Sample records for time ph temperature

  1. How pH, Temperature, and Time of Incubation Affect False-Positive Responses and Uncertainty of the LAL Gel-Clot Test.

    PubMed

    Lourenço, Felipe Rebello; Botelho, Túlia De Souza; Pinto, Terezinha De Jesus Andreoli

    2012-01-01

    The limulus amebocyte lysate (LAL) test is the simplest and most widely used procedure for detection of endotoxin in parenteral drugs. The LAL test demands optimal pH, ionic strength, temperature, and time of incubation. Slight changes in these parameters may increase the frequency of false-positive responses and the estimated uncertainty of the LAL test. The aim of this paper is to evaluate how changes in the pH, temperature, and time of incubation affect the occurrence of false-positive responses in the LAL test. LAL tests were performed in nominal conditions (37 °C, 60 min, and pH 7) and in different conditions of temperature (36 °C and 38 °C), time of incubation (58 and 62 min), and pH (6 and 8). Slight differences in pH increase the frequency of false-positive responses 5-fold (relative risk 5.0), resulting in an estimated of uncertainty 7.6%. Temperature and time of incubation affect the LAL test less, showing relative risks of 1.5 and 1.0, respectively. Estimated uncertainties in 36 °C or 38 °C temperatures and 58 or 62 min of incubation were found to be 2.0% and 1.0%, respectively. Simultaneous differences in these parameters significantly increase the frequency of false-positive responses. The limulus amebocyte lysate (LAL) gel-clot test is a simple test for detection of endotoxin from Gram-negative bacteria. The test is based on a gel formation when a certain amount of endotoxin is present; it is a pass/fail test. The LAL test requires optimal pH, ionic strength, temperature, and time of incubation. Slight difference in these parameters may increase the frequency of false-positive responses. The aim of this paper is to evaluate how changes in the pH, temperature, and time of incubation affect the occurrence of false-positive responses in the LAL test. We find that slight differences in pH increase the frequency of false-positive responses 5-fold. Temperature and time of incubation affect the LAL test less. Simultaneous differences in these parameters significantly increase the frequency of false-positive responses.

  2. Modeling and predicting the biofilm formation of Salmonella Virchow with respect to temperature and pH.

    PubMed

    Ariafar, M Nima; Buzrul, Sencer; Akçelik, Nefise

    2016-03-01

    Biofilm formation of Salmonella Virchow was monitored with respect to time at three different temperature (20, 25 and 27.5 °C) and pH (5.2, 5.9 and 6.6) values. As the temperature increased at a constant pH level, biofilm formation decreased while as the pH level increased at a constant temperature, biofilm formation increased. Modified Gompertz equation with high adjusted determination coefficient (Radj(2)) and low mean square error (MSE) values produced reasonable fits for the biofilm formation under all conditions. Parameters of the modified Gompertz equation could be described in terms of temperature and pH by use of a second order polynomial function. In general, as temperature increased maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation decreased; whereas, as pH increased; maximum biofilm quantity, maximum biofilm formation rate and time of acceleration of biofilm formation increased. Two temperature (23 and 26 °C) and pH (5.3 and 6.3) values were used up to 24 h to predict the biofilm formation of S. Virchow. Although the predictions did not perfectly match with the data, reasonable estimates were obtained. In principle, modeling and predicting the biofilm formation of different microorganisms on different surfaces under various conditions could be possible.

  3. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap(®) System.

    PubMed

    Koziolek, Mirko; Grimm, Michael; Becker, Dieter; Iordanov, Ventzeslav; Zou, Hans; Shimizu, Jeff; Wanke, Christoph; Garbacz, Grzegorz; Weitschies, Werner

    2015-09-01

    Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Simultaneous wireless assessment of intra-oral pH and temperature.

    PubMed

    Farella, M; Loke, C; Sander, S; Songini, A; Allen, M; Mei, L; Cannon, R D

    2016-08-01

    Intra-oral pH plays an important role in the pathogenesis of tooth erosion and decay, but there is limited information about its variation in real life settings. The aims of this research were to: 1) develop a wireless device, which can be used to continuously monitor intra-oral pH and temperature in real-time; 2) test and validate the device under controlled laboratory conditions; and 3) collect data in a natural environment in a sample of healthy volunteers. A wireless device for measuring pH and temperature simultaneously was developed, calibrated and validated against the gold standard glass electrode pH meter. A smart phone was used as data logger. The wireless device was embedded in an oral appliance and worn by eleven participants (mean age 31.1±6.9years) for 24h, while conducting standardised drinking tasks and regular daily activities. The wireless device could accurately measure pH and temperature both in vitro and in vivo. The recovery time following the swallow of a standard acidic drink varied markedly among individuals (mean=1.3±0.9min). The intra-oral pH and temperature recorded in the natural environment also showed a large inter- and intra-individual variability. The average intra-oral pH when asleep (6.7±0.5) was lower (p<0.001) than when awake (7.2±0.5). The average intra-oral temperature during sleep (35.6±0.5°C) was higher (p<0.001) than when awake (34.5±0.7°C). Intra-oral pH and temperature can be continuously and wirelessly assessed in real-life settings, and show individual-specific patterns with circadian variations. Intra-oral pH becomes slightly acidic during sleep while intra-oral temperature increases and fluctuates less. We propose a wireless device that is capable of measuring intra-oral pH over a 24-h period. We found marked inter-individual variation after acidic stimuli, and day to sleep time variation of both intra-oral temperature and pH. Our approach may provide new insight into the relationship between oral pH, tooth wear and decay. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Influence of prebiotics on Lactobacillus reuteri death kinetics under sub-optimal temperatures and pH.

    PubMed

    Altieri, Clelia; Iorio, Maria Clara; Bevilacqua, Antonio; Sinigaglia, Milena

    2016-01-01

    Eaten foodstuffs are usually fortified with prebiotic ingredients, such as inulin and oligofructose (FOS). The main goal of this study was to evaluate the combined effects of inulin and FOS with either suboptimal pH or storage temperature on the viability of Lactobacillus reuteri DSM 20016. Data were modeled through Weibull equation for the evaluation of the microbiological shelf life and the survival time. Prebiotics enhanced the microbiological shelf life and enhanced the survival time of the target bacterium. The use of the factorial ANOVA highlighted that inulin and FOS exerted a different effect as a function of pH and temperature. Inulin prolonged survival time under acidic conditions, while the effect of glucose + FOS was significant at pH 8. Finally, temperature could act by increasing or decreasing the effect of prebiotics, as they could exert a protective effect at 30 °C but not at 44 °C. As the main output of this research, we could suggest that the effect of prebiotics on L. reuteri could be significantly affected by pH and temperature, thus pinpointing that the design of a symbiotic food should also rely on these factors.

  6. Raman spectroscopic approach to monitor the in vitro cyclization of creatine → creatinine

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Debraj; Sharma, Poornima; Singh, Sachin Kumar; Singh, Pushkar; Tarcea, Nicolae; Deckert, Volker; Popp, Jürgen; Singh, Ranjan K.

    2015-01-01

    The creatine → creatinine cyclization, an important metabolic phenomenon has been initiated in vitro at acidic pH and studied through Raman spectroscopic and DFT approach. The equilibrium composition of neutral, zwitterionic and protonated microspecies of creatine has been monitored with time as the reaction proceeds. Time series Raman spectra show clear signature of creatinine formation at pH 3 after ∼240 min at room temperature and reaction is faster at higher temperature. The spectra at pH 1 and pH 5 do not show such signature up to 270 min implying faster reaction rate at pH 3.

  7. Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae.

    PubMed

    Chin, K L; H'ng, P S; Wong, L J; Tey, B T; Paridah, M T

    2010-05-01

    Ethanolic fermentation using Saccharomyces cerevisiae was carried out on three types of hydrolysates produced from lignocelulosic biomass which are commonly found in Malaysia such as oil palm trunk, rubberwood and mixed hardwood. The effect of fermentation temperature and pH of hydrolysate was evaluated to optimize the fermentation efficiency which defined as maximum ethanol yield in minimum fermentation time. The fermentation process using different temperature of 25 degrees Celsius, 30 degrees Celsius and 40 degrees Celsius were performed on the prepared fermentation medium adjusted to pH 4, pH 6 and pH 7, respectively. Results showed that the fermentation time was significantly reduced with the increase of temperature but an adverse reduction in ethanol yield was observed using temperature of 40 degrees Celsius. As the pH of hydrolysate became more acidic, the ethanol yield increased. Optimum fermentation efficiency for ethanolic fermentation of lignocellulosic hydrolysates using S. cerevisiae can be obtained using 33.2 degrees Celsius and pH 5.3. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. Different efficiency of ozonated water washing to inactivate Salmonella enterica typhimurium on green onions, grape tomatoes, and green leaf lettuces.

    PubMed

    Xu, Wenqing; Wu, Changqing

    2014-03-01

    Ozonated water washing is one of the emerging techniques to inactivate foodborne pathogens on produce, and limited information is available to optimize processing parameters (treatment time, temperature, and pH) to improve ozone efficacy on Salmonella inactivation for different produce. The efficacy of ozonated water washing for inactivation of Salmonella enterica Typhimurium on green onions, grape tomatoes and green leaf lettuces were studied in our research. Surface inoculated fresh produce were washed by ozonated water for 1, 5, or 10 min at room temperature and pH 5.60 ± 0.03. Then efficacy of ozonated water washing at mild heated (50 °C) and refrigerated (4 °C) temperature for 5 min with pH 5.60 ± 0.03 was investigated. Salmonella inactivation efficacy under pH 5.60 ± 0.03 and 2.64 ± 0.02 with 5 min washing at room temperature were also compared. Our results showed that Salmonella inactivation by ozonated water was time-dependent for 3 fresh produce. Mild heated temperature (50 °C) and pH 2.64 ± 0.02 improved efficacy of ozonated water to inactivate Salmonella on tomatoes and lettuces, but not on green onions. It is suggested that different surface structures of fresh produce significantly impact the antimicrobial efficacy of ozonated water washing operated under various parameters (time, temperature, and pH). Washing is the essential step for green onions and lettuces in the packinghouse and grape tomatoes in the restaurants and grocery stores having salad bars. Ozonated water can be used as disinfectant to reduce microbial contamination (FDA). The effectiveness of this disinfectant depends on the type of product and treatment conditions, such as water temperature, acidity, contact time. Our study showed that Salmonella inactivation by ozonated water washing was time-dependent. Mild heat and low pH improved inactivation efficacy on tomatoes and lettuces, but not on green onions. Processors should consider adjustments that are most appropriate for their produce. © 2014 Institute of Food Technologists®

  9. Development of an autonomous, wireless pH and temperature sensing system for monitoring pig meat quality.

    PubMed

    Frisby, June; Raftery, Declan; Kerry, Joe P; Diamond, Dermot

    2005-06-01

    This paper focuses on the development of a unique wireless pH and temperature monitoring system to assess pig meat quality. Pale, soft and exudative (PSE) pig meat continues to be a major problem in the pig meat industry today. The PSE condition in pork is related to a number of factors including genetics, pre-slaughter stress and insufficient chilling of pig carcasses, which cause a rapid rate of glycolysis post-mortem (<1h). As a result the pH drops to low levels while the muscle temperature is still high. A wireless dual channel system that monitors pH and temperature simultaneously has been developed to provide pH and temperature data of the carcass during the first 24h after slaughter. We have demonstrated that this approach can distinguish in real time, pH and temperature profiles that are 'non-normal', and identify carcasses that are PSE positive quickly and easily.

  10. Seawater Acidification and Elevated Temperature Affect Gene Expression Patterns of the Pearl Oyster Pinctada fucata

    PubMed Central

    Liu, Wenguang; Huang, Xiande; Lin, Jianshi; He, Maoxian

    2012-01-01

    Oceanic uptake of anthropogenic carbon dioxide results in decrease in seawater pH and increase in temperature. In this study, we demonstrated the synergistic effects of elevated seawater temperature and declined seawater pH on gene expression patterns of aspein, calmodulin, nacrein, she-7-F10 and hsp70 in the pearl oyster Pinctada fucata. Under ‘business-as-usual’ scenarios, four treatments were examined: (1) ambient pH (8.10) and ambient temperature (27°C) (control condition), (2) ambient pH and elevated temperature (+3°C), (3) declined pH (7.70) and ambient temperature, (4) declined pH and elevated temperature. The results showed that under warming and acidic seawater conditions, expression of aspein and calmodulin showed no significant differences among different time point in condition 8.10 T. But the levels of aspein and calmodulin in conditions 8.10 T+3, 7.70 T and 7.70 T+3, and levels of nacrein, she-7-F10 in all the four treatments changed significantly. Low pH and pH×temperature interaction influenced the expression of aspein and calmodulin significantly after hours 48 and 96. Significant effects of low pH and pH×temperature interaction on the expression of nacrein were observed at hour 96. The expression level of she-7-F10 was affected significantly by pH after hours 48 and 96. The expression of hsp70 was significantly affected by temperature, pH, temperature×pH interaction at hour 6, and by temperature×pH interaction at hour 24. This study suggested that declined pH and pH×temperature interaction induced down regulation of calcification related genes, and the interaction between declined seawater pH and elevated temperature caused up regulation of hsp70 in P. facata. These results demonstrate that the declined seawater pH and elevated temperature will impact the physiological process, and potentially the adaptability of P. fucata to future warming and acidified ocean. PMID:22438983

  11. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and a(w).

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; El Jabri, Mohammed; Leguerinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-10-01

    Sporulation niches in the food chain are considered as a source of hazard and are not clearly identified. Determining the sporulation environmental boundaries could contribute to identify potential sporulation niches. Spore formation was determined in a Sporulation Mineral Buffer. The effect of incubation temperature, pH and water activity on time to one spore per mL, maximum sporulation rate and final spore concentration was investigated for a Bacillus weihenstephanensis and a Bacillus licheniformis strain. Sporulation boundaries of B. weihenstephanensis and of B. licheniformis were similar to, or included within, the range of temperatures, pH and water activities supporting growth. For instance, sporulation boundaries of B. weihenstephanensis were evaluated at 5°C, 35°C, pH 5.2 and a(w) 0.960 while growth boundaries were observed at 5°C, 37°C, pH 4.9 and a(w) 0.950. Optimum spore formation was determined at 30°C pH 7.2 for B. weihenstephanensis and at 45°C pH 7.2 for B. licheniformis. Lower temperatures and pH delayed the sporulation process. For instance, the time to one spore per mL was tenfold longer when sporulation occurred at 10°C and 20°C, for each strain respectively, than at optimum sporulation temperature. The relative effect of temperature and pH on sporulation rates and on growth rates is similar. This work suggests that the influence of environmental factors on the quantitative changes in sporulation boundaries and rates was similar to their influence on changes in growth rate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Larochelle, Kevin J.

    This study focused on moisture and intermediate temperature effects on the embrittlement phenomenon and stress rupture life of the ceramic matrix composite (CMC) made of Sylramic(TM) fibers with an in-situ layer of boron nitride (Syl-iBN), boron nitride interphase (BN), and SiC matrix (Syl-iBN/BN/SiC). Stress rupture tests were performed at 550°C or 750°C with moisture contents of 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH 2O. The CMC stress rupture strengths at 100 hrs at 550°C with 0.0, 0.2, or 0.6 atm pH2O were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the corresponding strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy (FESEM) analysis showed that the amount of pesting by glass formations increased with time, temperature, and pH2O leading to embrittlement. Total embrittlement times for 550°C were estimated to be greater than 63 hrs for 0.0 atm pH2O greater than 38 hrs for 0.2 atm pH 2O and between 8 and 71 hrs for 0.6 atm pH2O. Corresponding estimated embrittlement times for the 750°C were greater than 83 hrs, between 13 and 71 hrs, and between 1 and 6 hrs. A time-dependent, phenomenological, Monte Carlo-type simulation of composite failure was developed. The simulated total embrittlement times for the 550°C cases were 300 hrs, 100 hrs, and 25 hrs for 0.0, 0.2, and 0.6 atm pH 2O, respectively. The corresponding embrittlement times for the 750°C cases were 300 hrs, 20 hrs, and 3 hrs. A detailed sensitivity analysis on the variables used in the model was conducted. The model was most sensitive to variation in the ultimate strength of the CMC at room temperature, the ultimate strength of the CMC at elevated temperature, and the reference strength of a fiber and it was least sensitive to variation in the modulus of elasticity of the matrix and fiber. The sensitivity analysis showed that the stress ruptures curves generated by variation in the total embrittlement time simulate the trends in the experimental data. This research showed that the degree of stress rupture strength degradation increases with temperature, moisture content level, and exposure time.

  13. The pH sensing characteristics of the extended-gate field-effect transistors of multi-walled carbon-nanotube thin film using low-temperature ultrasonic spray method.

    PubMed

    Chien, Yun-Shan; Yang, Po-Yu; Tsai, Wan-Lin; Li, Yu-Ren; Chou, Chia-Hsin; Chou, Jung-Chuan; Cheng, Huang-Chung

    2012-07-01

    A novel, simple and low-temperature ultrasonic spray method was developed to fabricate the multi-walled carbon-nanotubes (MWCNTs) based extended-gate field-effect transistors (EGFETs) as the pH sensor. With an acid-treated process, the chemically functionalized two-dimensional MWCNT network could provide plenty of functional groups which exhibit hydrophilic property and serve as hydrogen sensing sites. For the first time, the EGFET using a MWCNT structure could achieve a wide sensing rage from pH = 1 to pH = 13. Furthermore, the pH sensitivity and linearity values of the CNT pH-EGFET devices were enhanced to 51.74 mV/pH and 0.9948 from pH = 1 to pH = 13 while the sprayed deposition reached 50 times. The sensing properties of hydrogen and hydroxyl ions show significantly dependent on the sprayed deposition times, morphologies, crystalline and chemical bonding of acid-treated MWCNT. These results demonstrate that the MWCNT-EGFETs are very promising for the applications in the pH and biomedical sensors.

  14. Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose rom Thermotoga neapolitana.

    PubMed

    Lim, Byung-Chul; Kim, Hye-Jung; Oh, Deok-Kun

    2008-06-01

    Chitopearl beads were used as immobilization supports for D-tagatose production from D-galactose by L-arabinose isomerase from Thermotoga neapolitana because chitopearl beads were more stable than alginate beads at temperatures above 60 degrees C. The pH and temperature for the maximum isomerization of galactose were 7.5 and 90 degrees C, respectively. In thermostability experiments, the half-lives of the immobilized enzyme at 70, 75, 80, 85, and 90 degrees C were 388, 106, 54, 36, and 22 h, respectively. The reaction temperature was determined to be 70 degrees C because the enzyme is highly stable up to 70 degrees C during the reaction. When the reaction time, galactose concentration, and temperature were increased, the pH of a mixture containing enzyme and galactose decreased by the Maillard reaction, resulting in decreased tagatose production. With pH control at 7.5, tagatose production (138 g/L) at 70 degrees C in a stirred tank reactor containing immobilized enzyme and 300 g/L galactose increased two times higher, comparing that without pH control.

  15. Leaching behavior of total organic carbon, nitrogen, and phosphorus from banana peel.

    PubMed

    Jiang, Ruixue; Sun, Shujuan; Xu, Yan; Qiu, Xiudong; Yang, Jili; Li, Xiaochen

    2015-01-01

    The leaching behavior of organic carbon and nutrient compounds from banana peel (BP) was investigated in batch assays with respect to particle size, contact time, pH value, and temperature. The granularity, contact time, pH, and temperature caused no significant effects on the leaching of total phosphorus (TP) from the BP. The maximum leached total nitrogen (TN) content was found at pH 5.0 and 90 minutes, while no significant effects were caused by the granularity and temperature. The maximum leached total organic carbon (TOC) content was found by using a powder of 40 mesh, 150 minutes and at pH 6.0, while the temperature had no effect on the TOC leaching. The proportions of the TN, TP, and TOC contents leached from the dried BP ranged from 33.6% to 40.9%, 60.4% to 72.7%, and 8.2% to 9.9%, respectively, indicating that BP could be a potential pollution source for surface and ground water if discharged as domestic waste or reutilized without pretreatment.

  16. Yield and cold storage of Trichoderma conidia is influenced by substrate pH and storage temperature.

    PubMed

    Steyaert, Johanna M; Chomic, Anastasia; Nieto-Jacobo, Maria; Mendoza-Mendoza, Artemio; Hay, Amanda J; Braithwaite, Mark; Stewart, Alison

    2017-05-01

    In this study we examined the influence of the ambient pH during morphogenesis on conidial yield of Trichoderma sp. "atroviride B" LU132 and T. hamatum LU593 and storage at low temperatures. The ambient pH of the growth media had a dramatic influence on the level of Trichoderma conidiation and this was dependent on the strain and growth media. On malt-extract agar, LU593 yield decreased with increasing pH (3-6), whereas yield increased with increasing pH for LU132. During solid substrate production the reverse was true for LU132 whereby yield decreased with increasing pH. The germination potential of the conidia decreased significantly over time in cold storage and the rate of decline was a factor of the strain, pH during morphogenesis, growth media, and storage temperature. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ruminal temperature may aid in the detection of subacute ruminal acidosis.

    PubMed

    AlZahal, O; Kebreab, E; France, J; Froetschel, M; McBride, B W

    2008-01-01

    The objective of this study was to investigate the relationship between ruminal pH and ruminal temperature and to develop a predictive equation that can aid in the diagnosis of subacute ruminal acidosis (SARA). Six rumen-fistulated lactating Holstein dairy cows (639 +/- 51 kg body weight) were used in the study. Cows were randomly allocated to 1 of 2 dietary treatments: control (% of dry matter, 40% corn silage, 27% mixed haylage, 7% alfalfa hay, 18% protein supplement, 4% ground corn, and 4% wheat bran) or SARA total mixed ration (% of dry matter, 31% corn silage, 20% mixed haylage, 5% alfalfa hay, 15% protein supplement, 19% ground wheat, and 10% ground barley) and were fed daily at 0700 and 1300 h. The experiment consisted of 1 wk of adaptation followed by 1 wk of treatment. Ruminal pH and ruminal temperature were simultaneously and continuously recorded every minute for 4 d per week using the same indwelling electrode. Subacute-acidotic cows spent more time (min/d) below ruminal pH 5.6 and a greater time above 39.2 degrees C than control cows. Ruminal pH nadir had a negative relationship with its corresponding ruminal temperature (R2 = 0.77). Therefore, ruminal temperature may have potential to predict ruminal pH and thus aid in the diagnosis of SARA.

  18. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces.

    PubMed

    Smoot, L M; Pierson, M D

    1998-10-01

    Attachment of Listeria monocytogenes Scott A to Buna-N rubber and stainless steel under different temperature and pH conditions at the time of cell growth or at the time of attachment was investigated. All experiments were conducted using sterile phosphate buffer to avoid cell growth during exposure to the test surfaces. Numbers of attached cells increased with increasing attachment temperature (10 to 45 degrees C) and exposure time for both test surfaces. Maximum levels of attached cells were obtained when cell growth occurred at 30 degrees C. Downward, but not upward, shifts in the cell suspension holding temperature prior to attachment to Buna-N rubber resulted in reduced adhered cell populations. Maximum levels of adhered cells to Buna-N rubber were not affected by adjustments of the attachment medium pH between 4 and 9. However, after short contact times (i.e., less than 30 min), levels of attached cells were lower when attachment occurred under alkaline conditions. Growth pH was also found to affect the levels of adhered cell populations to Buna-N rubber. L. monocytogenes Scott A attached to stainless steel at higher levels for all temperature and pH parameters evaluated in this study.

  19. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies.

    PubMed

    Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

  20. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies

    PubMed Central

    Kline, David I.; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 – 6.6°C) and lowest diel ranges (0.9 – 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 – 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems. PMID:26039687

  1. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    NASA Astrophysics Data System (ADS)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-07-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  2. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    NASA Astrophysics Data System (ADS)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-03-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5 and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ∼20-50% depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37% compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  3. Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures

    PubMed Central

    2011-01-01

    Batch anaerobic digestion experiments using dairy manure as feedstocks were performed at moderate (25°C), mesophilic (37°C), and thermophilic (52.5°C) temperatures to understand E. coli, an indicator organism for pathogens, inactivation in dairy manure. Incubation periods at 25, 37, and 52.5°C, were 61, 41, and 28 days respectively. Results were used to develop models for predicting E. coli inactivation and survival in anaerobic digestion. For modeling we used the decay of E. coli at each temperature to calculate the first-order inactivation rate coefficients, and these rates were used to formulate the time - temperature - E. coli survival relationships. We found the inactivation rate coefficient at 52.5°C was 17 and 15 times larger than the inactivation rate coefficients at 25 and 37°C, respectively. Decimal reduction times (D10; time to achieve one log removal) at 25, 37, and 52.5°C, were 9 -10, 7 - 8 days, and < 1 day, respectively. The Arrhenius correlation between inactivation rate coefficients and temperatures over the range 25 -52.5°C was developed to understand the impacts of temperature on E. coli inactivation rate. Using this correlation, the time - temperature - E. coli survival relationships were derived. Besides E. coli inactivation, impacts of temperature on biogas production, methane content, pH change, ORP, and solid reduction were also studied. At higher temperatures, biogas production and methane content was greater than that at low temperatures. While at thermophilic temperature pH was increased, at mesophilic and moderate temperatures pH were reduced over the incubation period. These results can be used to understand pathogen inactivation during anaerobic digestion of dairy manure, and impacts of temperatures on performance of anaerobic digesters treating dairy manure. PMID:21906374

  4. Modeling the germination kinetics of clostridium botulinum 56A spores as affected by temperature, pH, and sodium chloride.

    PubMed

    Chea, F P; Chen, Y; Montville, T J; Schaffner, D W

    2000-08-01

    The germination kinetics of proteolytic Clostridium botulinum 56A spores were modeled as a function of temperature (15, 22, 30 degrees C), pH (5.5, 6.0, 6.5), and sodium chloride (0.5, 2.0, 4.0%). Germination in brain heart infusion (BHI) broth was followed with phase-contrast microscopy. Data collected were used to develop the mathematical models. The germination kinetics expressed as cumulated fraction of germinated spores over time at each environmental condition were best described by an exponential distribution. Quadratic polynomial models were developed by regression analysis to describe the exponential parameter (time to 63% germination) (r2 = 0.982) and the germination extent (r2 = 0.867) as a function of temperature, pH, and sodium chloride. Validation experiments in BHI broth (pH: 5.75, 6.25; NaCl: 1.0, 3.0%; temperature: 18, 26 degrees C) confirmed that the model's predictions were within an acceptable range compared to the experimental results and were fail-safe in most cases.

  5. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors.

    PubMed

    Feng, Leiyu; Wang, Hua; Chen, Yinguang; Wang, Qin

    2009-01-01

    The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.

  6. Characterisation of pectins extracted from banana peels (Musa AAA) under different conditions using an experimental design.

    PubMed

    Happi Emaga, Thomas; Ronkart, Sébastien N; Robert, Christelle; Wathelet, Bernard; Paquot, Michel

    2008-05-15

    An experimental design was used to study the influence of pH (1.5 and 2.0), temperature (80 and 90°C) and time (1 and 4h) on extraction of pectin from banana peels (Musa AAA). Yield of extracted pectins, their composition (neutral sugars, galacturonic acid, and degree of esterification) and some macromolecular characteristics (average molecular weight, intrinsic viscosity) were determined. It was found that extraction pH was the most important parameter influencing yield and pectin chemical composition. Lower pH values negatively affected the galacturonic acid content of pectin, but increased the pectin yield. The values of degree of methylation decreased significantly with increasing temperature and time of extraction. The average molecular weight ranged widely from 87 to 248kDa and was mainly influenced by pH and extraction time. Copyright © 2007 Elsevier Ltd. All rights reserved.

  7. Hyperthermophilic archaeal prefoldin shows refolding activity at low temperature.

    PubMed

    Zako, Tamotsu; Banba, Shinya; Sahlan, Muhamad; Sakono, Masafumi; Terada, Naofumi; Yohda, Masafumi; Maeda, Mizuo

    2010-01-01

    Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. Previous studies of archaeal prefoldins have shown that prefoldin only possesses holdase activity and is unable to fold unfolded proteins by itself. In this study, we have demonstrated for the first time that a prefoldin from hyperthermophilic archaeon, Pyrococcus horikoshii OT3 (PhPFD), exhibits refolding activity for denatured lysozyme at temperatures relatively lower than physiologically active temperatures. The interaction between PhPFD and denatured lysozyme was investigated by use of a surface plasmon resonance sensor at various temperatures. Although PhPFD showed strong affinity for denatured lysozyme at high temperature, it exhibited relatively weak interactions at lower temperature. The protein-folding seems to occur through binding and release from PhPFD by virtue of the weak affinity. Our results also imply that prefoldin might be able to contribute to the folding of some cellular proteins whose affinity with prefoldin is weak. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats.

    PubMed

    Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A

    2003-01-15

    To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.

  9. [Induce of laccase from Trametes gallica and its degradation on neutral dyes and organophosphorus pesticides].

    PubMed

    Jing, De-Jun; Huang, Jian-Bo; Yang, Zhou-Ping; Hu, Rong; Cheng, Zi-Zhang; Huang, Qian-Ming

    2011-12-01

    The characteristics of the induction of laccase in Trametes gallica under different initial cultural pH, incubation time by different inducers were discussed, as well as the effects of temperature, pH and time on laccase degradation of six dyes and four organophosphors. The results showed that RB-bright blue, ABTS and o-toluidine affected the production of laccase at different levels, and ABTS was the best inductive agent in our test conditions, whose optimal initial pH and incubation time were 4.0 and 13 days, respectively. The appropriate reaction temperature of the laccase produced was 38 degrees C, and it got a good stability, for it could retain 78.6% of the enzyme activity after 20 min holding at 40 degrees C. Mediated by ABTS, the optimal temperature for laccase to degrade the six types of neutral dyes could be divided into two cases, that was 30 degrees C (neutral black, neutral bordeaux, neutral pink, methyl orange) and 60 degrees C (neutral dark yellow, cresol red), the optimal pH were 6.0 (neutral black), 2.0 (neutral bordeaux, neutral pink) and 4.0 (methyl orange, neutral dark yellow, cresol red), respectively, while the optimal times separately were 6 h (methyl orange, neutral dark yellow, cresol red), 12 h (neutral pink) and 24 h (neutral bordeaux). And using the same inductive agent, the best temperature for laccase to degrade dimethoate, chlorpyrifos, trichlorfon and parathion-pyridazine was 25 degrees C, the suitable time was 9 h, and the optimal pH was 10.0 for dimethoate, chlorpyrifos and parathion-pyridazine, and 8.0 for trichlorfon.

  10. Incubation temperature effects on physical characteristics of normal, dark, firm and dry, and halothane-carrier pork longissimus.

    PubMed

    McCaw, J; Ellis, M; Brewer, M S; McKeith, F K

    1997-06-01

    Pigs (n = 18) were selected to represent three different muscle conditions (six pigs per condition): normal: dark, firm, and dry; and halothane carrier. A 45-cm-long longissimus section was excised from each side of the carcass at 30 min postmortem and cut into six sections. Right side sections were assigned to the intermediate temperature incubation (23 degrees C), and left side sections were designated high temperature incubation (40 degrees C). Sections were randomly assigned to incubation times (0, 1, 2, 4, 6, or 8 h). The 0 h section from each incubation treatment was designated as a control and was placed directly into a 4 degree C cooler. Temperature and pH were evaluated on the control section and for each loin section a the end of the incubation time. Color (L*, a*, and b* values), percentage of purge loss, water-holding capacity, and drip loss were determined. Incubation treatment did not alter pH decline in dark, firm, and dry muscle; however, high temperature increased pH decline in normal and halothane carrier samples. Results suggest that there is a strong interaction between pH and temperature that affects pork quality attributes. High incubation temperature had a negative effect on most quality variables; however, muscle condition (normal or halothane carrier) had limited effects on muscle quality.

  11. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  12. Combined effects of ocean acidification and temperature on planula larvae of the moon jellyfish Aurelia coerulea.

    PubMed

    Dong, Zhijun; Sun, Tingting

    2018-08-01

    Rapidly rising levels of atmospheric CO 2 have caused two environmental stressors, ocean acidification and seawater temperature increases, which represent major abiotic threats to marine organisms. Here, we investigated for the first time the combined effects of ocean acidification and seawater temperature increases on the behavior, survival, and settlement of the planula larvae of Aurelia coerulea, which is considered a nuisance species around the world. Three pH levels (8.1, 7.7 and 7.3) and two temperature levels (24 °C and 27 °C) were used in the present study. There were no interactive effects of temperature and pH on the behavior, survival, and settlement of planula larvae of A. coerulea. We found that the swimming speed and mortality of the planula larvae of A. coerulea were significantly affected by temperature, and low pH significantly affected settlement. Planula larvae of A. coerulea from the elevated temperature treatment moved faster and showed higher mortality than those at the control temperature. The settlement rate of A. coerulea planulae was significantly higher at the pH level of 7.3 than at other pH levels. These results suggest that seawater temperature increase, rather than reduced pH, was the main stress factor affecting the survival of A. coerulea planulae. Overall, the planula larvae of the common jellyfish A. coerulea appeared to be resistant to ocean acidification, but may be negatively affected by future seawater temperature increases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures.

    PubMed

    Suckling, Coleen C; Clark, Melody S; Richard, Joelle; Morley, Simon A; Thorne, Michael A S; Harper, Elizabeth M; Peck, Lloyd S

    2015-05-01

    This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  14. Effect of temperature and pH on the properties of skim milk gels made from a tamarillo (Cyphomandra betacea) coagulant and rennet.

    PubMed

    Li, Z; Scott, K; Otter, D; Zhou, P; Hemar, Y

    2018-06-01

    Reconstituted skim milk was gelled with a crude protease extract from tamarillo [Cyphomandra betacea or Solanum betacea (syn.)] fruit and compared with gels prepared with calf rennet. The effects of temperature and pH on the gelation of skim milk were investigated by small deformation oscillatory rheology. The tamarillo extract-induced gels had a faster rate of increase in the elastic modulus (G') at the early stage of gelation than rennet-induced milk gels. This was probably due to the broader proteolytic activity of tamarillo protease extracts as shown by sodium dodecyl sulfate-PAGE analysis. Confocal microscopy also showed that the milk gels resulting from the addition of tamarillo extracts had larger voids than rennet-induced milk gels. The proteolytic activity of tamarillo extracts was found to be optimal at pH 11. For both rennet and tamarillo extracts, the aggregation time was similar between pH 6.7 and 6.5, but the aggregation time of rennet-induced milk gels was lower than that of milk gels obtained by the addition of tamarillo extracts at pH lower than 6.5. An increase in temperature was found to have a significant effect on aggregation time, particularly at 20°C, where rennet did not coagulate milk in 3 h but the tamarillo extracts coagulated milk within 2 h. The results of this study suggest that extracts from tamarillo fruit could be used for milk gelation, particularly under lower temperature or high pH conditions. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Control of enzymatic browning in apple slices by using ascorbic acid under different conditions.

    PubMed

    el-Shimi, N M

    1993-01-01

    Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH = 1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60-70 degrees C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.

  16. Impacts of Ocean Acidification and Temperature Change on Zooxanthellae Density in Coral Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Pantaleo, G. E.; Martínez Fernández, A.; Paytan, A.

    2016-12-01

    As ocean conditions continue to change, marine ecosystems are significantly impacted. Many calcifying organisms are being affected by the gradual changes in ocean pH and temperature that continue to occur over time. Corals are organisms that engage in a symbiotic relationship with Symbiodinium dinoflagellates (zooxanthellae). Symbiodinium are responsible for photosynthetic activity within oligotrophic waters. Corals depend on high levels of aragonite saturation state of seawater in order to build their skeletal structure. Most corals have a relatively narrow optimal range of temperature and pH in which they thrive. However, it is thought that corals residing in the Gulf of Aqaba (Red Sea) are resilient to the effects of increasing temperature. Stylophora pistillata's response to environmental impacts was tested via a simulation of ocean conditions at a high temperature and high CO2 emission scenario (pH 7.65) and lower CO2 emission scenario (pH 7.85) that are predicted for the end of this century. We present the difference in zooxanthellae density following a short term experiment where corals were placed in seawater tanks at pH 7.65, 7.85 and 8.1 and temperature was increased by 4 degrees C above seawater temperature in order to measure the response of Stylophora pistillata to potential future ocean conditions.

  17. Bio-conversion of apple pomace into ethanol and acetic acid: Enzymatic hydrolysis and fermentation.

    PubMed

    Parmar, Indu; Rupasinghe, H P Vasantha

    2013-02-01

    Enzymatic hydrolysis of cellulose present in apple pomace was investigated using process variables such as enzyme activity of commercial cellulase, pectinase and β-glucosidase, temperature, pH, time, pre-treatments and end product separation. The interaction of enzyme activity, temperature, pH and time had a significant effect (P<0.05) on release of glucose. Optimal conditions of enzymatic saccharification were: enzyme activity of cellulase, 43units; pectinase, 183units; β-glucosidase, 41units/g dry matter (DM); temperature, 40°C; pH 4.0 and time, 24h. The sugars were fermented using Saccharomyces cerevisae yielding 19.0g ethanol/100g DM. Further bio-conversion using Acetobacter aceti resulted in the production of acetic acid at a concentration of 61.4g/100g DM. The present study demonstrates an improved process of enzymatic hydrolysis of apple pomace to yield sugars and concomitant bioconversion to produce ethanol and acetic acid. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Evaluation of the pH- and Thermal Stability of the Recombinant Green Fluorescent Protein (GFP) in the Presence of Sodium Chloride

    NASA Astrophysics Data System (ADS)

    Ishii, Marina; Kunimura, Juliana Sayuri; Jeng, Hélio Tallon; Vessoni Penna, Thereza Christina; Cholewa, Olivia

    The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95°C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84 ±0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94±0.60) was half that observed in phosphate buffer (pH 6.08±0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80°C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65±0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80°C. GFP pH-and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.

  19. Pre-slaughter rectal temperature as an indicator of pork meat quality.

    PubMed

    Vermeulen, L; Van de Perre, V; Permentier, L; De Bie, S; Geers, R

    2015-07-01

    This study investigates whether rectal temperature of pigs, prior to slaughter, can give an indication of the risk of developing pork with PSE characteristics. A total of 1203 pigs were examined, measuring the rectal temperature just before stunning, of which 794 rectal temperatures were measured immediately after stunning. pH30LT (M. Longissimus thoracis) and temperature of the ham (Temp30Ham) were collected from about 530 carcasses, 30 min after sticking. The results present a significant positive linear correlation between rectal temperature just before and after slaughter, and Temp30Ham. Moreover, pH30LT is negatively correlated with rectal temperature and Temp30Ham. Finally, a linear mixed model for pH30LT was established with the rectal temperature of the pigs just before stunning and the lairage time. This model defines that measuring rectal temperature of pigs just before slaughter allows discovery of pork with PSE traits, taking into account pre-slaughter conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Temperature and pH sensors based on graphenic materials.

    PubMed

    Salvo, P; Calisi, N; Melai, B; Cortigiani, B; Mannini, M; Caneschi, A; Lorenzetti, G; Paoletti, C; Lomonaco, T; Paolicchi, A; Scataglini, I; Dini, V; Romanelli, M; Fuoco, R; Di Francesco, F

    2017-05-15

    Point-of-care applications and patients' real-time monitoring outside a clinical setting would require disposable and durable sensors to provide better therapies and quality of life for patients. This paper describes the fabrication and performances of a temperature and a pH sensor on a biocompatible and wearable board for healthcare applications. The temperature sensor was based on a reduced graphene oxide (rGO) layer that changed its electrical resistivity with the temperature. When tested in a human serum sample between 25 and 43°C, the sensor had a sensitivity of 110±10Ω/°C and an error of 0.4±0.1°C compared with the reference value set in a thermostatic bath. The pH sensor, based on a graphene oxide (GO) sensitive layer, had a sensitivity of 40±4mV/pH in the pH range between 4 and 10. Five sensor prototypes were tested in a human serum sample over one week and the maximum deviation of the average response from reference values obtained by a glass electrode was 0.2pH units. For biological applications, the temperature and pH sensors were successfully tested for in vitro cytotoxicity with human fibroblast cells (MRC-5) over 24h. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effects of niacin supplementation and dietary concentrate proportion on body temperature, ruminal pH and milk performance of primiparous dairy cows.

    PubMed

    Lohölter, Malte; Meyer, Ulrich; Rauls, Caroline; Rehage, Jürgen; Dänicke, Sven

    2013-06-01

    The objective of this study was to investigate the effects of niacin and dietary concentrate proportion on body temperature, ruminal pH and milk production of dairy cows. In a 2 × 2 factorial design, 20 primiparous Holstein cows (179 ± 12 days in milk) were assigned to four dietary treatments aimed to receive either 0 or 24 g niacin and 30% (low) or 60% (high) concentrate with the rest being a partial mixed ration (PMR) composed of 60% corn and 40% grass silage (on dry matter basis). Ambient temperature and relative humidity were determined and combined by the calculation of temperature humidity index. Respiration rates, rectal, skin and subcutaneous temperatures were measured. Milk production and composition were determined. Ruminal pH and temperature were recorded at a frequency of 5 min using wireless devices for continuous intra-ruminal measurement (boluses). pH values were corrected for pH sensor drift. The climatic conditions varied considerably but temporarily indicated mild heat stress. Niacin did not affect skin, rectal and subcutaneous temperatures but tended to increase respiration rates. High concentrate reduced skin temperatures at rump, thigh and neck by 0.1-0.3°C. Due to the technical disturbances, not all bolus data could be subjected to statistical evaluation. However, both niacin and high concentrate influenced mean ruminal pH. High concentrate increased the time spent with a pH below 5.6 and ruminal temperatures (0.2-0.3°C). Niacin and high concentrate enhanced milk, protein and lactose yield but reduced milk fat and protein content. Milk fat yield was slightly reduced by high concentrate but increased due to niacin supplementation. In conclusion, niacin did not affect body temperature but stimulated milk performance. High concentrate partially influenced body temperatures and had beneficial effects on milk production.

  2. Diurnal variation of intraoral pH and temperature.

    PubMed

    Choi, Jung Eun; Lyons, Karl M; Kieser, Jules A; Waddell, Neil J

    2017-01-01

    The aim of this study was to measure continuously the intraoral pH and temperature of healthy individuals to investigate their diurnal variations. Seventeen participants (mean age, 31±9 years) wore a custom-made intraoral appliance fitted with a pH probe and thermocouple for two sets of 24 h, while carrying out normal daily activities including sleep. The continuous changes in intraoral pH and temperature were captured using a sensor placed on the palatal aspect of the upper central incisors. The collected data were categorised into different status (awake and sleep) and periods (morning, afternoon, evening and night). Both quantitative and qualitative analyses were conducted. The intraoral pH change was found to show a distinctive daily rhythm, showing a 12-h interval between maximum (7.73) and minimum (6.6) pH values. The maximum and minimum values were found to repeat after 24 h. The mean pH over 48 h (two sets of 24 h) was found to be 7.27 (±0.74). There was significant difference found in pH when subjects were awake and asleep and different periods during the day ( P <0.001). The mean intraoral temperature was 33.99 °C (±4.9), with less distinctive daily rhythm compared with pH. There was a significant difference found in temperature depending on the time of the day, except between morning and afternoon ( P =0.78). Our results showed that there is a distinctive daily, circadian-like pattern in intraoral pH variation over a 24-h period, which has been considered as one of the risk factors in sleep-related dental diseases.

  3. Modelling pH evolution and lactic acid production in the growth medium of a lactic acid bacterium: application to set a biological TTI.

    PubMed

    Ellouze, M; Pichaud, M; Bonaiti, C; Coroller, L; Couvert, O; Thuault, D; Vaillant, R

    2008-11-30

    Time temperature integrators or indicators (TTIs) are effective tools making the continuous monitoring of the time temperature history of chilled products possible throughout the cold chain. Their correct setting is of critical importance to ensure food quality. The objective of this study was to develop a model to facilitate accurate settings of the CRYOLOG biological TTI, TRACEO. Experimental designs were used to investigate and model the effects of the temperature, the TTI inoculum size, pH, and water activity on its response time. The modelling process went through several steps addressing growth, acidification and inhibition phenomena in dynamic conditions. The model showed satisfactory results and validations in industrial conditions gave clear evidence that such a model is a valuable tool, not only to predict accurate response times of TRACEO, but also to propose precise settings to manufacture the appropriate TTI to trace a particular food according to a given time temperature scenario.

  4. Removal of fluoride from water with powdered corn cobs.

    PubMed

    Parmar, S; Patel, Jignesh B; Sudhakar, Padmaja; Koshy, V J

    2006-04-01

    The adsorption of fluoride on corn cobs powder was investigated in the present study. Neat powdered corn cobs did not show remarkable adsorption but aluminium treated corn cobs had good adsorption capacity. The parameters studied include the contact time, concentration, temperature and pH. Near neutral pH was identified as the optimum condition of the medium, and 90 to 120 minutes was the best contact time for maximum fluoride adsorption. The adsorption process was found to follow Freundlich isotherm. The adsorption process was found to be exothermic as adsorption decreased with increasing temperature.

  5. Wearable, Flexible, and Multifunctional Healthcare Device with an ISFET Chemical Sensor for Simultaneous Sweat pH and Skin Temperature Monitoring.

    PubMed

    Nakata, Shogo; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-03-24

    Real-time daily healthcare monitoring may increase the chances of predicting and diagnosing diseases in their early stages which, currently, occurs most frequently during medical check-ups. Next-generation noninvasive healthcare devices, such as flexible multifunctional sensor sheets designed to be worn on skin, are considered to be highly suitable candidates for continuous real-time health monitoring. For healthcare applications, acquiring data on the chemical state of the body, alongside physical characteristics such as body temperature and activity, are extremely important for predicting and identifying potential health conditions. To record these data, in this study, we developed a wearable, flexible sweat chemical sensor sheet for pH measurement, consisting of an ion-sensitive field-effect transistor (ISFET) integrated with a flexible temperature sensor: we intend to use this device as the foundation of a fully integrated, wearable healthcare patch in the future. After characterizing the performance, mechanical flexibility, and stability of the sensor, real-time measurements of sweat pH and skin temperature are successfully conducted through skin contact. This flexible integrated device has the potential to be developed into a chemical sensor for sweat for applications in healthcare and sports.

  6. Surface treatment process of Al-Mg alloy powder by BTSPS

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Gao, Xinbao; Lu, Yanling; Du, Fengzhen; Zhang, Li; Liu, Dazhi; Chen, Xuefang

    2018-04-01

    The surface of Al-Mg alloy powder was treated by BTSPS(bis(triethoxysilylpropyl)tetrasulfide) in order to avoid easy oxidation in air. The pH value, reaction temperature, reaction time, and reaction concentration were used as test conditions. The results show that the BTSPS can form a protected film on the surface of Al-Mg alloy powder. Select the best test solution by orthogonal test. The study found that the reaction time and reaction temperature have the biggest influence on the two indexes of the orthogonal test (melting enthalpy of heat and enthalpy of oxidation). The optimal conditions were as follows: pH value is 8, reaction concentration is 2%, reaction temperature is 25 °C, reaction time is 2 h. The oxidation weight gain of the alloy reached 74.45% and the decomposition temperature of silane film is 181.8 °C.

  7. Tensile Properties of 17-7 PH and 12 MoV Stainless-Steel Sheet under Rapid-Heating and Constant-Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Manning, Charles R., Jr.; Price, Howard L.

    1961-01-01

    Results are presented of rapid-heating tests of 17-7 PH and 12 MoV stainless-steel sheet heated to failure at temperature rates from about 1 F to 170 F per second under constant-load conditions. Yield and rupture strengths obtained from rapid-heating tests are compared with yield and tensile strengths obtained from short-time elevated-temperature tensile tests (30-minute exposure). A rate-temperature parameter was used to construct master curves from which yield and rupture stresses or temperatures can be predicted. A method for measuring strain by optical means is described.

  8. SPRUCE Deep Peat Microbial Diversity, CO2 and CH4 Production in Response to Nutrient, Temperature, and pH Treatments during Incubation Studies.

    DOE Data Explorer

    A., Kluber Laurel [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Allen, Samantha A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hendershot, Nicholas [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2014-09-01

    This data set contains the results of a microcosm incubation study on deep peat collected from the SPRUCE experimental site in the S1 Bog in September 2014. Microcosms were monitored for CO2 and CH4 production, and microbial community dynamics were assessed using qPCR and amplicon sequencing.The experiment was designed with a full factorial design with elevated temperature, nitrogen (N), (P), and pH treatments was used with samples from each transect serving replicates. In all, 96 microcosms were constructed to account for the 16 treatment combinations (N x P x pH x temperature), 2 time points, and 3 replicates. Temperature treatments were 6 °C, to mimic the SPRUCE ambient plot temperatures, and 15 °C to mimic the SPRUCE +9 °C treatment.

  9. Effects of temperature, pH, and ionic strength on the Henry's law constant of triethylamine

    NASA Astrophysics Data System (ADS)

    Leng, Chun-Bo; Roberts, Jason E.; Zeng, Guang; Zhang, Yun-Hong; Liu, Yong

    2015-05-01

    The Henry's law constants (KH) of triethylamine (TEA) in pure water and in 1-octanol were measured for the temperatures pertinent to the lower troposphere (278-298 K) using a bubble column system coupled to a Fourier transform infrared spectrometer. The KH values of TEA in water and 1-octanol at 298 K are 5.75 ± 0.86 mol L-1 atm-1 and 115.62 ± 5.78 mol L-1 atm-1. The KH values display strong dependence on temperature, pH, and ionic strength. The characteristic times for TEA to establish an equilibrium between gas and droplet with a size of 5.6 µm are ~33 s (298 K, pH = 5.6); ~8.9 × 102 s (278 K, pH = 5.6); ~1.3 × 103 s (298 K, pH = 4.0); and 3.6 × 104 s (278 K, pH = 4.0). The evaluation of TEA partitioning between gas phase and condensed phase implies that TEA predominantly resides in rainwater, and TEA loss to organic aerosol is negligible.

  10. Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle.

    PubMed

    Wahrmund, J L; Ronchesel, J R; Krehbiel, C R; Goad, C L; Trost, S M; Richards, C J

    2012-08-01

    The objective of this experiment was to determine if ruminal temperature rise coincides with pH reduction using an acidosis challenge model. Twelve ruminally cannulated steers (518 ± 28 kg BW) were administered ruminal temperature-monitoring devices that recorded temperature every 2 min. Steers were fed a 63% concentrate diet at 1.6% BW for 20 d before being randomly assigned to 1 of 3 acidosis challenge treatments: no dietary change (CON), one-half of daily DMI replaced with cracked corn (HALF), or all of daily DMI replaced with cracked corn (CORN). The challenge was initiated by ruminally dosing steers with their treatment diets. Ruminal pH and rectal temperatures (T(rec)) were recorded every 3 h for 72 h. All steers were offered CON diets at 24 and 48 h after challenge. Ruminal pH showed a treatment × day effect (P = 0.01). Ruminal pH of CORN steers was lower (P = 0.03) than that of HALF steers on d 1, was lower (P ≤ 0.004) than that of HALF and CON steers on d 2, and tended to be lower (P ≤ 0.10) than that of HALF and CON steers on d 3. Treatment did not affect (P ≥ 0.42) RecT. Ruminal temperature (T(rum)) showed a treatment · d(-1) · h(-1) after feeding interaction (P < 0.01). At 3 h after challenge, T(rum) of CORN and HALF steers was higher (P ≤ 0.01) than that of CON steers. On d 2, T(rum) of CORN steers was higher (P ≤ 0.03) than that of CON between 6 and 12 h after feeding. From 15 to 21 h after feeding on d 2, T(rum) of HALF steers was higher (P < 0.01) than that of CORN and CON steers. On d 3, at the time of feeding until 3 h later, T(rum) of CORN steers was lower (P ≤ 0.04) than that of all other steers. Rectal temperature was correlated (P ≤ 0.01) with T(rum) on all days for CON and CORN steers. Ruminal pH was negatively correlated (P ≤ 0.04) with T(rec) on d 2 and T(rum) on d 1 in CORN steers, and T(rum) was negatively correlated (P ≤ 0.02) with ruminal pH in HALF and CON steers on d 1 and 3, respectively. The amount of time above T(rum) of 39.0°C or 39.45°C was correlated (P ≤ 0.05) with the time spent below a ruminal pH of 5.5 in CORN steers; however, time above T(rum) of 39.0°C did not differ (P = 0.87) among treatments. Results indicate that there is a negative relationship between T(rum) and ruminal pH during an acidotic episode; therefore, T(rum) monitoring can detect a potential acidotic episode.

  11. A miniature integrated multimodal sensor for measuring pH, EC and temperature for precision agriculture.

    PubMed

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si(3)N(4) membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk.

  12. A Miniature Integrated Multimodal Sensor for Measuring pH, EC and Temperature for Precision Agriculture

    PubMed Central

    Futagawa, Masato; Iwasaki, Taichi; Murata, Hiroaki; Ishida, Makoto; Sawada, Kazuaki

    2012-01-01

    Making several simultaneous measurements with different kinds of sensors at the same location in a solution is difficult because of crosstalk between the sensors. In addition, because the conditions at different locations in plant beds differ, in situ measurements in agriculture need to be done in small localized areas. We have fabricated a multimodal sensor on a small Si chip in which a pH sensor was integrated with electrical conductivity (EC) and temperature sensors. An ISFET with a Si3N4 membrane was used for the pH sensor. For the EC sensor, the electrical conductivity between platinum electrodes was measured, and the temperature sensor was a p-n junction diode. These are some of the most important measurements required for controlling the conditions in plant beds. The multimodal sensor can be inserted into a plant bed for in situ monitoring. To confirm the absence of crosstalk between the sensors, we made simultaneous measurements of pH, EC, and temperature of a pH buffer solution in a plant bed. When the solution was diluted with hot or cold water, the real time measurements showed changes to the EC and temperature, but no change in pH. We also demonstrated that our sensor was capable of simultaneous in situ measurements in rock wool without being affected by crosstalk. PMID:22969403

  13. Alternative approach to modeling bacterial lag time, using logistic regression as a function of time, temperature, pH, and sodium chloride concentration.

    PubMed

    Koseki, Shige; Nonaka, Junko

    2012-09-01

    The objective of this study was to develop a probabilistic model to predict the end of lag time (λ) during the growth of Bacillus cereus vegetative cells as a function of temperature, pH, and salt concentration using logistic regression. The developed λ model was subsequently combined with a logistic differential equation to simulate bacterial numbers over time. To develop a novel model for λ, we determined whether bacterial growth had begun, i.e., whether λ had ended, at each time point during the growth kinetics. The growth of B. cereus was evaluated by optical density (OD) measurements in culture media for various pHs (5.5 ∼ 7.0) and salt concentrations (0.5 ∼ 2.0%) at static temperatures (10 ∼ 20°C). The probability of the end of λ was modeled using dichotomous judgments obtained at each OD measurement point concerning whether a significant increase had been observed. The probability of the end of λ was described as a function of time, temperature, pH, and salt concentration and showed a high goodness of fit. The λ model was validated with independent data sets of B. cereus growth in culture media and foods, indicating acceptable performance. Furthermore, the λ model, in combination with a logistic differential equation, enabled a simulation of the population of B. cereus in various foods over time at static and/or fluctuating temperatures with high accuracy. Thus, this newly developed modeling procedure enables the description of λ using observable environmental parameters without any conceptual assumptions and the simulation of bacterial numbers over time with the use of a logistic differential equation.

  14. Peripartal changes in reticuloruminal pH and temperature in dairy cows differing in the susceptibility to subacute rumen acidosis.

    PubMed

    Humer, E; Ghareeb, K; Harder, H; Mickdam, E; Khol-Parisini, A; Zebeli, Q

    2015-12-01

    The present study aimed to investigate changes in the reticuloruminal pH and temperature dynamics in periparturient dairy cows. Reticuloruminal pH and temperature measurements were conducted from 7 d before until 8 d after parturition using indwelling sensors. Nine Simmental and 4 Brown Swiss dairy cows were fed a close-up total mixed ration (52.5% neutral detergent fiber, 5.68MJ of net energy for lactation per kg of dry matter) with additional 1kg/cow per d concentrate mixture (29.5% neutral detergent fiber and 6.25MJ of net energy for lactation per kg of dry matter), starting from 2 wk before the estimated calving date. Postpartum, all cows had free access to the same close-up diet and were gradually fed increasing amounts of a concentrate-rich total mixed ration for early-lactation cows (32.7% neutral detergent fiber, 7.22MJ of net energy for lactation per kg of dry matter). Data showed depressed reticuloruminal pH early postpartum, but only in the group of cows defined as subacute ruminal acidosis (SARA) susceptible (n=8), which had a higher duration time of pH <5.8 (753±82min/d) compared with SARA-tolerant cows (n=5; 15±6min/d). Also, compared with SARA-tolerant cows (112±91min/d), the SARA-susceptible group showed longer (1,049±75min/d) duration time of pH <6.0. When compared by breed, mean reticuloruminal pH tended to be lower in Simmental (6.16±0.03) than in Brown Swiss cows (6.25±0.05), but no differences were observed in the duration of pH <5.8 between breeds. Simmental cows produced more milk (30.4±1.2kg/d) compared with Brown Swiss cows (27.9±1.3kg/d). Neither total dry matter intake nor milk yield were different between SARA-susceptible and SARA-tolerant groups. However, SARA-tolerant cows consumed greater amounts of the close-up total mixed ration than their SARA-susceptible counterparts, whereas no difference was observed in the intake of the early-lactating total mixed ration between the groups. Reticuloruminal temperature was not affected by breed or SARA susceptibility. Interestingly, the mean reticuloruminal temperature and the time duration of temperature >39.5°C abruptly dropped from d 2 to 1 before calving by 0.35°C and 430min/d, respectively. In conclusion, the strong inter-animal variation in reticuloruminal pH responses suggests the need for more careful monitoring and differentiated feeding management of cows during the transition period, whereby the SARA-susceptible cows may require particular attention regarding feeding management and diet composition. The abrupt decrease in reticuloruminal temperature the day before parturition may enable this noninvasive method as a management tool for prediction of parturition time. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Optimization of hydrolysis conditions for the production of glucomanno-oligosaccharides from konjac using β-mannanase by response surface methodology.

