Sample records for time markov process

  1. Open Markov Processes and Reaction Networks

    ERIC Educational Resources Information Center

    Swistock Pollard, Blake Stephen

    2017-01-01

    We begin by defining the concept of "open" Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain "boundary" states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow…

  2. Derivation of Markov processes that violate detailed balance

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2018-03-01

    Time-reversal symmetry of the microscopic laws dictates that the equilibrium distribution of a stochastic process must obey the condition of detailed balance. However, cyclic Markov processes that do not admit equilibrium distributions with detailed balance are often used to model systems driven out of equilibrium by external agents. I show that for a Markov model without detailed balance, an extended Markov model can be constructed, which explicitly includes the degrees of freedom for the driving agent and satisfies the detailed balance condition. The original cyclic Markov model for the driven system is then recovered as an approximation at early times by summing over the degrees of freedom for the driving agent. I also show that the widely accepted expression for the entropy production in a cyclic Markov model is actually a time derivative of an entropy component in the extended model. Further, I present an analytic expression for the entropy component that is hidden in the cyclic Markov model.

  3. The explicit form of the rate function for semi-Markov processes and its contractions

    NASA Astrophysics Data System (ADS)

    Sughiyama, Yuki; Kobayashi, Testuya J.

    2018-03-01

    We derive the explicit form of the rate function for semi-Markov processes. Here, the ‘random time change trick’ plays an essential role. Also, by exploiting the contraction principle of large deviation theory to the explicit form, we show that the fluctuation theorem (Gallavotti-Cohen symmetry) holds for semi-Markov cases. Furthermore, we elucidate that our rate function is an extension of the level 2.5 rate function for Markov processes to semi-Markov cases.

  4. Markov-modulated Markov chains and the covarion process of molecular evolution.

    PubMed

    Galtier, N; Jean-Marie, A

    2004-01-01

    The covarion (or site specific rate variation, SSRV) process of biological sequence evolution is a process by which the evolutionary rate of a nucleotide/amino acid/codon position can change in time. In this paper, we introduce time-continuous, space-discrete, Markov-modulated Markov chains as a model for representing SSRV processes, generalizing existing theory to any model of rate change. We propose a fast algorithm for diagonalizing the generator matrix of relevant Markov-modulated Markov processes. This algorithm makes phylogeny likelihood calculation tractable even for a large number of rate classes and a large number of states, so that SSRV models become applicable to amino acid or codon sequence datasets. Using this algorithm, we investigate the accuracy of the discrete approximation to the Gamma distribution of evolutionary rates, widely used in molecular phylogeny. We show that a relatively large number of classes is required to achieve accurate approximation of the exact likelihood when the number of analyzed sequences exceeds 20, both under the SSRV and among site rate variation (ASRV) models.

  5. A compositional framework for Markov processes

    NASA Astrophysics Data System (ADS)

    Baez, John C.; Fong, Brendan; Pollard, Blake S.

    2016-03-01

    We define the concept of an "open" Markov process, or more precisely, continuous-time Markov chain, which is one where probability can flow in or out of certain states called "inputs" and "outputs." One can build up a Markov process from smaller open pieces. This process is formalized by making open Markov processes into the morphisms of a dagger compact category. We show that the behavior of a detailed balanced open Markov process is determined by a principle of minimum dissipation, closely related to Prigogine's principle of minimum entropy production. Using this fact, we set up a functor mapping open detailed balanced Markov processes to open circuits made of linear resistors. We also describe how to "black box" an open Markov process, obtaining the linear relation between input and output data that holds in any steady state, including nonequilibrium steady states with a nonzero flow of probability through the system. We prove that black boxing gives a symmetric monoidal dagger functor sending open detailed balanced Markov processes to Lagrangian relations between symplectic vector spaces. This allows us to compute the steady state behavior of an open detailed balanced Markov process from the behaviors of smaller pieces from which it is built. We relate this black box functor to a previously constructed black box functor for circuits.

  6. A high-fidelity weather time series generator using the Markov Chain process on a piecewise level

    NASA Astrophysics Data System (ADS)

    Hersvik, K.; Endrerud, O.-E. V.

    2017-12-01

    A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.

  7. Markovian prediction of future values for food grains in the economic survey

    NASA Astrophysics Data System (ADS)

    Sathish, S.; Khadar Babu, S. K.

    2017-11-01

    Now-a-days prediction and forecasting are plays a vital role in research. For prediction, regression is useful to predict the future value and current value on production process. In this paper, we assume food grain production exhibit Markov chain dependency and time homogeneity. The economic generative performance evaluation the balance time artificial fertilization different level in Estrusdetection using a daily Markov chain model. Finally, Markov process prediction gives better performance compare with Regression model.

  8. Machine learning in sentiment reconstruction of the simulated stock market

    NASA Astrophysics Data System (ADS)

    Goykhman, Mikhail; Teimouri, Ali

    2018-02-01

    In this paper we continue the study of the simulated stock market framework defined by the driving sentiment processes. We focus on the market environment driven by the buy/sell trading sentiment process of the Markov chain type. We apply the methodology of the Hidden Markov Models and the Recurrent Neural Networks to reconstruct the transition probabilities matrix of the Markov sentiment process and recover the underlying sentiment states from the observed stock price behavior. We demonstrate that the Hidden Markov Model can successfully recover the transition probabilities matrix for the hidden sentiment process of the Markov Chain type. We also demonstrate that the Recurrent Neural Network can successfully recover the hidden sentiment states from the observed simulated stock price time series.

  9. A mathematical approach for evaluating Markov models in continuous time without discrete-event simulation.

    PubMed

    van Rosmalen, Joost; Toy, Mehlika; O'Mahony, James F

    2013-08-01

    Markov models are a simple and powerful tool for analyzing the health and economic effects of health care interventions. These models are usually evaluated in discrete time using cohort analysis. The use of discrete time assumes that changes in health states occur only at the end of a cycle period. Discrete-time Markov models only approximate the process of disease progression, as clinical events typically occur in continuous time. The approximation can yield biased cost-effectiveness estimates for Markov models with long cycle periods and if no half-cycle correction is made. The purpose of this article is to present an overview of methods for evaluating Markov models in continuous time. These methods use mathematical results from stochastic process theory and control theory. The methods are illustrated using an applied example on the cost-effectiveness of antiviral therapy for chronic hepatitis B. The main result is a mathematical solution for the expected time spent in each state in a continuous-time Markov model. It is shown how this solution can account for age-dependent transition rates and discounting of costs and health effects, and how the concept of tunnel states can be used to account for transition rates that depend on the time spent in a state. The applied example shows that the continuous-time model yields more accurate results than the discrete-time model but does not require much computation time and is easily implemented. In conclusion, continuous-time Markov models are a feasible alternative to cohort analysis and can offer several theoretical and practical advantages.

  10. Continuous-Time Semi-Markov Models in Health Economic Decision Making: An Illustrative Example in Heart Failure Disease Management.

    PubMed

    Cao, Qi; Buskens, Erik; Feenstra, Talitha; Jaarsma, Tiny; Hillege, Hans; Postmus, Douwe

    2016-01-01

    Continuous-time state transition models may end up having large unwieldy structures when trying to represent all relevant stages of clinical disease processes by means of a standard Markov model. In such situations, a more parsimonious, and therefore easier-to-grasp, model of a patient's disease progression can often be obtained by assuming that the future state transitions do not depend only on the present state (Markov assumption) but also on the past through time since entry in the present state. Despite that these so-called semi-Markov models are still relatively straightforward to specify and implement, they are not yet routinely applied in health economic evaluation to assess the cost-effectiveness of alternative interventions. To facilitate a better understanding of this type of model among applied health economic analysts, the first part of this article provides a detailed discussion of what the semi-Markov model entails and how such models can be specified in an intuitive way by adopting an approach called vertical modeling. In the second part of the article, we use this approach to construct a semi-Markov model for assessing the long-term cost-effectiveness of 3 disease management programs for heart failure. Compared with a standard Markov model with the same disease states, our proposed semi-Markov model fitted the observed data much better. When subsequently extrapolating beyond the clinical trial period, these relatively large differences in goodness-of-fit translated into almost a doubling in mean total cost and a 60-d decrease in mean survival time when using the Markov model instead of the semi-Markov model. For the disease process considered in our case study, the semi-Markov model thus provided a sensible balance between model parsimoniousness and computational complexity. © The Author(s) 2015.

  11. Generalization bounds of ERM-based learning processes for continuous-time Markov chains.

    PubMed

    Zhang, Chao; Tao, Dacheng

    2012-12-01

    Many existing results on statistical learning theory are based on the assumption that samples are independently and identically distributed (i.i.d.). However, the assumption of i.i.d. samples is not suitable for practical application to problems in which samples are time dependent. In this paper, we are mainly concerned with the empirical risk minimization (ERM) based learning process for time-dependent samples drawn from a continuous-time Markov chain. This learning process covers many kinds of practical applications, e.g., the prediction for a time series and the estimation of channel state information. Thus, it is significant to study its theoretical properties including the generalization bound, the asymptotic convergence, and the rate of convergence. It is noteworthy that, since samples are time dependent in this learning process, the concerns of this paper cannot (at least straightforwardly) be addressed by existing methods developed under the sample i.i.d. assumption. We first develop a deviation inequality for a sequence of time-dependent samples drawn from a continuous-time Markov chain and present a symmetrization inequality for such a sequence. By using the resultant deviation inequality and symmetrization inequality, we then obtain the generalization bounds of the ERM-based learning process for time-dependent samples drawn from a continuous-time Markov chain. Finally, based on the resultant generalization bounds, we analyze the asymptotic convergence and the rate of convergence of the learning process.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, H.

    In this dissertation we study a procedure which restarts a Markov process when the process is killed by some arbitrary multiplicative functional. The regenerative nature of this revival procedure is characterized through a Markov renewal equation. An interesting duality between the revival procedure and the classical killing operation is found. Under the condition that the multiplicative functional possesses an intensity, the generators of the revival process can be written down explicitly. An intimate connection is also found between the perturbation of the sample path of a Markov process and the perturbation of a generator (in Kato's sense). The applications ofmore » the theory include the study of the processes like piecewise-deterministic Markov process, virtual waiting time process and the first entrance decomposition (taboo probability).« less

  13. NonMarkov Ito Processes with 1- state memory

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2010-08-01

    A Markov process, by definition, cannot depend on any previous state other than the last observed state. An Ito process implies the Fokker-Planck and Kolmogorov backward time partial differential eqns. for transition densities, which in turn imply the Chapman-Kolmogorov eqn., but without requiring the Markov condition. We present a class of Ito process superficially resembling Markov processes, but with 1-state memory. In finance, such processes would obey the efficient market hypothesis up through the level of pair correlations. These stochastic processes have been mislabeled in recent literature as 'nonlinear Markov processes'. Inspired by Doob and Feller, who pointed out that the ChapmanKolmogorov eqn. is not restricted to Markov processes, we exhibit a Gaussian Ito transition density with 1-state memory in the drift coefficient that satisfies both of Kolmogorov's partial differential eqns. and also the Chapman-Kolmogorov eqn. In addition, we show that three of the examples from McKean's seminal 1966 paper are also nonMarkov Ito processes. Last, we show that the transition density of the generalized Black-Scholes type partial differential eqn. describes a martingale, and satisfies the ChapmanKolmogorov eqn. This leads to the shortest-known proof that the Green function of the Black-Scholes eqn. with variable diffusion coefficient provides the so-called martingale measure of option pricing.

  14. Conditioned Limit Theorems for Some Null Recurrent Markov Processes

    DTIC Science & Technology

    1976-08-01

    Chapter 1 INTRODUCTION 1.1 Summary of Results Let (Vk, k ! 0) be a discrete time Markov process with state space EC(- , ) and let S be...explain our results in some detail. 2 We begin by stating our three basic assumptions: (1) vk s k 2 0 Is a Markov process with state space E C(-o,%); (Ii... 12 n 3. CONDITIONING ON T (, > n.................................1.9 3.1 Preliminary Results

  15. The Embedding Problem for Markov Models of Nucleotide Substitution

    PubMed Central

    Verbyla, Klara L.; Yap, Von Bing; Pahwa, Anuj; Shao, Yunli; Huttley, Gavin A.

    2013-01-01

    Continuous-time Markov processes are often used to model the complex natural phenomenon of sequence evolution. To make the process of sequence evolution tractable, simplifying assumptions are often made about the sequence properties and the underlying process. The validity of one such assumption, time-homogeneity, has never been explored. Violations of this assumption can be found by identifying non-embeddability. A process is non-embeddable if it can not be embedded in a continuous time-homogeneous Markov process. In this study, non-embeddability was demonstrated to exist when modelling sequence evolution with Markov models. Evidence of non-embeddability was found primarily at the third codon position, possibly resulting from changes in mutation rate over time. Outgroup edges and those with a deeper time depth were found to have an increased probability of the underlying process being non-embeddable. Overall, low levels of non-embeddability were detected when examining individual edges of triads across a diverse set of alignments. Subsequent phylogenetic reconstruction analyses demonstrated that non-embeddability could impact on the correct prediction of phylogenies, but at extremely low levels. Despite the existence of non-embeddability, there is minimal evidence of violations of the local time homogeneity assumption and consequently the impact is likely to be minor. PMID:23935949

  16. Structure and Randomness of Continuous-Time, Discrete-Event Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2017-10-01

    Loosely speaking, the Shannon entropy rate is used to gauge a stochastic process' intrinsic randomness; the statistical complexity gives the cost of predicting the process. We calculate, for the first time, the entropy rate and statistical complexity of stochastic processes generated by finite unifilar hidden semi-Markov models—memoryful, state-dependent versions of renewal processes. Calculating these quantities requires introducing novel mathematical objects (ɛ -machines of hidden semi-Markov processes) and new information-theoretic methods to stochastic processes.

  17. CTPPL: A Continuous Time Probabilistic Programming Language

    DTIC Science & Technology

    2009-07-01

    recent years there has been a flurry of interest in continuous time models, mostly focused on continuous time Bayesian networks ( CTBNs ) [Nodelman, 2007... CTBNs are built on homogenous Markov processes. A homogenous Markov pro- cess is a finite state, continuous time process, consisting of an initial...q1 : xn()] ... Some state transitions can produce emissions. In a CTBN , each variable has a conditional inten- sity matrix Qu for every combination of

  18. MARKOV: A methodology for the solution of infinite time horizon MARKOV decision processes

    USGS Publications Warehouse

    Williams, B.K.

    1988-01-01

    Algorithms are described for determining optimal policies for finite state, finite action, infinite discrete time horizon Markov decision processes. Both value-improvement and policy-improvement techniques are used in the algorithms. Computing procedures are also described. The algorithms are appropriate for processes that are either finite or infinite, deterministic or stochastic, discounted or undiscounted, in any meaningful combination of these features. Computing procedures are described in terms of initial data processing, bound improvements, process reduction, and testing and solution. Application of the methodology is illustrated with an example involving natural resource management. Management implications of certain hypothesized relationships between mallard survival and harvest rates are addressed by applying the optimality procedures to mallard population models.

  19. Monte Carlo Simulation of Markov, Semi-Markov, and Generalized Semi- Markov Processes in Probabilistic Risk Assessment

    NASA Technical Reports Server (NTRS)

    English, Thomas

    2005-01-01

    A standard tool of reliability analysis used at NASA-JSC is the event tree. An event tree is simply a probability tree, with the probabilities determining the next step through the tree specified at each node. The nodal probabilities are determined by a reliability study of the physical system at work for a particular node. The reliability study performed at a node is typically referred to as a fault tree analysis, with the potential of a fault tree existing.for each node on the event tree. When examining an event tree it is obvious why the event tree/fault tree approach has been adopted. Typical event trees are quite complex in nature, and the event tree/fault tree approach provides a systematic and organized approach to reliability analysis. The purpose of this study was two fold. Firstly, we wanted to explore the possibility that a semi-Markov process can create dependencies between sojourn times (the times it takes to transition from one state to the next) that can decrease the uncertainty when estimating time to failures. Using a generalized semi-Markov model, we studied a four element reliability model and were able to demonstrate such sojourn time dependencies. Secondly, we wanted to study the use of semi-Markov processes to introduce a time variable into the event tree diagrams that are commonly developed in PRA (Probabilistic Risk Assessment) analyses. Event tree end states which change with time are more representative of failure scenarios than are the usual static probability-derived end states.

  20. Many roads to synchrony: natural time scales and their algorithms.

    PubMed

    James, Ryan G; Mahoney, John R; Ellison, Christopher J; Crutchfield, James P

    2014-04-01

    We consider two important time scales-the Markov and cryptic orders-that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the ε-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the ε-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.

  1. Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium.

    PubMed

    Kapfer, Sebastian C; Krauth, Werner

    2017-12-15

    We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.

  2. Irreversible Local Markov Chains with Rapid Convergence towards Equilibrium

    NASA Astrophysics Data System (ADS)

    Kapfer, Sebastian C.; Krauth, Werner

    2017-12-01

    We study the continuous one-dimensional hard-sphere model and present irreversible local Markov chains that mix on faster time scales than the reversible heat bath or Metropolis algorithms. The mixing time scales appear to fall into two distinct universality classes, both faster than for reversible local Markov chains. The event-chain algorithm, the infinitesimal limit of one of these Markov chains, belongs to the class presenting the fastest decay. For the lattice-gas limit of the hard-sphere model, reversible local Markov chains correspond to the symmetric simple exclusion process (SEP) with periodic boundary conditions. The two universality classes for irreversible Markov chains are realized by the totally asymmetric SEP (TASEP), and by a faster variant (lifted TASEP) that we propose here. We discuss how our irreversible hard-sphere Markov chains generalize to arbitrary repulsive pair interactions and carry over to higher dimensions through the concept of lifted Markov chains and the recently introduced factorized Metropolis acceptance rule.

  3. Time-Resolved Magneto-Optical Imaging of Superconducting YBCO Thin Films in the High-Frequency AC Current Regime

    NASA Astrophysics Data System (ADS)

    Frey, Alexander

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  4. Open Markov Processes and Reaction Networks

    NASA Astrophysics Data System (ADS)

    Swistock Pollard, Blake Stephen

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  5. Detecting critical state before phase transition of complex systems by hidden Markov model

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.

  6. Markov reward processes

    NASA Technical Reports Server (NTRS)

    Smith, R. M.

    1991-01-01

    Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the behavior of the system with a continuous-time Markov chain, where a reward rate is associated with each state. In a reliability/availability model, upstates may have reward rate 1 and down states may have reward rate zero associated with them. In a queueing model, the number of jobs of certain type in a given state may be the reward rate attached to that state. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Expected steady-state reward rate and expected instantaneous reward rate are clearly useful measures of the Markov reward model. More generally, the distribution of accumulated reward or time-averaged reward over a finite time interval may be determined from the solution of the Markov reward model. This information is of great practical significance in situations where the workload can be well characterized (deterministically, or by continuous functions e.g., distributions). The design process in the development of a computer system is an expensive and long term endeavor. For aerospace applications the reliability of the computer system is essential, as is the ability to complete critical workloads in a well defined real time interval. Consequently, effective modeling of such systems must take into account both performance and reliability. This fact motivates our use of Markov reward models to aid in the development and evaluation of fault tolerant computer systems.

  7. Modelling Faculty Replacement Strategies Using a Time-Dependent Finite Markov-Chain Process.

    ERIC Educational Resources Information Center

    Hackett, E. Raymond; Magg, Alexander A.; Carrigan, Sarah D.

    1999-01-01

    Describes the use of a time-dependent Markov-chain model to develop faculty-replacement strategies within a college at a research university. The study suggests that a stochastic modelling approach can provide valuable insight when planning for personnel needs in the immediate (five-to-ten year) future. (MSE)

  8. Processing and Conversion of Algae to Bioethanol

    NASA Astrophysics Data System (ADS)

    Kampfe, Sara Katherine

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  9. Caliber Corrected Markov Modeling (C2M2): Correcting Equilibrium Markov Models.

    PubMed

    Dixit, Purushottam D; Dill, Ken A

    2018-02-13

    Rate processes are often modeled using Markov State Models (MSMs). Suppose you know a prior MSM and then learn that your prediction of some particular observable rate is wrong. What is the best way to correct the whole MSM? For example, molecular dynamics simulations of protein folding may sample many microstates, possibly giving correct pathways through them while also giving the wrong overall folding rate when compared to experiment. Here, we describe Caliber Corrected Markov Modeling (C 2 M 2 ), an approach based on the principle of maximum entropy for updating a Markov model by imposing state- and trajectory-based constraints. We show that such corrections are equivalent to asserting position-dependent diffusion coefficients in continuous-time continuous-space Markov processes modeled by a Smoluchowski equation. We derive the functional form of the diffusion coefficient explicitly in terms of the trajectory-based constraints. We illustrate with examples of 2D particle diffusion and an overdamped harmonic oscillator.

  10. Net Surface Flux Budget Over Tropical Oceans Estimated from the Tropical Rainfall Measuring Mission (TRMM)

    NASA Astrophysics Data System (ADS)

    Fan, Tai-Fang

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  11. Magneto - Optical Imaging of Superconducting MgB2 Thin Films

    NASA Astrophysics Data System (ADS)

    Hummert, Stephanie Maria

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  12. Boron Carbide Filled Neutron Shielding Textile Polymers

    NASA Astrophysics Data System (ADS)

    Manzlak, Derrick Anthony

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  13. Parallel Unstructured Grid Generation for Complex Real-World Aerodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Zagaris, George

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  14. Polymeric Radiation Shielding for Applications in Space: Polyimide Synthesis and Modeling of Multi-Layered Polymeric Shields

    NASA Astrophysics Data System (ADS)

    Schiavone, Clinton Cleveland

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  15. The Development of the CALIPSO LiDAR Simulator

    NASA Astrophysics Data System (ADS)

    Powell, Kathleen A.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  16. Exploring a Novel Approach to Technical Nuclear Forensics Utilizing Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Peeke, Richard Scot

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  17. Modeling of Critically-Stratified Gravity Flows: Application to the Eel River Continental Shelf, Northern California

    NASA Astrophysics Data System (ADS)

    Scully, Malcolm E.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  18. Production of Cyclohexylene-Containing Diamines in Pursuit of Novel Radiation Shielding Materials

    NASA Astrophysics Data System (ADS)

    Bate, Norah G.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  19. Development of Boron-Containing Polyimide Materials and Poly(arylene Ether)s for Radiation Shielding

    NASA Astrophysics Data System (ADS)

    Collins, Brittani May

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  20. Magnetization Dynamics and Anisotropy in Ferromagnetic/Antiferromagnetic Ni/NiO Bilayers

    NASA Astrophysics Data System (ADS)

    Petersen, Andreas

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  1. Markov and non-Markov processes in complex systems by the dynamical information entropy

    NASA Astrophysics Data System (ADS)

    Yulmetyev, R. M.; Gafarov, F. M.

    1999-12-01

    We consider the Markov and non-Markov processes in complex systems by the dynamical information Shannon entropy (DISE) method. The influence and important role of the two mutually dependent channels of entropy alternation (creation or generation of correlation) and anti-correlation (destroying or annihilation of correlation) have been discussed. The developed method has been used for the analysis of the complex systems of various natures: slow neutron scattering in liquid cesium, psychology (short-time numeral and pattern human memory and effect of stress on the dynamical taping-test), random dynamics of RR-intervals in human ECG (problem of diagnosis of various disease of the human cardio-vascular systems), chaotic dynamics of the parameters of financial markets and ecological systems.

  2. Markov switching multinomial logit model: An application to accident-injury severities.

    PubMed

    Malyshkina, Nataliya V; Mannering, Fred L

    2009-07-01

    In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.

  3. A fast exact simulation method for a class of Markov jump processes.

    PubMed

    Li, Yao; Hu, Lili

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze its properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.

  4. A Langevin equation for the rates of currency exchange based on the Markov analysis

    NASA Astrophysics Data System (ADS)

    Farahpour, F.; Eskandari, Z.; Bahraminasab, A.; Jafari, G. R.; Ghasemi, F.; Sahimi, Muhammad; Reza Rahimi Tabar, M.

    2007-11-01

    We propose a method for analyzing the data for the rates of exchange of various currencies versus the U.S. dollar. The method analyzes the return time series of the data as a Markov process, and develops an effective equation which reconstructs it. We find that the Markov time scale, i.e., the time scale over which the data are Markov-correlated, is one day for the majority of the daily exchange rates that we analyze. We derive an effective Langevin equation to describe the fluctuations in the rates. The equation contains two quantities, D and D, representing the drift and diffusion coefficients, respectively. We demonstrate how the two coefficients are estimated directly from the data, without using any assumptions or models for the underlying stochastic time series that represent the daily rates of exchange of various currencies versus the U.S. dollar.

  5. Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model.

    PubMed

    Sampid, Marius Galabe; Hasim, Haslifah M; Dai, Hongsheng

    2018-01-01

    In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.

  6. A novel framework to simulating non-stationary, non-linear, non-Normal hydrological time series using Markov Switching Autoregressive Models

    NASA Astrophysics Data System (ADS)

    Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.

    2012-12-01

    In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by non-stationarity either of the system input (climatic variability) and/or the complexity of catchment storage characteristics. The statistical model is also capable of reproducing short (event) and longer-term (inter-event) and wet and dry dynamical "hydrological states". These reflect the non-linear transport mechanisms of flow pathways induced by transient climatic and hydrological variables and modified by catchment characteristics. We conclude that MSARMs are a powerful tool to analyze the temporal dynamics of hydrological data, allowing for explicit integration of non-stationary, non-linear and non-Normal characteristics.

  7. Predictive Rate-Distortion for Infinite-Order Markov Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-06-01

    Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.

  8. A reward semi-Markov process with memory for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. The primary goal of this analysis is the study of the time history of the wind in order to assess its reliability as a source of power and to determine the associated storage levels required. In order to assess this issue we use a probabilistic model based on indexed semi-Markov process [4] to which a reward structure is attached. Our model is used to calculate the expected energy produced by a given turbine and its variability expressed by the variance of the process. Our results can be used to compare different wind farms based on their reward and also on the risk of missed production due to the intrinsic variability of the wind speed process. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and backtesting procedure is used to compare results on first and second oder moments of rewards between real and synthetic data. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic gen- eration of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Re- newable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribu- tion, Renewable Energy 28 (2003) 1787-1802. [4]F. Petroni, G. D'Amico, F. Prattico, Indexed semi-Markov process for wind speed modeling. To be submitted.

  9. An open Markov chain scheme model for a credit consumption portfolio fed by ARIMA and SARMA processes

    NASA Astrophysics Data System (ADS)

    Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.

    2016-06-01

    We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.

  10. A fast exact simulation method for a class of Markov jump processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yao, E-mail: yaoli@math.umass.edu; Hu, Lili, E-mail: lilyhu86@gmail.com

    2015-11-14

    A new method of the stochastic simulation algorithm (SSA), named the Hashing-Leaping method (HLM), for exact simulations of a class of Markov jump processes, is presented in this paper. The HLM has a conditional constant computational cost per event, which is independent of the number of exponential clocks in the Markov process. The main idea of the HLM is to repeatedly implement a hash-table-like bucket sort algorithm for all times of occurrence covered by a time step with length τ. This paper serves as an introduction to this new SSA method. We introduce the method, demonstrate its implementation, analyze itsmore » properties, and compare its performance with three other commonly used SSA methods in four examples. Our performance tests and CPU operation statistics show certain advantages of the HLM for large scale problems.« less

  11. Limiting Distributions of Functionals of Markov Chains.

    DTIC Science & Technology

    1984-08-01

    limiting distributions; periodic * nonhomoger.,!ous Poisson processes . 19 ANS? MACY IConuui oe nonoe’ee if necorglooy and edern thty by block numbers...homogeneous Poisson processes is of interest in itself. The problem considered in this paper is of interest in the theory of partially observable...where we obtain the limiting distribution of the interevent times. Key Words: Markov Chains, Limiting Distributions, Periodic Nonhomogeneous Poisson

  12. Optimal regulation in systems with stochastic time sampling

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Lee, P. S.

    1980-01-01

    An optimal control theory that accounts for stochastic variable time sampling in a distributed microprocessor based flight control system is presented. The theory is developed by using a linear process model for the airplane dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved for the control law that minimizes the expected value of a quadratic cost function. The optimal cost obtained with a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained with a known and uniform information update interval.

  13. Discrete time Markov chains (DTMC) susceptible infected susceptible (SIS) epidemic model with two pathogens in two patches

    NASA Astrophysics Data System (ADS)

    Lismawati, Eka; Respatiwulan; Widyaningsih, Purnami

    2017-06-01

    The SIS epidemic model describes the pattern of disease spread with characteristics that recovered individuals can be infected more than once. The number of susceptible and infected individuals every time follows the discrete time Markov process. It can be represented by the discrete time Markov chains (DTMC) SIS. The DTMC SIS epidemic model can be developed for two pathogens in two patches. The aims of this paper are to reconstruct and to apply the DTMC SIS epidemic model with two pathogens in two patches. The model was presented as transition probabilities. The application of the model obtain that the number of susceptible individuals decreases while the number of infected individuals increases for each pathogen in each patch.

  14. High-Performance Nanocomposites Designed for Radiation Shielding in Space and an Application of GIS for Analyzing Nanopowder Dispersion in Polymer Matrixes

    NASA Astrophysics Data System (ADS)

    Auslander, Joseph Simcha

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  15. Use of Remote Sensing to Identify Essential Habitat for Aeschynomene virginica (L.) BSP, a Threatened Tidal Freshwater Wetland Plant

    NASA Astrophysics Data System (ADS)

    Mountz, Elizabeth M.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  16. Silver-Polyimide Nanocomposite Films: Single-Stage Synthesis and Analysis of Metalized Partially-Fluorinated Polyimide BTDA/4-BDAF Prepared from Silver(I) Complexes

    NASA Astrophysics Data System (ADS)

    Abelard, Joshua Erold Robert

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  17. Multifunctional Polymer Synthesis and Incorporation of Gadolinium Compounds and Modified Tungsten Nanoparticles for Improvement of Radiation Shielding for use in Outer Space

    NASA Astrophysics Data System (ADS)

    Harbert, Emily Grace

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  18. Modeling Dyadic Processes Using Hidden Markov Models: A Time Series Approach to Mother-Infant Interactions during Infant Immunization

    ERIC Educational Resources Information Center

    Stifter, Cynthia A.; Rovine, Michael

    2015-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at 2 and 6?months of age, used hidden Markov modelling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a…

  19. Nonequilibrium thermodynamic potentials for continuous-time Markov chains.

    PubMed

    Verley, Gatien

    2016-01-01

    We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.

  20. The Markov process admits a consistent steady-state thermodynamic formalism

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  1. First and second order semi-Markov chains for wind speed modeling

    NASA Astrophysics Data System (ADS)

    Prattico, F.; Petroni, F.; D'Amico, G.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [3] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [1], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. Semi-Markov processes (SMP) are a wide class of stochastic processes which generalize at the same time both Markov chains and renewal processes. Their main advantage is that of using whatever type of waiting time distribution for modeling the time to have a transition from one state to another one. This major flexibility has a price to pay: availability of data to estimate the parameters of the model which are more numerous. Data availability is not an issue in wind speed studies, therefore, semi-Markov models can be used in a statistical efficient way. In this work we present three different semi-Markov chain models: the first one is a first-order SMP where the transition probabilities from two speed states (at time Tn and Tn-1) depend on the initial state (the state at Tn-1), final state (the state at Tn) and on the waiting time (given by t=Tn-Tn-1), the second model is a second order SMP where we consider the transition probabilities as depending also on the state the wind speed was before the initial state (which is the state at Tn-2) and the last one is still a second order SMP where the transition probabilities depends on the three states at Tn-2,Tn-1 and Tn and on the waiting times t_1=Tn-1-Tn-2 and t_2=Tn-Tn-1. The three models are used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy, 28/2003 1787-1802. [2] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30/2005 693-708. [3] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29/2004, 1407-1418.

  2. Feynman-Kac formula for stochastic hybrid systems.

    PubMed

    Bressloff, Paul C

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  3. Stochastic Calculus and Differential Equations for Physics and Finance

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2013-02-01

    1. Random variables and probability distributions; 2. Martingales, Markov, and nonstationarity; 3. Stochastic calculus; 4. Ito processes and Fokker-Planck equations; 5. Selfsimilar Ito processes; 6. Fractional Brownian motion; 7. Kolmogorov's PDEs and Chapman-Kolmogorov; 8. Non Markov Ito processes; 9. Black-Scholes, martingales, and Feynman-Katz; 10. Stochastic calculus with martingales; 11. Statistical physics and finance, a brief history of both; 12. Introduction to new financial economics; 13. Statistical ensembles and time series analysis; 14. Econometrics; 15. Semimartingales; References; Index.

  4. [Birth and death process of computer viruses].

    PubMed

    Segawa, Katsunori; Nakano, Tatsuya; Nakata, Kotoko; Hayashi, Yuzuru

    2006-01-01

    The daily variations in the number of computer viruses found attaching to e-mails and the number of accesses to the home page of a national institute in Japan are examined. The power spectral densities (PSD) of the variation in the computer viruses show a time-correlation characteristic of Markov process, but the daily access number does not (identified as white noise). Like biological viruses, the variation in the computer viruses can be described by the birth-and-death model known as a Markov process.

  5. Application of Markov Models for Analysis of Development of Psychological Characteristics

    ERIC Educational Resources Information Center

    Kuravsky, Lev S.; Malykh, Sergey B.

    2004-01-01

    A technique to study combined influence of environmental and genetic factors on the base of changes in phenotype distributions is presented. Histograms are exploited as base analyzed characteristics. A continuous time, discrete state Markov process with piece-wise constant interstate transition rates is associated with evolution of each histogram.…

  6. Markov modulated Poisson process models incorporating covariates for rainfall intensity.

    PubMed

    Thayakaran, R; Ramesh, N I

    2013-01-01

    Time series of rainfall bucket tip times at the Beaufort Park station, Bracknell, in the UK are modelled by a class of Markov modulated Poisson processes (MMPP) which may be thought of as a generalization of the Poisson process. Our main focus in this paper is to investigate the effects of including covariate information into the MMPP model framework on statistical properties. In particular, we look at three types of time-varying covariates namely temperature, sea level pressure, and relative humidity that are thought to be affecting the rainfall arrival process. Maximum likelihood estimation is used to obtain the parameter estimates, and likelihood ratio tests are employed in model comparison. Simulated data from the fitted model are used to make statistical inferences about the accumulated rainfall in the discrete time interval. Variability of the daily Poisson arrival rates is studied.

  7. Measurement-based reliability/performability models

    NASA Technical Reports Server (NTRS)

    Hsueh, Mei-Chen

    1987-01-01

    Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.

  8. Indexed semi-Markov process for wind speed modeling.

    NASA Astrophysics Data System (ADS)

    Petroni, F.; D'Amico, G.; Prattico, F.

    2012-04-01

    The increasing interest in renewable energy leads scientific research to find a better way to recover most of the available energy. Particularly, the maximum energy recoverable from wind is equal to 59.3% of that available (Betz law) at a specific pitch angle and when the ratio between the wind speed in output and in input is equal to 1/3. The pitch angle is the angle formed between the airfoil of the blade of the wind turbine and the wind direction. Old turbine and a lot of that actually marketed, in fact, have always the same invariant geometry of the airfoil. This causes that wind turbines will work with an efficiency that is lower than 59.3%. New generation wind turbines, instead, have a system to variate the pitch angle by rotating the blades. This system able the wind turbines to recover, at different wind speed, always the maximum energy, working in Betz limit at different speed ratios. A powerful system control of the pitch angle allows the wind turbine to recover better the energy in transient regime. A good stochastic model for wind speed is then needed to help both the optimization of turbine design and to assist the system control to predict the value of the wind speed to positioning the blades quickly and correctly. The possibility to have synthetic data of wind speed is a powerful instrument to assist designer to verify the structures of the wind turbines or to estimate the energy recoverable from a specific site. To generate synthetic data, Markov chains of first or higher order are often used [1,2,3]. In particular in [1] is presented a comparison between a first-order Markov chain and a second-order Markov chain. A similar work, but only for the first-order Markov chain, is conduced by [2], presenting the probability transition matrix and comparing the energy spectral density and autocorrelation of real and synthetic wind speed data. A tentative to modeling and to join speed and direction of wind is presented in [3], by using two models, first-order Markov chain with different number of states, and Weibull distribution. All this model use Markov chains to generate synthetic wind speed time series but the search for a better model is still open. Approaching this issue, we applied new models which are generalization of Markov models. More precisely we applied semi-Markov models to generate synthetic wind speed time series. In a previous work we proposed different semi-Markov models, showing their ability to reproduce the autocorrelation structures of wind speed data. In that paper we showed also that the autocorrelation is higher with respect to the Markov model. Unfortunately this autocorrelation was still too small compared to the empirical one. In order to overcome the problem of low autocorrelation, in this paper we propose an indexed semi-Markov model. More precisely we assume that wind speed is described by a discrete time homogeneous semi-Markov process. We introduce a memory index which takes into account the periods of different wind activities. With this model the statistical characteristics of wind speed are faithfully reproduced. The wind is a very unstable phenomenon characterized by a sequence of lulls and sustained speeds, and a good wind generator must be able to reproduce such sequences. To check the validity of the predictive semi-Markovian model, the persistence of synthetic winds were calculated, then averaged and computed. The model is used to generate synthetic time series for wind speed by means of Monte Carlo simulations and the time lagged autocorrelation is used to compare statistical properties of the proposed models with those of real data and also with a time series generated though a simple Markov chain. [1] A. Shamshad, M.A. Bawadi, W.M.W. Wan Hussin, T.A. Majid, S.A.M. Sanusi, First and second order Markov chain models for synthetic generation of wind speed time series, Energy 30 (2005) 693-708. [2] H. Nfaoui, H. Essiarab, A.A.M. Sayigh, A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco, Renewable Energy 29 (2004) 1407-1418. [3] F. Youcef Ettoumi, H. Sauvageot, A.-E.-H. Adane, Statistical bivariate modeling of wind using first-order Markov chain and Weibull distribution, Renewable Energy 28 (2003) 1787-1802.

  9. Estimation in a semi-Markov transformation model

    PubMed Central

    Dabrowska, Dorota M.

    2012-01-01

    Multi-state models provide a common tool for analysis of longitudinal failure time data. In biomedical applications, models of this kind are often used to describe evolution of a disease and assume that patient may move among a finite number of states representing different phases in the disease progression. Several authors developed extensions of the proportional hazard model for analysis of multi-state models in the presence of covariates. In this paper, we consider a general class of censored semi-Markov and modulated renewal processes and propose the use of transformation models for their analysis. Special cases include modulated renewal processes with interarrival times specified using transformation models, and semi-Markov processes with with one-step transition probabilities defined using copula-transformation models. We discuss estimation of finite and infinite dimensional parameters of the model, and develop an extension of the Gaussian multiplier method for setting confidence bands for transition probabilities. A transplant outcome data set from the Center for International Blood and Marrow Transplant Research is used for illustrative purposes. PMID:22740583

  10. Large deviations and mixing for dissipative PDEs with unbounded random kicks

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Nersesyan, V.; Pillet, C.-A.; Shirikyan, A.

    2018-02-01

    We study the problem of exponential mixing and large deviations for discrete-time Markov processes associated with a class of random dynamical systems. Under some dissipativity and regularisation hypotheses for the underlying deterministic dynamics and a non-degeneracy condition for the driving random force, we discuss the existence and uniqueness of a stationary measure and its exponential stability in the Kantorovich-Wasserstein metric. We next turn to the large deviations principle (LDP) and establish its validity for the occupation measures of the Markov processes in question. The proof is based on Kifer’s criterion for non-compact spaces, a result on large-time asymptotics for generalised Markov semigroup, and a coupling argument. These tools combined together constitute a new approach to LDP for infinite-dimensional processes without strong Feller property in a non-compact space. The results obtained can be applied to the two-dimensional Navier-Stokes system in a bounded domain and to the complex Ginzburg-Landau equation.

  11. Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk

    2016-08-15

    In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less

  12. Intelligent classifier for dynamic fault patterns based on hidden Markov model

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Feng, Yuguang; Yu, Jinsong

    2006-11-01

    It's difficult to build precise mathematical models for complex engineering systems because of the complexity of the structure and dynamics characteristics. Intelligent fault diagnosis introduces artificial intelligence and works in a different way without building the analytical mathematical model of a diagnostic object, so it's a practical approach to solve diagnostic problems of complex systems. This paper presents an intelligent fault diagnosis method, an integrated fault-pattern classifier based on Hidden Markov Model (HMM). This classifier consists of dynamic time warping (DTW) algorithm, self-organizing feature mapping (SOFM) network and Hidden Markov Model. First, after dynamic observation vector in measuring space is processed by DTW, the error vector including the fault feature of being tested system is obtained. Then a SOFM network is used as a feature extractor and vector quantization processor. Finally, fault diagnosis is realized by fault patterns classifying with the Hidden Markov Model classifier. The importing of dynamic time warping solves the problem of feature extracting from dynamic process vectors of complex system such as aeroengine, and makes it come true to diagnose complex system by utilizing dynamic process information. Simulating experiments show that the diagnosis model is easy to extend, and the fault pattern classifier is efficient and is convenient to the detecting and diagnosing of new faults.

