestations of fundamental physics in neutron stars and black holes, and history shows the exciting interplay between theory and observation. OSO-8 provided my first example of an observation that made a clear simple identification; the cooling black body spectrum with constant radius strongly pointed to a neutron star as the source. The instrument had enough area, energy resolution and time resolution to see it. Unbeknownst to me, thermonuclear flashes of accreting material had been predicted and they had been proposed as the explanation for bursts. At the next level of detail, to accurately determine mass, to account for emissivity (the color correction) and general relativity, and use the observations to determine mass and radius, and the nuclear fuel, many other parameters play a role. RXTE was designed to answer many of the questions developed as a consequence of earlier missions. One of them was the question of whether the neutron stars in the bursts were spun up pulsars and whether the low frequency quasi-periodic pulsations (QPO) seen with EXOSAT and Ginga were interactions of the accretion disk and a pulsar. RXTE’s first observations of low mass x-ray binaries showed the kilohertz quasi-periodic oscillations and the burst oscillations. The PCA had the area and the time resolution to see them. I should have known that kilohertz QPO had also been predicted. Again, while some aspects are simple, at the next level, for both neutron stars and black holes, many other parameters and questions of interpretation must be considered. These especially affect the ability to use the sources identified as black holes to understand their influence on space-time. It was to look at these sources with a different tool that the Gravity and Extreme Magnetism SMEX GEMS was proposed. Its termination because of cost predictions is an example of the severe practical difficulties of astrophysics.

  17. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  18. The Astrophysics Science Division Annual Report 2009

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  19. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  20. So You Think the Crab is Described by a Power-Law Spectrum

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2008-01-01

    X-ray observations of the Crab Nebula and its pulsar have played a prominent role in the history of X-ray astronomy. Discoveries range from the detection of the X-ray Nebula and pulsar and the measurement of the Nebula-averaged X-ray polarization, to the observation of complex X-ray morphology, including jets emanating from the pulsar and the ring defining the shocked pulsar wind. The synchrotron origin of much of the radiation has been deduced by detailed studies across the electromagnetic spectrum, yet has fooled many X-ray astronomers into believing that the integrated spectrum from this system ought to be a power law. In many cases, this assumption has led observers to adjust the experiment response function(s) to guarantee such a result. We shall discuss why one should not observe a power-law spectrum, and present simulations using the latest available response matrices showing what should have been observed for a number of representative cases including the ROSAT IPC, XMM-Newton, and RXTE. We then discuss the implications, if any, for current calibrations.

  1. Discovery of the Red-Skewed K-alpha Iron Line in Cyg X-2 with Suzaku

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nikolai; Titarchuk, Lev; Laurent, Philippe

    2008-01-01

    We report on the Suzaku observation of neutron star low-mass X-ray binary Cygnus X-2 which reveals strong iron K-alpha emission line. The line profile shows a prominent red wing extending down to 4 keV. This discovery increases the number of neutron star sources where red-skewed iron lines were observed and strongly suggests that this phenomenon is common not only in black holes but also in other types of compact objects. We examine the line profile by fitting it with the model which attributes its production to the relativistic effects due to disk reflection of X-ray radiation. We also apply an alternative model where the red wing is a result of down-scattering effect of the first order with respect to electron velocity in the wind outflow. Both models describe adequately the observed line profile. However, the X-ray variability in a state similar to that in the Suzaku observation which we establish by analysing RXTE observation favors the wind origin of the line formation.

  2. Probing the clumpy winds of giant stars with high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  3. Dramatic Outburst Reveals Nearest Black Hole

    NASA Astrophysics Data System (ADS)