    PubMed

    Chen, Junfan; Liu, Desheng; Shi, Bo; Wang, Hai; Cheng, Yongqiang; Zhang, Wenjing

    2013-03-01

    Glucomanno-oligosaccharides (GMO), usually produced from hydrolysis of konjac tubers with a high content of glucomannan, have a positive effect on Bifidobacterium as well as a variety of other physiological activities. Response surface methodology (RSM) was employed to optimize the hydrolysis time, hydrolysis temperature, pH and enzyme to substrate ratio (E/S) to obtain a high GMO yield from konjac tubers. From the signal-factor experiments, it was concluded that the change in the direct reducing sugar (DRS) is consistent with total reducing sugar (TRS) but contrary to the degree of polymerization (DP). DRS was used as an indicator of the content of GMO in the RSM study. The optimum RSM operating conditions were: reaction time of 3.4 h, reaction temperature of 41.0°C, pH of 7.1 and E/S of 0.49. The results suggested that the enzymatic hydrolysis was enhanced by temperature, pH and incubation time. Model validation showed good agreement between experimental results and the predicted responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto).

    PubMed

    Ngoh, Ying-Yuan; Gan, Chee-Yuen

    2016-01-01

    Antioxidant and α-amylase inhibitor peptides were successfully extracted from Pinto bean protein isolate (PBPI) using Protamex. A factorial design experiment was conducted and the effects of extraction time, pH and temperature were studied. pH 7.5, extraction time of 1h, S/E ratio of 10 (w/w) and temperature of 50 °C gave the highest antioxidant activities (i.e., ABTS scavenging activity (53.3%) and FRAP value (3.71 mM)), whereas pH 6.5 with the same extraction time, S/E ratio and temperature, gave the highest α-amylase inhibitory activity (57.5%). It was then fractioned using membrane ultrafiltration with molecular weight cutoffs of 100, 50, 30, 10 and 3 kDa. Peptide fraction <3 kDa, which exhibited the highest antioxidant activities (i.e., ABTS (42.2%) and FRAP (0.81 mM)) and α-amylase inhibitory activity (62.1%), was then subjected to LCMS and MS/MS analyses. Six sequences were identified for antioxidant peptides, whereas seven peptides for α-amylase inhibitor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Plant Habitat (PH)

    NASA Technical Reports Server (NTRS)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  18. Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.

    PubMed

    Chojnacka, Katarzyna

    2005-04-01

    The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.

  19. Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques.

    PubMed

    Sheng, Guodong; Yang, Shitong; Sheng, Jiang; Hu, Jun; Tan, Xiaoli; Wang, Xiangke

    2011-09-15

    Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ∼6 O at R(Ni-O) ≈ 2.05 Å. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.

  20. Design of aquaponics water monitoring system using Arduino microcontroller

    NASA Astrophysics Data System (ADS)

    Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.

    2017-09-01

    This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.

  1. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels.

    PubMed

    Zhang, Wenming; Zhu, Sha; Bai, Yunping; Xi, Ning; Wang, Shaoyang; Bian, Yang; Li, Xiaowei; Zhang, Yucang

    2015-05-20

    The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Activation Energy of the Low-pH-Induced Lamellar to Bicontinuous Cubic Phase Transition in Dioleoylphosphatidylserine/Monoolein.

    PubMed

    Oka, Toshihiko; Saiki, Takahiro; Alam, Jahangir Md; Yamazaki, Masahito

    2016-02-09

    Electrostatic interaction is an important factor for phase transitions between lamellar liquid-crystalline (Lα) and inverse bicontinuous cubic (QII) phases. We investigated the effect of temperature on the low-pH-induced Lα to double-diamond cubic (QII(D)) phase transition in dioleoylphosphatidylserine (DOPS)/monoolein (MO) using time-resolved small-angle X-ray scattering with a stopped-flow apparatus. Under all conditions of temperature and pH, the Lα phase was directly transformed into an intermediate inverse hexagonal (HII) phase, and subsequently the HII phase slowly converted to the QII(D) phase. We obtained the rate constants of the initial step (i.e., the Lα to HII phase transition) and of the second step (i.e., the HII to QII(D) phase transition) using the non-negative matrix factorization method. The rate constant of the initial step increased with temperature. By analyzing this result, we obtained the values of its apparent activation energy, Ea (Lα → HII), which did not change with temperature but increased with an increase in pH. In contrast, the rate constant of the second step decreased with temperature at pH 2.6, although it increased with temperature at pH 2.7 and 2.8. These results indicate that the value of Ea (HII → QII(D)) at pH 2.6 increased with temperature, but the values of Ea (HII → QII(D)) at pH 2.7 and 2.8 were constant with temperature. The values of Ea (HII → QII(D)) were smaller than those of Ea (Lα → HII) at the same pH. We analyzed these results using a modified quantitative theory on the activation energy of phase transitions of lipid membranes proposed initially by Squires et al. (Squires, A. M.; Conn, C. E.; Seddon, J. M.; Templer, R. H. Soft Matter 2009, 5, 4773). On the basis of these results, we discuss the mechanism of this phase transition.

  3. Sensors and Biosensors for C-Reactive Protein, Temperature and pH, and Their Applications for Monitoring Wound Healing: A Review

    PubMed Central

    Dini, Valentina; Kirchhain, Arno; Janowska, Agata; Oranges, Teresa; Di Francesco, Fabio

    2017-01-01

    Wound assessment is usually performed in hospitals or specialized labs. However, since patients spend most of their time at home, a remote real time wound monitoring would help providing a better care and improving the healing rate. This review describes the advances in sensors and biosensors for monitoring the concentration of C-reactive protein (CRP), temperature and pH in wounds. These three parameters can be used as qualitative biomarkers to assess the wound status and the effectiveness of therapy. CRP biosensors can be classified in: (a) field effect transistors, (b) optical immunosensors based on surface plasmon resonance, total internal reflection, fluorescence and chemiluminescence, (c) electrochemical sensors based on potentiometry, amperometry, and electrochemical impedance, and (d) piezoresistive sensors, such as quartz crystal microbalances and microcantilevers. The last section reports the most recent developments for wearable non-invasive temperature and pH sensors suitable for wound monitoring. PMID:29257113

  4. Examination of the effect of ageing and temperature at rigor on colour stability of lamb meat.

    PubMed

    Hopkins, D L; Lamb, T A; Kerr, M J; van de Ven, R J; Ponnampalam, E N

    2013-10-01

    A study of factors (ageing period, rigor temperature and vitamin E level) impacting on the colour stability of lamb m. longissimus thoracis et lumborum (LL) during 3 days of simulated retail display was undertaken. The LL were taken from 84 lambs from 3 slaughters. Slices of LL were measured fresh (24h post-mortem) or after ageing for 5 days in vacuum packaging. The oxy/met ratio (630/580 nm), declined with display time, and increased with increasing temperature at pH6.0. Redness (a*) values also declined with display time and a reduction in redness values was observed as LL pH at 24h post-mortem and/or pH at 18°C increased. There was no effect of ageing period or vitamin E level on the oxy/met ratio or a* values when the vitamin E level averaged 3.76 mg/kg LL. These results suggest that maximising vitamin E levels in lambs and achieving a moderate rate of pH decline will optimise colour stability irrespective of ageing period. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Cloning and expression of cyclodextrin glycosyltransferase gene from Paenibacillus sp. T16 isolated from hot spring soil in northern Thailand.

    PubMed

    Charoensakdi, Ratiya; Murakami, Shuichiro; Aoki, Kenji; Rimphanitchayakit, Vichien; Limpaseni, Tipaporn

    2007-05-31

    Gene encoding cyclodextrin glycosyltransferase (CGTase), from thermotolerant Paenibacillus sp. T16 isolated from hot spring area in northern Thailand, was cloned and expressed in E. coli (JM109). The nucleotide sequences of both wild type and transformed CGTases consisted of 2139 bp open reading frame, 713 deduced amino acids residues with difference of 4 amino acid residues. The recombinant cells required 24 h culture time and a neutral pH for culture medium to produce compatible amount of CGTase compared to 72 h culture time and pH 10 for wild type. The recombinant and wild-type CGTases were purified by starch adsorption and phenyl sepharose column chromatography and characterized in parallel. Both enzymes showed molecular weight of 77 kDa and similar optimum pHs and temperatures with recombinant enzyme showing broader range. There were some significant difference in pH, temperature stability and kinetic parameters. The presence of high starch concentration resulted in higher thermostability in recombinant enzyme than the wild type. The recombinant enzyme was more stable at higher temperature and lower pH, with lower K(m) for coupling reaction using cellobiose and cyclodextrins as substrates.

  6. Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass.

    PubMed

    Baysal, Zübeyde; Cinar, Ercan; Bulut, Yasemin; Alkan, Hüseyin; Dogru, Mehmet

    2009-01-15

    Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.

  7. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    PubMed Central

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  8. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light.

    PubMed

    Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguérinel, I; Couvert, O; Carlin, F; Coroller, L

    2018-04-12

    The recovery at a range of incubation temperatures and pH of spores of Bacillus weihenstephanensis KBAB4 exposed to a peracetic acid-based disinfectant (PABD) or to pulsed light was estimated. Spores of B. weihenstephanensis were produced at 30 °C and pH 7.00, at 30 °C and pH 5.50, or at 12 °C and pH 7.00. The spores were treated with a commercial peracetic acid-based disinfectant at 80 mg·mL -1 for 0 to 200 min at 18 °C or by pulsed light at fluences ranging between 0.4 and 2.3 J·cm -2 for pulsed light treatment. After each treatment, the spores were incubated on nutrient agar at 12 °C, 30 °C or 37 °C, or at pH 5.10, 6.00 or 7.40. Incubation temperature during recovery had a significant impact only near the recovery limits, beyond which surviving spores previously exposed to a PABD or to pulsed light were not able to form colonies. In contrast, a decrease in pH of the recovery nutrient agar had a progressive impact on the ability of spores to form colonies. The time to first log reduction after PABD treatment was 29.5 ± 0.7 min with recovery at pH 7.40, and was tremendously shortened 5.1 ± 0.2 min with recovery at pH 5.10. Concerning the fluence necessary for the first log reduction, it was 1.5 times higher when the spores were recovered at pH 6.00 compared to a recovery at pH 5.10. The impact of recovery temperature and pH can be described with a mathematical model using cardinal temperature and pH as parameters. These effects of temperature and pH on recovery of Bacillus weihenstephanensis spores exposed to a disinfectant combining peracetic acid and hydrogen peroxide, or pulsed light are similar, although these treatments are of different natures. Sporulation temperature or pH did not impact resistance to the peracetic acid-based disinfectant or pulsed light. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Performance Study of Chromium (VI) Removal in Presence of Phenol in a Continuous Packed Bed Reactor by Escherichia coli Isolated from East Calcutta Wetlands

    PubMed Central

    Chakraborty, Bhaswati; Indra, Suvendu; Hazra, Ditipriya; Betai, Rupal; Ray, Lalitagauri; Basu, Srabanti

    2013-01-01

    Organic pollutants, like phenol, along with heavy metals, like chromium, are present in various industrial effluents that pose serious health hazard to humans. The present study looked at removal of chromium (VI) in presence of phenol in a counter-current continuous packed bed reactor packed with E. coli cells immobilized on clay chips. The cells removed 85% of 500 mg/L of chromium (VI) from MS media containing glucose. Glucose was then replaced by 500 mg/L phenol. Temperature and pH of the MS media prior to addition of phenol were 30°C and 7, respectively. Hydraulic retention times of phenol- and chromium (VI)-containing synthetic media and air flow rates were varied to study the removal efficiency of the reactor system. Then temperature conditions of the reactor system were varied from 10°C to 50°C, the optimum being 30°C. The pH of the media was varied from pH 1 to pH 12, and the optimum pH was found to be 7. The maximum removal efficiency of 77.7% was achieved for synthetic media containing phenol and chromium (VI) in the continuous reactor system at optimized conditions, namely, hydraulic retention time at 4.44 hr, air flow rate at 2.5 lpm, temperature at 30°C, and pH at 7. PMID:24073400

  10. The effect of yeast weight and temperature on ethanol production from sorghum and iles-iles flour

    NASA Astrophysics Data System (ADS)

    Kusmiyati, Shitophyta, Lukhi Mulia

    2015-12-01

    An increased of human need that spend a lot of energy, especially fuel resulting in excessive energy consumption. Therefore, the existence of alternative energy that renewable and environmentally friendly, such as bioethanol is required. In this study the use of sorghum and iles-iles as raw materials for bioethanol production were investigated. The variables studied were the saccharification time, weight of dry yeast Saccharomyces cerevisiae added in the starter culture (2.5, 5, 10, 15, 20 g) and fermentation temperature (30, 35, 40, 45, 50°C). Bioethanol production consisted of the enzymatic hydrolysis (liquefaction and saccharification), and fermentation. For liquefaction, 1.6% v/w α-amylase enzyme, 1 hour, T = 95-100° C, pH 6 were used. For saccharification, 3.2% v/w b-amylase enzyme, time 4,8,24,48 hours, T = 60°C, pH 5 were used. For fermentation, Saccharomyces cerevisiae yeast were used with conditions of time for 120 hours, pH 4.5. The effect of dry yeast weight and fermentation temperature indicated that 15 g yeast weight and temperature 30° C were found to be the best condition which resulted the highest ethanol concentration of 85.20 g/L and 79.94 g/L for sorghum and iles-iles flour, respectively.

  11. Stability of urea in solution and pharmaceutical preparations.

    PubMed

    Panyachariwat, Nattakan; Steckel, Hartwig

    2014-01-01

    The stability of urea in solution and pharmaceutical preparations was analyzed as a function of temperature (25°-60°C), pH (3.11-9.67), and initial urea concentration (2.5%-20%). This study was undertaken to (i) obtain more extensive, quantitative information relative to the degradation of urea in both aqueous and non-aqueous solutions and in pharmaceutical preparations, and (ii) test the effects of initial urea concentration, pH, buffer, and temperature values on urea degradation. The stability analysis shows that urea is more stable at the pH range of 4-8 and the stability of urea decreases by increase in temperature for all pH values. Within the experimental range of temperature and initial urea concentration values, the lowest urea degradation was found with lactate buffer pH 6.0. The urea decomposition rate in solution and pharmaceutical preparations shows the dependence of the initial urea concentrations. At higher initial urea concentrations, the rate of degradation is a decreasing function with time. This suggests that the reverse reaction is a factor in the degradation of concentrated urea solution. For non-aqueous solvents, isopropanol showed the best effort in retarding the decomposition of urea. Since the losses in urea is directly influenced by its stability at a given temperature and pH, the stability analysis of urea by the proposed model can be used to prevent the loss and optimize the operating condition for urea-containing pharmaceutical preparations.

  12. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time.

    PubMed

    Ben-Arfa, Basam A E; Salvado, Isabel M Miranda; Ferreira, José M F; Pullar, Robert C

    2017-01-01

    We have developed an innovative, rapid sol-gel method of producing hydroxyapatite nanopowders that avoids the conventional lengthy ageing and drying processes (over a week), being 200 times quicker in comparison to conventional aqueous sol-gel preparation, and 50 times quicker than ethanol based sol-gel synthesis. Two different sets of experimental conditions, in terms of pH value (5.5 and 7.5), synthesis temperature (45 and 90°C), drying temperature (60 and 80°C) and calcination temperature (400 and 700°C) were explored. The products were characterised by X-ray diffraction (XRD) Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and specific surface area (SSA) measurements. Pure hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) was obtained for the powders synthesised at pH7.5 and calcined at 400°C, while biphasic mixtures of HAp/β-tricalcium phosphate (β-Ca 3 (PO 4 ) 2 , TCP) were produced at pH5.5 and (pH7.5 at elevated temperature). The novel rapid drying was up to 200 times faster than conventional drying, only needing 1h with no prior ageing step, and favoured the formation of smaller/finer nanopowders, while producing pure HAp or phase mixtures virtually identical to those obtained from the slow conventional drying method, despite the absence of a slow ageing process. The products of this novel rapid process were actually shown to have smaller crystallite sizes and larger SSA, which should result in increased bioactivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of fermentation conditions on biohydrogen production from cassava starch by anaerobic mixed cultures

    NASA Astrophysics Data System (ADS)

    Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.

    2016-06-01

    In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.

  14. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  15. [Production and partial characterization of beta-galactosidase from Kluyveromyces lactis grown in deproteinized whey].

    PubMed

    Ramírez Matheus, Alejandra O; Rivas, Nilo

    2003-06-01

    The purpose of this work was to optimize the beta-galactosidase production by Kluyveromyces lactis, applying the Surface Response Methodology (SRM) and using deproteinized whey as fermentation medium. An Orthogonal Central Compound Design (OCCD) was used without repetition, with four factors: temperature, pH, agitation speed and fermentation time. Then, enzyme activity (U/ml) as response variable was used. Thirty trials in twenty-five treatments, with six repetitions at the central point, were carried out, in a New Brunswick Bioflo 2000 fermentor with a volume of 2 liters. The deproteinized whey obtained by thermocoagulation was chemically analyzed. The results were: moisture 93.83%, total solids 6.17%, protein 0.44%, lactose 4.85%, acidity 0.43% and pH 4.58. The best conditions in the enzyme production were: temperature 30.3 degrees C, pH 4.68, agitation speed 191 r.p.m. and fermentation time 18.5 h. with an enzyme production of 8.3 U/ml. The degree of purification obtained was 7.4 times and the yield was 50.8%. The purified enzyme had an optimum temperature of 60 degrees C and a pH of 6.2. This work shows that the yeast Kluyveromyces lactis grown in deproteinized whey is able to produce the enzyme beta-galactosidase and SRM can be used in the fermentology processes, specifically in determining the best suitable operation conditions.

  16. Robustness of larval development of intertidal sea urchin species to simulated ocean warming and acidification.

    PubMed

    García, Eliseba; Hernández, José Carlos; Clemente, Sabrina

    2018-08-01

    Ocean warming and acidification are the two most significant side effects of carbone dioxide emissions in the world's oceans. By changing water, temperature and pH are the main environmental factors controlling the distribution, physiology, morphology and behaviour of marine invertebrates. This study evaluated the combined effects of predicted high temperature levels, and predicted low pH values, on fertilization and early development stages of the sea urchins Arbacia lixula, Paracentrotus lividus, Sphaerechinus granularis and Diadema africanum. Twelve treatments, combining different temperatures (19, 21, 23 and 25 °C) and pH values (8.1, 7.7 and 7.4 units), were tested in laboratory experiments. All of the tested temperatures and pH values were within the open coast seawater range expected within the next century. We examined fertilization rate, cleavage rate, 3-day larvae survival, and development of the different sea urchin species at set time intervals after insemination. Our results highlight the susceptibility of subtidal species to environmental changes, and the robustness of intertidal species to ocean warming and acidification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology.

    PubMed

    Oliveira, Túlio Ítalo S; Rosa, Morsyleide F; Cavalcante, Fabio Lima; Pereira, Paulo Henrique F; Moates, Graham K; Wellner, Nikolaus; Mazzetto, Selma E; Waldron, Keith W; Azeredo, Henriette M C

    2016-05-01

    A central composite design was used to determine effects of pH (2.0-4.5), extraction temperature (70-90 °C) and time (120-240 min) on the yield, degree of methoxylation (DM) and galacturonic acid content (GA) of pectins extracted from banana peels with citric acid. Changes in composition during the main steps of pectin extraction were followed by Fourier transform infrared (FTIR) spectroscopy. FTIR was also used to determine DM and GA of pectins. Harsh temperature and pH conditions enhanced the extraction yield, but decreased DM. GA presented a maximum value at 83 °C, 190 min, and pH 2.7. The yield of galacturonic acid (YGA), which took into account both the extraction yield and the pectin purity, was improved by higher temperature and lower pH values. The optimum extraction conditions, defined as those resulting in a maximum YGA while keeping DM at a minimum of 51%, were: 87 °C, 160 min, pH 2.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Modeling lactose hydrolysis for efficiency and selectivity: Toward the preservation of sialyloligosaccharides in bovine colostrum whey permeate.

    PubMed

    de Moura Bell, Juliana M L N; Aquino, Leticia F M C; Liu, Yan; Cohen, Joshua L; Lee, Hyeyoung; de Melo Silva, Vitor L; Rodrigues, Maria I; Barile, Daniela

    2016-08-01

    Enzymatic hydrolysis of lactose has been shown to improve the efficiency and selectivity of membrane-based separations toward the recovery of bioactive oligosaccharides. Achieving maximum lactose hydrolysis requires intrinsic process optimization for each specific substrate, but the effects of those processing conditions on the target oligosaccharides are not well understood. Response surface methodology was used to investigate the effects of pH (3.25-8.25), temperature (35-55°C), reaction time (6 to 58 min), and amount of enzyme (0.05-0.25%) on the efficiency of lactose hydrolysis by β-galactosidase and on the preservation of biologically important sialyloligosaccharides (3'-siallylactose, 6'-siallylactose, and 6'-sialyl-N-acetyllactosamine) naturally present in bovine colostrum whey permeate. A central composite rotatable design was used. In general, β-galactosidase activity was favored at pH values ranging from 3.25 to 5.75, with other operational parameters having a less pronounced effect. A pH of 4.5 allowed for the use of a shorter reaction time (19 min), lower temperature (40°C), and reduced amount of enzyme (0.1%), but complete hydrolysis at a higher pH (5.75) required greater values for these operational parameters. The total amount of sialyloligosaccharides was not significantly altered by the reaction parameters evaluated, suggesting specificity of β-galactosidase from Aspergillus oryzae toward lactose as well as the stability of the oligosaccharides at pH, temperature, and reaction time evaluated. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Modeling growth of three bakery product spoilage molds as a function of water activity, temperature and pH.

    PubMed

    Dagnas, Stéphane; Onno, Bernard; Membré, Jeanne-Marie

    2014-09-01

    The objective of this study was to quantify the effect of water activity, pH and storage temperature on the growth of Eurotium repens, Aspergillus niger and Penicillium corylophilum, isolated from spoiled bakery products. Moreover, the behaviors of these three mold species were compared to assess whether a general modeling framework may be set and re-used in future research on bakery spoilage molds. The mold growth was modeled by building two distinct Gamma-type secondary models: one on the lag time for growth and another one on the radial growth rate. A set of 428 experimental growth curves was generated. The effect of temperature (15-35 °C), water activity (0.80-0.98) and pH (3-7) was assessed. Results showed that it was not possible to apply the same set of secondary model equations to the three mold species given that the growth rate varied significantly with the factors pH and water activity. In contrast, the temperature effect on both growth rate and lag time of the three mold species was described by the same equation. The equation structure and model parameter values of the Gamma models were also compared per mold species to assess whether a relationship between lag time and growth rate existed. There was no correlation between the two growth responses for E. repens, but a slight one for A. niger and P. corylophilum. These findings will help in determining bakery product shelf-life and guiding future work in the predictive mycology field. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. [Chemotaxis response of Erwinia carotovora on sugars and amino acids of root exudates of Panax ginseng].

    PubMed

    Zhang, Ai-Hua; An, Ning-Bo; Lei, Feng-Jie; Ma, Wen-Li; Chi, Kun; Zhang, Lian-Xue

    2016-11-01

    The chemotaxis response of Erwinia carotovora to different sugars and amino acids in four kinds of chemotactic parameters (concentration, time, temperature and pH ) was determined by capillary method. The results showed that when pH was 8, concentration was 0.025 mg•L ⁻¹, culture temperature was 25 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of lysine was 2.509,when pH was 6, concentration was 0.25 mg•L ⁻¹, culture temperature was 25 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of arginine was 2.218 8,when pH was 7, concentration was 0.25 mg•L ⁻¹, culture temperature was 30 ℃ and the duration was 60 minutes, the optimal chemotaxis rate of L-rhamnose was 3.091 2, when pH was 6, concentration was 0.25 mg•L ⁻¹, culture temperature was 30 ℃ and the duration was 45 minutes, the optimal chemotaxis rate of D-arabinose was 3.026 3. Sugars and amino acids had obvious chemotaxis with E. carotovora,the high concentration of carbohydrate and amino acid exited an inhibitory effect on chemotaxis response of E. carotovora, and the chemotaxis response decreased with the increase of concentration of carbohydrates and amino acids. Copyright© by the Chinese Pharmaceutical Association.

  1. Study on the technology of compound enzymatic hydrolysis of whole passion fruit

    NASA Astrophysics Data System (ADS)

    Yang, Yu-xia; Duan, Zhen-hua; Kang, Chao; Zhu, Xiang-hao; Li, Ding-jin

    2017-12-01

    Fresh Whole Passion Fruit was used as raw material, The enzymatic hydrolysis technology of Passion Fruit by Complex enzyme were studied, The effects of enzyme dosage, Enzyme ratio(cellulose: pectinase), pH, temperature and time on the hydrolysis were investigated by single-tests and orthogonal tests, the hydrolysis indicators of single-factor tests and orthogonal tests were juice yield. The optimal hydrolysis conditions of Passion Fruit by Complex enzyme were enzyme dosage 0.12%, Enzyme ratio 5:1, hydrolysis temperature 50°C, pH4.0 and time 3.5 h. Under such conditions, juice yield of Passion Fruit was 92.91%.

  2. Interactive effects of temperature, pH, and water activity on the growth kinetics of Shiga toxin-producing Escherichia coli O104:H4 3.

    PubMed

    Juneja, Vijay K; Mukhopadhyay, Sudarsan; Ukuku, Dike; Hwang, Cheng-An; Wu, Vivian C H; Thippareddi, Harshavardhan

    2014-05-01

    The risk of non-O157 Shiga toxin-producing Escherichia coli strains has become a growing public health concern. Several studies characterized the behavior of E. coli O157:H7; however, no reports on the influence of multiple factors on E. coli O104:H4 are available. This study examined the effects and interactions of temperature (7 to 46°C), pH (4.5 to 8.5), and water activity (aw ; 0.95 to 0.99) on the growth kinetics of E. coli O104:H4 and developed predictive models to estimate its growth potential in foods. Growth kinetics studies for each of the 23 variable combinations from a central composite design were performed. Growth data were used to obtain the lag phase duration (LPD), exponential growth rate, generation time, and maximum population density (MPD). These growth parameters as a function of temperature, pH, and aw as controlling factors were analyzed to generate second-order response surface models. The results indicate that the observed MPD was dependent on the pH, aw, and temperature of the growth medium. Increasing temperature resulted in a concomitant decrease in LPD. Regression analysis suggests that temperature, pH, and aw significantly affect the LPD, exponential growth rate, generation time, and MPD of E. coli O104:H4. A comparison between the observed values and those of E. coli O157:H7 predictions obtained by using the U. S. Department of Agriculture Pathogen Modeling Program indicated that E. coli O104:H4 grows faster than E. coli O157:H7. The developed models were validated with alfalfa and broccoli sprouts. These models will provide risk assessors and food safety managers a rapid means of estimating the likelihood that the pathogen, if present, would grow in response to the interaction of the three variables assessed.

  3. Rapid development of xylanase assay conditions using Taguchi methodology.

    PubMed

    Prasad Uday, Uma Shankar; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath

    2016-11-01

    The present investigation is mainly concerned with the rapid development of extracellular xylanase assay conditions by using Taguchi methodology. The extracellular xylanase was produced from Aspergillus niger (KP874102.1), a new strain isolated from a soil sample of the Baramura forest, Tripura West, India. Four physical parameters including temperature, pH, buffer concentration and incubation time were considered as key factors for xylanase activity and were optimized using Taguchi robust design methodology for enhanced xylanase activity. The main effect, interaction effects and optimal levels of the process factors were determined using signal-to-noise (S/N) ratio. The Taguchi method recommends the use of S/N ratio to measure quality characteristics. Based on analysis of the S/N ratio, optimal levels of the process factors were determined. Analysis of variance (ANOVA) was performed to evaluate statistically significant process factors. ANOVA results showed that temperature contributed the maximum impact (62.58%) on xylanase activity, followed by pH (22.69%), buffer concentration (9.55%) and incubation time (5.16%). Predicted results showed that enhanced xylanase activity (81.47%) can be achieved with pH 2, temperature 50°C, buffer concentration 50 Mm and incubation time 10 min.

  4. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    PubMed

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.

    PubMed

    Manuel, Thomas J; Munnangi, Pujita; Rubinsky, Boris

    2017-07-01

    Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.

  6. Acid precipitation effects on soil pH and base saturation of exchange sites

    Treesearch

    W. W. McFee; J. M. Kelly; R. H. Beck

    1976-01-01

    The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid...

  7. Real-time pH monitoring of industrially relevant enzymatic reactions in a microfluidic side-entry reactor (μSER) shows potential for pH control.

    PubMed

    Gruber, Pia; Marques, Marco P C; Sulzer, Philipp; Wohlgemuth, Roland; Mayr, Torsten; Baganz, Frank; Szita, Nicolas

    2017-06-01

    Monitoring and control of pH is essential for the control of reaction conditions and reaction progress for any biocatalytic or biotechnological process. Microfluidic enzymatic reactors are increasingly proposed for process development, however typically lack instrumentation, such as pH monitoring. We present a microfluidic side-entry reactor (μSER) and demonstrate for the first time real-time pH monitoring of the progression of an enzymatic reaction in a microfluidic reactor as a first step towards achieving pH control. Two different types of optical pH sensors were integrated at several positions in the reactor channel which enabled pH monitoring between pH 3.5 and pH 8.5, thus a broader range than typically reported. The sensors withstood the thermal bonding temperatures typical of microfluidic device fabrication. Additionally, fluidic inputs along the reaction channel were implemented to adjust the pH of the reaction. Time-course profiles of pH were recorded for a transketolase and a penicillin G acylase catalyzed reaction. Without pH adjustment, the former showed a pH increase of 1 pH unit and the latter a pH decrease of about 2.5 pH units. With pH adjustment, the pH drop of the penicillin G acylase catalyzed reaction was significantly attenuated, the reaction condition kept at a pH suitable for the operation of the enzyme, and the product yield increased. This contribution represents a further step towards fully instrumented and controlled microfluidic reactors for biocatalytic process development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings.

    PubMed

    Wang, Xiao; Cai, Jian; Liu, Fulai; Dai, Tingbo; Cao, Weixing; Wollenweber, Bernd; Jiang, Dong

    2014-01-01

    Seedlings of winter wheat (Triticum aestivum L.) were firstly twice heat-primed at 32/24 °C, and subsequently subjected to a more severe high temperature stress at 35/27 °C. The later high temperature stress significantly decreased plant biomass and leaf total soluble sugars concentration. However, plants experienced priming (PH) up-regulated the Rubisco activase B encoding gene RcaB, which was in accordance with the higher photosynthesis rate in relation to the non-primed plants (NH) under the later high temperature stress. In relation to NH, the major chlorophyll a/b-binding protein gene Cab was down-regulated in PH plants, implying a reduction of the light absorption to protect the photosystem II from excitation energy under high temperature stress. At the same time, under the later high temperature stress PH plants showed significantly higher actual photochemical efficiency, indicating an improvement of light use efficiency due to the priming pre-treatment. Under the later high temperature stress, PH could be maintained a better redox homeostasis than NH, as exemplified by the higher activities of superoxide dismutase (SOD) in chloroplasts and glutathione reductase (GR), and of peroxidase (POD) in mitochondria, which contributed to the lower superoxide radical production rate and malondialdehyde concentration in both chloroplasts and mitochondria. The improved antioxidant capacity in chloroplasts and mitochondria was related to the up-regulated expressions of Cu/Zn-SOD, Mn-SOD and GR in PH. Collectively, heat priming effectively improved thermo-tolerance of wheat seedlings subjected to a later high temperature stress, which could be largely ascribed to the enhanced anti-oxidation at the subcellular level. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Uniform Corrosion and General Dissolution of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6

    NASA Astrophysics Data System (ADS)

    Huang, I.-Wen

    Uniform corrosion and general dissolution of aluminum alloys was not as well-studied in the past, although it was known for causing significant amount of weight loss. This work comprises four chapters to understand uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. A preliminary weight loss experiment was performed for distinguishing corrosion induced weight loss attributed to uniform corrosion and pitting corrosion. The result suggested that uniform corrosion generated a greater mass loss than pitting corrosion. First, to understand uniform corrosion mechanism and kinetics in different environments, a series of static immersion tests in NaCl solutions were performed to provide quantitative measurement of uniform corrosion. Thereafter, uniform corrosion development as a function of temperature, pH, Cl-, and time was investigated to understand the influence of environmental factors. Faster uniform corrosion rate has been found at lower temperature (20 and 40°C) than at higher temperature (60 and 80°C) due to accelerated corrosion product formation at high temperatures inhibiting corrosion reactions. Electrochemical tests including along with scanning electron microscopy (SEM) were utilized to study the temperature effect. Second, in order to further understand the uniform corrosion influence on pit growth kinetics, a long term exposures for 180 days in both immersion and ASTM-B117 test were performed. Uniform corrosion induced surface recession was found to have limited impact on pit geometry regardless of exposure methods. It was also found that the competition for limited cathodic current from uniform corrosion the primary rate limiting factor for pit growth. Very large pits were found after uniform corrosion growth reached a plateau due to corrosion product coverage. Also, optical microscopy and focused ion beam (FIB) imaging has provided more insights of distinctive pitting geometry and subsurface damages found from immersion samples and B117 samples. Although uniform corrosion was studied in various electrolytes, the pH impact was still difficult to discern due to ongoing cathodic reactions that changed electrolyte pH with time. Therefore, buffered pH electrolytes with pH values of 3, 5, 8, and 10 were prepared static immersion tests. Electrochemical experiments were performed in each buffered pH conditions for understanding corrosion mechanisms. Uniform corrosion was found exhibiting higher corrosion rate in buffered acidic and alkaline electrolytes due to pH- and temperature-dependent corrosion product precipitation. Observations were supported by electrochemical, SEM, and EDS observations. Due to the complexity of corrosion data, a reliable corrosion prediction based on empirical observations could be challenging. Artificial neural network (ANN) modeling was used for corrosion data pattern recognition by mimicking human neural network systems. Predictive models were developed based on corrosion data acquired in this study. The model was adaptable through iteratively update its prediction by error minimization during the training phase. Trained ANN model can predict uniform corrosion successfully. In addition to ANN, fuzzy curve analysis was utilized to rank the influence of each input (temperature, pH, Cl-, and time). For example, temperature and pH were found to be the most influential parameters to uniform corrosion. This information can provide feedback for ANN improvement, also known as "data pruning".

  10. Conformal self-assembled thin films for optical pH sensors

    NASA Astrophysics Data System (ADS)

    Topasna, Daniela M.; Topasna, Gregory A.; Liu, Minghanbo; Tseng, Ching-Hung

    2016-04-01

    Simple, reliable, lightweight, and inexpensive thin films based sensors are still in intense development and high demand in many applications such as biomedical, industrial, environmental, military, and consumer products. One important class of sensors is the optical pH sensor. In addition, conformal thin film based sensors extend the range of application for pH optical sensors. We present the results on the fabrication and characterization of optical pH sensing coatings made through ionic self-assembled technique. These thin films are based on the combination of a polyelectrolyte and water-soluble organic dye molecule Direct Yellow 4. A series of films was fabricated and characterized in order to determine the optimized parameters of the polymer and of the organic dye solutions. The optical pH responses of these films were also studied. The transparent films were immersed in solutions at various temperature and pH values. The films are stable when immersed in solutions with pH below 9.0 and temperatures below 90 °C and they maintain their performance after longer immersion times. We also demonstrate the functionality of these coatings as conformal films.

  11. Tensile Stress Rupture Behavior of a Woven Ceramic Matrix Composite in Humid Environments at Intermediate Temperature — Part I

    NASA Astrophysics Data System (ADS)

    Larochelle, K. J.; Morscher, G. N.

    2006-05-01

    The stress rupture strength of the SYL-iBN/BN/SiC composite was evaluated at 550 and 750 °C with moisture content levels of 0.0, 0.2, and 0.6 atm partial pressure of water vapor, pH2O. The stress rupture strengths decreased with respect to time with the rate of decrease related to the temperature and the amount of moisture content. In all cases the degradation was more severe initially and then approached a run-out threshold level. The thresholds were reached at approximately 100+, 60, 80 h for the 550 °C with 0.0, 0.2, and 0.6 pH2O, respectively. The thresholds were reached at approximately 40, 20, and 10 h for the 750 °C cases. The interpolated stress rupture strengths at 100 h for 0.0, 0.2, and 0.6 pH2O at 550 °C were 82%, 68%, and 51% of the room temperature monotonic tensile strength. At 750 °C these strengths were 67%, 51%, and 50%. Analysis of Field Emission Scanning Electron Microscopy images showed evidence of embrittlement of the fiber/matrix interphase. Little to no embrittlement was observed at both temperatures with 0.0 pH2O. At both 550 and 750 °C with 0.2 and 0.6 pH2O, evidence of embrittlement increased with temperature and test duration with the most extensive embrittlement observed at 750 °C with 0.6 pH2O.

  12. Increased tolerance of Vibrio cholerae O1 to temperature, pH, or drying associated with colonization of shrimp carapaces.

    PubMed

    Castro-Rosas, J; Escartín, E F

    2005-07-15

    External surfaces of samples of shrimp carapace were inoculated with Vibrio cholerae and stored at 22 degrees C for 1 h in a moist environment to facilitate their adhesion, or for 24 h to permit their colonization of the material. Colonizing cells showed a higher resistance to the effects of high temperatures, low pH, and desiccation conditions than adherent cells. Periods of 10, 5, and 3 min and 0 s were required to inactivate the pathogen when attached cells were exposed to 50, 60, 65, or 70 degrees C. The corresponding times for colonizing cells were 30, 15, 10, and 1 min. At pH 2.5 numbers of attached V. cholerae were reduced by >5 log after 16 min, whereas the reduction of colonizing cells was only 2.8 log. The survival times of the microorganism on dried carapaces stored at 5 and 22 degrees C were, respectively, 60 and 10 min for adherent cells, and 12 and 4 h for colonizing cells. The increased resistance to the effects of high temperatures, low pH, and desiccation of V. cholerae O1 colonizing shrimp carapaces may have significant implications for food safety and the epidemiology of cholera.

  13. Physiochemical and antioxidant properties of roselle-mango juice blends; effects of packaging material, storage temperature and time

    PubMed Central

    Mgaya-Kilima, Beatrice; Remberg, Siv Fagertun; Chove, Bernard Elias; Wicklund, Trude

    2015-01-01

    A study was conducted to determine the effects of packaging materials, seasonality, storage temperature and time on physiochemical and antioxidant properties of roselle-mango juice blends. Roselle extract (20%, 40%, 60%, and 80%) was mixed with mango juice and stored in glass and plastic bottles at 4°C and 28°C. Total soluble solids, pH, titratable acidity, reducing sugar, color, vitamin C, total monomeric anthocyanins, total phenols, and antioxidant activity (FRAP) were evaluated in freshly prepared juice, and after, 2, 4, and 6 months of storage. The results showed that total soluble solids, reducing sugars, and pH increased with storage times under different storage time, irrespective of packaging materials. The acidity, color, total monomeric anthocyanin, vitamin C, total phenols, and antioxidant activity decreased during storage irrespective of storage temperature and packaging material. Loss of anthocyanins, total phenols, and vitamin C content were higher in blends stored at 28°C than 4°C. PMID:25838888

  14. Ocean circulation and biogeochemistry moderate interannual and decadal surface water pH changes in the Sargasso Sea

    USGS Publications Warehouse

    Nathalie F. Goodkin,; Bo-Shian Wang,; Chen-Feng You,; Konrad Hughen,; Prouty, Nancy G.; Bates, Nicholas; Scott Doney,

    2015-01-01

    The oceans absorb anthropogenic CO2 from the atmosphere, lowering surface ocean pH, a concern for calcifying marine organisms. The impact of ocean acidification is challenging to predict as each species appears to respond differently and because our knowledge of natural changes to ocean pH is limited in both time and space. Here we reconstruct 222 years of biennial seawater pH variability in the Sargasso Sea from a brain coral, Diploria labyrinthiformis. Using hydrographic data from the Bermuda Atlantic Time-series Study and the coral-derived pH record, we are able to differentiate pH changes due to surface temperature versus those from ocean circulation and biogeochemical changes. We find that ocean pH does not simply reflect atmospheric CO2 trends but rather that circulation/biogeochemical changes account for >90% of pH variability in the Sargasso Sea and more variability in the last century than would be predicted from anthropogenic uptake of CO2 alone.

  15. Effects of environmental conditions on growth and survival of Salmonella in pasteurized whole egg.

    PubMed

    Jakočiūnė, Džiuginta; Bisgaard, Magne; Hervé, Gaëlle; Protais, Jocelyne; Olsen, John Elmerdahl; Chemaly, Marianne

    2014-08-01

    This study investigated the influence of three parameters (time, temperature and NaCl concentration) on survival and four parameters (temperature, NaCl and lysozyme concentrations and pH) on growth of Salmonella enterica serovar Enteritidis (S. Enteritidis) in pasteurized whole egg (PWE). Doehlert uniform shell design was employed to choose conditions for trials and data was fitted to polynomial models and were presented as estimated response surfaces. A model for prediction of reduction of S. Enteritidis in PWE within temperatures between 50 and 58°C, NaCl concentrations of 0-12%, and heating times between 30 and 210s and a model for prediction of growth rate of S. Enteritidis in PWE in the temperature range of 1-25°C, NaCl concentration of 0-12%, pH between 5 and 9, and lysozyme concentrations of 107-1007 U/mg proteins were developed. The maximum reduction condition was 58°C, 0% of NaCl at a fixed heating time of 120s, while maximum growth rate was estimated at 25°C and 0% of NaCl. pH and lysozyme concentration were shown not to influence growth performance significantly in the range of values studied. Results inform industry of the optimal pasteurization and storage parameters for liquid whole egg. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: effects of pH, EDTA, Ca(II) and temperature shocks.

    PubMed

    Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang

    2013-01-01

    Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin

    In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.

  18. Preparation and properties of immobilized pectinase onto the amphiphilic PS-b-PAA diblock copolymers.

    PubMed

    Lei, Zhongli; Bi, Shuxian

    2007-01-30

    Well-defined amphiphilic block copolymers poly(styrene-b-acrylic acid) (PS-b-PAA) with controlled block length were synthesized using atom transfer radical polymerization (ATRP). Pectinase enzyme was immobilized on the well-defined amphiphilic block copolymers PS-b-PAA. The carboxyl groups on the amphiphilic PS-b-PAA diblock copolymers present a very simple, mild, and time-saving process for enzyme immobilization. Various characteristics of immobilized pectinase such as the pH and temperature stability, thermal stability, and storage stability were valuated. Among them the pH optimum and temperature optimum of free and immobilized pectinase were found to be pH 6.0 and 65 degrees C.

  19. Developmental Effects of Ocean Acidification Conditions and Elevated Temperature on Homarus Americanus Larvae

    NASA Astrophysics Data System (ADS)

    Mcveigh, H.; Waller, J. D.

    2016-02-01

    The Gulf of Maine is experiencing a rapid warming in sea surface temperature and a marked decrease in pH. This study aimed to quantify the impact of elevated temperature and acidification on the larval development of the iconic American lobster (Homarus americanus). Experimental conditions were reflective of current and IPCC predicted levels of temperature and pCO2 to be reached by the end of the century. Larvae were measured for growth (carapace length), development time, and survivorship over the larval duration. Treatments of elevated temperatures experienced decreased development time across the larval stages of H. americanus. Consequently mortality increased at a significantly higher rate under elevated temperature. An increase in larval mortality may decrease recruitment to the commercial fishery, thus impacting the most valuable single species in the state of Maine. Furthermore, experimental pCO2 treatments yielded a significantly decreased development time between larval stages II and III, yet did not have a significant impact on carapace length or mortality. This study indicates that warmer temperatures may have a greater influence than decreased pH on larval development and survival. Determining how this species may respond to changing climactic conditions will better inform the sustainability efforts of such a critical marine fishery.

  20. Sensitivity of porcine epidemic diarrhea virus (PEDV) to pH and heat treatment in the presence or absence of porcine plasma.

    PubMed

    Quist-Rybachuk, G V; Nauwynck, H J; Kalmar, I D

    2015-12-31

    Emergence of porcine epidemic diarrhea virus (PEDV) resulted in massive neonatal mortality in the North-American and Asian pork industry. Measures to prevent its geographical spread are of utmost importance to safeguard susceptible porcine populations. The major infection route is direct or indirect faecal-oral contact. Adequate biosafety measures should be in place at all levels of the swine production chain, including feed and feed ingredients. Present study aimed to investigate the sensitivity of PEDV to thermal inactivation at neutral and alkaline pH in presence or absence of porcine plasma. Cell culture medium and porcine plasma at different pH (7.2, 9.2, 10.2) and temperature conditions (4 °C, 40 °C, 44 °C, 48 °C) were inoculated to a final titer of 5.5 log10 TCID50 PEDV/ml, incubated for up to 120 min and the residual infectivity was determined by endpoint dilution assay. Irrespective of presence of plasma, PEDV was not sensitive to pH 7.2-10.2 at 4 °C. At moderate temperatures (≥40 °C), both alkaline pH and presence of plasma potentiated thermal inactivation. Inactivation of 8 log10 TCID50/ml plasma within 30 min (8D value<30 min) by moderate pH and temperature would denote potential industrial processing conditions that ensure safety towards PEDV while limiting denaturation of bioactive components. Virus-spiked plasma required heat treatment of 40 °C and alkalinization to pH 9.2 to achieve 8 log10 reduction within such time. At pH 10.2 and 48 °C, the 8D value was 4.6 min in plasma and 15.2 min in MEM. Here we propose heat-alkalinity-time (HAT) pasteurization as a highly efficient method to inactivate PEDV during industrial processing of porcine plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Adsorption kinetics, isotherms and thermodynamics of atrazine removal using a banana peel based sorbent.

    PubMed

    Chaparadza, Allen; Hossenlopp, Jeanne M

    2012-01-01

    Atrazine removal from water by treated banana peels was studied. The effect of pH, contact time, initial atrazine concentration, and temperature were investigated. Batch experiments demonstrated that 15 g L(-1) adsorbent dosage removed 90-99% of atrazine from 1-150 ppm aqueous solutions. The removal was both pH and temperature dependent with the most atrazine removed between pH 7 and 8.2 and increased with increasing temperature. Equilibrium data fitted well to the Langmuir and Redlich-Peterson models in the concentration and temperature ranges investigated, with a maximum adsorption capacity of 14 mg g(-1). Simple mass transfer models were applied to the experimental data to examine the adsorption mechanism and it was found that both external mass transfer and intraparticle diffusion played important roles in the adsorption mechanisms. The enthalpy of atrazine adsorption was evaluated to be 67.8 ± 6.3 kJ mol(-l) with a Gibbs free energy of -5.7 ± 1.2 kJ mol(-1).

  2. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials.

    PubMed

    Avramescu, M-L; Rasmussen, P E; Chénier, M; Gardner, H D

    2017-01-01

    Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO 2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO 2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.

  3. Electro deposition of cuprous oxide for thin film solar cell applications

    NASA Astrophysics Data System (ADS)

    Shahrestani, Seyed Mohammad

    p and n type copper oxide semiconductor layers were fabricated by electrochemistry using new approaches for photovoltaic applications. Thin films were electroplated by cathodic polarization on a copper foil or indium tin oxide (ITO) substrates. The optimum deposition conditions (composition, pH and temperature of the electrolyte and applied potential) of the layers as thin films have been identified; in particular the conditions that allow getting the n-type layers have been well identified for the first time. The configuration of a photo - electrochemical cell was used to characterize the spectral response of the layers. It was shown that the p type layers exhibit a photocurrent in the cathode potential region and n layers exhibit photo current in the anode potential region. Measurements of electrical resistivity of electro chemically deposited layers of p and n type Cu2O, showed that the resistivity of p-type Cu2O varies from 3.2 x 105 to 2.0 x 108 Ocm. These values depend the electrodepositing conditions such as the pH of the solution, the deposition potential and temperature. The influence of several plating parameters of the p type layers of Cu2O, such as applied potential, pH and temperature of the bath on the chemical composition, degree of crystallinity, grain size and orientation parameters of the sample was systematically studied using X-ray diffraction and scanning electron microscopy. Depending of the electro-deposition potential, two different surface morphologies with various preferential crystal orientations were obtained for the temperatures of the electro-deposition of 30 °C and pH 9. For the same temperature, the layers of p type Cu2O of highly crystalline p type are obtained at pH 12, indicating that the crystallinity depends on the pH of the bath. Also, it has been shown that the morphology of Cu2O layers was changed by varying the potential and the duration of deposition, as well as the temperature of the solution. The conditions for the electro-deposition of Cu2O n-type were identified consistently for the first time. The electro-deposition electrolyte is based 0.01M acetate copper and 0.1 M sodium acetate: it has a pH between 6.3 and 4, a potential of from 0 to -0.25 V vs. Ag / AgCl and a temperature of 60oC. The optimum annealing temperature of the n-type Cu2O layers is between 120-150oC for the annealing time of 30 to 120 minutes. Resistivity of the n-type films varies between 5 x 103 and 5 x 104 at pH 4 to pH 6.4. We have shown for the first time that bubbling nitrogen gas in the electroplating cell improves significantly the spectral response of the electro-deposited n-type thin film. A two steps electro-deposition process was implemented to make the p-n homojunction cuprous oxide. Indium tin oxide (ITO) was used as a transparent conductive oxide substrate. A p-Cu2O was electrodeposited on ITO. After heat treatment a thin film layer of n-Cu 2O was electrodeposited on top of previous layer. The performance of a p-n homojunction photovoltaic solar cell of Cu2O was determined. The short-circuit current and the open circuit voltage were respectively determined to be as 0.35 volts and 235 muA/cm2. The fill factor (FF) and conversion efficiency of light into electricity were respectively measured to be 0.305 and 0.082%.

  4. Title: Elucidation of Environmental Fate of Artificial Sweeteners (Aspartame, Acesulfame K and Saccharin) by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Possible Reaction By-Products

    NASA Astrophysics Data System (ADS)

    Teraji, T.; Arakaki, T.; Suzuka, T.

    2012-12-01

    Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.

  5. A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode.

    PubMed

    Zheng, Yu-Bin; Zhao, Shuang; Cao, Shuo-Hui; Cai, Sheng-Lin; Cai, Xiu-Hong; Li, Yao-Qun

    2017-01-07

    In this article, we have demonstrated for the first time a triple stimuli-responsive nanofluidic diode that can rectify ionic current under multiple external stimuli including temperature, pH, and sugar. This diode was fabricated by immobilizing poly[2-(dimethylamino)ethyl methacrylate]-co-[4-vinyl phenylboronic acid] (P(DMAEMA-co-VPBA)) onto the wall of a single glass conical nanopore channel via surface-initiator atom transfer radical polymerization (SI-ATRP). The copolymer brushes contain functional groups sensitive to pH, temperature and sugar that can induce charge and configuration change to affect the status of the pore wall. The experimental results confirmed that the P(DMAEMA-co-VPBA) brush modified nanochannel regulated the ionic current rectification successfully under three different external stimuli. This biomimetically inspired research simulates the complex biological multi-functions of ion channels and promotes the development of "smart" biomimetic nanochannel systems for actuating and sensing applications.

  6. A thermal and chemical degradation approach to decipher pristane and phytane precursors in sedimentary organic matter

    USGS Publications Warehouse

    Koopmans, M.P.; Rijpstra, W.I.C.; Klapwijk, M.M.; De Leeuw, J. W.; Lewan, M.D.; Sinninghe, Damste J.S.

    1999-01-01

    A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Topping, R.J.; Stone, M.P.; Brush, C.K.

    The {sup 1}H NMR spectrum of the tetradeoxynucleotide d(TpCpGpA) was examined as a function of temperature, pH, and concentration. At pH 7 and above the solution conformation for this oligodeoxynucleotide appears to be a mixture of random coil and Watson-Crick duplex. At 25{degree}C, a pH titration of d(TpCpGaA) shown that distinct conformational changes occur as the pH is lowered below 7.0. These conformational changes are reversible upon readjusting the pH to neutrality, indicating the presence of a pH-dependent set of conformational equilibria. At 25{degree}C, the various conformational state in the mixture are in rapid exchange on the NMR time scale.more » Examination of the titration curve shown the presence of distinct conformational states at pH greater than 7, and between pH 4 and pH 5. When the pH titration is repeated at 5{degree}C, the conformational equilibria are in slow exchange on the NMR time scale; distinct signals from each conformational state are observable. The stable conformational state present between pH 4 and pH 5 represents an ordered conformation of d(TpCpGpA) which dissociates to a less ordered structure upon raising the temperature. The ordered conformation differs from the Watson-Crick helix, as is shown from nuclear Overhauser enhancement experiments, as well as chemical shift data. These results indicate that their ordered conformation is similar to the conformation of d(TpCpGpA) observed between pH 4 and pH 5. In the present case it is likely that stabilization of an ordered duplex conformation for d(TpCpGpA) is achieved by protonation of cytosine. A possible model which could explain the data involves formation of Hoogsteen C{sup +}:G base pairs.« less

  8. Temperature, soluble solids and pH effect on Alicyclobacillus acidoterrestris viability in lemon juice concentrate.

    PubMed

    Maldonado, María C; Belfiore, Carolina; Navarro, Antonio R

    2008-02-01

    Alicyclobacillus acidoterrestris is a thermoacidophilic, non-pathogenic, spore-forming bacterium detected in spoiled commercial pasteurized fruit juice. Apple, white grape and tomato are particularly susceptible. A. acidoterrestris spores are resistant to lemon juice pasteurization (2 min at 82 degrees C), and they can germinate and grow causing spoilage. This contamination is characterized by a medicinal or disinfectant smell attributed to guaiacol (o-dihydroxybenzene) production and other taint chemicals. The aim of this work was to study the influence of temperature (82, 86, 92 and 95 degrees C), total soluble solids (SS) (6.20, 9.8, 50 and 68 degrees Brix) and pH (2.28, 2.45, 2.80, 3.25, 3.5) on decimal reduction time (D) of the A. acidoterrestris in clarified and non-clarified concentrated lemon juice. Once D-value was determined, the resistance of A. acidoterrestris at the assayed temperatures was confirmed. SS and pH influence spore viability, because spore resistance increases with higher SS (50 degrees Brix 22 min 82 degrees C-68 degrees Brix 28 min 82 degrees C) and pH values (pH 2.28, 17 min-pH 4.00, 22 min). Bacterial growth was lower in clarified lemon juice, 26 min at 82 degrees C, than in non-clarified lemon juice, 51 min at 82 degrees C. Temperature was the parameter that had the greatest influence on the D value.

  9. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity andmore » morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.« less

  10. Processed dairy beverages pH evaluation: consequences of temperature variation.

    PubMed

    Ferreira, Fabiana Vargas; Pozzobon, Roselaine Terezinha

    2009-01-01

    This study assessed the pH from processed dairy beverages as well as eventual consequences deriving from different ingestion temperatures. 50 adults who accompanied children attended to at the Dentistry School were randomly selected and they answered a questionnaire on beverages. The beverages were divided into 4 groups: yogurt (GI) fermented milk (GII), chocolate-based products (GIII) and fermented dairy beverages (GIV). They were asked which type, flavor and temperature. The most popular beverages were selected, and these made up the sample. A pH meter Quimis 400A device was used to verify pH. The average pH from each beverage was calculated and submitted to statistical analysis (Variance and Tukey test with a 5% significance level). for groups I, II and III beverages, type x temperature interaction was significant, showing the pH averages were influenced by temperature variation. At iced temperatures, they presented lower pH values, which were considered statistically significant when compared to the values found for the same beverages at room temperature. All dairy beverages, with the exception of the chocolate-based type presented pH below critical level for enamel and present corrosive potential; as to ingestion temperature, iced temperature influenced pH reducing its values, in vitro.

  11. Bacterial desorption from food container and food processing surfaces.

    PubMed

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  12. Effects of corn straw or mixed forage diet on rumen fermentation parameters of lactating cows using a wireless data logger.