  13. Observation uncertainty in reversible Markov chains.

    PubMed

    Metzner, Philipp; Weber, Marcus; Schütte, Christof

    2010-09-01

    In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+) .

  14. Large Deviations for Stationary Probabilities of a Family of Continuous Time Markov Chains via Aubry-Mather Theory

    NASA Astrophysics Data System (ADS)

    Lopes, Artur O.; Neumann, Adriana

    2015-05-01

    In the present paper, we consider a family of continuous time symmetric random walks indexed by , . For each the matching random walk take values in the finite set of states ; notice that is a subset of , where is the unitary circle. The infinitesimal generator of such chain is denoted by . The stationary probability for such process converges to the uniform distribution on the circle, when . Here we want to study other natural measures, obtained via a limit on , that are concentrated on some points of . We will disturb this process by a potential and study for each the perturbed stationary measures of this new process when . We disturb the system considering a fixed potential and we will denote by the restriction of to . Then, we define a non-stochastic semigroup generated by the matrix , where is the infinifesimal generator of . From the continuous time Perron's Theorem one can normalized such semigroup, and, then we get another stochastic semigroup which generates a continuous time Markov Chain taking values on . This new chain is called the continuous time Gibbs state associated to the potential , see (Lopes et al. in J Stat Phys 152:894-933, 2013). The stationary probability vector for such Markov Chain is denoted by . We assume that the maximum of is attained in a unique point of , and from this will follow that . Thus, here, our main goal is to analyze the large deviation principle for the family , when . The deviation function , which is defined on , will be obtained from a procedure based on fixed points of the Lax-Oleinik operator and Aubry-Mather theory. In order to obtain the associated Lax-Oleinik operator we use the Varadhan's Lemma for the process . For a careful analysis of the problem we present full details of the proof of the Large Deviation Principle, in the Skorohod space, for such family of Markov Chains, when . Finally, we compute the entropy of the invariant probabilities on the Skorohod space associated to the Markov Chains we analyze.

  15. Nonlinear Markov Control Processes and Games

    DTIC Science & Technology

    2012-11-15

    the analysis of a new class of stochastic games , nonlinear Markov games , as they arise as a ( competitive ) controlled version of nonlinear Markov... competitive interests) a nonlinear Markov game that we are investigating. I 0. :::tUt::JJt:.l.. I I t:t11VI;:, nonlinear Markov game , nonlinear Markov...corresponding stochastic game Γ+(T, h). In a slightly different setting one can assume that changes in a competitive control process occur as a

  16. The exit-time problem for a Markov jump process

    NASA Astrophysics Data System (ADS)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  17. Scalable approximate policies for Markov decision process models of hospital elective admissions.

    PubMed

    Zhu, George; Lizotte, Dan; Hoey, Jesse

    2014-05-01

    To demonstrate the feasibility of using stochastic simulation methods for the solution of a large-scale Markov decision process model of on-line patient admissions scheduling. The problem of admissions scheduling is modeled as a Markov decision process in which the states represent numbers of patients using each of a number of resources. We investigate current state-of-the-art real time planning methods to compute solutions to this Markov decision process. Due to the complexity of the model, traditional model-based planners are limited in scalability since they require an explicit enumeration of the model dynamics. To overcome this challenge, we apply sample-based planners along with efficient simulation techniques that given an initial start state, generate an action on-demand while avoiding portions of the model that are irrelevant to the start state. We also propose a novel variant of a popular sample-based planner that is particularly well suited to the elective admissions problem. Results show that the stochastic simulation methods allow for the problem size to be scaled by a factor of almost 10 in the action space, and exponentially in the state space. We have demonstrated our approach on a problem with 81 actions, four specialities and four treatment patterns, and shown that we can generate solutions that are near-optimal in about 100s. Sample-based planners are a viable alternative to state-based planners for large Markov decision process models of elective admissions scheduling. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effective degree Markov-chain approach for discrete-time epidemic processes on uncorrelated networks.

    PubMed

    Cai, Chao-Ran; Wu, Zhi-Xi; Guan, Jian-Yue

    2014-11-01

    Recently, Gómez et al. proposed a microscopic Markov-chain approach (MMCA) [S. Gómez, J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E 84, 036105 (2011)PLEEE81539-375510.1103/PhysRevE.84.036105] to the discrete-time susceptible-infected-susceptible (SIS) epidemic process and found that the epidemic prevalence obtained by this approach agrees well with that by simulations. However, we found that the approach cannot be straightforwardly extended to a susceptible-infected-recovered (SIR) epidemic process (due to its irreversible property), and the epidemic prevalences obtained by MMCA and Monte Carlo simulations do not match well when the infection probability is just slightly above the epidemic threshold. In this contribution we extend the effective degree Markov-chain approach, proposed for analyzing continuous-time epidemic processes [J. Lindquist, J. Ma, P. Driessche, and F. Willeboordse, J. Math. Biol. 62, 143 (2011)JMBLAJ0303-681210.1007/s00285-010-0331-2], to address discrete-time binary-state (SIS) or three-state (SIR) epidemic processes on uncorrelated complex networks. It is shown that the final epidemic size as well as the time series of infected individuals obtained from this approach agree very well with those by Monte Carlo simulations. Our results are robust to the change of different parameters, including the total population size, the infection probability, the recovery probability, the average degree, and the degree distribution of the underlying networks.

  19. Modeling of dialogue regimes of distance robot control

    NASA Astrophysics Data System (ADS)

    Larkin, E. V.; Privalov, A. N.

    2017-02-01

    Process of distance control of mobile robots is investigated. Petri-Markov net for modeling of dialogue regime is worked out. It is shown, that sequence of operations of next subjects: a human operator, a dialogue computer and an onboard computer may be simulated with use the theory of semi-Markov processes. From the semi-Markov process of the general form Markov process was obtained, which includes only states of transaction generation. It is shown, that a real transaction flow is the result of «concurrency» in states of Markov process. Iteration procedure for evaluation of transaction flow parameters, which takes into account effect of «concurrency», is proposed.

  20. Graph transformation method for calculating waiting times in Markov chains.

    PubMed

    Trygubenko, Semen A; Wales, David J

    2006-06-21

    We describe an exact approach for calculating transition probabilities and waiting times in finite-state discrete-time Markov processes. All the states and the rules for transitions between them must be known in advance. We can then calculate averages over a given ensemble of paths for both additive and multiplicative properties in a nonstochastic and noniterative fashion. In particular, we can calculate the mean first-passage time between arbitrary groups of stationary points for discrete path sampling databases, and hence extract phenomenological rate constants. We present a number of examples to demonstrate the efficiency and robustness of this approach.

  1. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model.

    PubMed

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-28

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  2. A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models.

    PubMed

    Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C

    2017-07-01

    Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous-time Markov processes. © 2016 Society for Risk Analysis.

  3. Modeling dyadic processes using Hidden Markov Models: A time series approach to mother-infant interactions during infant immunization.

    PubMed

    Stifter, Cynthia A; Rovine, Michael

    2015-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed.

  4. Modeling dyadic processes using Hidden Markov Models: A time series approach to mother-infant interactions during infant immunization

    PubMed Central

    Stifter, Cynthia A.; Rovine, Michael

    2016-01-01

    The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at two and six months of age, used hidden Markov modeling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a 4-state model for the dyadic responses to a two-month inoculation whereas a 6-state model best described the dyadic process at six months. Two of the states at two months and three of the states at six months suggested a progression from high intensity crying to no crying with parents using vestibular and auditory soothing methods. The use of feeding and/or pacifying to soothe the infant characterized one two-month state and two six-month states. These data indicate that with maturation and experience, the mother-infant dyad is becoming more organized around the soothing interaction. Using hidden Markov modeling to describe individual differences, as well as normative processes, is also presented and discussed. PMID:27284272

  5. Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo

    PubMed Central

    Golightly, Andrew; Wilkinson, Darren J.

    2011-01-01

    Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583

  6. The exit-time problem for a Markov jump process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, N.; D'Elia, Marta; Lehoucq, Richard B.

    2014-12-15

    The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developedmore » nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.« less

  7. On a Result for Finite Markov Chains

    ERIC Educational Resources Information Center

    Kulathinal, Sangita; Ghosh, Lagnojita

    2006-01-01

    In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…

  8. Master equation for She-Leveque scaling and its classification in terms of other Markov models of developed turbulence

    NASA Astrophysics Data System (ADS)

    Nickelsen, Daniel

    2017-07-01

    The statistics of velocity increments in homogeneous and isotropic turbulence exhibit universal features in the limit of infinite Reynolds numbers. After Kolmogorov’s scaling law from 1941, many turbulence models aim for capturing these universal features, some are known to have an equivalent formulation in terms of Markov processes. We derive the Markov process equivalent to the particularly successful scaling law postulated by She and Leveque. The Markov process is a jump process for velocity increments u(r) in scale r in which the jumps occur randomly but with deterministic width in u. From its master equation we establish a prescription to simulate the She-Leveque process and compare it with Kolmogorov scaling. To put the She-Leveque process into the context of other established turbulence models on the Markov level, we derive a diffusion process for u(r) using two properties of the Navier-Stokes equation. This diffusion process already includes Kolmogorov scaling, extended self-similarity and a class of random cascade models. The fluctuation theorem of this Markov process implies a ‘second law’ that puts a loose bound on the multipliers of the random cascade models. This bound explicitly allows for instances of inverse cascades, which are necessary to satisfy the fluctuation theorem. By adding a jump process to the diffusion process, we go beyond Kolmogorov scaling and formulate the most general scaling law for the class of Markov processes having both diffusion and jump parts. This Markov scaling law includes She-Leveque scaling and a scaling law derived by Yakhot.

  9. Semi-Markov models for interval censored transient cognitive states with back transitions and a competing risk

    PubMed Central

    Wei, Shaoceng; Kryscio, Richard J.

    2015-01-01

    Continuous-time multi-state stochastic processes are useful for modeling the flow of subjects from intact cognition to dementia with mild cognitive impairment and global impairment as intervening transient, cognitive states and death as a competing risk (Figure 1). Each subject's cognition is assessed periodically resulting in interval censoring for the cognitive states while death without dementia is not interval censored. Since back transitions among the transient states are possible, Markov chains are often applied to this type of panel data. In this manuscript we apply a Semi-Markov process in which we assume that the waiting times are Weibull distributed except for transitions from the baseline state, which are exponentially distributed and in which we assume no additional changes in cognition occur between two assessments. We implement a quasi-Monte Carlo (QMC) method to calculate the higher order integration needed for likelihood estimation. We apply our model to a real dataset, the Nun Study, a cohort of 461 participants. PMID:24821001

  10. Semi-Markov models for interval censored transient cognitive states with back transitions and a competing risk.

    PubMed

    Wei, Shaoceng; Kryscio, Richard J

    2016-12-01

    Continuous-time multi-state stochastic processes are useful for modeling the flow of subjects from intact cognition to dementia with mild cognitive impairment and global impairment as intervening transient cognitive states and death as a competing risk. Each subject's cognition is assessed periodically resulting in interval censoring for the cognitive states while death without dementia is not interval censored. Since back transitions among the transient states are possible, Markov chains are often applied to this type of panel data. In this manuscript, we apply a semi-Markov process in which we assume that the waiting times are Weibull distributed except for transitions from the baseline state, which are exponentially distributed and in which we assume no additional changes in cognition occur between two assessments. We implement a quasi-Monte Carlo (QMC) method to calculate the higher order integration needed for likelihood estimation. We apply our model to a real dataset, the Nun Study, a cohort of 461 participants. © The Author(s) 2014.

  11. Semi-Markov adjunction to the Computer-Aided Markov Evaluator (CAME)

    NASA Technical Reports Server (NTRS)

    Rosch, Gene; Hutchins, Monica A.; Leong, Frank J.; Babcock, Philip S., IV

    1988-01-01

    The rule-based Computer-Aided Markov Evaluator (CAME) program was expanded in its ability to incorporate the effect of fault-handling processes into the construction of a reliability model. The fault-handling processes are modeled as semi-Markov events and CAME constructs and appropriate semi-Markov model. To solve the model, the program outputs it in a form which can be directly solved with the Semi-Markov Unreliability Range Evaluator (SURE) program. As a means of evaluating the alterations made to the CAME program, the program is used to model the reliability of portions of the Integrated Airframe/Propulsion Control System Architecture (IAPSA 2) reference configuration. The reliability predictions are compared with a previous analysis. The results bear out the feasibility of utilizing CAME to generate appropriate semi-Markov models to model fault-handling processes.

  12. Hybrid Discrete-Continuous Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich

    2003-01-01

    This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.

  13. On spatial mutation-selection models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratiev, Yuri, E-mail: kondrat@math.uni-bielefeld.de; Kutoviy, Oleksandr, E-mail: kutoviy@math.uni-bielefeld.de, E-mail: kutovyi@mit.edu; Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139

    2013-11-15

    We discuss the selection procedure in the framework of mutation models. We study the regulation for stochastically developing systems based on a transformation of the initial Markov process which includes a cost functional. The transformation of initial Markov process by cost functional has an analytic realization in terms of a Kimura-Maruyama type equation for the time evolution of states or in terms of the corresponding Feynman-Kac formula on the path space. The state evolution of the system including the limiting behavior is studied for two types of mutation-selection models.

  14. Bayesian selection of Markov models for symbol sequences: application to microsaccadic eye movements.

    PubMed

    Bettenbühl, Mario; Rusconi, Marco; Engbert, Ralf; Holschneider, Matthias

    2012-01-01

    Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.

  15. Analyzing a stochastic time series obeying a second-order differential equation.

    PubMed

    Lehle, B; Peinke, J

    2015-06-01

    The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.

  16. Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models

    NASA Astrophysics Data System (ADS)

    Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C.; Noé, Frank

    2013-11-01

    The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.

  17. A method of hidden Markov model optimization for use with geophysical data sets

    NASA Technical Reports Server (NTRS)

    Granat, R. A.

    2003-01-01

    Geophysics research has been faced with a growing need for automated techniques with which to process large quantities of data. A successful tool must meet a number of requirements: it should be consistent, require minimal parameter tuning, and produce scientifically meaningful results in reasonable time. We introduce a hidden Markov model (HMM)-based method for analysis of geophysical data sets that attempts to address these issues.

  18. Stochastic-shielding approximation of Markov chains and its application to efficiently simulate random ion-channel gating.

    PubMed

    Schmandt, Nicolaus T; Galán, Roberto F

    2012-09-14

    Markov chains provide realistic models of numerous stochastic processes in nature. We demonstrate that in any Markov chain, the change in occupation number in state A is correlated to the change in occupation number in state B if and only if A and B are directly connected. This implies that if we are only interested in state A, fluctuations in B may be replaced with their mean if state B is not directly connected to A, which shortens computing time considerably. We show the accuracy and efficacy of our approximation theoretically and in simulations of stochastic ion-channel gating in neurons.

  19. Quasi- and pseudo-maximum likelihood estimators for discretely observed continuous-time Markov branching processes

    PubMed Central

    Chen, Rui; Hyrien, Ollivier

    2011-01-01

    This article deals with quasi- and pseudo-likelihood estimation in a class of continuous-time multi-type Markov branching processes observed at discrete points in time. “Conventional” and conditional estimation are discussed for both approaches. We compare their properties and identify situations where they lead to asymptotically equivalent estimators. Both approaches possess robustness properties, and coincide with maximum likelihood estimation in some cases. Quasi-likelihood functions involving only linear combinations of the data may be unable to estimate all model parameters. Remedial measures exist, including the resort either to non-linear functions of the data or to conditioning the moments on appropriate sigma-algebras. The method of pseudo-likelihood may also resolve this issue. We investigate the properties of these approaches in three examples: the pure birth process, the linear birth-and-death process, and a two-type process that generalizes the previous two examples. Simulations studies are conducted to evaluate performance in finite samples. PMID:21552356

  20. Markov Chains for Investigating and Predicting Migration: A Case from Southwestern China

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Wang, Yiyu; Xu, Haoming

    2018-03-01

    In order to accurately predict the population’s happiness, this paper conducted two demographic surveys on a new district of a city in western China, and carried out a dynamic analysis using related mathematical methods. This paper argues that the migration of migrants in the city will change the pattern of spatial distribution of human resources in the city and thus affect the social and economic development in all districts. The migration status of the population will change randomly with the passage of time, so it can be predicted and analyzed through the Markov process. The Markov process provides the local government and decision-making bureau a valid basis for the dynamic analysis of the mobility of migrants in the city as well as the ways for promoting happiness of local people’s lives.

  1. Modeling the coupled return-spread high frequency dynamics of large tick assets

    NASA Astrophysics Data System (ADS)

    Curato, Gianbiagio; Lillo, Fabrizio

    2015-01-01

    Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.

  2. Metrics for Labeled Markov Systems

    NASA Technical Reports Server (NTRS)

    Desharnais, Josee; Jagadeesan, Radha; Gupta, Vineet; Panangaden, Prakash

    1999-01-01

    Partial Labeled Markov Chains are simultaneously generalizations of process algebra and of traditional Markov chains. They provide a foundation for interacting discrete probabilistic systems, the interaction being synchronization on labels as in process algebra. Existing notions of process equivalence are too sensitive to the exact probabilities of various transitions. This paper addresses contextual reasoning principles for reasoning about more robust notions of "approximate" equivalence between concurrent interacting probabilistic systems. The present results indicate that:We develop a family of metrics between partial labeled Markov chains to formalize the notion of distance between processes. We show that processes at distance zero are bisimilar. We describe a decision procedure to compute the distance between two processes. We show that reasoning about approximate equivalence can be done compositionally by showing that process combinators do not increase distance. We introduce an asymptotic metric to capture asymptotic properties of Markov chains; and show that parallel composition does not increase asymptotic distance.

  3. Analysing grouping of nucleotides in DNA sequences using lumped processes constructed from Markov chains.

    PubMed

    Guédon, Yann; d'Aubenton-Carafa, Yves; Thermes, Claude

    2006-03-01

    The most commonly used models for analysing local dependencies in DNA sequences are (high-order) Markov chains. Incorporating knowledge relative to the possible grouping of the nucleotides enables to define dedicated sub-classes of Markov chains. The problem of formulating lumpability hypotheses for a Markov chain is therefore addressed. In the classical approach to lumpability, this problem can be formulated as the determination of an appropriate state space (smaller than the original state space) such that the lumped chain defined on this state space retains the Markov property. We propose a different perspective on lumpability where the state space is fixed and the partitioning of this state space is represented by a one-to-many probabilistic function within a two-level stochastic process. Three nested classes of lumped processes can be defined in this way as sub-classes of first-order Markov chains. These lumped processes enable parsimonious reparameterizations of Markov chains that help to reveal relevant partitions of the state space. Characterizations of the lumped processes on the original transition probability matrix are derived. Different model selection methods relying either on hypothesis testing or on penalized log-likelihood criteria are presented as well as extensions to lumped processes constructed from high-order Markov chains. The relevance of the proposed approach to lumpability is illustrated by the analysis of DNA sequences. In particular, the use of lumped processes enables to highlight differences between intronic sequences and gene untranslated region sequences.

  4. Monitoring volcano activity through Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Cassisi, C.; Montalto, P.; Prestifilippo, M.; Aliotta, M.; Cannata, A.; Patanè, D.

    2013-12-01

    During 2011-2013, Mt. Etna was mainly characterized by cyclic occurrences of lava fountains, totaling to 38 episodes. During this time interval Etna volcano's states (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN), whose automatic recognition is very useful for monitoring purposes, turned out to be strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area. Since RMS time series behavior is considered to be stochastic, we can try to model the system generating its values, assuming to be a Markov process, by using Hidden Markov models (HMMs). HMMs are a powerful tool in modeling any time-varying series. HMMs analysis seeks to recover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by the SAX (Symbolic Aggregate approXimation) technique, which maps RMS time series values with discrete literal emissions. The experiments show how it is possible to guess volcano states by means of HMMs and SAX.

  5. Markov switching of the electricity supply curve and power prices dynamics

    NASA Astrophysics Data System (ADS)

    Mari, Carlo; Cananà, Lucianna

    2012-02-01

    Regime-switching models seem to well capture the main features of power prices behavior in deregulated markets. In a recent paper, we have proposed an equilibrium methodology to derive electricity prices dynamics from the interplay between supply and demand in a stochastic environment. In particular, assuming that the supply function is described by a power law where the exponent is a two-state strictly positive Markov process, we derived a regime switching dynamics of power prices in which regime switches are induced by transitions between Markov states. In this paper, we provide a dynamical model to describe the random behavior of power prices where the only non-Brownian component of the motion is endogenously introduced by Markov transitions in the exponent of the electricity supply curve. In this context, the stochastic process driving the switching mechanism becomes observable, and we will show that the non-Brownian component of the dynamics induced by transitions from Markov states is responsible for jumps and spikes of very high magnitude. The empirical analysis performed on three Australian markets confirms that the proposed approach seems quite flexible and capable of incorporating the main features of power prices time-series, thus reproducing the first four moments of log-returns empirical distributions in a satisfactory way.

  6. Information distribution in distributed microprocessor based flight control systems

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.; Lee, P. S.

    1977-01-01

    This paper presents an optimal control theory that accounts for variable time intervals in the information distribution to control effectors in a distributed microprocessor based flight control system. The theory is developed using a linear process model for the aircraft dynamics and the information distribution process is modeled as a variable time increment process where, at the time that information is supplied to the control effectors, the control effectors know the time of the next information update only in a stochastic sense. An optimal control problem is formulated and solved that provides the control law that minimizes the expected value of a quadratic cost function. An example is presented where the theory is applied to the control of the longitudinal motions of the F8-DFBW aircraft. Theoretical and simulation results indicate that, for the example problem, the optimal cost obtained using a variable time increment Markov information update process where the control effectors know only the past information update intervals and the Markov transition mechanism is almost identical to that obtained using a known uniform information update interval.

  7. Markov-chain model of classified atomistic transition states for discrete kinetic Monte Carlo simulations.

    PubMed

    Numazawa, Satoshi; Smith, Roger

    2011-10-01

    Classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The scheme is then used to determine transitions that can be applied in a lattice-based kinetic Monte Carlo (KMC) atomistic simulation model. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements are considered as local transition events constrained in potential energy wells over certain local time periods. These processes are represented by Markov chains of multidimensional Boolean valued functions in three-dimensional lattice space. The events inhibited by the barriers under a certain level are regarded as thermal fluctuations of the canonical ensemble and accepted freely. Consequently, the fluctuating system evolution process is implemented as a Markov chain of equivalence class objects. It is shown that the process can be characterized by the acceptance of metastable local transitions. The method is applied to a problem of Au and Ag cluster growth on a rippled surface. The simulation predicts the existence of a morphology-dependent transition time limit from a local metastable to stable state for subsequent cluster growth by accretion. Excellent agreement with observed experimental results is obtained.

  8. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  9. Pitch angle scattering of relativistic electrons from stationary magnetic waves: Continuous Markov process and quasilinear theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemons, Don S.

    2012-01-15

    We develop a Markov process theory of charged particle scattering from stationary, transverse, magnetic waves. We examine approximations that lead to quasilinear theory, in particular the resonant diffusion approximation. We find that, when appropriate, the resonant diffusion approximation simplifies the result of the weak turbulence approximation without significant further restricting the regime of applicability. We also explore a theory generated by expanding drift and diffusion rates in terms of a presumed small correlation time. This small correlation time expansion leads to results valid for relatively small pitch angle and large wave energy density - a regime that may govern pitchmore » angle scattering of high-energy electrons into the geomagnetic loss cone.« less

  10. Statistical Analysis of Notational AFL Data Using Continuous Time Markov Chains

    PubMed Central

    Meyer, Denny; Forbes, Don; Clarke, Stephen R.

    2006-01-01

    Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated. Key Points A comparison of four AFL matches suggests similarity in terms of transition probabilities for events and the mean times, distances and speeds associated with each transition. The Markov assumption appears to be valid. However, the speed, time and distance distributions associated with each transition are not exponential suggesting that semi-Markov model can be used to model and simulate play. Team identified events and directions associated with transitions are required to develop the model into a tool for the prediction of match outcomes. PMID:24357946

  11. Statistical Analysis of Notational AFL Data Using Continuous Time Markov Chains.

    PubMed

    Meyer, Denny; Forbes, Don; Clarke, Stephen R

    2006-01-01

    Animal biologists commonly use continuous time Markov chain models to describe patterns of animal behaviour. In this paper we consider the use of these models for describing AFL football. In particular we test the assumptions for continuous time Markov chain models (CTMCs), with time, distance and speed values associated with each transition. Using a simple event categorisation it is found that a semi-Markov chain model is appropriate for this data. This validates the use of Markov Chains for future studies in which the outcomes of AFL matches are simulated. Key PointsA comparison of four AFL matches suggests similarity in terms of transition probabilities for events and the mean times, distances and speeds associated with each transition.The Markov assumption appears to be valid.However, the speed, time and distance distributions associated with each transition are not exponential suggesting that semi-Markov model can be used to model and simulate play.Team identified events and directions associated with transitions are required to develop the model into a tool for the prediction of match outcomes.

  12. Markov Tracking for Agent Coordination

    NASA Technical Reports Server (NTRS)

    Washington, Richard; Lau, Sonie (Technical Monitor)

    1998-01-01

    Partially observable Markov decision processes (POMDPs) axe an attractive representation for representing agent behavior, since they capture uncertainty in both the agent's state and its actions. However, finding an optimal policy for POMDPs in general is computationally difficult. In this paper we present Markov Tracking, a restricted problem of coordinating actions with an agent or process represented as a POMDP Because the actions coordinate with the agent rather than influence its behavior, the optimal solution to this problem can be computed locally and quickly. We also demonstrate the use of the technique on sequential POMDPs, which can be used to model a behavior that follows a linear, acyclic trajectory through a series of states. By imposing a "windowing" restriction that restricts the number of possible alternatives considered at any moment to a fixed size, a coordinating action can be calculated in constant time, making this amenable to coordination with complex agents.

  13. Stochastic Dynamics through Hierarchically Embedded Markov Chains

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Vítor V.; Santos, Fernando P.; Santos, Francisco C.; Pacheco, Jorge M.

    2017-02-01

    Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects—such as mutations in evolutionary dynamics and a random exploration of choices in social systems—including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.

  14. Stochastic Dynamics through Hierarchically Embedded Markov Chains.

    PubMed

    Vasconcelos, Vítor V; Santos, Fernando P; Santos, Francisco C; Pacheco, Jorge M

    2017-02-03

    Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects-such as mutations in evolutionary dynamics and a random exploration of choices in social systems-including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.

  15. Monitoring Farmland Loss Caused by Urbanization in Beijing from Modis Time Series Using Hierarchical Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Meng, Y.; Chen, Y. X.; Jiang, C.; Yue, A. Z.

    2018-04-01

    In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate that our method improves the change detection accuracy compared with the HMM-based method.

  16. The cutoff phenomenon in finite Markov chains.

    PubMed Central

    Diaconis, P

    1996-01-01

    Natural mixing processes modeled by Markov chains often show a sharp cutoff in their convergence to long-time behavior. This paper presents problems where the cutoff can be proved (card shuffling, the Ehrenfests' urn). It shows that chains with polynomial growth (drunkard's walk) do not show cutoffs. The best general understanding of such cutoffs (high multiplicity of second eigenvalues due to symmetry) is explored. Examples are given where the symmetry is broken but the cutoff phenomenon persists. PMID:11607633

  17. Stochastic models for the Trojan Y-Chromosome eradication strategy of an invasive species.

    PubMed

    Wang, Xueying; Walton, Jay R; Parshad, Rana D

    2016-01-01

    The Trojan Y-Chromosome (TYC) strategy, an autocidal genetic biocontrol method, has been proposed to eliminate invasive alien species. In this work, we develop a Markov jump process model for this strategy, and we verify that there is a positive probability for wild-type females going extinct within a finite time. Moreover, when sex-reversed Trojan females are introduced at a constant population size, we formulate a stochastic differential equation (SDE) model as an approximation to the proposed Markov jump process model. Using the SDE model, we investigate the probability distribution and expectation of the extinction time of wild-type females by solving Kolmogorov equations associated with these statistics. The results indicate how the probability distribution and expectation of the extinction time are shaped by the initial conditions and the model parameters.

  18. A variational method for analyzing limit cycle oscillations in stochastic hybrid systems

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; MacLaurin, James

    2018-06-01

    Many systems in biology can be modeled through ordinary differential equations, which are piece-wise continuous, and switch between different states according to a Markov jump process known as a stochastic hybrid system or piecewise deterministic Markov process (PDMP). In the fast switching limit, the dynamics converges to a deterministic ODE. In this paper, we develop a phase reduction method for stochastic hybrid systems that support a stable limit cycle in the deterministic limit. A classic example is the Morris-Lecar model of a neuron, where the switching Markov process is the number of open ion channels and the continuous process is the membrane voltage. We outline a variational principle for the phase reduction, yielding an exact analytic expression for the resulting phase dynamics. We demonstrate that this decomposition is accurate over timescales that are exponential in the switching rate ɛ-1 . That is, we show that for a constant C, the probability that the expected time to leave an O(a) neighborhood of the limit cycle is less than T scales as T exp (-C a /ɛ ) .

  19. An Overview of Markov Chain Methods for the Study of Stage-Sequential Developmental Processes

    ERIC Educational Resources Information Center

    Kapland, David

    2008-01-01

    This article presents an overview of quantitative methodologies for the study of stage-sequential development based on extensions of Markov chain modeling. Four methods are presented that exemplify the flexibility of this approach: the manifest Markov model, the latent Markov model, latent transition analysis, and the mixture latent Markov model.…

  20. Poissonian steady states: from stationary densities to stationary intensities.

    PubMed

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  1. Poissonian steady states: From stationary densities to stationary intensities

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2012-10-01

    Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.

  2. Towards automatic Markov reliability modeling of computer architectures

    NASA Technical Reports Server (NTRS)

    Liceaga, C. A.; Siewiorek, D. P.

    1986-01-01

    The analysis and evaluation of reliability measures using time-varying Markov models is required for Processor-Memory-Switch (PMS) structures that have competing processes such as standby redundancy and repair, or renewal processes such as transient or intermittent faults. The task of generating these models is tedious and prone to human error due to the large number of states and transitions involved in any reasonable system. Therefore model formulation is a major analysis bottleneck, and model verification is a major validation problem. The general unfamiliarity of computer architects with Markov modeling techniques further increases the necessity of automating the model formulation. This paper presents an overview of the Automated Reliability Modeling (ARM) program, under development at NASA Langley Research Center. ARM will accept as input a description of the PMS interconnection graph, the behavior of the PMS components, the fault-tolerant strategies, and the operational requirements. The output of ARM will be the reliability of availability Markov model formulated for direct use by evaluation programs. The advantages of such an approach are (a) utility to a large class of users, not necessarily expert in reliability analysis, and (b) a lower probability of human error in the computation.

  3. Copula-based prediction of economic movements

    NASA Astrophysics Data System (ADS)

    García, J. E.; González-López, V. A.; Hirsh, I. D.

    2016-06-01

    In this paper we model the discretized returns of two paired time series BM&FBOVESPA Dividend Index and BM&FBOVESPA Public Utilities Index using multivariate Markov models. The discretization corresponds to three categories, high losses, high profits and the complementary periods of the series. In technical terms, the maximal memory that can be considered for a Markov model, can be derived from the size of the alphabet and dataset. The number of parameters needed to specify a discrete multivariate Markov chain grows exponentially with the order and dimension of the chain. In this case the size of the database is not large enough for a consistent estimation of the model. We apply a strategy to estimate a multivariate process with an order greater than the order achieved using standard procedures. The new strategy consist on obtaining a partition of the state space which is constructed from a combination, of the partitions corresponding to the two marginal processes and the partition corresponding to the multivariate Markov chain. In order to estimate the transition probabilities, all the partitions are linked using a copula. In our application this strategy provides a significant improvement in the movement predictions.

  4. Renormalization group theory for percolation in time-varying networks.

    PubMed

    Karschau, Jens; Zimmerling, Marco; Friedrich, Benjamin M

    2018-05-22

    Motivated by multi-hop communication in unreliable wireless networks, we present a percolation theory for time-varying networks. We develop a renormalization group theory for a prototypical network on a regular grid, where individual links switch stochastically between active and inactive states. The question whether a given source node can communicate with a destination node along paths of active links is equivalent to a percolation problem. Our theory maps the temporal existence of multi-hop paths on an effective two-state Markov process. We show analytically how this Markov process converges towards a memoryless Bernoulli process as the hop distance between source and destination node increases. Our work extends classical percolation theory to the dynamic case and elucidates temporal correlations of message losses. Quantification of temporal correlations has implications for the design of wireless communication and control protocols, e.g. in cyber-physical systems such as self-organized swarms of drones or smart traffic networks.

  5. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    PubMed Central

    Chevalier, Michael W.; El-Samad, Hana

    2014-01-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130

  6. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    NASA Astrophysics Data System (ADS)

    Chevalier, Michael W.; El-Samad, Hana

    2014-12-01

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.

  7. An 'adding' algorithm for the Markov chain formalism for radiation transfer

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.

    1979-01-01

    An adding algorithm is presented, that extends the Markov chain method and considers a preceding calculation as a single state of a new Markov chain. This method takes advantage of the description of the radiation transport as a stochastic process. Successive application of this procedure makes calculation possible for any optical depth without increasing the size of the linear system used. It is determined that the time required for the algorithm is comparable to that for a doubling calculation for homogeneous atmospheres. For an inhomogeneous atmosphere the new method is considerably faster than the standard adding routine. It is concluded that the algorithm is efficient, accurate, and suitable for smaller computers in calculating the diffuse intensity scattered by an inhomogeneous planetary atmosphere.

  8. From empirical data to time-inhomogeneous continuous Markov processes.

    PubMed

    Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G

    2016-03-01

    We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.

  9. A Modularized Efficient Framework for Non-Markov Time Series Estimation

    NASA Astrophysics Data System (ADS)

    Schamberg, Gabriel; Ba, Demba; Coleman, Todd P.

    2018-06-01

    We present a compartmentalized approach to finding the maximum a-posteriori (MAP) estimate of a latent time series that obeys a dynamic stochastic model and is observed through noisy measurements. We specifically consider modern signal processing problems with non-Markov signal dynamics (e.g. group sparsity) and/or non-Gaussian measurement models (e.g. point process observation models used in neuroscience). Through the use of auxiliary variables in the MAP estimation problem, we show that a consensus formulation of the alternating direction method of multipliers (ADMM) enables iteratively computing separate estimates based on the likelihood and prior and subsequently "averaging" them in an appropriate sense using a Kalman smoother. As such, this can be applied to a broad class of problem settings and only requires modular adjustments when interchanging various aspects of the statistical model. Under broad log-concavity assumptions, we show that the separate estimation problems are convex optimization problems and that the iterative algorithm converges to the MAP estimate. As such, this framework can capture non-Markov latent time series models and non-Gaussian measurement models. We provide example applications involving (i) group-sparsity priors, within the context of electrophysiologic specrotemporal estimation, and (ii) non-Gaussian measurement models, within the context of dynamic analyses of learning with neural spiking and behavioral observations.

  10. Exploring the WTI crude oil price bubble process using the Markov regime switching model

    NASA Astrophysics Data System (ADS)

    Zhang, Yue-Jun; Wang, Jing

    2015-03-01

    The sharp volatility of West Texas Intermediate (WTI) crude oil price in the past decade triggers us to investigate the price bubbles and their evolving process. Empirical results indicate that the fundamental price of WTI crude oil appears relatively more stable than that of the market-trading price, which verifies the existence of oil price bubbles during the sample period. Besides, by allowing the WTI crude oil price bubble process to switch between two states (regimes) according to a first-order Markov chain, we are able to statistically discriminate upheaval from stable states in the crude oil price bubble process; and in most of time, the stable state dominates the WTI crude oil price bubbles while the upheaval state usually proves short-lived and accompanies unexpected market events.

  11. Modeling treatment of ischemic heart disease with partially observable Markov decision processes.

    PubMed

    Hauskrecht, M; Fraser, H

    1998-01-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead they are very often dependent and interleaved over time, mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of Partially observable Markov decision processes (POMDPs) developed and used in operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In the paper, we show how the POMDP framework could be used to model and solve the problem of the management of patients with ischemic heart disease, and point out modeling advantages of the framework over standard decision formalisms.

  12. zipHMMlib: a highly optimised HMM library exploiting repetitions in the input to speed up the forward algorithm.

    PubMed

    Sand, Andreas; Kristiansen, Martin; Pedersen, Christian N S; Mailund, Thomas

    2013-11-22

    Hidden Markov models are widely used for genome analysis as they combine ease of modelling with efficient analysis algorithms. Calculating the likelihood of a model using the forward algorithm has worst case time complexity linear in the length of the sequence and quadratic in the number of states in the model. For genome analysis, however, the length runs to millions or billions of observations, and when maximising the likelihood hundreds of evaluations are often needed. A time efficient forward algorithm is therefore a key ingredient in an efficient hidden Markov model library. We have built a software library for efficiently computing the likelihood of a hidden Markov model. The library exploits commonly occurring substrings in the input to reuse computations in the forward algorithm. In a pre-processing step our library identifies common substrings and builds a structure over the computations in the forward algorithm which can be reused. This analysis can be saved between uses of the library and is independent of concrete hidden Markov models so one preprocessing can be used to run a number of different models.Using this library, we achieve up to 78 times shorter wall-clock time for realistic whole-genome analyses with a real and reasonably complex hidden Markov model. In one particular case the analysis was performed in less than 8 minutes compared to 9.6 hours for the previously fastest library. We have implemented the preprocessing procedure and forward algorithm as a C++ library, zipHMM, with Python bindings for use in scripts. The library is available at http://birc.au.dk/software/ziphmm/.

  13. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models

    PubMed Central

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348

  14. GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.

    PubMed

    Mukherjee, Chiranjit; Rodriguez, Abel

    2016-01-01

    Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.

  15. Retrospective estimation of breeding phenology of American Goldfinch (Carduelis tristis) using pattern oriented modeling

    EPA Science Inventory

    Avian seasonal productivity is often modeled as a time-limited stochastic process. Many mathematical formulations have been proposed, including individual based models, continuous-time differential equations, and discrete Markov models. All such models typically include paramete...

  16. Markov and semi-Markov processes as a failure rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabski, Franciszek

    2016-06-08

    In this paper the reliability function is defined by the stochastic failure rate process with a non negative and right continuous trajectories. Equations for the conditional reliability functions of an object, under assumption that the failure rate is a semi-Markov process with an at most countable state space are derived. A proper theorem is presented. The linear systems of equations for the appropriate Laplace transforms allow to find the reliability functions for the alternating, the Poisson and the Furry-Yule failure rate processes.

  17. Prediction and generation of binary Markov processes: Can a finite-state fox catch a Markov mouse?

    NASA Astrophysics Data System (ADS)

    Ruebeck, Joshua B.; James, Ryan G.; Mahoney, John R.; Crutchfield, James P.

    2018-01-01

    Understanding the generative mechanism of a natural system is a vital component of the scientific method. Here, we investigate one of the fundamental steps toward this goal by presenting the minimal generator of an arbitrary binary Markov process. This is a class of processes whose predictive model is well known. Surprisingly, the generative model requires three distinct topologies for different regions of parameter space. We show that a previously proposed generator for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first quantitative light on the relative (minimal) costs of prediction and generation. We find, for instance, that the difference between prediction and generation is maximized when the process is approximately independently, identically distributed.