    2000-01-01

    Scientists have discovered the closest black hole yet, a mere 1,600 light years from Earth. Its discovery was heralded by four of the most dramatic rapid X-ray intensity changes ever seen from one star. Astronomers from the Massachusetts Institute of Technology (MIT) and the National Science Foundation's National Radio Astronomy Observatory (NRAO) announced their findings at the American Astronomical Society's meeting in Atlanta. The black hole in the constellation Sagittarius, along with a normal star dubbed V4641 Sgr, form a violent system that briefly flooded part of our Milky Way Galaxy with X-rays and ejected subatomic particles moving at nearly the speed of light one day last September. At the peak of its X-ray output, V4641 Sgr was the brightest X-ray emitter in the sky. Astronomers call this type of system an X-ray nova because it suddenly becomes a bright source of X-rays, but this object shows characteristics never seen in an X-ray nova. "V4641 Sgr turns on and off so fast that it seems to represent a new subclass of X-ray novae," said Donald A. Smith, postdoctoral associate in MIT's Center for Space Research. Smith worked on data from this object with MIT principal research scientist Ronald Remillard and NRAO astronomer Robert Hjellming. "In X-rays, the intensity rose by a factor of more than 1,000 in seven hours, then dropped by a factor of 100 in two hours," Remillard said. The radio emission was seen as an image of an expanding "jet" of particles shooting out from the binary system. After reaching a maximum, the radio intensity dropped by a factor of nearly 40 within two days. "Radio telescopes give us a quick glimpse of something moving at a fantastically high velocity," Hjellming said. Black holes harbor enormous gravitational force that can literally rip the gas away from a nearby star. This transfer of gas is visible in many forms of radiation. Both orbiting X-ray telescopes and ground-based radio and optical telescopes saw the outburst of V4641 Sgr. The radio observations revealed the presence of a jet escaping from the system at mind-boggling speeds. Only three other galactic X-ray stellar systems have been found to eject material at such speeds. They have been dubbed "microquasars" because, on a smaller scale, they resemble quasars, which lie at the hearts of distant galaxies and also spew out high-velocity jets of particles. In galaxy-core quasars, the black holes are millions of times more massive than the Sun; in the more nearby microquasars the black holes are roughly three to twenty times more massive than the Sun. The extremely high velocity of the jets suggests that their origin lies close to the event horizon of a black hole. Microquasar activity is thought to arise when the black hole in the binary system draws material away from its companion star. The material surrounding the black hole forms a rapidly spinning disk called an accretion disk. This disk is heated by friction to millions of degrees, causing it to emit X-rays. As spiralling gas moves into the gravity well of the black hole, it moves faster and faster. Magnetic fields in the disk are believed to expel the charged subatomic particles at speeds close to that of light. As the charged particles interact with the magnetic fields, they emit radio waves. If some of the material escapes by being magnetically expelled into space, the matter may continue moving at the tremendous speed it had attained near the black hole. After their ejection, the jets of particles expand and cool, fading from astronomers' view. V4641 Sgr excites astronomers because it is close and because it acted so differently from other microquasars. In other microquasars, outbursts have dimmed more slowly over weeks or months rather than hours. "There's something fundamentally different about this one; it's more extreme than any other example," Hjellming said. "And because this system happens to be so close to us, `it is very likely that there are more objects like V4641 Sgr waiting to be discovered," said Smith. "The rapidly flaring systems in our galaxy may have been too faint and too fast for us to notice them," added Smith. What makes it so different? Astronomers aren't sure, but Remillard speculated that, "in V4641 Sgr, either the matter can flow into the black hole without forming a large accretion disk, or the black hole itself is significantly different in its mass, spin or charge." "Theory is lagging far behind the observations in terms of explaining what's going on in this system," Hjellming said. The drama of V4641 Sgr began Sept. 15, 1999, when Australian amateur astronomer Ron Stubbings noticed that the "star" was more than six times brighter than it had been the night before. He sent an e-mail message around the world. One recipient, Japanese astronomer Taichi Kato, recalled that this object had been associated with variable X-ray emission by scientists working with the Dutch-Italian BeppoSAX spacecraft. Kato forwarded the message to Smith, a member of the All-Sky Monitor (ASM) team using the Rossi X-ray Timing Explorer (RXTE) satellite. The ASM surveys the entire sky about once every two hours, and Smith found that the most recent observation of V4641 showed it as a bright X-ray emitter. Subsequent observations showed the rapid rise and fall of the object's X-ray brightness. A few hours later, it flared again. Within 24 hours, the National Science Foundation's Very Large Array (VLA) radio telescope in New Mexico was observing V4641 Sgr. "We could immediately see that it had structure -- it was big," Hjellming said. The first VLA observation showed an object three times longer than the distance from the Sun to Pluto. "What we were seeing was the jets, and we could tell they were moving so fast that they already had expanded to a considerable size," he said. The VLA observations showed that the object's jet was moving at nine-tenths the speed of light. Other radio telescopes observing the object were NRAO's Green Bank Interferometer in West Virginia; the Australia Telescope Compact Array; the Molonglo Observatory Synthesis Telescope, also in Australia; the MERLIN array in Britain; the Ratan 600-meter radio telescope in Russia; and radio telescopes at the Owens Valley Radio Observatory in California. The radio observations also provided the distance measurement for the binary system. The dramatic X-ray flare on Sept. 15 was not the only time V4641 Sgr exploded into activity. Further examination of ASM data revealed a bright flare (about one-third as intense as the brightest flare) on Sept. 14th that lasted between three minutes and three hours. In response to the ASM team's alert, Michael McCollough and Peter Woods, members of the BATSE team at Marshall Space Flight Center, scoured their data for evidence of V4641 Sgr. In addition to the flares seen by the ASM, they found a third rapid flare that peaked two hours after the brightest flare, reaching a peak intensity about half that of the brightest flare. The RXTE Proportional Counter Array (PCA), a very large X-ray telescope, was rapidly reoriented to observe V4641 Sgr about 4.5 hours after the brightest flare. A fourth event, lasting 20 minutes, was recorded by the PCA to reach an intensity of one-sixth that of the brightest flare. The PCA data reveal complex substructure, with luminosity changes by a factor of four within one second, and by a factor of 500 within minutes. No further high-energy emission from V4641 Sgr has been observed with any satellite since the end of the flare seen by the PCA. "Combining the data from all three instruments, we saw four of the most dramatic rapid X-ray intensity changes ever seen from one star," Smith said. "This behavior is new. We've never see anything like it." The proximity of the object "gives us an unusual close-up look at this phenomenon," Hjellming said. If future searches for brief X-ray flares reveal that there are more objects like V4641 Sgr, "we will have a whole new source of information that can help us decipher just how jets in X-ray binaries work," Remillard said. The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. The RXTE is a NASA explorer mission consisting of X-ray instruments built by teams at Goddard Space Flight Center, MIT and the University of California at San Diego.

  4. A Chandra X-ray Study of Cygnus A. 2; The Nucleus

    NASA Technical Reports Server (NTRS)

    Young, Andrew J.; Wilson, Andrew; Terashima, Yuichi; Arnaud, Keith A.; Smith, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report Chandra Advanced CCD Imaging Spectrometer and quasi-simultaneous Rossi X-Ray Timing Explorer (RXTE) observations of the nearby, powerful radio galaxy Cygnus A, with the present paper focusing on the properties of the active nucleus. In the Chandra observation, the hard (less than a few keV) X-ray emission is spatially unresolved with a size is approximately 1" (1.5 kpc, H(sub 0) = 50 km/s/Mpc) and coincides with the radio and near-infrared nuclei. In contrast, the soft (less than 2 keV) emission exhibits a bipolar nebulosity that aligns with the optical bipolar continuum and emission-line structures and approximately with the radio jet. In particular, the soft X-ray emission corresponds very well with the [O III] (lambda)5007 and H(alpha) + [N II] lambda(lambda)6548, 6583 nebulosity imaged with Hubble Space Telescope. At the location of the nucleus, there is only weak soft X-ray emission, an effect that may be intrinsic or result from a dust lane that crosses the nucleus perpendicular to the source axis. The spectra of the various X-ray components have been obtained by simultaneous fits to the six detectors. The compact nucleus is detected to 100 keV and is well described by a heavily absorbed power-law spectrum with Gamma(sub h) = 1.52(sup + 0.12, sub -0.12) (similar to other 0.12 narrow-line radio galaxies) and equivalent hydrogen column N(sub H)(nuc) = 2.0(sup +0.1, sub -0.1) x 10(exp 23)/sq cm. This 0.2 column is compatible with the dust obscuration to the near-infrared source for a normal gas-to-dust ratio. The soft (less than 2 keV) emission from the nucleus may be described by a power-law spectrum with the same index (i.e., Gamma(sub l) = Gamma(sub h), although direct fits suggest a slightly larger value for Gamma(sub l). Narrow emission lines from highly ionized neon and silicon, as well as a "neutral" Fe K(alpha) line, are detected in the nucleus and its vicinity (r approximately less than 2 kpc). The equivalent width (EW) of the Fe K(alpha) line (182(sup +40, sub -54) eV) is in good agreement with theoretical predictions for the EW versus N(sub H)(nuc) relationship in various geometries. An Fe K edge is also seen. The RXTE observations indicate a temperature of kT = 6.9(sup +0., sub -1.0) keV for the cluster gas (discussed in Paper III of this series) and cluster emission lines of Fe K(alpha) and Fe K(beta) and/or Ni K(alpha). We consider the possibility that the extended soft X-ray emission is electron-scattered nuclear radiation. Given that 1% of the unabsorbed 2 - 10 keV nuclear radiation would have to be scattered, the necessary gas column [N(sub H)(Scattering) approx. = 3.5 x 10(exp 22)/sq cm] would absorb the X-rays rather than scatter them if the gas is cold. Thus, the scattering plasma must be highly ionized. If this ionization is achieved through photoionization by the nucleus, the ionization parameter zeta greater than 1 ergs cm/s and the electron density n(sub e) approx. = 6 cc given the observed distance of the soft X-ray emission from the nucleus. The electron column density inferred from the X-ray observations is much too low to account for the extended optical scattered light, strongly suggesting that the polarized optical light is scattered by dust. The presence of highly ionized Ne lines in the soft X-ray spectrum requires 20 ergs cm/s approximately less than zeta approximately less than 300 ergs cm/s these lines may originate closer to the nucleus than the extended soft continuum or in a lower density gas. A collisionally ionized thermal model of the extended soft X-rays cannot be ruled out but is unattractive in view of the low metal abundance required (Z = 0.03 Z(mass)). The hard X-ray to far-infrared ratio for the nucleus of Cygnus A is similar to that seen in Seyfert 1 and unobscured radio galaxies. By means of the correlation between hard X-ray luminosity and nuclear optical absolute magnitude for these classes of object, we estimate M(sub B) = -22.4 for Cygnus A, near the .borderline between Seyfert galaxies and QSOs.