    PubMed

    Qin, Chunfu; Bu, Dengpan; Sun, Peng; Zhao, Xiaowei; Zhang, Peihua; Wang, Jiaqi

    2017-02-01

    The objective of this study was to evaluate the effect of two different forage types on rumen fermentation parameters and profiles using a wireless data logger. Eight lactating cows were randomly assigned to one of two dietary treatments with a low forage diet with corn straw (CS) or a high forage diet with mixed forage (MF) as the forage source, respectively. Dietary physically effective neutral detergent fiber (peNDF) content was 11.3% greater in CS. Dry matter intake and milk fatty acid content decreased upon CS (P < 0.05). Ruminal pH, temperature and oxidation reduction potential (ORP) were monitored for 14 weeks. The CS group had significantly higher pH but lower temperature and ORP compared to MF (P < 0.01). With the CS diet regime, pH at the time before morning feeding, rumination and post-ingestion were significantly higher than those in the MF group (P < 0.05). However, times with the ruminal pH below 6.0 and 5.8 were significantly reduced (P < 0.05), whereas ruminal pH below 5.6 tended to be lower (P = 0.07). The results indicated that rumen fermentation parameters were affected by forage types and dietary peNDF content might be predominant in ruminal pH regulation. © 2016 Japanese Society of Animal Science.

  13. Intraoral pH and temperature during sleep with and without mouth breathing.

    PubMed

    Choi, J E; Waddell, J N; Lyons, K M; Kieser, J A

    2016-05-01

    To measure and compare the intraoral pH and temperature of individuals during sleep with and without mouth breathing. Ten healthy participants [mean age = 25·8 (± 4·3)] wore a custom-made appliance fitted with a pH probe and thermocouple for two sets of 48 h. Continuous pH and temperature measurements were taken from the palatal aspect of the upper central incisors. To simulate mouth breathing during sleep, participants wore a nose clip for two nights of the four, with the first group (n = 5) wearing the nose clip during the first night and the rest (n = 5) wearing the nose clip during the second night of sleep to balance any potential bias from the wearing sequence. Both qualitative and quantitative analyses were conducted. The mean intraoral pH during daytime was 7·3 (± 0·4) and during sleep was 7·0 (± 0·5). The mean intraoral pH during sleep with mouth breathing was 6·6 (± 0·5), which was statistically significant compared with the normal sleep condition (P < 0·01). The intraoral pH decreased slowly over the hours of sleep in all participants. When sleeping with forced mouth breathing, intraoral pH showed a greater fall over a longer period of time. The mean intraoral temperature was 33·1 °C (± 5·2) during daytime and 33·3 °C (± 6·1) during sleep, with no statistical significance between sleep with and without mouth breathing (P > 0·05). The results suggest that mouth breathing during sleep is related to a decrease in intraoral pH compared with normal breathing during sleep, and this has been proposed as a causal factor for dental erosion and caries. © 2015 John Wiley & Sons Ltd.

  14. Climate-water quality relationships in Texas reservoirs

    USGS Publications Warehouse

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  15. Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release.

    PubMed

    Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji

    2017-07-01

    Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Phosphorus atomic layer doping in Ge using RPCVD

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yuji; Kurps, Rainer; Mai, Christian; Costina, Ioan; Murota, Junichi; Tillack, Bernd

    2013-05-01

    Phosphorus atomic layer doping (P-ALD) in Ge is investigated at temperatures between 100 °C and 400 °C using a single wafer reduced pressure chemical vapor deposition (RPCVD) system. Hydrogen-terminated and hydrogen-free Ge (1 0 0) surfaces are exposed to PH3 at different PH3 partial pressures after interrupting Ge growth. The adsorption and reaction of PH3 proceed on a hydrogen-free Ge surface. For all temperatures and PH3 partial pressures used for the P-ALD, the P dose increased with increasing PH3 exposure time and saturated. The saturation value of the incorporated P dose at 300 °C is ˜1.5 × 1014 cm-3, which is close to a quarter of a monolayer of the Ge (1 0 0) surface. The P dose could be simulated assuming a Langmuir-type kinetics model with a saturation value of Nt = 1.55 × 1014 cm-2 (a quarter of a monolayer), reaction rate constant kr = 77 s-1 and thermal equilibrium constant K = 3.0 × 10-2 Pa-1. An electrically active P concentration of 5-6 × 1019 cm-3, which is a 5-6 times higher thermal solubility of P in Ge, is obtained by multiple P spike fabrication using the P-ALD process.

  17. Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation

    NASA Astrophysics Data System (ADS)

    Zhao, Linyan; Li, Lian; Wang, Yixi; Wu, Jianning; Meng, Guihua; Liu, Zhiyong; Guo, Xuhong

    2018-01-01

    Oily wastewater caused by industrial production and crude oil leakage has attracted worldwide attention. Here, a thermo- and pH dual-responsive biodegradable cellulose-based aerogel for oil-water separation was designed and prepared via surface-initiated atom transfer radical polymerization (ATRP) of non-fluorine-containing 2-dimethylaminoethyl methacrylate (DMAEMA). The cellulose-based aerogel exhibit switchable superhydrophilicity with a water contact angle (WCA) of 0° and hydrophobicity (WCA 130°) by modulating pH or temperature. The functionalized cellulose-based aerogels could be used to absorb the water under 60 °C (pH 7.0) and pH is 1.0 (T = 25 °C), while absorb oil underwater when the temperature is above 60 °C (pH 7.0) or pH is 13.0 (T = 25 °C). So this adsorbent were suitable for the separation of water-rich or oil-rich oil/water mixtures, and it could adsorb oil over ten times its own weight, and had a good reusability. What's more, the cellulose-based aerogel is green, low cost, and environmental friendly, which makes it a promising candidate to be used for oil-water separation.

  18. Stability studies on florfenicol using developed derivative spectrophotometric methods.

    PubMed

    Elimam, M M; Shantier, S W; Gadkariem, E A; Mohamed, M A; Osman, Z

    2017-01-01

    This study aims to investigate the stability of florfenicol using previously developed derivative spectrophotometric methods (D 1 and D 2 ). The studied stability-indicating pararmeters included alkali (NaOH, 1M), acid (HCl, 1M), pH changes (buffer pH 2.2-11), temperature (80°C and 100°C at pH 10) and light. A constructed pH profile for the drug degradation rate revealed a significant effect of pH on the drug stability between pH ranges 8 and 11. The obtained profile indicated first order dependence of K obs on [OH - ]. Arrhenius plot at pH 10 was found linear at temperatures 80°C and 100°C with estimated activation energy of 19.35kcal/mol. The calculated rate constant (K obs ), t ½ and t 90 at 25°C were found to be 1.8×10 -3 h, 385h and 58.3h, respectively. The photostability of florfenicol was also studied by exposing the drug solution to direct sunlight during mid-day time. The obtained results reflected the instability of florfenicol under the study conditions. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  19. In-Situ pH Measurements in Mid-Ocean Ridge Hydrothermal Vent Fluids: Constraints on Subseafloor Alteration Processes at Crustal Depths

    NASA Astrophysics Data System (ADS)

    Schaen, A. T.; Ding, K.; Seyfried, W. E.

    2013-12-01

    Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with constraints imposed by the full range of chemical components in the vent fluids sampled and analyzed in association with pH (in-situ) measurements. Since pH is a master variable in all geochemical systems, the novel approach proposed here may provide new insight on hydrothermal alteration processes at conditions difficult or impossible to assess by more traditional means, ultimately influencing hydrothermal fluid fluxes.

  20. Effect of Equilibrated pH and Indigenous Spoilage Microorganisms on the Inhibition of Proteolytic Clostridium botulinum Toxin Production in Experimental Meals under Temperature Abuse.

    PubMed

    Golden, Max C; Wanless, Brandon J; David, Jairus R D; Lineback, D Scott; Talley, Ryan J; Kottapalli, Bala; Glass, Kathleen A

    2017-08-01

    Clostridium botulinum is a foreseeable biological hazard in prepared refrigerated meals that needs to be addressed in food safety plans. The objective of this study was to evaluate the effect of product composition and storage temperature on the inhibition of botulinum toxin formation in nine experimental meals (meat, vegetable, or carbohydrate based). Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin in samples stored at 25°C for up to 96 h for phase 1, or at 25°C for 12 h and then transferred to 12.5°C for up to 12 and 6 weeks in phases 1 and 2, respectively. For phase 1, none of the treatments (equilibrated pH 5.8) supported toxin production when stored at 25°C for 48 h, but toxin production was observed in all treatments at 72 h. For the remaining experiments with storage at 12.5°C, toxin production was dependent on equilibrated pH, storage time, and growth of indigenous spoilage microorganisms. In phase 1, no gross spoilage and no botulinum toxin was detected for any treatment (pH ≤5.8) stored at 12.5°C for 12 weeks. In phase 2, gross spoilage varied by commodity, with the brussels sprouts meal with pH 6.5 showing the most rapid spoilage within 2 weeks and botulinum toxin detected at 5 and 6 weeks for the control and cultured celery juice treatments, respectively. In contrast, spoilage microbes decreased the pH of a pH 5.9 beef treatment by 1.0 unit, potentially inhibiting C. botulinum through 6 weeks at 12.5°C. None of the other treatments with pH 5.8 or below supported toxin production or spoilage. This study provides validation for preventive controls in refrigerated meals. These include equilibrated product pH and storage temperature and time to inhibit toxin formation by proteolytic C. botulinum, but the impact of indigenous microflora on safety and interpretation of challenge studies is also highlighted.

  1. Pork Quality Traits According to Postmortem pH and Temperature in Berkshire

    PubMed Central

    Kim, Tae Wan; Kim, Chul Wook; Yang, Mi Ra; No, Gun Ryoung; Kim, Il-Suk

    2016-01-01

    This study was performed to investigate the role of pH and temperature postmortem, and to demonstrate the importance of these factors in determining meat quality. Postmortem pH45min (pH at 45 min postmortem or initial pH) via analysis of Pearson’s correlation showed high positive correlation with pH change pHc24 (pH change from pH45min to pH24h postmortem). However, postmortem pH after 24 h (pH24h or ultimate pH) had a high negative correlation with pH change, pHc24, CIE L*, and protein content. Initial temperature postmortem (T1h ) was positively associated with a change in temperature from 45 min to 24 h postmortem (Tc24) and cooking loss, but negatively correlated with water holding capacity. Temperature at 24 h postmortem (T24h) was negatively associated with Tc24. Collectively, these results indicate that higher initial pH was associated with higher pHc24, T1h, and Tc24. However, higher initial pH was associated with a reduction in carcass weight, backfat thickness, CIE a* and b*, water holding capacity, collagen and fat content, drip loss, and cooking loss as well as decreased shear force. In contrast, CIE a* and b*, drip loss, cooking loss, and shear force in higher ultimate pH was showed by a similar pattern to higher initial pH, whereas pHc24, carcass weight, backfat thickness, water holding capacity, fat content, moisture content, protein content, T1h, T24h, and Tc24 were exhibited by completely differential patterns (p<0.05). Therefore, we suggest that initial pH, ultimate pH, and temperatures postmortem are important factors in determining the meat quality of pork. PMID:27499661

  2. Factors affecting Archaeal Lipid Compositions of the Sulfolobus Species

    NASA Astrophysics Data System (ADS)

    He, L.; Han, J.; Wei, Y.; Lin, L.; Wei, Y.; Zhang, C.

    2010-12-01

    Temperature is the best known variable affecting the distribution of the archaeal glycerol dibiphytanyl glycerol tetraethers (GDGTs) in marine and freshwater systems. Other variables such as pH, ionic strength, or bicarbonate concentration may also affect archaeal GDGTs in terrestrial systems. Studies of pure cultures can help us pinpoint the specific effects these variables may have on archaeal lipid distribution in natural environments. In this study, three Sulfolobus species (HG4, HB5-2, HB9-6) isolated from Tengchong hot springs (pH 2-3, temperature 73-90°C) in China were used to investigate the effects of temperature, pH, substrate, and type of strain on the composition of GDGTs. Results showed that increase in temperature had negative effects on the relative contents of GDGT-0 (no cyclopentyl rings), GDGT-1 (one cyclopentyl ring), GDGT-2 and GDGT-3 but positive effects on GDGT-4, GDGT-4', GDGT-5 and GDGT-5'. Increase in pH, on the other hand, had negative effects on GDGT-0, GDGT-1, GDGT-4', GDGT-5 and GDGT-5', and positive effects on GDGT-3 and GDGT-4. GDGT-2 remained relatively constant with changing pH. When the HG4 was grown on different substrates, GDGT-5 was five time more abundant in sucrose-grown cultures than in yeast extract- or sulfur- grown cultures, suggesting that carbohydrates may stimulate the production of GDGT-5. For all three species, the ring index (average number of rings) of GDGTs correlated positively with incubation temperature. In HG4, ring index was much lower at optimal pH (3.5) than at other pH values. Ring index of HB5-2 or HB9-6 is higher than that of HG4, suggesting that speciation may affect the degree of cyclization of GDGT of the Sulfolobus. These results indicate that individual archaeal lipids respond differently to changes in environmental variables, which may be also species specific.

  3. Biosorption of heavy metal copper (Cu2+) by Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Ririhena, S. A. J.; Astuti, A. D.; Fachrul, M. F.; Silalahi, M. D. S.; Hadisoebroto, R.; Rinanti, A.

    2018-01-01

    This research aims to study the optimum effect of contact time and pH adsorption of copper (Cu2+) from electroplating industry waste by dried beer waste S.cerevisiae. This research conducted using batch culture with pH variation 2,3,4,5, and 6, contact time variation 60, 90, 120, 150, 180 minutes, 150 rpm at room temperature (± 28°C), initial Cu2+ concentration 33,746 mg/l, and biosorbent mass 200 mg & 500 mg. The adsorption of heavy metal ions Cu2+ occurs in all variations of pH and contact time at optimum pH. The optimum adsorption occurs at pH 4 with contact time 120 minutes for both 200 mg (41.60%) and 500 mg (61.04%) beer waste biosorbent. Cell morphology seen with Scanning Electron Microscope (SEM) analysis shows the change of cell wall that gets damaged from Cu2+ adsorption. It also proved by the decreased concentration of initial high concentration carboxyl groups. The adsorption process of this research complies to Freundlich Isotherm with R2 value closest to 1 and followed first order kinetic.

  4. Effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in free-water surface wetlands.

    PubMed

    He, Yuling; Tao, Wendong; Wang, Ziyuan; Shayya, Walid

    2012-11-15

    Design considerations to enhance simultaneous partial nitrification and anammox in constructed wetlands are largely unknown. This study examined the effects of pH and seasonal temperature variation on simultaneous partial nitrification and anammox in two free-water surface wetlands. In order to enhance partial nitrification and inhibit nitrite oxidation, furnace slag was placed on the rooting substrate to maintain different pH levels in the wetland water. The wetlands were batch operated for dairy wastewater treatment under oxygen-limited conditions at a cycle time of 7 d. Fluorescence in situ hybridization analysis found that aerobic ammonium oxidizing bacteria and anammox bacteria accounted for 42-73% of the bacterial populations in the wetlands, which was the highest relative abundance of ammonium oxidizing and anammox bacteria in constructed wetlands enhancing simultaneous partial nitrification and anammox. The two wetlands removed total inorganic nitrogen efficiently, 3.36-3.38 g/m(2)/d in the warm season with water temperatures at 18.9-24.9 °C and 1.09-1.50 g/m(2)/d in the cool season at 13.8-18.9 °C. Plant uptake contributed 2-45% to the total inorganic nitrogen removal in the growing season. A seasonal temperature variation of more than 6 °C would affect simultaneous partial nitrification and anammox significantly. Significant pH effects were identified only when the temperatures were below 18.9 °C. Anammox was the limiting stage of simultaneous partial nitrification and anammox in the wetlands. Water pH should be controlled along with influent ammonium concentration and temperature to avoid toxicity of free ammonia to anammox bacteria. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Optimization of Extraction Conditions for the 6-Shogaol-rich Extract from Ginger (Zingiber officinale Roscoe).

    PubMed

    Ok, Seon; Jeong, Woo-Sik

    2012-06-01

    6-Shogaol, a dehydrated form of 6-gingerol, is a minor component in ginger (Zingiber officinale Roscoe) and has recently been reported to have more potent bioactivity than 6-gingerol. Based on the thermal instability of gingerols (their dehydration to corresponding shogaols at high temperature), we aimed to develop an optimal process to maximize the 6-shogaol content during ginger extraction by modulating temperature and pH. Fresh gingers were dried under various conditions: freeze-, room temperature (RT)- or convection oven-drying at 60 or 80°C, and extracted by 95% ethanol at RT, 60 or 80°C. The content of 6-shogaol was augmented by increasing both drying and extraction temperatures. The highest production of 6-shogaol was achieved at 80°C extraction after drying at the same temperature and the content of 6-shogaol was about 7-fold compared to the lowest producing process by freezing and extraction at RT. Adjustment of pH (pH 1, 4, 7 and 10) for the 6-shogaol-richest extract (dried and extracted both at 80°C) also affected the chemical composition of ginger and the yield of 6-shogaol was maximized at the most acidic condition of pH 1. Taken together, the current study shows for the first time that a maximized production of 6-shogaol can be achieved during practical drying and extraction process of ginger by increasing both drying and extracting temperatures. Adjustment of pH to extraction solvent with strong acid also helps increase the production of 6-shogaol. Our data could be usefully employed in the fields of food processing as well as nutraceutical industry.

  6. Quantitative analysis of zopiclone, N-desmethylzopiclone, zopiclone N-oxide and 2-amino-5-chloropyridine in urine using LC-MS-MS.

    PubMed

    Nilsson, Gunnel H; Kugelberg, Fredrik C; Ahlner, Johan; Kronstrand, Robert

    2014-01-01

    A simple liquid chromatography-tandem mass spectrometry method was validated to allow determination of zopiclone (ZOP), N-desmethylzopiclone (NDZOP), zopiclone N-oxide (ZOPNO) and 2-amino-5-chloropyridine (ACP) in urine at concentrations up to 3,000 ng/mL within 3.5 min. This method was used for quantitative analysis of the analytes in authentic urine samples obtained 10 h after oral administration of zopiclone (Imovane(®)) and in aliquots of the same urine samples after different storage conditions. In addition, pH of each studied urine sample was measured over time. The results showed that formation of ACP occurred at elevated pH and/or temperature by degradation of ZOP, NDZOP and ZOPNO. This method was also applied to samples obtained from two female victims of drug-facilitated assault. One sample had been exposed to long-term storage conditions at different temperatures and at pH >8.2, which resulted in high concentrations of ACP. The other sample, which was exposed to pH <6.5, showed no formation of ACP. ACP is formed both from ZOP and from its metabolites NDZOP and ZOPNO depending on the pH of the urine, time of storage and/or the temperature conditions. For correct interpretation in forensic cases, ZOP, its major metabolites and ACP should be analyzed. When ACP is identified in urine, the concentrations of ZOP, NDZOP and ZOPNO should be interpreted with great caution. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems.

    PubMed

    Díaz-Rodríguez, P; Rey-Rico, A; Madry, H; Landin, M; Cucchiarini, M

    2015-12-30

    Viral vectors are common tools in gene therapy to deliver foreign therapeutic sequences in a specific target population via their natural cellular entry mechanisms. Incorporating such vectors in implantable systems may provide strong alternatives to conventional gene transfer procedures. The goal of the present study was to generate different hydrogel structures based on alginate (AlgPH155) and poloxamer PF127 as new systems to encapsulate and release recombinant adeno-associated viral (rAAV) vectors. Inclusion of rAAV in such polymeric capsules revealed an influence of the hydrogel composition and crosslinking temperature upon the vector release profiles, with alginate (AlgPH155) structures showing the fastest release profiles early on while over time vector release was more effective from AlgPH155+PF127 [H] capsules crosslinked at a high temperature (50°C). Systems prepared at room temperature (AlgPH155+PF127 [C]) allowed instead to achieve a more controlled release profile. When tested for their ability to target human mesenchymal stem cells, the different systems led to high transduction efficiencies over time and to gene expression levels in the range of those achieved upon direct vector application, especially when using AlgPH155+PF127 [H]. No detrimental effects were reported on either cell viability or on the potential for chondrogenic differentiation. Inclusion of PF127 in the capsules was also capable of delaying undesirable hypertrophic cell differentiation. These findings are of promising value for the further development of viral vector controlled release strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effect of environmental factors on the complexation of iron and humic acid.

    PubMed

    Fang, Kai; Yuan, Dongxing; Zhang, Lei; Feng, Lifeng; Chen, Yaojin; Wang, Yuzhou

    2015-01-01

    A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron (Fe) and humic acid (HA) in a water environment. The factors affecting the complexation of Fe and HA, such as ionic strength, pH, temperature and UV radiation, were investigated. The Fe-HA complex residence time was also studied. Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe, and thus affected the complexation of Fe and HA. The complexation was greatly disrupted by the presence of NaCl. Temperature had some influence on the complexation. The yield of Fe-HA complexes showed a small decrease at high levels of UV radiation, but the effect of UV radiation on Fe-HA complex formation at natural levels could be neglected. It took about 10 hr for the complexation to reach equilibrium, and the Fe-HA complex residence time was about 20 hr. Complexation of Fe and HA reached a maximum level under the conditions of pH 6, very low ionic strength, in the dark and at a water temperature of about 25°C, for 10 hr. It was suggested that the Fe-HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation. With changing environmental parameters, such as at lower temperature in winter or higher pH and ionic strength in an estuary, the concentration of the Fe-HA complex would decrease. Copyright © 2014. Published by Elsevier B.V.

  9. Synthesis of CuPF6 -(S)-BINAP loaded resin and its enantioselectivity toward phenylalanine enantiomers.

    PubMed

    Liu, Xiong; Zhou, Wenqi; Xu, Longqi

    2017-09-01

    A type of resin-anchored CuPF 6 -(S)-BINAP was synthesized and identified. The PS-CuPF 6 -(S)-BINAP resin was used to adsorb the phenylalanine enantiomers. The results showed that the adsorption capacity of PS-CuPF 6 -(S)-BINAP resin toward L-phenylalanine was higher than that of resin toward D-phenylalanine. PS-CuPF 6 -(S)-BINAP resin exhibited good enantioselectivity toward L-phenylalanine and D-phenylalanine. The influence of phenylalanine concentration, pH, adsorption time, and temperature on the enantioselectivity of the resin were investigated. The results showed that the enantioselectivity of the resin increased with increasing the phenylalanine concentration, pH, and adsorption time, while it decreased with an increase in temperature. The causes for these influences are discussed. The highest enantioselectivity (α = 2.81) was obtained when the condition of phenylalanine concentration was 0.05 mmol/mL, pH was 8, adsorption time was 12 h, and temperature 5°C. The desorption test for removing D/L-phenylalanine on PS-CuPF 6 -(S)-BINAP resin was also investigated. The desorption ratios of D-phenylalanine and L-phenylalanine at pH of 1 were 95.7% and 94.3%, respectively. This result indicated that the PS-CuPF 6 -(S)-BINAP resin could be regenerated by shaking with an acidic solution. The reusability of the PS-CuPF 6 -(S)-BINAP resin was also assessed and the resin exhibited considerable reusability. © 2017 Wiley Periodicals, Inc.

  10. Isolation and identification of Trichoderma harzianum from groundwater: An effective biosorbent for defluoridation of groundwater.

    PubMed

    Koshle, Shalini; Mahesh, S; Swamy, S Nanjunda

    2016-01-01

    The ability of non-viable form of Trichoderma harzianum, isolated from fluoride rich groundwater, was investigated as biosorbent for defluoridation of groundwater. Biosorption experiments were carried out at laboratory scale for removal of fluoride from groundwater. Significant effect of operational parameters on fluoride biosorption using Trichoderma harzianum as biosorbent was evaluated by varying operational parameters such as: initial fluoride concentration (2-8 mgl(-1)), biosorbent dose (0.4-1.6g/100ml), groundwater pH (6-10), temperature (30-50 degrees C) and biosorption time (30-120 min). The fluoride adsorption isotherms were modeled by Langmuir and Freundlich isotherms. Our result showed that fluoride biosorption, significantly increased with increase in groundwater pH, biosorbent dose, temperature and biosorption time, whereas increase in initial fluoride concentration reduced fluoride removal. The fluoride biosorption was rapid and maximum fluoride uptake was attained with 1.6g 100ml(-1) biosorbent within 60 min. Optimal pH 10 and temperature 50 degrees C gave maximum defluoridation efficiency. Freundlich isotherm fits well for defluoridation of groundwater using Trichoderma harzianum as biosorbent which indicated that biosorbent surface sites were heterogeneous in nature and fitted into heterogeneous site binding model.

  11. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    NASA Astrophysics Data System (ADS)

    Purwar, Namrta

    Biomolecules play an essential role in performing the necessary functions for life. The goal of this thesis is to contribute to an understanding of how biological systems work on the molecular level. We used two biological systems, beef liver catalase (BLC) and photoactive yellow protein (PYP). BLC is a metalloprotein that protects living cells from the harmful effects of reactive oxygen species by converting H2O2 into water and oxygen. By binding nitric oxide (NO) to the catalase, a complex was generated that mimics the Cat-H2O2 adduct, a crucial intermediate in the reaction promoted by the catalase. The Cat-NO complex is obtained by using a convenient NO generator (1-(N,N-diethylamino)diazen-1-ium-1,2-diolate). Concentrations up to 100˜200 mM are reached by using a specially designed glass cavity. With this glass apparatus and DEANO, sufficient NO occupation is achieved and structure determination of the catalase with NO bound to the heme iron becomes possible. Structural changes upon NO binding are minute. NO has a slightly bent geometry with respect to the heme normal, which results in a substantial overlap of the NO orbitals with the iron-porphyrin molecular orbitals. From the structure of the iron-NO complex, conclusions on the electronic properties of the heme iron can be drawn that ultimately lead to an insight into the catalytic properties of this enzyme. Enzyme kinetics is affected by additional parameters such as temperature and pH. Additionally, in crystallography, the absorbed X-ray dose may impair protein function. To address the effect of these parameters, we performed time-resolved crystallographic experiments on a model system, PYP. By collecting multiple time-series on PYP at increasing X-ray dose levels, we determined a kinetic dose limit up to which kinetically meaningful X-ray data sets can be collected. From this, we conclude that comprehensive time-series spanning up to 12 orders of magnitude in time can be collected from a single PYP crystal. Time-resolved X-ray data collected at pH's of 4, 7 and 9 demonstrate that pH alters the kinetics of the PYP photocycle dramatically. At pH 4 the photocycle lasts almost one order of magnitude longer in time compared to pH 7. The final intermediate that accumulates at both pH 7 and pH 4 is absent at pH 9. Results from the dose- and the pH-dependent time-resolved crystallographic experiments show that it is imperative to carefully control the conditions under which time-resolved data are collected. With these considerations we collected a comprehensive time-series from nanoseconds to seconds at 14 different temperature settings from -40 °C to 70 °C. Results from time-resolved crystallography are corroborated by employing time-resolved absorption spectroscopy. For this, absorption spectra on crystals and solution are collected by a fast micro-spectrophotometer custom-designed in our lab. We identify kinetic phases of the PYP photocycle at all 14 temperature settings. Relaxation times associated with these phases are temperature-dependent and can be fit by the Van't Hoff-Arrhenius equation. Kinetic modeling yields entropy and enthalpy values at the barriers of the activation solely from the time-resolved crystallographic data. With this, we advance crystallography to a new frontier: the determination of free energy surfaces. Investigating enzymatic reactions can be challenging, because they are non-cyclic. After one turnover product must be washed away and substrate must be reloaded. A promising approach for routine application can be envisioned at the new 4th generation X-ray sources, such as X-ray free electron lasers (XFELs). With our results we set the scene to comprehensively investigate all kinds of enzymatic reactions with these instruments.

  12. Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii

    PubMed Central

    Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin

    2016-01-01

    Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties. PMID:27467884

  13. Improvement of Functional Properties of Wheat Gluten Using Acid Protease from Aspergillus usamii.

    PubMed

    Deng, Lingli; Wang, Zhaoxia; Yang, Sheng; Song, Junmei; Que, Fei; Zhang, Hui; Feng, Fengqin

    2016-01-01

    Hydrolysis parameters (temperature, E/S ratio, pH, and time) for acid protease (from Aspergillus usamii) hydrolysis of wheat gluten were optimized by response surface methodology (RSM) using emulsifying activity index (EAI) as the response factor. A temperature of 48.9°C, E/S ratio of 1.60%, pH 3.0, hydrolysis time of 2.5 h was found to be the optimum condition to obtain wheat gluten hydrolysate with higher EAI. The solubility of wheat gluten was greatly improved by hydrolysis and became independent of pH over the studied range. Enzymatic hydrolysis resulted in dramatically increase in EAI, water and oil holding capacity. Molecular weight distribution results showed that most of the peptides above 10 kDa have been hydrolyzed into smaller peptides. The results of FTIR spectra and disulfide bond (SS) and sulfhydryl (SH) content suggested that a more extensional conformation was formed after hydrolysis, which could account for the improved functional properties.

  14. The Influence of pH on Prokaryotic Cell Size and Temperature

    NASA Astrophysics Data System (ADS)

    Sundararajan, D.; Gutierrez, F.; Heim, N. A.; Payne, J.

    2015-12-01

    The pH of a habitat is essential to an organism's growth and success in its environment. Although most organisms maintain a neutral internal pH, their environmental pH can vary greatly. However, little research has been done concerning an organism's environmental pH across a wide range of taxa. We studied pH tolerance in prokaryotes and its relationship with biovolume, taxonomic classification, and ideal temperature. We had three hypotheses: pH and temperature are not correlated; pH tolerance is similar within taxonomic groups; and extremophiles have small cell sizes. To test these hypotheses, we used pH, size, and taxonomic data from The Prokaryotes. We found that the mean optimum external pH was neutral for prokaryotes as a whole and when divided by domain, phylum, and class. Using ANOVA to test for pH within and among group variances, we found that variation of pH in domains, phyla, classes, and families was greater than between them. pH and size did not show much of a correlation, except that the largest and smallest sized prokaryotes had nearly neutral pH. This seems significant because extremophiles need to divert more of their energy from growth to maintain a neutral internal pH. Acidophiles showed a larger range of optimum pH values than alkaliphiles. A similar result was seen with the minimum and maximum pH values of acidophiles and alkaliphiles. While acidophiles were spread out and had some alkaline maximum values, alkaliphiles had smaller ranges, and unlike some acidophiles that had pH minimums close to zero, alkaliphile pH maximums did not go beyond a pH of 12. No statistically significant differences were found between sizes of acidophiles and alkaliphiles. However, optimum temperatures of acidophiles and alkaliphiles did have a statistically significant difference. pH and temperature had a negative correlation. Therefore, pH seems to have a correlation with cell size, temperature, and taxonomy to some extent.

  15. Extraction of indirectly captured information for use in a comparison of offline pH measurement technologies.

    PubMed

    Ritchie, Elspeth K; Martin, Elaine B; Racher, Andy; Jaques, Colin

    2017-06-10

    Understanding the causes of discrepancies in pH readings of a sample can allow more robust pH control strategies to be implemented. It was found that 59.4% of differences between two offline pH measurement technologies for an historical dataset lay outside an expected instrument error range of ±0.02pH. A new variable, Osmo Res , was created using multiple linear regression (MLR) to extract information indirectly captured in the recorded measurements for osmolality. Principal component analysis and time series analysis were used to validate the expansion of the historical dataset with the new variable Osmo Res . MLR was used to identify variables strongly correlated (p<0.05) with differences in pH readings by the two offline pH measurement technologies. These included concentrations of specific chemicals (e.g. glucose) and Osmo Res, indicating culture medium and bolus feed additions as possible causes of discrepancies between the offline pH measurement technologies. Temperature was also identified as statistically significant. It is suggested that this was a result of differences in pH-temperature compensations employed by the pH measurement technologies. In summary, a method for extracting indirectly captured information has been demonstrated, and it has been shown that competing pH measurement technologies were not necessarily interchangeable at the desired level of control (±0.02pH). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of heat treatment, pH, sugar concentration, and metal addition on green color retention in homogenized puree of Thompson seedless grape

    USDA-ARS?s Scientific Manuscript database

    Homogenized puree of Thompson seedless (Vitis vinifera ‘Thompson Seedless’) grape was treated under different conditions, including heating time (5-30 min), temperature (20-80°C) and pH (2-10). Treatments with separate additions of glucose, fructose, and sucrose at concentrations of 100-600 g/L and ...

  17. Time-related Changes in pH, Buffering Capacity and Phosphate and Urea Concentration of Stimulated Saliva.

    PubMed

    Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan

    2014-01-01

    To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.

  18. The effect of pH on the rheology of mixed gels containing whey protein isolate and xanthan-curdlan hydrogel.

    PubMed

    Shiroodi, Setareh Ghorban; Lo, Y Martin

    2015-11-01

    The ultimate goal of this work was to examine the effect of xanthan-curdlan hydrogel complex (XCHC) on the rheology of whey protein isolate (WPI) within the pH range of 4-7 upon heating and cooling. Dynamic rheological properties of WPI and XCHC were studied individually and in combination, as a function of time or temperature. For pure WPI, gels were pH-dependent, and in all pH values except 7, gels formed upon first heating from 40 to 90 °C. At pH 7, WPI did not form gel upon first heating, and the storage modulus (G') started to increase during the holding time at 90 °C. The onset of gelation temperature of WPI was lower in acidic pH ranges compared to the neutral pH. In mixed gels, the presence of XCHC increased the G' of the gels. The rheological behaviour was pH-dependent and initially was controlled by XCHC; however, after the consolidation of WPI network, the behaviour was led by the whey protein isolate. Results showed that XCHC had a synergistic effect on enhancing the elastic modulus of the gels after the consolidation of WPI network. Based on the results of this study, it is possible to use these biopolymers in the formulation of frozen dairy-based products and enable food manufactures to improve the textural and physicochemical properties, and as a result the consumer acceptance of the food product.

  19. Temperature-dependent dynamics of bovine casein micelles in the range 10-40 °C.

    PubMed

    Liu, Dylan Z; Weeks, Michael G; Dunstan, David E; Martin, Gregory J O

    2013-12-15

    Milk is a complex colloidal system that responds to changes in temperature imposed during processing. Whilst much has been learned about the effects of temperature on milk, little is known about the dynamic response of casein micelles to changes in temperature. In this study, a comprehensive physico-chemical study of casein micelles in skim milk was performed between 10 and 40 °C. When fully equilibrated, the amount of soluble casein, soluble calcium and the pH of skim milk all decreased as a function of increasing temperature, whilst the hydration and volume fraction of the casein micelles decreased. The effect of temperature on casein micelle size, as determined by dynamic light scattering and differential centrifugation, was less straightforward. Real-time measurements of turbidity and pH were used to investigate the dynamics of the system during warming and cooling of milk in the range 10-40 °C. Changes in pH are indicative of changes to the mineral system and the turbidity is a measure of alterations to the casein micelles. The pH and turbidity showed that alterations to both the casein micelles and the mineral system occurred very rapidly on warming. However, whilst mineral re-equilibration occurred very rapidly on cooling, changes to the casein micelle structure continued after 40 min of measurement, returning to equilibrium after 16 h equilibration. Casein micelle structure and the mineral system of milk were both dependent on temperature in the range 10-40 °C. The dynamic response of the mineral system to changes in temperature appeared almost instantaneous whereas equilibration of casein was considerably slower, particularly upon cooling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Immobilization of polygalacturonase from Aspergillus niger onto activated polyethylene and its application in apple juice clarification.

    PubMed

    Saxena, Shivalika; Shukla, Surendra; Thakur, Akhilesh; Gupta, Reena

    2008-03-01

    The present work is focused on efficient immobilization of polygalacturonase on polyethylene matrix, followed by its application in apple juice clarification. Immobilization of polygalacturonase on activated polyethylene and its use in apple juice clarification was not reported so far. Aspergillus niger Van Tieghem (MTCC 3323) produced polygalacturonase when grown in modified Riviere's medium containing pectin as single carbon source by fed-batch culture. The enzyme was precipitated with ethanol and purified by gel filtration chromatography (Sephacryl S-100) and immobilized onto glutaraldehyde-activated polyethylene. The method is very simple and time saving for enzyme immobilization. Various characteristics of immobilized enzyme such as optimum reaction temperature and pH, temperature and pH stability, binding kinetics, efficiency of binding, reusability and metal ion effect on immobilized enzymes were evaluated in comparison to the free enzyme. Both the free and immobilized enzyme showed maximum activity at a temperature of 45 degrees C and pH 4.8. Maximum binding efficiency was 38%. The immobilized enzyme was reusable for 3 cycles with 50% loss of activity after the third cycle. Twenty-four U of immobilized enzyme at 45 degrees C and 1 h incubation time increased the transmittance of the apple juice by about 55% at 650 nm. The immobilized enzyme can be of industrial advantage in terms of sturdiness, availability, inertness, low price, reusability and temperature stability.

  1. Adsorption Effectivity Test of Andisols Clay-Zeolite (ACZ) Composite as Chromium Hexavalent (Cr(VI)) Ion Adsorbent

    NASA Astrophysics Data System (ADS)

    Pranoto; Masykur, A.; Nugroho, Y. A.

    2018-03-01

    Adsorption of chromium hexavalent (Cr(VI)) ion in aqueous solution was investigated. This research was purposed to study the influence of the composition of ACZ, temperature activation, and contact time against adsorption capacity of Cr(VI) ion in aqueous solution. Determination of adsorption effectivity using several parameter such as composition variation of ACZ, contact time, pH, activation temperature, and concentration. In this research, andisol clay and zeolite has been activated with NaOH 3 M and 1 M, respectively. Temperature variation used 100, 200, and 400°C. While composition variation ACZ used 0:100, 25:75, 50:50, 75:25, 100:0. The pH variation was used 2 – 6 and concentration variation using 2, 4, 6, 8, 10, and 12 ppm. Characterization in this research used such as UV-Vis, Surface Area Analyzer (SAA) and Acidity Analysis. Result of this research is known that optimum composition of ACZ was 50:50 with calcination temperature 100°C. Optimum adsorption of Cr(VI) at pH 4 with removal percentage 76.10 % with initial concentration 2 ppm and adsorption capacity is 0.16 mg/g. Adsorption isotherm following freundlich isotherm with value Kf = 0.17 mg/g and value n is 0.963. Based on results, ACZ composite can be used as Cr(VI) ion adsorbents in aqueous solutions.

  2. Fe(II)-induced transformation from ferrihydrite to lepidocrocite and goethite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Hui; Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Li Ping

    2007-07-15

    The transformation of Fe(II)-adsorbed ferrihydrite was studied. Data tracking the formation of products as a function of pH, temperature and time is presented. The results indicate that trace of Fe(II) adsorbed on ferrihydrite can accelerate its transformation obviously. The products are lepidocrocite and/or goethite and/or hematite, which is different from those without Fe(II). That is, Fe(II) not only accelerates the transformation of ferrihydrite but also leads to the formation of lepidocrocite by a new path. The behavior of Fe(II) is shown in two aspects-catalytic dissolution-reprecipitation and catalytic solid-state transformation. The results indicate that a high temperature and a high pH(inmore » the range from 5 to 9) are favorable to solid-state transformation and the formation of hematite, while a low temperature and a low pH are favorable to dissolution-reprecipitation mechanism and the formation of lepidocrocite. Special attentions were given to the formation mechanism of lepidocrocite and goethite. - Graphical abstract: Fe(II)-adsorbed ferrihydrite can rapidly transform into lepidocrocite or/and goethite or/and hematite. Which product dominates depends on the transformation conditions of ferrihydrite such as temperature, pH, reaction time, etc. In the current system, there exist two transformation mechanisms. One is dissolution/reprecipitation and the other is solid-state transformation. The transformation mechanisms from Fe(II)-adsorbed ferrihydrite to lepidocrocite and goethite were investigated.« less

  3. Effects of Storage Duration and Temperature on the Chemical Composition, Microorganism Density, and In vitro Rumen Fermentation of Wet Brewers Grains

    PubMed Central

    Wang, B.; Luo, Y.; Myung, K. H.; Liu, J. X.

    2014-01-01

    This study aimed to investigate the effects of storage duration and temperature on the characteristics of wet brewers grains (WBG) as feeds for ruminant animals. Four storage temperatures (5°C, 15°C, 25°C, and 35°C) and four durations (0, 1, 2, and 3 d) were arranged in a 4×4 factorial design. Surface spoilage, chemical composition and microorganism density were analyzed. An in vitro gas test was also conducted to determine the pH, ammonia-nitrogen and volatile fatty acid (VFA) concentrations after 24 h incubation. Surface spoilage was apparent at higher temperatures such as 25°C and 35°C. Nutrients contents decreased concomitantly with prolonged storage times (p<0.01) and increasing temperatures (p<0.01). The amount of yeast and mold increased (p<0.05) with increasing storage times and temperatures. As storage temperature increased, gas production, in vitro disappearance of organic matter, pH, ammonia nitrogen and total VFA from the WBG in the rumen decreased (p<0.01). Our results indicate that lower storage temperature promotes longer beneficial use period. However, when storage temperature exceeds 35°C, WBG should be used within a day to prevent impairment of rumen fermentation in the subtropics such as Southeast China, where the temperature is typically above 35°C during summer. PMID:25050021

  4. Optimized production of vanillin from green vanilla pods by enzyme-assisted extraction combined with pre-freezing and thawing.

    PubMed

    Zhang, Yanjun; Mo, Limei; Chen, Feng; Lu, Minquan; Dong, Wenjiang; Wang, Qinghuang; Xu, Fei; Gu, Fenglin

    2014-02-19

    Production of vanillin from natural green vanilla pods was carried out by enzyme-assisted extraction combined with pre-freezing and thawing. In the first step the green vanilla pods were pre-frozen and then thawed to destroy cellular compartmentation. In the second step pectinase from Aspergillus niger was used to hydrolyze the pectin between the glucovanillin substrate and β-glucosidase. Four main variables, including enzyme amount, reaction temperature, time and pH, which were of significance for the vanillin content were studied and a central composite design (CCD) based on the results of a single-factor tests was used. Response surface methodology based on CCD was employed to optimize the combination of enzyme amount, reaction temperature, time, and pH for maximum vanillin production. This resulted in the optimal condition in regards of the enzyme amount, reaction temperature, time, and pH at 84.2 mg, 49.5 °C, 7.1 h, and 4.2, respectively. Under the optimal condition, the experimental yield of vanillin was 4.63% ± 0.11% (dwb), which was in good agreement with the value predicted by the model. Compared to the traditional curing process (1.98%) and viscozyme extract (2.36%), the optimized method for the vanillin production significantly increased the yield by 133.85% and 96%, respectively.

  5. The initial freezing point temperature of beef rises with the rise in pH: a short communication.

    PubMed

    Farouk, M M; Kemp, R M; Cartwright, S; North, M

    2013-05-01

    This study tested the hypothesis that the initial freezing point temperature of meat is affected by pH. Sixty four bovine M. longissimus thoracis et lumborum were classified into two ultimate pH groups: low (<5.8) and high pH (>6.2) and their cooling and freezing point temperatures were determined. The initial freezing temperatures for beef ranged from -0.9 to -1.5°C (∆=0.6°C) with the higher and lower temperatures associated with high and low ultimate pH respectively. There was a significant correlation (r=+0.73, P<0.01) between beef pH and freezing point temperature in the present study. The outcome of this study has implications for the meat industry where evidence of freezing (ice formation) in a shipment as a result of high pH meat could result in a container load of valuable chilled product being downgraded to a lower value frozen product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Dynamics of human serum albumin studied by acoustic relaxation spectroscopy.

    PubMed

    Hushcha, T; Kaatze, U; Peytcheva, A

    Sonic absorption spectra of solutions of human serum albumin (SA) in water and in aqueous phosphate buffer systems have been measured between 0.2 and 2000 MHz at different temperatures (15-35 degrees C), pH values (1.8-12.3), and protein concentrations (1-40 g/L). Several spectra, indicating relaxation processes in the whole frequency range, have been found. The spectra at neutral pH could be fitted well with an analytical function consisting of the asymptotic high frequency absorption and two relaxation contributions, a Debye-type relaxation term with discrete relaxation time and a term with asymmetric continuous distribution of relaxation times. Both relaxation contributions were observed in water and in buffer solutions and increased with protein concentration. The contribution represented by a Debye-type term is practically independent of temperature and was attributed to cooperative conformational changes of the polypeptide chain featuring a relaxation time of about 400 ns. The distribution of the relaxation times corresponding to the second relaxation contribution was characterized by a short time cutoff, between about 0.02 and 0.4 ns depending on temperature, and a long time tail extending to microseconds. Such relaxation behavior was interpreted in terms of solute-solvent interactions reflecting various hydration layers of HSA molecules. At acid and alkaline pH, an additional Debye-type contribution with relaxation time in the range of 30-100 ns exists. It seems to be due to proton transfer reactions of protein side-chain groups. The kinetic and thermodynamic parameters of these processes have been estimated from these first measurements to indicate the potential of acoustic spectra for the investigation of the elementary kinetics of albumin processes. Copyright 2004 Wiley Periodicals, Inc. Biopolymers, 2004

  7. Influence of pH on wetting kinetics of a pine forest soil

    NASA Astrophysics Data System (ADS)

    Amer, Ahmad; Schaumann, Gabriele; Diehl, Dörte

    2014-05-01

    Water repellent properties of organic matter significantly alter soil water dynamics. Various environmental factors control appearance and breakup of repellency in soil. Beside water content and temperature also pH exerts an influence on soil water repellency although investigations achieved partly ambiguous results; some found increasing repellency with increasing pH (Terashima et al. 2004; Duval et al. 2005), other with decreasing pH (Karnok et al. 1993; Roper 2005) and some found repellency maxima at intermediate pH and an increase with decreasing and with increasing pH (Bayer and Schaumann 2007; Diehl et al. 2010). The breakup of repellency may be observed via the time dependent sessile drop contact angle (TISED). With water contact time, soil-water contact angle decreases until complete wetting is reached. Diehl and Schaumann (2007) calculated the activation energy of the wetting process from the rate of sessile drop wetting obtained at different temperatures and draw conclusions on chemical or physical nature of repellency. The present study aims at the influence of pH on the wetting kinetics of soil. Therefore, TISED of soil was determined as a function of pH and temperature. We used upper soil samples (0 - 10 cm) from a pine forest in the southwest of Germany (Rheinland-Pfalz). Samples were air-dried, sieved < 1.0 mm and pH was modified by NH3 and HCl gas (Diehl et al. 2010) and measured electrometrically in 0.01 M CaCl2 solution. TISED measurements (2007)were conducted at 10, 20 and 30 oC using OCA 15 Contact Angle Meter (Dataphysics, Germany) on three replications for each soil sample. Apparent work of adhesion was calculated, plotted vs. time and mathematically fitted using double exponential function. Rate constants of wetting were used to determine the activation energy by Arrhenius equation. First results indicated that despite comparable initial contact angles, pH alteration strongly changed the wetting rate suggesting maximum wetting resistance at the natural pH of 4.3 and decreasing wetting resistance at lower and at higher pH. The poster will present further current results of the ongoing study and discuss the activation energy of the wetting process in dependence of artificially altered soil pH. References: Bayer, J. V. and G. E. Schaumann (2007). Hydrol. Processes 21(17): 2266 - 2275. Diehl, D., J. V. Bayer, et al. (2010). Geoderma 158(3-4): 375-384. Diehl, D. and G. E. Schaumann (2007). Hydrol. Processes 21(17): 2255 - 2265. Duval, J. F. L., K. J. Wilkinson, et al. (2005). Environ Sci Technol 39(17): 6435-6445. Karnok, K. A., E. J. Rowland, et al. (1993). Agron J 85(5): 983-986. Roper, M. M. (2005). Aust J Soil Res 43: 803-810. Terashima, M., M. Fukushima, et al. (2004). Colloids and Surfaces, A: Physicochemical and Engineering Aspects 247(1-3): 77-83.

  8. Abrin Toxicity and Bioavailability after Temperature and pH Treatment.

    PubMed

    Tam, Christina C; Henderson, Thomas D; Stanker, Larry H; He, Xiaohua; Cheng, Luisa W

    2017-10-13

    Abrin, one of most potent toxins known to man, is derived from the rosary pea (jequirity pea), Abrus precatorius and is a potential bioterror weapon. The temperature and pH stability of abrin was evaluated with an in vitro cell free translation (CFT) assay, a Vero cell culture cytotoxicity assay, and an in vivo mouse bioassay. pH treatment of abrin had no detrimental effect on its stability and toxicity as seen either in vitro or in vivo. Abrin exposure to increasing temperatures did not completely abrogate protein translation. In both the cell culture cytotoxicity model and the mouse bioassay, abrin's toxic effects were completely abrogated if the toxin was exposed to temperatures of 74 °C or higher. In the cell culture model, 63 °C-treated abrin had a 30% reduction in cytotoxicity which was validated in the in vivo mouse bioassay with all mice dying but with a slight time-to-death delay as compared to the non-treated abrin control. Since temperature inactivation did not affect abrin's ability to inhibit protein synthesis (A-chain), we hypothesize that high temperature treatment affected abrin's ability to bind to cellular receptors (affecting B-chain). Our results confirm the absolute need to validate in vitro cytotoxicity assays with in vivo mouse bioassays.

  9. Abrin Toxicity and Bioavailability after Temperature and pH Treatment

    PubMed Central

    Tam, Christina C.; Henderson, Thomas D.; Stanker, Larry H.; He, Xiaohua; Cheng, Luisa W.

    2017-01-01

    Abrin, one of most potent toxins known to man, is derived from the rosary pea (jequirity pea), Abrus precatorius and is a potential bioterror weapon. The temperature and pH stability of abrin was evaluated with an in vitro cell free translation (CFT) assay, a Vero cell culture cytotoxicity assay, and an in vivo mouse bioassay. pH treatment of abrin had no detrimental effect on its stability and toxicity as seen either in vitro or in vivo. Abrin exposure to increasing temperatures did not completely abrogate protein translation. In both the cell culture cytotoxicity model and the mouse bioassay, abrin’s toxic effects were completely abrogated if the toxin was exposed to temperatures of 74 °C or higher. In the cell culture model, 63 °C-treated abrin had a 30% reduction in cytotoxicity which was validated in the in vivo mouse bioassay with all mice dying but with a slight time-to-death delay as compared to the non-treated abrin control. Since temperature inactivation did not affect abrin’s ability to inhibit protein synthesis (A-chain), we hypothesize that high temperature treatment affected abrin’s ability to bind to cellular receptors (affecting B-chain). Our results confirm the absolute need to validate in vitro cytotoxicity assays with in vivo mouse bioassays. PMID:29027937

  10. Sorption properties of Th(IV) on the raw diatomite--effects of contact time, pH, ionic strength and temperature.

    PubMed

    Sheng, Guodong; Hu, Jun; Wang, Xiangke

    2008-10-01

    Diatomite has a number of unique physicochemical properties and has diversified industrial uses. Natural diatomite has been tested as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that sorption of Th(IV) is strongly dependent on ionic strength at pH<3, and is independent of ionic strength at pH>3. Outer-sphere complexation or ion exchange may be the main sorption mechanism of Th(IV) to diatomite at low pH values, whereas the sorption of Th(IV) at pH>3 is mainly dominated by inner-sphere complexation or precipitation. The competition for Th(IV) between aqueous or surface adsorbed anions (e.g., herein ClO(4)(-), NO(3)(-) and Cl(-)) and surface functional groups of diatomite is important for Th(IV) sorption. The thermodynamic data (DeltaH(0), DeltaS(0), DeltaG(0)) are calculated from the temperature-dependent sorption isotherms. The results suggest that sorption process of Th(IV) on diatomite is spontaneous and endothermic.

  11. Degradation kinetics of anthocyanins from European cranberrybush (Viburnum opulus L.) fruit extracts. Effects of temperature, pH and storage solvent.

    PubMed

    Moldovan, Bianca; David, Luminiţa; Chişbora, Cristian; Cimpoiu, Claudia

    2012-09-28

    European cranberrybush (Viburnum opulus L.) fruits are well known for their biological properties, of which some are due to the presence of anthocyanins in the berries. Current literature provides little information concerning these fruits. The stability of anthocyanins from Viburnum opulus fruits, in aqueous and ethanolic extracts, stored under darkness for 7 days at different temperatures (2 °C, 37 °C and 75 °C) and pH values (pH = 3 and 7), was studied here. The lowest stability was showed by the anthocyanins from the water extract stored at 75 °C and pH = 7, with half-life and constant rate values of 1.98 h and 0.3488 h⁻¹, respectively. The results showed a good correlation between the total anthocyanin content (determined using the pH differential method) and the time of storage, with determination coefficients varying from R² = 0.9298 to R² = 0.9971. Results indicate that the storage degradation of anthocyanins followed first-order reaction kinetics under all investigated conditions.

  12. Modelling lamb carcase pH and temperature decline parameters: relationship to shear force and abattoir variation.

    PubMed

    Hopkins, David L; Holman, Benjamin W B; van de Ven, Remy J

    2015-02-01

    Carcase pH and temperature decline rates influence lamb tenderness; therefore pH decline parameters are beneficial when modelling tenderness. These include pH at temperature 18 °C (pH@Temp18), temperature when pH is 6 (Temp@pH6), and pH at 24 h post-mortem (pH24). This study aimed to establish a relationship between shear force (SF) as a proxy for tenderness and carcase pH decline parameters estimated using both linear and spline estimation models for the m. longissimus lumborum (LL). The study also compared abattoirs regarding their achievement of ideal pH decline, indicative of optimal tenderness. Based on SF measurements of LL and m. semimembranosus collected as part of the Information Nucleus slaughter programme (CRC for Sheep Industry Innovation) this study found significant relationships between tenderness and pH24LL, consistent across the meat cuts and ageing periods examined. Achievement of ideal pH decline was shown not to have significantly differed across abattoirs, although rates of pH decline varied significantly across years within abattoirs.

  13. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE

    PubMed Central

    Johnson, F. H.; Eyring, H.; Steblay, R.; Chaplin, H.; Huber, C.; Gherardi, G.