  18. Reduced-Density-Matrix Description of Decoherence and Relaxation Processes for Electron-Spin Systems

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2017-04-01

    Electron-spin systems are investigated using a reduced-density-matrix description. Applications of interest include trapped atomic systems in optical lattices, semiconductor quantum dots, and vacancy defect centers in solids. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are self-consistently developed. The general non-perturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. Particular attention is given to decoherence and relaxation processes, as well as spectral-line broadening phenomena, that are induced by interactions with photons, phonons, nuclear spins, and external electric and magnetic fields. These processes are treated either as coherent interactions or as environmental interactions. The environmental interactions are incorporated by means of the general expressions derived for the time-domain and frequency-domain Liouville-space self-energy operators, for which the tetradic-matrix elements are explicitly evaluated in the diagonal-resolvent, lowest-order, and Markov (short-memory time) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  19. Stochastic Games for Continuous-Time Jump Processes Under Finite-Horizon Payoff Criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Qingda, E-mail: weiqd@hqu.edu.cn; Chen, Xian, E-mail: chenxian@amss.ac.cn

    In this paper we study two-person nonzero-sum games for continuous-time jump processes with the randomized history-dependent strategies under the finite-horizon payoff criterion. The state space is countable, and the transition rates and payoff functions are allowed to be unbounded from above and from below. Under the suitable conditions, we introduce a new topology for the set of all randomized Markov multi-strategies and establish its compactness and metrizability. Then by constructing the approximating sequences of the transition rates and payoff functions, we show that the optimal value function for each player is a unique solution to the corresponding optimality equation andmore » obtain the existence of a randomized Markov Nash equilibrium. Furthermore, we illustrate the applications of our main results with a controlled birth and death system.« less

  20. Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant

    NASA Astrophysics Data System (ADS)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram; Garg, Tarun Kr.

    2015-12-01

    This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth-death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman-Kolmogorov differential equations are developed with the use of mnemonic rule and these equations are solved with Runga-Kutta fourth-order method. The long-run availability, reliability and mean time between failures are computed for various choices of failure and repair rates of subsystems of the system. The findings of the paper are discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the urea synthesis system of the fertilizer plant.

  1. Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P; Hübler, Alfred W

    2007-07-01

    Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or space. We show how to infer kth order Markov chains, for arbitrary k , from finite data by applying Bayesian methods to both parameter estimation and model-order selection. Extending existing results for multinomial models of discrete data, we connect inference to statistical mechanics through information-theoretic (type theory) techniques. We establish a direct relationship between Bayesian evidence and the partition function which allows for straightforward calculation of the expectation and variance of the conditional relative entropy and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order comparison to infer the structure of out-of-class processes.

  2. Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory

    DTIC Science & Technology

    2016-05-12

    valued times series from a sample. (A practical algorithm to compute the estimator is a work in progress.) Third, finitely-valued spatial processes...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics; time series ; Markov chains; random...proved. Second, a statistical method is developed to estimate the memory depth of discrete- time and continuously-valued times series from a sample. (A

  3. On Markov parameters in system identification

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Longman, Richard W.

    1991-01-01

    A detailed discussion of Markov parameters in system identification is given. Different forms of input-output representation of linear discrete-time systems are reviewed and discussed. Interpretation of sampled response data as Markov parameters is presented. Relations between the state-space model and particular linear difference models via the Markov parameters are formulated. A generalization of Markov parameters to observer and Kalman filter Markov parameters for system identification is explained. These extended Markov parameters play an important role in providing not only a state-space realization, but also an observer/Kalman filter for the system of interest.

  4. Towards early software reliability prediction for computer forensic tools (case study).

    PubMed

    Abu Talib, Manar

    2016-01-01

    Versatility, flexibility and robustness are essential requirements for software forensic tools. Researchers and practitioners need to put more effort into assessing this type of tool. A Markov model is a robust means for analyzing and anticipating the functioning of an advanced component based system. It is used, for instance, to analyze the reliability of the state machines of real time reactive systems. This research extends the architecture-based software reliability prediction model for computer forensic tools, which is based on Markov chains and COSMIC-FFP. Basically, every part of the computer forensic tool is linked to a discrete time Markov chain. If this can be done, then a probabilistic analysis by Markov chains can be performed to analyze the reliability of the components and of the whole tool. The purposes of the proposed reliability assessment method are to evaluate the tool's reliability in the early phases of its development, to improve the reliability assessment process for large computer forensic tools over time, and to compare alternative tool designs. The reliability analysis can assist designers in choosing the most reliable topology for the components, which can maximize the reliability of the tool and meet the expected reliability level specified by the end-user. The approach of assessing component-based tool reliability in the COSMIC-FFP context is illustrated with the Forensic Toolkit Imager case study.

  5. A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains

    NASA Astrophysics Data System (ADS)

    Gan, Tingyue; Cameron, Maria

    2017-06-01

    Large continuous-time Markov chains with exponentially small transition rates arise in modeling complex systems in physics, chemistry, and biology. We propose a constructive graph-algorithmic approach to determine the sequence of critical timescales at which the qualitative behavior of a given Markov chain changes, and give an effective description of the dynamics on each of them. This approach is valid for both time-reversible and time-irreversible Markov processes, with or without symmetry. Central to this approach are two graph algorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of the critical timescales and the hierarchies of Typical Transition Graphs or T-graphs indicating the most likely transitions in the system without and with symmetry, respectively. The sequence of critical timescales includes the subsequence of the reciprocals of the real parts of eigenvalues. Under a certain assumption, we prove sharp asymptotic estimates for eigenvalues (including pre-factors) and show how one can extract them from the output of Algorithm 1. We discuss the relationship between Algorithms 1 and 2 and explain how one needs to interpret the output of Algorithm 1 if it is applied in the case with symmetry instead of Algorithm 2. Finally, we analyze an example motivated by R. D. Astumian's model of the dynamics of kinesin, a molecular motor, by means of Algorithm 2.

  6. Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants.

    PubMed

    Sumner, Jeremy G; Taylor, Amelia; Holland, Barbara R; Jarvis, Peter D

    2017-12-01

    Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees. In this paper, by focusing on the special case of binary sequence data and quartets of taxa, we are able to view these two different polynomial-based approaches within a common framework. To motivate the discussion, we present three desirable statistical properties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible behaviour under reordering of input sequences; (2) stability as the taxa evolve independently according to a Markov process; and (3) explicit dependence on the assumption of a continuous-time process. Motivated by these statistical properties, we develop and explore several new phylogenetic inference methods. In particular, we develop a statistically bias-corrected version of the Markov invariants approach which satisfies all three properties. We also extend previous work by showing that the phylogenetic invariants can be implemented in such a way as to satisfy property (3). A simulation study shows that, in comparison to other methods, our new proposed approach based on bias-corrected Markov invariants is extremely powerful for phylogenetic inference. The binary case is of particular theoretical interest as-in this case only-the Markov invariants can be expressed as linear combinations of the phylogenetic invariants. A wider implication of this is that, for models with more than two states-for example DNA sequence alignments with four-state models-we find that methods which rely on phylogenetic invariants are incapable of satisfying all three of the stated statistical properties. This is because in these cases the relevant Markov invariants belong to a class of polynomials independent from the phylogenetic invariants.

  7. Inferring phenomenological models of Markov processes from data

    NASA Astrophysics Data System (ADS)

    Rivera, Catalina; Nemenman, Ilya

    Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.

  8. Zero-state Markov switching count-data models: an empirical assessment.

    PubMed

    Malyshkina, Nataliya V; Mannering, Fred L

    2010-01-01

    In this study, a two-state Markov switching count-data model is proposed as an alternative to zero-inflated models to account for the preponderance of zeros sometimes observed in transportation count data, such as the number of accidents occurring on a roadway segment over some period of time. For this accident-frequency case, zero-inflated models assume the existence of two states: one of the states is a zero-accident count state, which has accident probabilities that are so low that they cannot be statistically distinguished from zero, and the other state is a normal-count state, in which counts can be non-negative integers that are generated by some counting process, for example, a Poisson or negative binomial. While zero-inflated models have come under some criticism with regard to accident-frequency applications - one fact is undeniable - in many applications they provide a statistically superior fit to the data. The Markov switching approach we propose seeks to overcome some of the criticism associated with the zero-accident state of the zero-inflated model by allowing individual roadway segments to switch between zero and normal-count states over time. An important advantage of this Markov switching approach is that it allows for the direct statistical estimation of the specific roadway-segment state (i.e., zero-accident or normal-count state) whereas traditional zero-inflated models do not. To demonstrate the applicability of this approach, a two-state Markov switching negative binomial model (estimated with Bayesian inference) and standard zero-inflated negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. It is shown that the Markov switching model is a viable alternative and results in a superior statistical fit relative to the zero-inflated models.

  9. Planning treatment of ischemic heart disease with partially observable Markov decision processes.

    PubMed

    Hauskrecht, M; Fraser, H

    2000-03-01

    Diagnosis of a disease and its treatment are not separate, one-shot activities. Instead, they are very often dependent and interleaved over time. This is mostly due to uncertainty about the underlying disease, uncertainty associated with the response of a patient to the treatment and varying cost of different diagnostic (investigative) and treatment procedures. The framework of partially observable Markov decision processes (POMDPs) developed and used in the operations research, control theory and artificial intelligence communities is particularly suitable for modeling such a complex decision process. In this paper, we show how the POMDP framework can be used to model and solve the problem of the management of patients with ischemic heart disease (IHD), and demonstrate the modeling advantages of the framework over standard decision formalisms.

  10. Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes

    PubMed Central

    Nakamura, Tomoaki; Nagai, Takayuki; Mochihashi, Daichi; Kobayashi, Ichiro; Asoh, Hideki; Kaneko, Masahide

    2017-01-01

    Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM) that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM), the emission distributions of which are Gaussian processes (GPs). Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods. PMID:29311889

  11. Susceptible-infected-susceptible epidemics on networks with general infection and cure times.

    PubMed

    Cator, E; van de Bovenkamp, R; Van Mieghem, P

    2013-06-01

    The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.

  12. Susceptible-infected-susceptible epidemics on networks with general infection and cure times

    NASA Astrophysics Data System (ADS)

    Cator, E.; van de Bovenkamp, R.; Van Mieghem, P.

    2013-06-01

    The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary network is extended to incorporate infection and curing or recovery times each characterized by a general distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N-intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS Markov model. The relative simplicity of our mean-field results enables us to treat more general types of SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral agents.

  13. Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Prestifilippo, Michele; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Privitera, Eugenio

    2016-07-01

    From January 2011 to December 2015, Mt. Etna was mainly characterized by a cyclic eruptive behavior with more than 40 lava fountains from New South-East Crater. Using the RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area, an automatic recognition of the different states of volcanic activity (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN) has been applied for monitoring purposes. Since values of the RMS time series calculated on the seismic signal are generated from a stochastic process, we can try to model the system generating its sampled values, assumed to be a Markov process, using Hidden Markov Models (HMMs). HMMs analysis seeks to recover the sequence of hidden states from the observations. In our framework, observations are characters generated by the Symbolic Aggregate approXimation (SAX) technique, which maps RMS time series values with symbols of a pre-defined alphabet. The main advantages of the proposed framework, based on HMMs and SAX, with respect to other automatic systems applied on seismic signals at Mt. Etna, are the use of multiple stations and static thresholds to well characterize the volcano states. Its application on a wide seismic dataset of Etna volcano shows the possibility to guess the volcano states. The experimental results show that, in most of the cases, we detected lava fountains in advance.

  14. Identifying and correcting non-Markov states in peptide conformational dynamics

    NASA Astrophysics Data System (ADS)

    Nerukh, Dmitry; Jensen, Christian H.; Glen, Robert C.

    2010-02-01

    Conformational transitions in proteins define their biological activity and can be investigated in detail using the Markov state model. The fundamental assumption on the transitions between the states, their Markov property, is critical in this framework. We test this assumption by analyzing the transitions obtained directly from the dynamics of a molecular dynamics simulated peptide valine-proline-alanine-leucine and states defined phenomenologically using clustering in dihedral space. We find that the transitions are Markovian at the time scale of ≈50 ps and longer. However, at the time scale of 30-40 ps the dynamics loses its Markov property. Our methodology reveals the mechanism that leads to non-Markov behavior. It also provides a way of regrouping the conformations into new states that now possess the required Markov property of their dynamics.

  15. Markov Modeling of Component Fault Growth over a Derived Domain of Feasible Output Control Effort Modifications

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    This paper introduces a novel Markov process formulation of stochastic fault growth modeling, in order to facilitate the development and analysis of prognostics-based control adaptation. A metric representing the relative deviation between the nominal output of a system and the net output that is actually enacted by an implemented prognostics-based control routine, will be used to define the action space of the formulated Markov process. The state space of the Markov process will be defined in terms of an abstracted metric representing the relative health remaining in each of the system s components. The proposed formulation of component fault dynamics will conveniently relate feasible system output performance modifications to predictions of future component health deterioration.

  16. Stochastic Adaptive Estimation and Control.

    DTIC Science & Technology

    1994-10-26

    Marcus, "Language Stability and Stabilizability of Discrete Event Dynamical Systems ," SIAM Journal on Control and Optimization, 31, September 1993...in the hierarchical control of flexible manufacturing systems ; in this problem, the model involves a hybrid process in continuous time whose state is...of the average cost control problem for discrete- time Markov processes. Our exposition covers from finite to Borel state and action spaces and

  17. Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data

    PubMed Central

    Takayasu, Hideki; Takayasu, Misako

    2017-01-01

    We extend the concept of statistical symmetry as the invariance of a probability distribution under transformation to analyze binary sign time series data of price difference from the foreign exchange market. We model segments of the sign time series as Markov sequences and apply a local hypothesis test to evaluate the symmetries of independence and time reversion in different periods of the market. For the test, we derive the probability of a binary Markov process to generate a given set of number of symbol pairs. Using such analysis, we could not only segment the time series according the different behaviors but also characterize the segments in terms of statistical symmetries. As a particular result, we find that the foreign exchange market is essentially time reversible but this symmetry is broken when there is a strong external influence. PMID:28542208

  18. Automated Guidance from Physiological Sensing to Reduce Thermal-Work Strain Levels on a Novel Task

    USDA-ARS?s Scientific Manuscript database

    This experiment demonstrated that automated pace guidance generated from real-time physiological monitoring allowed least stressful completion of a timed (60 minute limit) 5 mile treadmill exercise. An optimal pacing policy was estimated from a Markov decision process that balanced the goals of the...

  19. Error modeling for differential GPS. M.S. Thesis - MIT, 12 May 1995

    NASA Technical Reports Server (NTRS)

    Blerman, Gregory S.

    1995-01-01

    Differential Global Positioning System (DGPS) positioning is used to accurately locate a GPS receiver based upon the well-known position of a reference site. In utilizing this technique, several error sources contribute to position inaccuracy. This thesis investigates the error in DGPS operation and attempts to develop a statistical model for the behavior of this error. The model for DGPS error is developed using GPS data collected by Draper Laboratory. The Marquardt method for nonlinear curve-fitting is used to find the parameters of a first order Markov process that models the average errors from the collected data. The results show that a first order Markov process can be used to model the DGPS error as a function of baseline distance and time delay. The model's time correlation constant is 3847.1 seconds (1.07 hours) for the mean square error. The distance correlation constant is 122.8 kilometers. The total process variance for the DGPS model is 3.73 sq meters.

  20. The application of Markov decision process with penalty function in restaurant delivery robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Hu, Zhen; Wang, Ying

    2017-05-01

    As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional Markov decision process path planning algorithm is not save, the robot is very close to the table and chairs. To solve this problem, this paper proposes the Markov Decision Process with a penalty term called MDPPT path planning algorithm according to the traditional Markov decision process (MDP). For MDP, if the restaurant delivery robot bumps into an obstacle, the reward it receives is part of the current status reward. For the MDPPT, the reward it receives not only the part of the current status but also a negative constant term. Simulation results show that the MDPPT algorithm can plan a more secure path.

  1. Decoding and modelling of time series count data using Poisson hidden Markov model and Markov ordinal logistic regression models.

    PubMed

    Sebastian, Tunny; Jeyaseelan, Visalakshi; Jeyaseelan, Lakshmanan; Anandan, Shalini; George, Sebastian; Bangdiwala, Shrikant I

    2018-01-01

    Hidden Markov models are stochastic models in which the observations are assumed to follow a mixture distribution, but the parameters of the components are governed by a Markov chain which is unobservable. The issues related to the estimation of Poisson-hidden Markov models in which the observations are coming from mixture of Poisson distributions and the parameters of the component Poisson distributions are governed by an m-state Markov chain with an unknown transition probability matrix are explained here. These methods were applied to the data on Vibrio cholerae counts reported every month for 11-year span at Christian Medical College, Vellore, India. Using Viterbi algorithm, the best estimate of the state sequence was obtained and hence the transition probability matrix. The mean passage time between the states were estimated. The 95% confidence interval for the mean passage time was estimated via Monte Carlo simulation. The three hidden states of the estimated Markov chain are labelled as 'Low', 'Moderate' and 'High' with the mean counts of 1.4, 6.6 and 20.2 and the estimated average duration of stay of 3, 3 and 4 months, respectively. Environmental risk factors were studied using Markov ordinal logistic regression analysis. No significant association was found between disease severity levels and climate components.

  2. Quantum Mechanics, Pattern Recognition, and the Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Chapline, George

    2008-10-01

    Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.

  3. Markov Processes in Image Processing

    NASA Astrophysics Data System (ADS)

    Petrov, E. P.; Kharina, N. L.

    2018-05-01

    Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.

  4. Markov stochasticity coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliazar, Iddo, E-mail: iddo.eliazar@intel.com

    Markov dynamics constitute one of the most fundamental models of random motion between the states of a system of interest. Markov dynamics have diverse applications in many fields of science and engineering, and are particularly applicable in the context of random motion in networks. In this paper we present a two-dimensional gauging method of the randomness of Markov dynamics. The method–termed Markov Stochasticity Coordinates–is established, discussed, and exemplified. Also, the method is tweaked to quantify the stochasticity of the first-passage-times of Markov dynamics, and the socioeconomic equality and mobility in human societies.

  5. Exact Solutions to Time-dependent Mdps

    NASA Technical Reports Server (NTRS)

    Boyan, Justin A.; Littman, Michael L.

    2000-01-01

    We describe an extension of the Markov decision process model in which a continuous time dimension is included in the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  6. Markov chains and semi-Markov models in time-to-event analysis.

    PubMed

    Abner, Erin L; Charnigo, Richard J; Kryscio, Richard J

    2013-10-25

    A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields.

  7. Markov chains and semi-Markov models in time-to-event analysis

    PubMed Central

    Abner, Erin L.; Charnigo, Richard J.; Kryscio, Richard J.

    2014-01-01

    A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields. PMID:24818062

  8. ModFossa: A library for modeling ion channels using Python.

    PubMed

    Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C

    2016-06-01

    The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting.

  9. Sampling rare fluctuations of discrete-time Markov chains

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen

    2018-03-01

    We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.

  10. Sampling rare fluctuations of discrete-time Markov chains.

    PubMed

    Whitelam, Stephen

    2018-03-01

    We describe a simple method that can be used to sample the rare fluctuations of discrete-time Markov chains. We focus on the case of Markov chains with well-defined steady-state measures, and derive expressions for the large-deviation rate functions (and upper bounds on such functions) for dynamical quantities extensive in the length of the Markov chain. We illustrate the method using a series of simple examples, and use it to study the fluctuations of a lattice-based model of active matter that can undergo motility-induced phase separation.

  11. Maximum Kolmogorov-Sinai Entropy Versus Minimum Mixing Time in Markov Chains

    NASA Astrophysics Data System (ADS)

    Mihelich, M.; Dubrulle, B.; Paillard, D.; Kral, Q.; Faranda, D.

    2018-01-01

    We establish a link between the maximization of Kolmogorov Sinai entropy (KSE) and the minimization of the mixing time for general Markov chains. Since the maximisation of KSE is analytical and easier to compute in general than mixing time, this link provides a new faster method to approximate the minimum mixing time dynamics. It could be interesting in computer sciences and statistical physics, for computations that use random walks on graphs that can be represented as Markov chains.

  12. The application of Markov decision process in restaurant delivery robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Hu, Zhen; Wang, Ying

    2017-05-01

    As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional path planning algorithm is not very ideal. To solve this problem, this paper proposes the Markov dynamic state immediate reward (MDR) path planning algorithm according to the traditional Markov decision process. First of all, it uses MDR to plan a global path, then navigates along this path. When the sensor detects there is no obstructions in front state, increase its immediate state reward value; when the sensor detects there is an obstacle in front, plan a global path that can avoid obstacle with the current position as the new starting point and reduce its state immediate reward value. This continues until the target is reached. When the robot learns for a period of time, it can avoid those places where obstacles are often present when planning the path. By analyzing the simulation experiment, the algorithm has achieved good results in the global path planning under the dynamic environment.

  13. Radiative transfer calculated from a Markov chain formalism

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.; House, L. L.

    1978-01-01

    The theory of Markov chains is used to formulate the radiative transport problem in a general way by modeling the successive interactions of a photon as a stochastic process. Under the minimal requirement that the stochastic process is a Markov chain, the determination of the diffuse reflection or transmission from a scattering atmosphere is equivalent to the solution of a system of linear equations. This treatment is mathematically equivalent to, and thus has many of the advantages of, Monte Carlo methods, but can be considerably more rapid than Monte Carlo algorithms for numerical calculations in particular applications. We have verified the speed and accuracy of this formalism for the standard problem of finding the intensity of scattered light from a homogeneous plane-parallel atmosphere with an arbitrary phase function for scattering. Accurate results over a wide range of parameters were obtained with computation times comparable to those of a standard 'doubling' routine. The generality of this formalism thus allows fast, direct solutions to problems that were previously soluble only by Monte Carlo methods. Some comparisons are made with respect to integral equation methods.

  14. Local Composite Quantile Regression Smoothing for Harris Recurrent Markov Processes

    PubMed Central

    Li, Degui; Li, Runze

    2016-01-01

    In this paper, we study the local polynomial composite quantile regression (CQR) smoothing method for the nonlinear and nonparametric models under the Harris recurrent Markov chain framework. The local polynomial CQR regression method is a robust alternative to the widely-used local polynomial method, and has been well studied in stationary time series. In this paper, we relax the stationarity restriction on the model, and allow that the regressors are generated by a general Harris recurrent Markov process which includes both the stationary (positive recurrent) and nonstationary (null recurrent) cases. Under some mild conditions, we establish the asymptotic theory for the proposed local polynomial CQR estimator of the mean regression function, and show that the convergence rate for the estimator in nonstationary case is slower than that in stationary case. Furthermore, a weighted type local polynomial CQR estimator is provided to improve the estimation efficiency, and a data-driven bandwidth selection is introduced to choose the optimal bandwidth involved in the nonparametric estimators. Finally, we give some numerical studies to examine the finite sample performance of the developed methodology and theory. PMID:27667894

  15. Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems

    NASA Astrophysics Data System (ADS)

    Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming

    2018-06-01

    Recently, the adaptive algebraic aggregation multigrid method has been proposed for computing stationary distributions of Markov chains. This method updates aggregates on every iterative cycle to keep high accuracies of coarse-level corrections. Accordingly, its fast convergence rate is well guaranteed, but often a large proportion of time is cost by aggregation processes. In this paper, we show that the aggregates on each level in this method can be utilized to transfer the probability equation of that level into a block linear system. Then we propose a Block-Jacobi relaxation that deals with the block system on each level to smooth error. Some theoretical analysis of this technique is presented, meanwhile it is also adapted to solve PageRank problems. The purpose of this technique is to accelerate the adaptive aggregation multigrid method and its variants for solving Markov chains and PageRank problems. It also attempts to shed some light on new solutions for making aggregation processes more cost-effective for aggregation multigrid methods. Numerical experiments are presented to illustrate the effectiveness of this technique.

  16. Stratification of the phase clouds and statistical effects of the non-Markovity in chaotic time series of human gait for healthy people and Parkinson patients

    NASA Astrophysics Data System (ADS)

    Yulmetyev, Renat; Demin, Sergey; Emelyanova, Natalya; Gafarov, Fail; Hänggi, Peter

    2003-03-01

    In this work we develop a new method of diagnosing the nervous system diseases and a new approach in studying human gait dynamics with the help of the theory of discrete non-Markov random processes (Phys. Rev. E 62 (5) (2000) 6178, Phys. Rev. E 64 (2001) 066132, Phys. Rev. E 65 (2002) 046107, Physica A 303 (2002) 427). The stratification of the phase clouds and the statistical non-Markov effects in the time series of the dynamics of human gait are considered. We carried out the comparative analysis of the data of four age groups of healthy people: children (from 3 to 10 year olds), teenagers (from 11 to 14 year olds), young people (from 21 up to 29 year olds), elderly persons (from 71 to 77 year olds) and Parkinson patients. The full data set are analyzed with the help of the phase portraits of the four dynamic variables, the power spectra of the initial time correlation function and the memory functions of junior orders, the three first points in the spectra of the statistical non-Markov parameter. The received results allow to define the predisposition of the probationers to deflections in the central nervous system caused by Parkinson's disease. We have found out distinct differences between the five submitted groups. On this basis we offer a new method of diagnostics and forecasting Parkinson's disease.

  17. A master equation and moment approach for biochemical systems with creation-time-dependent bimolecular rate functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu

    Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less

  18. Educational Aspirations: Markov and Poisson Models. Rural Industrial Development Project Working Paper Number 14, August 1971.

    ERIC Educational Resources Information Center

    Kayser, Brian D.

    The fit of educational aspirations of Illinois rural high school youths to 3 related one-parameter mathematical models was investigated. The models used were the continuous-time Markov chain model, the discrete-time Markov chain, and the Poisson distribution. The sample of 635 students responded to questionnaires from 1966 to 1969 as part of an…

  19. A test of multiple correlation temporal window characteristic of non-Markov processes

    NASA Astrophysics Data System (ADS)

    Arecchi, F. T.; Farini, A.; Megna, N.

    2016-03-01

    We introduce a sensitive test of memory effects in successive events. The test consists of a combination K of binary correlations at successive times. K decays monotonically from K = 1 for uncorrelated events as a Markov process. For a monotonic memory fading, K<1 always. Here we report evidence of a K>1 temporal window in cognitive tasks consisting of the visual identification of the front face of the Necker cube after a previous presentation of the same. We speculate that memory effects provide a temporal window with K>1 and this experiment could be a possible first step towards a better comprehension of this phenomenon. The K>1 behaviour is maximal at an inter-measurement time τ around 2s with inter-subject differences. The K>1 persists over a time window of 1s around τ; outside this window the K<1 behaviour is recovered. The universal occurrence of a K>1 window in pairs of successive perceptions suggests that, at variance with single visual stimuli eliciting a suitable response, a pair of stimuli shortly separated in time displays mutual correlations.

  20. Neyman, Markov processes and survival analysis.

    PubMed

    Yang, Grace

    2013-07-01

    J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.

  1. Linear system identification via backward-time observer models

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1992-01-01

    Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works.

  2. Long-range memory and non-Markov statistical effects in human sensorimotor coordination

    NASA Astrophysics Data System (ADS)

    M. Yulmetyev, Renat; Emelyanova, Natalya; Hänggi, Peter; Gafarov, Fail; Prokhorov, Alexander

    2002-12-01

    In this paper, the non-Markov statistical processes and long-range memory effects in human sensorimotor coordination are investigated. The theoretical basis of this study is the statistical theory of non-stationary discrete non-Markov processes in complex systems (Phys. Rev. E 62, 6178 (2000)). The human sensorimotor coordination was experimentally studied by means of standard dynamical tapping test on the group of 32 young peoples with tap numbers up to 400. This test was carried out separately for the right and the left hand according to the degree of domination of each brain hemisphere. The numerical analysis of the experimental results was made with the help of power spectra of the initial time correlation function, the memory functions of low orders and the first three points of the statistical spectrum of non-Markovity parameter. Our observations demonstrate, that with the regard to results of the standard dynamic tapping-test it is possible to divide all examinees into five different dynamic types. We have introduced the conflict coefficient to estimate quantitatively the order-disorder effects underlying life systems. The last one reflects the existence of disbalance between the nervous and the motor human coordination. The suggested classification of the neurophysiological activity represents the dynamic generalization of the well-known neuropsychological types and provides the new approach in a modern neuropsychology.

  3. Hidden Markov Item Response Theory Models for Responses and Response Times.

    PubMed

    Molenaar, Dylan; Oberski, Daniel; Vermunt, Jeroen; De Boeck, Paul

    2016-01-01

    Current approaches to model responses and response times to psychometric tests solely focus on between-subject differences in speed and ability. Within subjects, speed and ability are assumed to be constants. Violations of this assumption are generally absorbed in the residual of the model. As a result, within-subject departures from the between-subject speed and ability level remain undetected. These departures may be of interest to the researcher as they reflect differences in the response processes adopted on the items of a test. In this article, we propose a dynamic approach for responses and response times based on hidden Markov modeling to account for within-subject differences in responses and response times. A simulation study is conducted to demonstrate acceptable parameter recovery and acceptable performance of various fit indices in distinguishing between different models. In addition, both a confirmatory and an exploratory application are presented to demonstrate the practical value of the modeling approach.

  4. Probability-based constrained MPC for structured uncertain systems with state and random input delays

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Li, Dewei; Xi, Yugeng

    2013-07-01

    This article is concerned with probability-based constrained model predictive control (MPC) for systems with both structured uncertainties and time delays, where a random input delay and multiple fixed state delays are included. The process of input delay is governed by a discrete-time finite-state Markov chain. By invoking an appropriate augmented state, the system is transformed into a standard structured uncertain time-delay Markov jump linear system (MJLS). For the resulting system, a multi-step feedback control law is utilised to minimise an upper bound on the expected value of performance objective. The proposed design has been proved to stabilise the closed-loop system in the mean square sense and to guarantee constraints on control inputs and system states. Finally, a numerical example is given to illustrate the proposed results.

  5. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zuwei; Zhao, Haibo, E-mail: klinsmannzhb@163.com; Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule providesmore » a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.« less

  6. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granita, E-mail: granitafc@gmail.com; Bahar, A.

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  7. Sorting processes with energy-constrained comparisons*

    NASA Astrophysics Data System (ADS)

    Geissmann, Barbara; Penna, Paolo

    2018-05-01

    We study very simple sorting algorithms based on a probabilistic comparator model. In this model, errors in comparing two elements are due to (1) the energy or effort put in the comparison and (2) the difference between the compared elements. Such algorithms repeatedly compare and swap pairs of randomly chosen elements, and they correspond to natural Markovian processes. The study of these Markov chains reveals an interesting phenomenon. Namely, in several cases, the algorithm that repeatedly compares only adjacent elements is better than the one making arbitrary comparisons: in the long-run, the former algorithm produces sequences that are "better sorted". The analysis of the underlying Markov chain poses interesting questions as the latter algorithm yields a nonreversible chain, and therefore its stationary distribution seems difficult to calculate explicitly. We nevertheless provide bounds on the stationary distributions and on the mixing time of these processes in several restrictions.

  8. Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models

    PubMed Central

    Chen, Yang; Shen, Kuang

    2017-01-01

    To maintain proper cellular functions, over 50% of proteins encoded in the genome need to be transported to cellular membranes. The molecular mechanism behind such a process, often referred to as protein targeting, is not well understood. Single-molecule experiments are designed to unveil the detailed mechanisms and reveal the functions of different molecular machineries involved in the process. The experimental data consist of hundreds of stochastic time traces from the fluorescence recordings of the experimental system. We introduce a Bayesian hierarchical model on top of hidden Markov models (HMMs) to analyze these data and use the statistical results to answer the biological questions. In addition to resolving the biological puzzles and delineating the regulating roles of different molecular complexes, our statistical results enable us to propose a more detailed mechanism for the late stages of the protein targeting process. PMID:28943680

  9. Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions.

    PubMed

    Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen

    2017-09-25

    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.

  10. Integrated Thermal Response Modeling System For Hypersonic Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Chen, Y.-K.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2000-01-01

    We describe all extension of the Markov decision process model in which a continuous time dimension is included ill the state space. This allows for the representation and exact solution of a wide range of problems in which transitions or rewards vary over time. We examine problems based on route planning with public transportation and telescope observation scheduling.

  11. Open Quantum Systems and Classical Trajectories

    NASA Astrophysics Data System (ADS)

    Rebolledo, Rolando

    2004-09-01

    A Quantum Markov Semigroup consists of a family { T} = ({ T}t)_{t ∈ B R+} of normal ω*- continuous completely positive maps on a von Neumann algebra 𝔐 which preserve the unit and satisfy the semigroup property. This class of semigroups has been extensively used to represent open quantum systems. This article is aimed at studying the existence of a { T} -invariant abelian subalgebra 𝔄 of 𝔐. When this happens, the restriction of { T}t to 𝔄 defines a classical Markov semigroup T = (Tt)t ∈ ∝ + say, associated to a classical Markov process X = (Xt)t ∈ ∝ +. The structure (𝔄, T, X) unravels the quantum Markov semigroup { T} , providing a bridge between open quantum systems and classical stochastic processes.

  12. Markov chains for testing redundant software

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Sjogren, Jon A.

    1988-01-01

    A preliminary design for a validation experiment has been developed that addresses several problems unique to assuring the extremely high quality of multiple-version programs in process-control software. The procedure uses Markov chains to model the error states of the multiple version programs. The programs are observed during simulated process-control testing, and estimates are obtained for the transition probabilities between the states of the Markov chain. The experimental Markov chain model is then expanded into a reliability model that takes into account the inertia of the system being controlled. The reliability of the multiple version software is computed from this reliability model at a given confidence level using confidence intervals obtained for the transition probabilities during the experiment. An example demonstrating the method is provided.

  13. Linear system identification via backward-time observer models

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh

    1993-01-01

    This paper presents an algorithm to identify a state-space model of a linear system using a backward-time approach. The procedure consists of three basic steps. First, the Markov parameters of a backward-time observer are computed from experimental input-output data. Second, the backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) from which a backward-time state-space model is realized using the Eigensystem Realization Algorithm. Third, the obtained backward-time state space model is converted to the usual forward-time representation. Stochastic properties of this approach will be discussed. Experimental results are given to illustrate when and to what extent this concept works.

  14. Envelopes of Sets of Measures, Tightness, and Markov Control Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Hernandez, J.; Hernandez-Lerma, O.

    1999-11-15

    We introduce upper and lower envelopes for sets of measures on an arbitrary topological space, which are then used to give a tightness criterion. These concepts are applied to show the existence of optimal policies for a class of Markov control processes.

  15. VAMPnets for deep learning of molecular kinetics.

    PubMed

    Mardt, Andreas; Pasquali, Luca; Wu, Hao; Noé, Frank

    2018-01-02

    There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.

  16. Markov model of the loan portfolio dynamics considering influence of management and external economic factors

    NASA Astrophysics Data System (ADS)

    Bozhalkina, Yana; Timofeeva, Galina

    2016-12-01

    Mathematical model of loan portfolio in the form of a controlled Markov chain with discrete time is considered. It is assumed that coefficients of migration matrix depend on corrective actions and external factors. Corrective actions include process of receiving applications, interaction with existing solvent and insolvent clients. External factors are macroeconomic indicators, such as inflation and unemployment rates, exchange rates, consumer price indices, etc. Changes in corrective actions adjust the intensity of transitions in the migration matrix. The mathematical model for forecasting the credit portfolio structure taking into account a cumulative impact of internal and external changes is obtained.

  17. A toolbox for safety instrumented system evaluation based on improved continuous-time Markov chain

    NASA Astrophysics Data System (ADS)

    Wardana, Awang N. I.; Kurniady, Rahman; Pambudi, Galih; Purnama, Jaka; Suryopratomo, Kutut

    2017-08-01

    Safety instrumented system (SIS) is designed to restore a plant into a safe condition when pre-hazardous event is occur. It has a vital role especially in process industries. A SIS shall be meet with safety requirement specifications. To confirm it, SIS shall be evaluated. Typically, the evaluation is calculated by hand. This paper presents a toolbox for SIS evaluation. It is developed based on improved continuous-time Markov chain. The toolbox supports to detailed approach of evaluation. This paper also illustrates an industrial application of the toolbox to evaluate arch burner safety system of primary reformer. The results of the case study demonstrates that the toolbox can be used to evaluate industrial SIS in detail and to plan the maintenance strategy.

  18. Stochastic modelling of a single ion channel: an alternating renewal approach with application to limited time resolution.

    PubMed

    Milne, R K; Yeo, G F; Edeson, R O; Madsen, B W

    1988-04-22

    Stochastic models of ion channels have been based largely on Markov theory where individual states and transition rates must be specified, and sojourn-time densities for each state are constrained to be exponential. This study presents an approach based on random-sum methods and alternating-renewal theory, allowing individual states to be grouped into classes provided the successive sojourn times in a given class are independent and identically distributed. Under these conditions Markov models form a special case. The utility of the approach is illustrated by considering the effects of limited time resolution (modelled by using a discrete detection limit, xi) on the properties of observable events, with emphasis on the observed open-time (xi-open-time). The cumulants and Laplace transform for a xi-open-time are derived for a range of Markov and non-Markov models; several useful approximations to the xi-open-time density function are presented. Numerical studies show that the effects of limited time resolution can be extreme, and also highlight the relative importance of the various model parameters. The theory could form a basis for future inferential studies in which parameter estimation takes account of limited time resolution in single channel records. Appendixes include relevant results concerning random sums and a discussion of the role of exponential distributions in Markov models.

  19. Detecting synchronization clusters in multivariate time series via coarse-graining of Markov chains.

    PubMed

    Allefeld, Carsten; Bialonski, Stephan

    2007-12-01

    Synchronization cluster analysis is an approach to the detection of underlying structures in data sets of multivariate time series, starting from a matrix R of bivariate synchronization indices. A previous method utilized the eigenvectors of R for cluster identification, analogous to several recent attempts at group identification using eigenvectors of the correlation matrix. All of these approaches assumed a one-to-one correspondence of dominant eigenvectors and clusters, which has however been shown to be wrong in important cases. We clarify the usefulness of eigenvalue decomposition for synchronization cluster analysis by translating the problem into the language of stochastic processes, and derive an enhanced clustering method harnessing recent insights from the coarse-graining of finite-state Markov processes. We illustrate the operation of our method using a simulated system of coupled Lorenz oscillators, and we demonstrate its superior performance over the previous approach. Finally we investigate the question of robustness of the algorithm against small sample size, which is important with regard to field applications.

  20. H2-control and the separation principle for discrete-time jump systems with the Markov chain in a general state space

    NASA Astrophysics Data System (ADS)

    Figueiredo, Danilo Zucolli; Costa, Oswaldo Luiz do Valle

    2017-10-01

    This paper deals with the H2 optimal control problem of discrete-time Markov jump linear systems (MJLS) considering the case in which the Markov chain takes values in a general Borel space ?. It is assumed that the controller has access only to an output variable and to the jump parameter. The goal, in this case, is to design a dynamic Markov jump controller such that the H2-norm of the closed-loop system is minimised. It is shown that the H2-norm can be written as the sum of two H2-norms, such that one of them does not depend on the control, and the other one is obtained from the optimal filter for an infinite-horizon filtering problem. This result can be seen as a separation principle for MJLS with Markov chain in a Borel space ? considering the infinite time horizon case.

  1. Communication: Introducing prescribed biases in out-of-equilibrium Markov models

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.

    2018-03-01

    Markov models are often used in modeling complex out-of-equilibrium chemical and biochemical systems. However, many times their predictions do not agree with experiments. We need a systematic framework to update existing Markov models to make them consistent with constraints that are derived from experiments. Here, we present a framework based on the principle of maximum relative path entropy (minimum Kullback-Leibler divergence) to update Markov models using stationary state and dynamical trajectory-based constraints. We illustrate the framework using a biochemical model network of growth factor-based signaling. We also show how to find the closest detailed balanced Markov model to a given Markov model. Further applications and generalizations are discussed.

  2. Markov Chain Model with Catastrophe to Determine Mean Time to Default of Credit Risky Assets

    NASA Astrophysics Data System (ADS)

    Dharmaraja, Selvamuthu; Pasricha, Puneet; Tardelli, Paola

    2017-11-01

    This article deals with the problem of probabilistic prediction of the time distance to default for a firm. To model the credit risk, the dynamics of an asset is described as a function of a homogeneous discrete time Markov chain subject to a catastrophe, the default. The behaviour of the Markov chain is investigated and the mean time to the default is expressed in a closed form. The methodology to estimate the parameters is given. Numerical results are provided to illustrate the applicability of the proposed model on real data and their analysis is discussed.

  3. A methodology for stochastic analysis of share prices as Markov chains with finite states.

    PubMed

    Mettle, Felix Okoe; Quaye, Enoch Nii Boi; Laryea, Ravenhill Adjetey

    2014-01-01

    Price volatilities make stock investments risky, leaving investors in critical position when uncertain decision is made. To improve investor evaluation confidence on exchange markets, while not using time series methodology, we specify equity price change as a stochastic process assumed to possess Markov dependency with respective state transition probabilities matrices following the identified state pace (i.e. decrease, stable or increase). We established that identified states communicate, and that the chains are aperiodic and ergodic thus possessing limiting distributions. We developed a methodology for determining expected mean return time for stock price increases and also establish criteria for improving investment decision based on highest transition probabilities, lowest mean return time and highest limiting distributions. We further developed an R algorithm for running the methodology introduced. The established methodology is applied to selected equities from Ghana Stock Exchange weekly trading data.