  5. Study of the Correlations and the MAXI Hardness Ratio between the Anomalous and Normal Low States of LMC X-3

    NASA Astrophysics Data System (ADS)

    Torpin, Trevor; Boyd, Patricia T.; Smale, Alan P.

    2015-01-01

    The bright, unusual black-hole X-ray binary LMC X-3 has been monitored virtually continuously by the Japanese MAXI X-ray All-Sky Monitor aboard the International Space Station (Matsuoka, et al., PASJ, 2009) from August 2009 to the present. Comparison with RXTE PCA and ASM light curves during the ~2.33-year period of overlap demonstrate that despite slight differences in energy-band boundaries both the ASM and MAXI faithfully reproduce characteristics of the high-amplitude, nonperiodic long-term variability, on the order of 100-300 days, clearly seen in the more sensitive PCA monitoring. The mechanism for this variability at a timescale many times longer than the 1.7-day orbital period is still unknown. Models to explain the long-term variability invoke mechanisms such as changes in mass transfer rate, and/or a precessing warped accretion disk. Observations of LMC X-3 have not definitely determined whether wind accretion or Roche-love overflow is the driver of the long-term variability. Recent MAXI monitoring of LMC X-3 includes excellent coverage of a rare anomalous low state (ALS) where the X-ray source cannot be distinguished from the background, as well as several normal low states, in which the source count rate passes smoothly through a low, yet detectable value. Pointed Swift XRT and UVOT observations also sample this ALS and one normal low state well. We combine these data sets to study the correlations between the wavelength regimes observed during the ALS versus the normal low. We also examine the behavior of the X-ray hardness ratios using XRT and MAXI monitoring data during the ALS versus the normal low state.

  6. A SUZAKU SEARCH FOR NONTHERMAL EMISSION AT HARD X-RAY ENERGIES IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wik, Daniel R.; Sarazin, Craig L.; Finoguenov, Alexis

    2009-05-10

    The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the intracluster medium (ICM) at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial. We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its nonthermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and nonthermal models to it and a spatially equivalent spectrum derived frommore » an XMM-Newton mosaic of the Coma field. We fail to find statistically significant evidence for nonthermal emission in the spectra which are better described by only a single- or multitemperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of nonthermal emission of 6.0 x 10{sup -12} erg s{sup -1} cm{sup -2} (20-80 keV, for {gamma} = 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 {mu}G. Our flux upper limit is 2.5 times lower than the detected nonthermal flux from RXTE and BeppoSAX. However, if the nonthermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that {approx}50%-67% of the emission might go undetected, which could make our limit consistent with that of Rephaeli and Gruber and Fusco-Femiano et al. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL and Swift data.« less

  7. The X-ray Spectral Evolution of eta Carinae as Seen by ASCA

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Fredericks, A. C.; Petre, R.; Swank, J. H.; Drake, S. A.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Using data from the ASCA X-ray observatory, we examine the variations in the X-ray spectrum of the supermassive star nu Carinae with an unprecedented combination of spatial and spectral resolution. We include data taken during the recent X-ray eclipse in 1997-1998, after recovery from the eclipse, and during and after an X-ray flare. We show that the eclipse variation in the X-ray spectrum is apparently confined to a decrease in the emission measure of the source. We compare our results with a simple colliding wind binary model and find that the observed spectral variations are only consistent, with the binary model if there is significant high-temperature emission far from the star and/or a substantial change in the temperature distribution of the hot plasma. If contamination in the 2-10 keV band is important, the observed eclipse spectrum requires an absorbing column in excess of 10(exp 24)/sq cm for consistency with the binary model, which may indicate an increase in the first derivative of M from nu Carinae near the time of periastron passage. The flare spectra are consistent with the variability seen in nearly simultaneous RXTE observations and thus confirm that nu Carinae itself is the source of the flare emission. The variation in the spectrum during the flare seems confined to a change in the source emission measure. By comparing 2 observations obtained at the same phase in different X-ray cycles, we find that the current, X-ray brightness of the source is slightly higher than the brightness of the source during the last cycle perhaps indicative of a long-term increase in the first derivative of M, not associated with the X-ray cycle.

  8. Periodicities in the high-mass X-ray binary system RXJ0146.9+6121/LSI+61°235

    NASA Astrophysics Data System (ADS)

    Sarty, Gordon E.; Kiss, László L.; Huziak, Richard; Catalan, Lionel J. J.; Luciuk, Diane; Crawford, Timothy R.; Lane, David J.; Pickard, Roger D.; Grzybowski, Thomas A.; Closas, Pere; Johnston, Helen; Balam, David; Wu, Kinwah

    2009-01-01

    The high-mass X-ray binary RXJ0146.9+6121, with optical counterpart LSI+61°235 (V831Cas), is an intriguing system on the outskirts of the open cluster NGC663. It contains the slowest Be type X-ray pulsar known with a pulse period of around 1400s and, primarily from the study of variation in the emission line profile of Hα, it is known to have a Be decretion disc with a one-armed density wave period of approximately 1240d. Here we present the results of an extensive photometric campaign, supplemented with optical spectroscopy, aimed at measuring short time-scale periodicities. We find three significant periodicities in the photometric data at, in order of statistical significance, 0.34, 0.67 and 0.10d. We give arguments to support the interpretation that the 0.34 and 0.10d periods could be due to stellar oscillations of the B-type primary star and that the 0.67d period is the spin period of the Be star with a spin axis inclination of 23+10-8 degrees. We measured a systemic velocity of -37.0 +/- 4.3kms-1 confirming that LSI+61°235 has a high probability of membership in the young cluster NGC663 from which the system's age can be estimated as 20-25Myr. From archival RXTE All Sky Monitor (ASM) data we further find `super' X-ray outbursts roughly every 450d. If these super outbursts are caused by the alignment of the compact star with the one-armed decretion disc enhancement, then the orbital period is approximately 330d.