    1945-01-01

    On the basis of available data with regard to the chemical and physical properties of the "substrate" luciferin (LH2) and enzyme, luciferase (A), and of kinetic data derived both from the reaction in extracts of Cypridina, and from the luminescence of intact bacteria, the fundamental reactions involved in the phenomenon of bioluminescence have been schematized. These reactions provide a satisfactory basis for interpreting the known characteristics of the system, as well as the theoretical chemistry with regard to the control of its over-all velocity in relation to various factors. These factors, here studied experimentally wholly with bacteria, Photobacterium phosphoreum in particular, include pH, temperature, pressure, and the drugs sulfanilamide, urethane, and alcohol, separately and in relation to each other. Under steady state conditions of bacterial luminescence, with excess of oxidizable substrate and with oxygen not limiting, the data indicate that the chief effects of these agents center around the pace setting reactions, which may be designated by the equation: A + LH2 → ALH2 following which light emission is assumed proportional to the amount of the excited molecule, AL*. The relation between pH and luminescence intensity varies with (a), the buffer mixture and concentration, (b), the temperature, and (c), the hydrostatic pressure. At an optimum temperature for luminescence of about 22° C. in P. phosphoreum, the effects of increasing or decreasing the hydrogen ion concentration are largely reversible over the range between pH 3.6 and pH 8.8. The relation between luminescence intensity and pH, under the experimental conditions employed, is given by the following equation, in which I 1 represents the maximum intensity, occurring about pH 6.5; I 2 the intensity at any other given pH; K 5 the equilibrium constant between hydrogen ions and the AL-; and K 6 the corresponding constant with respect to hydroxyl ions: See PDF for Equation The value of K 5, as indicated by the data, amounts to 4.84 x 104, while that of K 6 amounts to 4.8 x 105. Beyond the range between approximately pH 3.8 and 8.8, destructive effects of the hydrogen and hydroxyl ions, respectively, were increasingly apparent. By raising the temperature above the optimum, the destructive effects were apparent at all pH, and the intensity of the luminescence diminished logarithmically with time. With respect to pH, the rate of destruction of the light-emitting system at temperatures above the optimum was slowest between pH 6.5 and 7.0, and increased rapidly with more acid or more alkaline reactions of the medium. The reversible effects of slightly acid pH vary with the temperature in the manner of an inhibitor (Type I) that acts independently of the normal, reversible denaturation equilibrium (K 1) of the enzyme. The per cent inhibition caused by a given acid pH in relation to the luminescence intensity at optimum pH, is much greater at low temperatures, and decreases as the temperature is raised towards the optimum temperature. The observed maximum intensity of luminescence is thus shifted to slightly higher temperatures by increase in (H+). The apparent activation energy of luminescence is increased by a decrease in pH. The value of ΔH‡ at pH 5.05 was calculated to be 40,900 calories, in comparison with 20,700 at a pH of 6.92. The difference of 20,200 is taken to represent an estimate of the heat of ionization of ALH in the activation process, and compares roughtly with the 14,000 calories estimated for the same process, by analyzing the data from the point of view of hydrogen ions as an inhibitor. The decreasing temperature coefficient for luminescence in proceeding from low temperatures towards the optimum is accounted for in part by the greater degree of ionization of ALH. At the optimum temperature and acid reactions, pressures up to about 500 atmospheres retard the velocity of the luminescent oxidation. At the same temperature, with decrease in hydrogen ion concentration, the pressure effect is much less, indicating a considerable volume increase in the process of ionization and activation. In the extremely alkaline range, beyond pH 9, luminescence is greatly reduced, as compared with the intensity at neutrality, and under these conditions pressure causes a pronounced increase in intensity, presumably by acting upon the reversible denaturation equilibrium of the protein enzyme, A. Sulfanilamide, in neutral solutions, acts on luminescence in a manner very much resembling that of hydrogen ions at acidities between pH 4.0 and pH 6.5. Like the hydrogen ion equilibrium, the sulfanilamide equilibrium involves a ratio of approximately one inhibitor molecule to one enzyme molecule. The heat of reaction amounts to about 11,600 calories or more in a reversible combination that evidently evolves heat. Like the action of H ions, sulfanilamide causes a slight shifting of maximum luminescence intensity in the direction of higher temperatures, and an increase in the energy of activation. The effect of sulfanilamide on the growth of broth cultures of eight species of luminous bacteria indicates that there is no regular relationship among the different organisms between the concentration of the drug that prevents growth, and that which prevents luminescence in the cells which develop in the presence of sulfanilamide. p-Aminobenzoic acid (PAB) antagonizes the sulfanilamide inhibition of growth in luminous bacteria, and the cultures that develop are luminous. When (PAB) is added to cells from fully developed cultures, it has no effect on luminescence, or causes a slight inhibition, depending on the concentration. With luminescence partly inhibited by sulfanilamide, the addition of PAB has no effect, or has an inhibitory effect which adds to that caused by sulfanilamide. Two different, though possibly related, enzyme systems thus appear to limit growth and luminescence, respectively. The possible mechanism through which both the inhibitions and the antagonism take place is discussed. The irreversible destruction of the luminescent system at temperatures above that of the maximum luminescence, in a medium of favorable pH to which no inhibitors have been added, proceeds logarithmically with time at both normal and increased hydrostatic pressures. Pressure retards the rate of the destruction, and the analysis of the data indicates that a volume increase of roughly 71 cc. per gm. molecule at 32° C. takes place in going from the normal to the activated state in this reaction. At normal pressure, the rate of destruction has a temperature coefficient of approximately 90,000 calories, or about 20,000 calories more than the heat of reaction in the reversible denaturation equilibrium. The data indicate that the equilibrium and the rate process are two distinct reactions. The equation for luminescence intensity, taking into account both the reversible and irreversible phases of the reaction is given below. In the equation b is a proportionality constant; k' the rate constant of the luminescent reaction; A0 the total luciferase; A0i the total initial luciferase at time t equals 0; kn the rate constant for the destruction of the native, active form of the enzyme; kd the rate constant for the destruction of the reversibly denatured, inactive form; t the time; and the other symbols are as indicated above: See PDF for Equation For reasons cited in the text, kn evidently equals kd. Urethane and alcohol, respectively, act in a manner (Type II) that promotes the breaking of the type of bonds broken in both the reversible and irreversible reactions and so promotes the irreversible denaturation. This result is in contrast to the effects of sulfanilamide, which at appropriate concentrations may give rise to the same initial inhibition as that caused by urethane, but remains constant with time. The inhibition caused by urethane and alcohol, respectively, increases as the temperature is raised. As a result, the apparent optimum is shifted to lower temperatures, and the activation energy for the over-all process of luminescence diminishes. An analysis for the approximate heat of reaction in the equilibrium between these drugs and the enzyme, indicates 65,000 calories for urethane, and 37,000 for alcohol. A similar analysis with respect to the effect of hydroxyl ions as the inhibitor gives 60,300 calories. The effects of alcohol and urethane are sensitive to hydrostatic pressure. Moderate inhibitions at optimum temperature and pH, caused by relatively small concentrations of either drug, are completely abolished by pressures of 3,000 to 4,000 pounds per square inch. At optimum temperature and pH, increasing concentrations of alcohol caused the apparent optimum pressure for luminescence to shift markedly in the direction of higher pressures. Analysis of the data with respect to concentration of alcohol at different pressures indicated that the ratio of alcohol to enzyme molecules amounted to approximately 4, at 7,000 pounds, but only about 2.8 at normal pressures. This phenomenon was taken to indicate that more than one equilibrium is established between the alcohol and the protein. A similar interpretation was suggested in connection with the fact that analysis of the relation between concentration of urethane and amount of inhibition at different temperatures also indicated a ratio of urethane to enzyme molecules that increased with temperature in the equilibria involved. Analysis of the data with respect to pressure and the inhibition caused by a given concentration of alcohol at different temperatures indicated that the volume change involved in the combination of alcohol with the enzyme must be very small, while the actual effect of pressure is apparently mediated through the reversible denaturation of the protein enzyme, which is promoted by alcohol, urethane, and drugs of similar type. PMID:19873433

  14. A renaissance of soaps? - How to make clear and stable solutions at neutral pH and room temperature.

    PubMed

    Wolfrum, Stefan; Marcus, Julien; Touraud, Didier; Kunz, Werner

    2016-10-01

    Soaps are the oldest and perhaps most natural surfactants. However, they lost much of their importance since "technical surfactants", usually based on sulfates or sulfonates, have been developed over the last fifty years. Indeed, soaps are pH- and salt-sensitive and they are irritant, especially to the eyes. In food emulsions, although authorized, they have a bad taste, and long-chain saturated soaps have a high Krafft temperature. We believe that most or perhaps all of these problems can be solved with modern formulation approaches. We start this paper with a short overview of our present knowledge of soaps and soap formulations. Then we focus on the problem of the lacking soap solubility at neutral pH values. For example, it is well known that with the food emulsifier sodium oleate (NaOl), clear and stable aqueous solutions can only be obtained at pH values higher than 10. A decrease in the pH value leads to turbid and unstable solutions. This effect is not compatible with the formulation of aqueous stable and drinkable formulations with neutral or even acidic pH values. However, the pH value/phase behavior of aqueous soap solutions can be altered by the addition of other surfactants. Such a surfactant can be Rebaudioside A (RebA), a steviol glycoside from the plant Stevia rebaudiana which is used as a natural food sweetener. In a recent paper, we showed the influence of RebA on the apKa value of sodium oleate in a beverage microemulsion and on its clearing temperature. In the present paper, we report on the effect of the edible bio-surfactant RebA, on the macroscopic and microscopic phase behavior of simple aqueous sodium oleate solutions at varying pH values. The macroscopic phase behavior is investigated by visual observation and turbidity measurements. The microscopic phase behavior is analyzed by acid-base titration curves, phase-contrast and electron microscopy. It turned out that even at neutral pH, aqueous NaOl/RebA solutions can be completely clear and stable for more than 50days at room temperature. This is for the first time that a long chain soap could be really solubilized in water at neutral pH at room temperature. At last, these findings were applied to prepare stable, highly translucent and drinkable aqueous solutions of omega-3-fatty acids at a pH value of 7.5. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Predictive microbiology in a dynamic environment: a system theory approach.

    PubMed

    Van Impe, J F; Nicolaï, B M; Schellekens, M; Martens, T; De Baerdemaeker, J

    1995-05-01

    The main factors influencing the microbial stability of chilled prepared food products for which there is an increased consumer interest-are temperature, pH, and water activity. Unlike the pH and the water activity, the temperature may vary extensively throughout the complete production and distribution chain. The shelf life of this kind of foods is usually limited due to spoilage by common microorganisms, and the increased risk for food pathogens. In predicting the shelf life, mathematical models are a powerful tool to increase the insight in the different subprocesses and their interactions. However, the predictive value of the sigmoidal functions reported in the literature to describe a bacterial growth curve as an explicit function of time is only guaranteed at a constant temperature within the temperature range of microbial growth. As a result, they are less appropriate in optimization studies of a whole production and distribution chain. In this paper a more general modeling approach, inspired by system theory concepts, is presented if for instance time varying temperature profiles are to be taken into account. As a case study, we discuss a recently proposed dynamic model to predict microbial growth and inactivation under time varying temperature conditions from a system theory point of view. Further, the validity of this methodology is illustrated with experimental data of Brochothrix thermosphacta and Lactobacillus plantarum. Finally, we propose some possible refinements of this model inspired by experimental results.

  16. Degradation of Zearalenone by Essential Oils under In vitro Conditions

    PubMed Central

    Perczak, Adam; Juś, Krzysztof; Marchwińska, Katarzyna; Gwiazdowska, Daniela; Waśkiewicz, Agnieszka; Goliński, Piotr

    2016-01-01

    Essential oils are volatile compounds, extracted from plants, which have a strong odor. These compounds are known for their antibacterial and antifungal properties. However, data concerning degradation of mycotoxins by these metabolites are very limited. The aim of the present study was to investigate the effect of essential oils (cedarwood, cinnamon leaf, cinnamon bark, white grapefruit, pink grapefruit, lemon, eucalyptus, palmarosa, mint, thymic, and rosemary) on zearalenone (ZEA) reduction under various in vitro conditions, including the influence of temperature, pH, incubation time and mycotoxin and essential oil concentrations. The degree of ZEA reduction was determined by HPLC method. It was found that the kind of essential oil influences the effectiveness of toxin level reduction, the highest being observed for lemon, grapefruit, eucalyptus and palmarosa oils, while lavender, thymic and rosemary oils did not degrade the toxin. In addition, the decrease in ZEA content was temperature, pH as well as toxin and essential oil concentration dependent. Generally, higher reduction was observed at higher temperature in a wide range of pH, with clear evidence that the degradation rate increased gradually with time. In some combinations (e.g., palmarosa oil at pH 6 and 4 or 20°C) a toxin degradation rate higher than 99% was observed. It was concluded that some of the tested essential oils may be effective in detoxification of ZEA. We suggested that essential oils should be recognized as an interesting and effective means of ZEA decontamination and/or detoxification. PMID:27563298

  17. Short-term effects of increased temperature and lowered pH on a temperate grazer-seaweed interaction (Littorina obtusata/Ascophyllum nodosum)

    NASA Astrophysics Data System (ADS)

    Cardoso, Patricia G.; Grilo, Tiago F.; Dionísio, Gisela; Aurélio, Maria; Lopes, Ana R.; Pereira, Ricardo; Pacheco, Mário; Rosa, Rui

    2017-10-01

    There has been a significant increase in the literature regarding the effects of warming and acidification on the marine ecosystem. To our knowledge, there is very little information on the potential effects of both combined stressors on marine grazer-seaweed interactions. Here, we evaluated, for the first time several phenotypic responses (e.g periwinkle survival, condition index, consumption rates, seaweed photosynthetic activity and oxidative stress) of the temperate periwinkle Littorina obtusata (grazer) and the brown seaweed Ascophyllum nodosum (prey) to such climate change-related variables, for 15 days. Increased temperature (22 °C, pH 8.0) elicited a significant lethal effect on the periwinkle within a short-term period (mortality rate > 90%). Acidification condition (18 °C, pH 7.6) was the one that showed lower mortality rates (≈20%), reflected by lower impact on periwinkle fitness and consumption rates. Under a scenario of increased temperature and lowered pH the antioxidant defences of L. obtusata seemed to be supressed increasing the risk of peroxidative damage. The seaweed evidenced signs of cellular damage under such conditions. These results suggest that: i) lower pH per se seems to benefit the interaction between grazer and seaweed while, ii) a combined scenario of increased temperature and lowered pH may be negative for the interaction, due to the unbalance between periwinkle mortality rates and consumption rates. But most importantly, since grazing often plays an important role on structuring natural communities, such predator-prey disturbances can elicit cascading effects on the remaining community structure and functioning of the temperate rocky-shore ecosystems.

  18. Optimization of Processing Parameters for Extraction of Amylase Enzyme from Dragon (Hylocereus polyrhizus) Peel Using Response Surface Methodology

    PubMed Central

    Abdul Manap, Mohd Yazid; Zohdi, Norkhanani

    2014-01-01

    The main goal of this study was to investigate the effect of extraction conditions on the enzymatic properties of thermoacidic amylase enzyme derived from dragon peel. The studied extraction variables were the buffer-to-sample (B/S) ratio (1 : 2 to 1 : 6, w/w), temperature (−18°C to 25°), mixing time (60 to 180 seconds), and the pH of the buffer (2.0 to 8.0). The results indicate that the enzyme extraction conditions exhibited the least significant (P < 0.05) effect on temperature stability. Conversely, the extraction conditions had the most significant (P < 0.05) effect on the specific activity and pH stability. The results also reveal that the main effect of the B/S ratio, followed by its interaction with the pH of the buffer, was significant (P < 0.05) among most of the response variables studied. The optimum extraction condition caused the amylase to achieve high enzyme activity (648.4 U), specific activity (14.2 U/mg), temperature stability (88.4%), pH stability (85.2%), surfactant agent stability (87.2%), and storage stability (90.3%). PMID:25050403

  19. Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production.

    PubMed

    Mussatto, Solange I; Roberto, Inês C

    2004-01-01

    Rice straw was hydrolyzed into a mixture of sugars using diluted H(2)SO(4). During hydrolysis, a variety of inhibitors was also produced, including acetic acid, furfural, hydroxymethylfurfural, and lignin degradation products (several aromatic and phenolic compounds). To reduce the toxic compounds concentration in the hydrolyzate and to improve the xylitol yield and volumetric productivity, rice straw hemicellulosic hydrolyzate was treated with activated charcoal under different pH values, stirring rates, contact times, and temperatures, employing a 2(4) full-factorial design. Fermentative assays were conducted with treated hydrolyzates containing 90 g/L xylose. The results indicated that temperature, pH, and stirring rate strongly influenced the hydrolyzate treatment, temperature and pH interfering with all of the responses analyzed (removal of color and lignin degradation products, xylitol yield factor, and volumetric productivity). The combination of pH 2.0, 150 rpm, 45 degrees C, and 60 min was considered an optimal condition, providing significant removal rates of color (48.9%) and lignin degradation products (25.8%), as well as a xylitol production of 66 g/L, a volumetric productivity of 0.57 g/L.h, and a yield factor of 0.72 g/g.

  20. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water.

    PubMed

    Jia, Aiyin; Wu, Chunde; Duan, Yan

    2016-05-05

    This study investigated the precursors and factors affecting formation of haloacetonitriles (HANs) and chloropicrin (TCNM) during chlorination/chloramination of eight amino acids in the effluent water of V-type clarifying filtration from a drinking water treatment plant. The yields of trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN) and TCNM were higher during chlorination than during chloramination. Tyrosine and tryptophan produced the greatest amount of DCAN and also generated a small amount of TCAN during chlorination process. Besides, the yields of DCAN were higher than TCNM during chlorination/chloramination. Contact time, Cl2:org-N molar ratios, pH, temperature and bromide ion affected nitrogenous disinfection by-products (N-DBPs) formation during chlorination of tryptophan in different degrees. TCAN, DCAN and TCNM formation showed the increasing and then decreasing with prolonged contact time. Higher Cl2:org-N molar ratios improved N-DBPs formation within a certain range. The pH affected N-DBPs formation differently. HANs increased with increasing pH from 5 to 6 and decreased with increasing pH from 6 to 9, while TCNM increased with increasing pH from 5 to 9. Higher temperatures enhanced TCNM formation, but reduced the formation of TCAN and DCAN. The presence of bromide ions improved the yields of HANs and TCNM and shifted N-DBPs to more brominated ones. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Porous silicon powder as an adsorbent of heavy metal (nickel)

    NASA Astrophysics Data System (ADS)

    Nabil, Marwa; Motaweh, Hussien A.

    2018-04-01

    New and inexpensive nanoporous silicon (NPS) powder was prepared by alkali chemical etching using sonication technique and was subsequently investigated as an adsorbent in batch systems for the adsorption Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the NPS powder were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and contact time. The results indicated that the maximum adsorption capacity and the maximum removal percent of Ni(II) reached 2665.33 mg/g and 82.6%, respectively, at an initial Ni(II) concentration of 100 mg/L, adsorption time of 30 min and no effect of the solution pH and adsorption temperature.

  2. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates

    NASA Astrophysics Data System (ADS)

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-05-01

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02341j

  3. Co and Fe-catalysts supported on sepiolite: effects of preparation conditions on their catalytic behaviors in high temperature gas flow treatment of dye.

    PubMed

    Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan

    2016-08-01

    An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.

  4. Empirical algorithms to estimate water column pH in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R.

    2016-04-01

    Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN) and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH on weekly resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.

  5. A laboratory scale study on arsenic(V) removal from aqueous medium using calcined bauxite ore.

    PubMed

    Mohapatra, Debasish; Mishra, Debaraj; Park, Kyung Ho

    2008-01-01

    The present work deals with the As(V) removal from an aqueous medium by calcined refractory grade bauxite (CRB) as a function of solution pH, time, As(V) concentration and temperature. The residual As(V) was lowered from 2 mg/L to below 0.01 mg/L in the optimum pH range 4.0-7.0 using a 5 g/L CRB within 3 h contact time. The adsorption data fits well with Langmuir isotherm and yielded Langmuir monolayer capacity of 1.78 mg As(V)/g of CRB at pH 7.0. Presence of anions such as silicate and phosphate decreased As(V) adsorption efficiency. An increase temperature resulted a decrease in the amount of As(V) adsorbed by 6%. The continuous fixed bed column study showed that at the adsorbent bed depth of 30 cm and residence time of 168 min, the CRB was capable of treating 340 bed volumes of As(V) spiked water (C0 = 2 mg/L) before breakthrough (Ce = 0.01 mg/L). This solid adsorbent, although not reusable, can be considered for design of adsorption columns as an efficiency arsenic adsorption media.

  6. Optimization of enzymatic hydrolysis of guar gum using response surface methodology.

    PubMed

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2014-08-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.

  7. Liquid smoke characteristics from the pyrolysis of oil palm fronds

    NASA Astrophysics Data System (ADS)

    Maulina, S.; Silia, F.

    2018-02-01

    This study was conducted as means to characterize the pyrolysis of oil palm fronds into more economical products. In particular, this study was focused on pyrolysis of oil palm fronds, which could generate products such as liquid smoke, tar and char. Four characteristics of liquid smoke were examined in this study, namely the yield of liquid smoke, phenolic content, total acid content and pH. These characteristics were examined in a temperature of 150 °C, 200 °C and 250 °C with processing time of 60 minutes, 90 minutes and 120 minutes. This study revealed that the highest yield of liquid smoke was equal to 43.47% at a temperature of 150 °C for approximately 2 hours, while the highest level of phenolic was obtained at a temperature of 250 °C for approximately 1 hour. Moreover, the highest total acid content obtained was 11.23% at a temperature of 150 °C with a time of 1 hour. In addition, all operating conditions has produced liquid smoke with an average pH value of 3.

  8. Optimization of ultrasound-assisted extraction of pectinase enzyme from guava (Psidium guajava) peel: Enzyme recovery, specific activity, temperature, and storage stability.

    PubMed

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul

    2016-01-01

    This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.

  9. Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol.

    PubMed

    Darwin; Charles, Wipa; Cord-Ruwisch, Ralf

    2018-05-03

    Anaerobic acidification of sugars can produce some useful end-products such as alcohol, volatile fatty acids (e.g. acetate, propionate, and butyrate) and lactic acid. The production of end-products is highly dependent on factors including pH, temperature, hydraulic retention time and the types of sugar being fermented. Results of this current study indicate that the pH and hydraulic retention time played significant roles in determining the end products from the anaerobic acidification of maltose and glucose. Under uncontrolled pH, the anaerobic acidification of maltose ceased when pH in the reactor dropped below 5 while anaerobic acidification of glucose continued and produced ethanol as the main end-product. Under controlled pH, lactic acid was found to be the dominant end-product produced from both maltose and glucose at pH 5. Acetate was the main end-product from both maltose and glucose fermented at neutral pH (6 and 7). Short hydraulic retention time (HRT) of 2 days could induce the production of ethanol from the anaerobic acidification of glucose. However, the anaerobic acidification of maltose could stop when short HRT of 2 days was applied in the reactor. This finding is significant for industrial fermentation and waste management systems, and selective production of different types of organic acids could be achieved by managing pH and HRT in the reactor.

  10. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates.

    PubMed

    Wu, Yun-Tse; Shanmugam, Chandirasekar; Tseng, Wei-Bin; Hiseh, Ming-Mu; Tseng, Wei-Lung

    2016-06-07

    Metal nanocluster-based nanomaterials for the simultaneous determination of temperature and pH variations in micro-environments are still a challenge. In this study, we develop a dual-emission fluorescent probe consisting of bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs) and fluorescein-5-isothiocyanate (FITC) as temperature- and pH-responsive fluorescence signals. Under single wavelength excitation the FITC/BSA-AuNCs exhibited well-separated dual emission bands at 525 and 670 nm. When FITC was used as a reference fluorophore, FITC/BSA-AuNCs showed a good linear response over the temperature range 1-71 °C and offered temperature-independent spectral shifts, temperature accuracy, activation energy, and reusability. The possible mechanism for high temperature-induced fluorescence quenching of FITC/BSA-AuNCs could be attributed to a weakening of the Au-S bond, thereby lowering the charge transfer from BSA to AuNCs. Additionally, the pH- and temperature-responsive properties of FITC/BSA-AuNCs allow simultaneous temperature sensing from 21 to 41 °C (at intervals of 5 °C) and pH from 6.0 to 8.0 (at intervals of 0.5 pH unit), facilitating the construction of two-input AND logic gates. Three-input AND logic gates were also designed using temperature, pH, and trypsin as inputs. The practicality of using FITC/BSA-AuNCs to determine the temperature and pH changes in HeLa cells is also validated.

  11. Live Cells as Dynamic Laboratories: Time Lapse Raman Spectral Microscopy of Nanoparticles with Both IgE Targeting and pH-Sensing Functions

    DOE PAGES

    Nowak-Lovato, Kristy L.; Rector, Kirk D.

    2012-01-01

    Tmore » his review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors) that have both sensing and targeting functions. he addition of 2,4-ε-dinitrophenol-L-lysine (DNP) as a FcεRI targeting ligand and 4-mercaptopyridine (4-MPy) as a pH-sensing ligand enables spatial and temporal monitoring of FcεRI receptors and their pH environment within the endocytic pathway. o ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [ H + ] concentration with that of the cell compartments. his review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1) at physiological temperature ( 37 ° C ) versus room temperature ( 25 ° C ) , (2) after pharmacological treatment with bafilomycin, an H + APase pump inhibitor, or amiloride, an inhibitor of Na + / H + exchange, and (3) in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. he versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design.« less

  12. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    USGS Publications Warehouse

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  13. Inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 toward L. monocytogenes, S. thypimurium and E. coli

    NASA Astrophysics Data System (ADS)

    Marwati, T.; Cahyaningrum, N.; Widodo, S.; Januarsyah, T.; Purwoko

    2018-01-01

    Bacteriocin is a protein compound which has bactericidal ability against pathogen bacteria. This research aims to study the inhibitory activity of bacteriocin produced from Lactobacillus SCG 1223 against Listeria monocytogenes, Salmonella thypimuruim and Escherchia coli. The bacteriocin produce from Lactobacillus SCG 1223 in the MRS broth media The experimental design used was Completely Randomized Design. The variations used in this design were percentage of inoculum (5%, 10%), medium pH (4, 6), incubation temperature (27°C, 40°C), and incubation time (4, 10, 14 hours). Result showed that bacteriocin from Lactobacillus SCG 1223 had wide spectrum toward L. monocytogenes, S. thypimuruim and E. coli. The highest bacteriocin activity toward L. monocytogenes produced by Lactobacillus SCG 1223 with 10% inoculum in media with initial pH 6, incubation temperature 27°C for 14 hour, toward S. thypimurium produced by Lactobacillus SCG 1223 with in media with initial pH 6, incubation temperature 40°C for 14 hour, and toward E. coli was 1085.81 AU/ml, produced by Lactobacillus SCG 1223 in MRS broth with initial pH 4, incubation temperature 40°C for 14 hour. This study is expected to find a new food preservative that can inhibit the growth of pathogenic bacteria and extend the shelf life of food. From the economic prospective of view, bacteriocin is very promising natural alternative biopreservatives.

  14. Cold intermittent cardioplegia reduces the acidosis during prolonged cardiac surgery with cardiopulmonary bypass.

    PubMed

    Nollo, Giandomenico; Ferrari, Paolo; Graffigna, Angelo C

    2011-01-01

    The effect on acid-base balance efficacy of intermittent warm and cold blood cardioplegia (IWBC, ICBC) was assessed in 44 patients who underwent cardiac surgery with prolonged aortic cross clamping. With this purpose a customized multi sensor probe was inserted in the coronary sinus, and pH, PO(2), PCO(2) and temperature were continuously measured at 1 Hz sampling rate. The mean cross-clamping time was of 76 ± 26 min on 19 IWBC cases and of 80 ± 24 min on 14 ICBC cases. With IWBC perfusion, at the end of every ischemic period, the lowest pH and PO(2) progressively decreased and the maximal PCO(2) increased. During ICBC the minimum of pH and PO(2) and maximum of PCO2 at the end of different ischemic period during time were constant, also during long cross-clamping time. With IWBC, myocardial ischemia seemed not completely reversed by standardized reperfusions, as reflected by steady deterioration of PCO(2) and pH after each reperfusion.

  15. Aspects of the "Design Space" in high pressure liquid chromatography method development.

    PubMed

    Molnár, I; Rieger, H-J; Monks, K E

    2010-05-07

    The present paper describes a multifactorial optimization of 4 critical HPLC method parameters, i.e. gradient time (t(G)), temperature (T), pH and ternary composition (B(1):B(2)) based on 36 experiments. The effect of these experimental variables on critical resolution and selectivity was carried out in such a way as to systematically vary all four factors simultaneously. The basic element is a gradient time-temperature (t(G)-T) plane, which is repeated at three different pH's of the eluent A and at three different ternary compositions of eluent B between methanol and acetonitrile. The so-defined volume enables the investigation of the critical resolution for a part of the Design Space of a given sample. Further improvement of the analysis time, with conservation of the previously optimized selectivity, was possible by reducing the gradient time and increasing the flow rate. Multidimensional robust regions were successfully defined and graphically depicted. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. One-step synthesis of highly dispersed gold nanocrystals on silica spheres.

    PubMed

    Phonthammachai, Nopphawan; White, Timothy J

    2007-11-06

    Highly dispersed gold nanocrystals decorating silica spheres were prepared from HAuCl4 and NaOH via a deposition-precipitation (DP) process, in which the isoelectric point (IEP) of the substrate was adjusted during sphere synthesis by interaction of the surface with ammonia molecules. Through the systematic variation of pH (4-8), reaction temperature (65-96 degrees C), and time (10-30 min), a superior product with small (2-5 nm), homogeneously distributed gold crystals was obtained at pH 7 and a reaction temperature of 96 degrees C. These materials will offer enhanced performance as catalysts and contrast enhancers in biomedical imaging.

  17. Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film

    NASA Astrophysics Data System (ADS)

    Ozeki, K.; Aoki, H.; Masuzawa, T.

    2010-09-01

    Hydroxyapatite (HA) was coated onto titanium substrates using radio frequency sputtering, and the sputtered films were crystallized under hydrothermal conditions at 110-170 °C at pH values of 7.0 and 9.5. The crystallite size, the remnant film thickness, and the surface morphology of the films were observed using X-ray diffraction, energy dispersive X-ray spectroscopy, and scanning electron microscopy, respectively. The crystallite size increased with the process temperature, and reached 123.6 nm (pH 9.5 and 170 °C) after 24 h. All of the crystallite sizes of the film treated at pH 9.5 were higher than those treated at pH 7.0 at each process temperature. The film treated at pH 9.5 retained more than 90% of the initial film thickness at any process temperature. The ratio of the film treated at pH 7.0 did not reached 90% at less than 150 °C, and tended to increase with the process temperature.

  18. Daytime Changes of Skin Biophysical Characteristics: A Study of Hydration, Transepidermal Water Loss, pH, Sebum, Elasticity, Erythema, and Color Index on Middle Eastern Skin.

    PubMed

    Firooz, Alireza; Zartab, Hamed; Sadr, Bardia; Bagherpour, Leili Naraghi; Masoudi, Aidin; Fanian, Ferial; Dowlati, Yahya; Ehsani, Amir Hooshang; Samadi, Aniseh

    2016-01-01

    The exposure of skin to ultraviolet radiation and temperature differs significantly during the day. It is reasonable that biophysical parameters of human skin have periodic daily fluctuation. The objective of this study was to study the fluctuations of various biophysical characteristics of Middle Eastern skin in standardized experimental conditions. Seven biophysical parameters of skin including stratum corneum hydration, transepidermal water loss, pH, sebum, elasticity, skin color, and erythema index were measured at three time points (8 a.m., 12 p.m. and 4 p.m.) on the forearm of 12 healthy participants (mean age of 28.4 years) without any ongoing skin disease using the CK MPA 580 device in standard temperature and humidity conditions. A significant difference was observed between means of skin color index at 8 a.m. (175.42 ± 13.92) and 4 p.m. (164.44 ± 13.72, P = 0.025), between the pH at 8 a.m. (5.72 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001) and pH at 12 p.m. (5.60 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001). Other comparisons between the means of these parameters at different time points resulted in nonsignificant P values. There are daytime changes in skin color index and pH. Skin color index might be higher and cutaneous pH more basic in the early morning compared to later of the day.

  19. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2012-04-01

    Optimization of acid-catalyzed conversion conditions of wheat straw into furfural, 5-hydroxymethylfurfural (HMF), glucose, and xylose was studied by response surface methodology (RSM). A central composite design (CCD) was used to determine the effects of independent variables, including reaction temperature (140-200 °C), residence time (1-41 min), pH (0.1-2.1), and liquid:solid ratio (15-195 mL/g) on furan and sugar production. The surface response analysis revealed that temperature, time and pH had a strong influence on the furfural, HMF, xylose and glucose yield, whereas liquid to solid ratio was found not to be significant. The initial pH of solution was the most important variable in acid-catalyzed conversion of wheat straw to furans. The maximum predicted furfural, HMF, xylose and glucose yields were 66%, 3.4%, 100%, and 65%, respectively. This study demonstrated that the microwave-assisted process was a very effective method for the xylose production from wheat straw by diluted acid catalysis. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Optimization of the SPME parameters and its online coupling with HPLC for the analysis of tricyclic antidepressants in plasma samples.

    PubMed

    Alves, Claudete; Fernandes, Christian; Dos Santos Neto, Alvaro José; Rodrigues, José Carlos; Costa Queiroz, Maria Eugênia; Lanças, Fernando Mauro

    2006-07-01

    Solid-phase microextraction (SPME)-liquid chromatography (LC) is used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. Extraction conditions are optimized using a 2(3) factorial design plus a central point to evaluate the influence of the time, temperature, and matrix pH. A Polydimethylsiloxane-divinylbenzene (60-mum film thickness) fiber is selected after the assessment of different types of coating. The chromatographic separation is realized using a C(18) column (150 x 4.6 mm, 5-microm particles), ammonium acetate buffer (0.05 mol/L, pH 5.50)-acetonitrile (55:45 v/v) with 0.1% of triethylamine as mobile phase and UV-vis detection at 214 nm. Among the factorial design conditions evaluated, the best results are obtained at a pH 11.0, temperature of 30 degrees C, and extraction time of 45 min. The proposed method, using a lab-made SPME-LC interface, allowed the determination of tricyclic antidepressants in in plasma at therapeutic concentration levels.

  1. Screening and optimization of pectin lyase and polygalacturonase activity from ginseng pathogen Cylindrocarpon Destructans

    PubMed Central

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Ho-Bin; Subramaniyam, Sathiyamoorthy; Lee, Ok Ran; Kim, Yeon-Ju; Yang, Deok Chun

    2011-01-01

    Cylindrocarpon destructans isolated from ginseng field was found to produce pectinolytic enzymes. A Taguchi’s orthogonal array experimental design was applied to optimize the preliminary production of polygalacturonase (PG) and pectin lyase (PL) using submerged culture condition. This method was applied to evaluate the significant parameters for the production of enzymes. The process variables were pH, pectin concentration, incubation time and temperature. Optimization of process parameters resulted in high levels of enzyme (PG and PL) production after ten days of incubation at a pH of 5.0 at 25°C in the presence of 1.5% pectin. Among different nitrogen sources, urea and peptone showed high production of PG and PL, respectively. The enzyme production and mycelial growth seems to have direct influence on the culture conditions; therefore, at stationary state high enzyme production and mycelial growth were obtained than agitation state. Along with this, optimization of enzyme activity was also determined using various physiological parameters like, temperature, incubation time and pH. Taguchi’s data was also analyzed using one step ANOVA statistical method. PMID:24031695

  2. Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values.

    PubMed

    Hong, Huachang; Yan, Xiaoqing; Song, Xuhui; Qin, Yanyan; Sun, Hongjie; Lin, Hongjun; Chen, Jianrong; Liang, Yan

    2017-07-15

    The main objective of this study was to assess the effects of disinfection conditions on bromine incorporation into disinfection by-products (DBPs) during chlorination of water with low specific UV absorbance (SUVA). Five classes of DBPs were included: trihalomethanes (THMs), dihaloacetic acids (di-HAAs), trihaloacetic acids (tri-HAAs), dihaloacetonitriles (DHANs) and trihalonitromethanes (THNMs). Results showed that the bromine utilization in DBPs formation was positive related with reaction time, pH and temperature. On the other hand, the bromine substitution factors (BSFs) of DBPs were generally increased with pH (except tri-HAAs) and bromide concentration, but decreased with the reaction time, temperature and chlorine dose. Moreover, the BSFs values varied with DBP classes with the ranking being as following: THNMs≫DHANs≫tri-HAAs>THM≈di-HAAs. These results were mostly similar with the references, yet the pH effect on BSFs as well as the rank of BSFs for different DBP classes may differ with the specific UV absorbance of organic matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Facile synthesis of magnetic Fe3O4/graphene composites for enhanced U(VI) sorption

    NASA Astrophysics Data System (ADS)

    Zhao, Donglin; Zhu, Hongyu; Wu, Changnian; Feng, Shaojie; Alsaedi, Ahmed; Hayat, Tasawar; Chen, Changlun

    2018-06-01

    A novel magnetic Fe3O4/graphene composite (FGC) was fabricated by a facile one-step reaction route and shown to be effective for sorbing U(VI) from aqueous solution. The structure, properties and application of the prepared FGC composite were well evaluated. The high saturation magnetization (45.6 emu/g) made FGC easier to be separated from the media within several seconds under an external magnetic. Effects of different ambient conditions (i.e., pH and ionic strength, contact time, temperatures) on sorption behaviors of U(VI) on FGC were carried out by batch experiments. According to the calculation of Langmuir model, the maximum sorption capacity of U(VI) on the FGC at pH 5.5 and 298 K was 176.47 mg/g. The sorption was correlated with the effects of pH, contact time, and temperature. X-ray photoelectron spectroscopy analysis revealed that U(VI) was sorbed on FGC via oxygen-containing functional groups. This work demonstrated that FGC could be recycled and used as an effective recyclable sorbent for sorption of U(VI).

  4. Initial steps in defining the environment of the prepuce of the bull by measuring pH and temperature.

    PubMed

    Koziol, J H; Fraser, N S; Passler, T; Wolfe, D F

    2017-12-01

    To determine the baseline pH and temperature of the preputial cavity of bulls. We enrolled 55 bulls ranging in age from 15 to 84 months. The preputial temperature and pH were measured by insertion of temperature and pH probes, respectively, into the preputial orifice prior to routine breeding soundness examinations. Information was obtained from owners regarding the diet of each bull and categorised as one of three categories: forage only, grain supplemented or silage supplemented. The average temperature of the prepuce was 37.81°C ± 1.76 and the median pH of the prepuce was 8.45 (6.35-9.46). Preputial temperatures of the bull weakly correlated with ambient temperatures (r s  = -0.29, P = 0.028). The preputial pH of silage-fed bulls was significantly lower than that of bulls fed forage only (P = 0.025) or grain-supplemented diets (P = 0.002). The median preputial pH of bulls fed a silage-based diet was 7.6 (6.3-8.9) compared with a median pH 8.7 (7.8-9.1) for bulls fed forage-based diets or a median of 8.5 (7.7-9.4) for those given grain-supplemented diets. Diet and ambient temperature can, respectively, affect pH and the temperature in the prepuce. Further studies to describe and understand the microbiota of the prepuce and penis may assist in developing treatments for diseases of the genital tract in bulls. © 2017 Australian Veterinary Association.

  5. Pourbaix Diagrams at Elevated Temperatures A Study of Zinc and Tin

    NASA Astrophysics Data System (ADS)

    Palazhchenko, Olga

    Metals in industrial settings such as power plants are often subjected to high temperature and pressure aqueous environments, where failure to control corrosion compromises worker and environment safety. For instance, zircaloy (1.2-1.7 wt.% Sn) fuel rods are exposed to aqueous 250-310 °C coolant in CANDU reactors. The Pourbaix (EH-pH) diagram is a plot of electrochemical potential versus pH, which shows the domains of various metal species and by inference, corrosion susceptibility. Elevated temperature data for tin +II and tin +IV species were obtained using solid-aqueous phase equilibria with the respective oxides, in a batch vessel with in-situ pH measurement. Solubilities, determined via spectroscopic techniques, were used to calculate equilibrium constants and the Gibbs energies of Sn complexes for E-pH diagram construction. The SnOH3+ and Sn(OH )-5 species were incorporated, for the first time, into the 298.15 K and 358.15 K diagrams, with novel Go values determined at 358.15 K. Key words: Pourbaix diagrams, EH-pH, elevated temperatures, solubility, equilibrium, metal oxides, hydrolysis, redox potential, pH, thermochemical data, tin, zinc, zircaloy, corrosion, passivity.

  6. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species.

    PubMed

    Zheng, Songyan; Qiu, Difei; Adams, Monica; Li, Jinjiang; Mantri, Rao V; Gandhi, Rajesh

    2017-01-01

    This study aimed in understanding the degradation behaviors of an IgG 1 subtype therapeutic monoclonal antibody A (mAb-A) associated with pH and buffer species. The information obtained in this study can augment conventional, stability-based screening paradigms by providing the direction necessary for efficient experimental design. Differential scanning calorimetry (DSC) was used for studying conformational stability. Dynamic light scattering (DLS) was utilized to generate B 22 *, a modified second virial coefficient for the character of protein-protein interaction. Size-exclusion chromatography (SEC) and hydrophobic interaction chromatography (HIC) were employed to separate degradation products. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for determining the molecular size and liquid chromatography mass spectrometry (LC-MS) were used for identifying the sequence of the separated fragments. The results showed that both pH and buffer species played the roles in controlling the degradation behaviors of mAb-A, but the pH was more significant. In particular, pH 4.5 induced additional thermal transition peaks occurring at a low temperature compared with pH 6.5. A continual temperature-stress study illustrated that the additional thermal transition peaks related to the least stable structure and a greater fragmentation. Although mAb-A showed the comparable conformational structures and an identical amount of aggregates at time zero between the different types of buffer species at pH 6.5, the aggregation formation rate showed a buffer species-dependent discrepancy over a temperature-stress period. It was found that the levels of aggregations associated with the magnitudes of protein-protein interaction forces.

  7. Ultrasound assisted extraction of pectin from waste Artocarpus heterophyllus fruit peel.

    PubMed

    Moorthy, I Ganesh; Maran, J Prakash; Ilakya, S; Anitha, S L; Sabarima, S Pooja; Priya, B

    2017-01-01

    Four factors three level face centered central composite response surface design was employed in this study to investigate and optimize the effect of process variables (liquid-solid (LS) ratio (10:1-20:1ml/g), pH (1-2), sonication time (15-30min) and extraction temperature (50-70°C)) on the maximum extraction yield of pectin from waste Artocarpus heterophyllus (Jackfruit) peel by ultrasound assisted extraction method. Numerical optimization method was adapted in this study and the following optimal condition was obtained as follows: Liquid-solid ratio of 15:1ml/g, pH of 1.6, sonication time of 24min and temperature of 60°C. The optimal condition was validated through experiments and the observed value was interrelated with predicted value. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-01

    It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Quantifying the spoilage and shelf-life of yoghurt with fruits.

    PubMed

    Mataragas, M; Dimitriou, V; Skandamis, P N; Drosinos, E H

    2011-05-01

    The aim of the present study was to develop a predictive model to quantify the spoilage of yoghurt with fruits. Product samples were stored at various temperatures (5-20 °C). Samples were subjected to microbiological (total viable counts, lactic acid bacteria-LAB, yeasts and moulds) and physico-chemical analysis (pH, titratable acidity and sugars). LAB was the dominant micro-flora. Yeasts population increased at all temperatures but a delay was observed during the first days of storage. Titratable acidity and pH remained almost constant at low temperatures (5 and 10 °C). However, at higher temperatures (>10 °C), an increase in titratable acidity and reduction in pH was observed. Sugar concentration (fructose, lactose and glucose) decreased during storage. A mathematical model was developed for shelf-life determination of the product. It was successfully validated at a temperature (17 °C) not used during model development. The results showed that shelf-life of this product could not be established based only on microbiological data and use of other parameters such as sensory or/and physico-chemical analysis is required. Shelf-life determination by spoilage tests is time-consuming and the need for new rapid techniques has been raised. The developed model could help dairy industries to establish shelf-life predictions on yoghurt with fruits stored under constant temperature conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 282 000 years

    NASA Astrophysics Data System (ADS)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.

    2014-03-01

    We generated a 282 000-year record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on the orbital timescale. Because water pH in Lake Biwa is determined by phosphorus input driven by precipitation, the record of water pH should indicate changes in summer precipitation in central Japan. The estimated pH showed significant periodicity at 19 and 23 ka (precession) and at 41 ka (obliquity). The variation in the estimated pH agrees with variation in the pollen temperature index. This indicates synchronous variation in summer air temperature and precipitation in central Japan, which contradicts the conclusions of previous studies. The variation in estimated pH was also synchronous with the variation of oxygen isotopes in stalagmites in China, suggesting that East Asian summer monsoon precipitation was governed by Northern Hemisphere summer insolation on orbital timescales. However, the estimated winter temperatures were higher during interglacials and lower during glacials, showing an eccentricity cycle. This suggests that the temperature variation reflected winter monsoon variability.

  11. Stability of Hydrocortisone Preservative-Free Oral Solutions.

    PubMed

    Chappe, Julie; Osman, Névine; Cisternino, Salvatore; Fontan, Jean-Eudes; Schlatter, Joël

    2015-01-01

    The physical and chemical stability of a preservative-free oral solution of hydrocortisone succinate was studied at different pH values and storage temperatures. Oral solutions of hydrocortisone 1 mg/mL were prepared by dissolving hydrocortisone succinate powder in citrate buffers at pH 4.0, 5.5, and 6.5, or with sterile water (pH 7.4) stored in amber glass vials. Three identical samples of the formulations were prepared and stored under refrigeration (3-7°C), ambient temperature (20-22°C) and high temperature (29-31°C). A 200-μL sample was withdrawn from each of the 3 samples immediately after preparation and at 1, 7, 14, 21, and 35 days. Samples were assayed in duplicate using stability-indicating liquid chromatography. Stability was determined by evaluating the percentage of the initial concentration remaining at each time point; stability was defined as the retention of at least 90% of the initial concentration of hydrocortisone succinate. At least 92% of the initial hydrocortisone succinate concentration in solutions pH 5.5, 6.5, and 7.4 remained throughout the 14-day study period under refrigeration. There were no detectable changes in color, odor, or pH and no visible microbial growth in these samples. In other storage conditions, hydrocortisone succinate was rapidly degraded. The hydrocortisone succinate preservative-free oral solutions at pH 5.5, 6.5, or 7.4 are chemically stable when stored under refrigeration for at least 14 days. They provide flexible and convenient dosage forms without any preservatives for pediatric patients.

  12. Effect of the inducers veratryl alcohol, Xylidine, and ligninosulphonates on activity and thermal stability and inactivation kinetics of laccase from Trametes versicolor.

    PubMed

    Saraiva, Jorge A; Tavares, Ana P M; Xavier, Ana M R B

    2012-06-01

    Laccase production from Trametes versicolor was improved in the presence of the inducers ligninosulphonates, veratryl alcohol, and xylidine respectively two-, four-, and eightfold. The thermal inactivation of the produced laccase, after partial purification with ammonium sulfate was kinetically investigated at various temperatures (60-70 °C) and pH values (3.5, 4.5, and 5.5). The inactivation process followed first-order kinetics for all conditions tested, except for veratryl alcohol, for which a constant activity level was observed at the end of the inactivation, also after first-order decay. Enzyme thermostability was affected by the type of inducer used in the culture medium for the production of laccase and also by the pH of incubation mixture. Generally, laccase stability increased with pH increment, being more stable at pH 5.5, except with xylidine. At pHs 4.5 and 5.5, the three inducers significantly increased laccase thermal stability, with the higher effect being observed for pH 5.5 and ligninosulphonates, where increment of half-life times ranged from 3- to 20-fold, depending on the temperature.

  13. Factors affecting the protease activity of venom from jellyfish Rhopilema esculentum Kishinouye.

    PubMed

    Li, Cuiping; Yu, Huahua; Liu, Song; Xing, Ronge; Guo, Zhanyong; Li, Pengcheng

    2005-12-15

    In this paper, the effects of some chemical and physical factors such as temperature, pH values, glycerol, and divalent metal cations on the protease activity of venom from jellyfish, Rhopilema esculentum Kishinouye, were assayed. Protease activity was dependent on temperature and pH values. Zn(2+), Mg(2+), and Mn(2+) in sodium phosphate buffer (0.02M, pH 8.0) could increase protease activity. Mn(2+) had the best effects among the three metal cations and the effect was about 20 times of that of Zn(2+) or Mg(2+) and its maximal protease activity was 2.3x10(5)U/mL. EDTA could increase protease activity. PMSF had hardly affected protease activity. O-Phenanthroline and glycerol played an important part in inhibiting protease activity and their maximal inhibiting rates were 87.5% and 82.1%, respectively.

  14. Structural Studies of MS2 Bacteriophage Virus Particle Disassembly by Nuclear Magnetic Resonance Relaxation Measurements

    PubMed Central

    Anobom, C. D.; Albuquerque, S. C.; Albernaz, F. P.; Oliveira, A. C.; Silva, J. L.; Peabody, D. S.; Valente, A. P.; Almeida, F. C. L.

    2003-01-01

    In this article we studied, by nuclear magnetic resonance relaxation measurements, the disassembly of a virus particle—the MS2 bacteriophage. MS2 is one of the single-stranded RNA bacteriophages that infect Escherichia coli. At pH 4.5, the phage turns to a metastable state, as is indicated by an increase in the observed nuclear magnetic resonance signal intensity upon decreasing the pH from 7.0 to 4.5. Steady-state fluorescence and circular dichroism spectra at pH 4.5 show that the difference in conformation and secondary structure is not pronounced if compared with the phage at pH 7.0. At pH 4.5, two-dimensional 15N-1H heteronuclear multiple quantum coherence (HMQC) spectrum shows ∼40 crosspeaks, corresponding to the most mobile residues of MS2 coat protein at pH 4.5. The 15N linewidth is ∼30 Hz, which is consistent with an intermediate with a rotational relaxation time of 100 ns. The average spin lattice relaxation time (T1) of the mobile residues was measured at different temperatures, clearly distinguishing between the dimer and the equilibrium intermediate. The results show, for the first time, the presence of intermediates in the process of dissociation of the MS2 bacteriophage. PMID:12770895

  15. Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in-situ potentiometry and Raman spectroscopy up to 280 °C and 150 bar

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean

    2016-03-01

    The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.

  16. Activation of Phosphorylase Kinase by Physiological Temperature.

    PubMed

    Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M

    2015-12-29

    In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.

  17. Fast start-up of the CANON process with a SABF and the effects of pH and temperature on nitrogen removal and microbial activity.

    PubMed

    Yue, Xiu; Yu, Guangping; Liu, Zhuhan; Tang, Jiali; Liu, Jian

    2018-04-01

    The long start-up time of the completely autotrophic nitrogen removal over nitrite (CANON) process is one of the main disadvantages of this system. In this paper, the CANON process with a submerged aerated biological filter (SABF) was rapidly started up within 26 days. It gave an average ammonium nitrogen removal rate (ANR) and a total nitrogen removal rate (TNR) of 94.2% and 81.3%, respectively. The phyla Proteobacteria and Planctomycetes were confirmed as the ammonia oxidizing bacteria (AOB) and anaerobic ammonium oxidation bacteria (AnAOB). The genus Candidatus Brocadia was the major contributor of nitrogen removal. pH and temperature affect the performance of the CANON process. This experimental results showed that the optimum pH and temperature were 8.0 and 30 °C, respectively, which gave the highest average ANR and TNR values of 94.6% and 85.1%, respectively. This research could promote the nitrogen removal ability of CANON process in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Distribution and interactions of pentachlorophenol in soils: The roles of soil iron oxides and organic matter.

    PubMed

    Diagboya, Paul N; Olu-Owolabi, Bamidele I; Adebowale, Kayode O

    2016-08-01

    Soil iron oxides (IOs) and organic matter (OM) play varying roles in pentachlorophenol (PCP) retention and mobility, but the extent and mechanism are still unknown. Therefore, in order to have a better understanding of the adsorption of PCP on soils, batch sorption studies were carried out on whole soils and soils selectively treated to remove IOs (IOR) and OM (OMR). The effects of pH, time, and temperature were investigated. Results showed that PCP sorption was temperature and pH dependent; sorption decreased as both temperature and pH increased. Sorption was partly surface adsorption and partly partitioning within voids of IOs components as revealed by the kinetics models. The surface adsorption was multi-layer in nature. Equilibria were faster in the IOR soils than the untreated and OMR soils. IOs played greater roles in PCP sorption than OM. Removal of soil components, especially the IOs, as experienced in soils plagued by soil erosion, may lead to increased risks of PCP pollution of environmental media especially the aquifer. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Distribution and interactions of pentachlorophenol in soils: The roles of soil iron oxides and organic matter

    NASA Astrophysics Data System (ADS)

    Diagboya, Paul N.; Olu-Owolabi, Bamidele I.; Adebowale, Kayode O.

    2016-08-01

    Soil iron oxides (IOs) and organic matter (OM) play varying roles in pentachlorophenol (PCP) retention and mobility, but the extent and mechanism are still unknown. Therefore, in order to have a better understanding of the adsorption of PCP on soils, batch sorption studies were carried out on whole soils and soils selectively treated to remove IOs (IOR) and OM (OMR). The effects of pH, time, and temperature were investigated. Results showed that PCP sorption was temperature and pH dependent; sorption decreased as both temperature and pH increased. Sorption was partly surface adsorption and partly partitioning within voids of IOs components as revealed by the kinetics models. The surface adsorption was multi-layer in nature. Equilibria were faster in the IOR soils than the untreated and OMR soils. IOs played greater roles in PCP sorption than OM. Removal of soil components, especially the IOs, as experienced in soils plagued by soil erosion, may lead to increased risks of PCP pollution of environmental media especially the aquifer.

  20. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste.

    PubMed

    Atar, Necip; Olgun, Asim

    2007-07-19

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1. Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW.

  1. Acid-base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures.

    PubMed

    Catarino, Ana I; Bauwens, Mathieu; Dubois, Philippe

    2012-07-01

    In order to better understand if the metabolic responses of echinoids could be related to their acid-base status in an ocean acidification context, we studied the response of an intertidal sea urchin species, Paracentrotus lividus, submitted to low pH at two different temperatures. Individuals were submitted to control (8.0) and low pH (7.7 and 7.4) at 10°C and 16°C (19 days). The relation between the coelomic fluid acid-base status, the RNA/DNA ratio of gonads and the individual oxygen uptake were studied. The coelomic fluid pH decreased with the aquarium seawater, independently of temperature, but this explained only 13% of the pH variation. The coelomic fluid showed though a partial buffer capacity that was not related to skeleton dissolution ([Mg(2+)] and [Ca(2+)] did not differ between pH treatments). There was an interaction between temperature and pH on the oxygen uptake (V (O2)) which was increased at pH 7.7 and 7.4 at 10°C in comparison with controls, but not at 16°C, indicating an upregulation of the metabolism at low temperature and pH. However, gonad RNA/DNA ratios did not differ according to pH and temperature treatments, indicating that even if maintenance of physiological activities has an elevated metabolic cost when individuals are exposed to stress, they are not directly affected during short-term exposure. Long-term studies are needed in order to verify if gonad production/growth will be affected by low pH seawaters exposure.

  2. Continuous measurement of intra-oral pH and temperature: development, validation of an appliance and a pilot study.

    PubMed

    Choi, J E; Loke, C; Waddell, J N; Lyons, K M; Kieser, J A; Farella, M

    2015-08-01

    To describe a novel approach for continuous measurement of intra-oral pH and temperature in individuals carrying out normal daily activities over 24 h. We designed, validated and constructed a custom-made appliance fitted with a pH probe and a thermocouple. Six subjects wore the appliance over a 24-h period for two non-consecutive days, while the intra-oral pH and temperature were measured continuously and recorded. Intra-oral pH and temperature were very similar across different recording days, the difference being not statistically significant (P ≥ 0.14). There was a noticeable difference in the pattern of variation of pH between day and night. During the day, the mean pH was 7.3 (±0.4) and dropped markedly only after consumption of acidic food and drinks. The intra-oral pH decreased slowly during sleep with an average pH of 6.6 (±0.4) being recorded. The difference between day and night was statistically significant (P = 0.002). The mean intra-oral temperature was 33.9 °C (±0.9) during daytime and 35·9 °C (±0·5) during sleep (P = 0.013) with minor fluctuations occurring over 24 h. The continuous and simultaneous intra-oral pH and temperature measurement system described in this report is reliable, easy to construct, able to measure variables over a sustained period and may serve as a future diagnostic tool in a number of applications. © 2015 John Wiley & Sons Ltd.

  3. Effective Control of Bioelectricity Generation from a Microbial Fuel Cell by Logical Combinations of pH and Temperature

    PubMed Central

    Tang, Jiahuan; Liu, Ting; Yuan, Yong

    2014-01-01

    In this study, a microbial fuel cell (MFC) with switchable power release is designed, which can be logically controlled by combinations of the most physiologically important parameters such as “temperature” and “pH.” Changes in voltage output in response to temperature and pH changes were significant in which voltage output decreased sharply when temperature was lowered from 30°C to 10°C or pH was decreased from 7.0 to 5.0. The switchability of the MFC comes from the microbial anode whose activity is affected by the combined medium temperature and pH. Changes in temperature and pH cause reversible activation-inactivation of the bioanode, thus affecting the activity of the entire MFC. With temperature and pH as input signals, an AND logic operation is constructed for the MFC whose power density is controlled. The developed system has the potential to meet the requirement of power supplies producing electrical power on-demand for self-powered biosensors or biomedical devices. PMID:24741343

  4. Water pH and temperature in Lake Biwa from MBT'/CBT indices during the last 280 000 years

    NASA Astrophysics Data System (ADS)

    Ajioka, T.; Yamamoto, M.; Takemura, K.; Hayashida, A.; Kitagawa, H.

    2014-10-01

    We generated a 280 000 yr record of water pH and temperature in Lake Biwa, central Japan, by analysing the methylation index (MBT') and cyclisation ratio (CBT) of branched tetraethers in sediments from piston and borehole cores. Our aim was to understand the responses of precipitation and air temperature in central Japan to the East Asian monsoon variability on orbital timescales. Because the water pH in Lake Biwa is determined by phosphorus and alkali cation inputs, the record of water pH should indicate the changes in precipitation and temperature in central Japan. Comparison with a pollen assemblage in a Lake Biwa core suggests that lake water pH was determined by summer temperature in the low-eccentricity period before 55 ka, while it was determined by summer precipitation in the high-eccentricity period after 55 ka. From 130 to 55 ka, the variation in lake pH (summer precipitation) lagged behind that in summer temperature by several thousand years. This perspective is consistent with the conclusions of previous studies (Igarashi and Oba, 2006; Yamamoto, 2009), in that the temperature variation preceded the precipitation variation in central Japan.

  5. Application of TAED/H2O2 system for low temperature bleaching of crude cellulose extracted from jute fiber

    NASA Astrophysics Data System (ADS)

    Wen, Zuoqiang; Zou, Linbo; Wang, Weiming

    2018-03-01

    Tetraacetylethylenediamine (TAED) activated hydrogen peroxide system had been applied for bleaching of crude cellulose extracted from jute fiber. Comparing with conventional hydrogen peroxide bleaching system, those results showed that bleaching temperature and time could be effectively reduced, and a preferable whiteness could be produced under faint alkaline condition. And the optimum conditions for activated bleaching system could be summarized as molar ratio of H2O2/TAED 1:0.7, pH 8, pure hydrogen peroxide 0.09 mol/L, temperature 70 °C and time 60min.

  6. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  7. Enhanced production of polygalacturonase in solid-state fermentation: selection of the process conditions, isolation and partial characterization of the enzyme.