  4. Slow diffusion by Markov random flights

    NASA Astrophysics Data System (ADS)

    Kolesnik, Alexander D.

    2018-06-01

    We present a conception of the slow diffusion processes in the Euclidean spaces Rm , m ≥ 1, based on the theory of random flights with small constant speed that are driven by a homogeneous Poisson process of small rate. The slow diffusion condition that, on long time intervals, leads to the stationary distributions, is given. The stationary distributions of slow diffusion processes in some Euclidean spaces of low dimensions, are presented.

  5. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution.

    PubMed

    Djordjevic, Ivan B

    2015-08-24

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled.

  6. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution

    PubMed Central

    Djordjevic, Ivan B.

    2015-01-01

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled. PMID:26305258

  7. Estimation of sojourn time in chronic disease screening without data on interval cases.

    PubMed

    Chen, T H; Kuo, H S; Yen, M F; Lai, M S; Tabar, L; Duffy, S W

    2000-03-01

    Estimation of the sojourn time on the preclinical detectable period in disease screening or transition rates for the natural history of chronic disease usually rely on interval cases (diagnosed between screens). However, to ascertain such cases might be difficult in developing countries due to incomplete registration systems and difficulties in follow-up. To overcome this problem, we propose three Markov models to estimate parameters without using interval cases. A three-state Markov model, a five-state Markov model related to regional lymph node spread, and a five-state Markov model pertaining to tumor size are applied to data on breast cancer screening in female relatives of breast cancer cases in Taiwan. Results based on a three-state Markov model give mean sojourn time (MST) 1.90 (95% CI: 1.18-4.86) years for this high-risk group. Validation of these models on the basis of data on breast cancer screening in the age groups 50-59 and 60-69 years from the Swedish Two-County Trial shows the estimates from a three-state Markov model that does not use interval cases are very close to those from previous Markov models taking interval cancers into account. For the five-state Markov model, a reparameterized procedure using auxiliary information on clinically detected cancers is performed to estimate relevant parameters. A good fit of internal and external validation demonstrates the feasibility of using these models to estimate parameters that have previously required interval cancers. This method can be applied to other screening data in which there are no data on interval cases.

  8. Dynamical complexity of short and noisy time series. Compression-Complexity vs. Shannon entropy

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nithin; Balasubramanian, Karthi

    2017-07-01

    Shannon entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ and H, thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity measures are promising for applications which involve short and noisy time series.

  9. Using the Pearson Distribution for Synthesis of the Suboptimal Algorithms for Filtering Multi-Dimensional Markov Processes

    NASA Astrophysics Data System (ADS)

    Mit'kin, A. S.; Pogorelov, V. A.; Chub, E. G.

    2015-08-01

    We consider the method of constructing the suboptimal filter on the basis of approximating the a posteriori probability density of the multidimensional Markov process by the Pearson distributions. The proposed method can efficiently be used for approximating asymmetric, excessive, and finite densities.

  10. Unifying Model-Based and Reactive Programming within a Model-Based Executive

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)

    1999-01-01

    Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.

  11. Job-mix modeling and system analysis of an aerospace multiprocessor.

    NASA Technical Reports Server (NTRS)

    Mallach, E. G.

    1972-01-01

    An aerospace guidance computer organization, consisting of multiple processors and memory units attached to a central time-multiplexed data bus, is described. A job mix for this type of computer is obtained by analysis of Apollo mission programs. Multiprocessor performance is then analyzed using: 1) queuing theory, under certain 'limiting case' assumptions; 2) Markov process methods; and 3) system simulation. Results of the analyses indicate: 1) Markov process analysis is a useful and efficient predictor of simulation results; 2) efficient job execution is not seriously impaired even when the system is so overloaded that new jobs are inordinately delayed in starting; 3) job scheduling is significant in determining system performance; and 4) a system having many slow processors may or may not perform better than a system of equal power having few fast processors, but will not perform significantly worse.

  12. Sieve estimation in a Markov illness-death process under dual censoring.

    PubMed

    Boruvka, Audrey; Cook, Richard J

    2016-04-01

    Semiparametric methods are well established for the analysis of a progressive Markov illness-death process observed up to a noninformative right censoring time. However, often the intermediate and terminal events are censored in different ways, leading to a dual censoring scheme. In such settings, unbiased estimation of the cumulative transition intensity functions cannot be achieved without some degree of smoothing. To overcome this problem, we develop a sieve maximum likelihood approach for inference on the hazard ratio. A simulation study shows that the sieve estimator offers improved finite-sample performance over common imputation-based alternatives and is robust to some forms of dependent censoring. The proposed method is illustrated using data from cancer trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Probabilistic reasoning over seismic RMS time series: volcano monitoring through HMMs and SAX technique

    NASA Astrophysics Data System (ADS)

    Aliotta, M. A.; Cassisi, C.; Prestifilippo, M.; Cannata, A.; Montalto, P.; Patanè, D.

    2014-12-01

    During the last years, volcanic activity at Mt. Etna was often characterized by cyclic occurrences of fountains. In the period between January 2011 and June 2013, 38 episodes of lava fountains has been observed. Automatic recognition of the volcano's states related to lava fountain episodes (Quiet, Pre-Fountaining, Fountaining, Post-Fountaining) is very useful for monitoring purposes. We discovered that such states are strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded in the summit area. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we tried to model the system generating its sampled values (assuming to be a Markov process and assuming that RMS time series is a stochastic process), by using Hidden Markov models (HMMs), that are a powerful tool for modeling any time-varying series. HMMs analysis seeks to discover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by SAX (Symbolic Aggregate approXimation) technique. SAX is able to map RMS time series values with discrete literal emissions. Our experiments showed how to predict volcano states by means of SAX and HMMs.

  14. When the mean is not enough: Calculating fixation time distributions in birth-death processes.

    PubMed

    Ashcroft, Peter; Traulsen, Arne; Galla, Tobias

    2015-10-01

    Studies of fixation dynamics in Markov processes predominantly focus on the mean time to absorption. This may be inadequate if the distribution is broad and skewed. We compute the distribution of fixation times in one-step birth-death processes with two absorbing states. These are expressed in terms of the spectrum of the process, and we provide different representations as forward-only processes in eigenspace. These allow efficient sampling of fixation time distributions. As an application we study evolutionary game dynamics, where invading mutants can reach fixation or go extinct. We also highlight the median fixation time as a possible analog of mixing times in systems with small mutation rates and no absorbing states, whereas the mean fixation time has no such interpretation.

  15. Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen

    2017-10-01

    Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.

  16. Markov Processes: Exploring the Use of Dynamic Visualizations to Enhance Student Understanding

    ERIC Educational Resources Information Center

    Pfannkuch, Maxine; Budgett, Stephanie

    2016-01-01

    Finding ways to enhance introductory students' understanding of probability ideas and theory is a goal of many first-year probability courses. In this article, we explore the potential of a prototype tool for Markov processes using dynamic visualizations to develop in students a deeper understanding of the equilibrium and hitting times…

  17. Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression

    PubMed Central

    Liu, Yu-Ying; Li, Shuang; Li, Fuxin; Song, Le; Rehg, James M.

    2016-01-01

    The Continuous-Time Hidden Markov Model (CT-HMM) is an attractive approach to modeling disease progression due to its ability to describe noisy observations arriving irregularly in time. However, the lack of an efficient parameter learning algorithm for CT-HMM restricts its use to very small models or requires unrealistic constraints on the state transitions. In this paper, we present the first complete characterization of efficient EM-based learning methods for CT-HMM models. We demonstrate that the learning problem consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics. We solve the first challenge by reformulating the estimation problem in terms of an equivalent discrete time-inhomogeneous hidden Markov model. The second challenge is addressed by adapting three approaches from the continuous time Markov chain literature to the CT-HMM domain. We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer’s disease dataset. PMID:27019571

  18. Scaling properties of multiscale equilibration

    NASA Astrophysics Data System (ADS)

    Detmold, W.; Endres, M. G.

    2018-04-01

    We investigate the lattice spacing dependence of the equilibration time for a recently proposed multiscale thermalization algorithm for Markov chain Monte Carlo simulations. The algorithm uses a renormalization-group matched coarse lattice action and prolongation operation to rapidly thermalize decorrelated initial configurations for evolution using a corresponding target lattice action defined at a finer scale. Focusing on nontopological long-distance observables in pure S U (3 ) gauge theory, we provide quantitative evidence that the slow modes of the Markov process, which provide the dominant contribution to the rethermalization time, have a suppressed contribution toward the continuum limit, despite their associated timescales increasing. Based on these numerical investigations, we conjecture that the prolongation operation used herein will produce ensembles that are indistinguishable from the target fine-action distribution for a sufficiently fine coupling at a given level of statistical precision, thereby eliminating the cost of rethermalization.

  19. Integrated stationary Ornstein-Uhlenbeck process, and double integral processes

    NASA Astrophysics Data System (ADS)

    Abundo, Mario; Pirozzi, Enrica

    2018-03-01

    We find a representation of the integral of the stationary Ornstein-Uhlenbeck (ISOU) process in terms of Brownian motion Bt; moreover, we show that, under certain conditions on the functions f and g , the double integral process (DIP) D(t) = ∫βt g(s) (∫αs f(u) dBu) ds can be thought as the integral of a suitable Gauss-Markov process. Some theoretical and application details are given, among them we provide a simulation formula based on that representation by which sample paths, probability densities and first passage times of the ISOU process are obtained; the first-passage times of the DIP are also studied.

  20. Rainfall Stochastic models

    NASA Astrophysics Data System (ADS)

    Campo, M. A.; Lopez, J. J.; Rebole, J. P.

    2012-04-01

    This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series were recorded every ten minutes and hourly, aggregated. Preliminary results show adequate simulation of the main features of rain. Main variables are well simulated for time series of ten minutes, also over one hour precipitation time series, which are those that generate higher rainfall hydrologic design. For coarse scales, less than one hour, rainfall durations are not appropriate under the simulation. A hypothesis may be an excessive number of simulated events, which causes further fragmentation of storms, resulting in an excess of rain "short" (less than 1 hour), and therefore also among rain events, compared with the ones that occur in the actual series.

  1. Driving style recognition method using braking characteristics based on hidden Markov model

    PubMed Central

    Wu, Chaozhong; Lyu, Nengchao; Huang, Zhen

    2017-01-01

    Since the advantage of hidden Markov model in dealing with time series data and for the sake of identifying driving style, three driving style (aggressive, moderate and mild) are modeled reasonably through hidden Markov model based on driver braking characteristics to achieve efficient driving style. Firstly, braking impulse and the maximum braking unit area of vacuum booster within a certain time are collected from braking operation, and then general braking and emergency braking characteristics are extracted to code the braking characteristics. Secondly, the braking behavior observation sequence is used to describe the initial parameters of hidden Markov model, and the generation of the hidden Markov model for differentiating and an observation sequence which is trained and judged by the driving style is introduced. Thirdly, the maximum likelihood logarithm could be implied from the observable parameters. The recognition accuracy of algorithm is verified through experiments and two common pattern recognition algorithms. The results showed that the driving style discrimination based on hidden Markov model algorithm could realize effective discriminant of driving style. PMID:28837580

  2. Operational Markov Condition for Quantum Processes

    NASA Astrophysics Data System (ADS)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    We derive a necessary and sufficient condition for a quantum process to be Markovian which coincides with the classical one in the relevant limit. Our condition unifies all previously known definitions for quantum Markov processes by accounting for all potentially detectable memory effects. We then derive a family of measures of non-Markovianity with clear operational interpretations, such as the size of the memory required to simulate a process or the experimental falsifiability of a Markovian hypothesis.

  3. Noise can speed convergence in Markov chains.

    PubMed

    Franzke, Brandon; Kosko, Bart

    2011-10-01

    A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.

  4. The algebra of the general Markov model on phylogenetic trees and networks.

    PubMed

    Sumner, J G; Holland, B R; Jarvis, P D

    2012-04-01

    It is known that the Kimura 3ST model of sequence evolution on phylogenetic trees can be extended quite naturally to arbitrary split systems. However, this extension relies heavily on mathematical peculiarities of the associated Hadamard transformation, and providing an analogous augmentation of the general Markov model has thus far been elusive. In this paper, we rectify this shortcoming by showing how to extend the general Markov model on trees to include incompatible edges; and even further to more general network models. This is achieved by exploring the algebra of the generators of the continuous-time Markov chain together with the “splitting” operator that generates the branching process on phylogenetic trees. For simplicity, we proceed by discussing the two state case and then show that our results are easily extended to more states with little complication. Intriguingly, upon restriction of the two state general Markov model to the parameter space of the binary symmetric model, our extension is indistinguishable from the Hadamard approach only on trees; as soon as any incompatible splits are introduced the two approaches give rise to differing probability distributions with disparate structure. Through exploration of a simple example, we give an argument that our extension to more general networks has desirable properties that the previous approaches do not share. In particular, our construction allows for convergent evolution of previously divergent lineages; a property that is of significant interest for biological applications.

  5. Twelve years of succession on sandy substrates in a post-mining landscape: a Markov chain analysis.

    PubMed

    Baasch, Annett; Tischew, Sabine; Bruelheide, Helge

    2010-06-01

    Knowledge of succession rates and pathways is crucial for devising restoration strategies for highly disturbed ecosystems such as surface-mined land. As these processes have often only been described in qualitative terms, we used Markov models to quantify transitions between successional stages. However, Markov models are often considered not attractive for some reasons, such as model assumptions (e.g., stationarity in space and time, or the high expenditure of time required to estimate successional transitions in the field). Here we present a solution for converting multivariate ecological time series into transition matrices and demonstrate the applicability of this approach for a data set that resulted from monitoring the succession of sandy dry grassland in a post-mining landscape. We analyzed five transition matrices, four one-step matrices referring to specific periods of transition (1995-1998, 1998-2001, 2001-2004, 2004-2007), and one matrix for the whole study period (stationary model, 1995-2007). Finally, the stationary model was enhanced to a partly time-variable model. Applying the stationary and the time-variable models, we started a prediction well outside our calibration period, beginning with 100% bare soil in 1974 as the known start of the succession, and generated the coverage of 12 predefined vegetation types in three-year intervals. Transitions among vegetation types changed significantly in space and over time. While the probability of colonization was almost constant over time, the replacement rate tended to increase, indicating that the speed of succession accelerated with time or fluctuations became stronger. The predictions of both models agreed surprisingly well with the vegetation data observed more than two decades later. This shows that our dry grassland succession in a post-mining landscape can be adequately described by comparably simple types of Markov models, although some model assumptions have not been fulfilled and within-plot transitions have not been observed with point exactness. The major achievement of our proposed way to convert vegetation time series into transition matrices is the estimation of probability of events--a strength not provided by other frequently used statistical methods in vegetation science.

  6. Inferring the parameters of a Markov process from snapshots of the steady state

    NASA Astrophysics Data System (ADS)

    Dettmer, Simon L.; Berg, Johannes

    2018-02-01

    We seek to infer the parameters of an ergodic Markov process from samples taken independently from the steady state. Our focus is on non-equilibrium processes, where the steady state is not described by the Boltzmann measure, but is generally unknown and hard to compute, which prevents the application of established equilibrium inference methods. We propose a quantity we call propagator likelihood, which takes on the role of the likelihood in equilibrium processes. This propagator likelihood is based on fictitious transitions between those configurations of the system which occur in the samples. The propagator likelihood can be derived by minimising the relative entropy between the empirical distribution and a distribution generated by propagating the empirical distribution forward in time. Maximising the propagator likelihood leads to an efficient reconstruction of the parameters of the underlying model in different systems, both with discrete configurations and with continuous configurations. We apply the method to non-equilibrium models from statistical physics and theoretical biology, including the asymmetric simple exclusion process (ASEP), the kinetic Ising model, and replicator dynamics.

  7. Fast-slow asymptotics for a Markov chain model of fast sodium current

    NASA Astrophysics Data System (ADS)

    Starý, Tomáš; Biktashev, Vadim N.

    2017-09-01

    We explore the feasibility of using fast-slow asymptotics to eliminate the computational stiffness of discrete-state, continuous-time deterministic Markov chain models of ionic channels underlying cardiac excitability. We focus on a Markov chain model of fast sodium current, and investigate its asymptotic behaviour with respect to small parameters identified in different ways.

  8. Fuzzy Markov random fields versus chains for multispectral image segmentation.

    PubMed

    Salzenstein, Fabien; Collet, Christophe

    2006-11-01

    This paper deals with a comparison of recent statistical models based on fuzzy Markov random fields and chains for multispectral image segmentation. The fuzzy scheme takes into account discrete and continuous classes which model the imprecision of the hidden data. In this framework, we assume the dependence between bands and we express the general model for the covariance matrix. A fuzzy Markov chain model is developed in an unsupervised way. This method is compared with the fuzzy Markovian field model previously proposed by one of the authors. The segmentation task is processed with Bayesian tools, such as the well-known MPM (Mode of Posterior Marginals) criterion. Our goal is to compare the robustness and rapidity for both methods (fuzzy Markov fields versus fuzzy Markov chains). Indeed, such fuzzy-based procedures seem to be a good answer, e.g., for astronomical observations when the patterns present diffuse structures. Moreover, these approaches allow us to process missing data in one or several spectral bands which correspond to specific situations in astronomy. To validate both models, we perform and compare the segmentation on synthetic images and raw multispectral astronomical data.

  9. Generalization of Faustmann's Formula for Stochastic Forest Growth and Prices with Markov Decision Process Models

    Treesearch

    Joseph Buongiorno

    2001-01-01

    Faustmann's formula gives the land value, or the forest value of land with trees, under deterministic assumptions regarding future stand growth and prices, over an infinite horizon. Markov decision process (MDP) models generalize Faustmann's approach by recognizing that future stand states and prices are known only as probabilistic distributions. The...

  10. Dynamic Bandwidth Provisioning Using Markov Chain Based on RSVP

    DTIC Science & Technology

    2013-09-01

    AUTHOR(S) Yavuz Sagir 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING...ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS (ES) N/A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11...is finite or countable. A Markov process is basically a stochastic process in which the past history of the process is irrelevant if the current

  11. Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms

    PubMed Central

    Rechner, Steffen; Berger, Annabell

    2016-01-01

    We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time. PMID:26824442

  12. Technical manual for basic version of the Markov chain nest productivity model (MCnest)

    EPA Science Inventory

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  13. User’s manual for basic version of MCnest Markov chain nest productivity model

    EPA Science Inventory

    The Markov Chain Nest Productivity Model (or MCnest) integrates existing toxicity information from three standardized avian toxicity tests with information on species life history and the timing of pesticide applications relative to the timing of avian breeding seasons to quantit...

  14. Variance-reduced simulation of lattice discrete-time Markov chains with applications in reaction networks

    NASA Astrophysics Data System (ADS)

    Maginnis, P. A.; West, M.; Dullerud, G. E.

    2016-10-01

    We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.

  15. Comparison of RF spectrum prediction methods for dynamic spectrum access

    NASA Astrophysics Data System (ADS)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  16. Un formalisme de systemes a sauts pour la recirculation optimale des casses dans une machine a papier

    NASA Astrophysics Data System (ADS)

    Khanbaghi, Maryam

    Increasing closure of white water circuits is making mill productivity and quality of paper produced increasingly affected by the occurrence of paper breaks. In this thesis the main objective is the development of white water and broke recirculation policies. The thesis consists of three main parts, respectively corresponding to the synthesis of a statistical model of paper breaks in a paper mill, the basic mathematical setup for the formulation of white water and broke recirculation policies in the mill as a jump linear quadratic regulation problem, and finally the tuning of the control law based on first passage-time theory, and its extension to the case of control sensitive paper break rates. More specifically, in the first part a statistical model of paper machine breaks is developed. We start from the hypothesis that the breaks process is a Markov chain with three states: the first state is the operational one, while the two others are associated with the general types of paper-breaks that can take place in the mill (wet breaks and dry breaks). The Markovian hypothesis is empirically validated. We also establish how paper-break rates are correlated with machine speed and broke recirculation ratio. Subsequently, we show how the obtained Markov chain model of paper-breaks can be used to formulate a machine operating speed parameter optimization problem. In the second part, upon recognizing that paper breaks can be modelled as a Markov chain type of process which, when interacting with the continuous mill dynamics, yields a jump Markov model, jump linear theory is proposed as a means of constructing white water and broke recirculation strategies which minimize process variability. Reduced process variability comes at the expense of relatively large swings in white water and broke tanks level. Since the linear design does not specifically account for constraints on the state-space, under the resulting law, damaging events of tank overflow or emptiness can occur. A heuristic simulation-based approach is proposed to choose the performance measure design parameters to keep the mean time between incidents of fluid in broke and white water tanks either overflowing, or reaching dangerously low levels, sufficiently long. In the third part, a methodology, mainly founded on the first passage-time theory of stochastic processes, is proposed to choose the performance measure design parameters to limit process variability while accounting for the possibility of undesirable tank overflows or tank emptiness. The heart of the approach is an approximation technique for evaluating mean first passage-times of the controlled tanks levels. This technique appears to have an applicability which largely exceeds the problem area it was designed for. Furthermore, the introduction of control sensitive break rates and the analysis of the ensuing control problem are presented. This is to account for the experimentally observed increase in breaks concomitant with flow rate variability.

  17. Accelerometry-based classification of human activities using Markov modeling.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2011-01-01

    Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.

  18. Adaptive learning compressive tracking based on Markov location prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  19. A tutorial on the CARE III approach to reliability modeling. [of fault tolerant avionics and control systems

    NASA Technical Reports Server (NTRS)

    Trivedi, K. S.; Geist, R. M.

    1981-01-01

    The CARE 3 reliability model for aircraft avionics and control systems is described by utilizing a number of examples which frequently use state-of-the-art mathematical modeling techniques as a basis for their exposition. Behavioral decomposition followed by aggregration were used in an attempt to deal with reliability models with a large number of states. A comprehensive set of models of the fault-handling processes in a typical fault-tolerant system was used. These models were semi-Markov in nature, thus removing the usual restrictions of exponential holding times within the coverage model. The aggregate model is a non-homogeneous Markov chain, thus allowing the times to failure to posses Weibull-like distributions. Because of the departures from traditional models, the solution method employed is that of Kolmogorov integral equations, which are evaluated numerically.

  20. [Succession caused by beaver (Castor fiber L.) life activity: I. What is learnt from the calibration of a simple Markov model].

    PubMed

    Logofet, D O; Evstigneev, O I; Aleĭnikov, A A; Morozova, A O

    2014-01-01

    A homogeneous Markov chain of three aggregated states "pond--swamp--wood" is proposed as a model of cyclic zoogenic successions caused by beaver (Castor fiber L.) life activity in a forest biogeocoenosis. To calibrate the chain transition matrix, the data have appeared sufficient that were gained from field studies undertaken in "Bryanskii Les" Reserve in the years of 2002-2008. Major outcomes of the calibrated model ensue from the formulae of finite homogeneous Markov chain theory: the stationary probability distribution of states, thematrix (T) of mean first passage times, and the mean durations (M(j)) of succession stages. The former illustrates the distribution of relative areas under succession stages if the current trends and transition rates of succession are conserved in the long-term--it has appeared close to the observed distribution. Matrix T provides for quantitative characteristics of the cyclic process, specifying the ranges the experts proposed for the duration of stages in the conceptual scheme of succession. The calculated values of M(j) detect potential discrepancies between empirical data, the expert knowledge that summarizes the data, and the postulates accepted in the mathematical model. The calculated M2 value falls outside the expert range, which gives a reason to doubt the validity of expert estimation proposed, the aggregation mode chosen for chain states, or/and the accuracy-of data available, i.e., to draw certain "lessons" from partially successful calibration. Refusal to postulate the time homogeneity or the Markov property of the chain is also discussed among possible ways to improve the model.

  1. A comparison between MS-VECM and MS-VECMX on economic time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Wai; Ismail, Mohd Tahir; Sek, Siok-Kun

    2014-07-01

    Multivariate Markov switching models able to provide useful information on the study of structural change data since the regime switching model can analyze the time varying data and capture the mean and variance in the series of dependence structure. This paper will investigates the oil price and gold price effects on Malaysia, Singapore, Thailand and Indonesia stock market returns. Two forms of Multivariate Markov switching models are used namely the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model (MSMH-VECM) and the mean adjusted heteroskedasticity Markov Switching Vector Error Correction Model with exogenous variable (MSMH-VECMX). The reason for using these two models are to capture the transition probabilities of the data since real financial time series data always exhibit nonlinear properties such as regime switching, cointegrating relations, jumps or breaks passing the time. A comparison between these two models indicates that MSMH-VECM model able to fit the time series data better than the MSMH-VECMX model. In addition, it was found that oil price and gold price affected the stock market changes in the four selected countries.

  2. Vulnerability to paroxysmal oscillations in delayed neural networks: A basis for nocturnal frontal lobe epilepsy?

    NASA Astrophysics Data System (ADS)

    Quan, Austin; Osorio, Ivan; Ohira, Toru; Milton, John

    2011-12-01

    Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ˜τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t → 2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.

  3. SU-E-J-115: Using Markov Chain Modeling to Elucidate Patterns in Breast Cancer Metastasis Over Time and Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comen, E; Mason, J; Kuhn, P

    2014-06-01

    Purpose: Traditionally, breast cancer metastasis is described as a process wherein cancer cells spread from the breast to multiple organ systems via hematogenous and lymphatic routes. Mapping organ specific patterns of cancer spread over time is essential to understanding metastatic progression. In order to better predict sites of metastases, here we demonstrate modeling of the patterned migration of metastasis. Methods: We reviewed the clinical history of 453 breast cancer patients from Memorial Sloan Kettering Cancer Center who were non-metastatic at diagnosis but developed metastasis over time. We used the variables of organ site of metastases as well as time tomore » create a Markov chain model of metastasis. We illustrate the probabilities of metastasis occurring at a given anatomic site together with the probability of spread to additional sites. Results: Based on the clinical histories of 453 breast cancer patients who developed metastasis, we have learned (i) how to create the Markov transition matrix governing the probabilities of cancer progression from site to site; (ii) how to create a systemic network diagram governing disease progression modeled as a random walk on a directed graph; (iii) how to classify metastatic sites as ‘sponges’ that tend to only receive cancer cells or ‘spreaders’ that receive and release them; (iv) how to model the time-scales of disease progression as a Weibull probability distribution function; (v) how to perform Monte Carlo simulations of disease progression; and (vi) how to interpret disease progression as an entropy-increasing stochastic process. Conclusion: Based on our modeling, metastatic spread may follow predictable pathways. Mapping metastasis not simply by organ site, but by function as either a ‘spreader’ or ‘sponge’ fundamentally reframes our understanding of metastatic processes. This model serves as a novel platform from which we may integrate the evolving genomic landscape that drives cancer metastasis. PS-OC Trans-Network Project Grant Award for “Data Assimilation and ensemble statistical forecasting methods applied to the MSKCC longitudinal metastatic breast cancer cohort.”.« less

  4. [Succession caused by beaver (Castor fiber L.) life activity: II. A refined Markov model].

    PubMed

    Logofet; Evstigneev, O I; Aleinikov, A A; Morozova, A O

    2015-01-01

    The refined Markov model of cyclic zoogenic successions caused by beaver (Castor fiber L.) life activity represents a discrete chain of the following six states: flooded forest, swamped forest, pond, grassy swamp, shrubby swamp, and wet forest, which correspond to certain stages of succession. Those stages are defined, and a conceptual scheme of probable transitions between them for one time step is constructed from the knowledge of beaver behaviour in small river floodplains of "Bryanskii Les" Reserve. We calibrated the corresponding matrix of transition probabilities according to the optimization principle: minimizing differences between the model outcome and reality; the model generates a distribution of relative areas corresponding to the stages of succession, that has to be compared to those gained from case studies in the Reserve during 2002-2006. The time step is chosen to equal 2 years, and the first-step data in the sum of differences are given various weights, w (between 0 and 1). The value of w = 0.2 is selected due to its optimality and for some additional reasons. By the formulae of finite homogeneous Markov chain theory, we obtained the main results of the calibrated model, namely, a steady-state distribution of stage areas, indexes of cyclicity, and the mean durations (M(j)) of succession stages. The results of calibration give an objective quantitative nature to the expert knowledge of the course of succession and get a proper interpretation. The 2010 data, which are not involved in the calibration procedure, enabled assessing the quality of prediction by the homogeneous model in short-term (from the 2006 situation): the error of model area distribution relative to the distribution observed in 2010 falls into the range of 9-17%, the best prognosis being given by the least optimal matrices (rejected values of w). This indicates a formally heterogeneous nature of succession processes in time. Thus, the refined version of the homogeneous Markov chain has not eliminated all the contradictions between the model results and expert knowledge, which suggests a further model development towards a "logically inhomogeneous" version or/and refusal to postulate the Markov property in the conceptual scheme of succession.

  5. Activation rates for nonlinear stochastic flows driven by non-Gaussian noise

    NASA Astrophysics Data System (ADS)

    van den Broeck, C.; Hänggi, P.

    1984-11-01

    Activation rates are calculated for stochastic bistable flows driven by asymmetric dichotomic Markov noise (a two-state Markov process). This noise contains as limits both a particular type of non-Gaussian white shot noise and white Gaussian noise. Apart from investigating the role of colored noise on the escape rates, one can thus also study the influence of the non-Gaussian nature of the noise on these rates. The rate for white shot noise differs in leading order (Arrhenius factor) from the corresponding rate for white Gaussian noise of equal strength. In evaluating the rates we demonstrate the advantage of using transport theory over a mean first-passage time approach for cases with generally non-white and non-Gaussian noise sources. For white shot noise with exponentially distributed weights we succeed in evaluating the mean first-passage time of the corresponding integro-differential master-equation dynamics. The rate is shown to coincide in the weak noise limit with the inverse mean first-passage time.

  6. Multi-site Stochastic Simulation of Daily Streamflow with Markov Chain and KNN Algorithm

    NASA Astrophysics Data System (ADS)

    Mathai, J.; Mujumdar, P.

    2017-12-01

    A key focus of this study is to develop a method which is physically consistent with the hydrologic processes that can capture short-term characteristics of daily hydrograph as well as the correlation of streamflow in temporal and spatial domains. In complex water resource systems, flow fluctuations at small time intervals require that discretisation be done at small time scales such as daily scales. Also, simultaneous generation of synthetic flows at different sites in the same basin are required. We propose a method to equip water managers with a streamflow generator within a stochastic streamflow simulation framework. The motivation for the proposed method is to generate sequences that extend beyond the variability represented in the historical record of streamflow time series. The method has two steps: In step 1, daily flow is generated independently at each station by a two-state Markov chain, with rising limb increments randomly sampled from a Gamma distribution and the falling limb modelled as exponential recession and in step 2, the streamflow generated in step 1 is input to a nonparametric K-nearest neighbor (KNN) time series bootstrap resampler. The KNN model, being data driven, does not require assumptions on the dependence structure of the time series. A major limitation of KNN based streamflow generators is that they do not produce new values, but merely reshuffle the historical data to generate realistic streamflow sequences. However, daily flow generated using the Markov chain approach is capable of generating a rich variety of streamflow sequences. Furthermore, the rising and falling limbs of daily hydrograph represent different physical processes, and hence they need to be modelled individually. Thus, our method combines the strengths of the two approaches. We show the utility of the method and improvement over the traditional KNN by simulating daily streamflow sequences at 7 locations in the Godavari River basin in India.

  7. Markovian Interpretations of Dual Retrieval Processes

    PubMed Central

    Gomes, C. F. A.; Nakamura, K.; Reyna, V. F.

    2013-01-01

    A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes’ work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes. PMID:24948840

  8. Multimodal brain-tumor segmentation based on Dirichlet process mixture model with anisotropic diffusion and Markov random field prior.

    PubMed

    Lu, Yisu; Jiang, Jun; Yang, Wei; Feng, Qianjin; Chen, Wufan

    2014-01-01

    Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.

  9. Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior

    PubMed Central

    Lu, Yisu; Jiang, Jun; Chen, Wufan

    2014-01-01

    Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use. PMID:25254064

  10. Real-time network security situation visualization and threat assessment based on semi-Markov process

    NASA Astrophysics Data System (ADS)

    Chen, Junhua

    2013-03-01

    To cope with a large amount of data in current sensed environments, decision aid tools should provide their understanding of situations in a time-efficient manner, so there is an increasing need for real-time network security situation awareness and threat assessment. In this study, the state transition model of vulnerability in the network based on semi-Markov process is proposed at first. Once events are triggered by an attacker's action or system response, the current states of the vulnerabilities are known. Then we calculate the transition probabilities of the vulnerability from the current state to security failure state. Furthermore in order to improve accuracy of our algorithms, we adjust the probabilities that they exploit the vulnerability according to the attacker's skill level. In the light of the preconditions and post-conditions of vulnerabilities in the network, attack graph is built to visualize security situation in real time. Subsequently, we predict attack path, recognize attack intention and estimate the impact through analysis of attack graph. These help administrators to insight into intrusion steps, determine security state and assess threat. Finally testing in a network shows that this method is reasonable and feasible, and can undertake tremendous analysis task to facilitate administrators' work.

  11. Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Dang, Yaoguo; Li, Bingjun

    2018-01-01

    Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.

  12. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data.

  13. A dynamic multi-scale Markov model based methodology for remaining life prediction

    NASA Astrophysics Data System (ADS)

    Yan, Jihong; Guo, Chaozhong; Wang, Xing

    2011-05-01

    The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.

  14. Markov models in dentistry: application to resin-bonded bridges and review of the literature.

    PubMed

    Mahl, Dominik; Marinello, Carlo P; Sendi, Pedram

    2012-10-01

    Markov models are mathematical models that can be used to describe disease progression and evaluate the cost-effectiveness of medical interventions. Markov models allow projecting clinical and economic outcomes into the future and are therefore frequently used to estimate long-term outcomes of medical interventions. The purpose of this paper is to demonstrate its use in dentistry, using the example of resin-bonded bridges to replace missing teeth, and to review the literature. We used literature data and a four-state Markov model to project long-term outcomes of resin-bonded bridges over a time horizon of 60 years. In addition, the literature was searched in PubMed Medline for research articles on the application of Markov models in dentistry.

  15. Availability Control for Means of Transport in Decisive Semi-Markov Models of Exploitation Process

    NASA Astrophysics Data System (ADS)

    Migawa, Klaudiusz

    2012-12-01

    The issues presented in this research paper refer to problems connected with the control process for exploitation implemented in the complex systems of exploitation for technical objects. The article presents the description of the method concerning the control availability for technical objects (means of transport) on the basis of the mathematical model of the exploitation process with the implementation of the decisive processes by semi-Markov. The presented method means focused on the preparing the decisive for the exploitation process for technical objects (semi-Markov model) and after that specifying the best control strategy (optimal strategy) from among possible decisive variants in accordance with the approved criterion (criteria) of the activity evaluation of the system of exploitation for technical objects. In the presented method specifying the optimal strategy for control availability in the technical objects means a choice of a sequence of control decisions made in individual states of modelled exploitation process for which the function being a criterion of evaluation reaches the extreme value. In order to choose the optimal control strategy the implementation of the genetic algorithm was chosen. The opinions were presented on the example of the exploitation process of the means of transport implemented in the real system of the bus municipal transport. The model of the exploitation process for the means of transports was prepared on the basis of the results implemented in the real transport system. The mathematical model of the exploitation process was built taking into consideration the fact that the model of the process constitutes the homogenous semi-Markov process.

  16. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

    Treesearch

    Mo Zhou; Joseph Buongiorno

    2011-01-01

    Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

  17. Risk aversion and risk seeking in multicriteria forest management: a Markov decision process approach

    Treesearch

    Joseph Buongiorno; Mo Zhou; Craig Johnston

    2017-01-01

    Markov decision process models were extended to reflect some consequences of the risk attitude of forestry decision makers. One approach consisted of maximizing the expected value of a criterion subject to an upper bound on the variance or, symmetrically, minimizing the variance subject to a lower bound on the expected value.  The other method used the certainty...

  18. Nonparametric model validations for hidden Markov models with applications in financial econometrics.

    PubMed

    Zhao, Zhibiao

    2011-06-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise.

  19. Eternal non-Markovianity: from random unitary to Markov chain realisations.

    PubMed

    Megier, Nina; Chruściński, Dariusz; Piilo, Jyrki; Strunz, Walter T

    2017-07-25

    The theoretical description of quantum dynamics in an intriguing way does not necessarily imply the underlying dynamics is indeed intriguing. Here we show how a known very interesting master equation with an always negative decay rate [eternal non-Markovianity (ENM)] arises from simple stochastic Schrödinger dynamics (random unitary dynamics). Equivalently, it may be seen as arising from a mixture of Markov (semi-group) open system dynamics. Both these approaches lead to a more general family of CPT maps, characterized by a point within a parameter triangle. Our results show how ENM quantum dynamics can be realised easily in the laboratory. Moreover, we find a quantum time-continuously measured (quantum trajectory) realisation of the dynamics of the ENM master equation based on unitary transformations and projective measurements in an extended Hilbert space, guided by a classical Markov process. Furthermore, a Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) representation of the dynamics in an extended Hilbert space can be found, with a remarkable property: there is no dynamics in the ancilla state. Finally, analogous constructions for two qubits extend these results from non-CP-divisible to non-P-divisible dynamics.

  20. Markov chain aggregation and its applications to combinatorial reaction networks.

    PubMed

    Ganguly, Arnab; Petrov, Tatjana; Koeppl, Heinz

    2014-09-01

    We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.

  1. Numerical research of the optimal control problem in the semi-Markov inventory model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshenin, Andrey K.; Belousov, Vasily V.; Shnourkoff, Peter V.

    2015-03-10

    This paper is devoted to the numerical simulation of stochastic system for inventory management products using controlled semi-Markov process. The results of a special software for the system’s research and finding the optimal control are presented.

  2. Three real-time architectures - A study using reward models

    NASA Technical Reports Server (NTRS)

    Sjogren, J. A.; Smith, R. M.

    1990-01-01

    Numerous applications in the area of computer system analysis can be effectively studied with Markov reward models. These models describe the evolutionary behavior of the computer system by a continuous-time Markov chain, and a reward rate is associated with each state. In reliability/availability models, upstates have reward rate 1, and down states have reward rate zero associated with them. In a combined model of performance and reliability, the reward rate of a state may be the computational capacity, or a related performance measure. Steady-state expected reward rate and expected instantaneous reward rate are clearly useful measures which can be extracted from the Markov reward model. The diversity of areas where Markov reward models may be used is illustrated with a comparative study of three examples of interest to the fault tolerant computing community.

  3. An Illustration of the Use of Markov Decision Processes to Represent Student Growth (Learning). Research Report. ETS RR-07-40

    ERIC Educational Resources Information Center

    Almond, Russell G.

    2007-01-01

    Over the course of instruction, instructors generally collect a great deal of information about each student. Integrating that information intelligently requires models for how a student's proficiency changes over time. Armed with such models, instructors can "filter" the data--more accurately estimate the student's current proficiency…

  4. A stochastic estimation procedure for intermittently-observed semi-Markov multistate models with back transitions.

    PubMed

    Aralis, Hilary; Brookmeyer, Ron

    2017-01-01

    Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.

  5. Markov and semi-Markov switching linear mixed models used to identify forest tree growth components.

    PubMed

    Chaubert-Pereira, Florence; Guédon, Yann; Lavergne, Christian; Trottier, Catherine

    2010-09-01

    Tree growth is assumed to be mainly the result of three components: (i) an endogenous component assumed to be structured as a succession of roughly stationary phases separated by marked change points that are asynchronous among individuals, (ii) a time-varying environmental component assumed to take the form of synchronous fluctuations among individuals, and (iii) an individual component corresponding mainly to the local environment of each tree. To identify and characterize these three components, we propose to use semi-Markov switching linear mixed models, i.e., models that combine linear mixed models in a semi-Markovian manner. The underlying semi-Markov chain represents the succession of growth phases and their lengths (endogenous component) whereas the linear mixed models attached to each state of the underlying semi-Markov chain represent-in the corresponding growth phase-both the influence of time-varying climatic covariates (environmental component) as fixed effects, and interindividual heterogeneity (individual component) as random effects. In this article, we address the estimation of Markov and semi-Markov switching linear mixed models in a general framework. We propose a Monte Carlo expectation-maximization like algorithm whose iterations decompose into three steps: (i) sampling of state sequences given random effects, (ii) prediction of random effects given state sequences, and (iii) maximization. The proposed statistical modeling approach is illustrated by the analysis of successive annual shoots along Corsican pine trunks influenced by climatic covariates. © 2009, The International Biometric Society.