  9. The first Fermi multifrequency campaign on BL Lacertae: Characterizing the low-activity state of the eponymous blazar

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2011-03-10

    Here, we report on observations of BL Lacertae during the first 18 months of Fermi LAT science operations and present results from a 48 day multifrequency coordinated campaign from 2008 August 19 to 2008 October 7. The radio to gamma-ray behavior of BL Lac is unveiled during a low-activity state thanks to the coordinated observations of radio-band (Metsähovi and VLBA), near-IR/optical (Tuorla, Steward, OAGH, and MDM), and X-ray ( RXTE and Swift) observatories. No variability was resolved in gamma rays during the campaign, and the brightness level was 15 times lower than the level of the 1997 EGRET outburst. Moderatemore » and uncorrelated variability has been detected in UV and X-rays. The X-ray spectrum is found to be concave, indicating the transition region between the low- and high-energy components of the spectral energy distribution (SED). VLBA observation detected a synchrotron spectrum self-absorption turnover in the innermost part of the radio jet appearing to be elongated and inhomogeneous, and constrained the average magnetic field there to be less than 3 G. Over the following months, BL Lac appeared variable in gamma rays, showing flares (in 2009 April and 2010 January). There is no evidence for the correlation of gamma rays with the optical flux monitored from the ground in 18 months. The SED may be described by a single-zone or a two-zone synchrotron self-Compton (SSC) model, but a hybrid SSC plus external radiation Compton model seems to be preferred based on the observed variability and the fact that it provides a fit closest to equipartition.« less

  10. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.

  11. NOAA Office of Exploration and Research > Exploration > Overview

    Science.gov Websites

    archaeological aspects of the ocean in the three dimensions of space and in time. The Panel's recommendations limited to) marine biodiversity, the Arctic Ocean, the Gulf of Mexico, exploring the ocean through time exploration, giving shore-based explorers of all kinds and ages access to the excitement of real-time

  12. Chandra Pinpoints Edge Of Accretion Disk Around Black Hole

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Using four NASA space observatories, astronomers have shown that a flaring black hole source has an accretion disk that stops much farther out than some theories predict. This provides a better understanding of how energy is released when matter spirals into a black hole. On April 18, 2000, the Hubble Space Telescope and the Extreme Ultraviolet Explorer observed ultraviolet radiation from the object known as XTE J1118+480, a black hole roughly seven times the mass of the Sun, locked in a close binary orbit with a Sun-like star. Simultaneously, the Rossi X-ray Timing Explorer observed high-energy X-rays from matter plunging toward the black hole, while the Chandra X-ray Observatory focused on the critical energy band between the ultraviolet and high-energy X-rays, providing the link that tied all the data together. "By combining the observations of XTE J1118+480 at many different wavelengths, we have found the first clear evidence that the accretion disk can stop farther out," said Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics who led the Chandra observations. "The Chandra data indicate that this accretion disk gets no closer to the event horizon than about 600 miles, a far cry from the 25 miles that some had expected." Scientists theorize that the accretion disk is truncated there because the material erupts into a hot bubble of gas before taking its final plunge into the black hole. Matter stripped from a companion star by a black hole can form a flat, pancake-like structure, called an “accretion disk.” As material spirals toward the inner edge of the accretion disk, it is heated by the immense gravity of the black hole, which causes it to radiate in X-rays. By examining the X-rays, researchers can gauge how far inward the accretion disk extends. Most astronomers agree that when material is transferred onto the black hole at a high rate, then the accretion disk will reach to within about 25 miles of the event horizon -- the surface of “no return” for matter or light falling into a black hole. However, scientists disagree on how close the accretion disk comes when the rate of transfer is much less. "The breakthrough came when Chandra did not detect the X-ray signature one would expect if the accretion disk came as near as 25 miles," said Ann Esin, a Caltech theoretical astrophysicist who led a group that explored the implications of the observations. "This presents a fundamental problem for models in which the disk extends close to the event horizon." In March 2000, XTE J1118+480 experienced a sudden eruption in X-rays that led to the discovery of the object by RXTE. The X-ray source was in a direction where absorption by gas and dust was minimal, allowing ultraviolet and low-energy X-rays to be observed. In the following month, an international team organized observations of XTE J1118+480 in other wavelengths. Chandra observed XTE J1118+480 for 27,000 seconds with its Low-Energy Transmission Grating (LETG) and the Advanced CCD Imaging Spectrometer (ACIS). The research team for this investigation also included scientists from both the United States (CfA, MIT, University of Notre Dame, Lawrence Livermore National Laboratory, NASA Goddard Space Flight Center) and the United Kingdom (The Open University, University of Southampton, Mullard Radio Astronomy Observatory). The LETG was built by the SRON and the Max Planck Institute, and the ACIS instrument by the Massachusetts Institute of Technology, Cambridge, Mass., and Penn State University, University Park. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  13. Suzaku Observation of the transient black hole binary XTE J1752 223

    NASA Astrophysics Data System (ADS)

    Koyama, S.; Tashiro, M. S.; Terada, Y.; Seta, H.; Kubota, A.; Yamaoka, K.

    2010-12-01

    The black hole candidate XTE J1752-223 was discovered on October 23, 2009 with RXTE/PCA and was observed by several other satellites in X-ray band, including MAXI. MAXI succeeded in covering whole picture of the outburst from low/hard state to high/soft state, and to low/hard state again. (Nakahira et al. 2010). Triggered by MAXI team, Suzaku carried out a ToO observation XTE J1752-223 with the wide X-ray band instruments on February 24, 2010. As Reis et al. (2010) reported, the source flux exceeded 400 mCrab and the spectrum was described with MCD, power-law model and broadened iron line. In general, we have to carefully estimate the effect of event pileup at the CCD image peak of such a bright source to avoid that effect. We independently estimated the pileup affected region in particular, and found that the region within 2 arcmin from the image peak is likely to be affected by pileup at least. In this paper we show the result of pileup estimation and the effect for the X-ray spectrum with the larger discarding area, and also the accretion disk parameter based on the obtained spectra.

  14. Probing the Inflow/Out-flow and Accretion Disk of Cyg X-1 in the High State with HETG/Chandra

    NASA Technical Reports Server (NTRS)

    Feng, Y. X.; Tennant, A. F.; Zhang, S. N.

    2003-01-01

    Cyg X- 1 was observed in the high state at the conjunction orbital phase (0) with HETG/Chandra. Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe XXV, Fe XXIV, Fe XXIII, Si XIV, S XVI, Ne X, and etc. In the high state the profile of the absorption lines are composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than that of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the both spectra of HETG/Chandra and PCA/RXTE. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of fluorescent Fe K$ \\alpha$ line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.