    PubMed

    Zaslona, Halina; Trusek-Holownia, Anna

    2015-01-01

    Polygalacturonase (PG) production by Penicillium chrysogenum during solid-state fermentation was accompanied by decomposition of orange peels. A leaching procedure was developed through the selection of solvent, time and intensity of stirring. A maximum PG activity was observed after 48 h peel inoculation. Further cultivation decreased the enzyme activity significantly, up to 60% of the maximum PG activity. During fermentation, a rapid acidification of the solid medium which inhibited the pectinolytic enzyme, was observed. Buffering agents with different pH values and different ionic strengths were examined to identify the most suitable medium to avoid this problem. Buffer addition counteracted acidification and enhanced active protein production, which was observed for all of the applied pH values (6.5-8.0) of the buffering agent. The most satisfactory results were obtained when using the highest pH at 8.0. The protein content and PG activity increased from 3.5 mg/g and 1.09 U/g to 7.7 mg/g and 7.11 U/g during cultivation, with uncontrolled and pH-controlled medium, respectively. Measurements at wide pH and temperature ranges indicated an optimum for PG activity at pH 5.0 and 43°C; however, high thermal stability corresponded to lower temperatures, and a temperature of 37°C is thus recommended. Under these conditions, the operational stability was determined to be t1/2=570 h.

  8. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material.

    PubMed

    Zhu, Fang; Li, Luwei; Ren, Wentao; Deng, Xiaoqiang; Liu, Tao

    2017-08-01

    Nano zero valent iron/Ni bimetal materials (nZVI/Ni) were prepared by borohydride reduction method to remediate toxic Cr(Ⅵ) contaminated in soil leachate. nZVI/Ni was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Different factors including pH value of soil leachate, reaction time, temperature, humic acid and coexisting anions (SO 4 2- , NO 3 - , HCO 3 - , CO 3 2- ) were studied to analyze the reduction rate. Results showed that the reduction rate of Cr(Ⅵ) could reach 99.84% under the condition of pH of 5 and temperature of 303 K. pH values and temperature of soil leachate had a significant effect on the reduction efficiency, while humic acid had inhibition effect for the reduction reaction. SO 4 2- , HCO 3 - and CO 3 2- had inhibition effect for reduction rate, while NO 3 - barely influenced the reduction process of nZVI/Ni. Moreover, Langumir-Hinshelwood first order kinetic model was studied and could describe the reduction process well. The thermodynamic studies indicated that the reaction process was endothermic and spontaneous. Activation energy was 143.80 kJ mol -1 , showing that the reaction occurred easily. Therefore, the study provides an idea for nZVI/Ni further research and practical application of nZVI/Ni in soil remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interactive effects of ocean acidification, elevated temperature, and reduced salinity on early-life stages of the pacific oyster.

    PubMed

    Ko, Ginger W K; Dineshram, R; Campanati, Camilla; Chan, Vera B S; Havenhand, Jon; Thiyagarajan, Vengatesen

    2014-09-02

    Ocean acidification (OA) effects on larvae are partially attributed for the rapidly declining oyster production in the Pacific Northwest region of the United States. This OA effect is a serious concern in SE Asia, which produces >80% of the world's oysters. Because climate-related stressors rarely act alone, we need to consider OA effects on oysters in combination with warming and reduced salinity. Here, the interactive effects of these three climate-related stressors on the larval growth of the Pacific oyster, Crassostrea gigas, were examined. Larvae were cultured in combinations of temperature (24 and 30 °C), pH (8.1 and 7.4), and salinity (15 psu and 25 psu) for 58 days to the early juvenile stage. Decreased pH (pH 7.4), elevated temperature (30 °C), and reduced salinity (15 psu) significantly delayed pre- and post-settlement growth. Elevated temperature lowered the larval lipid index, a proxy for physiological quality, and negated the negative effects of decreased pH on attachment and metamorphosis only in a salinity of 25 psu. The negative effects of multiple stressors on larval metamorphosis were not due to reduced size or depleted lipid reserves at the time of metamorphosis. Our results supported the hypothesis that the C. gigas larvae are vulnerable to the interactions of OA with reduced salinity and warming in Yellow Sea coastal waters now and in the future.

  10. Laccase production by Monotospora sp., an endophytic fungus in Cynodon dactylon.

    PubMed

    Wang, J W; Wu, J H; Huang, W Y; Tan, R X

    2006-03-01

    The effects of the carbon and nitrogen sources, initial pH and incubation temperature on laccase production by the endophytic fungus Monotospora sp. were evaluated. The optimal temperature and initial pH for laccase production by Monotospora sp. in submerged culture were found to be 30 degrees C and 8.5, respectively. Maltose (2 g l(-1)) and ammonium tartrate (10 g l(-1)) were the most suitable carbon and nitrogen source for laccase production. Under optimal culture medium, the maximum laccase activity was determined to be 13.55 U ml(-1), which was approximately four times higher than that in basal medium. This is the first report on laccase production by an endophytic fungus.

  11. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  12. Adaptive Neuro-Fuzzy Inference system analysis on adsorption studies of Reactive Red 198 from aqueous solution by SBA-15/CTAB composite

    NASA Astrophysics Data System (ADS)

    Aghajani, Khadijeh; Tayebi, Habib-Allah

    2017-01-01

    In this study, the Mesoporous material SBA-15 were synthesized and then, the surface was modified by the surfactant Cetyltrimethylammoniumbromide (CTAB). Finally, the obtained adsorbent was used in order to remove Reactive Red 198 (RR 198) from aqueous solution. Transmission electron microscope (TEM), Fourier transform infra-red spectroscopy (FTIR), Thermogravimetric analysis (TGA), X-ray diffraction (XRD), and BET were utilized for the purpose of examining the structural characteristics of obtained adsorbent. Parameters affecting the removal of RR 198 such as pH, the amount of adsorbent, and contact time were investigated at various temperatures and were also optimized. The obtained optimized condition is as follows: pH = 2, time = 60 min and adsorbent dose = 1 g/l. Moreover, a predictive model based on ANFIS for predicting the adsorption amount according to the input variables is presented. The presented model can be used for predicting the adsorption rate based on the input variables include temperature, pH, time, dosage, concentration. The error between actual and approximated output confirm the high accuracy of the proposed model in the prediction process. This fact results in cost reduction because prediction can be done without resorting to costly experimental efforts. SBA-15, CTAB, Reactive Red 198, adsorption study, Adaptive Neuro-Fuzzy Inference systems (ANFIS).

  13. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response.

  14. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly regulate digestion pH, and where the waste is produced at a pH value much higher than neutral.

  15. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review.

    PubMed

    Ng, Ka Ying Bonnie; Mingels, Roel; Morgan, Hywel; Macklon, Nick; Cheong, Ying

    2018-01-01

    Despite advances in ART, implantation and pregnancy rates per embryo transfer still remain low. IVF laboratories strive to ensure that the process of handling gametes in vitro closely mimics the in vivo environment. However, there remains a lack of knowledge regarding the in vivo regulation and dynamic variation in biophysical parameters such as oxygen concentration, pH and temperature within the reproductive tract. To undertake a systematic review of the current understanding of the physico-chemical parameters of oxygen tension (pO2), pH and temperature within the female reproductive tract, and their potential implications in clinical and pathological processes related to fertility and those pertaining to limited reproductive capacity. A comprehensive literature search was performed using electronic databases including Medline, Embase, Cochrane Library and Pubmed to identify original and review articles addressing the biophysical parameters (pO2, pH and temperature) in the female reproductive tract of any species. The search included all studies published between 1946 and November 2015. Search terms included 'oxygen', 'pH', 'hydrogen ion concentration', 'acid base' and others terms. We also used special features and truncations to identify synonyms and broaden the search. Studies were excluded if they only assessed embryo culture conditions, fetal acid-base status, oxidative stress, outcomes of pregnancy and measurements of these parameters in non-reproductive organs. Our search generated 18 685 records and 60 articles were included. pO2 within the female reproductive tract shows cyclical variation and minute-to-minute oscillations, which may be influenced by uterine contractility, hormones, the autonomic system, cardiac pulsatility, and myometrial and smooth muscle integrity. Fine balanced control of pO2 and avoidance of overwhelming oxidative stress is crucial for embryogenesis and implantation. The pH in the female reproductive tract is graduated, with lowest pH in the vagina (~pH 4.42) increasing toward the Fallopian tubes (FTs) (~pH 7.94), reflecting variation in the site-specific microbiome and acid-base buffering at the tissue/cellular level. The temperature variation in humans is cyclical by day and month. In humans, it is biphasic, increasing in the luteal phase; with the caudal region of the oviduct 1-2 degrees cooler than the cranial portion. Temperature variation is influenced by hormones, density of pelvic/uterine vascular beds and effectiveness of heat exchange locally, crucial for sperm motility and embryo development. We have identified significant deficiencies and inconsistencies in the methods used to assess these biophysical factors within the reproductive tract. We have suggested that the technological solutions including the development of methods and models for real time, in vivo recordings of biophysical parameters. The notion of 'back to nature' in assisted conception suggested 20 years ago has yet to be translated into clinical practice. While the findings from this systematic review do not provide evidence to change current in vitro protocols, it highlights our current inability to assess the in vivo reproductive tract environment in real time. Data made available through future development of sensing technology in utero may help to provide new insights into how best to optimize the in vitro embryo environment and allow for more precise and personalized fertility treatment. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Statistical analysis of environmental variability within the CELSS breadboard project's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.

    1993-01-01

    Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.

  17. Additive effects of pCO2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica.

    PubMed

    Hoshijima, Umihiko; Wong, Juliet M; Hofmann, Gretchen E

    2017-01-01

    The Antarctic pteropod, Limacina helicina antarctica , is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change-environmentally relevant temperature treatments (-0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at -0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at -0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that p CO 2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas.

  18. Additive effects of pCO2 and temperature on respiration rates of the Antarctic pteropod Limacina helicina antarctica

    PubMed Central

    Hoshijima, Umihiko; Wong, Juliet M

    2017-01-01

    Abstract The Antarctic pteropod, Limacina helicina antarctica, is a dominant member of the zooplankton in the Ross Sea and supports the vast diversity of marine megafauna that designates this region as an internationally protected area. Here, we observed the response of respiration rate to abiotic stressors associated with global change—environmentally relevant temperature treatments (−0.8°C, 4°C) and pH treatments reflecting current-day and future modeled extremes (8.2, 7.95 and 7.7 pH at −0.8°C; 8.11, 7.95 and 7.7 pH at 4°C). Sampling repeatedly over a 14-day period in laboratory experiments and using microplate respirometry techniques, we found that the metabolic rate of juvenile pteropods increased in response to low-pH exposure (pH 7.7) at −0.8°C, a near-ambient temperature. Similarly, metabolic rate increased when pteropods were exposed simultaneously to multiple stressors: lowered pH conditions (pH 7.7) and a high temperature (4°C). Overall, the results showed that pCO2 and temperature interact additively to affect metabolic rates in pteropods. Furthermore, we found that L. h. antarctica can tolerate acute exposure to temperatures far beyond its maximal habitat temperature. Overall, L. h. antarctica appears to be susceptible to pH and temperature stress, two abiotic stressors which are expected to be especially deleterious for ectothermic marine metazoans in polar seas. PMID:29218223

  19. Rumination time and reticuloruminal temperature as possible predictors of dystocia in dairy cows.

    PubMed

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O

    2017-02-01

    The objectives of this study were to explore changes of rumination time and reticuloruminal pH and temperature of dairy cows and heifers (means ± standard deviation; age = 5.8 ± 1.9; parity = 2.7 ± 1.4; body condition score = 3.2 ± 0.2) with eutocic (EUT, n = 10) and dystocic calving (DYS, n = 8). The recording period lasted from 3 d before calving until 7 d in milk. For the comparison of rumination time and reticuloruminal characteristics between groups, time to return to baseline (the time interval required to return to baseline from the delivery of the calf) and area under the curve (AUC; both for prepartum and postpartum periods) were calculated for each parameter. Rumination time decreased from baseline 28 h before calving both for EUT and DYS cows; after 20 h before calving, it decreased to 32.4 ± 2.3 and 13.2 ± 2.0 min/4 h between 8 and 4 h before delivery in EUT and DYS cows, respectively, and then it decreased below 10 and 5 min during the last 4 h before calving. Until 12 h after delivery, rumination time reached 42.6 ± 2.7 and 51.0 ± 3.1 min/4 h in DYS and EUT dams, respectively; however, AUC and time to return to baseline suggested lower rumination activity in DYS cows than in EUT dams for the 168-h postpartum observational period. Reticuloruminal pH decreased from baseline 56 h before calving both for EUT and DYS cows, but did not differ between groups before delivery. Reticuloruminal pH showed a decreasing tendency and clear diurnal variation after calving for both EUT and DYS cows, with slightly higher AUC values in DYS cows. In DYS cows, reticuloruminal temperature decreased from baseline 32 h before calving by 0.23 ± 0.02°C, whereas in EUT cows such a decrease was found only 20 h before delivery (0.48 ± 0.05°C). The AUC of reticuloruminal temperature calculated for the prepartum period was greater in EUT cows than in DYS cows. During the first 4 h after calving, reticuloruminal temperature decreased from 39.68 ± 0.09 to 38.96 ± 0.10°C and from 39.80 ± 0.06 to 38.81 ± 0.08°C in EUT and DYS cows, respectively, and reached baseline levels after 35.4 ± 3.4 and 37.8 ± 4.2 h after calving in EUT and DYS cows, respectively. Based on our results, continuous monitoring of changes in rumination time and reticuloruminal temperature seems to be promising in the early detection of cows with a higher risk of dystocia. Depressed rumination activity of DYS cows after calving highlights the importance of the postpartum monitoring of cows experiencing difficulties at calving. The effect of dystocia on postpartum reticuloruminal pH was not pronounced. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    PubMed

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p < 0.001), with a significant interaction effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Conditions and mechanisms for the formation of nano-sized Delafossite (CuFeO2) at temperatures ≤90 °C in aqueous solution

    NASA Astrophysics Data System (ADS)

    John, Melanie; Heuss-Aßbichler, Soraya; Ullrich, Aladin

    2016-02-01

    In this study, we present the mechanism of CuFeO2 formation in aqueous solution at low temperatures ≤90 °C, using sulfate salts as reactants. Furthermore, we demonstrate the influence of experimental conditions (alkalization, reaction and ageing temperature and time) on the synthesized nanoparticles. In all cases, GR-SO4, a Fe(II-III) layered double hydroxysulphate (Fe2+4Fe3+2(OH)12·SO4) and Cu2O precipitate first. During further OH- supply GR-SO4 oxidizes and forms Fe10O14(OH)2, Cu2O and CuFeO2 crystals. Due to the high pH further CuFeO2 crystals grow at the cost of the unstable intermediate products. The reaction rate increases with increasing ageing temperature, reaction pH and, in particular, NaOH concentrations in the solution. As a result, highly crystalline CuFeO2 (3R and 2H polytypes) nanoparticles showing hexagonal morphology can be synthesized at 70 °C within 10 h or at 50 °C within 1 week. The formation of 2H polytype is favored by additional OH- supply during the pH-stat time and rather low temperatures.

  2. Daytime Changes of Skin Biophysical Characteristics: A Study of Hydration, Transepidermal Water Loss, pH, Sebum, Elasticity, Erythema, and Color Index on Middle Eastern Skin

    PubMed Central

    Firooz, Alireza; Zartab, Hamed; Sadr, Bardia; Bagherpour, Leili Naraghi; Masoudi, Aidin; Fanian, Ferial; Dowlati, Yahya; Ehsani, Amir Hooshang; Samadi, Aniseh

    2016-01-01

    Background: The exposure of skin to ultraviolet radiation and temperature differs significantly during the day. It is reasonable that biophysical parameters of human skin have periodic daily fluctuation. The objective of this study was to study the fluctuations of various biophysical characteristics of Middle Eastern skin in standardized experimental conditions. Materials and Methods: Seven biophysical parameters of skin including stratum corneum hydration, transepidermal water loss, pH, sebum, elasticity, skin color, and erythema index were measured at three time points (8 a.m., 12 p.m. and 4 p.m.) on the forearm of 12 healthy participants (mean age of 28.4 years) without any ongoing skin disease using the CK MPA 580 device in standard temperature and humidity conditions. Results: A significant difference was observed between means of skin color index at 8 a.m. (175.42 ± 13.92) and 4 p.m. (164.44 ± 13.72, P = 0.025), between the pH at 8 a.m. (5.72 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001) and pH at 12 p.m. (5.60 ± 0.48) and 4 p.m. (5.33 ± 0.55, P = 0.001). Other comparisons between the means of these parameters at different time points resulted in nonsignificant P values. Conclusion: There are daytime changes in skin color index and pH. Skin color index might be higher and cutaneous pH more basic in the early morning compared to later of the day. PMID:27904203

  3. Disorder dependence electron phonon scattering rate of V82Pd18 - xFex alloys at low temperature

    NASA Astrophysics Data System (ADS)

    Jana, R. N.; Meikap, A. K.

    2018-04-01

    We have systematically investigated the disorder dependence electron phonon scattering rate in three dimensional disordered V82Pd18 - xFex alloys. A minimum in temperature dependence resistivity curve has been observed at low temperature T =Tm. In the temperature range 5 K ≤ T ≤Tm the resistivity correction follows ρo 5 / 2T 1 / 2 law. The dephasing scattering time has been calculated from analysis of magnetoresistivity by weak localization theory. The electron dephasing time is dominated by electron-phonon scattering and follows anomalous temperature (T) and disorder (ρ0) dependence behaviour like τe-ph-1 ∝T2 /ρ0, where ρ0 is the impurity resistivity. The magnitude of the saturated dephasing scattering time (τ0) at zero temperature decreases with increasing disorder of the samples. Such anomalous behaviour of dephasing scattering rate is still unresolved.

  4. Lactic acid production from xylose by Geobacillus stearothermophilus strain 15

    NASA Astrophysics Data System (ADS)

    Kunasundari, B.; Naresh, S.; Chu, J. E.

    2017-09-01

    Lactic acid is an important compound with a wide range of industrial applications. The present study tested the efficiency of xylose, as a sole carbon source to be converted to lactic acid by Geobacillus stearothermophilus strain 15. To the best of our knowledge, limited information is available on the directed fermentation of xylose to lactic acid by this bacterium. The effects of different parameters such as temperature, pH, incubation time, agitation speed, concentrations of nitrogen and carbon sources on the lactic acid production were investigated statistically. It was found that the bacterium exhibited poor assimilation of xylose to lactic acid. Temperature, agitation rate and incubation time were determined to improve the lactic acid production slightly. The highest lactic acid yield obtained was 8.9% at 45°C, 300 RPM, 96 h, pH of 6.0 with carbon and nitrogen source concentrations were fixed at 5% w/v.

  5. Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal

    NASA Astrophysics Data System (ADS)

    Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.

    2016-07-01

    The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.

  6. Extraction and identification of isothiocyanates from broccolini seeds.

    PubMed

    Zhang, Bochao; Wang, Xiaoqin; Yang, Yanjing; Zhang, Xuewu

    2011-01-01

    Broccolini (Brassica oleracea Italica x Alboglabra) is a cross between broccoli and kai-lan (Chinese broccoli), which contains abundant glucosinolates. The intact glucosinolates are believed to be inactive, while their hydrolysis products, such as isothiocyanates (ITCs), are found to have bacteriocidal and anticarcinogenic activities. So far, no report is available about generation of ITCs during the process of glucosinolate hydrolysis in broccolini. In this study, the hydrolysis of broccolini seed glucosinolates was investigated under controlled conditions of pH, time and temperature, and the ITCs produced were determined. The results showed that an optimum hydrolysis of glucosinolates could be achieved at a temperature of 250C, at pH 7.0, and a reaction time of eight hours. Furthermore, GC-MS analysis indicated that the extracted ITCs primarily were: 3-BITC (3-benzyl-ITC) (10.8%), 4-methylpentyl-ITC (0.5%), 1-isothiocyanato-butane (26.8%), PEITC (phenethyl-ITC) (22.6%) and SFN (sulforaphane) (19.2%).

  7. [Effect of thermal treatments on the chemical characteristics of mora crab meat (Homalaspis plana)].

    PubMed

    Quitral Robles, Vilma; Abugoch, Lilian; Vinagre, Julia; Guarda, Abel; Larraín, M Angélica; Santana, Gabriela

    2003-03-01

    Marine species muscles present non-proteins nitrogenated compounds, used as quality index. They are total volatile basis (NBVT), trimethylamine oxide (TMAO) and trimethylamine (TMA). pH is considered too as a quality index. The aim of this work was to evaluate these parameters in a fresh and canned marine product from the V region, corresponding to mora crab (Homalaspis plana). Fresh pincer meat from mora crab was extracted and kept in ice until theits analysis and thermal process of the canned product. A 3(2) statistical design was applied, considering two variables with 3 levels: 15, 30 y 45 minutes time levels: 80 degrees, 100 degrees y 121 degrees C temperature levels. Nine conditions of time-temperature were obtained. The thermal treatment caused an increase in pH and BVT. The TMA was increased since reduction of TMAO.

  8. Stabilization of Co{sup 2+} in layered double hydroxides (LDHs) by microwave-assisted ageing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrero, M.; Benito, P.; Labajos, F.M.

    2007-03-15

    Co-containing layered double hydroxides at different pH have been prepared, and aged following different routes. The solids prepared have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric and differential thermal analyses (both in nitrogen and in oxygen), FT-IR and Vis-UV spectroscopies, temperature-programmed reduction and surface area assessment by nitrogen adsorption at -196 deg. C. The best conditions found to preserve the cobalt species in the divalent oxidation state are preparing the samples at controlled pH, and then submit them to ageing under microwave irradiation. - Graphical abstract: The use of microwave-hydrothermal treatment, controlling both temperature and ageing time,more » permits to synthesize well-crystallized nanomaterials with controlled surface properties. An enhancement in the crystallinity degree and an increase in the particle size are observed when the irradiation time is prolonged.« less

  9. Stability of Tranexamic Acid after 12-Week Storage at Temperatures from -20 deg C to 50 deg C

    DTIC Science & Technology

    2013-07-01

    PRELIMINARY REPORTS STABILITY OF TRANEXAMIC ACID AFTER 12-WEEK STORAGE AT TEMPERATURES FROM –20◦C TO 50◦C Rodolfo de Guzman, Jr., MT, I. Amy...Polykratis, BS, Jill L. Sondeen, PhD, Daniel N. Darlington, PhD, Andrew P. Cap, MD, PhD, Michael A. Dubick, PhD ABSTRACT Background. Tranexamic acid (TXA) is... tranexamic acid ; temperature stability; HPLC; thromboelastography; storage PREHOSPITAL EMERGENCY CARE 2013;17:394–400 BACKGROUND Hemorrhage is the leading

  10. Chemical Beam Epitaxial Growth of Indium Phosphide Using Alternative, Safer Phosphorus Sources

    NASA Astrophysics Data System (ADS)

    Kim, Chungwoo

    1995-11-01

    Chemical beam epitaxy (CBE) is a relatively new III-V semiconductor growth technique that combines important advantages of molecular beam epitaxy (MBE) and organometallic vapor phase epitaxy (OMVPE). Although CBE grown-InP using phosphine (PH_3) combined with trimethylindium (TMIn) or triethylindium (TEIn) has produced high quality material comparable to OMVPE-and gas source MBE-grown InP, the highly hazardous and toxic nature of PH_3 is becoming a main obstacle to mass production of semiconductor devices. In this dissertation, InP epilayers were grown using tertiarybutylphosphine (TBP) and bisphosphinoethane (BPE) as possible replacements for PH_3, together with ethyldimethylindium (EDMIn) as the indium source. For the first time, InP epilayers have been grown using TBP and EDMIn by CBE. The surface morphology and the electrical and optical properties improved with increasing substrate and cracker cell temperatures and input V/III ratio. High quality n-type InP epilayers with electron mobilities of up to 3830 cm^2/Vs and net carrier concentrations of approximately 6 times 10^{14} cm^{-3} at room temperature were achieved at a growth temperature of 500^ circC using a V/III ratio of 70 and a TBP cracker cell temperature of 900^circ C. Strong band-edge emission was observed at growth temperatures between 460 and 500^circ C. The bound exciton halfwidth of the sample grown at 500^circC was as narrow as 3.6 meV at 14 K with a barely observable acceptor related peak indicating a very low concentration of acceptors. For growth of InP using BPE and EDMIn, good surface morphologies were obtained at a substrate temperature of 485^circC using V/III ratios of >=q53. At fixed growth and cracker cell temperatures of 485 and 800^circ C, respectively, the net carrier concentration at a V/III ratio of 53 was 7.8 times 10 ^{15} at room temperature and 3.2 times 10^{15} cm^{-3} at 77 K with respective electron mobilities of 3,630 and 21,800 cm^2 /Vs. The 14 K PL spectra were dominated by band -edge emission and exhibited very weak acceptor related peak intensities for InP layers grown at 485^ circC for several different V/III ratios and cracker cell temperatures. The narrowest value of FWHM for the band edge emission was 3.5 meV at 14 K.

  11. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.

  12. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may require synergy with bacteria for growth.

  13. Brucella melitensis survival during manufacture of ripened goat cheese at two temperatures.

    PubMed

    Méndez-González, Karla Y; Hernández-Castro, Rigoberto; Carrillo-Casas, Erika M; Monroy, Jorge F; López-Merino, Ahide; Suárez-Güemes, Francisco

    2011-12-01

    The aim of the current work was to assess the influence of two temperatures, 4°C and 24°C, on pH and water activity and their association with Brucella melitensis survival during the traditional manufacture of ripened goat cheese. Raw milk from a brucellosis-free goat herd was used for the manufacture of ripened cheese. The cheese was inoculated with 5×10(9) of the B. melitensis 16M strain during the tempering stage. The cheeses were matured for 5, 20, and 50 days at both temperatures. To assess Brucella survival, the pH and a(w) were recorded at each stage of the process (curd cutting, draining whey, immersion in brine, ripening I, ripening II, and ripening III). B. melitensis was detected at ripening stage III (1×10(3) colony-forming unit [CFU]/mL) from cheeses matured at 4°C with a pH of 5.0 and a(w) of 0.90, and at a ripening stage II (1×10(4) CFU/mL) from cheeses ripened at 24°C with a pH of 4.0 and a(w) of 0.89. The remaining stages were free from the inoculated pathogen. In addition, viable B. melitensis was recovered in significant amounts (1-2×10(6) CFU/mL) from the whey fractions of both types of cheese ripened at 24°C and 4°C. These results revealed the effects of high temperature (24°C vs. 4°C) on the low pH (4) and a(w) (0.89) that appeared to be associated with the suppression of B. melitensis at the early stages of cheese ripening. In the ripened goat cheeses, B. melitensis survived under a precise combination of temperature during maturation, ripening time, and a(w) in the manufacturing process.

  14. Behaviour of aqueous sulfamethizole solution and temperature effects in cold plasma oxidation treatment.

    PubMed

    Sokolov, Alexander; Louhi-Kultanen, Marjatta

    2018-06-07

    The increase in volume and variety of pharmaceuticals found in natural water bodies has become an increasingly serious environmental problem. The implementation of cold plasma technology, specifically gas-phase pulsed corona discharge (PCD), for sulfamethizole abatement was studied in the present work. It was observed that sulfamethizole is easily oxidized by PCD. The flow rate and pH of the solution have no significant effect on the oxidation. Treatment at low pulse repetition frequency is preferable from the energy efficiency point of view but is more time-consuming. The maximum energy efficiency was around 120 g/kWh at half-life and around 50 g/kWh at the end of the treatment. Increasing the solution temperature from room temperature to 50 °C led to a significant reaction retardation of the process and decrease in energy efficiency. The pseudo-first order reaction rate constant (k 1 ) grows with increase in pulse repetition frequency and does not depend on pH. By contrast, decreasing frequency leads to a reduction of the second order reaction rate constant (k 2 ). At elevated temperature of 50 °C, the k 1 , k 2 values decrease 2 and 2.9 times at 50 pps and 500 pps respectively. Lower temperature of 10 °C had no effect on oxidation efficiency compared with room temperature.

  15. Immunomodulatory effects of temperature and pH of water in an Indian freshwater sponge.

    PubMed

    Mukherjee, Soumalya; Bhunia, Anindya Sundar; Bhunia, Niladri Sekhar; Ray, Mitali; Ray, Sajal

    2016-07-01

    Eunapius carteri, a freshwater sponge of India, inhabits the ponds and lakes and experiences variations of temperature and pH of water throughout the year. Sponges bear evolutionary and ecological importance with limited information on their immunological attribute and adaptational resilience in a changing environment. This paper reports temperature and pH specific responses of immune related parameters in sponge maintained in the experimental conditions of laboratory. Innate immunological parameters like phagocytosis and generation of cytotoxic molecules like superoxide anion, nitric oxide and phenoloxidase activity were estimated in E. carteri at different environmentally realistic water temperatures (10, 20, 30 and 40°C) and pH (6.4, 7.4 and 8.4). Phagocytosis and cytotoxicity are established as important immune parameters of invertebrates. Calalase, an antioxidant enzyme and phosphatases are involved in pathogen destruction and are considered as components of innate immunity. Activities of catalase, acid and alkaline phosphatases were estimated in E. carteri at different thermal regimes and pH. Modulation of phagocytic and cytotoxic responses and the activities of catalase and phosphatases at different water temperatures and pH indicated temperature and pH specific immunological status of E. carteri. Present investigation deals with the effects of selected hydrological parameters on the fundamental immune related parameters in sponge indicating its adaptational plasticity. Immunological resilience of this species in the face of variation of water temperature and pH is thought to be a special adaptive feature of sponge, a reported "living fossil". Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The Influence of Formulation and Manufacturing Process Parameters on the Characteristics of Lyophilized Orally Disintegrating Tablets

    PubMed Central

    Jones, Rhys J.; Rajabi-Siahboomi, Ali; Levina, Marina; Perrie, Yvonne; Mohammed, Afzal R.

    2011-01-01

    Gelatin is a principal excipient used as a binder in the formulation of lyophilized orally disintegrating tablets. The current study focuses on exploiting the physicochemical properties of gelatin by varying formulation parameters to determine their influence on orally disintegrating tablet (ODT) characteristics. Process parameters, namely pH and ionic strength of the formulations, and ball milling were investigated to observe their effects on excipient characteristics and tablet formation. The properties and characteristics of the formulations and tablets which were investigated included: glass transition temperature, wettability, porosity, mechanical properties, disintegration time, morphology of the internal structure of the freeze-dried tablets, and drug dissolution. The results from the pH study revealed that adjusting the pH of the formulation away from the isoelectric point of gelatin, resulted in an improvement in tablet disintegration time possibly due to increase in gelatin swelling resulting in greater tablet porosity. The results from the ionic strength study revealed that the inclusion of sodium chloride influenced tablet porosity, tablet morphology and the glass transition temperature of the formulations. Data from the milling study showed that milling the excipients influenced formulation characteristics, namely wettability and powder porosity. The study concludes that alterations of simple parameters such as pH and salt concentration have a significant influence on formulation of ODT. PMID:24310589

  17. Immobilization of pectin depolymerising polygalacturonase using different polymers.

    PubMed

    Ur Rehman, Haneef; Aman, Afsheen; Nawaz, Muhammad Asif; Karim, Asad; Ghani, Maria; Baloch, Abdul Hameed; Ul Qader, Shah Ali

    2016-01-01

    Polygalacturonase catalyses the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, different polymers such as calcium alginate beads, polyacrylamide gel and agar-agar matrix were screened for the immobilization of polygalacturonase through entrapment technique. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield as compared to agar-agar (80%) and calcium alginate beads (46%). The polymers increased the reaction time of polygalacturonase and polymers entrapped polygalacturonases showed maximum pectinolytic activity after 10 min of reaction as compared to free polygalacturonase which performed maximum activity after 5.0 min of reaction time. The temperature of polygalacturonase for maximum enzymatic activity was increased from 45°C to 50°C and 55°C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH (pH 10) of polygalacturonase was remained same when it was immobilized within polyacrylamide gel and calcium alginate beads, but changed from pH 10 to pH 9.0 after entrapment within agar-agar. Thermal stability of polygalacturonase was improved after immobilization and immobilized polygalacturonases showed higher tolerance against different temperatures as compared to free enzyme. Polymers entrapped polygalacturonases showed good reusability and retained more than 80% of their initial activity during 2nd cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Assessing the effects of seawater temperature and pH on the bioaccumulation of emerging chemical contaminants in marine bivalves.

    PubMed

    Maulvault, Ana Luísa; Camacho, Carolina; Barbosa, Vera; Alves, Ricardo; Anacleto, Patrícia; Fogaça, Fabiola; Kwadijk, Christiaan; Kotterman, Michiel; Cunha, Sara C; Fernandes, José O; Rasmussen, Rie R; Sloth, Jens J; Aznar-Alemany, Òscar; Eljarrat, Ethel; Barceló, Damià; Marques, António

    2018-02-01

    Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the effects of environmental conditions (e.g. temperature and pH) on bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota have been poorly studied until now. In this context, the aim of this study was to assess, for the first time, the effect of warmer seawater temperatures (Δ = + 4°C) and lower pH levels (Δ = - 0.4 pH units), acting alone or combined, on the bioaccumulation and elimination of emerging FRs (dechloranes 602, 603 and 604, and TBBPA), inorganic arsenic (iAs), and PFCs (PFOA and PFOS) in two estuarine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum). Overall, results showed that warming alone or combined with acidification promoted the bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels of dechloranes, as well as enhanced iAs, PFOA and PFOS elimination. Data also suggests that, when both abiotic stressors are combined, bivalves' capacity to accumulate contaminants may be time-dependent, considering significantly drastic increase observed with Dec 602 and TBBPA, during the last 10 days of exposure, when compared to reference conditions. Such changes in contaminants' bioaccumulation/elimination patterns also suggest a potential increase of human health risks of some compounds, if the climate continues changing as forecasted. Therefore, this first study pointed out the urgent need for further research on the effects of abiotic conditions on emerging contaminants kinetics, to adequately estimate the potential toxicological hazards associated to these compounds and develop recommendations/regulations for their presence in seafood, considering the prevailing environmental conditions expected in tomorrow's ocean. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems.

    PubMed

    Salomón, Roberto; Valbuena-Carabaña, María; Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug; González-Doncel, Inés; Gil, Luis; Rodríguez-Calcerrada, Jesús

    2016-04-01

    Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice.

    PubMed

    Peng, Jing; Mah, Jae-Hyung; Somavat, Romel; Mohamed, Hussein; Sastry, Sudhir; Tang, Juming

    2012-07-01

    The thermal characteristics of the spores and vegetative cells of three strains of Bacillus coagulans (ATCC 8038, ATCC 7050, and 185A) in tomato juice were evaluated. B. coagulans ATCC 8038 was chosen as the target microorganism for thermal processing of tomato products due to its spores having the highest thermal resistance among the three strains. The thermal inactivation kinetics of B. coagulans ATCC 8038 spores in tomato juice between 95 and 115°C were determined independently in two different laboratories using two different heating setups. The results obtained from both laboratories were in general agreement, with z-values (z-value is defined as the change in temperature required for a 10-fold reduction of the D-value, which is defined as the time required at a certain temperature for a 1-log reduction of the target microorganisms) of 8.3 and 8.7°C, respectively. The z-value of B. coagulans 185A spores in tomato juice (pH 4.3) was found to be 10.2°C. The influence of environmental factors, including cold storage time, pH, and preconditioning, upon the thermal resistance of these bacterial spores is discussed. The results obtained showed that a storage temperature of 4°C was appropriate for maintaining the viability and thermal resistance of B. coagulans ATCC 8038 spores. Acidifying the pH of tomato juice decreased the thermal resistance of these spores. A 1-h exposure at room temperature was considered optimal for preconditioning B. coagulans ATCC 8038 spores in tomato juice.

  1. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C.J.; Keefer, K.D.; Lenahan, P.M.

    1985-02-25

    A method is disclosed for coating a substrate with a thin film of a predetermined porosity. The method comprises: depositing the thin film on the substrate from a non-gelled solution comprising at least one metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base; prior to said depositing step, controlling the porosity and structure of said coating for a given composition of said solution exclusive of the acid or base component and the water component, by adjusting each of the water content, the pH, the temperature and the time of standing of said solution, increasing/descreasing the water content or the pH to increase/decrease the pore size of said coating, and increasing/decreasing the temperature or time of standing of said solution to increase/decrease the pore size of said coating; and curing said deposited film at a temperature effective for curing whereby there is obtained a thin film coating of a predetermined porosity on the substrate.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ling; Song, Yu, E-mail: songyu@dlpu.edu.cn; Yang, Wei

    Open-framework zinc phosphates were synthesized by microwave-assisted technique, and it was shown that the morphology of as-prepared materials could be easily tailored by changing synthesis temperature, reaction time and pH value. During the synthesis, when the reaction temperature increases from 130 °C to 220 °C, the products transformed from hexagonal prisms to polyhedron along with the disappearance of the hexagonal prisms vertical plane. Simultaneously, both the reaction time and pH value could promote the nucleation and growth of crystal particles. More interestingly, the target products with different morphologies could be obtained by varying the usage of NaOH or NH{sub 3}·H{submore » 2}O at 130 °C during the microwave synthesis process. - Graphical abstract: Zinc phosphates with variable morphologies can be obtained by simply tuning the microwave-heating temperatures. Display Omitted - Highlights: • Synthesis of open-framework Zn{sub 4} (H{sub 3}O) (NH{sub 4}){sub 3}(PO{sub 4}){sub 4} compounds employing microwave technique. • Dependence of morphology on the reaction conditions. • Morphology transformation from hexagonal prisms to polyhedron was observed.« less

  3. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-11-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of ``cut-and-try`` methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  4. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-01-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of cut-and-try'' methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  5. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees.

    PubMed

    Tajabadi, Naser; Ebrahimpour, Afshin; Baradaran, Ali; Rahim, Raha Abdul; Mahyudin, Nor Ainy; Manap, Mohd Yazid Abdul; Bakar, Fatimah Abu; Saari, Nazamid

    2015-04-15

    Dominant strains of lactic acid bacteria (LAB) isolated from honey bees were evaluated for their γ-aminobutyric acid (GABA)-producing ability. Out of 24 strains, strain Taj-Apis362 showed the highest GABA-producing ability (1.76 mM) in MRS broth containing 50 mM initial glutamic acid cultured for 60 h. Effects of fermentation parameters, including initial glutamic acid level, culture temperature, initial pH and incubation time on GABA production were investigated via a single parameter optimization strategy. The optimal fermentation condition for GABA production was modeled using response surface methodology (RSM). The results showed that the culture temperature was the most significant factor for GABA production. The optimum conditions for maximum GABA production by Lactobacillus plantarum Taj-Apis362 were an initial glutamic acid concentration of 497.97 mM, culture temperature of 36 °C, initial pH of 5.31 and incubation time of 60 h, which produced 7.15 mM of GABA. The value is comparable with the predicted value of 7.21 mM.

  6. Modeling of corrosion product migration in the secondary circuit of nuclear power plants with WWER-1200

    NASA Astrophysics Data System (ADS)

    Kritskii, V. G.; Berezina, I. G.; Gavrilov, A. V.; Motkova, E. A.; Zelenina, E. V.; Prokhorov, N. A.; Gorbatenko, S. P.; Tsitser, A. A.

    2016-04-01

    Models of corrosion and mass transfer of corrosion products in the pipes of the condensate-feeding and steam paths of the secondary circuit of NPPs with WWER-1200 are presented. The mass transfer and distribution of corrosion products over the currents of the working medium of the secondary circuit were calculated using the physicochemical model of mass transfer of corrosion products in which the secondary circuit is regarded as a cyclic system consisting of a number of interrelated elements. The circuit was divided into calculated regions in which the change in the parameters (flow rate, temperature, and pressure) was traced and the rates of corrosion and corrosion products entrainment, high-temperature pH, and iron concentration were calculated. The models were verified according to the results of chemical analyses at Kalinin NPP and iron corrosion product concentrations in the feed water at different NPPs depending on pH at 25°C (pH25) for service times τ ≥ 5000 h. The calculated pH values at a coolant temperature t (pH t ) in the secondary circuit of NPPs with WWER-1200 were presented. The calculation of the distribution of pH t and ethanolamine and ammonia concentrations over the condensate feed (CFC) and steam circuits is given. The models are designed for developing the calculation codes. The project solutions of ATOMPROEKT satisfy the safety and reliability requirements for power plants with WWER-1200. The calculated corrosion and corrosion product mass transfer parameters showed that the model allows the designer to choose between the increase of the correcting reagent concentration, the use of steel with higher chromium contents, and intermittent washing of the steam generator from sediments as the best solution for definite regions of the circuit.

  7. Grazing under experimental hypercapnia and elevated temperature does not affect the radula of a chiton (Mollusca, Polyplacophora, Lepidopleurida).

    PubMed

    Sigwart, Julia D; Carey, Nicholas

    2014-12-01

    Chitons (class Polyplacophora) are benthic grazing molluscs with an eight-part aragonitic shell armature. The radula, a serial tooth ribbon that extends internally more than half the length of the body, is mineralised on the active feeding teeth with iron magnetite apparently as an adaptation to constant grazing on rocky substrates. As the anterior feeding teeth are eroded they are shed and replaced with a new row. The efficient mineralisation and function of the radula could hypothetically be affected by changing oceans in two ways: changes in seawater chemistry (pH and pCO2) may impact the biomineralisation pathway, potentially leading to a weaker or altered density of the feeding teeth; rising temperatures could increase activity levels in these ectothermic animals, and higher feeding rates could increase wear on the feeding teeth beyond the animals' ability to synthesise, mineralise, and replace radular rows. We therefore examined the effects of pH and temperature on growth and integrity in the radula of the chiton Leptochiton asellus. Our experiment implemented three temperature (∼10, 15, 20 °C) and two pCO2 treatments (∼400 μatm, pH 8.0; ∼2000 μatm, pH 7.5) for six treatment groups. Animals (n = 50) were acclimated to the treatment conditions for a period of 4 weeks. This is sufficient time for growth of ca. 7-9 new tooth rows or 20% turnover of the mineralised portion. There was no significant difference in the number of new (non-mineralised) teeth or total tooth row count in any treatment. Examination of the radulae via SEM revealed no differences in microwear or breakage on the feeding cusps correlating to treatment groups. The shell valves also showed no signs of dissolution. As a lineage, chitons have survived repeated shifts in Earth's climate through geological time, and at least their radulae may be robust to future perturbations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Microbial modeling of Alicyclobacillus acidoterrestris CRA 7152 growth in orange juice with nisin added.

    PubMed

    Peña, Wilmer Edgard Luera; de Massaguer, Pilar Rodriguez

    2006-08-01

    The adaptation time of Alicyclobacillus acidoterrestris CRA 7152 in orange juice was determined as a response to pH (3 to 5.8), temperature (20 to 54 degrees C), soluble solids concentration ((o)Brix; 11 to 19 (o)Brix), and nisin concentration (0 to 70 IU/ ml) effects. A four-factor central composite rotational design was used. Viable microorganisms were enumerated by plating on K medium (pH 3.7). Two primary models were used to represent growth and adaptation time. A second-order polynomial model was applied to analyze the effects of factors. Results showed that the Baranyi and Roberts model was better than the modified Gompertz model, considering the determination coefficient (R2) for experimental data description. Inhibition of bacteria can be obtained through several studied combinations for at least 47 days of storage. The shortest period of adaptation was observed between 37 to 45 degrees C, with pHs between 4 and 5, yet the longest periods of adaptation could be obtained around 20 degrees C with pHs close to 3.0. Statistical analysis of the quadratic model showed that the adaptation time increased as temperature or pH decreased, and as nisin concentration or soluble solids increased. The model showed that adaptation time has a minimum value for juice without nisin added, with 13.5% soluble solids, pH 5.0, and incubated at 43.8 degrees C. The statistical parameters that validated this model were an R2 of 0.816, a bias factor of 0.96, and an accuracy factor of 1.14. Manipulation of more than one factor, as well as the use of an antimicrobial agent, can be an alternative to preventing the development of A. acidoterrestris in orange juice, thus contributing to increased orange juice shelf life.

  9. Milk pH as a function of CO2 concentration, temperature, and pressure in a heat exchanger.

    PubMed

    Ma, Y; Barbano, D M

    2003-12-01

    Raw skim milk, with or without added CO2, was heated, held, and cooled in a small pilot-scale tubular heat exchanger (372 ml/min). The experiment was replicated twice, and, for each replication, milk was first carbonated at 0 to 1 degree C to contain 0 (control), 600, 1200, 1800, and 2400 ppm added CO2 using a continuous carbonation unit. After storage at 0 to 1 degree C, portions of milk at each CO2 concentration were heated to 40, 56, 72, and 80 degrees C, held at the desired temperature for 30 s (except 80 degrees C, holding 20 s) and cooled to 0 to 1 degree C. At each temperature, five pressures were applied: 69, 138, 207, 276, and 345 kPa. Pressure was controlled with a needle valve at the heat exchanger exit. Both the pressure gauge and pH probe were inline at the end of the holding section. Milk pH during heating depended on CO2 concentration, temperature, and pressure. During heating of milk without added CO2, pH decreased linearly as a function of increasing temperature but was independent of pressure. In general, the pH of milk with added CO2 decreased with increasing CO2 concentration and pressure. For milk with added CO2, at a fixed CO2 concentration, the effect of pressure on pH decrease was greater at a higher temperature. At a fixed temperature, the effect of pressure on pH decrease was greater for milk with a higher CO2 concentration. Thermal death of bacteria during pasteurization of milk without added CO2 is probably due not only to temperature but also to the decrease in pH that occurs during the process. Increasing milk CO2 concentration and pressure decreases the milk pH even further during heating and may further enhance the microbial killing power of pasteurization.

  10. Evaluation of Eurasian Watermilfoil Control Techniques Using Aquatic Herbicides in Fort Peck Lake, Montana

    DTIC Science & Technology

    2015-07-01

    19 Table 3. Temperature , dissolved oxygen , pH, and wind...21 Table 4. Temperature , dissolved oxygen , and pH measured in the study plots following treatment, Fort Peck Lake, MT, 2012...quality, particularly temperature , pH, dissolved oxygen , and nutrient cycling (Prentki et al. 1979; Carpenter and Lodge 1986, Frodge et al. 1990; Boylen

  11. Kinetics, equilibrium, and thermodynamics investigation on the adsorption of lead(II) by coal-based activated carbon.

    PubMed

    Yi, Zhengji; Yao, Jun; Zhu, Mijia; Chen, Huilun; Wang, Fei; Liu, Xing

    2016-01-01

    The goal of this research is to investigate the feasibility of using activated coal-based activated carbon (CBAC) to adsorb Pb(II) from aqueous solutions through batch tests. Effects of contact time, pH, temperature and initial Pb(II) concentration on the Pb(II) adsorption were examined. The Pb(II) adsorption is strongly dependent on pH, but insensitive to temperature. The best pH for Pb(II) removal is in the range of 5.0-5.5 with more than 90 % of Pb(II) removed. The equilibrium time was found to be 60 min and the adsorption data followed the pseudo-second-order kinetics. Isotherm data followed Langmuir isotherm model with a maximum adsorption capacity of 162.33 mg/g. The adsorption was exothermic and spontaneous in nature. The Fourier transform infrared spectroscopy and scanning electron microscopy analysis suggested that CBAC possessed a porous structure and was rich in carboxyl and hydroxyl groups on its surface, which might play a major role in Pb(II) adsorption. These findings indicated that CBAC has great potential as an alternative adsorbent for Pb(II) removal.

  12. Hexavalent chromium adsorption from aqueous solution using carbon nano-onions (CNOs).

    PubMed

    Sakulthaew, Chainarong; Chokejaroenrat, Chanat; Poapolathep, Amnart; Satapanajaru, Tunlawit; Poapolathep, Saranya

    2017-10-01

    The capacity of carbon nano-onions (CNOs) to remove hexavalent chromium (Cr(VI)) from aqueous solution was investigated. Batch experiments were performed to quantify the effects of the dosage rate, pH, counter ions, and temperature. The adsorption of Cr(VI) onto CNOs was best described by a pseudo-second order rate expression. The adsorption efficiency increased with increasing adsorbent dosage and contact time and reached equilibrium in 24 h. The equilibrium data showed better compliance with a Langmuir isotherm than a Freundlich isotherm. Effective removal of Cr(VI) was demonstrated at pH values ranging from 2 to 10. The adsorption capacity of Cr(VI) was found to be highest (82%) at pH 3.4 and greatly depended on the solution pH. We found that Cr(VI) adsorption decreased with increasing pH over the pH range of 3.4-10. The adsorption capacity increased dramatically when the temperature increased from 10 °C to 50 °C regardless of the amount of CNOs used. Cr(VI) removal decreased by ∼13% when Zn(II), Cu(II), and Pb(II) were present, while there were no significant changes observed when NO 3 - or SO 4 2- was present. The overall results support that CNOs can be used as an alternative adsorbent material to remove Cr(VI) in the water treatment industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Lethal levels of selected water quality variables to larval and juvenile Lost River and shortnose suckers

    USGS Publications Warehouse

    Saiki, M.K.; Monda, D.P.; Bellerud, B.L.

    1999-01-01

    Resource managers hypothesize that occasional fish kills during summer-early fall in Upper Klamath Lake, Oregon, may be linked to unfavorable water quality conditions created by massive algal blooms. In a preliminary effort to address this concern, short-term (96-h-long) laboratory tests were conducted with larval and juvenile Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers to determine the upper median lethal concentrations (LC50s; also referred to as median tolerance limits) for pH, un-ionized ammonia, and water temperature, and the lower LC50s for dissolved oxygen. The mean LC50s varied among species and life stages as follows: for pH, 10.30-10.39; for un-ionized ammonia, 0.48-1.06 mg litre-1; for temperature, 30.35-31.82??C; and for dissolved oxygen, 1.34-2.10 mg litre-1. Comparisons of 95% confidence limits indicated that, on average, the 96-h LC50s were not significantly different from those computed for shorter exposure times (i.e., 24 h, 48 h, and 72 h). According to two-way analysis of variance, LC50s for the four water quality variables did not vary significantly (p > 0.05) between fish species. However, LC50s for pH (exposure times of 24 h and 48 h) and dissolved oxygen (exposure times of 48 h, 72 h, and 96 h) differed significantly (p ??? 0.05) between life stages, whereas LC50s for un-ionized ammonia and water temperature did not exhibit significant differences. In general, larvae were more sensitive than juveniles to high pH and low dissolved oxygen concentrations. When compared to ambient water quality conditions in Upper Klamath Lake, our results strongly suggest that near-anoxic conditions associated with the senescence phase of algal blooms are most likely to cause high mortalities of larval and juvenile suckers.

  14. Warming and surface ocean acidification over the last deglaciation: implications for foraminiferal assemblages

    NASA Astrophysics Data System (ADS)

    Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.

    2017-12-01

    Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.

  15. Molecular dynamics simulation of the thermosensitivity of the human connexin 26 hemichannel

    NASA Astrophysics Data System (ADS)

    Alizadeh, Hadi; Davoodi, Jamal; Zeilinger, Carsten; Rafii-Tabar, Hashem

    2018-01-01

    Connexin hemichannels mediate cytoplasm and extracellular milieu communication by exchanging a variety of cytoplasmic molecules and ions. These hemichannels can be regulated by external stimuli such as mechanical stress, applied voltage, pH and temperature changes. Although there are many studies on structures and functions of connexin 26 in contexts of pH, ion concentration and voltage, employing computational methods, no such study has been performed so far involving temperature changes. In this study, using molecular dynamics simulation, we investigate thermosensitivity of the human Connexin 26 hemichannel. Our results show that the channel approaches a structurally closed state at lower temperature compared to higher temperature. This is in fair agreement with experimental results that indicate channel closure at lower temperature. Furthermore, our MD simulation results show that some regions of connexin 26 hemichannel are more sensitive to temperature compared to other regions. Whereas the intercellular half of the channel does not show any considerable response to temperature during the simulation time accessible in this study, the cytoplasmic half approaches a closed structural state at lower temperature compared to the higher temperature. Specifically, our results suggest that the cytoplasmic loop, the cytoplasmic half of the second transmembrane helix, and the N-terminus helix play a dominant role in temperature gating.

  16. Racemization of aspartic acid and phenylalanine in the sweetener aspartame at 100 degrees C.

    PubMed Central

    Boehm, M F; Bada, J L

    1984-01-01

    The racemization half-lives (i.e., the time required to reach a D/L = 0.33) at pH 6.8 for aspartic acid and phenylalanine in the sweetener aspartame (L-aspartyl-L-phenylalanine methyl ester) were determined to be 13 and 23 hours, respectively, at 100 degrees C. Racemization at this pH does not occur in aspartame but rather in its diketopiperazine decomposition product. Our results indicate that the use of aspartame to sweeten neutral pH foods and beverages that are then heated at elevated temperature could generate D-aspartic acid and D-phenylalanine. The nutritive consequences of these D-amino acids in the human diet are not well established, and thus aspartame should probably not be used as a sweetener when the exposure of neutral pH foods and beverages to elevated temperatures is required. At pH 4, a typical pH of most foods and beverages that might be sweetened with aspartame, the half-lives are 47 hours for aspartic acid and 1200 hours for phenylalanine at 100 degrees C. Racemization at pH 4 takes place in aspartame itself. Although the racemization rates at pH 4 are slow and no appreciable racemization of aspartic acid and phenylalanine should occur during the normal use of aspartame, some food and beverage components could conceivably act as catalysts. Additional studies are required to evaluate whether the use of aspartame as a sugar substitute might not in turn result in an increased human consumption of D-aspartic acid and D-phenylalanine. PMID:6591191

  17. Metal Oxides and Ion-Exchanging Surfaces as pH Sensors in Liquids: State-of-the-Art and Outlook

    PubMed Central

    Kurzweil, Peter

    2009-01-01

    Novel applications of online pH determinations at temperatures from -35 °C to 130 °C in technical and biological media, which are all but ideal aqueous solutions, require new approaches to pH monitoring. The glass electrode, introduced nearly hundred years ago, and chemical sensors based on field effect transistors (ISFET) show specific drawbacks with respect to handling and long-time stability. Proton sensitive metal oxides seem to be a promising and alternative to the state-of-the-art measuring methods, and might overcome some problems of classical hydrogen electrodes and reference electrodes. PMID:22408563

  18. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to CO2-driven acidification.

    PubMed

    Gianguzza, Paola; Visconti, Giulia; Gianguzza, Fabrizio; Vizzini, Salvatrice; Sarà, Gianluca; Dupont, Sam

    2014-02-01

    The increasing abundances of the thermophilous black sea urchin Arbacia lixula in the Mediterranean Sea are attributed to the Western Mediterranean warming. However, few data are available on the potential impact of this warming on A. lixula in combination with other global stressors such as ocean acidification. The aim of this study is to investigate the interactive effects of increased temperature and of decreased pH on fertilization and early development of A. lixula. This was tested using a fully crossed design with four temperatures (20, 24, 26 and 27 °C) and two pH levels (pHNBS 8.2 and 7.9). Temperature and pH had no significant effect on fertilization and larval survival (2d) for temperature <27 °C. At 27 °C, the fertilization success was very low (<1%) and all larvae died within 2d. Both temperature and pH had effects on the developmental dynamics. Temperature appeared to modulate the impact of decreasing pH on the % of larvae reaching the pluteus stage leading to a positive effect (faster growth compared to pH 8.2) of low pH at 20 °C, a neutral effect at 24 °C and a negative effect (slower growth) at 26 °C. These results highlight the importance of considering a range of temperatures covering today and the future environmental variability in any experiment aiming at studying the impact of ocean acidification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The Effects of Storage Temperature on the Growth of Vibrio parahaemolyticus and Organoleptic Properties in Oysters.

    PubMed

    Mudoh, Meshack Fon; Parveen, Salina; Schwarz, Jurgen; Rippen, Tom; Chaudhuri, Anish

    2014-01-01

    During harvesting and storage, microbial pathogens and natural spoilage flora may grow, negatively affecting the composition and texture of oysters and posing a potential health threat to susceptible consumers. A solution to these problems would mitigate associated damaging effects on the seafood industry. The purpose of this study was to investigate the effects of storage temperature on growth of vibrios as well as other microbial, sensory, and textural characteristics of post-harvest shellstock Eastern oysters (Crassostrea virginica). Oysters harvested from the Chesapeake Bay, Maryland, during summer months (June, July, and August, 2010) were subjected to three storage temperatures (5, 10, and 20°C) over a 10-day period. At selected time intervals (0, 1, 3, 7, and 10 days), two separate samples of six oysters each were homogenated and analyzed for pH, halophilic plate counts (HPC), total vibrios, and Vibrio parahaemolyticus (Vp). Oyster meats shucked after storage were also organoleptically evaluated (acceptability, appearance, and odor). Texture analysis was performed using a texture analyzer on meats shucked from oysters held under the same conditions. The pH of the oyster homogenates showed no consistent pattern with storage time and temperature. The HPC (4.5-9.4 log CFU/g) were highest on day 7 at 20°C while olfactory acceptance reduced with time and increasing storage temperatures. The Vp counts increased over time from 3.5 to 7.5 log MPN/g by day 10. Loss of freshness as judged by appearance and odor was significant over time (p < 0.05). Toughness of oysters increased with storage time at 5 and 10°C from days 1 to 3 but was inconsistent after day 7. The results indicate that the length of storage and temperature had a significant effect on bacterial counts and olfactory acceptance of oysters but had an inconsistent effect on texture.