  6. Discrete-time Markovian-jump linear quadratic optimal control

    NASA Technical Reports Server (NTRS)

    Chizeck, H. J.; Willsky, A. S.; Castanon, D.

    1986-01-01

    This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.

  7. Image segmentation using hidden Markov Gauss mixture models.

    PubMed

    Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M

    2007-07-01

    Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.

  8. Modelisation de l'historique d'operation de groupes turbine-alternateur

    NASA Astrophysics Data System (ADS)

    Szczota, Mickael

    Because of their ageing fleet, the utility managers are increasingly in needs of tools that can help them to plan efficiently maintenance operations. Hydro-Quebec started a project that aim to foresee the degradation of their hydroelectric runner, and use that information to classify the generating unit. That classification will help to know which generating unit is more at risk to undergo a major failure. Cracks linked to the fatigue phenomenon are a predominant degradation mode and the loading sequences applied to the runner is a parameter impacting the crack growth. So, the aim of this memoir is to create a generator able to generate synthetic loading sequences that are statistically equivalent to the observed history. Those simulated sequences will be used as input in a life assessment model. At first, we describe how the generating units are operated by Hydro-Quebec and analyse the available data, the analysis shows that the data are non-stationnary. Then, we review modelisation and validation methods. In the following chapter a particular attention is given to a precise description of the validation and comparison procedure. Then, we present the comparison of three kind of model : Discrete Time Markov Chains, Discrete Time Semi-Markov Chains and the Moving Block Bootstrap. For the first two models, we describe how to take account for the non-stationnarity. Finally, we show that the Markov Chain is not adapted for our case, and that the Semi-Markov chains are better when they include the non-stationnarity. The final choice between Semi-Markov Chains and the Moving Block Bootstrap depends of the user. But, with a long term vision we recommend the use of Semi-Markov chains for their flexibility. Keywords: Stochastic models, Models validation, Reliability, Semi-Markov Chains, Markov Chains, Bootstrap

  9. Symbolic Heuristic Search for Factored Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Morris, Robert (Technical Monitor); Feng, Zheng-Zhu; Hansen, Eric A.

    2003-01-01

    We describe a planning algorithm that integrates two approaches to solving Markov decision processes with large state spaces. State abstraction is used to avoid evaluating states individually. Forward search from a start state, guided by an admissible heuristic, is used to avoid evaluating all states. We combine these two approaches in a novel way that exploits symbolic model-checking techniques and demonstrates their usefulness for decision-theoretic planning.

  10. Using Markov Decision Processes with Heterogeneous Queueing Systems to Examine Military MEDEVAC Dispatching Policies

    DTIC Science & Technology

    2017-03-23

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Using Markov Decision Processes with Heterogeneous Queueing Systems... TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. The views expressed in...POLICIES THESIS Presented to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology

  11. Optimization of airport security process

    NASA Astrophysics Data System (ADS)

    Wei, Jianan

    2017-05-01

    In order to facilitate passenger travel, on the basis of ensuring public safety, the airport security process and scheduling to optimize. The stochastic Petri net is used to simulate the single channel security process, draw the reachable graph, construct the homogeneous Markov chain to realize the performance analysis of the security process network, and find the bottleneck to limit the passenger throughput. Curve changes in the flow of passengers to open a security channel for the initial state. When the passenger arrives at a rate that exceeds the processing capacity of the security channel, it is queued. The passenger reaches the acceptable threshold of the queuing time as the time to open or close the next channel, simulate the number of dynamic security channel scheduling to reduce the passenger queuing time.

  12. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov chains.

    PubMed

    Serebrinsky, Santiago A

    2011-03-01

    We rigorously establish a physical time scale for a general class of kinetic Monte Carlo algorithms for the simulation of continuous-time Markov chains. This class of algorithms encompasses rejection-free (or BKL) and rejection (or "standard") algorithms. For rejection algorithms, it was formerly considered that the availability of a physical time scale (instead of Monte Carlo steps) was empirical, at best. Use of Monte Carlo steps as a time unit now becomes completely unnecessary.

  13. Metastable Distributions of Markov Chains with Rare Transitions

    NASA Astrophysics Data System (ADS)

    Freidlin, M.; Koralov, L.

    2017-06-01

    In this paper we consider Markov chains X^\\varepsilon _t with transition rates that depend on a small parameter \\varepsilon . We are interested in the long time behavior of X^\\varepsilon _t at various \\varepsilon -dependent time scales t = t(\\varepsilon ). The asymptotic behavior depends on how the point (1/\\varepsilon , t(\\varepsilon )) approaches infinity. We introduce a general notion of complete asymptotic regularity (a certain asymptotic relation between the ratios of transition rates), which ensures the existence of the metastable distribution for each initial point and a given time scale t(\\varepsilon ). The technique of i-graphs allows one to describe the metastable distribution explicitly. The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent Markov chains.

  14. The Discounted Method and Equivalence of Average Criteria for Risk-Sensitive Markov Decision Processes on Borel Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavazos-Cadena, Rolando, E-mail: rcavazos@uaaan.m; Salem-Silva, Francisco, E-mail: frsalem@uv.m

    2010-04-15

    This note concerns discrete-time controlled Markov chains with Borel state and action spaces. Given a nonnegative cost function, the performance of a control policy is measured by the superior limit risk-sensitive average criterion associated with a constant and positive risk sensitivity coefficient. Within such a framework, the discounted approach is used (a) to establish the existence of solutions for the corresponding optimality inequality, and (b) to show that, under mild conditions on the cost function, the optimal value functions corresponding to the superior and inferior limit average criteria coincide on a certain subset of the state space. The approach ofmore » the paper relies on standard dynamic programming ideas and on a simple analytical derivation of a Tauberian relation.« less

  15. Using Markov state models to study self-assembly

    NASA Astrophysics Data System (ADS)

    Perkett, Matthew R.; Hagan, Michael F.

    2014-06-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude.

  16. Optimal Limited Contingency Planning

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Smith, David E.

    2003-01-01

    For a given problem, the optimal Markov policy over a finite horizon is a conditional plan containing a potentially large number of branches. However, there are applications where it is desirable to strictly limit the number of decision points and branches in a plan. This raises the question of how one goes about finding optimal plans containing only a limited number of branches. In this paper, we present an any-time algorithm for optimal k-contingency planning. It is the first optimal algorithm for limited contingency planning that is not an explicit enumeration of possible contingent plans. By modelling the problem as a partially observable Markov decision process, it implements the Bellman optimality principle and prunes the solution space. We present experimental results of applying this algorithm to some simple test cases.

  17. Filtering Using Nonlinear Expectations

    DTIC Science & Technology

    2016-04-16

    gives a solution to estimating a Markov chain observed in Gaussian noise when the variance of the noise is unkown. This paper is accepted for the IEEE...Optimization, an A* journal. A short third paper discusses how to estimate a change in the transition dynamics of a noisily observed Markov chain ...The change point time is hidden in a hidden Markov chain , so a second level of discovery is involved. This paper is accepted for Communications in

  18. Pattern identification in time-course gene expression data with the CoGAPS matrix factorization.

    PubMed

    Fertig, Elana J; Stein-O'Brien, Genevieve; Jaffe, Andrew; Colantuoni, Carlo

    2014-01-01

    Patterns in time-course gene expression data can represent the biological processes that are active over the measured time period. However, the orthogonality constraint in standard pattern-finding algorithms, including notably principal components analysis (PCA), confounds expression changes resulting from simultaneous, non-orthogonal biological processes. Previously, we have shown that Markov chain Monte Carlo nonnegative matrix factorization algorithms are particularly adept at distinguishing such concurrent patterns. One such matrix factorization is implemented in the software package CoGAPS. We describe the application of this software and several technical considerations for identification of age-related patterns in a public, prefrontal cortex gene expression dataset.

  19. Using Markov Models of Fault Growth Physics and Environmental Stresses to Optimize Control Actions

    NASA Technical Reports Server (NTRS)

    Bole, Brian; Goebel, Kai; Vachtsevanos, George

    2012-01-01

    A generalized Markov chain representation of fault dynamics is presented for the case that available modeling of fault growth physics and future environmental stresses can be represented by two independent stochastic process models. A contrived but representatively challenging example will be presented and analyzed, in which uncertainty in the modeling of fault growth physics is represented by a uniformly distributed dice throwing process, and a discrete random walk is used to represent uncertain modeling of future exogenous loading demands to be placed on the system. A finite horizon dynamic programming algorithm is used to solve for an optimal control policy over a finite time window for the case that stochastic models representing physics of failure and future environmental stresses are known, and the states of both stochastic processes are observable by implemented control routines. The fundamental limitations of optimization performed in the presence of uncertain modeling information are examined by comparing the outcomes obtained from simulations of an optimizing control policy with the outcomes that would be achievable if all modeling uncertainties were removed from the system.

  20. Operations and support cost modeling using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1989-01-01

    Systems for future missions will be selected with life cycle costs (LCC) as a primary evaluation criterion. This reflects the current realization that only systems which are considered affordable will be built in the future due to the national budget constaints. Such an environment calls for innovative cost modeling techniques which address all of the phases a space system goes through during its life cycle, namely: design and development, fabrication, operations and support; and retirement. A significant portion of the LCC for reusable systems are generated during the operations and support phase (OS). Typically, OS costs can account for 60 to 80 percent of the total LCC. Clearly, OS costs are wholly determined or at least strongly influenced by decisions made during the design and development phases of the project. As a result OS costs need to be considered and estimated early in the conceptual phase. To be effective, an OS cost estimating model needs to account for actual instead of ideal processes by associating cost elements with probabilities. One approach that may be suitable for OS cost modeling is the use of the Markov Chain Process. Markov chains are an important method of probabilistic analysis for operations research analysts but they are rarely used for life cycle cost analysis. This research effort evaluates the use of Markov Chains in LCC analysis by developing OS cost model for a hypothetical reusable space transportation vehicle (HSTV) and suggests further uses of the Markov Chain process as a design-aid tool.

  1. Mode identification using stochastic hybrid models with applications to conflict detection and resolution

    NASA Astrophysics Data System (ADS)

    Naseri Kouzehgarani, Asal

    2009-12-01

    Most models of aircraft trajectories are non-linear and stochastic in nature; and their internal parameters are often poorly defined. The ability to model, simulate and analyze realistic air traffic management conflict detection scenarios in a scalable, composable, multi-aircraft fashion is an extremely difficult endeavor. Accurate techniques for aircraft mode detection are critical in order to enable the precise projection of aircraft conflicts, and for the enactment of altitude separation resolution strategies. Conflict detection is an inherently probabilistic endeavor; our ability to detect conflicts in a timely and accurate manner over a fixed time horizon is traded off against the increased human workload created by false alarms---that is, situations that would not develop into an actual conflict, or would resolve naturally in the appropriate time horizon-thereby introducing a measure of probabilistic uncertainty in any decision aid fashioned to assist air traffic controllers. The interaction of the continuous dynamics of the aircraft, used for prediction purposes, with the discrete conflict detection logic gives rise to the hybrid nature of the overall system. The introduction of the probabilistic element, common to decision alerting and aiding devices, places the conflict detection and resolution problem in the domain of probabilistic hybrid phenomena. A hidden Markov model (HMM) has two stochastic components: a finite-state Markov chain and a finite set of output probability distributions. In other words an unobservable stochastic process (hidden) that can only be observed through another set of stochastic processes that generate the sequence of observations. The problem of self separation in distributed air traffic management reduces to the ability of aircraft to communicate state information to neighboring aircraft, as well as model the evolution of aircraft trajectories between communications, in the presence of probabilistic uncertain dynamics as well as partially observable and uncertain data. We introduce the Hybrid Hidden Markov Modeling (HHMM) formalism to enable the prediction of the stochastic aircraft states (and thus, potential conflicts), by combining elements of the probabilistic timed input output automaton and the partially observable Markov decision process frameworks, along with the novel addition of a Markovian scheduler to remove the non-deterministic elements arising from the enabling of several actions simultaneously. Comparisons of aircraft in level, climbing/descending and turning flight are performed, and unknown flight track data is evaluated probabilistically against the tuned model in order to assess the effectiveness of the model in detecting the switch between multiple flight modes for a given aircraft. This also allows for the generation of probabilistic distribution over the execution traces of the hybrid hidden Markov model, which then enables the prediction of the states of aircraft based on partially observable and uncertain data. Based on the composition properties of the HHMM, we study a decentralized air traffic system where aircraft are moving along streams and can perform cruise, accelerate, climb and turn maneuvers. We develop a common decentralized policy for conflict avoidance with spatially distributed agents (aircraft in the sky) and assure its safety properties via correctness proofs.

  2. Nonparametric model validations for hidden Markov models with applications in financial econometrics

    PubMed Central

    Zhao, Zhibiao

    2011-01-01

    We address the nonparametric model validation problem for hidden Markov models with partially observable variables and hidden states. We achieve this goal by constructing a nonparametric simultaneous confidence envelope for transition density function of the observable variables and checking whether the parametric density estimate is contained within such an envelope. Our specification test procedure is motivated by a functional connection between the transition density of the observable variables and the Markov transition kernel of the hidden states. Our approach is applicable for continuous time diffusion models, stochastic volatility models, nonlinear time series models, and models with market microstructure noise. PMID:21750601

  3. Markov Chain Models for Stochastic Behavior in Resonance Overlap Regions

    NASA Astrophysics Data System (ADS)

    McCarthy, Morgan; Quillen, Alice

    2018-01-01

    We aim to predict lifetimes of particles in chaotic zoneswhere resonances overlap. A continuous-time Markov chain model isconstructed using mean motion resonance libration timescales toestimate transition times between resonances. The model is applied todiffusion in the co-rotation region of a planet. For particles begunat low eccentricity, the model is effective for early diffusion, butnot at later time when particles experience close encounters to the planet.

  4. Inference of epidemiological parameters from household stratified data

    PubMed Central

    Walker, James N.; Ross, Joshua V.

    2017-01-01

    We consider a continuous-time Markov chain model of SIR disease dynamics with two levels of mixing. For this so-called stochastic households model, we provide two methods for inferring the model parameters—governing within-household transmission, recovery, and between-household transmission—from data of the day upon which each individual became infectious and the household in which each infection occurred, as might be available from First Few Hundred studies. Each method is a form of Bayesian Markov Chain Monte Carlo that allows us to calculate a joint posterior distribution for all parameters and hence the household reproduction number and the early growth rate of the epidemic. The first method performs exact Bayesian inference using a standard data-augmentation approach; the second performs approximate Bayesian inference based on a likelihood approximation derived from branching processes. These methods are compared for computational efficiency and posteriors from each are compared. The branching process is shown to be a good approximation and remains computationally efficient as the amount of data is increased. PMID:29045456

  5. Coherent-Anomaly Method in Self-Avoiding Walk Problems

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Suzuki, Masuo

    Self-avoiding walk (SAW), being a nonequilibrium cooperative phenomenon, is investigated with a finite-order-restricted-walk (finite-ORW or FORW) coherent-anomaly method (CAM). The coefficient β1r in the asymptotic form Cnr ≃ βlrλn1r for the total number Cnr of r-ORW's with respect to the step number n is investigated for the first time. An asymptotic form for SAW's is thus obtained from the series of FORW approximants, Cnr ≃ brgμ(1 + a/r)n, as the envelope curve Cn ≃ b(ae/g)gμnng. Numerical results are given by Cn ≃ 1.424n0.27884.1507n and Cn ≃ 1.179n0.158710.005n for the plane triangular lattice and f.c.c. lattice, respectively. A good coincidence of the total numbers estimated from the above simple formulae with exact enumerations for finite-step SAW's implies that the essential nature of SAW (non-Markov process) can be understood from FORW (Markov process) in the CAM framework.

  6. Influence of credit scoring on the dynamics of Markov chain

    NASA Astrophysics Data System (ADS)

    Galina, Timofeeva

    2015-11-01

    Markov processes are widely used to model the dynamics of a credit portfolio and forecast the portfolio risk and profitability. In the Markov chain model the loan portfolio is divided into several groups with different quality, which determined by presence of indebtedness and its terms. It is proposed that dynamics of portfolio shares is described by a multistage controlled system. The article outlines mathematical formalization of controls which reflect the actions of the bank's management in order to improve the loan portfolio quality. The most important control is the organization of approval procedure of loan applications. The credit scoring is studied as a control affecting to the dynamic system. Different formalizations of "good" and "bad" consumers are proposed in connection with the Markov chain model.

  7. Probabilistic Model and Analysis of Conventional Preinstalled Mine Field Defense.

    DTIC Science & Technology

    1980-09-01

    process to model the one or two positions of mines in the mine field. The duel between the anti-tank weapon and offensive tanks crossing the field is...mine field. The duel between the anti-tank weapon and offensive tanks crossing the field is modeled with a con- tinuous time Markov chain. Some...11 B. DUEL ------------------------------------------- 15 IV. DUEL

  8. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    NASA Astrophysics Data System (ADS)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  9. Exact solution of the hidden Markov processes.

    PubMed

    Saakian, David B

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.

  10. Exact solution of the hidden Markov processes

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  11. OPTIMIZING OBSERVER EFFORT FOR FIELD DETECTION OF REPRODUCTIVE EFFECTS IN BIRDS

    EPA Science Inventory

    Avian nest survival is best viewed as a Markov process with two absorbing states, death and fledging. We present a column-stochastic Markov chain from which all major Mayfield formulations of daily nest-survival can be derived contingent upon the degree of observer knowledge of e...

  12. Ultrafast dynamics of photoexcited charge and spin currents in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Meier, Torsten; Pasenow, Bernhard; Duc, Huynh Thanh; Vu, Quang Tuyen; Haug, Hartmut; Koch, Stephan W.

    2007-02-01

    Employing the quantum interference among one- and two-photon excitations induced by ultrashort two-color laser pulses it is possible to generate charge and spin currents in semiconductors and semiconductor nanostructures on femtosecond time scales. Here, it is reviewed how the excitation process and the dynamics of such photocurrents can be described on the basis of a microscopic many-body theory. Numerical solutions of the semiconductor Bloch equations (SBE) provide a detailed description of the time-dependent material excitations. Applied to the case of photocurrents, numerical solutions of the SBE for a two-band model including many-body correlations on the second-Born Markov level predict an enhanced damping of the spin current relative to that of the charge current. Interesting effects are obtained when the scattering processes are computed beyond the Markovian limit. Whereas the overall decay of the currents is basically correctly described already within the Markov approximation, quantum-kinetic calculations show that memory effects may lead to additional oscillatory signatures in the current transients. When transitions to coupled heavy- and light-hole valence bands are incorporated into the SBE, additional charge and spin currents, which are not described by the two-band model, appear.

  13. Multifractal analysis of time series generated by discrete Ito equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele

    2015-06-15

    In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.

  14. Demonstration of fundamental statistics by studying timing of electronics signals in a physics-based laboratory

    NASA Astrophysics Data System (ADS)

    Beach, Shaun E.; Semkow, Thomas M.; Remling, David J.; Bradt, Clayton J.

    2017-07-01

    We have developed accessible methods to demonstrate fundamental statistics in several phenomena, in the context of teaching electronic signal processing in a physics-based college-level curriculum. A relationship between the exponential time-interval distribution and Poisson counting distribution for a Markov process with constant rate is derived in a novel way and demonstrated using nuclear counting. Negative binomial statistics is demonstrated as a model for overdispersion and justified by the effect of electronic noise in nuclear counting. The statistics of digital packets on a computer network are shown to be compatible with the fractal-point stochastic process leading to a power-law as well as generalized inverse Gaussian density distributions of time intervals between packets.

  15. Predicting hepatitis B monthly incidence rates using weighted Markov chains and time series methods.

    PubMed

    Shahdoust, Maryam; Sadeghifar, Majid; Poorolajal, Jalal; Javanrooh, Niloofar; Amini, Payam

    2015-01-01

    Hepatitis B (HB) is a major global mortality. Accurately predicting the trend of the disease can provide an appropriate view to make health policy disease prevention. This paper aimed to apply three different to predict monthly incidence rates of HB. This historical cohort study was conducted on the HB incidence data of Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) method based on Markov chain theory and two time series models including Holt Exponential Smoothing (HES) and SARIMA were applied on the data. The results of different applied methods were compared to correct percentages of predicted incidence rates. The monthly incidence rates were clustered into two clusters as state of Markov chain. The correct predicted percentage of the first and second clusters for WMC, HES and SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. The overall incidence rate of HBV is estimated to decrease over time. The comparison of results of the three models indicated that in respect to existing seasonality trend and non-stationarity, the HES had the most accurate prediction of the incidence rates.

  16. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    PubMed Central

    Ito, Sosuke

    2016-01-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics. PMID:27833120

  17. Backward transfer entropy: Informational measure for detecting hidden Markov models and its interpretations in thermodynamics, gambling and causality

    NASA Astrophysics Data System (ADS)

    Ito, Sosuke

    2016-11-01

    The transfer entropy is a well-established measure of information flow, which quantifies directed influence between two stochastic time series and has been shown to be useful in a variety fields of science. Here we introduce the transfer entropy of the backward time series called the backward transfer entropy, and show that the backward transfer entropy quantifies how far it is from dynamics to a hidden Markov model. Furthermore, we discuss physical interpretations of the backward transfer entropy in completely different settings of thermodynamics for information processing and the gambling with side information. In both settings of thermodynamics and the gambling, the backward transfer entropy characterizes a possible loss of some benefit, where the conventional transfer entropy characterizes a possible benefit. Our result implies the deep connection between thermodynamics and the gambling in the presence of information flow, and that the backward transfer entropy would be useful as a novel measure of information flow in nonequilibrium thermodynamics, biochemical sciences, economics and statistics.

  18. Variable Star Signature Classification using Slotted Symbolic Markov Modeling

    NASA Astrophysics Data System (ADS)

    Johnston, K. B.; Peter, A. M.

    2017-01-01

    With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. This paper focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on a set of data derived from the LINEAR dataset will also be shown.

  19. Variable Star Signature Classification using Slotted Symbolic Markov Modeling

    NASA Astrophysics Data System (ADS)

    Johnston, Kyle B.; Peter, Adrian M.

    2016-01-01

    With the advent of digital astronomy, new benefits and new challenges have been presented to the modern day astronomer. No longer can the astronomer rely on manual processing, instead the profession as a whole has begun to adopt more advanced computational means. Our research focuses on the construction and application of a novel time-domain signature extraction methodology and the development of a supporting supervised pattern classification algorithm for the identification of variable stars. A methodology for the reduction of stellar variable observations (time-domain data) into a novel feature space representation is introduced. The methodology presented will be referred to as Slotted Symbolic Markov Modeling (SSMM) and has a number of advantages which will be demonstrated to be beneficial; specifically to the supervised classification of stellar variables. It will be shown that the methodology outperformed a baseline standard methodology on a standardized set of stellar light curve data. The performance on a set of data derived from the LINEAR dataset will also be shown.

  20. Analysis of a Multiprocessor Guidance Computer. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Maltach, E. G.

    1969-01-01

    The design of the next generation of spaceborne digital computers is described. It analyzes a possible multiprocessor computer configuration. For the analysis, a set of representative space computing tasks was abstracted from the Lunar Module Guidance Computer programs as executed during the lunar landing, from the Apollo program. This computer performs at this time about 24 concurrent functions, with iteration rates from 10 times per second to once every two seconds. These jobs were tabulated in a machine-independent form, and statistics of the overall job set were obtained. It was concluded, based on a comparison of simulation and Markov results, that the Markov process analysis is accurate in predicting overall trends and in configuration comparisons, but does not provide useful detailed information in specific situations. Using both types of analysis, it was determined that the job scheduling function is a critical one for efficiency of the multiprocessor. It is recommended that research into the area of automatic job scheduling be performed.

  1. Markov decision processes in natural resources management: observability and uncertainty

    USGS Publications Warehouse

    Williams, Byron K.

    2015-01-01

    The breadth and complexity of stochastic decision processes in natural resources presents a challenge to analysts who need to understand and use these approaches. The objective of this paper is to describe a class of decision processes that are germane to natural resources conservation and management, namely Markov decision processes, and to discuss applications and computing algorithms under different conditions of observability and uncertainty. A number of important similarities are developed in the framing and evaluation of different decision processes, which can be useful in their applications in natural resources management. The challenges attendant to partial observability are highlighted, and possible approaches for dealing with it are discussed.

  2. Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.

    PubMed

    Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence

    2012-12-01

    A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.

  3. [Application of Markov model in post-marketing pharmacoeconomic evaluation of traditional Chinese medicine].

    PubMed

    Wang, Xin; Su, Xia; Sun, Wentao; Xie, Yanming; Wang, Yongyan

    2011-10-01

    In post-marketing study of traditional Chinese medicine (TCM), pharmacoeconomic evaluation has an important applied significance. However, the economic literatures of TCM have been unable to fully and accurately reflect the unique overall outcomes of treatment with TCM. For the special nature of TCM itself, we recommend that Markov model could be introduced into post-marketing pharmacoeconomic evaluation of TCM, and also explore the feasibility of model application. Markov model can extrapolate the study time horizon, suit with effectiveness indicators of TCM, and provide measurable comprehensive outcome. In addition, Markov model can promote the development of TCM quality of life scale and the methodology of post-marketing pharmacoeconomic evaluation.

  4. Space system operations and support cost analysis using Markov chains

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Dean, Edwin B.; Moore, Arlene A.; Fairbairn, Robert E.

    1990-01-01

    This paper evaluates the use of Markov chain process in probabilistic life cycle cost analysis and suggests further uses of the process as a design aid tool. A methodology is developed for estimating operations and support cost and expected life for reusable space transportation systems. Application of the methodology is demonstrated for the case of a hypothetical space transportation vehicle. A sensitivity analysis is carried out to explore the effects of uncertainty in key model inputs.

  5. Real-time antenna fault diagnosis experiments at DSS 13

    NASA Technical Reports Server (NTRS)

    Mellstrom, J.; Pierson, C.; Smyth, P.

    1992-01-01

    Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential.

  6. Developing a Markov Model for Forecasting End Strength of Selected Marine Corps Reserve (SMCR) Officers

    DTIC Science & Technology

    2013-03-01

    moving average ( ARIMA ) model because the data is not a times series. The best a manpower planner can do at this point is to make an educated assumption...MARKOV MODEL FOR FORECASTING END STRENGTH OF SELECTED MARINE CORPS RESERVE (SMCR) OFFICERS by Anthony D. Licari March 2013 Thesis Advisor...March 2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DEVELOPING A MARKOV MODEL FOR FORECASTING END STRENGTH OF

  7. Cascade heterogeneous face sketch-photo synthesis via dual-scale Markov Network

    NASA Astrophysics Data System (ADS)

    Yao, Saisai; Chen, Zhenxue; Jia, Yunyi; Liu, Chengyun

    2018-03-01

    Heterogeneous face sketch-photo synthesis is an important and challenging task in computer vision, which has widely applied in law enforcement and digital entertainment. According to the different synthesis results based on different scales, this paper proposes a cascade sketch-photo synthesis method via dual-scale Markov Network. Firstly, Markov Network with larger scale is used to synthesise the initial sketches and the local vertical and horizontal neighbour search (LVHNS) method is used to search for the neighbour patches of test patches in training set. Then, the initial sketches and test photos are jointly entered into smaller scale Markov Network. Finally, the fine sketches are obtained after cascade synthesis process. Extensive experimental results on various databases demonstrate the superiority of the proposed method compared with several state-of-the-art methods.

  8. Adiabatic reduction of a model of stochastic gene expression with jump Markov process.

    PubMed

    Yvinec, Romain; Zhuge, Changjing; Lei, Jinzhi; Mackey, Michael C

    2014-04-01

    This paper considers adiabatic reduction in a model of stochastic gene expression with bursting transcription considered as a jump Markov process. In this model, the process of gene expression with auto-regulation is described by fast/slow dynamics. The production of mRNA is assumed to follow a compound Poisson process occurring at a rate depending on protein levels (the phenomena called bursting in molecular biology) and the production of protein is a linear function of mRNA numbers. When the dynamics of mRNA is assumed to be a fast process (due to faster mRNA degradation than that of protein) we prove that, with appropriate scalings in the burst rate, jump size or translational rate, the bursting phenomena can be transmitted to the slow variable. We show that, depending on the scaling, the reduced equation is either a stochastic differential equation with a jump Poisson process or a deterministic ordinary differential equation. These results are significant because adiabatic reduction techniques seem to have not been rigorously justified for a stochastic differential system containing a jump Markov process. We expect that the results can be generalized to adiabatic methods in more general stochastic hybrid systems.

  9. Classification of customer lifetime value models using Markov chain

    NASA Astrophysics Data System (ADS)

    Permana, Dony; Pasaribu, Udjianna S.; Indratno, Sapto W.; Suprayogi

    2017-10-01

    A firm’s potential reward in future time from a customer can be determined by customer lifetime value (CLV). There are some mathematic methods to calculate it. One method is using Markov chain stochastic model. Here, a customer is assumed through some states. Transition inter the states follow Markovian properties. If we are given some states for a customer and the relationships inter states, then we can make some Markov models to describe the properties of the customer. As Markov models, CLV is defined as a vector contains CLV for a customer in the first state. In this paper we make a classification of Markov Models to calculate CLV. Start from two states of customer model, we make develop in many states models. The development a model is based on weaknesses in previous model. Some last models can be expected to describe how real characters of customers in a firm.

  10. Fitting mechanistic epidemic models to data: A comparison of simple Markov chain Monte Carlo approaches.

    PubMed

    Li, Michael; Dushoff, Jonathan; Bolker, Benjamin M

    2018-07-01

    Simple mechanistic epidemic models are widely used for forecasting and parameter estimation of infectious diseases based on noisy case reporting data. Despite the widespread application of models to emerging infectious diseases, we know little about the comparative performance of standard computational-statistical frameworks in these contexts. Here we build a simple stochastic, discrete-time, discrete-state epidemic model with both process and observation error and use it to characterize the effectiveness of different flavours of Bayesian Markov chain Monte Carlo (MCMC) techniques. We use fits to simulated data, where parameters (and future behaviour) are known, to explore the limitations of different platforms and quantify parameter estimation accuracy, forecasting accuracy, and computational efficiency across combinations of modeling decisions (e.g. discrete vs. continuous latent states, levels of stochasticity) and computational platforms (JAGS, NIMBLE, Stan).

  11. Hamiltonian Markov Chain Monte Carlo Methods for the CUORE Neutrinoless Double Beta Decay Sensitivity

    NASA Astrophysics Data System (ADS)

    Graham, Eleanor; Cuore Collaboration

    2017-09-01

    The CUORE experiment is a large-scale bolometric detector seeking to observe the never-before-seen process of neutrinoless double beta decay. Predictions for CUORE's sensitivity to neutrinoless double beta decay allow for an understanding of the half-life ranges that the detector can probe, and also to evaluate the relative importance of different detector parameters. Currently, CUORE uses a Bayesian analysis based in BAT, which uses Metropolis-Hastings Markov Chain Monte Carlo, for its sensitivity studies. My work evaluates the viability and potential improvements of switching the Bayesian analysis to Hamiltonian Monte Carlo, realized through the program Stan and its Morpho interface. I demonstrate that the BAT study can be successfully recreated in Stan, and perform a detailed comparison between the results and computation times of the two methods.

  12. Using Markov state models to study self-assembly

    PubMed Central

    Perkett, Matthew R.; Hagan, Michael F.

    2014-01-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  13. Markov state models of protein misfolding

    NASA Astrophysics Data System (ADS)

    Sirur, Anshul; De Sancho, David; Best, Robert B.

    2016-02-01

    Markov state models (MSMs) are an extremely useful tool for understanding the conformational dynamics of macromolecules and for analyzing MD simulations in a quantitative fashion. They have been extensively used for peptide and protein folding, for small molecule binding, and for the study of native ensemble dynamics. Here, we adapt the MSM methodology to gain insight into the dynamics of misfolded states. To overcome possible flaws in root-mean-square deviation (RMSD)-based metrics, we introduce a novel discretization approach, based on coarse-grained contact maps. In addition, we extend the MSM methodology to include "sink" states in order to account for the irreversibility (on simulation time scales) of processes like protein misfolding. We apply this method to analyze the mechanism of misfolding of tandem repeats of titin domains, and how it is influenced by confinement in a chaperonin-like cavity.

  14. exocartographer: Constraining surface maps orbital parameters of exoplanets

    NASA Astrophysics Data System (ADS)

    Farr, Ben; Farr, Will M.; Cowan, Nicolas B.; Haggard, Hal M.; Robinson, Tyler

    2018-05-01

    exocartographer solves the exo-cartography inverse problem. This flexible forward-modeling framework, written in Python, retrieves the albedo map and spin geometry of a planet based on time-resolved photometry; it uses a Markov chain Monte Carlo method to extract albedo maps and planet spin and their uncertainties. Gaussian Processes use the data to fit for the characteristic length scale of the map and enforce smooth maps.

  15. A class of generalized Ginzburg-Landau equations with random switching

    NASA Astrophysics Data System (ADS)

    Wu, Zheng; Yin, George; Lei, Dongxia

    2018-09-01

    This paper focuses on a class of generalized Ginzburg-Landau equations with random switching. In our formulation, the nonlinear term is allowed to have higher polynomial growth rate than the usual cubic polynomials. The random switching is modeled by a continuous-time Markov chain with a finite state space. First, an explicit solution is obtained. Then properties such as stochastic-ultimate boundedness and permanence of the solution processes are investigated. Finally, two-time-scale models are examined leading to a reduction of complexity.

  16. Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER.

    PubMed

    Ferreira, Miguel; Roma, Nuno; Russo, Luis M S

    2014-05-30

    HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm, which was already highly parallelized and optimized using Farrar's striped processing pattern with Intel SSE2 instruction set extension. A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the innermost-cache size and of the dimension of the considered model. The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput and offers a processing speedup as high as two times faster, depending on the model's size.

  17. Time-patterns of antibiotic exposure in poultry production--a Markov chains exploratory study of nature and consequences.

    PubMed

    Chauvin, C; Clement, C; Bruneau, M; Pommeret, D

    2007-07-16

    This article describes the use of Markov chains to explore the time-patterns of antimicrobial exposure in broiler poultry. The transition in antimicrobial exposure status (exposed/not exposed to an antimicrobial, with a distinction between exposures to the different antimicrobial classes) in extensive data collected in broiler chicken flocks from November 2003 onwards, was investigated. All Markov chains were first-order chains. Mortality rate, geographical location and slaughter semester were sources of heterogeneity between transition matrices. Transitions towards a 'no antimicrobial' exposure state were highly predominant, whatever the initial state. From a 'no antimicrobial' exposure state, the transition to beta-lactams was predominant among transitions to an antimicrobial exposure state. Transitions between antimicrobial classes were rare and variable. Switches between antimicrobial classes and repeats of a particular class were both observed. Application of Markov chains analysis to the database of the nation-wide antimicrobial resistance monitoring programme pointed out that transition probabilities between antimicrobial exposure states increased with the number of resistances in Escherichia coli strains.

  18. Global dynamics of a stochastic neuronal oscillator

    NASA Astrophysics Data System (ADS)

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  19. Global dynamics of a stochastic neuronal oscillator.

    PubMed

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  20. Development and Testing of Data Mining Algorithms for Earth Observation

    NASA Technical Reports Server (NTRS)

    Glymour, Clark

    2005-01-01

    The new algorithms developed under this project included a principled procedure for classification of objects, events or circumstances according to a target variable when a very large number of potential predictor variables is available but the number of cases that can be used for training a classifier is relatively small. These "high dimensional" problems require finding a minimal set of variables -called the Markov Blanket-- sufficient for predicting the value of the target variable. An algorithm, the Markov Blanket Fan Search, was developed, implemented and tested on both simulated and real data in conjunction with a graphical model classifier, which was also implemented. Another algorithm developed and implemented in TETRAD IV for time series elaborated on work by C. Granger and N. Swanson, which in turn exploited some of our earlier work. The algorithms in question learn a linear time series model from data. Given such a time series, the simultaneous residual covariances, after factoring out time dependencies, may provide information about causal processes that occur more rapidly than the time series representation allow, so called simultaneous or contemporaneous causal processes. Working with A. Monetta, a graduate student from Italy, we produced the correct statistics for estimating the contemporaneous causal structure from time series data using the TETRAD IV suite of algorithms. Two economists, David Bessler and Kevin Hoover, have independently published applications using TETRAD style algorithms to the same purpose. These implementations and algorithmic developments were separately used in two kinds of studies of climate data: Short time series of geographically proximate climate variables predicting agricultural effects in California, and longer duration climate measurements of temperature teleconnections.

  1. Markov Analysis of Sleep Dynamics

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lee, J.-S.; Robinson, P. A.; Jeong, D.-U.

    2009-05-01

    A new approach, based on a Markov transition matrix, is proposed to explain frequent sleep and wake transitions during sleep. The matrix is determined by analyzing hypnograms of 113 obstructive sleep apnea patients. Our approach shows that the statistics of sleep can be constructed via a single Markov process and that durations of all states have modified exponential distributions, in contrast to recent reports of a scale-free form for the wake stage and an exponential form for the sleep stage. Hypnograms of the same subjects, but treated with Continuous Positive Airway Pressure, are analyzed and compared quantitatively with the pretreatment ones, suggesting potential clinical applications.

  2. Spontaneous Time Symmetry Breaking in System with Mixed Strategy Nash Equilibrium: Evidences in Experimental Economics Data

    NASA Astrophysics Data System (ADS)

    Wang, Zhijian; Xu, Bin; Zhejiang Collaboration

    2011-03-01

    In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.

  3. Estimating Density and Temperature Dependence of Juvenile Vital Rates Using a Hidden Markov Model

    PubMed Central

    McElderry, Robert M.

    2017-01-01

    Organisms in the wild have cryptic life stages that are sensitive to changing environmental conditions and can be difficult to survey. In this study, I used mark-recapture methods to repeatedly survey Anaea aidea (Nymphalidae) caterpillars in nature, then modeled caterpillar demography as a hidden Markov process to assess if temporal variability in temperature and density influence the survival and growth of A. aidea over time. Individual encounter histories result from the joint likelihood of being alive and observed in a particular stage, and I have included hidden states by separating demography and observations into parallel and independent processes. I constructed a demographic matrix containing the probabilities of all possible fates for each stage, including hidden states, e.g., eggs and pupae. I observed both dead and live caterpillars with high probability. Peak caterpillar abundance attracted multiple predators, and survival of fifth instars declined as per capita predation rate increased through spring. A time lag between predator and prey abundance was likely the cause of improved fifth instar survival estimated at high density. Growth rates showed an increase with temperature, but the preferred model did not include temperature. This work illustrates how state-space models can include unobservable stages and hidden state processes to evaluate how environmental factors influence vital rates of cryptic life stages in the wild. PMID:28505138

  4. Students' Progress throughout Examination Process as a Markov Chain

    ERIC Educational Resources Information Center

    Hlavatý, Robert; Dömeová, Ludmila

    2014-01-01

    The paper is focused on students of Mathematical methods in economics at the Czech university of life sciences (CULS) in Prague. The idea is to create a model of students' progress throughout the whole course using the Markov chain approach. Each student has to go through various stages of the course requirements where his success depends on the…

  5. Quantum Markov Semigroups with Unbounded Generator and Time Evolution of the Support Projection of a State

    NASA Astrophysics Data System (ADS)

    Gliouez, Souhir; Hachicha, Skander; Nasroui, Ikbel

    We characterize the support projection of a state evolving under the action of a quantum Markov semigroup with unbounded generator represented in the generalized GKSL form and a quantum version of the classical Lévy-Austin-Ornstein theorem.

  6. Stochastic dynamics of time correlation in complex systems with discrete time

    NASA Astrophysics Data System (ADS)

    Yulmetyev, Renat; Hänggi, Peter; Gafarov, Fail

    2000-11-01

    In this paper we present the concept of description of random processes in complex systems with discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCFs). We have introduced the dynamic (time dependent) information Shannon entropy Si(t) where i=0,1,2,3,..., as an information measure of stochastic dynamics of time correlation (i=0) and time memory (i=1,2,3,...). The set of functions Si(t) constitute the quantitative measure of time correlation disorder (i=0) and time memory disorder (i=1,2,3,...) in complex system. The theory developed started from the careful analysis of time correlation involving dynamics of vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihilation of time correlation (or time memory) in details. We carry out the analysis of vectors' dynamics employing finite-difference equations for random variables and the evolution operator describing their natural motion. The existence of TCF results in the construction of the set of projection operators by the usage of scalar product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCFs and memory functions (MFs). The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities for detecting the frequency spectra of power of entropy function Si(t) for time correlation (i=0) and time memory (i=1,2,3,...). The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR intervals from human ECG's shows convincing evidence for a non-Markovian phenomemena associated with a peculiarities in short- and long-range scaling. This method may be of use in distinguishing healthy from pathologic data sets based in differences in these non-Markovian properties.