  15. Detection of burning ashes from thermonuclear X-ray bursts

    NASA Astrophysics Data System (ADS)

    Kajava, J. J. E.; Nättilä, J.; Poutanen, J.; Cumming, A.; Suleimanov, V.; Kuulkers, E.

    2017-01-01

    When neutron stars (NS) accrete gas from low-mass binary companions, explosive nuclear burning reactions in the NS envelope fuse hydrogen and helium into heavier elements. The resulting thermonuclear (type-I) X-ray bursts produce energy spectra that are fit well with black bodies, but a significant number of burst observations show deviations from Planck spectra. Here we present our analysis of RXTE/PCA observations of X-ray bursts from the NS low-mass X-ray binary HETE J1900.1-2455. We have discovered that the non-Planckian spectra are caused by photoionization edges. The anticorrelation between the strength of the edges and the colour temperature suggests that the edges are produced by the nuclear burning ashes that have been transported upwards by convection and become exposed at the photosphere. The atmosphere model fits show that occasionally the photosphere can consist entirely of metals, and that the peculiar changes in blackbody temperature and radius can be attributed to the emergence and disappearance of metals in the photosphere. As the metals are detected already in the Eddington-limited phase, it is possible that a radiatively driven wind ejects some of the burning ashes into the interstellar space.

  16. Hard X-ray quiescent emission in magnetars via resonant Compton upscattering

    NASA Astrophysics Data System (ADS)

    Baring, M. G.; Wadiasingh, Z.; Gonthier, P. L.; Harding, A. K.

    2017-12-01

    Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku, NuSTAR and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, inverse Compton scattering is anticipated to be the most efficient process for generating the continuum radiation, because the scattering cross section is resonant at the cyclotron frequency. We present hard X-ray upscattering spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These model spectra are integrated over bundles of closed field lines and obtained for different observing perspectives. The spectral turnover energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the turnovers inferred in magnetar hard X-ray tails. Electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulse phases. Our spectral computations use a new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.

  17. INTEGRAL Long-Term Monitoring of the Supergiant Fast X-Ray Transient XTE J1739-302

    NASA Technical Reports Server (NTRS)

    Blay, P.; Martinez-Nunez, S.; Negueruela, I.; Pottschmidt, K.; Smith, D. M.; Torrejon, J. M.; Reig, P.; Kretschmar, P.; Kreykenbohm, I.

    2008-01-01

    Context. In the past few years, a new class of High Mass X-Ray Binaries (HMXRB) has been claimed to exist, the Supergiant Fast X-ray Transients (SFXT). These are X-ray binary systems with a compact companion orbiting a supergiant star which show very short and bright outbursts in a series of activity periods overimposed on longer quiescent periods. Only very recently the first attempts to model the behaviour of these sources have been published, some of them within the framework of accretion from clumpy stellar winds. Aims. Our goal is to analyze the properties of XTE J1739-302/IGR J17391-3021 within the context of the clumpy structure of the supergiant wind. Methods. We have used INTEGRAL and RXTE/PCA observations in order to obtain broad band (1 - 200 keV) spectra and light curves of XTE J1739-302 and investigate its X-ray spectrum and temporal variability. Results. We have found that XTE J1739-302 follows a much more complex behaviour than expected. Far from presenting a regular variability pattern, XTE J1739-302 shows periods of high, intermediate, and low flaring activity.

  18. The highest-frequency kHz QPOs in neutron star low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    van Doesburgh, Marieke; van der Klis, Michiel; Morsink, Sharon M.

    2018-05-01

    We investigate the detections with RXTE of the highest-frequency kHz QPOs previously reported in six neutron star (NS) low mass X-ray binaries. We find that the highest-frequency kHz QPO detected in 4U 0614+09 has a 1267 Hz 3σ confidence lower limit on its centroid frequency. This is the highest such limit reported to date, and of direct physical interest as it can be used to constrain QPO models and the supranuclear density equation of state (EoS). We compare our measured frequencies to maximum orbital frequencies predicted in full GR using models of rotating neutron stars with a number of different modern EoS and show that these can accommodate the observed QPO frequencies. Orbital motion constrained by NS and ISCO radii is therefore a viable explanation of these QPOs. In the most constraining case of 4U 0614+09 we find the NS mass must be M<2.1 M⊙. From our measured QPO frequencies we can constrain the NS radii for five of the six sources we studied to narrow ranges (±0.1-0.7 km) different for each source and each EoS.

  19. Observation of Gamma-Ray Emission from the Galaxy M87 above 250 GeV with VERITAS

    NASA Astrophysics Data System (ADS)

    Acciari, V. A.; Beilicke, M.; Blaylock, G.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Butt, Y.; Celik, O.; Cesarini, A.; Ciupik, L.; Cogan, P.; Colin, P.; Cui, W.; Daniel, M. K.; Duke, C.; Ergin, T.; Falcone, A. D.; Fegan, S. J.; Finley, J. P.; Finnegan, G.; Fortin, P.; Fortson, L. F.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Guenette, R.; Gyuk, G.; Hanna, D.; Hays, E.; Holder, J.; Horan, D.; Hughes, S. B.; Hui, M. C.; Humensky, T. B.; Imran, A.; Kaaret, P.; Kertzman, M.; Kieda, D. B.; Kildea, J.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Lee, K.; Maier, G.; McCann, A.; McCutcheon, M.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nagai, T.; Ong, R. A.; Pandel, D.; Perkins, J. S.; Pohl, M.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Smith, A. W.; Steele, D.; Swordy, S. P.; Syson, A.; Toner, J. A.; Valcarcel, L.; Vassiliev, V. V.; Wakely, S. P.; Ward, J. E.; Weekes, T. C.; Weinstein, A.; White, R. J.; Williams, D. A.; Wissel, S. A.; Wood, M. D.; Zitzer, B.

    2008-05-01

    The multiwavelength observation of the nearby radio galaxy M87 provides a unique opportunity to study in detail processes occurring in active galactic nuclei from radio waves to TeV γ-rays. Here we report the detection of γ-ray emission above 250 GeV from M87 in spring 2007 with the VERITAS atmospheric Cerenkov telescope array and discuss its correlation with the X-ray emission. The γ-ray emission is measured to be pointlike with an intrinsic source radius less than 4.5'. The differential energy spectrum is fitted well by a power-law function: dΦ/dE = (7.4 +/- 1.3stat +/- 1.5sys)(E/TeV)(- 2.31 +/- 0.17stat +/- 0.2sys) 10-9 m-2 s-1 TeV-1. We show strong evidence for a year-scale correlation between the γ-ray flux reported by TeV experiments and the X-ray emission measured by the ASM RXTE observatory, and discuss the possible short-timescale variability. These results imply that the γ-ray emission from M87 is more likely associated with the core of the galaxy than with other bright X-ray features in the jet. Corresponding author: .