  20. Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2-.

    PubMed

    Zadrozny, Joseph M; Long, Jeffrey R

    2011-12-28

    The Ph(4)P(+) salt of the tetrahedral complex [Co(SPh)(4)](2-), possessing an S = (3)/(2) ground state with an axial zero-field splitting of D = -70 cm(-1), displays single-molecule magnet behavior in the absence of an applied magnetic field. At very low temperatures, ac magnetic susceptibility data show the magnetic relaxation time, τ, to be temperature-independent, while above 2.5 K thermally activated Arrhenius behavior is apparent with U(eff) = 21(1) cm(-1) and τ(0) = 1.0(3) × 10(-7) s. Under an applied field of 1 kOe, τ more closely approximates Arrhenius behavior over the entire temperature range. Upon dilution of the complex within a matrix of the isomorphous compound (Ph(4)P)(2)[Zn(SPh)(4)], ac susceptibility data reveal the molecular nature of the slow magnetic relaxation and indicate that the quantum tunneling pathway observed at low temperatures is likely mediated by intermolecular dipolar interactions. © 2011 American Chemical Society

  1. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.

    PubMed

    Santin, Joseph M; Watters, Kayla C; Putnam, Robert W; Hartzler, Lynn K

    2013-12-15

    The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential (V(m)), and input resistance (R(in)) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.

  2. Temperature sensitivity of organic substrate decay varies with pH

    NASA Astrophysics Data System (ADS)

    Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.

    2012-12-01

    Cellulose is the most abundant biopolymer in soils and globally ubiquitous. It serves as a primary carbon source for myriad microbes able to release cellulases which cleave the cellulose into smaller molecules. For example, β-glucosidase, one type of cellulase, breaks down a terminal β-glycosidic bond of cellulose. The carbon of the liberated glucose becomes available for microbial uptake, after which it can then be mineralized and returned to the atmosphere via heterotrophic respiration. Thus, exoenzymes play an important role in the global cycling of carbon. Numerous studies suggest that global warming potentially increases the rate at which β-glucosidase breaks down cellulose, but it is not known how pH of the soil solution influences the effect of temperature on cellulose decomposition rates; this is important given the globally wide range of soil pH. Using fluorescence enzyme assay techniques, we studied the effect of temperature and pH on the reaction rate at which purified β-Glucosidase decays β-D-cellobioside (a compound often employed to simulate cellulose). We evaluated the temperature sensitivity of this reaction at five temperatures (5, 10, 15, 20, and 25°C) and six pH values (3.5, 4.5, 5.5, 6.5, 7.5, and 8.5)encompassing the naturally occurring range in soils, in a full-factorial design. First, we determined Vmax at 25°C and pH 6.5, standard conditions for measuring enzyme activities in many studies. The Vmax was 858.65 μmol h-1mg-1and was achieved at substrate concentration of 270 μM. At all pH values, the reaction rate slowed down at lower temperatures; at a pH of 3.5, no enzymatic activity was detected. The enzyme activity was significantly different between pH 4.5 and higher pHs. For example, enzyme reactivity at pH 4.5 was significantly lower than that at 7.5 at 20 and 25°C (Bonferroni-corrected P =0.0006, 0.0004, respectively), but not at lower temperatures. Similarly, enzyme reactivity at pH 4.5 was lower than that at pH 8.5 at 10, 15, and 25°C (P=0.0009, 0.0007, 0.0005, respectively), with a near-significant trend at 20°C (P=0.0023), and exhibited a nearly significant depression in response to temperature at 25°C compared to that at pH 6.5 (P=0.0015). Our results suggest that exoenzymatic cellulose decomposition with warming may be more enhanced in soil systems exhibiting higher pH. This work highlights the importance of soil solution pH as a driver of temperature sensitivity of substrate decay, and adds a level of complexity for developing accurate predictions of soil carbon cycling with climate change.

  3. Systems Characterization of Temperature, Ph and Electrical Conductivity in Aerobic Biodegradation of Wheat Biomass at Differing Mixing Rates

    NASA Technical Reports Server (NTRS)

    Calhoun, M.; Trotman, A.; Aglan, H.

    1998-01-01

    The purpose of this preliminary study is to observe and relate the rate of mixing to pH and electrical conductivity in an aerobic, continuously stirred bioreactor. The objective is to use data collected from successive experiments as a means of a system characterization. Tests were conducted to obtain these data using a continuously stirred 20 L Cytostir glass reaction vessel as a bioreactor operated without built-in temperature or pH control. The tests were conducted on the lab bench at ambient temperatures. The substrate in the bioreactor was ground wheat biomass obtained from the Biomass Production Chamber at NASA Kennedy Space Center. In this study, the data reflect characteristics of the native (uninoculated) systems as well as inoculated systems. In the native systems, it was found that pi levels became stable after approximately 2 to 3 days. The electrical conductivity levels for the native systems tended to decrease over time. In contrast, ion activity was increased after the introduction of bacteria into the system. This could be correlated with the release of nutrients, due to the activity of the bacteria. Also, there were slight increases in pH in the inoculated system, a result which is expected for a system with no active pr controls. The data will be used to test a mathematical model in an automated system.

  4. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata.

    PubMed

    Li, Shiguo; Huang, Jingliang; Liu, Chuang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-02-02

    Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture.

  5. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    NASA Astrophysics Data System (ADS)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  6. Citric acid production by Koji fermentation using banana peel as a novel substrate.

    PubMed

    Karthikeyan, Alagarsamy; Sivakumar, Nallusamy

    2010-07-01

    The growing demand for citric acid and the current need for alternative sources have encouraged biotechnologists to search for novel and economical substrates. Koji fermentation was conducted using the peels of banana (Musa acuminata) as an inexpensive substrate for the production of citric acid using Aspergillus niger. Various crucial parameters that affect citric acid production such as moisture content, temperature, pH, inoculum level and incubation time were quantified. Moisture (70%), 28 degrees C temperature, an initial pH 3, 10(8) spores/ml as inoculum and 72h incubation was found to be suitable for maximum citric acid production by A. niger using banana peel as a substrate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Decolorization of Anthraquinonic Dyes from Textile Effluent Using Horseradish Peroxidase: Optimization and Kinetic Study

    PubMed Central

    Šekuljica, Nataša Ž.; Prlainović, Nevena Ž.; Stefanović, Andrea B.; Žuža, Milena G.; Čičkarić, Dragana Z.; Mijin, Dušan Ž.; Knežević-Jugović, Zorica D.

    2015-01-01

    Two anthraquinonic dyes, C.I. Acid Blue 225 and C.I. Acid Violet 109, were used as models to explore the feasibility of using the horseradish peroxidase enzyme (HRP) in the practical decolorization of anthraquinonic dyes in wastewater. The influence of process parameters such as enzyme concentration, hydrogen peroxide concentration, temperature, dye concentration, and pH was examined. The pH and temperature activity profiles were similar for decolorization of both dyes. Under the optimal conditions, 94.7% of C.I. Acid Violet 109 from aqueous solution was decolorized (treatment time 15 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.4 mM, dye concentration 30 mg/L, pH 4, and temperature 24°C) and 89.36% of C.I. Acid Blue 225 (32 min, enzyme concentration 0.15 IU/mL, hydrogen peroxide concentration 0.04 mM, dye concentration 30 mg/L, pH 5, and temperature 24°C). The mechanism of both reactions has been proven to follow the two substrate ping-pong mechanism with substrate inhibition, revealing the formation of a nonproductive or dead-end complex between dye and HRP or between H2O2 and the oxidized form of the enzyme. Both chemical oxygen demand and total organic carbon values showed that there was a reduction in toxicity after the enzymatic treatment. This study verifies the viability of use of horseradish peroxidase for the wastewaters treatment of similar anthraquinonic dyes. PMID:25685837

  8. The studies of FT-IR and CD spectroscopy on catechol oxidase I from tobacco

    NASA Astrophysics Data System (ADS)

    Xiao, Hourong; Xie, Yongshu; Liu, Qingliang; Xu, Xiaolong; Shi, Chunhua

    2005-10-01

    A novel copper-containing enzyme named COI (catechol oxidase I) has been isolated and purified from tobacco by extracting acetone-emerged powder with phosphate buffer, centrifugation at low temperature, ammonium sulfate fractional precipitation, and column chromatography on DEAE-sephadex (A-50), sephadex (G-75), and DEAE-celluse (DE-52). PAGE, SDS-PAGE were used to detect the enzyme purity, and to determine its molecular weight. Then the secondary structures of COI at different pH, different temperatures and different concentrations of guanidine hydrochloride (GdnHCl) were studied by the FT-IR, Fourier self-deconvolution spectra, and circular dichroism (CD). At pH 2.0, the contents of both α-helix and anti-parallel β-sheet decrease, and that of random coil increases, while β-turn is unchanged compared with the neutral condition (pH 7.0). At pH 11.0, the results indicate that the contents of α-helix, anti-parallel β-sheet and β-turn decrease, while random coil structure increases. According to the CD measurements, the relative average fractions of α-helix, anti-parallel β-sheet, β-turn/parallel β-sheet, aromatic residues and disulfide bond, and random coil/γ-turn are 41.7%, 16.7%, 23.5%, 11.3%, and 6.8% at pH 7.0, respectively, while 7.2%, 7.7%, 15.2%, 10.7%, 59.2% at pH 2.0, and 20.6%, 9.5%, 15.2%, 10.5%, 44.2% at pH 11.0. Both α-helix and random coil decrease with temperature increasing, and anti-parallel β-sheet increases at the same time. After incubated in 6 mol/L guanidine hydrochloride for 30 min, the fraction of α-helix almost disappears (only 1.1% left), while random coil/γ-turn increases to 81.8%, which coincides well with the results obtained through enzymatic activity experiment.

  9. Improvement of GaN light-emitting diodes with surface-treated Al-doped ZnO transparent Ohmic contacts by holographic photonic crystal

    NASA Astrophysics Data System (ADS)

    Yang, W. F.; Liu, Z. G.; Xie, Y. N.; Cai, J. F.; Liu, S.; Gong, H.; Wu, Z. Y.

    2012-06-01

    This letter presents a holographic photonic crystal (H-PhC) Al-doped ZnO (AZO) transparent Ohmic contact layer on p-GaN to increase the light output of GaN-based LEDs without destroying the p-GaN. The operating voltage of the PhC LEDs at 20 mA was almost the same as that of the typical planar AZO LEDs. While the resultant PhC LED devices exhibited significant improvements in light extraction, up to 1.22 times that of planar AZO LEDs without PhC integration. Temperature dependence of the integrated photoluminescence intensity indicates that this improvement can be attributed to the increased extraction efficiency due to the surface modification. These results demonstrate that the surface-treated AZO layer by H-PhCs is suitable for fabricating high-brightness GaN-based LEDs.

  10. Ab initio determination of effective electron-phonon coupling factor in copper

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-04-01

    The electron temperature Te dependent electron density of states g (ε), Fermi-Dirac distribution f (ε), and electron-phonon spectral function α2 F (Ω) are computed as prerequisites before achieving effective electron-phonon coupling factor Ge-ph. The obtained Ge-ph is implemented into a molecular dynamics (MD) and two-temperature model (TTM) coupled simulation of femtosecond laser heating. By monitoring temperature evolutions of electron and lattice subsystems, the result utilizing Ge-ph from ab initio calculation shows a faster decrease of Te and increase of Tl than those using Ge-ph from phenomenological treatment. The approach of calculating Ge-ph and its implementation into MD-TTM simulation is applicable to other metals.

  11. Correlations among Stress Parameters, Meat and Carcass Quality Parameters in Pigs

    PubMed Central

    Dokmanovic, Marija; Baltic, Milan Z.; Duric, Jelena; Ivanovic, Jelena; Popovic, Ljuba; Todorovic, Milica; Markovic, Radmila; Pantic, Srdan

    2015-01-01

    Relationships among different stress parameters (lairage time and blood level of lactate and cortisol), meat quality parameters (initial and ultimate pH value, temperature, drip loss, sensory and instrumental colour, marbling) and carcass quality parameters (degree of rigor mortis and skin damages, hot carcass weight, carcass fat thickness, meatiness) were determined in pigs (n = 100) using Pearson correlations. After longer lairage, blood lactate (p<0.05) and degree of injuries (p<0.001) increased, meat became darker (p<0.001), while drip loss decreased (p<0.05). Higher lactate was associated with lower initial pH value (p<0.01), higher temperature (p<0.001) and skin blemishes score (p<0.05) and more developed rigor mortis (p<0.05), suggesting that lactate could be a predictor of both meat quality and the level of preslaughter stress. Cortisol affected carcass quality, so higher levels of cortisol were associated with increased hot carcass weight, carcass fat thickness on the back and at the sacrum and marbling, but also with decreased meatiness. The most important meat quality parameters (pH and temperature after 60 minutes) deteriorated when blood lactate concentration was above 12 mmol/L. PMID:25656214

  12. Modeling the oxidation kinetics of sono-activated persulfate's process on the degradation of humic acid.

    PubMed

    Songlin, Wang; Ning, Zhou; Si, Wu; Qi, Zhang; Zhi, Yang

    2015-03-01

    Ultrasound degradation of humic acid has been investigated in the presence of persulfate anions at ultrasonic frequency of 40 kHz. The effects of persulfate anion concentration, ultrasonic power input, humic acid concentration, reaction time, solution pH and temperature on humic acid removal efficiency were studied. It is found that up to 90% humic acid removal efficiency was achieved after 2 h reaction. In this system, sulfate radicals (SO₄⁻·) were considered to be the mainly oxidant to mineralize humic acid while persulfate anion can hardly react with humic acid directly. A novel kinetic model based on sulfate radicals (SO₄⁻·) oxidation was established to describe the humic acid mineralization process mathematically and chemically in sono-activated persulfate system. According to the new model, ultrasound power, persulfate dosage, solution pH and reaction temperature have great influence on humic acid degradation. Different initial concentration of persulfate anions and humic acid, ultrasonic power, initial pH and reaction temperature have been discussed to valid the effectiveness of the model, and the simulated data showed new model had good agreement with the experiments data.

  13. Removal of toxic chemicals from water with activated carbon

    USGS Publications Warehouse

    Dawson, V.K.; Marking, L.L.; Bills, T.D.

    1976-01-01

    Activated carbon was effective in removing fish toxicants and anesthetics from water solutions. Its capacity to adsorb 3-trifluoromethyl-4-nitrophenol (TFM), antimycin, NoxfishA? (5% rotenone), Dibrorms, juglone, MSa??222, and benzocaine ranged from 0.1 to 64 mg per gram of carbon. The adsorptive capacity (end point considered as a significant discharge) of activated carbon for removal of TFM was determined at column depths of 15, 30, and 60 cm; temperatures of 7, 12, 17, and 22 C; pH's of 6.5, 7.5, 8.5, and 9.5; and flow rates of 50, 78, 100, 200, and 940 ml/min. Adsorptive capacity increased when the contact time was increased by reducing the flow rate or increasing the column depth. The adsorptive capacity was not significantly influenced by temperature but was substantially higher at pH 6.5 than at the other pH's tested. A practical and efficient filter for purifying chemically treated water was developed.

  14. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements.

    PubMed

    Clarke, Jennifer S; Achterberg, Eric P; Rérolle, Victoire M C; Abi Kaed Bey, Samer; Floquet, Cedric F A; Mowlem, Matthew C

    2015-10-15

    The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 μs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel fluorescence spots with improved response time and apparent pKa values closer to the pH of surface ocean waters. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Temperature and pH effects on feeding and growth of Antarctic krill

    NASA Astrophysics Data System (ADS)

    Saba, G.; Bockus, A.; Fantasia, R. L.; Shaw, C.; Sugla, M.; Seibel, B.

    2016-02-01

    Rapid warming in the Western Antarctic Peninsula (WAP) region is occurring, and is associated with an overall decline in primary, secondary, and higher trophic levels, including Antarctic krill (Euphausia superba), a key species in Antarctic food webs. Additionally, there are predictions that by the end of this century the Southern Ocean will be one of the first regions to be affected by seawater chemistry changes associated with enhanced CO2. Ocean acidification and warming may act synergistically to impair animal performance, which may negatively impact Antarctic krill. We assessed the effects of temperature (ambient temperature, ambient +3 degrees C) and pH (Experiment 1 = 8.0, 7.7; Experiment 2 = 8.0, 7.5, 7.1) on juvenile Antarctic krill feeding and growth (growth increment and intermolt period) during incubation experiments at Palmer Station, Antarctica. Food intake was lower in krill exposed to reduced pH. Krill intermolt period (IMP) was significantly lower in the elevated temperature treatments (16.9 days) compared to those at 0 degrees (22.8 days). Within the elevated temperature treatment, minor increases in IMP occurred in krill exposed reduced pH. Growth increment (GI) was lower with decreased pH at the first molt, and this was exacerbated at elevated temperature. However, differences in GI were eliminated between the first and second molts suggesting potential ability of Antarctic krill to acclimate to changes in temperature and pH. Reductions in juvenile krill growth and feeding under elevated temperature and reduced pH are likely caused by higher demands for internal acid-base regulation or a metabolic suppression. However, the subtlety of these feeding and growth responses leaves an open question as to how krill populations will tolerate prolonged future climate change in the Antarctic.

  16. A novel approach for stabilizing fresh urine by calcium hydroxide addition

    PubMed Central

    Randall, Dyllon G.; Krähenbühl, Manuel; Köpping, Isabell; Larsen, Tove A.; Udert, Kai M.

    2016-01-01

    In this study, we investigated the prevention of enzymatic urea hydrolysis in fresh urine by increasing the pH with calcium hydroxide (Ca(OH)2) powder. The amount of Ca(OH)2 dissolving in fresh urine depends significantly on the composition of the urine. The different urine compositions used in our simulations showed that between 4.3 and 5.8 g Ca(OH)2 dissolved in 1 L of urine at 25 °C. At this temperature, the pH at saturation is 12.5 and is far above the pH of 11, which we identified as the upper limit for enzymatic urea hydrolysis. However, temperature has a strong effect on the saturation pH, with higher values being achieved at lower temperatures. Based on our results, we recommend a dosage of 10 g Ca(OH)2 L−1 of fresh urine to ensure solid Ca(OH)2 always remains in the urine reactor which ensures sufficiently high pH values. Besides providing sufficient Ca(OH)2, the temperature has to be kept in a certain range to prevent chemical urea hydrolysis. At temperatures below 14 °C, the saturation pH is higher than 13, which favors chemical urea hydrolysis. We chose a precautionary upper temperature of 40 °C because the rate of chemical urea hydrolysis increases at higher temperatures but this should be confirmed with kinetic studies. By considering the boundaries for pH and temperature developed in this study, urine can be stabilized effectively with Ca(OH)2 thereby simplifying later treatment processes or making direct use easier. PMID:27055084

  17. Temperature range and degree of acidity growth of isolate of indigenous bacteria on fermented feed “fermege”

    NASA Astrophysics Data System (ADS)

    Isnawati; Trimulyono, G.

    2018-01-01

    Fermege is a fermented feed of ruminants, especially goats made from water hyacinth (Eichhornia crassipes). Temperature range and pH need to know in making starter formula for acceleration of fermentation process at making ruminant feed made from this materials. The starter formula expired period can be extended by adjusting starter storage temperature and pH of the starter. This research was aimed to find the temperature and pH range for the growth of isolate of indigenous bacteria “fermege.” This research is an explorative research conducted by growing bacteria isolate indigenous fermege in liquid medium with various pH and incubation in various temperature. Bacterial population was calculated based on turbidity of bacterial suspension with turbidometer. The stages of this research were to isolate the bacteria present in the fermege, purify the isolates found, and then grow the isolates in a liquid medium with various pH values. The isolated bacterials were incubated at different temperature variations. The cell population density of the isolates was calculated after incubation for 24 hours. The results showed there were eight indigenous bacterial isolates. All isolates can grow in the pH range 6 and 7. Two isolates (Bacillus subtilis and B. pumilus) can grow at 4°C. All isolates obtained can grow at a temperature of 30°C. Isolates Bacillus badius, B. subtilis, B. cereus, Pseudomonas stutzeri and P. diminuta can grow at 50°C. Based on research indicates that indigenous fermege bacterial isolates have the ability to grow in the neutral pH range and temperature range between 4°C and 50°C.

  18. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature.

    PubMed

    Farinas, Cristiane S; Loyo, Marcel Moitas; Baraldo, Anderson; Tardioli, Paulo W; Neto, Victor Bertucci; Couri, Sonia

    2010-12-31

    Ethanol from lignocellulosic biomass has been recognized as one of the most promising alternatives for the production of renewable and sustainable energy. However, one of the major bottlenecks holding back its commercialization is the high costs of the enzymes needed for biomass conversion. In this work, we studied the enzymes produced from a selected strain of Aspergillus niger under solid state fermentation. The cellulase and xylanase enzymatic cocktail was characterized in terms of pH and temperature by using response surface methodology. Thermostability and kinetic parameters were also determined. The statistical analysis of pH and temperature effects on enzymatic activity showed a synergistic interaction of these two variables, thus enabling to find a pH and temperature range in which the enzymes have a higher activity. The results obtained allowed the construction of mathematical models used to predict endoglucanase, β-glucosidase and xylanase activities under different pH and temperature conditions. Optimum temperature values for all three enzymes were found to be in the range between 35°C and 60°C, and the optimum pH range was found between 4 and 5.5. The methodology employed here was very effective in estimating enzyme behavior under different process conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Interacting Effects of pH, Temperature, and Salt Concentration on Growth and Survival of Vibrio parahaemolyticus

    PubMed Central

    Beuchat, L. R.

    1973-01-01

    Thermal resistance and minimal pH and temperature conditions for growth of Vibrio parahaemolyticus in artificial media containing 3 and 7% sodium chloride were studied. Growth was observed at pH 4.8 and at 5 C. PMID:4715562

  20. Effects of dietary L-carnitine and ractopamine HCl on the metabolic response to handling in finishing pigs.

    PubMed

    James, B W; Tokach, M D; Goodband, R D; Nelssen, J L; Dritz, S S; Owen, K Q; Woodworth, J C; Sulabo, R C

    2013-09-01

    Two experiments (384 pigs; C22 × L326; PIC) were conducted to determine the interactive effect of dietary L-carnitine and ractopamine HCl (RAC) on the metabolic response of pigs to handling. Experiments were arranged as split-split plots with handling as the main plot and diets as subplots (4 pens per treatment). Dietary L-carnitine (0 or 50 mg/kg) was fed from 36.0 kg to the end of the experiments (118 kg), and RAC (0 or 20 mg/kg) was fed the last 4 wk of each experiment. At the end of each experiment, 4 pigs per pen were assigned to 1 of 2 handling treatments. Gently handled pigs were moved at a moderate walking pace 3 times through a 50-m course and up and down a 15° loading ramp. Aggressively handled pigs were moved as fast as possible 3 times through the same course, but up and down a 30° ramp, and shocked 3 times with an electrical prod. Blood was collected immediately before and after handling in Exp. 1 and immediately after and 1 h after handling in Exp. 2. Feeding RAC increased (P < 0.01) ADG and G:F, but there was no effect (P > 0.10) of L-carnitine on growth performance. In Exp. 1 and 2, aggressive handling increased (P < 0.01) blood lactate dehydrogenase (LDH), lactate, cortisol, and rectal temperature and decreased blood pH. In Exp. 1, there was a RAC × handling interaction (P < 0.06) for the difference in pre- and posthandling blood pH and rectal temperature. Aggressively handled pigs fed RAC had decreased blood pH and increased rectal temperature compared with gently handled pigs, demonstrating the validity of the handling model. Pigs fed RAC had increased (P < 0.01) LDH compared with pigs not fed RAC. Pigs fed L-carnitine had increased (P < 0.03) lactate compared with pigs not fed L-carnitine. In Exp. 2, pigs fed RAC had lower (P < 0.02) blood pH immediately after handling, but pH returned to control levels by 1 h posthandling. Lactate, LDH, cortisol, and rectal temperature changes from immediately posthandling to 1 h posthandling were not different (P > 0.10) between pigs fed L-carnitine and those fed RAC, indicating that L-carnitine did not decrease recovery time of pigs subjected to aggressive handling. These results suggest that pigs fed 20 mg/kg of RAC are more susceptible to stress when handled aggressively compared with pigs not fed RAC. Dietary L-carnitine fed in combination with RAC did not alleviate the effects of stress. This research emphasizes the importance of using proper animal handling techniques when marketing finishing pigs fed RAC.

  1. Macroalgal response to a warmer ocean with higher CO2 concentration.

    PubMed

    Hernández, Celso A; Sangil, Carlos; Fanai, Alessandra; Hernández, José Carlos

    2018-05-01

    Primary production and respiration rates were studied for six seaweed species (Cystoseira abies-marina, Lobophora variegata, Pterocladiella capillacea, Canistrocarpus cervicornis, Padina pavonica and Corallina caespitosa) from Subtropical North-East Atlantic, to estimate the combined effects of different pH and temperature levels. Macroalgal samples were cultured at temperature and pH combinations ranging from current levels to those predicted for the next century (19, 21, 23, 25 °C, pH: 8.1, 7.7 and 7.4). Decreased pH had a positive effect on short-term production of the studied species. Raised temperatures had a more varied and species dependent effect on short term primary production. Thermophilic algae increased their production at higher temperatures, while temperate species were more productive at lower or present temperature conditions. Temperature also affected algal respiration rates, which were higher at low temperature levels. The results suggest that biomass and productivity of the more tropical species in coastal ecosystems would be enhanced by future ocean conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Interaction of phosphine with Si(100) from core-level photoemission and real-time scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Deng-Sung; Ku, Tsai-Shuan; Chen, Ru-Ping

    2000-01-01

    In this paper, we investigate the interaction of phosphine (PH3) on the Si(100)-2×1 surface at temperatures between 635 and 900 K. The hydrogen desorption, growth mode, surface morphology, and chemical composition and ordering of the surface layer are examined by synchrotron radiation core-level photoemission and real-time high-temperature scanning tunneling microscopy. The P 2p core-level spectra indicate that decomposition of PHn is complete above ~550 K and the maximum P coverage is strongly influenced by the growth temperature, which governs the coverage of H-terminated sites. The scanning tunneling microscopy (STM) images taken at real time during PH3 exposure indicate that a surface phosphorus atom readily and randomly displaces one Si atom from the substrate. The ejected Si diffuses, nucleates, and incorporates itself into islands or step edges, leading to similar growth behavior as that found in Si chemical vapor deposition. Line defects both perpendicular and parallel to the dimer rows are observed on the nearly P-saturated surface. Perpendicular line defects act as a strain relief mechanism. Parallel line defects result from growth kinetics. STM images also indicate that incorporating a small amount of phosphorus eliminates the line defects in the Si(100)-2×n surface.

  3. Post-deposition annealing temperature dependence TiO{sub 2}-based EGFET pH sensor sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zulkefle, M. A., E-mail: alhadizulkefle@gmail.com; Rahman, R. A., E-mail: rohanieza.abdrahman@gmail.com; Yusoff, K. A., E-mail: khairul.aimi.yusof@gmail.com

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO{sub 2} sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO{sub 2} deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO{sub 2} thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFETmore » as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.« less

  4. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels.

    PubMed

    Jabeen, Suraya; Maswal, Masrat; Chat, Oyais Ahmad; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2016-03-01

    Synthesis and structural characterization of hydrogels composed of sodium alginate, polyethylene oxide and acrylic acid with cyclodextrin as the hydrocolloid prepared at different pH values is presented. The hydrogels synthesized show significant variations in rheological properties, drug encapsulation capability and release kinetics. The hydrogels prepared at lower pH (pH 1) are more elastic, have high tensile strength and remain almost unaffected by varying temperature or frequency. Further, their Ibuprofen encapsulation capacity is low and releases it slowly. The hydrogel prepared at neutral pH (pH 7) is viscoelastic, thermo-reversible and also exhibits sol-gel transition on applying frequency and changing temperature. It shows highest Ibuprofen encapsulation capacity and also optimum drug release kinetics. The hydrogel prepared at higher pH (pH 12) is more viscous, has low tensile strength, is unstable to change in temperature and has fast drug release rate. The study highlights the pH responsiveness of three composite alginate hydrogels prepared under different conditions to be employed in drug delivery applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Investigation Into Shelf Life of Fresh Dates and Pistachios in a Package Modified With Nano-Silver.

    PubMed

    Mousavi, Fateme Peyro; Pour, Hasan Hashemi; Nasab, Amir Heidari; Rajabalipour, Ali A; Barouni, Mohsen

    2015-09-18

    The aim of this study was to apply polymer films containing silver nanoparticles as a new method for increasing the shelf life and preserving the quality of export/commercial products of Kerman Province and determine the ideal temperature for preserving these products. After preparing nano-composite films containing silver nanoparticles (3% and 5% by weight), Mazafati dates were packed in them and stored with their control samples under four temperatures. In the second series, the films were filled with fresh pistachios and stored at four temperatures. In date samples, after 2, 7, 21 and 53 days of storing the samples were examined under the certified test of Iran Institute of Industrial Standard for Dates, which includes pH, TSS, acidity and reducing sugars tests. In pistachio samples the color values and market-friendly quality were evaluated after 1, 2, 3, 6, 7 and 8 days of storage. In date samples, the pH value decreased with increasing acidity in 3 and 5 wt% of nano-silver and their control samples. In addition, in 5 wt% samples the acidity was higher than that in 3% samples, with pH being lower in the controls at almost all the intervals. Furthermore, pH values in 5% samples were higher in comparison with 3 wt% samples and controls. The amount of reducing sugars in the control samples was lower than those in 3 and 5 wt% samples. In relation to pistachio samples, the damage over time was greater in sample stored under higher temperatures. The maximum shelf life of the dates packaged in 5 wt% of silver nano-powder was 53 days and the best temperature to store samples was determined at 4°C. Packages containing nano-silver increased shelf life of fresh pistachios, with the best temperatures being 25°C and 0°C.

  6. Investigation Into Shelf Life of Fresh Dates and Pistachios in a Package Modified With Nano-Silver

    PubMed Central

    Mousavi, Fateme Peyro; Pour, Hasan Hashemi; Nasab, Amir Heidari; Rajabalipour, Ali A.; Barouni, Mohsen

    2016-01-01

    Aims: The aim of this study was to apply polymer films containing silver nanoparticles as a new method for increasing the shelf life and preserving the quality of export/commercial products of Kerman Province and determine the ideal temperature for preserving these products. Methods: After preparing nano-composite films containing silver nanoparticles (3% and 5% by weight), Mazafati dates were packed in them and stored with their control samples under four temperatures. In the second series, the films were filled with fresh pistachios and stored at four temperatures. In date samples, after 2, 7, 21 and 53 days of storing the samples were examined under the certified test of Iran Institute of Industrial Standard for Dates, which includes pH, TSS, acidity and reducing sugars tests. In pistachio samples the color values and market-friendly quality were evaluated after 1, 2, 3, 6, 7 and 8 days of storage. Results: In date samples, the pH value decreased with increasing acidity in 3 and 5 wt% of nano-silver and their control samples. In addition, in 5 wt% samples the acidity was higher than that in 3% samples, with pH being lower in the controls at almost all the intervals. Furthermore, pH values in 5% samples were higher in comparison with 3 wt% samples and controls. The amount of reducing sugars in the control samples was lower than those in 3 and 5 wt% samples. In relation to pistachio samples, the damage over time was greater in sample stored under higher temperatures. Conclusion: The maximum shelf life of the dates packaged in 5 wt% of silver nano-powder was 53 days and the best temperature to store samples was determined at 4°C. Packages containing nano-silver increased shelf life of fresh pistachios, with the best temperatures being 25°C and 0°C. PMID:26652097

  7. Thermophysical properties of carboxylic and amino acid buffers at subzero temperatures: relevance to frozen state stabilization.

    PubMed

    Sundaramurthi, Prakash; Suryanarayanan, Raj

    2011-06-02

    Macromolecules and other thermolabile biologicals are often buffered and stored in frozen or dried (freeze-dried) state. Crystallization of buffer components in frozen aqueous solutions and the consequent pH shifts were studied in carboxylic (succinic, malic, citric, tartaric acid) and amino acid (glycine, histidine) buffers. Aqueous buffer solutions were cooled from room temperature (RT) to -25 °C and the pH of the solution was measured as a function of temperature. The thermal behavior of frozen solutions was investigated by differential scanning calorimetry (DSC), and the crystallized phases were identified by X-ray diffractometry (XRD). Based on the solubility of the neutral species of each buffer system over a range of temperatures, it was possible to estimate its degree of supersaturation at the subambient temperature of interest. This enabled us to predict its crystallization propensity in frozen systems. The experimental and the predicted rank orderings were in excellent agreement. The malate buffer system was robust with no evidence of buffer component crystallization and hence negligible pH shift. In the citrate and tartrate systems, at initial pH < pK(a)(2), only the most acidic buffer component (neutral form) crystallized on cooling, causing an increase in the freeze-concentrate pH. In glycine buffer solutions, when the initial pH was ∼3 units < isoelectric pH (pI = 5.9), β-glycine crystallization caused a small decrease in pH, while a similar effect but in the opposite direction was observed when the initial pH was ∼3 units > pI. In the histidine buffer system, depending on the initial pH, either histidine or histidine HCl crystallized.

  8. [Kinetics of Cu crossing human erythrocyte membrane].

    PubMed

    Dun, Zhu Ci Ren

    2014-12-01

    This study was aimed to investigate various factors influencing the proceduction of Cu(II) crossing human erythrocyte membrane, including concentration of Cu²⁺, pH value of the medium, temperature and time of incubation, and to derive kinetic equation of Cu(II) crossing human erythrocyte membrane. Suspension red blood cells were incubated by Cu²⁺, then content of Cu²⁺ crossed human erythrocyte membrane was determined by atomic absorption spectrometry under various conditions after digestion. The results showed that content of Cu²⁺ crossed human erythrocyte membrane increased with the increase of extracellular Cu²⁺ and enhancement of incubation temperature, and the content of Cu²⁺ crossed human erythrocyte membrane showed a increasing tendency when pH reached to 6.2-7.4, and to maximum at pH 7.4, then gradually decreased at range of pH 7.4-9.2. It is concluded that the Cu²⁺ crossing human erythrocyte has been confirmed to be the first order kinetics characteristics within 120 min, and the linear equation is 10³ × Y = 0.0497t +6.5992.

  9. Kinetics and mechanism of imazosulfuron hydrolysis.

    PubMed

    Morrica, P; Barbato, F; Della Iacovo, R; Seccia, S; Ungaro, F

    2001-08-01

    Knowledge of the kinetics and pathways of hydrolytic degradation is crucial to the prediction of the fate and transport mechanism of chemicals. This work first describes the kinetics of the chemical hydrolysis of imazosulfuron, a new sulfonylurea herbicide, and evaluates the results to propose a degradation pathway. The hydrolysis of imazosulfuron has been studied in aqueous buffers both within the pH range 1.9-12.3 at ambient temperature (thermostated at 25 +/- 2 degrees C) and at pH 3.6 within the temperature range of 15-55 degrees C. The hydrolysis rate of imazosulfuron was characterized by a first-order kinetics, pH- and temperature-dependent, and accelerated by acidic conditions and higher temperatures. The calculated half-lives at pH 4.5 and 5.9 were 36.5 and 578 days, respectively. At pH 6.6, 7.4, 9.2, and 12.3 no significant change in imazosulfuron concentration was observed after 150 days. Half-lives were much lower at pH <4 (= imazosulfuron pK(a)), at which they ranged from 3.3 to 6.3 days. Moreover, a change in temperature from 15 to 25 degrees C in acidic conditions (pH 3.6) decreased the half-life of imazosulfuron by a factor of approximately 4.0; in any case, a 3-5-fold increase in the rate of hydrolysis was found for each 10 degrees C increase in temperature. In acidic conditions the only hydrolysis products were the two molecules resulting from the cleavage of the sulfonylurea bridge.

  10. Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix.

    PubMed

    Beelders, Theresa; de Beer, Dalene; Kidd, Martin; Joubert, Elizabeth

    2018-01-01

    Mangiferin, a C-glucosyl xanthone, abundant in mango and honeybush, is increasingly targeted for its bioactive properties and thus to enhance functional properties of food. The thermal degradation kinetics of mangiferin at pH3, 4, 5, 6 and 7 were each modeled at five temperatures ranging between 60 and 140°C. First-order reaction models were fitted to the data using non-linear regression to determine the reaction rate constant at each pH-temperature combination. The reaction rate constant increased with increasing temperature and pH. Comparison of the reaction rate constants at 100°C revealed an exponential relationship between the reaction rate constant and pH. The data for each pH were also modeled with the Arrhenius equation using non-linear and linear regression to determine the activation energy and pre-exponential factor. Activation energies decreased slightly with increasing pH. Finally, a multi-linear model taking into account both temperature and pH was developed for mangiferin degradation. Sterilization (121°C for 4min) of honeybush extracts dissolved at pH4, 5 and 7 did not cause noticeable degradation of mangiferin, although the multi-linear model predicted 34% degradation at pH7. The extract matrix is postulated to exert a protective effect as changes in potential precursor content could not fully explain the stability of mangiferin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum.

    PubMed Central

    Wiegel, J; Ljungdahl, L G; Rawson, J R

    1979-01-01

    Thirteen strains of a strict anaerobic, extreme thermophilic bacterium were isolated from soil samples of moderate temperature, from a sewage plant in Georgia, and from hot springs in Utah and Wyoming. They were identified as strains of Clostridium thermohydrosulfuricum. The guanosine + cytosine content (moles percent) was 37.6 (determined by buoyant density) and 34.1 (determined by melting temperature). All strains required a factor present in yeast extract or tryptone growth. Growth characteristics were as follows: a pH range of 5 to 9, with the optimum between 6.9 to 7.5, in a temperature range of 40 to 78 degrees C, with the optimum at 68 degrees C. The doubling time, when grown on glucose at temperature and pH optima, was 1.2 h. The main products of glucose fermentation were ethanol, lactate, acetate, CO2, and H2. The fermentation was inhibited by H2. Formation of spores occurred easily on glucose-agar medium or when cultures growing at temperatures above 65 degrees C were allowed to cool to temperature below 55 degrees C. C. thermohydrosulfuricum occurs widely distributed in the natural environment. PMID:39062

  12. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-01-17

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures.

    PubMed

    Sahinkaya, Erkan; Ozkaya, Bestamin; Kaksonen, Anna H; Puhakka, Jaakko A

    2007-04-15

    The applicability of a fluidized-bed reactor (FBR)-based sulfate reducing bioprocess was investigated for the treatment of iron-containing (40-90 mg/L) acidic wastewater at low (8 degrees C) and high (65 degrees C) temperatures. The FBRs operated at low and high temperatures were inoculated with cultures of sulfate-reducing bacteria (SRB) originally enriched from arctic and hot mining environments, respectively. Ethanol was supplemented as carbon and electron source for SRB. At 8 degrees C, ethanol oxidation and sulfate reduction rates increased steadily and reached 320 and 265 mg/L.day, respectively, after 1 month of operation. After this point, the rates did not change significantly during 130 days of operation. Despite the complete ethanol oxidation and iron precipitation, the average sulfate reduction efficiency was 35 +/- 4% between days 30 and 130 due to the accumulation of acetate. At 65 degrees C, a rapid startup was observed as 99.9, 46, and 29% ethanol, sulfate, acetate removals, in respective order, were observed after 6 days. The feed pH was decreased gradually from its initial value of 6 to around 3.7 during 100 days of operation. The wastewater pH of 4.3-4.4 was neutralized by the alkalinity produced in acetate oxidation and the average effluent pH was 7.8 +/- 0.8. As in the low temperature FBR, acetate accumulated. Hence, the oxidation of acetate is the rate-limiting step in the sulfidogenic ethanol oxidation by thermophilic and psychrotrophic SRB. The sulfate reduction rate is three times and acetate oxidation rate is four times higher at 65 degrees C than at 8 degrees C. (c) 2006 Wiley Periodicals, Inc.

  14. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk

    PubMed Central

    Dong, Peng; Georget, Erika S.; Aganovic, Kemal; Heinz, Volker; Mathys, Alexander

    2015-01-01

    Ultra high pressure homogenization (UHPH) opens up new areas for dynamic high pressure assisted thermal sterilization of liquids. Bacillus amyloliquefaciens spores are resistant to high isostatic pressure and temperature and were suggested as potential surrogate for high pressure thermal sterilization validation. B. amyloliquefaciens spores suspended in PBS buffer (0.01 M, pH 7.0), low fat milk (1.5%, pH 6.7), and whole milk (3.5%, pH 6.7) at initial concentration of ~106 CFU/mL were subjected to UHPH treatments at 200, 300, and 350 MPa with an inlet temperature at ~80°C. Thermal inactivation kinetics of B. amyloliquefaciens spores in PBS and milk were assessed with thin wall glass capillaries and modeled using first-order and Weibull models. The residence time during UHPH treatments was estimated to determine the contribution of temperature to spore inactivation by UHPH. No sublethal injury was detected after UHPH treatments using sodium chloride as selective component in the nutrient agar medium. The inactivation profiles of spores in PBS buffer and milk were compared and fat provided no clear protective effect for spores against treatments. Treatment at 200 MPa with valve temperatures lower than 125°C caused no reduction of spores. A reduction of 3.5 log10CFU/mL of B. amyloliquefaciens spores was achieved by treatment at 350 MPa with a valve temperature higher than 150°C. The modeled thermal inactivation and observed inactivation during UHPH treatments suggest that temperature could be the main lethal effect driving inactivation. PMID:26236296

  15. A dual pH and temperature responsive polymeric fluorescent sensor and its imaging application in living cells.

    PubMed

    Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong

    2012-05-11

    A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012

  16. Optimization study for Pb(II) and COD sequestration by consortium of sulphate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Verma, Anamika; Bishnoi, Narsi R.; Gupta, Asha

    2017-09-01

    In this study, initial minimum inhibitory concentration (MIC) of Pb(II) ions was analysed to check optimum concentration of Pb(II) ions at which the growth of sulphate-reducing consortium (SRC) was found to be maximum. 80 ppm of Pb(II) ions was investigated as minimum inhibitory concentration for SRC. Influence of electron donors such as lactose, sucrose, glucose and sodium lactate was examined to investigate best carbon source for growth and activity of sulphate-reducing bacteria. Sodium lactate was found to be the prime carbon source for SRC. Later optimization of various parameters was executed using Box-Behnken design model of response surface methodology to explore the effectiveness of three independent operating variables, namely, pH (5.0-9.0), temperature (32-42 °C) and time (5.0-9.0 days), on dependent variables, i.e. protein content, precipitation of Pb(II) ions, and removal of COD by SRC biomass. Maximum removal of COD and Pb(II) was observed to be 91 and 98 %, respectively, at pH 7.0 and temperature 37 °C and incubation time 7 days. According to response surface analysis and analysis of variance, the experimental data were perfectly fitted to the quadratic model, and the interactive influence of pH, temperature and time on Pb(II) and COD removal was highly significant. A high regression coefficient between the variables and response ( r 2 = 0.9974) corroborate eminent evaluation of experimental data by second-order polynomial regression model. SEM and Fourier transform infrared analysis was performed to investigate morphology of PbS precipitates, sorption mechanism and involved functional groups in metal-free and metal-loaded biomass of SRC for Pb(II) binding.

  17. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology

    PubMed Central

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-01-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter’s L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R2) for their absorbance, Hunter’s L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter’s b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter’s b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine. PMID:28401086

  18. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    PubMed

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  19. Integration of Low-Power ASIC and MEMS Sensors for Monitoring Gastrointestinal Tract Using a Wireless Capsule System.

    PubMed

    Arefin, Md Shamsul; Redoute, Jean-Michel; Yuce, Mehmet Rasit

    2018-01-01

    This paper presents a wireless capsule microsystem to detect and monitor the pH, pressure, and temperature of the gastrointestinal tract in real time. This research contributes to the integration of sensors (microfabricated capacitive pH, capacitive pressure, and resistive temperature sensors), frequency modulation and pulse width modulation based interface IC circuits, microcontroller, and transceiver with meandered conformal antenna for the development of a capsule system. The challenges associated with the system miniaturization, higher sensitivity and resolution of sensors, and lower power consumption of interface circuits are addressed. The layout, PCB design, and packaging of a miniaturized wireless capsule, having diameter of 13 mm and length of 28 mm, have successfully been implemented. A data receiver and recorder system is also designed to receive physiological data from the wireless capsule and to send it to a computer for real-time display and recording. Experiments are performed in vitro using a stomach model and minced pork as tissue simulating material. The real-time measurements also validate the suitability of sensors, interface circuits, and meandered antenna for wireless capsule applications.

  20. Changes in cassava toxicity during processing into gari and ijapu--two fermented food products.

    PubMed

    Sokari, T G; Karibo, P S

    1992-01-01

    Grated cassava to which tap water was added at levels of 25%, 50% and 75% (v/w) was held at 30 degrees C, 40 degrees C or 50 degrees C and examined over a 6 h period for cyanide content, pH and titratable acidity (TTA). During the come-up time, i.e. the time between addition of water and attainment of desired holding temperature (between 14 and 47 min), reductions in bound cyanide of ca 54-85% occurred, depending on the level of added water and holding temperature. The corresponding losses for the control samples, to which no water was added, were ca 25-33%. The biggest reduction in the bound cyanide of > 99% (from 89.0 to 0.6 ppm) occurred in grated cassava with 75% added water held at 50 degrees C. There was little or no change in pH during the period of study. The reduction of processing time for certain cassava products based on separation into detoxication and flavour development/fermentation stages is discussed.

  1. Effect of temperature and pH on polygalacturonase production by pectinolytic bacteria Bacillus licheniformis strain GD2a in submerged medium from Raja Nangka (Musa paradisiaca var. formatypica) banana peel waste

    NASA Astrophysics Data System (ADS)

    Widowati, E.; Utami, R.; Mahadjoeno, E.; Saputro, G. P.

    2017-04-01

    The aim of this research were to determine the effect of temperature (45°C, 55°C, 65°C) and pH (5.0; 6.0; 7.0) on the increase of total cell count and polygalacturonase enzyme activity produced from raja nangka banana (Musa paradisiaca var. formatypica) peel waste by pectinolytic bacterial Bacillus licheniformis strain GD2a. This research applied two sample repetition and one analysis repetition. The result showed temperature and pH affect total cell count. The total cell count on 45°C and pH 7 recorded the highest number at 9.469 log cell/ml. Temperature and pH also affected pectin concentration at the end of fermentation. The lowest pectin concentration recorded at 45°C and pH 7 was 0.425 %. The highest enzyme activity recorded at 65°C and pH 7 was 0.204 U/ml. The highest enzyme protein concentration was recorded at 65°C and resulted as 0.310 mg/ml on pH 6. The highest specific activity was 19.527 U/mg at 65°C and pH 7. By this result, could be concluded that optimum condition process on polygalacturonase production was at 65°C and pH 7 because it gave highest enzyme activity result (0,204 U/ml).

  2. Adsorption of Cu(II) on Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated and Carboxylated Fullerenes

    PubMed Central

    Wang, Jing; Li, Zhan; Li, Shicheng; Qi, Wei; Liu, Peng; Liu, Fuqiang; Ye, Yuanlv; Wu, Liansheng; Wang, Lei; Wu, Wangsuo

    2013-01-01

    The adsorption of Cu(II) on oxidized multi-walled carbon nanotubes (oMWCNTs) as a function of contact time, pH, ionic strength, temperature, and hydroxylated fullerene (C60(OH)n) and carboxylated fullerene (C60(C(COOH)2)n) were studied under ambient conditions using batch techniques. The results showed that the adsorption of Cu(II) had rapidly reached equilibrium and the kinetic process was well described by a pseudo-second-order rate model. Cu(II) adsorption on oMWCNTs was dependent on pH but independent of ionic strength. Compared with the Freundlich model, the Langmuir model was more suitable for analyzing the adsorption isotherms. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Cu(II) adsorption on oMWCNTs was spontaneous and endothermic. The effect of C60(OH)n on Cu(II) adsorption of oMWCNTs was not significant at low C60(OH)n concentration, whereas a negative effect was observed at higher concentration. The adsorption of Cu(II) on oMWCNTs was enhanced with increasing pH values at pH < 5, but decreased at pH ≥ 5. The presence of C60(C(COOH)2)n inhibited the adsorption of Cu(II) onto oMWCNTs at pH 4–6. The double sorption site model was applied to simulate the adsorption isotherms of Cu(II) in the presence of C60(OH)n and fitted the experimental data well. PMID:24009683

  3. High concentrations of the carcinogen 2-amino-1-methyl-6-phenylimidazo- [4,5-b]pyridine (PhIP) occur in chicken but are dependent on the cooking method.

    PubMed

    Sinha, R; Rothman, N; Brown, E D; Salmon, C P; Knize, M G; Swanson, C A; Rossi, S C; Mark, S D; Levander, O A; Felton, J S

    1995-10-15

    Heterocyclic aromatic amines (HAAs) are mutagenic and carcinogenic compounds found in meats cooked at high temperatures. Although chicken is consumed in large quantities in the United States, there is little information on its HAA content. The objective of this study was to measure the five predominant HAAs (IQ, MeIQ, MeIQx, DiMeIQx, and PhIP) in chicken cooked by various methods to different degrees of doneness. Chicken breasts were panfried, oven-broiled, or grilled/barbecued. Whole chickens were roasted or stewed. Skinless, boneless chicken breasts were cooked to three degrees of doneness: just until done, well done, or very well done. High levels of PhIP (ranging from 12 to 480 ng/g cooked meat) were found in chicken breasts when panfried, oven-broiled, and grilled/barbecued but not in while roasted or stewed chicken. PhIP concentration increased in skinless, boneless chicken breast with longer cooking time, higher internal temperature, and greater degree of surface browning. PhIP concentration was also high in chicken breasts cooked with skin and bones. MeIQx and DiMeIQx levels increased with the degree of doneness, whereas IQ and MeIQ were not detectable in any of these chicken samples. Certain cooking methods produce PhIP, a known colon and breast carcinogen in rodents and possibly a human carcinogen, at substantially higher levels in chicken than has been reported previously in red meat.

  4. Microsphere morphology tuning and photo-luminescence properties of monoclinic Y2WO6

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Bai, Yulong; Zhang, Junying; Tang, Zilong

    2015-04-01

    Effects of the solution pH value and reaction time on the precursor morphology and photoluminescence properties are investigated for hydrothermally prepared monoclinic Y2WO6 phosphors. In the near-neutral environment, sodium dodecyl benzene sulfonate (SDBS) surfactant forms small microspheres micelles as template to synthesize microspherical precursor. H+ ions concentration affects the arrangement of negative ionic surfactant SDBS. As a result, jujube-liked and popcorn-like loose microspheres formed at low pH value. When the pH value is 5.2 and the hydrothermal reaction time reaches 24 h, respectively, the strongest luminescent intensity can be obtained. Under this condition, the precursor presented regular microsphere with diameter of 4.0 μm. After high-temperature heat treatment, the obtained phosphor particles still exhibit microsphere-like shape. Therefore, we provide an effective method to tune the morphology of Y2WO6 phosphors and study the relationship between morphology and luminescent performance.

  5. Stability of sodium bicarbonate injection 8.4% in syringes over a six-week period in refrigerated temperature.

    PubMed

    Seki, Jack T; Wang, Tian Q; Yip, Paul M; Mazzulli, Tony; Minden, Mark D

    2018-04-01

    Background Dysfunctional central venous catheter prohibits the administration of potential life-saving chemotherapy and the delivery of essential supportive care needs to patients. Sodium bicarbonate injection has been shown to impede against fibrin clot formation and prolong prothrombin time and thrombin clotting time. Sodium bicarbonate injection has been tried as a second-line agent with good results in a small number of patients (internal data not published) when alteplase failed. We assessed whether the pre-filled sodium bicarbonate injection in 5 mL syringes would not only preserve sterility and retain its pH and concentration but also amount to the potential cost savings for future use when stored in a refrigerated environment. Methodology Twelve pre-filled 5 mL syringes were prepared aseptically, of which four each were tested for pH, sodium bicarbonate injection concentration and sterility when stored in refrigerated temperature over a six-week period. A standard pH meter, enzymatic carbon dioxide analyzer, and a 14-day incubation for microbial detection were employed for this study. Results Sodium bicarbonate concentration measured in the form of carbon dioxide ranged from 923 mmol/L or (1846 mosol/L) to 1006 mmol/L or (2012 mosmol/L), and pH ranged from (7.88 to 8.05) were reported over the duration of the study period. The 14-day incubation period resulted in no microbial growth. Conclusion Our study results have indicated that the pH and sodium bicarbonate injection concentration values were stable and within range, comparable to those reported by the manufacturer within the study period. The contents of the subdivided sodium bicarbonate injection 5 mL syringes retained sterility over a 14-day incubation period.

  6. Fast loading ester fluorescent Ca2+ and pH indicators into pollen of Pyrus pyrifolia.

    PubMed

    Qu, Haiyong; Jiang, Xueting; Shi, Zebin; Liu, Lianmei; Zhang, Shaoling

    2012-01-01

    Loading of Ca(2+)-sensitive fluorescent probes into plant cells is an essential step to measure activities of free Ca(2+) ions in cytoplasm with a fluorescent imaging technique. Fluo-3 is one of the most suitable Ca(2+) indicators for CLSM. We loaded pollen with fluo-3/AM at three different temperatures. Fluo-3/AM was successfully loaded into pollen at both low (4°C) and high (37°C) temperatures. However, high loading temperature was best suited for pollen, because germination rate of pollen and growth of pollen tubes were relatively little impaired and loading time was shortened. Moreover, Ca(2+) distribution increased in the three apertures of pollen after hydration and showed a Ca(2+) gradient, similar to the tip of growing pollen tubes. The same protocol can be used with the AM-forms of other fluorescent dyes for effective labeling. When loading BCECF-AM into pollen at high temperature, the pollen did not show a pH gradient after hydration. Ca(2+) activities and fluxes had the same periodicity as pollen germination, but pH did not show the same phase and mostly lagged behind. However, the clear zone was alkaline when pollen tube growth was slowed or stopped and turned acidic when growth recovered. It is likely that apical pH(i) regulated pollen tube growth.

  7. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments.

    PubMed

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-06-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature-diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5-99 °C and a pH range of 1.8-9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R(2) values up to 0.62 for neutral-alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13-20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible.

  8. Effect of pH and temperature on the stability of UV-induced repairable pyrimidine hydrates in DNA.

    PubMed

    O'Donnell, R E; Boorstein, R J; Cunningham, R P; Teebor, G W

    1994-08-23

    UV irradiation of cytosine yields 6-hydroxy-5,6-dihydrocytosine (cytosine hydrate) whether the cytosine is in solution as base, nucleoside, or nucleotide or on the DNA backbone. Cytosine hydrate decomposes by elimination of water, yielding cytosine, or by irreversible deamination, yielding uracil hydrate, which, in turn, decomposes by dehydration yielding uracil. To determine how pH and temperature affect these decomposition reactions, alternating poly(dG-[3H]dC) copolymer was irradiated at 254 nm and incubated under different conditions of pH and temperature. The cytosine hydrate and uracil hydrate content of the DNA was determined by the use of Escherichia coli endonuclease III, which releases pyrimidine hydrates from DNA by virtue of its DNA glycosylase activity. Uracil content was determined by using uracil-DNA glycosylase. The rate of decomposition of cytosine hydrate to cytosine was determined at 4 temperatures at pH 3.1, 5.4, and 7.4. The Ea was determined from the rates by using the Arrhenius equation and proved to be the same at pH 5.4 and 7.4, although the decomposition rate at pH 5.4 was faster at all temperatures. At pH 3.1, the Ea was reduced. These results suggest that the dehydration reaction is affected by two discrete protonations, most probably of the N-3 and the OH group of C-6 of cytosine hydrate. The deamination of cytosine hydrate to uracil hydrate was maximal at pH 3.1 at all temperatures. The doubly protonated cytosine hydrate probably is the common intermediate for both competing decomposition reactions, explaining why cytosine hydrate is prone to deamination at acid pH.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH.

    PubMed

    Begic, Sanela; Worobec, Elizabeth A

    2006-02-01

    Serratia marcescens is a Gram-negative enterobacterium that has become an important opportunistic pathogen, largely due to its high degree of natural antibiotic resistance. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, which is controlled in part by OmpC and OmpF porin proteins. OmpF expression is regulated by micF, an RNA transcript encoded upstream of the ompC gene, which hybridizes with the ompF transcript to inhibit its translation. Regulation of S. marcescens porin gene expression, as well as that of micF, was investigated using beta-galactosidase reporter gene fusions in response to 5, 8 and 10 % sucrose, 1, 5 and 8 mM salicylate, and different pH and temperature values. beta-Galactosidase activity assays revealed that a lower growth temperature (28 degrees C), a more basic pH (pH 8), and an absence of sucrose and salicylate induce the transcription of the ompF gene, whereas the induction of ompC is stimulated at a higher growth temperature (42 degrees C), acidic pH (pH 6), and maximum concentrations of sucrose (10 %) and salicylate (8 mM). In addition, when multiple conditions were tested, temperature had the predominant effect, followed by pH. In this study, it was found that the MicF regulatory mechanism does not play a role in the osmoregulation of the ompF and ompC genes, whereas MicF does repress OmpF expression in the presence of salicylate and high growth temperature, and under low pH conditions.