  7. Two Person Zero-Sum Semi-Markov Games with Unknown Holding Times Distribution on One Side: A Discounted Payoff Criterion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjarez-Sosa, J. Adolfo, E-mail: aminjare@gauss.mat.uson.mx; Luque-Vasquez, Fernando

    This paper deals with two person zero-sum semi-Markov games with a possibly unbounded payoff function, under a discounted payoff criterion. Assuming that the distribution of the holding times H is unknown for one of the players, we combine suitable methods of statistical estimation of H with control procedures to construct an asymptotically discount optimal pair of strategies.

  8. Assessing the Progress and the Underlying Nature of the Flows of Doctoral and Master Degree Candidates Using Absorbing Markov Chains

    ERIC Educational Resources Information Center

    Nicholls, Miles G.

    2007-01-01

    In this paper, absorbing markov chains are used to analyse the flows of higher degree by research candidates (doctoral and master) within an Australian faculty of business. The candidates are analysed according to whether they are full time or part time. The need for such analysis stemmed from what appeared to be a rather poor completion rate (as…

  9. On the mixing time in the Wang-Landau algorithm

    NASA Astrophysics Data System (ADS)

    Fadeeva, Marina; Shchur, Lev

    2018-01-01

    We present preliminary results of the investigation of the properties of the Markov random walk in the energy space generated by the Wang-Landau probability. We build transition matrix in the energy space (TMES) using the exact density of states for one-dimensional and two-dimensional Ising models. The spectral gap of TMES is inversely proportional to the mixing time of the Markov chain. We estimate numerically the dependence of the mixing time on the lattice size, and extract the mixing exponent.

  10. The distribution of genome shared identical by descent for a pair of full sibs by means of the continuous time Markov chain

    NASA Astrophysics Data System (ADS)

    Julie, Hongki; Pasaribu, Udjianna S.; Pancoro, Adi

    2015-12-01

    This paper will allow Markov Chain's application in genome shared identical by descent by two individual at full sibs model. The full sibs model was a continuous time Markov Chain with three state. In the full sibs model, we look for the cumulative distribution function of the number of sub segment which have 2 IBD haplotypes from a segment of the chromosome which the length is t Morgan and the cumulative distribution function of the number of sub segment which have at least 1 IBD haplotypes from a segment of the chromosome which the length is t Morgan. This cumulative distribution function will be developed by the moment generating function.

  11. Lindeberg theorem for Gibbs-Markov dynamics

    NASA Astrophysics Data System (ADS)

    Denker, Manfred; Senti, Samuel; Zhang, Xuan

    2017-12-01

    A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs-Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs-Markov dynamical systems for convenience.

  12. On the Mathematical Consequences of Binning Spike Trains.

    PubMed

    Cessac, Bruno; Le Ny, Arnaud; Löcherbach, Eva

    2017-01-01

    We initiate a mathematical analysis of hidden effects induced by binning spike trains of neurons. Assuming that the original spike train has been generated by a discrete Markov process, we show that binning generates a stochastic process that is no longer Markov but is instead a variable-length Markov chain (VLMC) with unbounded memory. We also show that the law of the binned raster is a Gibbs measure in the DLR (Dobrushin-Lanford-Ruelle) sense coined in mathematical statistical mechanics. This allows the derivation of several important consequences on statistical properties of binned spike trains. In particular, we introduce the DLR framework as a natural setting to mathematically formalize anticipation, that is, to tell "how good" our nervous system is at making predictions. In a probabilistic sense, this corresponds to condition a process by its future, and we discuss how binning may affect our conclusions on this ability. We finally comment on the possible consequences of binning in the detection of spurious phase transitions or in the detection of incorrect evidence of criticality.

  13. Synchronization of discrete-time neural networks with delays and Markov jump topologies based on tracker information.

    PubMed

    Yang, Xinsong; Feng, Zhiguo; Feng, Jianwen; Cao, Jinde

    2017-01-01

    In this paper, synchronization in an array of discrete-time neural networks (DTNNs) with time-varying delays coupled by Markov jump topologies is considered. It is assumed that the switching information can be collected by a tracker with a certain probability and transmitted from the tracker to controller precisely. Then the controller selects suitable control gains based on the received switching information to synchronize the network. This new control scheme makes full use of received information and overcomes the shortcomings of mode-dependent and mode-independent control schemes. Moreover, the proposed control method includes both the mode-dependent and mode-independent control techniques as special cases. By using linear matrix inequality (LMI) method and designing new Lyapunov functionals, delay-dependent conditions are derived to guarantee that the DTNNs with Markov jump topologies to be asymptotically synchronized. Compared with existing results on Markov systems which are obtained by separately using mode-dependent and mode-independent methods, our result has great flexibility in practical applications. Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Exact goodness-of-fit tests for Markov chains.

    PubMed

    Besag, J; Mondal, D

    2013-06-01

    Goodness-of-fit tests are useful in assessing whether a statistical model is consistent with available data. However, the usual χ² asymptotics often fail, either because of the paucity of the data or because a nonstandard test statistic is of interest. In this article, we describe exact goodness-of-fit tests for first- and higher order Markov chains, with particular attention given to time-reversible ones. The tests are obtained by conditioning on the sufficient statistics for the transition probabilities and are implemented by simple Monte Carlo sampling or by Markov chain Monte Carlo. They apply both to single and to multiple sequences and allow a free choice of test statistic. Three examples are given. The first concerns multiple sequences of dry and wet January days for the years 1948-1983 at Snoqualmie Falls, Washington State, and suggests that standard analysis may be misleading. The second one is for a four-state DNA sequence and lends support to the original conclusion that a second-order Markov chain provides an adequate fit to the data. The last one is six-state atomistic data arising in molecular conformational dynamics simulation of solvated alanine dipeptide and points to strong evidence against a first-order reversible Markov chain at 6 picosecond time steps. © 2013, The International Biometric Society.

  15. Reliability Analysis of the Electrical Control System of Subsea Blowout Preventers Using Markov Models

    PubMed Central

    Liu, Zengkai; Liu, Yonghong; Cai, Baoping

    2014-01-01

    Reliability analysis of the electrical control system of a subsea blowout preventer (BOP) stack is carried out based on Markov method. For the subsea BOP electrical control system used in the current work, the 3-2-1-0 and 3-2-0 input voting schemes are available. The effects of the voting schemes on system performance are evaluated based on Markov models. In addition, the effects of failure rates of the modules and repair time on system reliability indices are also investigated. PMID:25409010

  16. Bayesian Analysis of Biogeography when the Number of Areas is Large

    PubMed Central

    Landis, Michael J.; Matzke, Nicholas J.; Moore, Brian R.; Huelsenbeck, John P.

    2013-01-01

    Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a “data-augmentation” approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data augmentation; historical biogeography; Markov chain Monte Carlo.] PMID:23736102

  17. Analysis of single-molecule fluorescence spectroscopic data with a Markov-modulated Poisson process.

    PubMed

    Jäger, Mark; Kiel, Alexander; Herten, Dirk-Peter; Hamprecht, Fred A

    2009-10-05

    We present a photon-by-photon analysis framework for the evaluation of data from single-molecule fluorescence spectroscopy (SMFS) experiments using a Markov-modulated Poisson process (MMPP). A MMPP combines a discrete (and hidden) Markov process with an additional Poisson process reflecting the observation of individual photons. The algorithmic framework is used to automatically analyze the dynamics of the complex formation and dissociation of Cu2+ ions with the bidentate ligand 2,2'-bipyridine-4,4'dicarboxylic acid in aqueous media. The process of association and dissociation of Cu2+ ions is monitored with SMFS. The dcbpy-DNA conjugate can exist in two or more distinct states which influence the photon emission rates. The advantage of a photon-by-photon analysis is that no information is lost in preprocessing steps. Different model complexities are investigated in order to best describe the recorded data and to determine transition rates on a photon-by-photon basis. The main strength of the method is that it allows to detect intermittent phenomena which are masked by binning and that are difficult to find using correlation techniques when they are short-lived.

  18. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts.

    PubMed

    Jia, Chen

    2017-09-01

    Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

  19. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts

    NASA Astrophysics Data System (ADS)

    Jia, Chen

    2017-09-01

    Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

  20. Plant calendar pattern based on rainfall forecast and the probability of its success in Deli Serdang regency of Indonesia

    NASA Astrophysics Data System (ADS)

    Darnius, O.; Sitorus, S.

    2018-03-01

    The objective of this study was to determine the pattern of plant calendar of three types of crops; namely, palawija, rice, andbanana, based on rainfall in Deli Serdang Regency. In the first stage, we forecasted rainfall by using time series analysis, and obtained appropriate model of ARIMA (1,0,0) (1,1,1)12. Based on the forecast result, we designed a plant calendar pattern for the three types of plant. Furthermore, the probability of success in the plant types following the plant calendar pattern was calculated by using the Markov process by discretizing the continuous rainfall data into three categories; namely, Below Normal (BN), Normal (N), and Above Normal (AN) to form the probability transition matrix. Finally, the combination of rainfall forecasting models and the Markov process were used to determine the pattern of cropping calendars and the probability of success in the three crops. This research used rainfall data of Deli Serdang Regency taken from the office of BMKG (Meteorologist Climatology and Geophysics Agency), Sampali Medan, Indonesia.

  1. Coherent-anomaly method in self-avoiding walk problems

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Suzuki, Masuo

    1988-06-01

    Self-avoiding walk (SAW), being a nonequilibrium cooperative phenomenon, is investigated with a finite-order-restricted-walk (finite-ORW or FORW) coherent-anomaly method (CAM). The coefficient β 1 r in the asymptotic form C nr≅ β 1 r λ n1 r for the total number C nr of r- ORW's with respect to the step number n is investigated for the first time. An asymptotic form for SAW's is thus obtained form the series of FORW approximants, C nr≅ brgμ n(1 + a/r) n, as the envelope curve C n≅b(ae/g) gμ nn g. Numerical results are given by C n≅1.424 n0.27884.1507 n and C n≅1.179 n0.158710.005 n for the plane triangular lattice and f.c.c. lattice, respectively. A good coincidence of the total numbers estimated from the above simple formulae with exact enumerations for finite-step SAW's implies that the essential nature of SAW (non-Markov process) can be understood from FORW (Markov process) in the CAM framework.

  2. SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.

    PubMed

    Chae, Seunghwan; Nguang, Sing Kiong

    2014-07-01

    In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology.

  3. Markov Chains For Testing Redundant Software

    NASA Technical Reports Server (NTRS)

    White, Allan L.; Sjogren, Jon A.

    1990-01-01

    Preliminary design developed for validation experiment that addresses problems unique to assuring extremely high quality of multiple-version programs in process-control software. Approach takes into account inertia of controlled system in sense it takes more than one failure of control program to cause controlled system to fail. Verification procedure consists of two steps: experimentation (numerical simulation) and computation, with Markov model for each step.

  4. Integrating hidden Markov model and PRAAT: a toolbox for robust automatic speech transcription

    NASA Astrophysics Data System (ADS)

    Kabir, A.; Barker, J.; Giurgiu, M.

    2010-09-01

    An automatic time-aligned phone transcription toolbox of English speech corpora has been developed. Especially the toolbox would be very useful to generate robust automatic transcription and able to produce phone level transcription using speaker independent models as well as speaker dependent models without manual intervention. The system is based on standard Hidden Markov Models (HMM) approach and it was successfully experimented over a large audiovisual speech corpus namely GRID corpus. One of the most powerful features of the toolbox is the increased flexibility in speech processing where the speech community would be able to import the automatic transcription generated by HMM Toolkit (HTK) into a popular transcription software, PRAAT, and vice-versa. The toolbox has been evaluated through statistical analysis on GRID data which shows that automatic transcription deviates by an average of 20 ms with respect to manual transcription.

  5. Oncology Modeling for Fun and Profit! Key Steps for Busy Analysts in Health Technology Assessment.

    PubMed

    Beca, Jaclyn; Husereau, Don; Chan, Kelvin K W; Hawkins, Neil; Hoch, Jeffrey S

    2018-01-01

    In evaluating new oncology medicines, two common modeling approaches are state transition (e.g., Markov and semi-Markov) and partitioned survival. Partitioned survival models have become more prominent in oncology health technology assessment processes in recent years. Our experience in conducting and evaluating models for economic evaluation has highlighted many important and practical pitfalls. As there is little guidance available on best practices for those who wish to conduct them, we provide guidance in the form of 'Key steps for busy analysts,' who may have very little time and require highly favorable results. Our guidance highlights the continued need for rigorous conduct and transparent reporting of economic evaluations regardless of the modeling approach taken, and the importance of modeling that better reflects reality, which includes better approaches to considering plausibility, estimating relative treatment effects, dealing with post-progression effects, and appropriate characterization of the uncertainty from modeling itself.

  6. Combination of Markov state models and kinetic networks for the analysis of molecular dynamics simulations of peptide folding.

    PubMed

    Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni

    2011-06-09

    Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.

  7. Microscopic theory for the time irreversibility and the entropy production

    NASA Astrophysics Data System (ADS)

    Chun, Hyun-Myung; Noh, Jae Dong

    2018-02-01

    In stochastic thermodynamics, the entropy production of a thermodynamic system is defined by the irreversibility measured by the logarithm of the ratio of the path probabilities in the forward and reverse processes. We derive the relation between the irreversibility and the entropy production starting from the deterministic equations of motion of the whole system consisting of a physical system and a surrounding thermal environment. The derivation assumes the Markov approximation that the environmental degrees of freedom equilibrate instantaneously. Our approach provides a guideline for the choice of the proper reverse process to a given forward process, especially when there exists a velocity-dependent force. We demonstrate our idea with an example of a charged particle in the presence of a time-varying magnetic field.

  8. Constructing 1/omegaalpha noise from reversible Markov chains.

    PubMed

    Erland, Sveinung; Greenwood, Priscilla E

    2007-09-01

    This paper gives sufficient conditions for the output of 1/omegaalpha noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/omegaalpha condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/omega noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/omegaalpha noise which also has a long memory.

  9. Reduced equations of motion for quantum systems driven by diffusive Markov processes.

    PubMed

    Sarovar, Mohan; Grace, Matthew D

    2012-09-28

    The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.

  10. Mathematical model of the loan portfolio dynamics in the form of Markov chain considering the process of new customers attraction

    NASA Astrophysics Data System (ADS)

    Bozhalkina, Yana

    2017-12-01

    Mathematical model of the loan portfolio structure change in the form of Markov chain is explored. This model considers in one scheme both the process of customers attraction, their selection based on the credit score, and loans repayment. The model describes the structure and volume of the loan portfolio dynamics, which allows to make medium-term forecasts of profitability and risk. Within the model corrective actions of bank management in order to increase lending volumes or to reduce the risk are formalized.

  11. A Bayesian model for visual space perception

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1972-01-01

    A model for visual space perception is proposed that contains desirable features in the theories of Gibson and Brunswik. This model is a Bayesian processor of proximal stimuli which contains three important elements: an internal model of the Markov process describing the knowledge of the distal world, the a priori distribution of the state of the Markov process, and an internal model relating state to proximal stimuli. The universality of the model is discussed and it is compared with signal detection theory models. Experimental results of Kinchla are used as a special case.

  12. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series.

    PubMed

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  13. Modeling long correlation times using additive binary Markov chains: Applications to wind generation time series

    NASA Astrophysics Data System (ADS)

    Weber, Juliane; Zachow, Christopher; Witthaut, Dirk

    2018-03-01

    Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.

  14. Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains.

    PubMed

    Reich, W; Scheuermann, G

    2012-12-01

    Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In our paper we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov-Chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies.

  15. Saccade selection when reward probability is dynamically manipulated using Markov chains

    PubMed Central

    Lovejoy, Lee P.; Krauzlis, Richard J.

    2012-01-01

    Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200–600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection. PMID:18330552

  16. Saccade selection when reward probability is dynamically manipulated using Markov chains.

    PubMed

    Nummela, Samuel U; Lovejoy, Lee P; Krauzlis, Richard J

    2008-05-01

    Markov chains (stochastic processes where probabilities are assigned based on the previous outcome) are commonly used to examine the transitions between behavioral states, such as those that occur during foraging or social interactions. However, relatively little is known about how well primates can incorporate knowledge about Markov chains into their behavior. Saccadic eye movements are an example of a simple behavior influenced by information about probability, and thus are good candidates for testing whether subjects can learn Markov chains. In addition, when investigating the influence of probability on saccade target selection, the use of Markov chains could provide an alternative method that avoids confounds present in other task designs. To investigate these possibilities, we evaluated human behavior on a task in which stimulus reward probabilities were assigned using a Markov chain. On each trial, the subject selected one of four identical stimuli by saccade; after selection, feedback indicated the rewarded stimulus. Each session consisted of 200-600 trials, and on some sessions, the reward magnitude varied. On sessions with a uniform reward, subjects (n = 6) learned to select stimuli at a frequency close to reward probability, which is similar to human behavior on matching or probability classification tasks. When informed that a Markov chain assigned reward probabilities, subjects (n = 3) learned to select the greatest reward probability more often, bringing them close to behavior that maximizes reward. On sessions where reward magnitude varied across stimuli, subjects (n = 6) demonstrated preferences for both greater reward probability and greater reward magnitude, resulting in a preference for greater expected value (the product of reward probability and magnitude). These results demonstrate that Markov chains can be used to dynamically assign probabilities that are rapidly exploited by human subjects during saccade target selection.

  17. Nonpoint Source Solute Transport Normal to Aquifer Bedding in Heterogeneous, Markov Chain Random Fields

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Harter, T.; Sivakumar, B.

    2005-12-01

    Facies-based geostatistical models have become important tools for the stochastic analysis of flow and transport processes in heterogeneous aquifers. However, little is known about the dependency of these processes on the parameters of facies- based geostatistical models. This study examines the nonpoint source solute transport normal to the major bedding plane in the presence of interconnected high conductivity (coarse- textured) facies in the aquifer medium and the dependence of the transport behavior upon the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute travel time probability distribution functions (pdfs) for solute flux from the water table to the bottom boundary (production horizon) of the aquifer. The cases examined include, two-, three-, and four-facies models with horizontal to vertical facies mean length anisotropy ratios, ek, from 25:1 to 300:1, and with a wide range of facies volume proportions (e.g, from 5% to 95% coarse textured facies). Predictions of travel time pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer, the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and - to a lesser degree - the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, travel time pdfs are not log- normally distributed as is often assumed. Also, macrodispersive behavior (variance of the travel time pdf) was found to not be a unique function of the conductivity variance. The skewness of the travel time pdf varied from negatively skewed to strongly positively skewed within the parameter range examined. We also show that the Markov chain approach may give significantly different travel time pdfs when compared to the more commonly used Gaussian random field approach even though the first and second order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport.

  18. A Bayesian nonparametric approach to dynamical noise reduction

    NASA Astrophysics Data System (ADS)

    Kaloudis, Konstantinos; Hatjispyros, Spyridon J.

    2018-06-01

    We propose a Bayesian nonparametric approach for the noise reduction of a given chaotic time series contaminated by dynamical noise, based on Markov Chain Monte Carlo methods. The underlying unknown noise process (possibly) exhibits heavy tailed behavior. We introduce the Dynamic Noise Reduction Replicator model with which we reconstruct the unknown dynamic equations and in parallel we replicate the dynamics under reduced noise level dynamical perturbations. The dynamic noise reduction procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time series are presented.

  19. Time series segmentation: a new approach based on Genetic Algorithm and Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Toreti, A.; Kuglitsch, F. G.; Xoplaki, E.; Luterbacher, J.

    2009-04-01

    The subdivision of a time series into homogeneous segments has been performed using various methods applied to different disciplines. In climatology, for example, it is accompanied by the well-known homogenization problem and the detection of artificial change points. In this context, we present a new method (GAMM) based on Hidden Markov Model (HMM) and Genetic Algorithm (GA), applicable to series of independent observations (and easily adaptable to autoregressive processes). A left-to-right hidden Markov model, estimating the parameters and the best-state sequence, respectively, with the Baum-Welch and Viterbi algorithms, was applied. In order to avoid the well-known dependence of the Baum-Welch algorithm on the initial condition, a Genetic Algorithm was developed. This algorithm is characterized by mutation, elitism and a crossover procedure implemented with some restrictive rules. Moreover the function to be minimized was derived following the approach of Kehagias (2004), i.e. it is the so-called complete log-likelihood. The number of states was determined applying a two-fold cross-validation procedure (Celeux and Durand, 2008). Being aware that the last issue is complex, and it influences all the analysis, a Multi Response Permutation Procedure (MRPP; Mielke et al., 1981) was inserted. It tests the model with K+1 states (where K is the state number of the best model) if its likelihood is close to K-state model. Finally, an evaluation of the GAMM performances, applied as a break detection method in the field of climate time series homogenization, is shown. 1. G. Celeux and J.B. Durand, Comput Stat 2008. 2. A. Kehagias, Stoch Envir Res 2004. 3. P.W. Mielke, K.J. Berry, G.W. Brier, Monthly Wea Rev 1981.

  20. MC3: Multi-core Markov-chain Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Cubillos, Patricio; Harrington, Joseph; Lust, Nate; Foster, AJ; Stemm, Madison; Loredo, Tom; Stevenson, Kevin; Campo, Chris; Hardin, Matt; Hardy, Ryan

    2016-10-01

    MC3 (Multi-core Markov-chain Monte Carlo) is a Bayesian statistics tool that can be executed from the shell prompt or interactively through the Python interpreter with single- or multiple-CPU parallel computing. It offers Markov-chain Monte Carlo (MCMC) posterior-distribution sampling for several algorithms, Levenberg-Marquardt least-squares optimization, and uniform non-informative, Jeffreys non-informative, or Gaussian-informative priors. MC3 can share the same value among multiple parameters and fix the value of parameters to constant values, and offers Gelman-Rubin convergence testing and correlated-noise estimation with time-averaging or wavelet-based likelihood estimation methods.

  1. An abstract specification language for Markov reliability models

    NASA Technical Reports Server (NTRS)

    Butler, R. W.

    1985-01-01

    Markov models can be used to compute the reliability of virtually any fault tolerant system. However, the process of delineating all of the states and transitions in a model of complex system can be devastatingly tedious and error-prone. An approach to this problem is presented utilizing an abstract model definition language. This high level language is described in a nonformal manner and illustrated by example.

  2. An abstract language for specifying Markov reliability models

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.

    1986-01-01

    Markov models can be used to compute the reliability of virtually any fault tolerant system. However, the process of delineating all of the states and transitions in a model of complex system can be devastatingly tedious and error-prone. An approach to this problem is presented utilizing an abstract model definition language. This high level language is described in a nonformal manner and illustrated by example.

  3. Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER

    PubMed Central

    2014-01-01

    Background HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm, which was already highly parallelized and optimized using Farrar’s striped processing pattern with Intel SSE2 instruction set extension. Results A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the innermost-cache size and of the dimension of the considered model. Conclusions The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput and offers a processing speedup as high as two times faster, depending on the model’s size. PMID:24884826

  4. UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis

    DTIC Science & Technology

    2013-06-01

    CRN Common Random Numbers CSV Comma Separated Values DoE Design of Experiment GLM Generalized Linear Model HVT High Value Target JAR Java ARchive JMF... Java Media Framework JRE Java runtime environment Mason Multi-Agent Simulator Of Networks MOE Measure Of Effectiveness MOP Measures Of Performance...with every set several times, and to write a CSV file with the results. Rather than scripting the agent behavior deterministically, the agents should

  5. Risk assessment by dynamic representation of vulnerability, exploitation, and impact

    NASA Astrophysics Data System (ADS)

    Cam, Hasan

    2015-05-01

    Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.

  6. A Markovian model of evolving world input-output network

    PubMed Central

    Isacchini, Giulio

    2017-01-01

    The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money. PMID:29065145

  7. A New Framework for Analysis of Coevolutionary Systems-Directed Graph Representation and Random Walks.

    PubMed

    Chong, Siang Yew; Tiňo, Peter; He, Jun; Yao, Xin

    2017-11-20

    Studying coevolutionary systems in the context of simplified models (i.e., games with pairwise interactions between coevolving solutions modeled as self plays) remains an open challenge since the rich underlying structures associated with pairwise-comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problems that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modeled as a specific type of Markov chains-random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provides the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled manner.

  8. Measuring Years of Inactivity, Years in Retirement, Time to Retirement, and Age at Retirement Within the Markov Model

    PubMed Central

    SKOOG, GARY R.; CIECKA, JAMES E.

    2010-01-01

    Retirement-related concepts are treated as random variables within Markov process models that capture multiple labor force entries and exits. The expected number of years spent outside of the labor force, expected years in retirement, and expected age at retirement are computed—all of which are of immense policy interest but have been heretofore reported with less precisely measured proxies. Expected age at retirement varies directly with a person’s age; but even younger people can expect to retire at ages substantially older than those commonly associated with retirement, such as age 60, 62, or 65. Between 1970 and 2003, men allocated most of their increase in life expectancy to increased time in retirement, but women allocated most of their increased life expectancy to labor force activity. Although people can exit and reenter the labor force at older ages, most 65-year-old men who are active in the labor force will not reenter after they eventually exit. At age 65, the probability that those who are inactive will reenter the labor force at some future time is .38 for men and .27 for women. Life expectancy at exact ages is decomposed into the sum of the expected time spent active and inactive in the labor force, and also as the sum of the expected time to labor force separation and time in retirement. PMID:20879680

  9. Model-based Clustering of Categorical Time Series with Multinomial Logit Classification

    NASA Astrophysics Data System (ADS)

    Frühwirth-Schnatter, Sylvia; Pamminger, Christoph; Winter-Ebmer, Rudolf; Weber, Andrea

    2010-09-01

    A common problem in many areas of applied statistics is to identify groups of similar time series in a panel of time series. However, distance-based clustering methods cannot easily be extended to time series data, where an appropriate distance-measure is rather difficult to define, particularly for discrete-valued time series. Markov chain clustering, proposed by Pamminger and Frühwirth-Schnatter [6], is an approach for clustering discrete-valued time series obtained by observing a categorical variable with several states. This model-based clustering method is based on finite mixtures of first-order time-homogeneous Markov chain models. In order to further explain group membership we present an extension to the approach of Pamminger and Frühwirth-Schnatter [6] by formulating a probabilistic model for the latent group indicators within the Bayesian classification rule by using a multinomial logit model. The parameters are estimated for a fixed number of clusters within a Bayesian framework using an Markov chain Monte Carlo (MCMC) sampling scheme representing a (full) Gibbs-type sampler which involves only draws from standard distributions. Finally, an application to a panel of Austrian wage mobility data is presented which leads to an interesting segmentation of the Austrian labour market.

  10. Theoretical restrictions on longest implicit time scales in Markov state models of biomolecular dynamics

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Pande, Vijay S.

    2018-01-01

    Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit time scale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule has never been formally proved. In this work, we present analytical results for the slowest time scale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit time scale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit time scale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit time scale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest time scales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.

  11. Multiscale hidden Markov models for photon-limited imaging

    NASA Astrophysics Data System (ADS)

    Nowak, Robert D.

    1999-06-01

    Photon-limited image analysis is often hindered by low signal-to-noise ratios. A novel Bayesian multiscale modeling and analysis method is developed in this paper to assist in these challenging situations. In addition to providing a very natural and useful framework for modeling an d processing images, Bayesian multiscale analysis is often much less computationally demanding compared to classical Markov random field models. This paper focuses on a probabilistic graph model called the multiscale hidden Markov model (MHMM), which captures the key inter-scale dependencies present in natural image intensities. The MHMM framework presented here is specifically designed for photon-limited imagin applications involving Poisson statistics, and applications to image intensity analysis are examined.

  12. Computer modeling of lung cancer diagnosis-to-treatment process

    PubMed Central

    Ju, Feng; Lee, Hyo Kyung; Osarogiagbon, Raymond U.; Yu, Xinhua; Faris, Nick

    2015-01-01

    We introduce an example of a rigorous, quantitative method for quality improvement in lung cancer care-delivery. Computer process modeling methods are introduced for lung cancer diagnosis, staging and treatment selection process. Two types of process modeling techniques, discrete event simulation (DES) and analytical models, are briefly reviewed. Recent developments in DES are outlined and the necessary data and procedures to develop a DES model for lung cancer diagnosis, leading up to surgical treatment process are summarized. The analytical models include both Markov chain model and closed formulas. The Markov chain models with its application in healthcare are introduced and the approach to derive a lung cancer diagnosis process model is presented. Similarly, the procedure to derive closed formulas evaluating the diagnosis process performance is outlined. Finally, the pros and cons of these methods are discussed. PMID:26380181

  13. Computing rates of Markov models of voltage-gated ion channels by inverting partial differential equations governing the probability density functions of the conducting and non-conducting states.

    PubMed

    Tveito, Aslak; Lines, Glenn T; Edwards, Andrew G; McCulloch, Andrew

    2016-07-01

    Markov models are ubiquitously used to represent the function of single ion channels. However, solving the inverse problem to construct a Markov model of single channel dynamics from bilayer or patch-clamp recordings remains challenging, particularly for channels involving complex gating processes. Methods for solving the inverse problem are generally based on data from voltage clamp measurements. Here, we describe an alternative approach to this problem based on measurements of voltage traces. The voltage traces define probability density functions of the functional states of an ion channel. These probability density functions can also be computed by solving a deterministic system of partial differential equations. The inversion is based on tuning the rates of the Markov models used in the deterministic system of partial differential equations such that the solution mimics the properties of the probability density function gathered from (pseudo) experimental data as well as possible. The optimization is done by defining a cost function to measure the difference between the deterministic solution and the solution based on experimental data. By evoking the properties of this function, it is possible to infer whether the rates of the Markov model are identifiable by our method. We present applications to Markov model well-known from the literature. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Parallel algorithms for simulating continuous time Markov chains

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Heidelberger, Philip

    1992-01-01

    We have previously shown that the mathematical technique of uniformization can serve as the basis of synchronization for the parallel simulation of continuous-time Markov chains. This paper reviews the basic method and compares five different methods based on uniformization, evaluating their strengths and weaknesses as a function of problem characteristics. The methods vary in their use of optimism, logical aggregation, communication management, and adaptivity. Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.

  15. On the Limiting Markov Process of Energy Exchanges in a Rarely Interacting Ball-Piston Gas

    NASA Astrophysics Data System (ADS)

    Bálint, Péter; Gilbert, Thomas; Nándori, Péter; Szász, Domokos; Tóth, Imre Péter

    2017-02-01

    We analyse the process of energy exchanges generated by the elastic collisions between a point-particle, confined to a two-dimensional cell with convex boundaries, and a `piston', i.e. a line-segment, which moves back and forth along a one-dimensional interval partially intersecting the cell. This model can be considered as the elementary building block of a spatially extended high-dimensional billiard modeling heat transport in a class of hybrid materials exhibiting the kinetics of gases and spatial structure of solids. Using heuristic arguments and numerical analysis, we argue that, in a regime of rare interactions, the billiard process converges to a Markov jump process for the energy exchanges and obtain the expression of its generator.

  16. A Lagrangian Transport Eulerian Reaction Spatial (LATERS) Markov Model for Prediction of Effective Bimolecular Reactive Transport

    NASA Astrophysics Data System (ADS)

    Sund, Nicole; Porta, Giovanni; Bolster, Diogo; Parashar, Rishi

    2017-11-01

    Prediction of effective transport for mixing-driven reactive systems at larger scales, requires accurate representation of mixing at small scales, which poses a significant upscaling challenge. Depending on the problem at hand, there can be benefits to using a Lagrangian framework, while in others an Eulerian might have advantages. Here we propose and test a novel hybrid model which attempts to leverage benefits of each. Specifically, our framework provides a Lagrangian closure required for a volume-averaging procedure of the advection diffusion reaction equation. This hybrid model is a LAgrangian Transport Eulerian Reaction Spatial Markov model (LATERS Markov model), which extends previous implementations of the Lagrangian Spatial Markov model and maps concentrations to an Eulerian grid to quantify closure terms required to calculate the volume-averaged reaction terms. The advantage of this approach is that the Spatial Markov model is known to provide accurate predictions of transport, particularly at preasymptotic early times, when assumptions required by traditional volume-averaging closures are least likely to hold; likewise, the Eulerian reaction method is efficient, because it does not require calculation of distances between particles. This manuscript introduces the LATERS Markov model and demonstrates by example its ability to accurately predict bimolecular reactive transport in a simple benchmark 2-D porous medium.

  17. Control Improvement for Jump-Diffusion Processes with Applications to Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeuerle, Nicole, E-mail: nicole.baeuerle@kit.edu; Rieder, Ulrich, E-mail: ulrich.rieder@uni-ulm.de

    2012-02-15

    We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control {pi}, a new control with a better value. If no improvement is possible, then {pi} is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard's policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.

  18. Theory and Applications of Weakly Interacting Markov Processes

    DTIC Science & Technology

    2018-02-03

    Moderate deviation principles for stochastic dynamical systems. Boston University, Math Colloquium, March 27, 2015. • Moderate Deviation Principles for...Markov chain approximation method. Submitted. [8] E. Bayraktar and M. Ludkovski. Optimal trade execution in illiquid markets. Math . Finance, 21(4):681...701, 2011. [9] E. Bayraktar and M. Ludkovski. Liquidation in limit order books with controlled intensity. Math . Finance, 24(4):627–650, 2014. [10] P.D

  19. Semi-Markov Models for Degradation-Based Reliability

    DTIC Science & Technology

    2010-01-01

    standard analysis techniques for Markov processes can be employed (cf. Whitt (1984), Altiok (1985), Perros (1994), and Osogami and Harchol-Balter...We want to approximate X by a PH random variable, sayY, with c.d.f. Ĥ. Marie (1980), Altiok (1985), Johnson (1993), Perros (1994), and Osogami and...provides a minimal representation when matching only two moments. By considering the guidance provided by Marie (1980), Whitt (1984), Altiok (1985), Perros

  20. Semi-Markov Approach to the Shipping Safety Modelling

    NASA Astrophysics Data System (ADS)

    Guze, Sambor; Smolarek, Leszek

    2012-02-01

    In the paper the navigational safety model of a ship on the open area has been studied under conditions of incomplete information. Moreover the structure of semi-Markov processes is used to analyse the stochastic ship safety according to the subjective acceptance of risk by the navigator. In addition, the navigator’s behaviour can be analysed by using the numerical simulation to estimate the probability of collision in the safety model.

  1. Markov Decision Process Measurement Model.

    PubMed

    LaMar, Michelle M

    2018-03-01

    Within-task actions can provide additional information on student competencies but are challenging to model. This paper explores the potential of using a cognitive model for decision making, the Markov decision process, to provide a mapping between within-task actions and latent traits of interest. Psychometric properties of the model are explored, and simulation studies report on parameter recovery within the context of a simple strategy game. The model is then applied to empirical data from an educational game. Estimates from the model are found to correlate more strongly with posttest results than a partial-credit IRT model based on outcome data alone.

  2. Estimating the ratios of the stationary distribution values for Markov chains modeling evolutionary algorithms.

    PubMed

    Mitavskiy, Boris; Cannings, Chris

    2009-01-01

    The evolutionary algorithm stochastic process is well-known to be Markovian. These have been under investigation in much of the theoretical evolutionary computing research. When the mutation rate is positive, the Markov chain modeling of an evolutionary algorithm is irreducible and, therefore, has a unique stationary distribution. Rather little is known about the stationary distribution. In fact, the only quantitative facts established so far tell us that the stationary distributions of Markov chains modeling evolutionary algorithms concentrate on uniform populations (i.e., those populations consisting of a repeated copy of the same individual). At the same time, knowing the stationary distribution may provide some information about the expected time it takes for the algorithm to reach a certain solution, assessment of the biases due to recombination and selection, and is of importance in population genetics to assess what is called a "genetic load" (see the introduction for more details). In the recent joint works of the first author, some bounds have been established on the rates at which the stationary distribution concentrates on the uniform populations. The primary tool used in these papers is the "quotient construction" method. It turns out that the quotient construction method can be exploited to derive much more informative bounds on ratios of the stationary distribution values of various subsets of the state space. In fact, some of the bounds obtained in the current work are expressed in terms of the parameters involved in all the three main stages of an evolutionary algorithm: namely, selection, recombination, and mutation.

  3. Hybrid stochastic simplifications for multiscale gene networks.

    PubMed

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-09-07

    Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  4. Super-stable Poissonian structures

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2012-10-01

    In this paper we characterize classes of Poisson processes whose statistical structures are super-stable. We consider a flow generated by a one-dimensional ordinary differential equation, and an ensemble of particles ‘surfing’ the flow. The particles start from random initial positions, and are propagated along the flow by stochastic ‘wave processes’ with general statistics and general cross correlations. Setting the initial positions to be Poisson processes, we characterize the classes of Poisson processes that render the particles’ positions—at all times, and invariantly with respect to the wave processes—statistically identical to their initial positions. These Poisson processes are termed ‘super-stable’ and facilitate the generalization of the notion of stationary distributions far beyond the realm of Markov dynamics.

  5. Memetic Approaches for Optimizing Hidden Markov Models: A Case Study in Time Series Prediction

    NASA Astrophysics Data System (ADS)

    Bui, Lam Thu; Barlow, Michael

    We propose a methodology for employing memetics (local search) within the framework of evolutionary algorithms to optimize parameters of hidden markov models. With this proposal, the rate and frequency of using local search are automatically changed over time either at a population or individual level. At the population level, we allow the rate of using local search to decay over time to zero (at the final generation). At the individual level, each individual is equipped with information of when it will do local search and for how long. This information evolves over time alongside the main elements of the chromosome representing the individual.

  6. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  7. Stochastic thermodynamics across scales: Emergent inter-attractoral discrete Markov jump process and its underlying continuous diffusion

    NASA Astrophysics Data System (ADS)

    Santillán, Moisés; Qian, Hong

    2013-01-01

    We investigate the internal consistency of a recently developed mathematical thermodynamic structure across scales, between a continuous stochastic nonlinear dynamical system, i.e., a diffusion process with Langevin and Fokker-Planck equations, and its emergent discrete, inter-attractoral Markov jump process. We analyze how the system’s thermodynamic state functions, e.g. free energy F, entropy S, entropy production ep, free energy dissipation Ḟ, etc., are related when the continuous system is described with coarse-grained discrete variables. It is shown that the thermodynamics derived from the underlying, detailed continuous dynamics gives rise to exactly the free-energy representation of Gibbs and Helmholtz. That is, the system’s thermodynamic structure is the same as if one only takes a middle road and starts with the natural discrete description, with the corresponding transition rates empirically determined. By natural we mean in the thermodynamic limit of a large system, with an inherent separation of time scales between inter- and intra-attractoral dynamics. This result generalizes a fundamental idea from chemistry, and the theory of Kramers, by incorporating thermodynamics: while a mechanical description of a molecule is in terms of continuous bond lengths and angles, chemical reactions are phenomenologically described by a discrete representation, in terms of exponential rate laws and a stochastic thermodynamics.

  8. Is There a Critical Distance for Fickian Transport? - a Statistical Approach to Sub-Fickian Transport Modelling in Porous Media

    NASA Astrophysics Data System (ADS)

    Most, S.; Nowak, W.; Bijeljic, B.

    2014-12-01

    Transport processes in porous media are frequently simulated as particle movement. This process can be formulated as a stochastic process of particle position increments. At the pore scale, the geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Recent experimental data suggest that we have not yet reached the end of the need to generalize, because particle increments show statistical dependency beyond linear correlation and over many time steps. The goal of this work is to better understand the validity regions of commonly made assumptions. We are investigating after what transport distances can we observe: A statistical dependence between increments, that can be modelled as an order-k Markov process, boils down to order 1. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks would start. A bivariate statistical dependence that simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW). Complete absence of statistical dependence (validity of classical PTRW/CTRW). The approach is to derive a statistical model for pore-scale transport from a powerful experimental data set via copula analysis. The model is formulated as a non-Gaussian, mutually dependent Markov process of higher order, which allows us to investigate the validity ranges of simpler models.