  20. Discovery of a Second Millesecond Accreting Pulsar: XTE J1751-305

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Swank, J. H.; Strohmayer, T. E.; intZand, J. J. M.; Marshall, F. E.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We report the discovery by the RXTE PCA of a second transient accreting millisecond pulsar, XTE J1751-305, during regular monitoring observations of the galactic bulge region. The pulsar has a spin frequency of 435 Hz, making it one of the fastest pulsars. The pulsations contain the signature of orbital Doppler modulation, which implies an orbital period of 42 minutes, the shortest orbital period of any known radio or X-ray millisecond pulsar. The mass function, f(sub x) = (1.278 +/- 0.003) x 10 (exp -6) solar mass, yields a minimum mass for the companion of between 0.013 and 0.0017 solar mass depending on the mass of the neutron star. No eclipses were detected. A previous X-ray outburst in June, 1998, was discovered in archival All-Sky Monitor data. Assuming mass transfer in this binary system is driven by gravitational radiation, we constrain the orbital inclination to be in the range 30 deg-85 deg and the companion mass to be 0.013-0.035 solar mass. The companion is most likely a heated helium dwarf. We also present results from the Chandra HRC-S observations which provide the best known position of XTE J1751-305.

  1. X-Ray Variability of BL Lac Objects

    NASA Astrophysics Data System (ADS)

    McHardy, Ian

    I present an overview of the X-ray temporal and spectral variability of BL Lacs on both short and long timescales. The previously observed behaviour of short (~days) flares superimposed on a relatively steady `quiescent' level is still broadly correct. However, for the brighter BL Lacs, the well sampled lightcurves from the RXTE ASM show that the `quiescent' level also varies considerably on timescales of ~100 days in a manner similar to that seen in Optically Violently Variable Quasars (OVVs) such as 3C279 and 3C273. Possible reasons for this behaviour are discussed. For the large majority of BL Lacs the soft and medium energy X-ray bands are dominated by synchrotron emission and, unlike the case of OVVs, the emission mechanism is not in doubt. Most interest then centres on the structure of the emitting region, and the electron acceleration processes, particularly during outbursts. That structure, and the acceleration processes, can be investigated by consideration of the spectral variability during flares, which is not simple. I review the observations of spectral variability and consider the evidence for and against homogeneous models. I also briefly compare the X-ray spectral variability of BL Lacs with that of OVVs such as 3C273.

  2. Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage

    NASA Astrophysics Data System (ADS)

    Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto

    2017-05-01

    Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.

  3. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  4. The impact of neutron star spin on X-ray spectra

    NASA Astrophysics Data System (ADS)

    Burke, M. J.; Gilfanov, M.; Sunyaev, R.

    2018-02-01

    We investigate whether the intrinsic spin of neutron stars (NSs) leaves an observable imprint on the spectral properties of X-ray binaries. To evaluate this, we consider a sample of nine NSs for which the spins have been measured that are not accreting pulsars (for which the accretion geometry will be different). For each source, we perform spectroscopy on a majority of RXTE hard-state observations. Our sample of sources and observations spans the range of the Eddington ratios LX/LEdd ˜ 0.005-0.100. We find a clear trend between the key Comptonization properties and the NS spin for a given accretion rate. Specifically, at a given L/LEdd, for more rapidly rotating NSs we find lower seed photon temperatures and a general increase in Comptonization strength, as parametrized by the Comptonization y parameter and amplification factor A. This is in good agreement with the theoretical scenario whereby less energy is liberated in a boundary layer for more rapidly spinning NSs, resulting in a lower seed photon luminosity and, consequently, less Compton cooling in the corona. This effect in extremis results in the hard states of the most rapidly spinning sources encroaching upon the regime of Comptonization properties occupied by black holes.

  5. Periodicity Analysis of X-ray Light Curves of SS 433

    NASA Astrophysics Data System (ADS)

    Wang, Jun-yi; Lu, Xiang-long; Zhao, Qiu-wen; Dong, Dian-qiao; Lao, Bao-qiang; Lu, Yang; Wei, Yan-heng; Wu, Xiao-cong; An, Tao

    2017-01-01

    SS 433 is sofar the unique X-ray binary that has the simultaneously detected orbital period, super-orbital period, and nutation period, as well as a bidirectional spiral jet. The study on its X-ray light variability is helpful for understanding the dynamic process of the system, and the correlations between the different wavebands. In this paper, two time-series analysis techniques, i.e., the Lomb-Scargle periodogram and weighted wavelet Z-transform, are employed to search for the periods in the Swift/BAT (Burst Alert Telescope) (15-50 keV) and RXTE/ASM (Rose X-ray Timing Explorer/All Sky Monitor) (1.5-3, 3- 4, and 5-12 keV) light curves of SS 433, and the Monte Carlo simulation is performed for the obtained periodical components. For the 15-50 keV energy band, five significant periodical components are detected, which are P1(∼6.29 d), P2 (∼6.54 d), P3 (∼13.08 d), P4 (∼81.50 d), and P5 (∼162.30 d). For the 3-5 and 5-12 keV energy bands, the periodical components P3 (∼13 d) and P5 (∼162 d) are detected in both energy bands. However, for the 1.5-3 keV energy band, no significant periodic signal is detected. P5 is the strongest periodic signal in the power spectrum for all the energy bands of 3-5, 5-12, and 15-50 keV, and it is consistent with the previous result obtained from the study of optical light curves. Furthermore, in combination with the radio spiral jet of SS 433, it is suggested that the X-ray and optical variability of P5 (∼162 d) is probably related to the precession of its relativistic jet. The high correlation between the X-ray and optical light curves may also imply that the X-ray and optical radiations are of the same physical origin. P3 shows a good agreement with the orbital period (∼13.07 d) obtained by the previous study, and P2 and P4 are respectively the high-frequency harmonics of P3 and P5. P1 is detected only in the power spectrum of the 15-50 keV energy band, and it is consistent with the nutation period of the system. As the energy of energy band decreases (from hard X-ray to soft X-ray), the number of detected periods becomes gradually less, this result verifies that the radiation in the high-energy band (hard X-ray) comes primarily from the jet, and the radiation in the low-energy band (soft X-ray) may be dominated by the medium around the binary system. The multiple X-ray periods obtained from the present study have provided a reliable basis for the further analysis of the multi-band data of SS 433, and the study on the dynamical mechanism of the system.

  6. Geothermal Exploration Cost and Time

    DOE Data Explorer

    Jenne, Scott

    2013-02-13

    The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  7. Development of Metric for Measuring the Impact of RD&D Funding on GTO's Geothermal Exploration Goals (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenne, S.; Young, K. R.; Thorsteinsson, H.