  10. Elucidation of Environmental Fate of Artificial Sweetener, Aspartame by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Reaction By-Products Presentation type:Poster Section:Ocean Sciences Session:General Contribution Authors:Takashi Teraji (1) Takemitsu Arakaki (2) AGU# 10173629 (1) Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa, 903-0123, Japan (a4269bj@yahoo.co.jp), (2) Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru Nishihara-cho, Okinawa, 903-0123, Japan (arakakit@sci.u-ryukyu.ac.jp)

    NASA Astrophysics Data System (ADS)

    Teraji, T.; Arakaki, T.

    2011-12-01

    Use of artificial sweeteners in drinks and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. In particular, we focused on the fate of aspartame by determining its bimolecular rate constants with hydroxyl radicals at various pH and temperature conditions and reaction by-products. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far was (2.6±1.2)×109 M-1 s-1 at pH = 3.0. Little effect was seen by changing the temperatures between 15 and 40 °C. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, which could be regarded as zero. We will report reaction rate constants at different pHs and reaction by-products which will be analyzed by GC-MS. We will further discuss the fate of aspartame in the coastal environment.

  11. Unfolding of Ubiquitin Studied by Picosecond Time-Resolved Fluorescence of the Tyrosine Residue

    PubMed Central

    Noronha, Melinda; Lima, João C.; Bastos, Margarida; Santos, Helena; Maçanita, António L.

    2004-01-01

    The photophysics of the single tyrosine in bovine ubiquitin (UBQ) was studied by picosecond time-resolved fluorescence spectroscopy, as a function of pH and along thermal and chemical unfolding, with the following results: First, at room temperature (25°C) and below pH 1.5, native UBQ shows single-exponential decays. From pH 2 to 7, triple-exponential decays were observed and the three decay times were attributed to the presence of tyrosine, a tyrosine-carboxylate hydrogen-bonded complex, and excited-state tyrosinate. Second, at pH 1.5, the water-exposed tyrosine of either thermally or chemically unfolded UBQ decays as a sum of two exponentials. The double-exponential decays were interpreted and analyzed in terms of excited-state intramolecular electron transfer from the phenol to the amide moiety, occurring in one of the three rotamers of tyrosine in UBQ. The values of the rate constants indicate the presence of different unfolded states and an increase in the mobility of the tyrosine residue during unfolding. Finally, from the pre-exponential coefficients of the fluorescence decays, the unfolding equilibrium constants (KU) were calculated, as a function of temperature or denaturant concentration. Despite the presence of different unfolded states, both thermal and chemical unfolding data of UBQ could be fitted to a two-state model. The thermodynamic parameters Tm = 54.6°C, ΔHTm = 56.5 kcal/mol, and ΔCp = 890 cal/mol//K, were determined from the unfolding equilibrium constants calculated accordingly, and compared to values obtained by differential scanning calorimetry also under the assumption of a two-state transition, Tm = 57.0°C, ΔHm= 51.4 kcal/mol, and ΔCp = 730 cal/mol//K. PMID:15454455

  12. Structural stability of E. coli transketolase to temperature and pH denaturation.

    PubMed

    Jahromi, Raha R F; Morris, Phattaraporn; Martinez-Torres, Ruben J; Dalby, Paul A

    2011-09-10

    We have previously shown that the denaturation of TK with urea follows a non-aggregating though irreversible denaturation pathway in which the cofactor binding appears to become altered but without dissociating, then followed at higher urea by partial denaturation of the homodimer prior to any further unfolding or dissociation of the two monomers. Urea is not typically present during biocatalysis, whereas access to TK enzymes that retain activity at increased temperature and extreme pH would be useful for operation under conditions that increase substrate and product stability or solubility. To provide further insight into the underlying causes of its deactivation in process conditions, we have characterised the effects of temperature and pH on the structure, stability, aggregation and activity of Escherichia coli transketolase. The activity of TK was initially found to progressively improve after pre-incubation at increasing temperatures. Loss of activity at higher temperature and low pH resulted primarily from protein denaturation and subsequent irreversible aggregation. By contrast, high pH resulted in the formation of a native-like state that was only partially inactive. The apo-TK enzyme structure content also increased at pH 9 to converge on that of the holo-TK. While cofactor dissociation was previously proposed for high pH deactivation, the observed structural changes in apo-TK but not holo-TK indicate a more complex mechanism. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Surface sulfonamide modification of poly(N-isopropylacrylamide)-based block copolymer micelles to alter pH and temperature responsive properties for controlled intracellular uptake.

    PubMed

    Cyphert, Erika L; von Recum, Horst A; Yamato, Masayuki; Nakayama, Masamichi

    2018-06-01

    Two different surface sulfonamide-functionalized poly(N-isopropylacrylamide)-based polymeric micelles were designed as pH-/temperature-responsive vehicles. Both sulfadimethoxine- and sulfamethazine-surface functionalized micelles were characterized to determine physicochemical properties, hydrodynamic diameters, zeta potentials, temperature-dependent size changes, and lower critical solution temperatures (LCST) in both pH 7.4 and 6.8 solutions (simulating both physiological and mild low pH conditions), and tested in the incorporation of a proof-of-concept hydrophobic antiproliferative drug, paclitaxel. Cellular uptake studies were conducted using bovine carotid endothelial cells and fluorescently labeled micelles to evaluate if there was enhanced cellular uptake of the micelles in a low pH environment. Both variations of micelles showed enhanced intracellular uptake under mildly acidic (pH 6.8) conditions at temperatures slightly above their LCST and minimal uptake at physiological (pH 7.4) conditions. Due to the less negative zeta potential of the sulfamethazine-surface micelles compared to sulfadimethoxine-surface micelles, and the proximity of their LCST to physiological temperature (37°C), the sulfamethazine variation was deemed more amenable for clinically relevant temperature and pH-stimulated applications. Nevertheless, we believe both polymeric micelle variations have the capacity to be implemented as an intracellular drug or gene delivery system in response to mildly acidic conditions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1552-1560, 2018. © 2018 Wiley Periodicals, Inc.

  14. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor.

    PubMed

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F = 66.871 + 6.605 pH (F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  15. A long lifetime chemical sensor: study on fluorescence property of fluorescein isothiocyanate and preparation of pH chemical sensor

    NASA Astrophysics Data System (ADS)

    Ma, Li Ying; Wang, Huai You; Xie, Hui; Xu, Li Xiao

    2004-07-01

    The fluorescence property of fluorescein isothiocyanate (FITC) in acid-alkaline medium was studied by spectrofluorimetry. The characteristic of FITC response to hydrogen ion has been examined in acid-alkaline solution. A novel pH chemical sensor was prepared based on the relationship between the relative fluorescence intensity of FITC and pH. The measurement of relative fluorescence intensity was carried out at 362 nm with excitation at 250 nm. The excellent linear relationship was obtained between relative fluorescence intensity and pH in the range of pH 1-5. The linear regression equation of the calibration graph is F=66.871+6.605 pH ( F is relative fluorescence intensity), with a correlation coefficient of linear regression of 0.9995. Effects of temperature, concentration of FITC on the response to hydrogen ion had been examined. It was important that this chemical sensor was long lifetime, and the property of response to hydrogen ion was stable for at least 70 days. This pH sensor can be used for measuring pH value in water solution. The accuracy is 0.01 pH unit. The results obtained by the pH sensor agreed with those by the pH meter. Obviously, this pH sensor is potential for determining pH change real time in biological system.

  16. Whey protein isolate modified by transglutaminase aggregation and emulsion gel properties

    NASA Astrophysics Data System (ADS)

    Qi, Weiwei; Chen, Chong; Liu, Mujun; Yu, Guoping; Cai, Xinghang; Guo, Peipei; Yao, Yuxiu; Mei, Sijie

    2015-07-01

    Whey protein isolate and commercial soybean salad oil were used to produce the WPI emulsion dispersions. The properties of TG-catalyzed emulsion gelation produced from WPI emulsion dispersions were investigated by the amount of TG, temperature, pH and reaction time. Specifically, the texture properties (hardness and springiness), water-holding capacity and rheological properties (G' and G") were assessed. The result of Orthogonal tests showed WPI emulsion can form better hardness and springiness gel when the ratio of TG and WPI was 20U/g, pH 7.5, treatment temperature and time were 50°C and 3 h, respectively. The microstructure of TG emulsion gels was more compact, gel pore is smaller, distribution more uniform, the oil droplets size smaller compared with untreated emulsion gels. Compared to the control of rheological properties, G' and G" were significantly increased and G' > G", results showed that the gel was solid state, and TG speeded up the process of gelation.

  17. Remediation of lead from lead electroplating industrial effluent using sago waste.

    PubMed

    Jeyanthi, G P; Shanthi, G

    2007-01-01

    Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.

  18. Optimization and Performance parameters for adsorption of Cr6+ by microwave assisted carbon from Sterculia foetida shells

    NASA Astrophysics Data System (ADS)

    Gnanasundaram, N.; Loganathan, M.; Singh, A.

    2017-06-01

    Modeling of adsorption of Cr6+ on to activated carbon prepared from Sterculia foetida dried seed shells under different drying techniques namely sun, oven, and microwave drying (450W, 600W, 900W power). Optimization of process parameters such as pH, adsorbent dosage (g/ml), temperature (°C), contact time (min) were evaluated using Central Composite Rotatable Design (CCRD) of Response Surface Methodology (RSM). For batch adsorption studies at pH 3, adsorbent dosage of 1.5 g/ml, temperature 35°C and contact time 90 min were found to be optimum for the system under consideration and Microwave Activated Carbonized Sterculia foetida (MACSF) at 450W was found to be best suited for the adsorption of Cr+6 ions. The system was found to follow Langmuir type monolayer adsorption for the given operational parameters. SEM analysis was used to study the surface morphology of the carbon samples and the effect of pretreatment on carbonization.

  19. Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology.

    PubMed

    Seo, Hyun-Woo; Jung, Eun-Young; Go, Gwang-Woong; Kim, Gap-Don; Joo, Seon-Tea; Yang, Han-Sul

    2015-10-15

    The purpose of this study was to establish optimal conditions for the hydrolysis of bovine plasma protein. Response surface methodology was used to model and optimize responses [degree of hydrolysis (DH), 2,2-diphenyl-1-picrydrazyl (DPPH) radical-scavenging activity and Fe(2+)-chelating activity]. Hydrolysis conditions, such as hydrolysis temperature (46.6-63.4 °C), hydrolysis time (98-502 min), and hydrolysis pH (6.32-9.68) were selected as the main processing conditions in the hydrolysis of bovine plasma protein. Optimal conditions for maximum DH (%), DPPH radical-scavenging activity (%) and Fe(2+)-chelating activity (%) of the hydrolyzed bovine plasma protein, were respectively established. We discovered the following three conditions for optimal hydrolysis of bovine plasma: pH of 7.82-8.32, temperature of 54.1 °C, and time of 338.4-398.4 min. We consequently succeeded in hydrolyzing bovine plasma protein under these conditions and confirmed the various desirable properties of optimal hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Optimization of Fe2+ Removal from Coal Mine Wastewater using Activated Biochar of Colocasia esculenta.

    PubMed

    Banerjee, Soumya; LaminKa-Ot, Augustine; Joshi, S R; Mandal, Tamal; Halder, Gopinath

    2017-09-01

      The present study investigates the sorptive removal of Fe2+ from simulated coal mine waste water using steam activated biochar (SABC) developed from the roots of Colocasia esculenta. The process was optimized by response surface methodology (RSM) under the influence of pH, temperature, adsorbent dosage and contact time at a constant shaking speed of 180 rpm with an initial concentration of 3 mg/L. The uptake performance of the biosorbent was assessed following a 24 full factorial experimental matrix developed by central composite design approach. Adsorbent was characterised by SEM, EDAX, XRD and B.E.T surface area analyzer. Maximum removal of 72.96% of Fe2+ was observed at pH 7.75, temperature 37.5 °C, adsorbent dosage 1.5 g/L for a time period of 180 mins. The study suggested that SABC prepared from roots of Colocasia esculenta could be used as an efficient and cost effective sorbent for removal of Fe2+ from coal mine wastewater.

  1. Preparation and biosorption evaluation of Bacillus subtilis/alginate–chitosan microcapsule

    PubMed Central

    Tong, Ke

    2017-01-01

    The aim of this study was to assess the effect of alginate–chitosan microcapsule on viability characteristics of Bacillus subtilis and the ability of B. subtilis/alginate–chitosan microcapsule to remove uranium ion from aqueous solution. The effects of particle size, chitosan molecular weight and inoculum density on viability characteristics were studied using alginate–chitosan microcapsule-immobilized B. subtilis experiments. In addition, the effects of pH, immobilized spherule dosage, temperature, initial uranium ion concentration and contact time on removal of uranium ion were studied using batch adsorption experiments. The results showed that alginate–chitosan microcapsule significantly improved the viability characteristics of B. subtilis and that B. subtilis/alginate–chitosan microcapsule strongly promoted uranium ion absorption. Moreover, the optimum values of pH was 6; immobilized spherule dosage was 3.5; temperature was 20°C; initial uranium ion concentration was 150 mg/L; contact time was 3 h of uranium ion absorption and the maximum adsorption capacity of uranium ion was 376.64 mg/g. PMID:28223783

  2. Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp.

    PubMed

    Khalaf, Mahmoud A

    2008-09-01

    The potential of Aspergillus niger fungus and Spirogyra sp., a fresh water green algae, was investigated as a biosorbents for removal of reactive dye (Synazol) from its multi component textile wastewater. The results showed that pre-treatment of fungal and algal biomasses with autoclaving increased the removal of dye than pre-treatment with gamma-irradiation. The effects of operational parameters (pH, temperature, biomass concentration and time) on dye removal were examined. The results obtained revealed that dried autoclaved biomass of A. niger and Spirogyra sp. exhibited maximum dye removal (88% and 85%, respectively) at pH3, temperature 30 degrees C and 8 gl(-1)(w/v) biomass conc. after 18h contact time. The stability and efficiency of both organisms in the long-term repetitive operation were also investigated. The results showed that the non-viable biomasses possessed high stability and efficiency of dye removal over 3 repeated batches.

  3. Preparation of chitosan/amine modified diatomite composites and adsorption properties of Hg(II) ions.

    PubMed

    Fu, Yong; Huang, Yue; Hu, Jianshe; Zhang, Zhengjie

    2018-03-01

    A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG 0 and ΔH 0 suggested that the adsorption was a spontaneous exothermic process.

  4. Ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharides from pumpkin (Cucurbita moschata).

    PubMed

    Wu, Hao; Zhu, Junxiang; Diao, Wenchao; Wang, Chengrong

    2014-11-26

    An efficient ultrasound-assisted enzymatic extraction (UAEE) of Cucurbita moschata polysaccharides (CMCP) was established and the CMCP antioxidant activities were studied. The UAEE operating parameters (extraction temperature, ultrasonic power, pH, and liquid-to-material ratio) were optimized using the central composite design (CCD) and the mass transfer kinetic study in UAEE procedure was used to select the optimal extraction time. Enzymolysis and ultrasonication that were simultaneously conducted was selected as the UAEE synergistic model and the optimum extraction conditions with a maximum polysaccharide yield of 4.33 ± 0.15% were as follows: extraction temperature, 51.5 °C; ultrasonic power, 440 W; pH, 5.0; liquid-to-material ratio, 5.70:1 mL/g; and extraction time, 20 min. Evaluation of the antioxidant activity in vitro suggested that CMCP has good potential as a natural antioxidant used in the food or medicine industry because of their high reducing power and positive radical scavenging activity for DPPH radical. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Optimization of trehalose production by a novel strain Brevibacterium sp. SY361.

    PubMed

    Wang, Lei; Huang, Rui; Gu, Guanbin; Fang, Hongying

    2008-10-01

    Trehalose production by a novel strain of Brevibacterium sp. SY361 was optimized in submerged fermentation. Different chemical and physical parameters such as carbon and nitrogen sources, inoculum level, initial pH, incubation temperature, aeration and time-course of fermentation, were studied in order to increase trehalose productivity. An optimal production medium containing 3% (w/v) glucose, 0.9% (v/v) corn steep liquor, 0.5% (w/v) KH(2)PO(4) and 0.4% (w/v) MgSO(4).7 H(2)O was found suitable for trehalose production. An optimal volume of medium in a 500 ml flask was 80 ml. The optimal levels of other parameters were 4.0% (v/v) of inoculum, initial pH of 6.0, incubation temperature of 28-32 degrees C and time-course of 60 h. Optimized parameters gave a maximum trehalose of 12.2 mg/ml with a conversion rate of 58.4%. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Statistical analysis and isotherm study of uranium biosorption by Padina sp. algae biomass.

    PubMed

    Khani, Mohammad Hassan

    2011-06-01

    The application of response surface methodology is presented for optimizing the removal of U ions from aqueous solutions using Padina sp., a brown marine algal biomass. Box-Wilson central composite design was employed to assess individual and interactive effects of the four main parameters (pH and initial uranium concentration in solutions, contact time and temperature) on uranium uptake. Response surface analysis showed that the data were adequately fitted to second-order polynomial model. Analysis of variance showed a high coefficient of determination value (R (2)=0.9746) and satisfactory second-order regression model was derived. The optimum pH and initial uranium concentration in solutions, contact time and temperature were found to be 4.07, 778.48 mg/l, 74.31 min, and 37.47°C, respectively. Maximized uranium uptake was predicted and experimentally validated. The equilibrium data for biosorption of U onto the Padina sp. were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 376.73 mg/g.

  7. Preparation and Antioxidant Activity of Purple Potato Wine

    PubMed Central

    Zhong-hua, Liu; Jie, Guo

    2015-01-01

    Purple potatoes were used as raw material to study the purple potato wine production process and antioxidant activity. This paper analyzed different fermentation time, fermentation temperature, yeast inoculum, initial pH, the initial sugar content on alcohol and anthocyanin contents of purple potato wine by single factor experiments and response surface methodology(RSM). The results showed that the optimum fermentation conditions of purple potato wine were as follows: fermentation temperature was 26oC, yeast inoculum was 0.15%, fermentation time was 7 d, initial pH was 3.0 and initial sugar content was 11 %. Under these conditions the alcohol and anthocyanin contents of purple potato wine could reach 10.55%/Vol and 6.42 μg/mL, respectively. The purple potato wine was purple, bright in colour, pleasant fragrance and pure taste. Prepared purple potato wine had the ability of reducing Fe3+ and scavenging superoxide anion radicals, which meant that purple potato wine had certain antioxidant activity. PMID:26998173

  8. Study of whey fermentation by kefir immobilized on low cost supports using 14C-labelled lactose.

    PubMed

    Soupioni, Magdalini; Golfinopoulos, Aristidis; Kanellaki, Maria; Koutinas, Athanasios A

    2013-10-01

    Brewer's Spent Grains (BSG) and Malt Spent Rootlets (MSR) were used as supports for kefir cells immobilization and the role of lactose uptake rate by kefir in the positive activity of produced biocatalysts during whey fermentation was investigated. Lactose uptake rate by the immobilized cells was recorded using (14)C-labelled lactose and the effect of various conditions (pH, temperature and kind of support) on it and consequently on fermentation time and ethanol production was examined. The results showed that lactose uptake rate was correlated to fermentation rate and increased as temperature was increased up to 30°C at pH 5.5. The same results have been recently noticed by using biocatalysts with Delignified Cellulosic Materials (DCM) and Gluten Pellets (GP), but fermentation time of about 7h by kefir immobilized on DCM and BSG resulted to two fold lower than that on GP and MSR. The highest alcohol concentration was observed by MSR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Modulators of actin-myosin dissociation: basis for muscle type functional differences during fatigue

    PubMed Central

    Karatzaferi, Christina; Adamek, Nancy

    2017-01-01

    The muscle types present with variable fatigue tolerance, in part due to the myosin isoform expressed. However, the critical steps that define “fatigability” in vivo of fast vs. slow myosin isoforms, at the molecular level, are not yet fully understood. We examined the modulation of the ATP-induced myosin subfragment 1 (S1) dissociation from pyrene-actin by inorganic phosphate (Pi), pH, and temperature using a specially modified stopped-flow system that allowed fast kinetics measurements at physiological temperature. We contrasted the properties of rabbit psoas (fast) and bovine masseter (slow) myosins (obtained from samples collected from New Zealand rabbits and from a licensed abattoir, respectively, according to institutional and national ethics permits). To identify ATP cycling biochemical intermediates, we assessed ATP binding to a preequilibrated mixture of actomyosin and variable [ADP], pH (pH 7 vs. pH 6.2), and Pi (zero, 15, or 30 added mM Pi) in a range of temperatures (5 to 45°C). Temperature and pH variations had little, if any, effect on the ADP dissociation constant (KADP) for fast S1, but for slow S1, KADP was weakened with increasing temperature or low pH. In the absence of ADP, the dissociation constant for phosphate (KPi) was weakened with increasing temperature for fast S1. In the presence of ADP, myosin type differences were revealed at the apparent phosphate affinity, depending on pH and temperature. Overall, the newly revealed kinetic differences between myosin types could help explain the in vivo observed muscle type functional differences at rest and during fatigue. PMID:28931538

  10. Temperature Dependent Effects of Elevated CO2 on Shell Composition and Mechanical Properties of Hydroides elegans: Insights from a Multiple Stressor Experiment

    PubMed Central

    Chan, Vera B. S.; Thiyagarajan, Vengatesen; Lu, Xing Wen; Zhang, Tong; Shih, Kaimin

    2013-01-01

    The majority of marine benthic invertebrates protect themselves from predators by producing calcareous tubes or shells that have remarkable mechanical strength. An elevation of CO2 or a decrease in pH in the environment can reduce intracellular pH at the site of calcification and thus interfere with animal’s ability to accrete CaCO3. In nature, decreased pH in combination with stressors associated with climate change may result in the animal producing severely damaged and mechanically weak tubes. This study investigated how the interaction of environmental drivers affects production of calcareous tubes by the serpulid tubeworm, Hydroides elegans. In a factorial manipulative experiment, we analyzed the effects of pH (8.1 and 7.8), salinity (34 and 27‰), and temperature (23°C and 29°C) on the biomineral composition, ultrastructure and mechanical properties of the tubes. At an elevated temperature of 29°C, the tube calcite/aragonite ratio and Mg/Ca ratio were both increased, the Sr/Ca ratio was decreased, and the amorphous CaCO3 content was reduced. Notably, at elevated temperature with decreased pH and reduced salinity, the constructed tubes had a more compact ultrastructure with enhanced hardness and elasticity compared to decreased pH at ambient temperature. Thus, elevated temperature rescued the decreased pH-induced tube impairments. This indicates that tubeworms are likely to thrive in early subtropical summer climate. In the context of climate change, tubeworms could be resilient to the projected near-future decreased pH or salinity as long as surface seawater temperature rise at least by 4°C. PMID:24265732

  11. Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae.

    PubMed

    Lu, Yuyun; Voon, Marilyn Kai Wen; Huang, Dejian; Lee, Pin-Rou; Liu, Shao-Quan

    2017-04-01

    This study investigated the effects of temperature (20 and 30 °C) and pH (pH 3.1, 3.9) on kinetic changes of chemical constituents of the durian wine fermented with Saccharomyces cerevisiae. Temperature significantly affected growth of S. cerevisiae EC-1118 regardless of pH with a higher temperature leading to a faster cell death. The pH had a more significant effect on ethanol production than temperature with higher production at 20 °C (5.95%, v/v) and 30 °C (5.56%, v/v) at pH 3.9, relative to that at pH 3.1 (5.25 and 5.01%, v/v). However, relatively higher levels of isobutyl alcohol and isoamyl alcohol up to 64.52 ± 6.39 and 56.27 ± 3.00 mg/L, respectively, were produced at pH 3.1 than at pH 3.9 regardless of temperature. In contrast, production of esters was more affected by temperature than pH, where levels of ethyl esters (ethyl esters of octanoate, nonanoate, and decanoate) and acetate esters (ethyl acetate and isoamyl acetate) were significantly higher up to 2.13 ± 0.23 and 4.61 ± 0.22 mg/L, respectively, at 20 °C than at 30 °C. On the other hand, higher temperature improved the reduction of volatile sulfur compounds. This study illustrated that temperature control would be a more effective tool than pH in modulating the resulting aroma compound profile of durian wine.

  12. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste*

    PubMed Central

    Wu, Man-Chang; Sun, Ke-Wei; Zhang, Yong

    2006-01-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 °C to 20 °C suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions of 8.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 °C) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation; (3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation. PMID:16502503

  13. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH.

    PubMed

    Baril, Eugénie; Coroller, Louis; Couvert, Olivier; Leguérinel, Ivan; Postollec, Florence; Boulais, Christophe; Carlin, Frédéric; Mafart, Pierre

    2012-05-01

    Although sporulation environmental factors are known to impact on Bacillus spore heat resistance, they are not integrated into predictive models used to calculate the efficiency of heating processes. This work reports the influence of temperature and pH encountered during sporulation on heat resistance of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 spores. A decrease in heat resistance (δ) was observed for spores produced either at low temperature, at high temperature or at acidic pH. Sporulation temperature and pH maximizing the spore heat resistance were identified. Heat sensitivity (z) was not modified whatever the sporulation environmental factors were. A resistance secondary model inspired by the Rosso model was proposed. Sporulation temperatures and pHs minimizing or maximizing the spore heat resistance (T(min(R)), T(opt(R)), T(max(R)), pH(min(R)) and pH(opt(R))) were estimated. The goodness of the model fit was assessed for both studied strains and literature data. The estimation of the sporulation temperature and pH maximizing the spore heat resistance is of great interest to produce spores assessing the spore inactivation in the heating processes applied by the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  15. Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH.

    PubMed

    Camp, Emma F; Smith, David J; Evenhuis, Chris; Enochs, Ian; Manzello, Derek; Woodcock, Stephen; Suggett, David J

    2016-05-25

    Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats. © 2016 The Author(s).

  16. Acclimatization to high-variance habitats does not enhance physiological tolerance of two key Caribbean corals to future temperature and pH

    PubMed Central

    Smith, David J.; Evenhuis, Chris; Enochs, Ian; Manzello, Derek; Woodcock, Stephen; Suggett, David J.

    2016-01-01

    Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50–100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats. PMID:27194698

  17. Optimisation of the reaction conditions for the production of cross-linked starch with high resistant starch content.

    PubMed

    Kahraman, Kevser; Koksel, Hamit; Ng, Perry K W

    2015-05-01

    The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 °C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 °C and pH 12. In the case of CL corn starch, the optimum condition was 70 °C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Investigating the Implementation of ZnO Nanoparticles as a Tunable UV Detector for Different Skin Types

    NASA Astrophysics Data System (ADS)

    Mosayebi, Pegah; Dorranian, Davoud; Behzad, Kasra

    A facile chemical reduction method was used to synthesize ZnO nanoparticles (NPs) in ethylene glycol solvent at two different calcination temperatures. As a result of variation in the calcination temperature, ZnO NPs with two different sizes were achieved. The NPs were investigated for their structural and optical characteristics using X-ray diffraction and ultraviolet (UV)-Vis spectroscopy. The synthesized ZnO NPs exhibited a hexagonal structure with sizes of 46 and 65nm. The synthesized NPs were then used to investigate dye photocatalytic behavior of products as a tunable UV detector for different skin types. The dye degradation and decolorization of methylene blue in the presence of ZnO NP, following UV radiation as a function of time, were studied at different pH levels. The optical absorption spectra were then taken every 15min for all samples. The UV-Vis spectroscopy spectra revealed that optical absorption of solution was decreased upon UV exposure as a function of time. Photocatalytic reaction indicated that the dye degradation and decolorization rate were accelerated with the increase of pH level. Therefore, a tunable UV detector for different skin types could be engineered by varying the pH level of solution to avoid human skin burning.

  19. Optimization of Pumpkin Oil Recovery by Using Aqueous Enzymatic Extraction and Comparison of the Quality of the Obtained Oil with the Quality of Cold-Pressed Oil

    PubMed Central

    Roszkowska, Beata; Czaplicki, Sylwester; Tańska, Małgorzata

    2016-01-01

    Summary The study was carried out to optimize pumpkin oil recovery in the process of aqueous extraction preceded by enzymatic maceration of seeds, as well as to compare the quality of the obtained oil to the quality of cold-pressed pumpkin seed oil. Hydrated pulp of hulless pumpkin seeds was macerated using a 2% (by mass) cocktail of commercial pectinolytic, cellulolytic and proteolytic preparations (Rohapect® UF, Rohament® CL and Colorase® 7089). The optimization procedure utilized response surface methodology based on Box- -Behnken plan of experiment. The optimized variables of enzymatic pretreatment were pH, temperature and maceration time. The results showed that the pH value, temperature and maceration time of 4.7, 54 °C and 15.4 h, respectively, were conducive to maximize the oil yield up to 72.64%. Among these variables, the impact of pH was crucial (above 73% of determined variation) for oil recovery results. The oil obtained by aqueous enzymatic extraction was richer in sterols, squalene and tocopherols, and only slightly less abundant in carotenoids than the cold-pressed one. However, it had a lower oxidative stability, with induction period shortened by approx. 30% in relation to the cold-pressed oil. PMID:28115898

  20. Derived and thiourea-functionalized silica for cadmium removal: isotherm, kinetic and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Omotunde, Iyanu; Okoronkwo, Afamefuna; Oluwashina, Olugbenga

    2018-03-01

    The present study explored the feasibility of using derived and thiourea-functionalized silica as adsorbent for the removal of cadmium under different experimental conditions. Effects of various parameters such as function of point of zero charge (pHPZC), solution pH, sorbent-sorbate resident time and ratio, concentration and temperature were investigated. The sorption of cadmium followed the pseudo-second-order rate kinetics. Thermodynamic studies revealed that the sorption of cadmium was endothermic and spontaneous, with good affinity toward the sorbent. Various isotherm models, viz. Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Harkins-Jura, and Halsey isotherms were used to analyze the equilibrium data at different temperatures. The Freundlich, Halsey, Langmuir, and Temkin models were found to be in good agreement with the experimental data with high R 2, low RMSE, and low χ 2 values. The results show that the sorption capacity increases with an increase in solution temperature from 28 to 65 °C. The maximum sorption capacity calculated from Langmuir isotherm was 27.55 and 28.41 mg g-1 for derived and thiourea-functionalized silica, respectively, at optimum condition of pH 5 and contact time of 120 min.

  1. Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124.

    PubMed

    de Brito, Aila Riany; Santos Reis, Nadabe Dos; Silva, Tatielle Pereira; Ferreira Bonomo, Renata Cristina; Trovatti Uetanabaro, Ana Paula; de Assis, Sandra Aparecida; da Silva, Erik Galvão Paranhos; Aguiar-Oliveira, Elizama; Oliveira, Julieta Rangel; Franco, Marcelo

    2017-11-26

    Endoglucanase production by Aspergillus oryzae ATCC 10124 cultivated in rice husks or peanut shells was optimized by experimental design as a function of humidity, time, and temperature. The optimum temperature for the endoglucanase activity was estimated by a univariate analysis (one factor at the time) as 50°C (rice husks) and 60°C (peanut shells), however, by a multivariate analysis (synergism of factors), it was determined a different temperature (56°C) for endoglucanase from peanut shells. For the optimum pH, values determined by univariate and multivariate analysis were 5 and 5.2 (rice husk) and 5 and 7.6 (peanut shells). In addition, the best half-lives were observed at 50°C as 22.8 hr (rice husks) and 7.3 hr (peanut shells), also, 80% of residual activities was obtained between 30 and 50°C for both substrates, and the pH stability was improved at 5-7 (rice hulls) and 6-9 (peanut shells). Both endoglucanases obtained presented different characteristics as a result of the versatility of fungi in different substrates.

  2. The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction

    USGS Publications Warehouse

    Jaisi, Deb P.; Eberl, Dennis D.; Dong, Hailiang; Kim, Jinwook

    2011-01-01

    The formation of illite through the smectite-to-illite (S-I) reaction is considered to be one of the most important mineral reactions occurring during diagenesis. In biologically catalyzed systems, however, this transformation has been suggested to be rapid and to bypass the high temperature and long time requirements. To understand the factors that promote the S-I reaction, the present study focused on the effects of pH, temperature, solution chemistry, and aging on the S-I reaction in microbially mediated systems. Fe(III)-reduction experiments were performed in both growth and non-growth media with two types of bacteria: mesophilic (Shewanella putrefaciens CN32) and thermophilic (Thermus scotoductus SA-01). Reductive dissolution of NAu-2 was observed and the formation of illite in treatment with thermophilic SA-01 was indicated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). A basic pH (8.4) and high temperature (65°C) were the most favorable conditions for the formation of illite. A long incubation time was also found to enhance the formation of illite. K-nontronite (non-permanent fixation of K) was also detected and differentiated from the discrete illite in the XRD profiles. These results collectively suggested that the formation of illite associated with the biologically catalyzed smectite-to-illite reaction pathway may bypass the prolonged time and high temperature required for the S-I reaction in the absence of microbial activity.

  3. Stability of alemtuzumab solutions at room temperature.

    PubMed

    Goldspiel, Justin T; Goldspiel, Barry R; Grimes, George J; Yuan, Peng; Potti, Gopal

    2013-03-01

    The 24-hour stability of alemtuzumab solutions prepared at concentrations not included in the product label and stored in glass or polyolefin containers at room temperature was evaluated. Triplicate solutions of alemtuzumab (6.67, 40, and 120 μg/mL) in 0.9% sodium chloride were prepared in either glass bottles or polyolefin containers and stored at room temperature under normal fluorescent lighting conditions. The solutions were analyzed by a validated stability-indicating high-performance liquid chromatography (HPLC) assay at time zero and 8, 14, and 24 hours after preparation; solution pH values were measured and the containers visually inspected at all time points. Stability was defined as the retention of ≥90% of the initial alemtuzumab concentration. HPLC analysis indicated that the percentage of the initial alemtuzumab concentration retained was >90% for all solutions evaluated, with no significant changes over the study period. The most dilute alemtuzumab solution (6.67 μg/mL) showed some degradation (91% of the initial concentration retained at hour 24), whereas the retained concentration was >99% for all other preparations throughout the study period. Solution pH values varied by drug concentration but did not change significantly over 24 hours. No evidence of particle formation was detected in any solution by visual inspection at any time during the study. Solutions of alemtuzumab 6.67 μg/mL stored in glass bottles and solutions of 40 and 120 μg/mL stored in polyolefin containers were stable for at least 24 hours at room temperature.

  4. The subcutaneous inoculation of pH 6 antigen mutants of Yersinia pestis does not affect virulence and immune response in mice.

    PubMed

    Anisimov, Andrey P; Bakhteeva, Irina V; Panfertsev, Evgeniy A; Svetoch, Tat'yana E; Kravchenko, Tat'yana B; Platonov, Mikhail E; Titareva, Galina M; Kombarova, Tat'yana I; Ivanov, Sergey A; Rakin, Alexander V; Amoako, Kingsley K; Dentovskaya, Svetlana V

    2009-01-01

    Two isogenic sets of Yersinia pestis strains were generated, composed of wild-type strains 231 and I-1996, their non-polar pH 6(-) mutants with deletions in the psaA gene that codes for its structural subunit or the whole operon, as well as strains with restored ability for temperature- and pH-dependent synthesis of adhesion pili or constitutive production of pH 6 antigen. The mutants were generated by site-directed mutagenesis of the psa operon and subsequent complementation in trans. It was shown that the loss of synthesis or constitutive production of pH 6 antigen did not influence Y. pestis virulence or the average survival time of subcutaneously inoculated BALB/c naïve mice or animals immunized with this antigen.

  5. Complexing Agents and pH Influence on Chemical Durability of Type I Molded Glass Containers.

    PubMed

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-01-01

    Among the factors that affect the glass surface chemical durability, pH and complexing agents present in aqueous solution have the main role. Glass surface attack can be also related to the delamination issue causing glass particles' appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed. The present study emphasizes the possible synergy between a few complexing agents with pH on borosilicate glass chemical durability.Hydrolytic attack was performed in small-volume 23 mL type I glass containers autoclaved according to the European Pharmacopoeia or United States Pharmacopeia for 1 h at 121 °C, in order to enhance the chemical attack due to time, temperature, and the unfavorable surface/volume ratio. Solutions of 0.048 M or 0.024 M (M/L) of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid), together with sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ±0.05 units at fixed values 5.5, 6.6, 7, 7.4, 8, and 9 by LiOH diluted solution.Because silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by inductively coupled plasma atomic emission spectrophotometry. The work was completed by the analysis of the silicon release in the worst attack conditions of molded glass, soda lime type II glass, and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by scanning electron microscopy was finally performed to check for the surface status after the worst chemical attack condition by citric acid. LAY ABSTRACT: Glass, like every packaging material, can have some usage limits, mainly in basic pH solutions. The issue of glass surface degradation particles that appear in vials (delamination) has forced a number of drug product recalls in recent years. To prevent such situations, pharmaceutical and biopharmaceutical manufacturers need to understand the reasons for accelerate surface glass corrosion mainly in the case of injectables.Some drugs can contain active components with known ability to corrode glass silica networks. Sometimes these ingredients are dissolved in an alkaline medium that dramatically increases the glass corrosion and potentially causes the issue. As this action is strongly affected by time and temperature, flaking may become visible only after a long storage time. The purpose of this investigation is to verify the borosilicate glass chemical durability during controlled conditions of time and temperature when in contact with testing solutions containing different complexing agents by varying the pH. Si concentration in the extract solution is taken as an index of glass dissolution during constant autoclaving conditions for 1 h at 121 °C, which simulates approximately five years of contact at room temperature.Acetate, citrate, ethylenediaminetetraacetic acid (EDTA), phosphate, and glutarate 0.048 M or 0.024 M solutions were used at increasing pH from 5.5 to 9.0. The chemical durability of two borosilicate tubing glass vials of different glass compositions were compared with the molded one in the worst attack conditions by citric acid. Even if no delamination issue has been experienced by this study in type I molded and tubing containers, the conclusions developed can provide pharmaceutical manufacturers with useful information to prevent glass delamination risk in their processes. © PDA, Inc. 2017.

  6. Laboratory investigations of stable carbon and oxygen isotope ratio data enhance monitoring of CO2 underground

    NASA Astrophysics Data System (ADS)

    Barth, Johannes A. C.; Myrttinen, Anssi; Becker, Veith; Nowak, Martin; Mayer, Bernhard

    2014-05-01

    Stable carbon and oxygen isotope data play an important role in monitoring CO2 in the subsurface, for instance during carbon capture and storage (CCS). This includes monitoring of supercritical and gaseous CO2 movement and reactions under reservoir conditions and detection of potential CO2 leakage scenarios. However, in many cases isotope data from field campaigns are either limited due to complex sample retrieval or require verification under controlled boundary conditions. Moreover, experimentally verified isotope fractionation factors are also accurately known only for temperatures and pressures lower than commonly found in CO2 reservoirs (Myrttinen et al., 2012). For this reason, several experimental series were conducted in order to investigate effects of elevated pressures, temperatures and salinities on stable carbon and oxygen isotope changes of CO2 and water. These tests were conducted with a heateable pressure device and with glass or metal gas containers in which CO2 reacted with fluids for time periods of hours to several weeks. The obtained results revealed systematic differences in 13C/12C-distributions between CO2 and the most important dissolved inorganic carbon (DIC) species under reservoir conditions (CO2(aq), H2CO3 and HCO3-). Since direct measurements of the pH, even immediately after sampling, were unreliable due to rapid CO2 de-gassing, one of the key results of this work is that carbon isotope fractionation data between DIC and CO2 may serve to reconstruct in situ pH values. pH values reconstructed with this approach ranged between 5.5 and 7.4 for experiments with 60 bars and up to 120 °C and were on average 1.4 pH units lower than those measured with standard pH electrodes directly after sampling. In addition, pressure and temperature experiments with H2O and CO2 revealed that differences between the oxygen isotope ratios of both phases depended on temperature, water-gas ratios as well as salt contents of the solutions involved. Such systematic knowledge of the extent of oxygen isotope fractionation between H2O and CO2 can help to reconstruct equilibration times, fluid-CO2 ratios as well as temperature and salinity conditions. Isotope results from systematic laboratory studies and the information they provide for assessing in situ reservoir conditions can be transferred to field applications concerning integrity of CO2 reservoirs. They can also apply to natural systems and other industrial uses that involve monitoring of gases in the subsurface under similar pressure and temperature conditions. Reference: Myrttinen, A., Becker, V., Barth, J.A.C., 2012. A review of methods used for equilibrium isotope fractionation investigations between dissolved inorganic carbon and CO2. Earth-Science Reviews, 115(3): 192-199.

  7. Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(VI) decontamination: Performance, modelling, and fractional factorial design

    PubMed Central

    Xu, Jiawen; Wu, Cuiyu; Deng, Jianbin; Liao, Wenwei; Ling, Yuxiang; Yang, Yuanxiu; Zhao, Yina; Zhao, Yunlin; Hu, Xi; Wang, Hui; Liu, Yunguo

    2017-01-01

    A method for grafting ethylenediamine to a magnetic graphene oxide composite (EDA-GO@Fe3O4) was developed for Cr(VI) decontamination. The physicochemical properties of EDA-GO@Fe3O4 were characterized using HRTEM, EDS, FT-IR, TG-DSC, and XPS. The effects of pH, sorbent dose, foreign anions, time, Cr(VI) concentration, and temperature on decontamination process were studied. The solution pH can largely affect the decontamination process. The pseudo-second-order model is suitable for being applied to fit the adsorption processes of Cr(VI) with GO@Fe3O4 and EDA-GO@Fe3O4. The intra-particle diffusion is not the rate-controlling step. Isotherm experimental data can be described using the Freundlich model. The effects of multiple factors on the Cr(VI) decontamination was investigated by a 25−1 fractional factorial design (FFD). The adsorption process can significantly be affected by the main effects of A (pH), B (Cr(VI) concentration), and E (Adsorbent dose). The combined factors of AB (pH × Cr(VI) concentration), AE (pH × Adsorbent dose), and BC (Cr(VI) concentration × Temperature) had larger effects than other factors on Cr(VI) removal. These results indicated that EDA-GO@Fe3O4 is a potential and suitable candidate for treatment of heavy metal wastewater. PMID:29084287

  8. Palmyra palm (Borassus aethiopum Mart.) fruits: novel raw materials for the pectin industry.

    PubMed

    Assoi, Sylvie; Konan, Koffi; Agbo, Georges N; Dodo, Hortense; Holser, Ron; Wicker, Louise

    2017-05-01

    Preventing post-harvest waste of Palmyra palm (Borassus aethiopum Mart.) fruits is possible by recovery of pectin as a value-added ingredient. Extraction conditions on yield and functionality of Palmyra palm pectin was determined at different temperatures and pH values with 30 min extraction time. Palmyra palm fruits contain more than 650 g kg -1 galacturonic acid and produce soft gels with sucrose in acidic media despite a high degree of acetylation (∼5%). Mechanical deformation of pectin gel was similar when extracted at pH 2.5 and 70 °C or under natural pH at room temperature or 70 °C. Pectins isolated at pH 7 exhibited comparable gel softness (G'/G″) with commercial pectin. Palm pectins also showed emulsifying activity greater than 50%, attributed to high protein content of 8 g 100 g -1 . For pectins extracted at pH near 5.2-5.5, molar mass ranged from 3.00 to 3.38 × 10 5 g mol -1 ; intrinsic viscosity ranged from 218 to 297 mL g -1 ; arabinose was the main neutral sugar; ζ-potential ranged from -23 to -25 mV. Palm fruit offers an inexpensive raw material to extract pectin in environmentally friendly and economical way and yield a pectin with unique gelling, viscosifying and emulsifying properties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Structural, morphological and steady state photoluminescence spectroscopy studies of red Eu(3+)-doped Y2O3 nanophosphors prepared by the sol-gel method.

    PubMed

    Lamiri, Lyes; Guerbous, Lakhdar; Samah, Madani; Boukerika, Allaoua; Ouhenia, Salim

    2015-12-01

    Europium trivalent (Eu(3+))-doped Y2O3 nanopowders of different concentrations (0.5, 2.5, 5 or 7 at.%) were synthesized by the sol-gel method, at different pH values (pH 2, 5 or 8) and annealing temperatures (600 °C, 800 °C or 1000 °C). The nanopowders samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) and steady state photoluminescence spectroscopy. The effect of pH of solution and annealing temperatures on structural, morphological and photoluminescence properties of Eu(3+)-doped Y2O3 were studied and are discussed. It was found that the average crystallite size of the nanopowders increased with increasing pH and annealing temperature values. The Y2O3:Eu(3+) material presented different morphology and its evolution depended on the pH value and the annealing temperature. Activation energies at different pH values were determined and are discussed. Under ultraviolet (UV) light excitation, Y2O3:Eu(3+) showed narrow emission peaks corresponding to the (5)D0- (7) FJ (J = 0, 1, 2 and 3) transitions of the Eu(3+) ion, with the most intense red emission at 611 assigned to forced electric dipole (5)D0 → (7)F2. The emission intensity became more intense with increasing annealing temperature and pH values, related to the improvement of crystalline quality. For the 1000 °C annealing temperature, the emission intensity presented a maximum at pH 5 related to the uniform cubic-shaped particles. It was found that for lower annealing temperatures (small crystallite size) the CTB (charge transfer band) position presented a red shift. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Humboldt's spa: microbial diversity is controlled by temperature in geothermal environments

    PubMed Central

    Sharp, Christine E; Brady, Allyson L; Sharp, Glen H; Grasby, Stephen E; Stott, Matthew B; Dunfield, Peter F

    2014-01-01

    Over 200 years ago Alexander von Humboldt (1808) observed that plant and animal diversity peaks at tropical latitudes and decreases toward the poles, a trend he attributed to more favorable temperatures in the tropics. Studies to date suggest that this temperature–diversity gradient is weak or nonexistent for Bacteria and Archaea. To test the impacts of temperature as well as pH on bacterial and archaeal diversity, we performed pyrotag sequencing of 16S rRNA genes retrieved from 165 soil, sediment and biomat samples of 36 geothermal areas in Canada and New Zealand, covering a temperature range of 7.5–99 °C and a pH range of 1.8–9.0. This represents the widest ranges of temperature and pH yet examined in a single microbial diversity study. Species richness and diversity indices were strongly correlated to temperature, with R2 values up to 0.62 for neutral–alkaline springs. The distributions were unimodal, with peak diversity at 24 °C and decreasing diversity at higher and lower temperature extremes. There was also a significant pH effect on diversity; however, in contrast to previous studies of soil microbial diversity, pH explained less of the variability (13–20%) than temperature in the geothermal samples. No correlation was observed between diversity values and latitude from the equator, and we therefore infer a direct temperature effect in our data set. These results demonstrate that temperature exerts a strong control on microbial diversity when considered over most of the temperature range within which life is possible. PMID:24430481

  11. Maximizing the production of butyric acid from food waste as a precursor for ABE-fermentation.

    PubMed

    Stein, Ullrich Heinz; Wimmer, B; Ortner, M; Fuchs, W; Bochmann, G

    2017-11-15

    The current study reports on the maximization of butyric acid production from food waste using a mixed microbial fermentation. In semi-continuous fermentations the effect of three different pH values (5.5, 7.0 and 9.0), three different temperatures (37°C, 55°C and 70°C) and two levels of hydraulic retention time (HRT, 2days and 6days) on the formation of butyric acid as well as total volatile fatty acid production (tVFA) were investigated. Overall, pH5.5 provided the lowest butyric acid concentrations regardless of the temperature and the HRT. At mesophilic temperature (37°C) alkaline conditions (pH9.0) lead to a strong incline of tVFA as well as butyric acid concentration probably due to a decreased solubilization of the substrate. However, most efficient in terms of butyric acid production was the fermentation conducted at 55°C and pH7 where a butyric acid concentrations of 10.55g/L (HRT 2days) and 13.00g/L (HRT 6days) were achieved. Additional experiments at 70°C showed declining butyric acid production. Increase of the HRT from 2days to 6days provided an increment of butyric acid concentration throughout almost all experimental settings. However, regarding volumetric productivity the increase in concentration does not compensate for the bigger reactor volume required to establish a higher HRT. At pH7 and 55°C the resulting volumetric production rates were 5.27g/L∗d at a HRT 2days and only 2.17g/L∗d at a HRT of 6days. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nanosilica-based molecularly imprinted polymer nanoshell for specific recognition and determination of rhodamine B in red wine and beverages.

    PubMed

    Long, Zerong; Xu, Weiwei; Lu, Yi; Qiu, Hongdeng

    2016-09-01

    A new and facile rhodamine B (RhB)-imprinted polymer nanoshell coating for SiO2 nanoparticles was readily prepared by a combination of silica gel modification and molecular surface imprinting. The RhB-imprinted polymers (RhB-MIPs) were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and UV-vis spectroscopy; the binding properties and selectivity of these MIPs were investigated in detail. The uniformly imprinted nanoparticles displayed a rather thin shell thickness (23nm) with highly effective recognition sites, showing homogenous distribution and monolayer adsorption. The maximum MIP adsorption capacity (Qm) was as high as 45.2mgg(-1), with an adsorption equilibrium time of about 15min at ambient temperature. Dynamic rebinding experiments showed that chemical adsorption is crucial for RhB binding to RhB-MIPs. The adsorption isotherm for RhB-MIPs binding could also be described by the Langmuir equation at different temperatures and pH values. Increasing temperature led to an enhanced Qm, a decreased dissociation constant (K'd), and a more negative free energy (ΔG), indicating that adsorption is favored at higher temperatures. Moreover, the adsorption capacity of RhB was remarkably affected by pH. At pH>7, the adsorption of RhB was driven by hydrogen bonding interactions, while at pH<7 electrostatic forces were dominant. Additionally, the MIPs also showed specific recognition of RhB from the standard mixture solution containing five structurally analogs. This method was also successfully employed to determine RhB content in red wine and beverages using three levels of spiking, with recoveries in the range of 91.6-93.1% and relative standard deviations lower than 4.1%. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Measured solubilities and speciations from oversaturation experiments of neptunium, plutonium, and americium in UE-25p No. 1 well water from the Yucca Mountain region: Milestone report 3329-WBS1.2.3.4.1.3.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitsche, H.; Roberts, K.; Prussin, T.

    1994-04-01

    Solubility and speciation are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are a part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, and {sup 241}Am{sup 3+}/Nd{sup 3+} in a modified UE-25p No. 1 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at two different temperatures (25{degree}more » and 60{degree}C) and three pH values (6.0, 7.0, 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations significantly decreased with increasing temperature at pH 6 and 7. The concentration at pH 8.5 hardly decreased at all with increasing temperature. At both temperatures the concentrations were highest at pH 8.5, lowest at pH 7, and in between at pH 6. For the americium/neodymium solutions, the solubility decreased significantly with increasing temperature and increased somewhat with increasing pH.« less

  14. Photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary: kinetics and effects of temperature, pH, and salinity.

    PubMed

    Song, Guisheng; Li, Yijie; Hu, Suzheng; Li, Guiju; Zhao, Ruihua; Sun, Xin; Xie, Huixiang

    2017-06-21

    The kinetics and temperature-, pH- and salinity-dependences of photobleaching of chromophoric dissolved organic matter (CDOM) in the Yangtze River estuary (YRE) were evaluated using laboratory solar-simulated irradiation and compared to those of Suwannee River humic substances (SRHSs). Nearly all CDOM in water at the head of the estuary (headwater herein) was photobleachable in both summer and winter, while significant fractions of CDOM (13-29%) were resistant to photobleaching in saltier waters. The photobleaching rate constant in the headwater was 25% higher in summer than that in winter. The absorbed photon-based photobleaching efficiency (PE) increased with temperature following the linear Arrhenius equation. For a 20 °C increase in temperature, PE increased by ∼45% in the headwater and by 70-81% in the saltier waters. PE for YRE samples exhibited minima at pH from 6 to 7 and increased with both lower and higher pH values, contrasting the consistent increase in PE with pH shown by SRHSs. No consistent effect of salinity on PE was observed for both SRHSs and YRE samples. Photobleaching increased the spectral slope coefficient between 275 nm and 295 nm in summer, consistent with the behavior of SRHSs, but decreased it in winter, implying a difference in the molecular composition of chromophores between the two seasons. Temperature, salinity, and pH modified the photoalteration of the spectral shape but their effects varied spatially and seasonally. This study demonstrates that CDOM quality, temperature, and pH should be incorporated into models involving quantification of photobleaching.

  15. Environmental regulation of the long polar fimbriae 2 of enterohemorrhagic Escherichia coli O157:H7

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Rojas-López, Maricarmen; Medrano-López, Abraham; Nuñez-Reza, Karen J.; Puente, José Luis; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2014-01-01

    The molecular mechanisms controlling expression of the Long Polar Fimbriae 2 (Lpf2) of enterohemorrhagic E. coli (EHEC) O157:H7 were evaluated. Primer extension was used to locate the lpfA2 transcriptional start site in EHEC strain EDL933 at 171 bp upstream of the lpfA2 start codon. Semi-quantitative RT-PCR demonstrated that the highest lpfA2 expression occurs between an OD600 of 1.0 and 1.2 in DMEM at pH 6.5 and 37°C. The level of lpfA2 transcription at OD600 1.2 and pH 6.5 was 4-times greater than that at pH 7.2. Although lpfA2 expression was decreased under iron-depleted conditions, its expression was increased in a Ferric-uptake-regulator (Fur) mutant strain. The lpfA2 transcript was 0.7 and 2-times more abundant in wt EHEC grown in DMEM pH 6.5 plus iron and MacConkey broth at 25°C, respectively, than in DMEM at pH 6.5. The lpf2 expression in DMEM pH 6.5 plus iron and bile salts was 2.7-times more abundant and similar to MacConkey. Further, transcription in the EDL933Δfur was 0.6 and 0.8-times higher as compared to the wt strain grown in DMEM pH 6.5 plus iron and MacConkey broth, respectively. Electrophoretic mobility shift assays (EMSA) showed that purified Fur interacts with the lpf2 regulatory region, indicating that Fur-repression is exerted by direct binding to the promoter region. In summary, we demonstrated that the EHEC lpf2 operon is regulated in response to temperature, pH, bile salts and iron, during exponential phase of growth, and controlled by Fur. PMID:24966050

  16. Validation of a portable, waterproof blood pH analyser for elasmobranchs.

    PubMed

    Talwar, Brendan; Bouyoucos, Ian A; Shipley, Oliver; Rummer, Jodie L; Mandelman, John W; Brooks, Edward J; Grubbs, R Dean

    2017-01-01

    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish ( Squalus cubensis ) and lemon shark ( Negaprion brevirostris ). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30°C; lemon sharks: 7.0-7.45 pH 25-31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal.

  17. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.

  18. Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions

    NASA Astrophysics Data System (ADS)

    Janjua, Naveed Kausar; Siddiqa, Asima; Yaqub, Azra; Sabahat, Sana; Qureshi, Rumana; Haque, Sayed ul

    2009-12-01

    Mode of interactions of three flavonoids [morin (M), quercetin (Q), and rutin (R)] with chicken blood ds.DNA (ck.DNA) has been investigated spectrophotometrically at different temperatures including body temperature (310 K) and at two physiological pH values, i.e. 7.4 (human blood pH) and 4.7 (stomach pH). The binding constants, Kf, evaluated using Benesi-Hildebrand equation showed that the flavonoids bind effectively through intercalation at both pH values and body temperature. Quercetin, somehow, showed greater binding capabilities with DNA. The free energies of flavonoid-DNA complexes indicated the spontaneity of their binding. The order of binding constants of three flavonoids at both pH values were found to be Kf(Q) > Kf(R) > Kf(M) and at 310 K.

  19. The accelerated characterization of viscoelastic composite materials. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Griffith, W. I.; Morris, D. H.; Brinson, H. F.

    1980-01-01

    Necessary fundamentals relative to composite materials and viscoelasticity are reviewed. The accelerated characterization techniques of time temperature superposition and time temperature stress superposition are described. An experimental procedure for applying the latter to composites is given along with results obtained on a particular T300/934 graphite/epoxy. The accelerated characterization predictions are found in good agreement with actual long term tests. A postcuring phenomenon is discussed that necessitates thermal conditioning of the specimen prior to testing. A closely related phenomenon of physical aging is described as well as the effect of each on the glass transition temperature and strength. Creep rupture results are provided for a variety of geometries and temperatures for T300/934 graphite/epoxy. The results are found to compare reasonably with a modified kinetic rate theory.

  20. Effects of pH and sugar concentration in Zygosaccharomyces rouxii growth and time for spoilage in concentrated grape juice at isothermal and non-isothermal conditions.