  9. Noise, chaos, and (ɛ, τ)-entropy per unit time

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre; Wang, Xiao-Jing

    1993-12-01

    The degree of dynamical randomness of different time processes is characterized in terms of the (ε, τ)-entropy per unit time. The (ε, τ)-entropy is the amount of information generated per unit time, at different scales τ of time and ε of the observables. This quantity generalizes the Kolmogorov-Sinai entropy per unit time from deterministic chaotic processes, to stochastic processes such as fluctuations in mesoscopic physico-chemical phenomena or strong turbulence in macroscopic spacetime dynamics. The random processes that are characterized include chaotic systems, Bernoulli and Markov chains, Poisson and birth-and-death processes, Ornstein-Uhlenbeck and Yaglom noises, fractional Brownian motions, different regimes of hydrodynamical turbulence, and the Lorentz-Boltzmann process of nonequilibrium statistical mechanics. We also extend the (ε, τ)-entropy to spacetime processes like cellular automata, Conway's game of life, lattice gas automata, coupled maps, spacetime chaos in partial differential equations, as well as the ideal, the Lorentz, and the hard sphere gases. Through these examples it is demonstrated that the (ε, τ)-entropy provides a unified quantitative measure of dynamical randomness to both chaos and noises, and a method to detect transitions between dynamical states of different degrees of randomness as a parameter of the system is varied.

  10. Information-Theoretic Performance Analysis of Sensor Networks via Markov Modeling of Time Series Data.

    PubMed

    Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K

    2018-06-01

    This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.

  11. Canonical Structure and Orthogonality of Forces and Currents in Irreversible Markov Chains

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2018-03-01

    We discuss a canonical structure that provides a unifying description of dynamical large deviations for irreversible finite state Markov chains (continuous time), Onsager theory, and Macroscopic Fluctuation Theory (MFT). For Markov chains, this theory involves a non-linear relation between probability currents and their conjugate forces. Within this framework, we show how the forces can be split into two components, which are orthogonal to each other, in a generalised sense. This splitting allows a decomposition of the pathwise rate function into three terms, which have physical interpretations in terms of dissipation and convergence to equilibrium. Similar decompositions hold for rate functions at level 2 and level 2.5. These results clarify how bounds on entropy production and fluctuation theorems emerge from the underlying dynamical rules. We discuss how these results for Markov chains are related to similar structures within MFT, which describes hydrodynamic limits of such microscopic models.

  12. Hybrid Markov-mass action law model for cell activation by rare binding events: Application to calcium induced vesicular release at neuronal synapses.

    PubMed

    Guerrier, Claire; Holcman, David

    2016-10-18

    Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.

  13. Controlling protein molecular dynamics: How to accelerate folding while preserving the native state

    NASA Astrophysics Data System (ADS)

    Jensen, Christian H.; Nerukh, Dmitry; Glen, Robert C.

    2008-12-01

    The dynamics of peptides and proteins generated by classical molecular dynamics (MD) is described by using a Markov model. The model is built by clustering the trajectory into conformational states and estimating transition probabilities between the states. Assuming that it is possible to influence the dynamics of the system by varying simulation parameters, we show how to use the Markov model to determine the parameter values that preserve the folded state of the protein and at the same time, reduce the folding time in the simulation. We investigate this by applying the method to two systems. The first system is an imaginary peptide described by given transition probabilities with a total folding time of 1μs. We find that only small changes in the transition probabilities are needed to accelerate (or decelerate) the folding. This implies that folding times for slowly folding peptides and proteins calculated using MD cannot be meaningfully compared to experimental results. The second system is a four residue peptide valine-proline-alanine-leucine in water. We control the dynamics of the transitions by varying the temperature and the atom masses. The simulation results show that it is possible to find the combinations of parameter values that accelerate the dynamics and at the same time preserve the native state of the peptide. A method for accelerating larger systems without performing simulations for the whole folding process is outlined.

  14. Multidimensional Latent Markov Models in a Developmental Study of Inhibitory Control and Attentional Flexibility in Early Childhood

    ERIC Educational Resources Information Center

    Bartolucci, Francesco; Solis-Trapala, Ivonne L.

    2010-01-01

    We demonstrate the use of a multidimensional extension of the latent Markov model to analyse data from studies with repeated binary responses in developmental psychology. In particular, we consider an experiment based on a battery of tests which was administered to pre-school children, at three time periods, in order to measure their inhibitory…

  15. Hidden Markov models for character recognition.

    PubMed

    Vlontzos, J A; Kung, S Y

    1992-01-01

    A hierarchical system for character recognition with hidden Markov model knowledge sources which solve both the context sensitivity problem and the character instantiation problem is presented. The system achieves 97-99% accuracy using a two-level architecture and has been implemented using a systolic array, thus permitting real-time (1 ms per character) multifont and multisize printed character recognition as well as handwriting recognition.

  16. Distributed fault detection over sensor networks with Markovian switching topologies

    NASA Astrophysics Data System (ADS)

    Ge, Xiaohua; Han, Qing-Long

    2014-05-01

    This paper deals with the distributed fault detection for discrete-time Markov jump linear systems over sensor networks with Markovian switching topologies. The sensors are scatteredly deployed in the sensor field and the fault detectors are physically distributed via a communication network. The system dynamics changes and sensing topology variations are modeled by a discrete-time Markov chain with incomplete mode transition probabilities. Each of these sensor nodes firstly collects measurement outputs from its all underlying neighboring nodes, processes these data in accordance with the Markovian switching topologies, and then transmits the processed data to the remote fault detector node. Network-induced delays and accumulated data packet dropouts are incorporated in the data transmission between the sensor nodes and the distributed fault detector nodes through the communication network. To generate localized residual signals, mode-independent distributed fault detection filters are proposed. By means of the stochastic Lyapunov functional approach, the residual system performance analysis is carried out such that the overall residual system is stochastically stable and the error between each residual signal and the fault signal is made as small as possible. Furthermore, a sufficient condition on the existence of the mode-independent distributed fault detection filters is derived in the simultaneous presence of incomplete mode transition probabilities, Markovian switching topologies, network-induced delays, and accumulated data packed dropouts. Finally, a stirred-tank reactor system is given to show the effectiveness of the developed theoretical results.

  17. On modeling animal movements using Brownian motion with measurement error.

    PubMed

    Pozdnyakov, Vladimir; Meyer, Thomas; Wang, Yu-Bo; Yan, Jun

    2014-02-01

    Modeling animal movements with Brownian motion (or more generally by a Gaussian process) has a long tradition in ecological studies. The recent Brownian bridge movement model (BBMM), which incorporates measurement errors, has been quickly adopted by ecologists because of its simplicity and tractability. We discuss some nontrivial properties of the discrete-time stochastic process that results from observing a Brownian motion with added normal noise at discrete times. In particular, we demonstrate that the observed sequence of random variables is not Markov. Consequently the expected occupation time between two successively observed locations does not depend on just those two observations; the whole path must be taken into account. Nonetheless, the exact likelihood function of the observed time series remains tractable; it requires only sparse matrix computations. The likelihood-based estimation procedure is described in detail and compared to the BBMM estimation.

  18. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    NASA Technical Reports Server (NTRS)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  19. Constructing 1/ωα noise from reversible Markov chains

    NASA Astrophysics Data System (ADS)

    Erland, Sveinung; Greenwood, Priscilla E.

    2007-09-01

    This paper gives sufficient conditions for the output of 1/ωα noise from reversible Markov chains on finite state spaces. We construct several examples exhibiting this behavior in a specified range of frequencies. We apply simple representations of the covariance function and the spectral density in terms of the eigendecomposition of the probability transition matrix. The results extend to hidden Markov chains. We generalize the results for aggregations of AR1-processes of C. W. J. Granger [J. Econometrics 14, 227 (1980)]. Given the eigenvalue function, there is a variety of ways to assign values to the states such that the 1/ωα condition is satisfied. We show that a random walk on a certain state space is complementary to the point process model of 1/ω noise of B. Kaulakys and T. Meskauskas [Phys. Rev. E 58, 7013 (1998)]. Passing to a continuous state space, we construct 1/ωα noise which also has a long memory.

  20. Strong diffusion formulation of Markov chain ensembles and its optimal weaker reductions

    NASA Astrophysics Data System (ADS)

    Güler, Marifi

    2017-10-01

    Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently under a common transition rate matrix. Our first formulation derives from Kurtz's strong approximation theorem of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978), 10.1016/0304-4149(78)90020-0] and, therefore, strongly converges with an error bound of the order of lnN /N for ensemble size N . The second formulation eliminates some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable increase in the error bound. The resultant formulations are supported by numerical simulations.

  1. Survival time of the susceptible-infected-susceptible infection process on a graph.

    PubMed

    van de Bovenkamp, Ruud; Van Mieghem, Piet

    2015-09-01

    The survival time T is the longest time that a virus, a meme, or a failure can propagate in a network. Using the hitting time of the absorbing state in an uniformized embedded Markov chain of the continuous-time susceptible-infected-susceptible (SIS) Markov process, we derive an exact expression for the average survival time E[T] of a virus in the complete graph K_{N} and the star graph K_{1,N-1}. By using the survival time, instead of the average fraction of infected nodes, we propose a new method to approximate the SIS epidemic threshold τ_{c} that, at least for K_{N} and K_{1,N-1}, correctly scales with the number of nodes N and that is superior to the epidemic threshold τ_{c}^{(1)}=1/λ_{1} of the N-intertwined mean-field approximation, where λ_{1} is the spectral radius of the adjacency matrix of the graph G. Although this new approximation of the epidemic threshold offers a more intuitive understanding of the SIS process, it remains difficult to compare outbreaks in different graph types. For example, the survival in an arbitrary graph seems upper bounded by the complete graph and lower bounded by the star graph as a function of the normalized effective infection rate τ/τ_{c}^{(1)}. However, when the average fraction of infected nodes is used as a basis for comparison, the virus will survive in the star graph longer than in any other graph, making the star graph the worst-case graph instead of the complete graph. Finally, in non-Markovian SIS, the distribution of the spreading attempts over the infectious period of a node influences the survival time, even if the expected number of spreading attempts during an infectious period (the non-Markovian equivalent of the effective infection rate) is kept constant. Both early and late infection attempts lead to shorter survival times. Interestingly, just as in Markovian SIS, the survival times appear to be exponentially distributed, regardless of the infection and curing time distributions.

  2. Stochastic modeling of sunshine number data

    NASA Astrophysics Data System (ADS)

    Brabec, Marek; Paulescu, Marius; Badescu, Viorel

    2013-11-01

    In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar Radiation Monitoring Station of the West University of Timisoara.

  3. Stochastic modeling of sunshine number data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Marek, E-mail: mbrabec@cs.cas.cz; Paulescu, Marius; Badescu, Viorel

    2013-11-13

    In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation ofmore » Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar Radiation Monitoring Station of the West University of Timisoara.« less

  4. A stochastic model for tumor geometry evolution during radiation therapy in cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yifang; Lee, Chi-Guhn; Chan, Timothy C. Y., E-mail: tcychan@mie.utoronto.ca

    2014-02-15

    Purpose: To develop mathematical models to predict the evolution of tumor geometry in cervical cancer undergoing radiation therapy. Methods: The authors develop two mathematical models to estimate tumor geometry change: a Markov model and an isomorphic shrinkage model. The Markov model describes tumor evolution by investigating the change in state (either tumor or nontumor) of voxels on the tumor surface. It assumes that the evolution follows a Markov process. Transition probabilities are obtained using maximum likelihood estimation and depend on the states of neighboring voxels. The isomorphic shrinkage model describes tumor shrinkage or growth in terms of layers of voxelsmore » on the tumor surface, instead of modeling individual voxels. The two proposed models were applied to data from 29 cervical cancer patients treated at Princess Margaret Cancer Centre and then compared to a constant volume approach. Model performance was measured using sensitivity and specificity. Results: The Markov model outperformed both the isomorphic shrinkage and constant volume models in terms of the trade-off between sensitivity (target coverage) and specificity (normal tissue sparing). Generally, the Markov model achieved a few percentage points in improvement in either sensitivity or specificity compared to the other models. The isomorphic shrinkage model was comparable to the Markov approach under certain parameter settings. Convex tumor shapes were easier to predict. Conclusions: By modeling tumor geometry change at the voxel level using a probabilistic model, improvements in target coverage and normal tissue sparing are possible. Our Markov model is flexible and has tunable parameters to adjust model performance to meet a range of criteria. Such a model may support the development of an adaptive paradigm for radiation therapy of cervical cancer.« less

  5. Revisiting Temporal Markov Chains for Continuum modeling of Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Delgoshaie, A. H.; Jenny, P.; Tchelepi, H.

    2017-12-01

    The transport of fluids in porous media is dominated by flow­-field heterogeneity resulting from the underlying permeability field. Due to the high uncertainty in the permeability field, many realizations of the reference geological model are used to describe the statistics of the transport phenomena in a Monte Carlo (MC) framework. There has been strong interest in working with stochastic formulations of the transport that are different from the standard MC approach. Several stochastic models based on a velocity process for tracer particle trajectories have been proposed. Previous studies have shown that for high variances of the log-conductivity, the stochastic models need to account for correlations between consecutive velocity transitions to predict dispersion accurately. The correlated velocity models proposed in the literature can be divided into two general classes of temporal and spatial Markov models. Temporal Markov models have been applied successfully to tracer transport in both the longitudinal and transverse directions. These temporal models are Stochastic Differential Equations (SDEs) with very specific drift and diffusion terms tailored for a specific permeability correlation structure. The drift and diffusion functions devised for a certain setup would not necessarily be suitable for a different scenario, (e.g., a different permeability correlation structure). The spatial Markov models are simple discrete Markov chains that do not require case specific assumptions. However, transverse spreading of contaminant plumes has not been successfully modeled with the available correlated spatial models. Here, we propose a temporal discrete Markov chain to model both the longitudinal and transverse dispersion in a two-dimensional domain. We demonstrate that these temporal Markov models are valid for different correlation structures without modification. Similar to the temporal SDEs, the proposed model respects the limited asymptotic transverse spreading of the plume in two-dimensional problems.

  6. On the distribution of interspecies correlation for Markov models of character evolution on Yule trees.

    PubMed

    Mulder, Willem H; Crawford, Forrest W

    2015-01-07

    Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, but it remains mostly unknown how these properties affect sequence and trait patterns observed at the tips of the phylogenetic tree. Understanding the interplay between speciation and mutation under simple models of evolution is essential for deriving valid phylogenetic inference methods and gives insight into the optimal design of phylogenetic studies. In this work, we derive the probability distribution of interspecies covariance under Brownian motion and Ornstein-Uhlenbeck models of phenotypic change on a Yule tree. We compute the probability distribution of the number of mutations shared between two randomly chosen taxa in a Yule tree under discrete Markov mutation models. Our results suggest summary measures of phylogenetic information content, illuminate the correlation between site patterns in sequences or traits of related organisms, and provide heuristics for experimental design and reconstruction of phylogenetic trees. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Composition of web services using Markov decision processes and dynamic programming.

    PubMed

    Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael

    2015-01-01

    We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity.

  8. Fast and asymptotic computation of the fixation probability for Moran processes on graphs.

    PubMed

    Alcalde Cuesta, F; González Sequeiros, P; Lozano Rojo, Á

    2015-03-01

    Evolutionary dynamics has been classically studied for homogeneous populations, but now there is a growing interest in the non-homogeneous case. One of the most important models has been proposed in Lieberman et al. (2005), adapting to a weighted directed graph the process described in Moran (1958). The Markov chain associated with the graph can be modified by erasing all non-trivial loops in its state space, obtaining the so-called Embedded Markov chain (EMC). The fixation probability remains unchanged, but the expected time to absorption (fixation or extinction) is reduced. In this paper, we shall use this idea to compute asymptotically the average fixation probability for complete bipartite graphs K(n,m). To this end, we firstly review some recent results on evolutionary dynamics on graphs trying to clarify some points. We also revisit the 'Star Theorem' proved in Lieberman et al. (2005) for the star graphs K(1,m). Theoretically, EMC techniques allow fast computation of the fixation probability, but in practice this is not always true. Thus, in the last part of the paper, we compare this algorithm with the standard Monte Carlo method for some kind of complex networks. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Analysis of single ion channel data incorporating time-interval omission and sampling

    PubMed Central

    The, Yu-Kai; Timmer, Jens

    2005-01-01

    Hidden Markov models are widely used to describe single channel currents from patch-clamp experiments. The inevitable anti-aliasing filter limits the time resolution of the measurements and therefore the standard hidden Markov model is not adequate anymore. The notion of time-interval omission has been introduced where brief events are not detected. The developed, exact solutions to this problem do not take into account that the measured intervals are limited by the sampling time. In this case the dead-time that specifies the minimal detectable interval length is not defined unambiguously. We show that a wrong choice of the dead-time leads to considerably biased estimates and present the appropriate equations to describe sampled data. PMID:16849220

  10. Assessing significance in a Markov chain without mixing.

    PubMed

    Chikina, Maria; Frieze, Alan; Pegden, Wesley

    2017-03-14

    We present a statistical test to detect that a presented state of a reversible Markov chain was not chosen from a stationary distribution. In particular, given a value function for the states of the Markov chain, we would like to show rigorously that the presented state is an outlier with respect to the values, by establishing a [Formula: see text] value under the null hypothesis that it was chosen from a stationary distribution of the chain. A simple heuristic used in practice is to sample ranks of states from long random trajectories on the Markov chain and compare these with the rank of the presented state; if the presented state is a [Formula: see text] outlier compared with the sampled ranks (its rank is in the bottom [Formula: see text] of sampled ranks), then this observation should correspond to a [Formula: see text] value of [Formula: see text] This significance is not rigorous, however, without good bounds on the mixing time of the Markov chain. Our test is the following: Given the presented state in the Markov chain, take a random walk from the presented state for any number of steps. We prove that observing that the presented state is an [Formula: see text]-outlier on the walk is significant at [Formula: see text] under the null hypothesis that the state was chosen from a stationary distribution. We assume nothing about the Markov chain beyond reversibility and show that significance at [Formula: see text] is best possible in general. We illustrate the use of our test with a potential application to the rigorous detection of gerrymandering in Congressional districting.

  11. Assessing significance in a Markov chain without mixing

    PubMed Central

    Chikina, Maria; Frieze, Alan; Pegden, Wesley

    2017-01-01

    We present a statistical test to detect that a presented state of a reversible Markov chain was not chosen from a stationary distribution. In particular, given a value function for the states of the Markov chain, we would like to show rigorously that the presented state is an outlier with respect to the values, by establishing a p value under the null hypothesis that it was chosen from a stationary distribution of the chain. A simple heuristic used in practice is to sample ranks of states from long random trajectories on the Markov chain and compare these with the rank of the presented state; if the presented state is a 0.1% outlier compared with the sampled ranks (its rank is in the bottom 0.1% of sampled ranks), then this observation should correspond to a p value of 0.001. This significance is not rigorous, however, without good bounds on the mixing time of the Markov chain. Our test is the following: Given the presented state in the Markov chain, take a random walk from the presented state for any number of steps. We prove that observing that the presented state is an ε-outlier on the walk is significant at p=2ε under the null hypothesis that the state was chosen from a stationary distribution. We assume nothing about the Markov chain beyond reversibility and show that significance at p≈ε is best possible in general. We illustrate the use of our test with a potential application to the rigorous detection of gerrymandering in Congressional districting. PMID:28246331

  12. Real-time human versus animal classification using pyro-electric sensor array and Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant

    2014-03-01

    In this paper, we propose a real-time human versus animal classification technique using a pyro-electric sensor array and Hidden Markov Model. The technique starts with the variational energy functional level set segmentation technique to separate the object from background. After segmentation, we convert the segmented object to a signal by considering column-wise pixel values and then finding the wavelet coefficients of the signal. HMMs are trained to statistically model the wavelet features of individuals through an expectation-maximization learning process. Human versus animal classifications are made by evaluating a set of new wavelet feature data against the trained HMMs using the maximum-likelihood criterion. Human and animal data acquired-using a pyro-electric sensor in different terrains are used for performance evaluation of the algorithms. Failures of the computationally effective SURF feature based approach that we develop in our previous research are because of distorted images produced when the object runs very fast or if the temperature difference between target and background is not sufficient to accurately profile the object. We show that wavelet based HMMs work well for handling some of the distorted profiles in the data set. Further, HMM achieves improved classification rate over the SURF algorithm with almost the same computational time.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Intravaia, F.; Behunin, R. O.; Henkel, C.

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  14. Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.

    PubMed

    Lu, Li; He, Bing; Man, Chuntao; Wang, Shun

    2015-04-01

    In this paper, the synchronization problem of coupled Markov jump genetic oscillator networks with time-varying delays and external disturbances is investigated. By introducing the drive-response concept, a novel mode-dependent control scheme is proposed, which guarantees that the synchronization can be achieved. By applying the Lyapunov-Krasovskii functional method and stochastic analysis, sufficient conditions are established based on passivity theory in terms of linear matrix inequalities. A numerical example is provided to demonstrate the effectiveness of our theoretical results. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Numerical solutions for patterns statistics on Markov chains.

    PubMed

    Nuel, Gregory

    2006-01-01

    We propose here a review of the methods available to compute pattern statistics on text generated by a Markov source. Theoretical, but also numerical aspects are detailed for a wide range of techniques (exact, Gaussian, large deviations, binomial and compound Poisson). The SPatt package (Statistics for Pattern, free software available at http://stat.genopole.cnrs.fr/spatt) implementing all these methods is then used to compare all these approaches in terms of computational time and reliability in the most complete pattern statistics benchmark available at the present time.

  16. Discrete-time Markovian stochastic Petri nets

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco

    1995-01-01

    We revisit and extend the original definition of discrete-time stochastic Petri nets, by allowing the firing times to have a 'defective discrete phase distribution'. We show that this formalism still corresponds to an underlying discrete-time Markov chain. The structure of the state for this process describes both the marking of the Petri net and the phase of the firing time for each transition, resulting in a large state space. We then modify the well-known power method to perform a transient analysis even when the state space is infinite, subject to the condition that only a finite number of states can be reached in a finite amount of time. Since the memory requirements might still be excessive, we suggest a bounding technique based on truncation.

  17. Patchwork sampling of stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kürsten, Rüdiger; Behn, Ulrich

    2016-03-01

    We propose a method to sample stationary properties of solutions of stochastic differential equations, which is accurate and efficient if there are rarely visited regions or rare transitions between distinct regions of the state space. The method is based on a complete, nonoverlapping partition of the state space into patches on which the stochastic process is ergodic. On each of these patches we run simulations of the process strictly truncated to the corresponding patch, which allows effective simulations also in rarely visited regions. The correct weight for each patch is obtained by counting the attempted transitions between all different patches. The results are patchworked to cover the whole state space. We extend the concept of truncated Markov chains which is originally formulated for processes which obey detailed balance to processes not fulfilling detailed balance. The method is illustrated by three examples, describing the one-dimensional diffusion of an overdamped particle in a double-well potential, a system of many globally coupled overdamped particles in double-well potentials subject to additive Gaussian white noise, and the overdamped motion of a particle on the circle in a periodic potential subject to a deterministic drift and additive noise. In an appendix we explain how other well-known Markov chain Monte Carlo algorithms can be related to truncated Markov chains.

  18. Potential-based dynamical reweighting for Markov state models of protein dynamics.

    PubMed

    Weber, Jeffrey K; Pande, Vijay S

    2015-06-09

    As simulators attempt to replicate the dynamics of large cellular components in silico, problems related to sampling slow, glassy degrees of freedom in molecular systems will be amplified manyfold. It is tempting to augment simulation techniques with external biases to overcome such barriers with ease; biased simulations, however, offer little utility unless equilibrium properties of interest (both kinetic and thermodynamic) can be recovered from the data generated. In this Article, we present a general scheme that harnesses the power of Markov state models (MSMs) to extract equilibrium kinetic properties from molecular dynamics trajectories collected on biased potential energy surfaces. We first validate our reweighting protocol on a simple two-well potential, and we proceed to test our method on potential-biased simulations of the Trp-cage miniprotein. In both cases, we find that equilibrium populations, time scales, and dynamical processes are reliably reproduced as compared to gold standard, unbiased data sets. We go on to discuss the limitations of our dynamical reweighting approach, and we suggest auspicious target systems for further application.

  19. Upscaling transport of a reacting solute through a peridocially converging-diverging channel at pre-asymptotic times

    NASA Astrophysics Data System (ADS)

    Sund, Nicole L.; Bolster, Diogo; Dawson, Clint

    2015-11-01

    In this study we extend the Spatial Markov model, which has been successfully used to upscale conservative transport across a diverse range of porous media flows, to test if it can accurately upscale reactive transport, defined by a spatially heterogeneous first order degradation rate. We test the model in a well known highly simplified geometry, commonly considered as an idealized pore or fracture structure, a periodic channel with wavy boundaries. The edges of the flow domain have a layer through which there is no flow, but in which diffusion of a solute still occurs. Reactions are confined to this region. We demonstrate that the Spatial Markov model, an upscaled random walk model that enforces correlation between successive jumps, can reproduce breakthrough curves measured from microscale simulations that explicitly resolve all pertinent processes. We also demonstrate that a similar random walk model that does not enforce successive correlations is unable to reproduce all features of the measured breakthrough curves.

  20. Two fundamental questions about protein evolution.

    PubMed

    Penny, David; Zhong, Bojian

    2015-12-01

    Two basic questions are considered that approach protein evolution from different directions; the problems arising from using Markov models for the deeper divergences, and then the origin of proteins themselves. The real problem for the first question (going backwards in time) is that at deeper phylogenies the Markov models of sequence evolution must lose information exponentially at deeper divergences, and several testable methods are suggested that should help resolve these deeper divergences. For the second question (coming forwards in time) a problem is that most models for the origin of protein synthesis do not give a role for the very earliest stages of the process. From our knowledge of the importance of replication accuracy in limiting the length of a coding molecule, a testable hypothesis is proposed. The length of the code, the code itself, and tRNAs would all have prior roles in increasing the accuracy of RNA replication; thus proteins would have been formed only after the tRNAs and the length of the triplet code are already formed. Both questions lead to testable predictions. Copyright © 2014 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Milestoning with coarse memory

    NASA Astrophysics Data System (ADS)

    Hawk, Alexander T.

    2013-04-01

    Milestoning is a method used to calculate the kinetics of molecular processes occurring on timescales inaccessible to traditional molecular dynamics (MD) simulations. In the method, the phase space of the system is partitioned by milestones (hypersurfaces), trajectories are initialized on each milestone, and short MD simulations are performed to calculate transitions between neighboring milestones. Long trajectories of the system are then reconstructed with a semi-Markov process from the observed statistics of transition. The procedure is typically justified by the assumption that trajectories lose memory between crossing successive milestones. Here we present Milestoning with Coarse Memory (MCM), a generalization of Milestoning that relaxes the memory loss assumption of conventional Milestoning. In the method, milestones are defined and sample transitions are calculated in the standard Milestoning way. Then, after it is clear where trajectories sample milestones, the milestones are broken up into distinct neighborhoods (clusters), and each sample transition is associated with two clusters: the cluster containing the coordinates the trajectory was initialized in, and the cluster (on the terminal milestone) containing trajectory's final coordinates. Long trajectories of the system are then reconstructed with a semi-Markov process in an extended state space built from milestone and cluster indices. To test the method, we apply it to a process that is particularly ill suited for Milestoning: the dynamics of a polymer confined to a narrow cylinder. We show that Milestoning calculations of both the mean first passage time and the mean transit time of reversal—which occurs when the end-to-end vector reverses direction—are significantly improved when MCM is applied. Finally, we note the overhead of performing MCM on top of conventional Milestoning is negligible.

  2. Covariate adjustment of event histories estimated from Markov chains: the additive approach.

    PubMed

    Aalen, O O; Borgan, O; Fekjaer, H

    2001-12-01

    Markov chain models are frequently used for studying event histories that include transitions between several states. An empirical transition matrix for nonhomogeneous Markov chains has previously been developed, including a detailed statistical theory based on counting processes and martingales. In this article, we show how to estimate transition probabilities dependent on covariates. This technique may, e.g., be used for making estimates of individual prognosis in epidemiological or clinical studies. The covariates are included through nonparametric additive models on the transition intensities of the Markov chain. The additive model allows for estimation of covariate-dependent transition intensities, and again a detailed theory exists based on counting processes. The martingale setting now allows for a very natural combination of the empirical transition matrix and the additive model, resulting in estimates that can be expressed as stochastic integrals, and hence their properties are easily evaluated. Two medical examples will be given. In the first example, we study how the lung cancer mortality of uranium miners depends on smoking and radon exposure. In the second example, we study how the probability of being in response depends on patient group and prophylactic treatment for leukemia patients who have had a bone marrow transplantation. A program in R and S-PLUS that can carry out the analyses described here has been developed and is freely available on the Internet.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  4. MontePython 3: Parameter inference code for cosmology

    NASA Astrophysics Data System (ADS)

    Brinckmann, Thejs; Lesgourgues, Julien; Audren, Benjamin; Benabed, Karim; Prunet, Simon

    2018-05-01

    MontePython 3 provides numerous ways to explore parameter space using Monte Carlo Markov Chain (MCMC) sampling, including Metropolis-Hastings, Nested Sampling, Cosmo Hammer, and a Fisher sampling method. This improved version of the Monte Python (ascl:1307.002) parameter inference code for cosmology offers new ingredients that improve the performance of Metropolis-Hastings sampling, speeding up convergence and offering significant time improvement in difficult runs. Additional likelihoods and plotting options are available, as are post-processing algorithms such as Importance Sampling and Adding Derived Parameter.

  5. Learning In networks

    NASA Technical Reports Server (NTRS)

    Buntine, Wray L.

    1995-01-01

    Intelligent systems require software incorporating probabilistic reasoning, and often times learning. Networks provide a framework and methodology for creating this kind of software. This paper introduces network models based on chain graphs with deterministic nodes. Chain graphs are defined as a hierarchical combination of Bayesian and Markov networks. To model learning, plates on chain graphs are introduced to model independent samples. The paper concludes by discussing various operations that can be performed on chain graphs with plates as a simplification process or to generate learning algorithms.

  6. SIMULATION FROM ENDPOINT-CONDITIONED, CONTINUOUS-TIME MARKOV CHAINS ON A FINITE STATE SPACE, WITH APPLICATIONS TO MOLECULAR EVOLUTION.

    PubMed

    Hobolth, Asger; Stone, Eric A

    2009-09-01

    Analyses of serially-sampled data often begin with the assumption that the observations represent discrete samples from a latent continuous-time stochastic process. The continuous-time Markov chain (CTMC) is one such generative model whose popularity extends to a variety of disciplines ranging from computational finance to human genetics and genomics. A common theme among these diverse applications is the need to simulate sample paths of a CTMC conditional on realized data that is discretely observed. Here we present a general solution to this sampling problem when the CTMC is defined on a discrete and finite state space. Specifically, we consider the generation of sample paths, including intermediate states and times of transition, from a CTMC whose beginning and ending states are known across a time interval of length T. We first unify the literature through a discussion of the three predominant approaches: (1) modified rejection sampling, (2) direct sampling, and (3) uniformization. We then give analytical results for the complexity and efficiency of each method in terms of the instantaneous transition rate matrix Q of the CTMC, its beginning and ending states, and the length of sampling time T. In doing so, we show that no method dominates the others across all model specifications, and we give explicit proof of which method prevails for any given Q, T, and endpoints. Finally, we introduce and compare three applications of CTMCs to demonstrate the pitfalls of choosing an inefficient sampler.

  7. Density Control of Multi-Agent Systems with Safety Constraints: A Markov Chain Approach

    NASA Astrophysics Data System (ADS)

    Demirer, Nazli

    The control of systems with autonomous mobile agents has been a point of interest recently, with many applications like surveillance, coverage, searching over an area with probabilistic target locations or exploring an area. In all of these applications, the main goal of the swarm is to distribute itself over an operational space to achieve mission objectives specified by the density of swarm. This research focuses on the problem of controlling the distribution of multi-agent systems considering a hierarchical control structure where the whole swarm coordination is achieved at the high-level and individual vehicle/agent control is managed at the low-level. High-level coordination algorithms uses macroscopic models that describes the collective behavior of the whole swarm and specify the agent motion commands, whose execution will lead to the desired swarm behavior. The low-level control laws execute the motion to follow these commands at the agent level. The main objective of this research is to develop high-level decision control policies and algorithms to achieve physically realizable commanding of the agents by imposing mission constraints on the distribution. We also make some connections with decentralized low-level motion control. This dissertation proposes a Markov chain based method to control the density distribution of the whole system where the implementation can be achieved in a decentralized manner with no communication between agents since establishing communication with large number of agents is highly challenging. The ultimate goal is to guide the overall density distribution of the system to a prescribed steady-state desired distribution while satisfying desired transition and safety constraints. Here, the desired distribution is determined based on the mission requirements, for example in the application of area search, the desired distribution should match closely with the probabilistic target locations. The proposed method is applicable for both systems with a single agent and systems with large number of agents due to the probabilistic nature, where the probability distribution of each agent's state evolves according to a finite-state and discrete-time Markov chain (MC). Hence, designing proper decision control policies requires numerically tractable solution methods for the synthesis of Markov chains. The synthesis problem has the form of a Linear Matrix Inequality Problem (LMI), with LMI formulation of the constraints. To this end, we propose convex necessary and sufficient conditions for safety constraints in Markov chains, which is a novel result in the Markov chain literature. In addition to LMI-based, offline, Markov matrix synthesis method, we also propose a QP-based, online, method to compute a time-varying Markov matrix based on the real-time density feedback. Both problems are convex optimization problems that can be solved in a reliable and tractable way, utilizing existing tools in the literature. A Low Earth Orbit (LEO) swarm simulations are presented to validate the effectiveness of the proposed algorithms. Another problem tackled as a part of this research is the generalization of the density control problem to autonomous mobile agents with two control modes: ON and OFF. Here, each mode consists of a (possibly overlapping) finite set of actions, that is, there exist a set of actions for the ON mode and another set for the OFF mode. We give formulation for a new Markov chain synthesis problem, with additional measurements for the state transitions, where a policy is designed to ensure desired safety and convergence properties for the underlying Markov chain.

  8. Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution

    PubMed Central

    Crawford, Forrest W.; Suchard, Marc A.

    2011-01-01

    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with n current particles, a new particle is born with instantaneous rate λn and a particle dies with instantaneous rate μn. Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics. PMID:21984359

  9. Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Schunk, R. W.; Sojka, J. J.; Thompson, D. C.; Zhu, L.

    2006-11-01

    The Utah State University Gauss-Markov Kalman Filter (GMKF) was developed as part of the Global Assimilation of Ionospheric Measurements (GAIM) program. The GMKF uses a physics-based model of the ionosphere and a Gauss-Markov Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) observations. The physics-based model is the Ionospheric Forecast Model (IFM), which accounts for five ion species and covers the E region, F region, and the topside from 90 to 1400 km altitude. Within the GMKF, the IFM derived ionospheric densities constitute a background density field on which perturbations are superimposed based on the available data and their errors. In the current configuration, the GMKF assimilates slant total electron content (TEC) from a variable number of global positioning satellite (GPS) ground sites, bottomside electron density (Ne) profiles from a variable number of ionosondes, in situ Ne from four Defense Meteorological Satellite Program (DMSP) satellites, and nighttime line-of-sight ultraviolet (UV) radiances measured by satellites. To test the GMKF for real-time operations and to validate its ionospheric density specifications, we have tested the model performance for a variety of geophysical conditions. During these model runs various combination of data types and data quantities were assimilated. To simulate real-time operations, the model ran continuously and automatically and produced three-dimensional global electron density distributions in 15 min increments. In this paper we will describe the Gauss-Markov Kalman filter model and present results of our validation study, with an emphasis on comparisons with independent observations.

  10. Recursive utility in a Markov environment with stochastic growth

    PubMed Central

    Hansen, Lars Peter; Scheinkman, José A.

    2012-01-01

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility. PMID:22778428

  11. Recursive utility in a Markov environment with stochastic growth.

    PubMed

    Hansen, Lars Peter; Scheinkman, José A

    2012-07-24

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.

  12. Impact of AGN and nebular emission on the estimation of stellar properties of galaxies

    NASA Astrophysics Data System (ADS)

    Cardoso, Leandro Saul Machado

    The aim of this PhD thesis is to apply tools from stochastic modeling to wind power, speed and direction data, in order to reproduce their empirically observed statistical features. In particular, the wind energy conversion process is modeled as a Langevin process, which allows to describe its dynamics with only two coefficients, namely the drift and the diffusion coefficients. Both coefficients can be directly derived from collected time-series and this so-called Langevin method has proved to be successful in several cases. However, the application to empirical data subjected to measurement noise sources in general and the case of wind turbines in particular poses several challenges and this thesis proposes methods to tackle them. To apply the Langevin method it is necessary to have data that is both stationary and Markovian, which is typically not the case. Moreover, the available time-series are often short and have missing data points, which affects the estimation of the coefficients. This thesis proposes a new methodology to overcome these issues by modeling the original data with a Markov chain prior to the Langevin analysis. The latter is then performed on data synthesized from the Markov chain model of wind data. Moreover, it is shown that the Langevin method can be applied to low sample rate wind data, namely 10-minute average data. The method is then extended in two different directions. First, to tackle non-stationary data sets. Wind data often exhibits daily patterns due to the solar cycle and this thesis proposes a method to consider these daily patterns in the analysis of the timeseries. For that, a cyclic Markov model is developed for the data synthesis step and subsequently, for each time of the day, a separate Langevin analysis of the wind energy conversion system is performed. Second, to resolve the dynamical stochastic process in the case it is spoiled by measurement noise. When working with measurement data a challenge can be posed by the quality of the data in itself. Often measurement devices add noise to the time-series that is different from the intrinsic noise of the underlying stochastic process and can even be time-correlated. This spoiled data, analyzed with the Langevin method leads to distorted drift and diffusion coefficients. This thesis proposes a direct, parameter-free way to extract the Langevin coefficients as well as the parameters of the measurement noise from spoiled data. Put in a more general context, the method allows to disentangle two superposed independent stochastic processes. Finally, since a characteristic of wind energy that motivates this stochastic modeling framework is the fluctuating nature of wind itself, several issues raise when it comes to reserve commitment or bidding on the liberalized energy market. This thesis proposes a measure to quantify the risk-returnratio that is associated to wind power production conditioned to a wind park state. The proposed state of the wind park takes into account data from all wind turbines constituting the park and also their correlations at different time lags. None

  13. Hybrid stochastic simplifications for multiscale gene networks

    PubMed Central

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-01-01

    Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554

  14. Quantum Markov chains

    NASA Astrophysics Data System (ADS)

    Gudder, Stanley

    2008-07-01

    A new approach to quantum Markov chains is presented. We first define a transition operation matrix (TOM) as a matrix whose entries are completely positive maps whose column sums form a quantum operation. A quantum Markov chain is defined to be a pair (G,E) where G is a directed graph and E =[Eij] is a TOM whose entry Eij labels the edge from vertex j to vertex i. We think of the vertices of G as sites that a quantum system can occupy and Eij is the transition operation from site j to site i in one time step. The discrete dynamics of the system is obtained by iterating the TOM E. We next consider a special type of TOM called a transition effect matrix. In this case, there are two types of dynamics, a state dynamics and an operator dynamics. Although these two types are not identical, they are statistically equivalent. We next give examples that illustrate various properties of quantum Markov chains. We conclude by showing that our formalism generalizes the usual framework for quantum random walks.

  15. Hidden Markov models and other machine learning approaches in computational molecular biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldi, P.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In thismore » tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.« less

  16. Decentralized control of Markovian decision processes: Existence Sigma-admissable policies

    NASA Technical Reports Server (NTRS)

    Greenland, A.

    1980-01-01

    The problem of formulating and analyzing Markov decision models having decentralized information and decision patterns is examined. Included are basic examples as well as the mathematical preliminaries needed to understand Markov decision models and, further, to superimpose decentralized decision structures on them. The notion of a variance admissible policy for the model is introduced and it is proved that there exist (possibly nondeterministic) optional policies from the class of variance admissible policies. Directions for further research are explored.

  17. Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects

    PubMed Central

    Baumann, Hendrik; Sandmann, Werner

    2016-01-01

    Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity. PMID:27010993

  18. Structured Modeling and Analysis of Stochastic Epidemics with Immigration and Demographic Effects.

    PubMed

    Baumann, Hendrik; Sandmann, Werner

    2016-01-01

    Stochastic epidemics with open populations of variable population sizes are considered where due to immigration and demographic effects the epidemic does not eventually die out forever. The underlying stochastic processes are ergodic multi-dimensional continuous-time Markov chains that possess unique equilibrium probability distributions. Modeling these epidemics as level-dependent quasi-birth-and-death processes enables efficient computations of the equilibrium distributions by matrix-analytic methods. Numerical examples for specific parameter sets are provided, which demonstrates that this approach is particularly well-suited for studying the impact of varying rates for immigration, births, deaths, infection, recovery from infection, and loss of immunity.

  19. Non-Markovianity in atom-surface dispersion forces

    DOE PAGES

    Intravaia, F.; Behunin, R. O.; Henkel, C.; ...

    2016-10-18

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  20. Markov Chain Analysis of Musical Dice Games

    NASA Astrophysics Data System (ADS)

    Volchenkov, D.; Dawin, J. R.