    The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (allmore » available at http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).« less

  8. Activity from the Be/X-ray binary system V0332+53 during its intermediate-luminosity outburst in 2008

    NASA Astrophysics Data System (ADS)

    Caballero-García, M. D.; Camero-Arranz, A.; Özbey Arabacı, M.; Zurita, C.; Suso, J.; Gutiérrez-Soto, J.; Beklen, E.; Kiaeerad, F.; Garrido, R.; Hudec, R.

    2016-05-01

    Aims: We present a study of the Be/X-ray binary system V 0332+53 with the main goal of characterizing its behaviour mainly during the intermediate-luminosity X-ray event in 2008. In addition, we aim to contribute to the understanding of the behaviour of the donor companion by including optical data from our dedicated campaign starting in 2006. Methods: V 0332+53 was observed by RXTE and Swift during the decay of the intermediate-luminosity X-ray outburst of 2008, and with Suzaku before the rising of the third normal outburst of the 2010 series. In addition, we present recent data from the Spanish ground-based astronomical observatories of El Teide (Tenerife), Roque de los Muchachos (La Palma), and Sierra Nevada (Granada), and since 2006 from the Turkish TÜBİTAK National Observatory (Antalya). We have performed temporal analyses to investigate the transient behaviour of this system during several outbursts. Results: Our optical study revealed that continuous mass ejection episodes from the Be star have been taking place since 2006 and another is currently ongoing. The broad-band 1-60 keV X-ray spectrum of the neutron star during the decay of the 2008 outburst was well fitted with standard phenomenological models that were enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K-alpha fluorescence line at 6.4 keV. For the first time in V 0332+53 we tentatively see an increase in the cyclotron line energy with increasing flux (although further and more sensitive observations are needed to confirm this). The fast aperiodic variability shows a quasi-periodic oscillation (QPO) at 227 ± 9 mHz only during the lowest luminosities, which might indicate that the inner regions surrounding the magnetosphere are more visible during the lowest flux states.

  9. X-ray pulsars in nearby irregular galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison sample for Magellanic Cloud X-ray pulsars.

  10. Probing the Mysteries of the X-Ray Binary 4U 1210-64 with ASM, MAXI and Suzaku

    NASA Astrophysics Data System (ADS)

    Coley, Joel B.; Corbet, R.; Mukai, K.; Pottschmidt, K.

    2013-01-01

    Optical and X-ray observations of 4U 1210-64 (1ES 1210-646) suggest that the source is a High Mass X-ray Binary (HMXB) probably powered by the Be mechanism. Data acquired by the RXTE All Sky Monitor (ASM), the ISS Monitor of All-sky X-ray Image (MAXI) and Suzaku provide a detailed temporal and spectral description of this poorly understood source. Long-term data produced by ASM and MAXI indicate that the source shows two distinct high and low states. A 6.7-day orbital period of the system was found in folded light curves produced by both ASM and MAXI. A two day Suzaku observation in Dec. 2010 took place during a transition from the minimum to the maximum of the folded light curve. The two day Suzaku observation reveals large variations in flux indicative of strong orbit to orbit variability. Flares in the Suzaku light curve can reach nearly 1.4 times the mean count rate. From a spectral analysis of the Suzaku data, emission lines in the Fe K alpha region were detected at 6.4 keV, 6.7 keV and 6.97 keV interpreted as FeI, FeXXV and FeXXVI. In addition, emission lines were observed at approximately 1.0 and 2.6 keV, corresponding to NeX and SXVI respectively. Thermal bremsstrahlung or power law models both modified by interstellar and partially covering absorption provide a good fit to the continuum data. This source is intriguing for these reasons: i) No pulse period was observed; ii) 6.7 day orbital period is much less than typical orbital periods seen in Be/X-ray Binaries; iii) The optical companion is a B5V--an unusual spectral class for an HMXB; iv) There are extended high and low X-ray states.

  11. Determination of Black Hole Mass in Cyg X-1 by Scaling of Spectral Index-QPO Frequency Correlation

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nickolai; Titarchuk, Lev

    2007-01-01

    It is well established that timing and spectral properties of Galactic Black Hole (BH) X-ray binaries (XRB) are strongly correlated. In particular, it has been shown that low frequency Quasi-Periodic Oscillation (QPO) nu(sub low) - photon index GAMMA correlation curves have a specific pattern. In a number of the sources studied the shape of the index-low frequency QPO correlations are self-similar with a position offset in the nu(sub low) - GAMMA plane determined by a BH mass M(sub BH). Specifically, Titarchuk & Fiorito (2004) gave strong theoretical and observational arguments that the QPO frequency values in this nu(sub low) - GAMMA correlation should be inversely proportional to M(sub BH). A simple translation of the correlation for a given source along frequency axis leads to the observed correlation for another source. As a result of this translation one can obtain a scaling factor which is simply a BH mass ratio for these particular sources. This property of the correlations offers a fundamentally new method for BH mass determination in XRBs. Here we use the observed QPO-index correlations observed in three BH sources: GRO J1655-40, GRS 1915+105 and Cyg X-1. The BH mass of (6.3 plus or minus 0.5) solar mass in GRO J1655-40 is obtained using optical observations. RXTE observations during the recent 2005 outburst yielded sufficient data to establish the correlation pattern during both rise and decay of the event. We use GRO J1655-40 as a standard reference source to measure the BH mass in Cyg X-1. We also revisit the GRS 1915+105 data as a further test of our scaling method. We obtain the BH mass in Cyg X-1 in the range 7.6-9.9.

  12. ACCRETION FLOW DYNAMICS OF MAXI J1659-152 FROM THE SPECTRAL EVOLUTION STUDY OF ITS 2010 OUTBURST USING THE TCAF SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debnath, Dipak; Molla, Aslam Ali; Chakrabarti, Sandip K.

    2015-04-20

    Transient black hole candidates are interesting objects to study in X-rays as these sources show rapid evolutions in their spectral and temporal properties. In this paper, we study the spectral properties of the Galactic transient X-ray binary MAXI J1659-152 during its very first outburst after discovery with the archival data of RXTE Proportional Counter Array instruments. We make a detailed study of the evolution of accretion flow dynamics during its 2010 outburst through spectral analysis using the Chakrabarti–Titarchuk two-component advective flow (TCAF) model as an additive table model in XSPEC. Accretion flow parameters (Keplerian disk and sub-Keplerian halo rates, shockmore » location, and shock strength) are extracted from our spectral fits with TCAF. We studied variations of these fit parameters during the entire outburst as it passed through three spectral classes: hard, hard-intermediate, and soft-intermediate. We compared our TCAF fitted results with standard combined disk blackbody (DBB) and power-law (PL) model fitted results and found that variations of disk rate with DBB flux and halo rate with PL flux are generally similar in nature. There appears to be an absence of the soft state, unlike what is seen in other similar sources.« less

  13. Three Decades of High Energy Transients

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2012-01-01

    Gamma-Ray Bursts are the most brilliant explosions in space. The first GRB was discovered on 1967, just over 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 24) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11, 2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from several magnetar sources. In total, six new sources were discovered between 2008 and 2011, with a synergy between Swift, RXTE, Fermi and the Interplanetary Network (IPN). I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts.

  14. Probing the Inflow/Outflow and Accretion Disk of Cygnus X-1 in the High State with the Chandra High Energy Transmission Grating

    NASA Technical Reports Server (NTRS)

    Feng, Y. X.; Tennant, A. F.; Zhang, S. N.

    2003-01-01

    Cygnus X-1 was observed in the high state at the conjunction orbital phase (0) with Chandra High Energy Transmission Grating (HETG). Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe xxv, Fe xxiv, Fe xxiii, Si xiv, S xvi, Ne x, etc. In the high state the profile of the absorption lines is composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than those of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the spectra of both the Chandra/HETG and the RXTE/Proportional Counter Array. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of the fluorescent Fe K(alpha) line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.

  15. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  16. X-Ray Dust Scattering At Small Angles: The Complete Halo Around GX13+1

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.

    2007-01-01

    The exquisite angular resolution available with Chandra should allow precision measurements of faint diffuse emission surrounding bright sources, such as the X-ray scattering halos created by interstellar dust. However, the ACIS CCDs suffer from pileup when observing bright sources, and this creates difficulties when trying to extract the scattered halo near the source. The initial study of the X-ray halo around GX13+1 using only the ACIS-I detector done by Smith, Edgar & Shafer (2002) suffered from a lack of sensitivity within 50" of the source, limiting what conclusions could be drawn. To address this problem, observations of GX13+1 were obtained with the Chandra HRC-I and simultaneously with the RXTE PCA. Combined with the existing ACIS-I data, this allowed measurements of the X-ray halo between 2-1000". After considering a range of dust models, each assumed to be smoothly distributed with or without a dense cloud along the line of sight, the results show that there is no evidence in this data for a dense cloud near the source, as suggested by Xiang et al. (2005). In addition, although no model leads to formally acceptable results, the Weingartner & Draine (2001) and all but one of the composite grain models from Zubko, Dwek & Arendt (2004) give particularly poor fits.

  17. Spectroscopic monitoring of V1357 Cyg = Cyg X-1 in 2002-2004

    NASA Astrophysics Data System (ADS)

    Karitskaya, E. A.; Bochkarev, N. G.; Bondar', A. V.; Galazutdinov, G. A.; Lee, B.-C.; Musaev, F. A.; Sapar, A. A.; Shimanskii, V. V.

    2008-05-01

    We discuss the results of optical spectroscopic monitoring of Cyg X-1 = HDE 226868/V1357 Cyg in 2002-2004. Our spectroscopy was carried out at the Terskol Observatory (Kabarda-Balkaria, Russia; the resolving power was R = 45 000 and 13 000) and at the Bohyunsan Optical Astronomy Observatory (BOAO, Korea, R = 30 000 and 44 000). Each spectrum covers most of the optical range. We obtained a total of 75 echelle spectra on 33 nights, during both “soft” and “hard” X-ray states of Cyg X-1. We study the influence of the X-rays on spectral-line profiles using RXTE/ASM X-ray data. We find that the X-ray flare of June 13, 2003 resulted in strong variations of the emission profiles of the Hα and Hellλ4686 Å lines within a night. This behavior is due to variations of the ionization state of the gas in the system. We also analyzed line-profile variations with orbital phase. A spectral atlas of Cyg X-1 was created, and the lines it contains identified. A total of 172 stellar lines and blends belonging to 12 chemical elements (H, He, C, N, O, Ne, Mg, Al, Si, S, Fe, Zn) were identified. The spectral classification of HDE 226868 as an ON star is confirmed.

  18. Identification of a Likely Radio Counterpart to the Rapid Burster

    NASA Astrophysics Data System (ADS)

    Moore, Christopher B.; Rutledge, Robert E.; Fox, Derek W.; Guerriero, Robert A.; Lewin, Walter H. G.; Fender, Robert; van Paradijs, Jan

    2000-04-01

    We have identified a likely radio counterpart to the low-mass X-ray binary MXB 1730-335 (the Rapid Burster). The counterpart has shown 8.4 GHz radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM during six VLA observations. The probability of an unrelated, randomly varying background source duplicating this behavior is 1%-3% depending on the correlation timescale. The location of the radio source is R.A. 17h33m24.61s, decl. -33 deg23'19.8" (J2000), +/-0.1". We do not detect 8.4 GHz radio emission coincident with type II (accretion-driven) X-ray bursts. The ratio of radio to X-ray emission during such bursts is constrained to be below the ratio observed during X-ray-persistent emission at the 2.9 σ level. Synchrotron bubble models of the radio emission can provide a reasonable fit to the full data set, collected over several outbursts, assuming that the radio evolution is the same from outburst to outburst but given the physical constraints the emission is more likely to be due to ~1 hr radio flares such as have been observed from the X-ray binary GRS 1915+105.

  19. Exploring the Effects of Changes in Future Time Perspective and Perceived Instrumentality on Graded Performance

    ERIC Educational Resources Information Center

    Eren, Altay

    2009-01-01

    Introduction: This study aimed to explore the possible changes in the Future Time Perspective (FTP) and Perceived Instrumentality (PI) over time as long as one academic semester, as well as to explore whether those changes in FTP and PI explained students' Graded Performance (GP) with regard to a specific course; educational psychology. Method: A…

  20. Identity processes and coping strategies in college students: short-term longitudinal dynamics and the role of personality.

    PubMed

    Luyckx, Koen; Klimstra, Theo A; Duriez, Bart; Schwartz, Seth J; Vanhalst, Janne

    2012-09-01

    Coping strategies and identity processes are hypothesized to influence one another over time. This three-wave longitudinal study (N = 458; 84.9% women) examined, for the first time, how and to what extent identity processes (i.e., commitment making, identification with commitment, exploration in breadth, exploration in depth, and ruminative exploration) and coping strategies (i.e., problem solving, social support seeking, and avoidance) predicted one another over time. Cross-lagged analyses indicated that processes of identity exploration seemed especially to be intertwined with different coping strategies over time, suggesting that identity exploration may resemble problem-solving behavior on the pathway to an achieved identity. Commitment processes were found to be influenced by certain coping strategies, although identification with commitment also negatively influenced avoidance coping. These temporal sequences remained significant when controlling for baseline levels of Big Five personality traits. Hence, evidence was obtained for reciprocal pathways indicating that coping strategies and identity processes reinforce one another over time in college students.

Top