    2012-07-01

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  1. Musical Markov Chains

    NASA Astrophysics Data System (ADS)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  2. Non-Markovianity in atom-surface dispersion forces

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.

    2016-10-01

    We discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. In particular, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. Our findings highlight the importance of non-Markovian effects in dispersion interactions.

  3. Estimating the Earthquake Source Time Function by Markov Chain Monte Carlo Sampling

    NASA Astrophysics Data System (ADS)

    Dȩbski, Wojciech

    2008-07-01

    Many aspects of earthquake source dynamics like dynamic stress drop, rupture velocity and directivity, etc. are currently inferred from the source time functions obtained by a deconvolution of the propagation and recording effects from seismograms. The question of the accuracy of obtained results remains open. In this paper we address this issue by considering two aspects of the source time function deconvolution. First, we propose a new pseudo-spectral parameterization of the sought function which explicitly takes into account the physical constraints imposed on the sought functions. Such parameterization automatically excludes non-physical solutions and so improves the stability and uniqueness of the deconvolution. Secondly, we demonstrate that the Bayesian approach to the inverse problem at hand, combined with an efficient Markov Chain Monte Carlo sampling technique, is a method which allows efficient estimation of the source time function uncertainties. The key point of the approach is the description of the solution of the inverse problem by the a posteriori probability density function constructed according to the Bayesian (probabilistic) theory. Next, the Markov Chain Monte Carlo sampling technique is used to sample this function so the statistical estimator of a posteriori errors can be easily obtained with minimal additional computational effort with respect to modern inversion (optimization) algorithms. The methodological considerations are illustrated by a case study of the mining-induced seismic event of the magnitude M L ≈3.1 that occurred at Rudna (Poland) copper mine. The seismic P-wave records were inverted for the source time functions, using the proposed algorithm and the empirical Green function technique to approximate Green functions. The obtained solutions seem to suggest some complexity of the rupture process with double pulses of energy release. However, the error analysis shows that the hypothesis of source complexity is not justified at the 95% confidence level. On the basis of the analyzed event we also show that the separation of the source inversion into two steps introduces limitations on the completeness of the a posteriori error analysis.

  4. Markov Chain Monte Carlo in the Analysis of Single-Molecule Experimental Data

    NASA Astrophysics Data System (ADS)

    Kou, S. C.; Xie, X. Sunney; Liu, Jun S.

    2003-11-01

    This article provides a Bayesian analysis of the single-molecule fluorescence lifetime experiment designed to probe the conformational dynamics of a single DNA hairpin molecule. The DNA hairpin's conformational change is initially modeled as a two-state Markov chain, which is not observable and has to be indirectly inferred. The Brownian diffusion of the single molecule, in addition to the hidden Markov structure, further complicates the matter. We show that the analytical form of the likelihood function can be obtained in the simplest case and a Metropolis-Hastings algorithm can be designed to sample from the posterior distribution of the parameters of interest and to compute desired estiamtes. To cope with the molecular diffusion process and the potentially oscillating energy barrier between the two states of the DNA hairpin, we introduce a data augmentation technique to handle both the Brownian diffusion and the hidden Ornstein-Uhlenbeck process associated with the fluctuating energy barrier, and design a more sophisticated Metropolis-type algorithm. Our method not only increases the estimating resolution by several folds but also proves to be successful for model discrimination.

  5. Application of stochastic automata networks for creation of continuous time Markov chain models of voltage gating of gap junction channels.

    PubMed

    Snipas, Mindaugas; Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Paulauskas, Nerijus; Bukauskas, Feliksas F

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ~20 times.

  6. Evaluation methodologies for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.

    1984-01-01

    The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.

  7. Recombination Processes and Nonlinear Markov Chains.

    PubMed

    Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail

    2016-09-01

    Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.

  8. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  9. Forecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkey.

    PubMed

    Bozkaya, A Gonca; Balcik, Filiz Bektas; Goksel, Cigdem; Esbah, Hayriye

    2015-03-01

    Human activities in many parts of the world have greatly affected natural areas. Therefore, monitoring and forecasting of land-cover changes are important components for sustainable utilization, conservation, and development of these areas. This research has been conducted on Igneada, a legally protected area on the northwest coast of Turkey, which is famous for its unique, mangrove forests. The main focus of this study was to apply a land use and cover model that could quantitatively and graphically present the changes and its impacts on Igneada landscapes in the future. In this study, a Markov chain-based, stochastic Markov model and cellular automata Markov model were used. These models were calibrated using a time series of developed areas derived from Landsat Thematic Mapper (TM) imagery between 1990 and 2010 that also projected future growth to 2030. The results showed that CA Markov yielded reliable information better than St. Markov model. The findings displayed constant but overall slight increase of settlement and forest cover, and slight decrease of agricultural lands. However, even the slightest unsustainable change can put a significant pressure on the sensitive ecosystems of Igneada. Therefore, the management of the protected area should not only focus on the landscape composition but also pay attention to landscape configuration.

  10. ASSIST user manual

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Boerschlein, David P.

    1995-01-01

    Semi-Markov models can be used to analyze the reliability of virtually any fault-tolerant system. However, the process of delineating all the states and transitions in a complex system model can be devastatingly tedious and error prone. The Abstract Semi-Markov Specification Interface to the SURE Tool (ASSIST) computer program allows the user to describe the semi-Markov model in a high-level language. Instead of listing the individual model states, the user specifies the rules governing the behavior of the system, and these are used to generate the model automatically. A few statements in the abstract language can describe a very large, complex model. Because no assumptions are made about the system being modeled, ASSIST can be used to generate models describing the behavior of any system. The ASSIST program and its input language are described and illustrated by examples.

  11. Markov chains at the interface of combinatorics, computing, and statistical physics

    NASA Astrophysics Data System (ADS)

    Streib, Amanda Pascoe

    The fields of statistical physics, discrete probability, combinatorics, and theoretical computer science have converged around efforts to understand random structures and algorithms. Recent activity in the interface of these fields has enabled tremendous breakthroughs in each domain and has supplied a new set of techniques for researchers approaching related problems. This thesis makes progress on several problems in this interface whose solutions all build on insights from multiple disciplinary perspectives. First, we consider a dynamic growth process arising in the context of DNA-based self-assembly. The assembly process can be modeled as a simple Markov chain. We prove that the chain is rapidly mixing for large enough bias in regions of Zd. The proof uses a geometric distance function and a variant of path coupling in order to handle distances that can be exponentially large. We also provide the first results in the case of fluctuating bias, where the bias can vary depending on the location of the tile, which arises in the nanotechnology application. Moreover, we use intuition from statistical physics to construct a choice of the biases for which the Markov chain Mmon requires exponential time to converge. Second, we consider a related problem regarding the convergence rate of biased permutations that arises in the context of self-organizing lists. The Markov chain Mnn in this case is a nearest-neighbor chain that allows adjacent transpositions, and the rate of these exchanges is governed by various input parameters. It was conjectured that the chain is always rapidly mixing when the inversion probabilities are positively biased, i.e., we put nearest neighbor pair x < y in order with bias 1/2 ≤ pxy ≤ 1 and out of order with bias 1 - pxy. The Markov chain Mmon was known to have connections to a simplified version of this biased card-shuffling. We provide new connections between Mnn and Mmon by using simple combinatorial bijections, and we prove that Mnn is always rapidly mixing for two general classes of positively biased { pxy}. More significantly, we also prove that the general conjecture is false by exhibiting values for the pxy, with 1/2 ≤ pxy ≤ 1 for all x < y, but for which the transposition chain will require exponential time to converge. Finally, we consider a model of colloids, which are binary mixtures of molecules with one type of molecule suspended in another. It is believed that at low density typical configurations will be well-mixed throughout, while at high density they will separate into clusters. This clustering has proved elusive to verify, since all local sampling algorithms are known to be inefficient at high density, and in fact a new nonlocal algorithm was recently shown to require exponential time in some cases. We characterize the high and low density phases for a general family of discrete interfering binary mixtures by showing that they exhibit a "clustering property" at high density and not at low density. The clustering property states that there will be a region that has very high area, very small perimeter, and high density of one type of molecule. Special cases of interfering binary mixtures include the Ising model at fixed magnetization and independent sets.

  12. The Influence of Hydroxylation on Maintaining CpG Methylation Patterns: A Hidden Markov Model Approach.

    PubMed

    Giehr, Pascal; Kyriakopoulos, Charalampos; Ficz, Gabriella; Wolf, Verena; Walter, Jörn

    2016-05-01

    DNA methylation and demethylation are opposing processes that when in balance create stable patterns of epigenetic memory. The control of DNA methylation pattern formation by replication dependent and independent demethylation processes has been suggested to be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have been proposed suggesting that 5hmC influences either replication dependent maintenance of DNA methylation or replication independent processes of active demethylation. Using high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethylation in mouse ESCs. We develop an extended hidden Markov model capable of accurately describing the regional contribution of 5hmC to demethylation dynamics. Our analysis shows that 5hmC has a strong impact on replication dependent demethylation, mainly by impairing methylation maintenance.

  13. Mori-Zwanzig theory for dissipative forces in coarse-grained dynamics in the Markov limit

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei

    2017-01-01

    We derive alternative Markov approximations for the projected (stochastic) force and memory function in the coarse-grained (CG) generalized Langevin equation, which describes the time evolution of the center-of-mass coordinates of clusters of particles in the microscopic ensemble. This is done with the aid of the Mori-Zwanzig projection operator method based on the recently introduced projection operator [S. Izvekov, J. Chem. Phys. 138, 134106 (2013), 10.1063/1.4795091]. The derivation exploits the "generalized additive fluctuating force" representation to which the projected force reduces in the adopted projection operator formalism. For the projected force, we present a first-order time expansion which correctly extends the static fluctuating force ansatz with the terms necessary to maintain the required orthogonality of the projected dynamics in the Markov limit to the space of CG phase variables. The approximant of the memory function correctly accounts for the momentum dependence in the lowest (second) order and indicates that such a dependence may be important in the CG dynamics approaching the Markov limit. In the case of CG dynamics with a weak dependence of the memory effects on the particle momenta, the expression for the memory function presented in this work is applicable to non-Markov systems. The approximations are formulated in a propagator-free form allowing their efficient evaluation from the microscopic data sampled by standard molecular dynamics simulations. A numerical application is presented for a molecular liquid (nitromethane). With our formalism we do not observe the "plateau-value problem" if the friction tensors for dissipative particle dynamics (DPD) are computed using the Green-Kubo relation. Our formalism provides a consistent bottom-up route for hierarchical parametrization of DPD models from atomistic simulations.

  14. Multi-tasking arbitration and behaviour design for human-interactive robots

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuichi; Onishi, Masaki; Hosoe, Shigeyuki; Luo, Zhiwei

    2013-05-01

    Robots that interact with humans in household environments are required to handle multiple real-time tasks simultaneously, such as carrying objects, collision avoidance and conversation with human. This article presents a design framework for the control and recognition processes to meet these requirements taking into account stochastic human behaviour. The proposed design method first introduces a Petri net for synchronisation of multiple tasks. The Petri net formulation is converted to Markov decision processes and processed in an optimal control framework. Three tasks (safety confirmation, object conveyance and conversation) interact and are expressed by the Petri net. Using the proposed framework, tasks that normally tend to be designed by integrating many if-then rules can be designed in a systematic manner in a state estimation and optimisation framework from the viewpoint of the shortest time optimal control. The proposed arbitration method was verified by simulations and experiments using RI-MAN, which was developed for interactive tasks with humans.

  15. Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr; Klauder, John R.; Olkiewicz, Robert

    1995-05-01

    The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for the temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schrödinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feynman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard ``free'' case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schrödinger problem, the ``free noise'' can also be extended to any infinitely divisible probability law, as covered by the Lévy-Khintchine formula. Since the relativistic Hamiltonians ||∇|| and √-Δ+m2 -m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schrödinger evolution is analyzed in detail. The relativistic covariance of related wave equations is exploited to demonstrate how the associated stochastic jump processes comply with the principles of special relativity.

  16. Composition of Web Services Using Markov Decision Processes and Dynamic Programming

    PubMed Central

    Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael

    2015-01-01

    We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity. PMID:25874247

  17. Distributions-per-level: a means of testing level detectors and models of patch-clamp data.

    PubMed

    Schröder, I; Huth, T; Suitchmezian, V; Jarosik, J; Schnell, S; Hansen, U P

    2004-01-01

    Level or jump detectors generate the reconstructed time series from a noisy record of patch-clamp current. The reconstructed time series is used to create dwell-time histograms for the kinetic analysis of the Markov model of the investigated ion channel. It is shown here that some additional lines in the software of such a detector can provide a powerful new means of patch-clamp analysis. For each current level that can be recognized by the detector, an array is declared. The new software assigns every data point of the original time series to the array that belongs to the actual state of the detector. From the data sets in these arrays distributions-per-level are generated. Simulated and experimental time series analyzed by Hinkley detectors are used to demonstrate the benefits of these distributions-per-level. First, they can serve as a test of the reliability of jump and level detectors. Second, they can reveal beta distributions as resulting from fast gating that would usually be hidden in the overall amplitude histogram. Probably the most valuable feature is that the malfunctions of the Hinkley detectors turn out to depend on the Markov model of the ion channel. Thus, the errors revealed by the distributions-per-level can be used to distinguish between different putative Markov models of the measured time series.

  18. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less

  19. A new approach for handling longitudinal count data with zero-inflation and overdispersion: poisson geometric process model.

    PubMed

    Wan, Wai-Yin; Chan, Jennifer S K

    2009-08-01

    For time series of count data, correlated measurements, clustering as well as excessive zeros occur simultaneously in biomedical applications. Ignoring such effects might contribute to misleading treatment outcomes. A generalized mixture Poisson geometric process (GMPGP) model and a zero-altered mixture Poisson geometric process (ZMPGP) model are developed from the geometric process model, which was originally developed for modelling positive continuous data and was extended to handle count data. These models are motivated by evaluating the trend development of new tumour counts for bladder cancer patients as well as by identifying useful covariates which affect the count level. The models are implemented using Bayesian method with Markov chain Monte Carlo (MCMC) algorithms and are assessed using deviance information criterion (DIC).

  20. Optimum random and age replacement policies for customer-demand multi-state system reliability under imperfect maintenance

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Luan; Chang, Chin-Chih; Sheu, Dwan-Fang

    2016-04-01

    This paper proposes the generalised random and age replacement policies for a multi-state system composed of multi-state elements. The degradation of the multi-state element is assumed to follow the non-homogeneous continuous time Markov process which is a continuous time and discrete state process. A recursive approach is presented to efficiently compute the time-dependent state probability distribution of the multi-state element. The state and performance distribution of the entire multi-state system is evaluated via the combination of the stochastic process and the Lz-transform method. The concept of customer-centred reliability measure is developed based on the system performance and the customer demand. We develop the random and age replacement policies for an aging multi-state system subject to imperfect maintenance in a failure (or unacceptable) state. For each policy, the optimum replacement schedule which minimises the mean cost rate is derived analytically and discussed numerically.

  1. Assessing the Deterrence Value of Carrier Presence Against Adversary Aggression in a Coalition Environment

    DTIC Science & Technology

    2017-09-01

    seeks to quantify the deterrence value of a CSG using a game - theoretic framework. Consider a region with several nations, where two major players stand...develop a Markov game to model the interactions between the two players and these other nations over a period of time. The game starts in Notional...establishing diplomatic advantage are equally important in deterring aggression. 14. SUBJECT TERMS carrier strike group, CSG, deterrence, Markov game

  2. Positive contraction mappings for classical and quantum Schrödinger systems

    NASA Astrophysics Data System (ADS)

    Georgiou, Tryphon T.; Pavon, Michele

    2015-03-01

    The classical Schrödinger bridge seeks the most likely probability law for a diffusion process, in path space, that matches marginals at two end points in time; the likelihood is quantified by the relative entropy between the sought law and a prior. Jamison proved that the new law is obtained through a multiplicative functional transformation of the prior. This transformation is characterised by an automorphism on the space of endpoints probability measures, which has been studied by Fortet, Beurling, and others. A similar question can be raised for processes evolving in a discrete time and space as well as for processes defined over non-commutative probability spaces. The present paper builds on earlier work by Pavon and Ticozzi and begins by establishing solutions to Schrödinger systems for Markov chains. Our approach is based on the Hilbert metric and shows that the solution to the Schrödinger bridge is provided by the fixed point of a contractive map. We approach, in a similar manner, the steering of a quantum system across a quantum channel. We are able to establish existence of quantum transitions that are multiplicative functional transformations of a given Kraus map for the cases where the marginals are either uniform or pure states. As in the Markov chain case, and for uniform density matrices, the solution of the quantum bridge can be constructed from the fixed point of a certain contractive map. For arbitrary marginal densities, extensive numerical simulations indicate that iteration of a similar map leads to fixed points from which we can construct a quantum bridge. For this general case, however, a proof of convergence remains elusive.

  3. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    NASA Astrophysics Data System (ADS)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-09-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  4. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G., E-mail: yannis@princeton.edu, E-mail: gerhard.hummer@biophys.mpg.de

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlapmore » with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.« less

  5. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    PubMed Central

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G.; Hummer, Gerhard

    2014-01-01

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space. PMID:25240340

  6. Application of Stochastic Automata Networks for Creation of Continuous Time Markov Chain Models of Voltage Gating of Gap Junction Channels

    PubMed Central

    Pranevicius, Henrikas; Pranevicius, Mindaugas; Pranevicius, Osvaldas; Bukauskas, Feliksas F.

    2015-01-01

    The primary goal of this work was to study advantages of numerical methods used for the creation of continuous time Markov chain models (CTMC) of voltage gating of gap junction (GJ) channels composed of connexin protein. This task was accomplished by describing gating of GJs using the formalism of the stochastic automata networks (SANs), which allowed for very efficient building and storing of infinitesimal generator of the CTMC that allowed to produce matrices of the models containing a distinct block structure. All of that allowed us to develop efficient numerical methods for a steady-state solution of CTMC models. This allowed us to accelerate CPU time, which is necessary to solve CTMC models, ∼20 times. PMID:25705700

  7. Analysis of mean time to data loss of fault-tolerant disk arrays RAID-6 based on specialized Markov chain

    NASA Astrophysics Data System (ADS)

    Rahman, P. A.; D'K Novikova Freyre Shavier, G.

    2018-03-01

    This scientific paper is devoted to the analysis of the mean time to data loss of redundant disk arrays RAID-6 with alternation of data considering different failure rates of disks both in normal state of the disk array and in degraded and rebuild states, and also nonzero time of the disk replacement. The reliability model developed by the authors on the basis of the Markov chain and obtained calculation formula for estimation of the mean time to data loss (MTTDL) of the RAID-6 disk arrays are also presented. At last, the technique of estimation of the initial reliability parameters and examples of calculation of the MTTDL of the RAID-6 disk arrays for the different numbers of disks are also given.

  8. Advanced Models and Algorithms for Self-Similar IP Network Traffic Simulation and Performance Analysis

    NASA Astrophysics Data System (ADS)

    Radev, Dimitar; Lokshina, Izabella

    2010-11-01

    The paper examines self-similar (or fractal) properties of real communication network traffic data over a wide range of time scales. These self-similar properties are very different from the properties of traditional models based on Poisson and Markov-modulated Poisson processes. Advanced fractal models of sequentional generators and fixed-length sequence generators, and efficient algorithms that are used to simulate self-similar behavior of IP network traffic data are developed and applied. Numerical examples are provided; and simulation results are obtained and analyzed.

  9. State Estimation of a Hybrid Markov Process with Application to Multitarget Tracking.

    DTIC Science & Technology

    1982-01-01

    k (d k))T P (dk - k -1 k kP~d kzk ) IPk~k (d k) (.Zkik (d 2) - xkk dl)) + 2 2.n P~-d k 1zk n J k ( .15d2 I) Ipklk1dk)I 66 k < c k an kk k if Pkk(d I...bealat more likely at time k, i.e., P(d kzk ) < P(d2[zk). Thus, if we want to kdiscard a given sequence d0, we try to compare it only with other more k

  10. A nonparametric test for Markovianity in the illness-death model.

    PubMed

    Rodríguez-Girondo, Mar; de Uña-Álvarez, Jacobo

    2012-12-30

    Multistate models are useful tools for modeling disease progression when survival is the main outcome, but several intermediate events of interest are observed during the follow-up time. The illness-death model is a special multistate model with important applications in the biomedical literature. It provides a suitable representation of the individual's history when a unique intermediate event can be experienced before the main event of interest. Nonparametric estimation of transition probabilities in this and other multistate models is usually performed through the Aalen-Johansen estimator under a Markov assumption. The Markov assumption claims that given the present state, the future evolution of the illness is independent of the states previously visited and the transition times among them. However, this assumption fails in some applications, leading to inconsistent estimates. In this paper, we provide a new approach for testing Markovianity in the illness-death model. The new method is based on measuring the future-past association along time. This results in a detailed inspection of the process, which often reveals a non-Markovian behavior with different trends in the association measure. A test of significance for zero future-past association at each time point is introduced, and a significance trace is proposed accordingly. Besides, we propose a global test for Markovianity based on a supremum-type test statistic. The finite sample performance of the test is investigated through simulations. We illustrate the new method through the analysis of two biomedical data analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Dependability and performability analysis

    NASA Technical Reports Server (NTRS)

    Trivedi, Kishor S.; Ciardo, Gianfranco; Malhotra, Manish; Sahner, Robin A.

    1993-01-01

    Several practical issues regarding specifications and solution of dependability and performability models are discussed. Model types with and without rewards are compared. Continuous-time Markov chains (CTMC's) are compared with (continuous-time) Markov reward models (MRM's) and generalized stochastic Petri nets (GSPN's) are compared with stochastic reward nets (SRN's). It is shown that reward-based models could lead to more concise model specifications and solution of a variety of new measures. With respect to the solution of dependability and performability models, three practical issues were identified: largeness, stiffness, and non-exponentiality, and a variety of approaches are discussed to deal with them, including some of the latest research efforts.

  12. A coupled hidden Markov model for disease interactions

    PubMed Central

    Sherlock, Chris; Xifara, Tatiana; Telfer, Sandra; Begon, Mike

    2013-01-01

    To investigate interactions between parasite species in a host, a population of field voles was studied longitudinally, with presence or absence of six different parasites measured repeatedly. Although trapping sessions were regular, a different set of voles was caught at each session, leading to incomplete profiles for all subjects. We use a discrete time hidden Markov model for each disease with transition probabilities dependent on covariates via a set of logistic regressions. For each disease the hidden states for each of the other diseases at a given time point form part of the covariate set for the Markov transition probabilities from that time point. This allows us to gauge the influence of each parasite species on the transition probabilities for each of the other parasite species. Inference is performed via a Gibbs sampler, which cycles through each of the diseases, first using an adaptive Metropolis–Hastings step to sample from the conditional posterior of the covariate parameters for that particular disease given the hidden states for all other diseases and then sampling from the hidden states for that disease given the parameters. We find evidence for interactions between several pairs of parasites and of an acquired immune response for two of the parasites. PMID:24223436

  13. RANDOM EVOLUTIONS, MARKOV CHAINS, AND SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

    PubMed Central

    Griego, R. J.; Hersh, R.

    1969-01-01

    Several authors have considered Markov processes defined by the motion of a particle on a fixed line with a random velocity1, 6, 8, 10 or a random diffusivity.5, 12 A “random evolution” is a natural but apparently new generalization of this notion. In this note we hope to show that this concept leads to simple and powerful applications of probabilistic tools to initial-value problems of both parabolic and hyperbolic type. We obtain existence theorems, representation theorems, and asymptotic formulas, both old and new. PMID:16578690

  14. ASSIST: User's manual

    NASA Technical Reports Server (NTRS)

    Johnson, S. C.

    1986-01-01

    Semi-Markov models can be used to compute the reliability of virtually any fault-tolerant system. However, the process of delineating all of the states and transitions in a model of a complex system can be devastingly tedious and error-prone. The ASSIST program allows the user to describe the semi-Markov model in a high-level language. Instead of specifying the individual states of the model, the user specifies the rules governing the behavior of the system and these are used by ASSIST to automatically generate the model. The ASSIST program is described and illustrated by examples.

  15. Dynamic Programming for Structured Continuous Markov Decision Problems

    NASA Technical Reports Server (NTRS)

    Dearden, Richard; Meuleau, Nicholas; Washington, Richard; Feng, Zhengzhu

    2004-01-01

    We describe an approach for exploiting structure in Markov Decision Processes with continuous state variables. At each step of the dynamic programming, the state space is dynamically partitioned into regions where the value function is the same throughout the region. We first describe the algorithm for piecewise constant representations. We then extend it to piecewise linear representations, using techniques from POMDPs to represent and reason about linear surfaces efficiently. We show that for complex, structured problems, our approach exploits the natural structure so that optimal solutions can be computed efficiently.

  16. Upper and lower bounds for semi-Markov reliability models of reconfigurable systems

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1984-01-01

    This paper determines the information required about system recovery to compute the reliability of a class of reconfigurable systems. Upper and lower bounds are derived for these systems. The class consists of those systems that satisfy five assumptions: the components fail independently at a low constant rate, fault occurrence and system reconfiguration are independent processes, the reliability model is semi-Markov, the recovery functions which describe system configuration have small means and variances, and the system is well designed. The bounds are easy to compute, and examples are included.

  17. Study on statistical models for land mobile satellite channel

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Hu, Xiulin

    2005-11-01

    Mobile terminals in a mobile satellite communication system cause the radio propagation channel to vary with time. So it is necessary to study the channel models in order to estimate the behavior of satellite signal propagation. A lot of research work have been done on the L- and S- bands. With the development of gigabit data transmissions and multimedia applications in recent years, the Ka-band studies gain much attention. Non-geostationary satellites are also in research because of its low propagation delay and low path loss. The future satellite mobile communication systems would be integrated into the other terrestrial networks in order to enable global, seamless and ubiquitous communications. At the same time QoS-technologies are studied to satisfy users' different service classes, such as mobility and resource managements. All the above make a suitable efficient channel model face new challenges. This paper firstly introduces existed channel models and analyzes their respective characteristics. Then we focus on a general model presented by Xie YongJun, which is popular under any environment and describes difference through different parameter values. However we believe that it is better to take multi-state Markov model as category in order to adapt to different environments. So a general model based on Markov process is presented and necessary simulation is carried out.

  18. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-01

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  19. Resolvent-Techniques for Multiple Exercise Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Sören, E-mail: christensen@math.uni-kiel.de; Lempa, Jukka, E-mail: jukka.lempa@hioa.no

    2015-02-15

    We study optimal multiple stopping of strong Markov processes with random refraction periods. The refraction periods are assumed to be exponentially distributed with a common rate and independent of the underlying dynamics. Our main tool is using the resolvent operator. In the first part, we reduce infinite stopping problems to ordinary ones in a general strong Markov setting. This leads to explicit solutions for wide classes of such problems. Starting from this result, we analyze problems with finitely many exercise rights and explain solution methods for some classes of problems with underlying Lévy and diffusion processes, where the optimal characteristicsmore » of the problems can be identified more explicitly. We illustrate the main results with explicit examples.« less

  20. Multivariate longitudinal data analysis with mixed effects hidden Markov models.

    PubMed

    Raffa, Jesse D; Dubin, Joel A

    2015-09-01

    Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random effects between multiple longitudinal responses. This approach was motivated by a smoking cessation clinical trial, where a bivariate longitudinal response involving both a continuous and a binomial response was collected for each participant to monitor smoking behavior. A Bayesian method using Markov chain Monte Carlo is used. Comparison of separate univariate response models to the bivariate response models was undertaken. Our methods are demonstrated on the smoking cessation clinical trial dataset, and properties of our approach are examined through extensive simulation studies. © 2015, The International Biometric Society.

  1. Combined risk assessment of nonstationary monthly water quality based on Markov chain and time-varying copula.

    PubMed

    Shi, Wei; Xia, Jun

    2017-02-01

    Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH 3 -N) and permanganate index (COD Mn ) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH 3 -N and COD Mn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class V w , Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH 3 -N and COD Mn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH 3 -N and COD Mn is inferior to class V and class IV water quality standards, respectively.

  2. Generalized species sampling priors with latent Beta reinforcements

    PubMed Central

    Airoldi, Edoardo M.; Costa, Thiago; Bassetti, Federico; Leisen, Fabrizio; Guindani, Michele

    2014-01-01

    Many popular Bayesian nonparametric priors can be characterized in terms of exchangeable species sampling sequences. However, in some applications, exchangeability may not be appropriate. We introduce a novel and probabilistically coherent family of non-exchangeable species sampling sequences characterized by a tractable predictive probability function with weights driven by a sequence of independent Beta random variables. We compare their theoretical clustering properties with those of the Dirichlet Process and the two parameters Poisson-Dirichlet process. The proposed construction provides a complete characterization of the joint process, differently from existing work. We then propose the use of such process as prior distribution in a hierarchical Bayes modeling framework, and we describe a Markov Chain Monte Carlo sampler for posterior inference. We evaluate the performance of the prior and the robustness of the resulting inference in a simulation study, providing a comparison with popular Dirichlet Processes mixtures and Hidden Markov Models. Finally, we develop an application to the detection of chromosomal aberrations in breast cancer by leveraging array CGH data. PMID:25870462

  3. Zipf exponent of trajectory distribution in the hidden Markov model

    NASA Astrophysics Data System (ADS)

    Bochkarev, V. V.; Lerner, E. Yu

    2014-03-01

    This paper is the first step of generalization of the previously obtained full classification of the asymptotic behavior of the probability for Markov chain trajectories for the case of hidden Markov models. The main goal is to study the power (Zipf) and nonpower asymptotics of the frequency list of trajectories of hidden Markov frequencys and to obtain explicit formulae for the exponent of the power asymptotics. We consider several simple classes of hidden Markov models. We prove that the asymptotics for a hidden Markov model and for the corresponding Markov chain can be essentially different.

  4. Markov Property of the Conformal Field Theory Vacuum and the a Theorem.

    PubMed

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-06-30

    We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.

  5. Sensitivity Study for Long Term Reliability

    NASA Technical Reports Server (NTRS)

    White, Allan L.

    2008-01-01

    This paper illustrates using Markov models to establish system and maintenance requirements for small electronic controllers where the goal is a high probability of continuous service for a long period of time. The system and maintenance items considered are quality of components, various degrees of simple redundancy, redundancy with reconfiguration, diagnostic levels, periodic maintenance, and preventive maintenance. Markov models permit a quantitative investigation with comparison and contrast. An element of special interest is the use of conditional probability to study the combination of imperfect diagnostics and periodic maintenance.

  6. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing.

    PubMed

    Xu, Jason; Minin, Vladimir N

    2015-07-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes.

  7. Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing

    PubMed Central

    Xu, Jason; Minin, Vladimir N.

    2016-01-01

    Branching processes are a class of continuous-time Markov chains (CTMCs) with ubiquitous applications. A general difficulty in statistical inference under partially observed CTMC models arises in computing transition probabilities when the discrete state space is large or uncountable. Classical methods such as matrix exponentiation are infeasible for large or countably infinite state spaces, and sampling-based alternatives are computationally intensive, requiring integration over all possible hidden events. Recent work has successfully applied generating function techniques to computing transition probabilities for linear multi-type branching processes. While these techniques often require significantly fewer computations than matrix exponentiation, they also become prohibitive in applications with large populations. We propose a compressed sensing framework that significantly accelerates the generating function method, decreasing computational cost up to a logarithmic factor by only assuming the probability mass of transitions is sparse. We demonstrate accurate and efficient transition probability computations in branching process models for blood cell formation and evolution of self-replicating transposable elements in bacterial genomes. PMID:26949377

  8. Level-crossing statistics of the horizontal wind speed in the planetary surface boundary layer

    NASA Astrophysics Data System (ADS)

    Edwards, Paul J.; Hurst, Robert B.

    2001-09-01

    The probability density of the times for which the horizontal wind remains above or below a given threshold speed is of some interest in the fields of renewable energy generation and pollutant dispersal. However there appear to be no analytic or conceptual models which account for the observed power law form of the distribution of these episode lengths over a range of over three decades, from a few tens of seconds to a day or more. We reanalyze high resolution wind data and demonstrate the fractal character of the point process generated by the wind speed level crossings. We simulate the fluctuating wind speed by a Markov process which approximates the characteristics of the real (non-Markovian) wind and successfully generates a power law distribution of episode lengths. However, fundamental questions concerning the physical basis for this behavior and the connection between the properties of a continuous-time stochastic process and the fractal statistics of the point process generated by its level crossings remain unanswered.

  9. Using Information Processing Techniques to Forecast, Schedule, and Deliver Sustainable Energy to Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Pulusani, Praneeth R.

    As the number of electric vehicles on the road increases, current power grid infrastructure will not be able to handle the additional load. Some approaches in the area of Smart Grid research attempt to mitigate this, but those approaches alone will not be sufficient. Those approaches and traditional solution of increased power production can result in an insufficient and imbalanced power grid. It can lead to transformer blowouts, blackouts and blown fuses, etc. The proposed solution will supplement the ``Smart Grid'' to create a more sustainable power grid. To solve or mitigate the magnitude of the problem, measures can be taken that depend on weather forecast models. For instance, wind and solar forecasts can be used to create first order Markov chain models that will help predict the availability of additional power at certain times. These models will be used in conjunction with the information processing layer and bidirectional signal processing components of electric vehicle charging systems, to schedule the amount of energy transferred per time interval at various times. The research was divided into three distinct components: (1) Renewable Energy Supply Forecast Model, (2) Energy Demand Forecast from PEVs, and (3) Renewable Energy Resource Estimation. For the first component, power data from a local wind turbine, and weather forecast data from NOAA were used to develop a wind energy forecast model, using a first order Markov chain model as the foundation. In the second component, additional macro energy demand from PEVs in the Greater Rochester Area was forecasted by simulating concurrent driving routes. In the third component, historical data from renewable energy sources was analyzed to estimate the renewable resources needed to offset the energy demand from PEVs. The results from these models and components can be used in the smart grid applications for scheduling and delivering energy. Several solutions are discussed to mitigate the problem of overloading transformers, lack of energy supply, and higher utility costs.

  10. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  11. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  12. Back to the Future: Consistency-Based Trajectory Tracking

    NASA Technical Reports Server (NTRS)

    Kurien, James; Nayak, P. Pandurand; Norvig, Peter (Technical Monitor)

    2000-01-01

    Given a model of a physical process and a sequence of commands and observations received over time, the task of an autonomous controller is to determine the likely states of the process and the actions required to move the process to a desired configuration. We introduce a representation and algorithms for incrementally generating approximate belief states for a restricted but relevant class of partially observable Markov decision processes with very large state spaces. The algorithm presented incrementally generates, rather than revises, an approximate belief state at any point by abstracting and summarizing segments of the likely trajectories of the process. This enables applications to efficiently maintain a partial belief state when it remains consistent with observations and revisit past assumptions about the process' evolution when the belief state is ruled out. The system presented has been implemented and results on examples from the domain of spacecraft control are presented.

  13. Incorporating teleconnection information into reservoir operating policies using Stochastic Dynamic Programming and a Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Turner, Sean; Galelli, Stefano; Wilcox, Karen

    2015-04-01

    Water reservoir systems are often affected by recurring large-scale ocean-atmospheric anomalies, known as teleconnections, that cause prolonged periods of climatological drought. Accurate forecasts of these events -- at lead times in the order of weeks and months -- may enable reservoir operators to take more effective release decisions to improve the performance of their systems. In practice this might mean a more reliable water supply system, a more profitable hydropower plant or a more sustainable environmental release policy. To this end, climate indices, which represent the oscillation of the ocean-atmospheric system, might be gainfully employed within reservoir operating models that adapt the reservoir operation as a function of the climate condition. This study develops a Stochastic Dynamic Programming (SDP) approach that can incorporate climate indices using a Hidden Markov Model. The model simulates the climatic regime as a hidden state following a Markov chain, with the state transitions driven by variation in climatic indices, such as the Southern Oscillation Index. Time series analysis of recorded streamflow data reveals the parameters of separate autoregressive models that describe the inflow to the reservoir under three representative climate states ("normal", "wet", "dry"). These models then define inflow transition probabilities for use in a classic SDP approach. The key advantage of the Hidden Markov Model is that it allows conditioning the operating policy not only on the reservoir storage and the antecedent inflow, but also on the climate condition, thus potentially allowing adaptability to a broader range of climate conditions. In practice, the reservoir operator would effect a water release tailored to a specific climate state based on available teleconnection data and forecasts. The approach is demonstrated on the operation of a realistic, stylised water reservoir with carry-over capacity in South-East Australia. Here teleconnections relating to both the El Niño Southern Oscillation and the Indian Ocean Dipole influence local hydro-meteorological processes; statistically significant lag correlations have already been established. Simulation of the derived operating policies, which are benchmarked against standard policies conditioned on the reservoir storage and the antecedent inflow, demonstrates the potential of the proposed approach. Future research will further develop the model for sensitivity analysis and regional studies examining the economic value of incorporating long range forecasts into reservoir operation.

  14. Metastates in Mean-Field Models with Random External Fields Generated by Markov Chains

    NASA Astrophysics Data System (ADS)

    Formentin, M.; Külske, C.; Reichenbachs, A.

    2012-01-01

    We extend the construction by Külske and Iacobelli of metastates in finite-state mean-field models in independent disorder to situations where the local disorder terms are a sample of an external ergodic Markov chain in equilibrium. We show that for non-degenerate Markov chains, the structure of the theorems is analogous to the case of i.i.d. variables when the limiting weights in the metastate are expressed with the aid of a CLT for the occupation time measure of the chain. As a new phenomenon we also show in a Potts example that for a degenerate non-reversible chain this CLT approximation is not enough, and that the metastate can have less symmetry than the symmetry of the interaction and a Gaussian approximation of disorder fluctuations would suggest.

  15. Multiscale modelling and analysis of collective decision making in swarm robotics.

    PubMed

    Vigelius, Matthias; Meyer, Bernd; Pascoe, Geoffrey

    2014-01-01

    We present a unified approach to describing certain types of collective decision making in swarm robotics that bridges from a microscopic individual-based description to aggregate properties. Our approach encompasses robot swarm experiments, microscopic and probabilistic macroscopic-discrete simulations as well as an analytic mathematical model. Following up on previous work, we identify the symmetry parameter, a measure of the progress of the swarm towards a decision, as a fundamental integrated swarm property and formulate its time evolution as a continuous-time Markov process. Contrary to previous work, which justified this approach only empirically and a posteriori, we justify it from first principles and derive hard limits on the parameter regime in which it is applicable.

  16. Pavement maintenance optimization model using Markov Decision Processes

    NASA Astrophysics Data System (ADS)

    Mandiartha, P.; Duffield, C. F.; Razelan, I. S. b. M.; Ismail, A. b. H.

    2017-09-01

    This paper presents an optimization model for selection of pavement maintenance intervention using a theory of Markov Decision Processes (MDP). There are some particular characteristics of the MDP developed in this paper which distinguish it from other similar studies or optimization models intended for pavement maintenance policy development. These unique characteristics include a direct inclusion of constraints into the formulation of MDP, the use of an average cost method of MDP, and the policy development process based on the dual linear programming solution. The limited information or discussions that are available on these matters in terms of stochastic based optimization model in road network management motivates this study. This paper uses a data set acquired from road authorities of state of Victoria, Australia, to test the model and recommends steps in the computation of MDP based stochastic optimization model, leading to the development of optimum pavement maintenance policy.

  17. Asymptotic inference in system identification for the atom maser.

    PubMed

    Catana, Catalin; van Horssen, Merlijn; Guta, Madalin

    2012-11-28

    System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.

  18. Measuring the impact of final demand on global production system based on Markov process

    NASA Astrophysics Data System (ADS)

    Xing, Lizhi; Guan, Jun; Wu, Shan

    2018-07-01

    Input-output table is a comprehensive and detailed in describing the national economic systems, consisting of supply and demand information among various industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can depict the structural properties of social and economic systems, and reveal the complicated relationships between the inner hierarchies and the external macroeconomic functions. This paper tried to measure the globalization degree of industrial sectors on the global value chain. Firstly, it constructed inter-country input-output network models to reproduce the topological structure of global economic system. Secondly, it regarded the propagation of intermediate goods on the global value chain as Markov process and introduced counting first passage betweenness to quantify the added processing amount when globally final demand stimulates this production system. Thirdly, it analyzed the features of globalization at both global and country-sector level

  19. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees.

    PubMed

    Rabosky, Daniel L

    2014-01-01

    A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes.

  20. Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on Phylogenetic Trees

    PubMed Central

    Rabosky, Daniel L.

    2014-01-01

    A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes. PMID:24586858

Top