    PubMed

    Rojo, M C; Arroyo López, F N; Lerena, M C; Mercado, L; Torres, A; Combina, M

    2014-04-01

    The effect of pH (1.7-3.2) and sugar concentration (64-68 °Brix) on the growth of Zygosaccharomyces rouxii MC9 using response surface methodology was studied. Experiments were carried out in concentrated grape juice inoculated with Z. rouxii at isothermal conditions (23 °C) for 60 days. pH was the variable with the highest effect on growth parameters (potential maximum growth rate and lag phase duration), although the effect of sugar concentration were also significant. In a second experiment, the time for spoilage by this microorganism in concentrated grape juice was evaluated at isothermal (23 °C) and non-isothermal conditions, in an effort to reproduce standard storage and overseas shipping temperature conditions, respectively. Results show that pH was again the environmental factor with the highest impact on delaying the spoilage of the product. Thereby, a pH value below 2.0 was enough to increase the shelf life of the product for more than 60 days in both isothermal and non-isothermal conditions. The information obtained in the present work could be used by producers and buyers to predict the growth and time for spoilage of Z. rouxii in concentrated grape juice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Modified Organosilica Core-Shell Nanoparticles for Stable pH Sensing in Biological Solutions.

    PubMed

    Robinson, Kye J; Huynh, Gabriel T; Kouskousis, Betty P; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Corrie, Simon R

    2018-04-19

    Continuous monitoring using nanoparticle-based sensors has been successfully employed in complex biological systems, yet the sensors still suffer from poor long-term stability partially because of the scaffold materials chosen to date. Organosilica core-shell nanoparticles containing a mixture of covalently incorporated pH-sensitive (shell) and pH-insensitive (core) fluorophores is presented as a continuous pH sensor for application in biological media. In contrast to previous studies focusing on similar materials, we sought to investigate the sensor characteristics (dynamic range, sensitivity, response time, stability) as a function of material properties. The ratio of the fluorescence intensities at specific wavelengths was found to be highly sensitive to pH over a physiologically relevant range (4.5-8) with a response time of <100 ms, significantly faster than that of previously reported response times using silica-based particles. Particles produced stable, pH-specific signals when stored at room temperature for more than 80 days. Finally, we demonstrated that the nanosensors successfully monitored the pH of a bacterial culture over 15 h and that pH changes in the skin of mouse cadavers could also be observed via in vivo fluorescence imaging following subcutaneous injection. The understanding gained from linking sensor characteristics and material properties will inform the next generation of optical nanosensors for continuous-monitoring applications.

  2. Ochratoxin A removal by Saccharomyces cerevisiae strains: effect of wine-related physicochemical factors.

    PubMed

    Petruzzi, Leonardo; Sinigaglia, Milena; Corbo, Maria Rosaria; Beneduce, Luciano; Bevilacqua, Antonio

    2013-07-01

    This study investigated the effect of some physicochemical parameters on the removal of ochratoxin A (OTA) by yeasts. Two wild strains of Saccharomyces cerevisiae (W47 and Y28) were used to assess OTA removal under various conditions of temperature, pH, ethanol content and incubation time. All samples were analysed for OTA concentration by enzyme-linked immunosorbent assay (ELISA). In addition, yeast oenological traits were investigated: qualitative and technological traits were assessed on appropriate laboratory media, while the main products of microfermentation (sugars, ethanol, glycerol, acetic acid) were evaluated by Fourier transform infrared spectroscopy (FTIR). The results showed OTA reduction by 36-42% in cultures containing 100 g L⁻¹ ethanol incubated at pH 3.5 and 37 °C. OTA removal was affected by contact time, pH and ethanol content, as it was increased at low pH and by 100 g L⁻¹ ethanol. Moreover, the phenomenon was reversible, as OTA was lowest after 4 days, then it was partially released in the medium. © 2012 Society of Chemical Industry.

  3. Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus neumayeri to near-future ocean acidification and warming.

    PubMed

    Byrne, Maria; Ho, Melanie A; Koleits, Lucas; Price, Casandra; King, Catherine K; Virtue, Patti; Tilbrook, Bronte; Lamare, Miles

    2013-07-01

    Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: -1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, -0.2-0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20-28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8-19% decrease in PO length at pH 7.6-7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left-right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible. © 2013 Blackwell Publishing Ltd.

  4. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit temperature increase and pH and dissolved oxygen decrease relative to the reference scenario without cumulative CO2 emissions overshoot. Furthermore, our results show that the higher the level of overshoot, the lower the reversibility of changes in the marine environment.

  5. 40 CFR 411.15 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exceed 3 °C rise above inlet temperature. pH Within the range 6.0 to 9.0. English units (lb/1,000 lb of product) TSS 0.005. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the...

  6. 40 CFR 411.15 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exceed 3 °C rise above inlet temperature. pH Within the range 6.0 to 9.0. English units (lb/1,000 lb of product) TSS 0.005. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the...

  7. Nanoparticle-based measurements of pH and O2 dynamics in the rhizosphere of Zostera marina L.: effects of temperature elevation and light-dark transitions.

    PubMed

    Elgetti Brodersen, Kasper; Koren, Klaus; Lichtenberg, Mads; Kühl, Michael

    2016-07-01

    Seagrasses can modulate the geochemical conditions in their immediate rhizosphere through the release of chemical compounds from their below-ground tissue. This is a vital chemical defence mechanism, whereby the plants detoxify the surrounding sediment. Using novel nanoparticle-based optical O2 and pH sensors incorporated in reduced and transparent artificial sediment, we investigated the spatio-temporal dynamics of pH and O2 within the entire rhizosphere of Zostera marina L. during experimental manipulations of light and temperature. We combined such measurements with O2 microsensor measurements of the photosynthetic productivity and respiration of seagrass leaves. We found pronounced pH and O2 microheterogeneity within the immediate rhizosphere of Z. marina, with higher below-ground tissue oxidation capability and rhizoplane pH levels during both light exposure of the leaf canopy and elevated temperature, where the temperature-mediated stimuli of biogeochemical processes seemed to predominate. Low rhizosphere pH microenvironments appeared to correlate with plant-derived oxic microzones stimulating local sulphide oxidation and thus driving local proton generation, although the rhizoplane pH levels generally where much higher than the bulk sediment pH. Our data show that Z. marina can actively alter its rhizosphere pH microenvironment alleviating the local H2 S toxicity and enhancing nutrient availability in the adjacent sediment via geochemical speciation shift. © 2016 John Wiley & Sons Ltd.

  8. Effects of Mo Content on Microstructure and Mechanical Property of PH13-8Mo Martensitic Precipitation-Hardened Stainless Steel

    NASA Astrophysics Data System (ADS)

    Yubing, Pei; Tianjian, Wang; Zhenhuan, Gao; Hua, Fan; Gongxian, Yang

    This paper introduces the effects of Mo content on microstructure and mechanical property of PH13-8Mo martensitic precipitation-hardened stainless steel which is used for LP last stage blade in steam turbine. Thermodynamic software Thermo-Calc has been used to calculate precipitation temperature and the mass fraction of precipitated phases in PH13-8Mo steel with different Mo content. The result shows that when the mass of Mo is below 0.6wt.%, chi-phase mu-phase and sigma-phase could disappear. The microstructure and mechanical property of high Mo PH13-8Mo (Mo=0.57wt.%) and low Mo PH13-8Mo (Mo=2.15wt.%)have been investigated in different heat treatments. The investigations reveal that austenitizing temperature decrease with the reduce of Mo content, so the optimum solution temperature for low Mo PH13-8Mo is lower than that for high Mo PH13-8Mo.The influence of solution temperature on grain size is weakened with the increase of Mo content, Mo rich carbides could retard coarsening of grain. An enormous amount of nano-size uniformly distributed β-NiAl particles are found in both kinds of steels using transmission electron microscopy, they are the most important strengthening phase in PH13-8Mo.

  9. Impact of alternative antimicrobial commercial egg washes on reducing Salmonella contamination

    USDA-ARS?s Scientific Manuscript database

    Introduction: Table eggs are washed with an alkaline detergent at approximately pH 11 and at a temperature at least 32°C, followed by a chlorine rinse. Both wash temperature and an antimicrobial rinse are required by regulation, but wash pH is not specified. At this pH, little, if any, free chlorine...

  10. Modeling carbon dioxide effect in a controlled atmosphere and its interactions with temperature and pH on the growth of L. monocytogenes and P. fluorescens.

    PubMed

    Couvert, Olivier; Guégan, Stéphanie; Hézard, Bernard; Huchet, Véronique; Lintz, Adrienne; Thuault, Dominique; Stahl, Valérie

    2017-12-01

    The effect of carbon dioxide, temperature, and pH on growth of Listeria monocytogenes and Pseudomonas fluorescens was studied, following a protocol to monitor microbial growth under a constant gas composition. In this way, the CO 2 dissolution didn't modify the partial pressures in the gas phase. Growth curves were acquired at different temperatures (8, 12, 22 and 37 °C), pH (5.5 and 7) and CO 2 concentration in the gas phase (0, 20, 40, 60, 80, 100% of the atmospheric pressure, and over 1 bar). These three factors greatly influenced the growth rate of L. monocytogenes and P. fluorescens, and significant interactions have been observed between the carbon dioxide and the temperature effects. Results showed no significant effect of the CO 2 concentration at 37 °C, which may be attributed to low CO2 solubility at high temperature. An inhibitory effect of CO 2 appeared at lower temperatures (8 and 12 °C). Regardless of the temperature, the gaseous CO 2 is sparingly soluble at acid pH. However, the CO 2 inhibition was not significantly different between pH 5.5 and pH 7. Considering the pKa of the carbonic acid, these results showed the dissolved carbon under HCO 3 - form didn't affect the bacterial inhibition. Finally, a global model was proposed to estimate the growth rate vs. CO 2 concentration in the aqueous phase. This dissolved concentration is calculated according to the physical equations related to the CO 2 equilibriums, involving temperature and pH interactions. This developed model is a new tool available to manage the food safety of MAP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of pH and Temperature on the Stability of Fumonisins in Maize Products.

    PubMed

    Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2017-03-01

    This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100-250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B₁ fumonisin (HFB₁) and partially hydrolysed B₁ fumonisin (isomers a and b: PHFB 1a and PHFB 1b , respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB₁, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB₁ molecules disintegrate.

  12. Effects of pH and Temperature on the Stability of Fumonisins in Maize Products

    PubMed Central

    Bryła, Marcin; Waśkiewicz, Agnieszka; Szymczyk, Krystyna; Jędrzejczak, Renata

    2017-01-01

    This paper is a study of the stability of fumonisins in dough based on maize flour prepared in a phosphate buffer with a pH of 3.5, 5.5 or 7.5 and baked at a temperature within the range of 100–250 °C. Buffers with various pH values were tested, since it is well-known that pH may significantly influence interactions of fumonisins with other substances. A standard analytical procedure was used to determine the concentration of free fumonisins. Hydrolysis in an alkaline medium was then applied to reveal the hidden forms, while the total fumonisins concentations was determined in another measurement. The total concentration of fumonisins was statistically higher in pH = 3.5 and pH = 5.5 than the concentration of free fumonisins; no similar difference was found at pH = 7.5. The applied phosphate buffer pH 7.5 may enhance solubility of fumonisins, which would increase extraction efficiency of free analytes, thereby decreasing the difference between concentrations of total and free fumonisins. Hydrolysed B1 fumonisin (HFB1) and partially hydrolysed B1 fumonisin (isomers a and b: PHFB1a and PHFB1b, respectively) were the main investigated substances. For baking temperatures below 220 °C, fumonisins were slightly more stable for pH = 5.5 than for pH = 3.5 and pH = 7.5. In both of these latter cases, the concentration of partially hydrolysed fumonisins grew initially (up to 200 °C) with an increase in the baking temperature, and then dropped. Similar behaviour was observed for free HFB1, which may suggest the following fumonisin degradation mechanism: initially, the tricarballylic acid (TCA) groups are removed from the molecules, and next, the HFB1 molecules disintegrate. PMID:28257053

  13. Sperm motility in fishes. I. Effects of temperature and pH: a review.

    PubMed

    Alavi, Sayyed Mohammad Hadi; Cosson, Jacky

    2005-02-01

    Sperm motility is a key factor in allowing us to determine semen quality and fertilizing capacity. Motility in semen is mainly controlled by K+ in salmonids, and probably also in sturgeons, and by osmotic pressure in other freshwater and seawater fish species, but other factors, such as concentration of surrounding metabolites and ions (Ca2+, Mg2+, etc.), pH and temperature also influence motility characteristics. In the present study, we have mainly reviewed and summarized the effects of temperature and pH on the motility of spermatozoa in three fish species: salmonids, cyprinids and sturgeons. Data in the literature show that motility, fertilizing ability and velocity of spermatozoa, as well as the duration of the motility period, depend on the temperature of the assay medium and also of that of the brood fish holding tank. In contrast, the pH of the swimming medium, and thus the intracellular pH of spermatozoa, has less influence on sperm motility parameters in cyprinids, salmonids and sturgeons.

  14. Fluorescence of tautomeric forms of curcumin in different pH and biosurfactant rhamnolipids systems: Application towards on-off ratiometric fluorescence temperature sensing.

    PubMed

    Moussa, Zeinab; Chebl, Mazhar; Patra, Digambara

    2017-08-01

    Medicinal properties of curcumin are widely getting realized. For its applicability as a hydrophobic drug molecule and food spice interaction of curcumin with rhamnolipids, a biosurfactant, bears importance. Here we have explored interaction of curcumin with rhamnolipids biosurfactant and its aggregation behavior. The impact of pH on critical micelle concentration (cmc) of rhamnolipids has been studied using fluorescence of curcumin and found that cmc of rhamnolipids increases with increase in pH of the medium. In acidic, neutral and slightly alkaline medium (pH8), at λ ex =355nm (for β-diketone form) curcumin undergoes excited state hydrogen transfer (ESHT) and emits solely from enol form both in the presence and absence of rhamnolipids, but first time we report that in extreme alkaline condition, at pH13, at λ ex =355nm curcumin emits from both β-diketone as well as enolic ESHT forms in absence of rhamnolipids but in the presence of rhamnolipids β-diketone is stabilized and the emission solely comes from β-diketone by completely revoking ESHT process. Fluorescence quenching by hydrophobic cetylpyridinium bromide confirms curcumin penetrates deep inside the hydrophobic pocket of rhamnolipid aggregates/micelle by reducing the distance between N + -atom of pyridinium ion and curcumin. On the other hand hydrophobic molecule like pyrene stays near to the Stern layer of rhamnolipids facilitating electron transfer from pyrene to N + -atom of pyridinium ion. Even in neutral condition, in the presence of rhamnolipids the β-diketone form, though in small proportions, can be stabilized in higher temperature in expense of enolic ESHT form, thus, offering an on off ratiometric fluorescence temperature sensing in solution, which bears significance as ratiometric probe molecules. Interaction of curcumin with rhamnolipids stabilizes curcumin in acidic, neutral and moderate alkaline condition but fails at extreme pH13. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic.

    PubMed

    Monteiro, Douglas Roberto; Takamiya, Aline Satie; Feresin, Leonardo Perina; Gorup, Luiz Fernando; de Camargo, Emerson Rodrigues; Delbem, Alberto Carlos Botazzo; Henriques, Mariana; Barbosa, Debora Barros

    2014-08-01

    Our aim in this study was to evaluate how the chemical stability of silver nanoparticles (SNs) influences their efficacy against Candida albicans and C. glabrata biofilms. Several parameters of SN stability were tested, namely, temperature (50ºC, 70ºC, and 100ºC), pH (5.0 and 9.0), and time of contact (5 h and 24 h) with biofilms. The control was defined as SNs without temperature treatment, pH 7, and 24 h of contact. These colloidal suspensions at 54 mg/L were used to treat mature Candida biofilms (48 h) formed on acrylic. Their efficacy was determined by total biomass and colony-forming unit quantification. Data were analyzed using analysis of variance and the Bonferroni post hoc test (α = 0.05). The temperature and pH variations of SNs did not affect their efficacy against the viable cells of Candida biofilms (P > 0.05). Moreover, the treatment periods were not decisive in terms of the susceptibility of Candida biofilms to SNs. These findings provide an important advantage of SNs that may be useful in the treatment of Candida-associated denture stomatitis. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Multi-Response Optimization of Granaticinic Acid Production by Endophytic Streptomyces thermoviolaceus NT1, Using Response Surface Methodology

    PubMed Central

    Roy, Sudipta; Halder, Suman Kumar; Banerjee, Debdulal

    2016-01-01

    Streptomyces thermoviolaceus NT1, an endophytic isolate, was studied for optimization of granaticinic acid production. It is an antimicrobial metabolite active against even drug resistant bacteria. Different media, optimum glucose concentration, initial media pH, incubation temperature, incubation period, and inoculum size were among the selected parameters optimized in the one-variable-at-a-time (OVAT) approach, where glucose concentration, pH, and temperature were found to play a critical role in antibiotic production by this strain. Finally, the Box–Behnken experimental design (BBD) was employed with three key factors (selected after OVAT studies) for response surface methodological (RSM) analysis of this optimization study.RSM analysis revealed a multifactorial combination; glucose 0.38%, pH 7.02, and temperature 36.53 °C as the optimum conditions for maximum antimicrobial yield. Experimental verification of model analysis led to 3.30-fold (61.35 mg/L as compared to 18.64 mg/L produced in un-optimized condition) enhanced granaticinic acid production in ISP2 medium with 5% inoculum and a suitable incubation period of 10 days. So, the conjugated optimization study for maximum antibiotic production from Streptomyces thermoviolaceus NT1 was found to result in significantly higher yield, which might be exploited in industrial applications. PMID:28952581

  17. The stability of water- and fat-soluble vitamin in dentifrices according to pH level and storage type.

    PubMed

    Park, Jung-Eun; Kim, Ki-Eun; Choi, Yong-Jun; Park, Yong-Duk; Kwon, Ha-Jeong

    2016-02-01

    The purpose of this study is to evaluate the vitamin stabilities in dentifrices by analyzing various vitamins according to the level and storage temperature. The stabilities of water- and fat-soluble vitamins were investigated in buffer solution at different pH values (4, 7, 8, 10 and 11) for 14 days and in dentifrices at different pH (7 and 10) for 5 months at two temperature conditions (room and refrigeration temperature) by analyzing the remaining amounts using HPLC methods. In the buffer solution, the stability of vitamins B1 , B6 and C was increased as the pH values increased. Vitamins E and K showed poor stability at pH 4, and vitamin B3 showed poor stability at pH 11. In dentifrices, the storage temperature highly influenced vitamin stability, especially vitamins C and E, but the stabilities of vitamins B1 and C according to pH values did not correspond to the buffer solution tests. Vitamin B group was relatively stable in dentifrices, but vitamin C completely disappeared after 5 months. Vitamin K showed the least initial preservation rates. Vitamins were not detected in commercial dentifrices for adults and detected amounts were less than the advertised contents in dentifrices for children. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied.more » The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.« less

  19. Development of a downhole tool measuring real-time concentration of ionic tracers and pH in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz

    2014-06-01

    For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.

  20. Temperature, water activity and pH during conidia production affect the physiological state and germination time of Penicillium species.

    PubMed

    Nguyen Van Long, Nicolas; Vasseur, Valérie; Coroller, Louis; Dantigny, Philippe; Le Panse, Sophie; Weill, Amélie; Mounier, Jérôme; Rigalma, Karim

    2017-01-16

    Conidial germination and mycelial growth are generally studied with conidia produced under optimal conditions to increase conidial yield. Nonetheless, the physiological state of such conidia most likely differs from those involved in spoilage of naturally contaminated food. The present study aimed at investigating the impact of temperature, pH and water activity (a w ) during production of conidia on the germination parameters and compatible solutes of conidia of Penicillium roqueforti and Penicillium expansum. Low temperature (5°C) and reduced a w (0.900 a w ) during sporulation significantly reduced conidial germination times whereas the pH of the sporulation medium only had a slight effect at the tested values (2.5, 8.0). Conidia of P. roqueforti produced at 5°C germinated up to 45h earlier than those produced at 20°C. Conidia of P. roqueforti and P. expansum produced at 0.900 a w germinated respectively up to 8h and 3h earlier than conidia produced at 0.980 a w . Furthermore, trehalose and mannitol assessments suggested that earlier germination might be related to delayed conidial maturation even though no ultra-structural modifications were observed by transmission electron microscopy. Taken together, these results highlight the importance of considering environmental conditions during sporulation in mycological studies. The physiological state of fungal conidia should be taken into account to design challenge tests or predictive mycology studies. This knowledge may also be of interest to improve the germination capacity of fungal cultures commonly used in fermented foods. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hyperthermic-induced hyperventilation and associated respiratory alkalosis in humans.

    PubMed

    Abbiss, Chris R; Nosaka, Kazunori; Laursen, Paul B

    2007-05-01

    The purpose of this study was to determine if increased environmental heat leads to hyperthermic-induced hypocapnia and associated alkalosis during prolonged self-paced cycling. Nine male cyclists completed three 100 km stochastic time trials in hot (34 degrees C), neutral (22 degrees C) and cold (10 degrees C) environments. Intermittent measurements of rectal and skin temperature, expired gases, blood pH, PaCO(2), PaO(2), and bicarbonate were made throughout. Rectal temperature increased significantly throughout all trials (P < 0.001) and was significantly correlated with increases in the ventilatory equivalent for carbon dioxide (Ve/ VCo2; r = 0.77; P < 0.001) and blood pH (r = 0.69; P < 0.05). Rectal temperature was also negatively correlated with a reduction in PaCO(2) (r = -0.80; P < 0.001). PaO(2) and bicarbonate concentration remained constant throughout all trials. This study has shown that prolonged self-paced cycling is associated with a hyperthermic-induced hyperventilation, causing a decrease in arterialized carbon dioxide tension and consequential respiratory alkalosis.

  2. The role of polyphenol oxidase and peroxidase in the browning of water caltrop pericarp during heat treatment.

    PubMed

    Ciou, Jhih-Ying; Lin, Hsin-Hung; Chiang, Po-Yuan; Wang, Chiun-C; Charles, Albert Linton

    2011-07-15

    The mechanism of browning involving enzymatic browning was investigated in the pericarp of water caltrop, an Asian vegetable popular for its taste and medicinal properties. Polyphenol oxidase (PPO) and peroxidase (POD) activities were determined in pericarp at various times and temperatures. Water caltrop consisted of 44.22% moisture content, 37.23% crude fibre, and 2.63% crude protein. PPO and POD activities dropped from 62 and 38units/g sample, respectively, as water temperature was increased from 30 to 80°C. Optimum pH and temperature for PPO activity was at pH 5.0, 25-45°C, and POD activity peaked at 60°C. High PPO and POD activities at 40-50°C resulted in degradation of phenolic compounds, which led to increased aggregation of browning pigments and discolouration (lower L-values) of the pericarp. Enzymatic browning was determined as the major factor in the browning discolouration of heat-treated water caltrop pericarp. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Flash spectroscopy of purple membrane.

    PubMed Central

    Xie, A H; Nagle, J F; Lozier, R H

    1987-01-01

    Flash spectroscopy data were obtained for purple membrane fragments at pH 5, 7, and 9 for seven temperatures from 5 degrees to 35 degrees C, at the magic angle for actinic versus measuring beam polarizations, at fifteen wavelengths from 380 to 700 nm, and for about five decades of time from 1 microsecond to completion of the photocycle. Signal-to-noise ratios are as high as 500. Systematic errors involving beam geometries, light scattering, absorption flattening, photoselection, temperature fluctuations, partial dark adaptation of the sample, unwanted actinic effects, and cooperativity were eliminated, compensated for, or are shown to be irrelevant for the conclusions. Using nonlinear least squares techniques, all data at one temperature and one pH were fitted to sums of exponential decays, which is the form required if the system obeys conventional first-order kinetics. The rate constants obtained have well behaved Arrhenius plots. Analysis of the residual errors of the fitting shows that seven exponentials are required to fit the data to the accuracy of the noise level. PMID:3580488

  4. Flash spectroscopy of purple membrane.

    PubMed

    Xie, A H; Nagle, J F; Lozier, R H

    1987-04-01

    Flash spectroscopy data were obtained for purple membrane fragments at pH 5, 7, and 9 for seven temperatures from 5 degrees to 35 degrees C, at the magic angle for actinic versus measuring beam polarizations, at fifteen wavelengths from 380 to 700 nm, and for about five decades of time from 1 microsecond to completion of the photocycle. Signal-to-noise ratios are as high as 500. Systematic errors involving beam geometries, light scattering, absorption flattening, photoselection, temperature fluctuations, partial dark adaptation of the sample, unwanted actinic effects, and cooperativity were eliminated, compensated for, or are shown to be irrelevant for the conclusions. Using nonlinear least squares techniques, all data at one temperature and one pH were fitted to sums of exponential decays, which is the form required if the system obeys conventional first-order kinetics. The rate constants obtained have well behaved Arrhenius plots. Analysis of the residual errors of the fitting shows that seven exponentials are required to fit the data to the accuracy of the noise level.

  5. Deciphering the Effect of Polymer-Assisted Doping on the Optoelectronic Properties of Block Copolymer-Anchored Graphene Oxide.

    PubMed

    Maity, Nabasmita; Kuila, Atanu; Nandi, Arun K

    2017-02-14

    Doping facilitates the tuning of band gap, providing an opportunity to tailor the optoelectronic properties of graphene in a simple way, and polymer-assisted doping is a new route to combine the optoelectronic properties of graphene with the properties of a polymer. In this endeavor, a linear diblock copolymer, polycaprolactone-block-poly(dimethyl aminoethyl methacrylate) (PCL 13 -b-PDMAEMA 117 ) (GPCLD) is grafted from the graphene oxide (GO) surface via consecutive ring opening and atom transfer radical polymerization. GPCLD is characterized using proton nuclear magnetic resonance ( 1 H NMR), Fourier transform infrared spectroscopy, atomic force microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and Raman spectroscopy. The phase transition behavior of the GPCLD solution with varying temperature and pH is monitored using fluorescence spectroscopy and dynamic light scattering. Temperature-dependent 1 H NMR spectra at pH 9.2 indicate the influence of temperature on the interaction between GPCLD and solvent (water) molecules causing the phase separation. Fluorescence spectra at pH 4 and 9.2 give the evidence of localized p- and n-type doping of graphene assisted by the pendent PDMAEMA chains. In the impedance spectra of GPCLD films, the Nyquist plots vary with pH; at pH 4, they exhibit a semicircle at higher frequencies and a spike at lower frequencies; at pH 7.0, the spike is replaced by an arc; and at pH 9.2, the semicircle at higher frequencies vanishes and only a spike is noticed, all of these suggesting different types of doping of graphene at different pH values. The dc-conductivity also varies with pH and temperature because of the different types of doping. The current (I)-voltage (V) property of GPCLD at different pH values is very unique: at pH 9.2, an interesting feature of negative differential resistance (NDR) is observed; at pH 7, the rectification property is observed; and at pH 4, again the NDR property is observed. The temperature-dependent I-V property at pH 7 and 9.2 clearly indicates a signature of doping, dedoping, and redoping because of the change in the interaction of GO with the grafted polymer arising from coiling and decoiling of polymer chains.

  6. Compatibility of cholecalciferol, haloperidol, imipramine hydrochloride, levodopa/carbidopa, lorazepam, minocycline hydrochloride, tacrolimus monohydrate, terbinafine, tramadol hydrochloride and valsartan in SyrSpend SF PH4 oral suspensions.

    PubMed

    Polonini, H C; Silva, S L; Cunha, C N; Brandão, M A F; Ferreira, A O

    2016-04-01

    A challenge with compounding oral liquid formulations is the limited availability of data to support the physical, chemical and microbiological stability of the formulation. This poses a patient safety concern and a risk for medication errors. The objective of this study was to evaluate the compatibility of the following active pharmaceutical ingredients (APIs) in 10 oral suspensions, using SyrSpend SF PH4 (liquid) as the suspending vehicle: cholecalciferol 50,000 IU/mL, haloperidol 0.5 mg/mL, imipramine hydrochloride 5.0 mg/mL, levodopa/carbidopa 5.0/1.25 mg/mL, lorazepam 1.0 mg/mL, minocycline hydrochloride 10.0 mg/mL, tacrolimus monohydrate 1.0 mg/mL, terbinafine 25.0 mg/mL, tramadol hydrochloride 10.0 mg/mL and valsartan 4.0 mg/mL. The suspensions were stored both refrigerated (2 - 8 degrees C) and at controlled room temperature (20 - 25 degrees C). This is the first stability study for these APIs in SyrSpend SF PH4 (liquid). Further, the stability of haloperidol,ilmipramine hydrochloride, minocycline, and valsartan in oral suspension has not been previously reported in the literature. Compatibility was assessed by measuring percent recovery at varying time points throughout a 90 days period. Quantification of the APIs was performed by high performance liquid chromatography (HPLC-UV). Given the percentage of recovery of the APIs within the suspensions, the beyond-use date of the final preparations was found to be at least 90 days for most suspensions both refrigerated and at room temperature. Exceptions were: Minocycline hydrochloride at both storage temperatures (60 days), levodopa/carbidopa at room temperature (30 days), and lorazepam at room temperature (60 days). This suggests that compounded suspensions of APIs from different pharmacological classes in SyrSpend SF PH4 (liquid) are stable.

  7. Effects of treatment time and temperature on the DC corona pretreatment performance of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Yu, GAO; Ning, ZHAO; Yongdi, DENG; Minghang, WANG; Boxue, DU

    2018-02-01

    In order to improve the anaerobic digestion efficiency of waste activated sludge (WAS), a pretreatment procedure should be carried out so as to disrupt the microbial cell structure, thus releasing intracellular organic matters. In this paper, a corona discharge triggered by a DC voltage was employed to pre-treat WAS for various time periods under different temperatures. The magnitude of the DC voltage was 4 kV at both negative and positive polarities. The changes in the soluble chemical oxygen demand, phosphorus and nitrogen content, and pH value within the WAS were utilized to estimate the pretreatment performance of the DC corona. It was found that with increasing treatment time, the pretreatment efficiency tends to be reduced. With increased temperature, the pretreatment efficiency appears to be better. It is suggested that the oxidative species and the active particles generated in the corona discharge play an important role in disrupting the microbial cell structure, which is dependent upon the treatment time and the temperature.

  8. Stability of Secondary and Tertiary Structures of Virus-Like Particles Representing Noroviruses: Effects of pH, Ionic Strength, and Temperature and Implications for Adhesion to Surfaces.

    PubMed

    Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie

    2015-11-01

    Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    PubMed

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  10. Survival and growth of Escherichia coli O157:H7 in ground, roasted beef as affected by pH, acidulants, and temperature.

    PubMed Central

    Abdul-Raouf, U M; Beuchat, L R; Ammar, M S

    1993-01-01

    A study was undertaken to determine the fate of Escherichia coli O157:H7 in ground, roasted beef as influenced by the combined effects of pH, acidulants, temperature, and time. There was essentially no change in the viable population of E. coli O157:H7 when beef salads (pH 5.40 to 6.07) containing up to 40% mayonnaise were incubated at 5 degrees C for up to 72 h. At 21 and 30 degrees C, significant (P < or = 0.05) increases in populations of the organism occurred in salads containing 16 to 32% mayonnaise (pH 5.94 to 5.55) between 10 and 24 h of incubation. Death was more rapid as the pH of acidified beef slurries incubated at 5 degrees C was decreased from 5.98 to 4.70. E. coli O157:H7 grew in control slurries (pH 5.98) and in slurries containing citric and lactic acids (pHs 5.00 and 5.40) incubated at 21 degrees C for 24 h; decreases occurred in slurries acidified to pHs 4.70, 5.00, and 5.40 with acetic acid or pH 4.70 with citric or lactic acid. At 30 degrees C, populations decreased in slurries acidified to pHs 4.70 and 5.00 with acetic acid. Citric and lactic acids failed to prevent significant increases in populations in slurries at pH 4.70 to 5.40 between 10 and 24 h of incubation. The order of effectiveness of acidulants in inhibiting growth was acetic acid > lactic acid > or = citric acid. The same order was observed for inactivation of E. coli O157:H7 in acidified (pH 5.00) beef slurry heated at 54 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8368828

  11. Analysis of electrophoresis performance

    NASA Technical Reports Server (NTRS)

    Roberts, Glyn O.

    1988-01-01

    A flexible efficient computer code is being developed to simulate electrophoretic separation phenomena, in either a cylindrical or a rectangular geometry. The code will computer the evolution in time of the concentrations of an arbitrary number of chemical species, and of the temperature, pH distribution, conductivity, electric field, and fluid motion. Use of nonuniform meshes and fast accurate implicit time-stepping will yield accurate answers at economical cost.

  12. Implications of the pH and temperature of diluted, cooled boar semen on fresh and frozen-thawed sperm motility characteristics.

    PubMed

    Purdy, P H; Tharp, N; Stewart, T; Spiller, S F; Blackburn, H D

    2010-10-15

    Boar semen is typically collected, diluted and cooled for AI use over numerous days, or frozen immediately after shipping to capable laboratories. The storage temperature and pH of the diluted, cooled boar semen could influence the fertility of boar sperm. Therefore, the purpose of this study was to determine the effects of pH and storage temperature on fresh and frozen-thawed boar sperm motility end points. Semen samples (n = 199) were collected, diluted, cooled and shipped overnight to the National Animal Germplasm Program laboratory for freezing and analysis from four boar stud facilities. The temperature, pH and motility characteristics, determined using computer automated semen analysis, were measured at arrival. Samples were then cryopreserved and post-thaw motility determined. The commercial stud was a significant source of variation for mean semen temperature and pH, as well as total and progressive motility, and numerous other sperm motility characteristics. Based on multiple regression analysis, pH was not a significant source of variation for fresh or frozen-thawed boar sperm motility end points. However, significant models were derived which demonstrated that storage temperature, boar, and the commercial stud influenced sperm motility end points and the potential success for surviving cryopreservation. We inferred that maintaining cooled boar semen at approximately 16 °C during storage will result in higher fresh and frozen-thawed boar sperm quality, which should result in greater fertility. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable beta-glycosidases and optimization of a packed-bed reactor for lactose conversion.

    PubMed

    Petzelbauer, Inge; Kuhn, Bernhard; Splechtna, Barbara; Kulbe, Klaus D; Nidetzky, Bernd

    2002-03-20

    Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced. Copyright 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 619-631, 2002; DOI 10.1002/bit.10110

  14. Analyses of the in vitro non-enzymatic glycation of peptides/proteins by matrix-assisted laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Bao-Shiang; Krishnanchettiar, Sangeeth; Lateef, Syed Salman; Gupta, Shalini

    2007-01-01

    Non-enzymatic glycation of proteins with the reducing agent glucose is implicated to be responsible for diabetes-derived complications, food browning, and aging. However, the non-enzymatic glycation process of peptides/proteins is not well understood and further research is needed to gain an understanding of the underlying principles involved in diabetes-related complications. In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is used to analyze the in vitro glycation of peptides/proteins. In addition to the physiological conditions, harsh conditions (higher concentration of glucose, higher or lower pH, and higher temperature) are also used in this study. Peptides/proteins are reacted with glucose for up to 120 h at 4 [degree sign]C, 37 [degree sign]C, or 65 [degree sign]C. Single and/or multiple glycations are observed using broad pH conditions (from 10% TFA with pKa of 0.5 to pH 10) at various glucose concentrations (from 0.01 M to 1 M). Data suggest that glucose reacts readily with both peptides and proteins, and the efficiency of the glycation increases with higher temperature, higher pH, higher glucose concentration, or longer incubation time. However, influence of the buffer pH on the efficiency of the glycation of peptides is less pronounced compared to that of proteins. This effect could result from denaturation of proteins at higher pH and the resultant exposure of potential glycation sites. This data could lead to the inference that the glycation process of peptides/proteins would occur but proceed very slowly under the diabetes conditions in vivo (37 [degree sign]C, ~neutral pH, ~0.007 M glucose). Postsource decay and MS/MS results of singly glycated angiotensin I, P14R (PPPPPPPPPPPPPPR), and human adrenocorticotropic hormone (ATCH) fragments 1-13 indicate that glucose reacts with the amino group of the N-terminal of ATCH 1-13 and the guanidino group of the arginine residue of both angiotensin I and P14R.

  15. Description of Aspergillus flavus growth under the influence of different factors (water activity, incubation temperature, protein and fat concentration, pH, and cinnamon essential oil concentration) by kinetic, probability of growth, and time-to-detection models.

    PubMed

    Kosegarten, Carlos E; Ramírez-Corona, Nelly; Mani-López, Emma; Palou, Enrique; López-Malo, Aurelio

    2017-01-02

    A Box-Behnken design was used to determine the effect of protein concentration (0, 5, or 10g of casein/100g), fat (0, 3, or 6g of corn oil/100g), a w (0.900, 0.945, or 0.990), pH (3.5, 5.0, or 6.5), concentration of cinnamon essential oil (CEO, 0, 200, or 400μL/kg) and incubation temperature (15, 25, or 35°C) on the growth of Aspergillus flavus during 50days of incubation. Mold response under the evaluated conditions was modeled by the modified Gompertz equation, logistic regression, and time-to-detection model. The obtained polynomial regression models allow the significant coefficients (p<0.05) for linear, quadratic and interaction effects for the Gompertz equation's parameters to be identified, which adequately described (R 2 >0.967) the studied mold responses. After 50days of incubation, every tested model system was classified according to the observed response as 1 (growth) or 0 (no growth), then a binary logistic regression was utilized to model A. flavus growth interface, allowing to predict the probability of mold growth under selected combinations of tested factors. The time-to-detection model was utilized to estimate the time at which A. flavus visible growth begins. Water activity, temperature, and CEO concentration were the most important factors affecting fungal growth. It was observed that there is a range of possible combinations that may induce growth, such that incubation conditions and the amount of essential oil necessary for fungal growth inhibition strongly depend on protein and fat concentrations as well as on the pH of studied model systems. The probabilistic model and the time-to-detection models constitute another option to determine appropriate storage/processing conditions and accurately predict the probability and/or the time at which A. flavus growth occurs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Oxidation Behavior of Carbon Steel: Effect of Formation Temperature and pH of the Environment

    NASA Astrophysics Data System (ADS)

    Dubey, Vivekanand; Kain, Vivekanand

    2017-11-01

    The nature of surface oxide formed on carbon steel piping used in nuclear power plants affects flow-accelerated corrosion. In this investigation, carbon steel specimens were oxidized in an autoclave using demineralized water at various temperatures (150-300 °C) and at pH levels (neutral, 9.5). At low temperatures (< 240 °C), weight loss of specimens due to dissolution of iron in water occurred to a greater extent than weight gain due to oxide formation. With the increase in temperature, the extent of iron dissolution reduced and weight gain due to oxide formation increased. A similar trend was observed with the increase in pH as was observed with the increase in temperature. XRD and Raman spectroscopy confirmed the formation of magnetite. The oxide film formed by precipitation process was negligible at temperatures from 150 to 240 °C compared to that at higher temperatures (> 240 °C) as confirmed by scanning electron microscopy. Electrochemical impedance measurement followed by Mott-Schottky analysis indicated an increase in defect density with exposure duration at 150 °C at neutral pH but a low and stable defect density in alkaline environment. The defect density of the oxide formed at neutral pH at 150-300 °C was always higher than that formed in alkaline environment as reported in the literature.

  17. Effects of elevated temperature and mobile phase composition on a novel C18 silica column.

    PubMed

    Lippert, J Andreas; Johnson, Todd M; Lloyd, Jarem B; Smith, Jared P; Johnson, Bryce T; Furlow, Jason; Proctor, Angela; Marin, Stephanie J

    2007-05-01

    A novel polydentate C18 silica column was evaluated at an elevated temperature under acidic, basic, and neutral mobile phase conditions using ACN and methanol as the mobile phase organic modifier. The temperature range was 40-200 degrees C. The mobile phase compositions were from 0 to 80% organic-aqueous v/v and the mobile phase pH levels were between 2 and 12. The maximum operating temperature of the column was affected by the amount and type of organic modifier used in the mobile phase. Under neutral conditions, the column showed good column thermal stability at temperatures ranging between 120 and 200 degrees C in methanol-water and ACN-water solvent systems. At pH 2 and 3, the column performed well up to about 160 degrees C at two fixed ACN-buffer compositions. Under basic conditions at elevated temperatures, the column material deteriorated more quickly, but still remained stable up to 100 degrees C at pH 9 and 60 degrees C at pH 10. The results of this study indicate that this novel C18 silica-based column represents a significant advancement in RPLC column technology with enhanced thermal and pH stability when compared to traditional bonded phase silica columns.

  18. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    NASA Astrophysics Data System (ADS)

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.

  19. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    PubMed Central

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  20. A monitor for continuous measurement of temperature, pH, and conductance of wet precipitation: Preliminary results from the Adirondack Mountains, New York

    USGS Publications Warehouse

    Johnsson, P.A.; Reddy, M.M.

    1990-01-01

    This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.

  1. Effects of cement alkalinity, exposure conditions and steel-concrete interface on the time-to-corrosion and chloride threshold for reinforcing steel in concrete

    NASA Astrophysics Data System (ADS)

    Nam, Jingak

    Effects of (1) cement alkalinity (low, normal and high), (2) exposure conditions (RH and temperature), (3) rebar surface condition (as-received versus cleaned) and (4) density and distribution of air voids at the steel-concrete interface on the chloride threshold and time-to-corrosion for reinforcing steel in concrete have been studied. Also, experiments were performed to evaluate effects of RH and temperature on the diffusion of chloride in concrete and develop a method for ex-situ pH measurement of concrete pore water. Once specimens were fabricated and exposed to a corrosive chloride solution, various experimental techniques were employed to determine time-to-corrosion, chloride threshold, diffusion coefficient and void density along the rebar trace as well as pore water pH. Based upon the resultant data, several findings related to the above parameters have been obtained as summarized below. First, time for the corrosion initiation was longest for G109 concrete specimens with high alkalinity cement (HA). Also, chloride threshold increased with increasing time-to-corrosion and cement alkalinity. Consequently, the HA specimens exhibited the highest chloride threshold compared to low and normal alkalinity ones. Second, high temperature and temperature variations reduced time-to-corrosion of reinforcing steel in concrete since chloride diffusion was accelerated at higher temperature and possibly by temperature variations. The lowest chloride threshold values were found for outdoor exposed specimens suggesting that variation of RH or temperature (or both) facilitated rapid chloride diffusion. Third, an elevated time-to-corrosion and chloride threshold values were found for the wire brushed steel specimens compared to as-received ones. The higher ratio of [OH-]/[Fe n+] on the wire brushed steel surface compared to that of as-received case can be the possible cause because the higher ratio of this parameter enables the formation of a more protective passive film on the rebar. Fourth, voids at the steel-concrete interface facilitated passive film breakdown and onset of localized corrosion. This tendency for corrosion initiation increased in proportion to void size irrespective of specimen type. Also, [Cl -]th decreased with increasing void diameter. In addition, new ex-situ leaching method for determining concrete pore water alkalinity was developed.

  2. Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation

    USDA-ARS?s Scientific Manuscript database

    Pretreatment of orange processing waste (CPW) by steam explosion under various conditions (pretreatment time, pH and temperatures) was investigated. Pretreatments longer than 4 min with steam purging resulted in CPW containing less than 0.1% limonene, an inhibitor for fermentation. Steam pretreatmen...

  3. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities.

    PubMed

    Maciel, Laércio Galvão; do Carmo, Mariana Araújo Vieira; Azevedo, Luciana; Daguer, Heitor; Molognoni, Luciano; de Almeida, Mereci Mendes; Granato, Daniel; Rosso, Neiva Deliberali

    2018-03-01

    Hibiscus sabdariffa calyx is a rich source of anthocyanins and other bioactive compounds but no study reported the effects of experimental conditions on the extraction of these chemical compounds. Therefore, the effects of time and extraction temperature on the bioactive compounds and antioxidant activity of Hibiscus sabdariffa calyx were evaluated. In addition, the effects of copigmentation and pH on the stability of anthocyanins were assessed and the cytotoxic effects (LC 50 , IC 50 , and GC 50 ) of the extracts were determined in relation to tumor cell lines - Caco-2, HepG-2, HCT8, and A549. The temperature significantly influenced the total anthocyanins and flavonoids contents. The interaction between time/temperature influenced the total phenolic content and ascorbic acid. The t 1/2 and the percentage of colour retention decreased markedly at temperatures above 80 °C. Variations in pH conserved the antioxidant activity of the anthocyanins, and the protonation-deprotonation process of the extract was reversible. The treatment of cells with purified anthocyanin extract or crude extracts at 5-800 μg mL -1 did not show significant cytotoxic effects on the cell lines, corroborating the chemical antioxidant effect of the extracts (DPPH assay). Cyanidin-3-glucoside, delphinidin-3-sambubioside, delphinidin-3-glucoside, and cyanidin-3-sambubioside were identified in the extracts by LC-ESI-MS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Sol gel synthesis and pH effect on the luminescent and structural properties of YPO4: Pr3+ nanophosphors

    NASA Astrophysics Data System (ADS)

    Kahouadji, B.; Guerbous, L.; Boukerika, A.; Dolić, Slobodan D.; Jovanović, Dragana J.; Dramićanin, Miroslav D.

    2017-08-01

    Pr3+ -doped YPO4 nanophosphors prepared by simple sol gel method with different pH values (2, 4, 7 and 11) were obtained. The nanopowders samples were characterized by X-ray diffraction (XRD), room temperature steady and time resolved photoluminescence spectroscopy. The thorough study of pH influence on particle's structure and luminescence of YPO4: 1 at. Pr3+ is presented. It was found that the grain size of samples increases with increases in pH value and obtained particles crystallize in a tetragonal phase with xenotime structure. Under 4f5d excitation (230 nm), all emission spectra show the inter-configurational 4f2→4f5d and under 3P2 excitation (449 nm), only the intra-configurational 1D2→3H4 red emission transition between 580 nm and 620 nm are observed. The highest luminescent intensity was obtained for samples prepared at pH = 4. Furthermore, it was found that the pH of solution has no effect of 1D2 lifetime.

  5. Intra-Shell boron isotope ratios in benthic foraminifera: Implications for paleo-pH reconstructions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Erez, J.

    2009-12-01

    The boron isotope composition of marine carbonates is considered to be a seawater pH proxy. Nevertheless, the use of δ11B has some limitations: 1) the knowledge of fractionation factor (α4-3) between the two boron dissolved species (boric acid and borate ion), 2) the δ11B of seawater may have varied with time and 3) the amplitude of the "vital effects" of this proxy. Using secondary ion mass spectrometry (SIMS), we looked at the internal variability in the boron isotope ratio of the shallow water, symbionts bearing foraminiferan Amphistegina lobifera. Specimens were cultured at constant temperature (24±0.1 °C) in seawater with pH ranging between 7.90 and 8.45. We performed 6 to 8 measurements of δ11B in each foraminifera. Intra-shell boron isotopes show large variability with an upper threshold value of pH ~ 9. The ranges of the skeletal calculated pH values in different cultured foraminifera, show strong correlation with the culture pH values and may thus serve as proxy for pH in the past ocean.

  6. Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar

    NASA Astrophysics Data System (ADS)

    Kołodyńska, D.; Bąk, J.; Kozioł, M.; Pylypchuk, L. V.

    2017-06-01

    Magnetic biochar nanocomposites were obtained by modification of biochar by zero-valent iron. The article provides information on the impact of contact time, initial Cd(II), Co(II), Zn(II), and Pb(II) ion concentrations, dose of the sorbents, solution pH and temperature on the adsorption capacity. On the basis of experiments, it was found that the optimum parameters for the sorption process are phase contact time 360 min (after this time, the equilibrium of all concentrations is reached), the dose of sorbent equal to 5 g/dm3, pH 5 and the temperature 295 K. The values of parameters calculated from the kinetic models and isotherms present the best match to the pseudo second order and Langmuir isotherm models. The calculated thermodynamic parameters ΔH 0, ΔS 0 and ΔG 0 indicate that the sorption of heavy metal ions is an exothermic and spontaneous process as well as favoured at lower temperatures, suggesting the physical character of sorption. The solution of nitric acid(V) at the concentration 0.1 mol/dm3 was the best acidic desorbing agent used for regeneration of metal-loaded magnetic sorbents. The physicochemical properties of synthesized composites were characterized by FTIR, SEM, XRD, XPS and TG analyses. The point characteristics of the double layer for biochar pHPZC and pHIEP were designated.

  7. NDMA formation in secondary wastewater effluent.

    PubMed

    Hatt, J W; Lamy, C; Germain, E; Tupper, M; Judd, S J

    2013-03-01

    Concern over prospective levels of N-nitrosodimethylamine (NDMA) in waters has increased in recent years due to its disinfection byproduct formation potential from chloramination. It has been mooted that this is promoted by organic precursors from municipal wastewaters, such that there is a more significant risk of excessive levels in water reuse applications. Experiments conducted on chloramination and chlorination of secondary wastewater have confirmed that that significant NDMA formation arises only from chloramination, with its concentration varying with test conditions used. A full factor analysis revealed all parameters studied (temperature, pH, monochloramine dose and contact time), both individually and synergistically, to have a statistically significant impact on NDMA formation with contact time being the most important. At raw water temperatures below 10 °C, the NDMA concentration can be minimised to below the 10 ng L(-1) threshold by not exceeding a monochloramine dose of 2 mg L(-1) as Cl(2). However, at higher water temperatures other measures are required to suppress NDMA formation, such as reducing the contact time (which could prove impractical in most applications) or maintaining a pH below 6. Further trials are required to fully develop the operating envelope to ensure NDMA concentrations do not exceed the 10 ng L(-1) threshold, or else to identify effective pretreatment methods for removing the NDMA precursors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Surface functionalization of chitosan-coated magnetic nanoparticles for covalent immobilization of yeast alcohol dehydrogenase from Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Li, Gui-yin; Zhou, Zhi-de; Li, Yuan-jian; Huang, Ke-long; Zhong, Ming

    2010-12-01

    A novel and efficient immobilization of yeast alcohol dehydrogenase (YADH, EC1.1.1.1) from Saccharomyces cerevisiae has been developed by using the surface functionalization of chitosan-coated magnetic nanoparticles (Fe 3O 4/KCTS) as support. The magnetic Fe 3O 4/KCTS nanoparticles were prepared by binding chitosan alpha-ketoglutaric acid (KCTS) onto the surface of magnetic Fe 3O 4 nanoparticles. Later, covalent immobilization of YADH was attempted onto the Fe 3O 4/KCTS nanoparticles. The effect of various preparation conditions on the immobilized YADH process such as immobilization time, enzyme concentration and pH was investigated. The influence of pH and temperature on the activity of the free and immobilized YADH using phenylglyoxylic acid as substrate has also been studied. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized YADH were 30 °C and 7.4, respectively. Compared to the free enzyme, the immobilized YADH retained 65% of its original activity and exhibited significant thermal stability and good durability.

  9. Influence of pH, Salt and Temperature on Pressure Inactivation of Hepatitis A virus

    USDA-ARS?s Scientific Manuscript database

    The effects of pH (3-7), NaCl (0-6%), and temperature on pressure inactivation of hepatitis A virus (HAV) were determined. The HAV samples were treated at 400 MPa for 1 min at 5, 20, and 50C. Decreasing solution pH enhanced pressure inactivation of HAV. This enhanced inactivation effect was most e...

  10. Preliminary study on biosynthesis and characterization of bacteria cellulose films from coconut water

    NASA Astrophysics Data System (ADS)

    Indrianingsih, A. W.; Rosyida, V. T.; Jatmiko, T. H.; Prasetyo, D. J.; Poeloengasih, C. D.; Apriyana, W.; Nisa, K.; Nurhayati, S.; Hernawan; Darsih, C.; Pratiwi, D.; Suwanto, A.; Ratih, D.

    2017-12-01

    Bacterial cellulose produced by Acetobacter xylinum is a unique type of bacterial cellulose. It contains more than 90% of water. A preliminary study had shown that bacterial cellulose films has remarkable mechanical properties. The aim of this study was to investigate the optimum condition such as percentage of carbon source, time of cultivation, and pH to produce bacterial cellulose films from local coconut water, and its characterization on morphology, swelling ability and tensile strength of dried bacterial cellulose. A. xylinum was grown on coconut water culture medium with addition of 3%, 5%, and 7% of sugar, while the cultivation time was vary from 3 days, 5 days and 7 days. pH condition was conducted in pH 3, pH 5 and pH 7. Bacterial cellulose samples were dried using oven with temperature of 100°C until the moisture content reached 4-5%. This study showed that several parameters for optimum condition to produce bacterial cellulose films from local waste of coconut water had been obtained (5% of carbon source; pH 5; and 7 day of incubation period). The electron microscopy also showed that dried bacterial cellulose films had pores covered by fibrils on the surface. Therefore, the present work proposes the optimum formula and condition that can be used based on properties of end product needed.

  11. Strain improvement of Pichia kudriavzevii TY13 for raised phytase production and reduced phosphate repression.

    PubMed

    Qvirist, Linnea; Vorontsov, Egor; Veide Vilg, Jenny; Andlid, Thomas

    2017-03-01

    In this work, we present the development and characterization of a strain of Pichia kudriavzevii (TY1322), with highly improved phytate-degrading capacity. The mutant strain TY1322 shows a biomass-specific phytate degradation of 1.26 mmol g -1  h -1 after 8 h of cultivation in a high-phosphate medium, which is about 8 times higher compared with the wild-type strain. Strain TY1322 was able to grow at low pH (pH 2), at high temperature (46°C) and in the presence of ox bile (2% w/v), indicating this strain's ability to survive passage through the gastrointestinal tract. The purified phytase showed two pH optima, at pH 3.5 and 5.5, and one temperature optimum at 55°C. The lower pH optimum of 3.5 matches the reported pH of the pig stomach, meaning that TY1322 and/or its phytase is highly suitable for use in feed production. Furthermore, P. kudriavzevii TY1322 tolerates ethanol up to 6% (v/v) and shows high osmotic stress tolerance. Owing to the phenotypic characteristics and non-genetically modified organisms nature of TY1322, this strain show great potential for future uses in (i) cereal fermentations for increased mineral bioavailability, and (ii) feed production to increase the phosphate bioavailability for monogastric animals to reduce the need for artificial phosphate fortification. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Chen, Yanhua; Jiang, Chuanhai

    2011-09-01

    In order to investigate the residual stress relaxations of shot peened layer, isothermal annealing treatments were carried out on tempered and laser hardened 17-4PH steel after shot peening with different temperatures from 300 °C to 600 °C. The results showed that the residual stresses were relaxed in the whole deformation layer especially under higher temperature. The maximum rates of stress relaxation took place at the initial stage of annealing process in all conditions. The relaxation process during isothermal annealing could be described by Zener-Wert-Avrami function. The thermal stability of residual stress in tempered 17-4PH was higher than that in laser hardened 17-4PH as well as that in α-iron, which was due to the pinning effects of ɛ-Cu precipitates on the dislocation movement. As massive ɛ-Cu precipitates formed in the temperature about 480 °C, the activation enthalpies for stress relaxation in laser hardened 17-4PH were the same as that in tempered 17-4PH in the conditions of isothermal annealing temperatures of 500 °C and 600 °C.

  13. Characterization of polyphenol oxidase from the Manzanilla cultivar (Olea europaea pomiformis) and prevention of browning reactions in bruised olive fruits.

    PubMed

    Segovia-Bravo, Kharla A; Jarén-Galan, Manuel; García-García, Pedro; Garrido-Fernandez, Antonio

    2007-08-08

    The crude extract of the polyphenol oxidase (PPO) enzyme from the Manzanilla cultivar (Olea europaea pomiformis) was obtained, and its properties were characterized. The browning reaction followed a zero-order kinetic model. Its maximum activity was at pH 6.0. This activity was completely inhibited at a pH below 3.0 regardless of temperature; however, in alkaline conditions, pH inhibition depended on temperature and was observed at values above 9.0 and 11.0 at 8 and 25 degrees C, respectively. The thermodynamic parameters of substrate oxidation depended on pH within the range in which activity was observed. The reaction occurred according to an isokinetic system because pH affected the enzymatic reaction rate but not the energy required to carry out the reaction. In the alkaline pH region, browning was due to a combination of enzymatic and nonenzymatic reactions that occurred in parallel. These results correlated well with the browning behavior observed in intentionally bruised fruits at different temperatures and in different storage solutions. The use of a low temperature ( approximately 8 degrees C) was very effective for preventing browning regardless of the cover solution used.

  14. Degradation of dichlorvos using hydrodynamic cavitation based treatment strategies.

    PubMed

    Joshi, Ravi K; Gogate, Parag R

    2012-05-01

    The degradation of an aqueous solution of dichlorvos, a commonly used pesticide in India, has been systematically investigated using hydrodynamic cavitation reactor. All the experiments have been carried out using a 20 ppm solution of commercially available dichlorvos. The effect of important operating parameters such as inlet pressure (over a range 3-6 bar), temperature (31 °C, 36 °C and 39 °C) and pH (natural pH = 5.7 and acidic pH = 3) on the extent of degradation has been investigated initially. It has been observed that an optimum value of pressure gives maximum degradation whereas low temperature and pH of 3 are favorable. Intensification studies have been carried out using different additives such as hydrogen peroxide, carbon tetrachloride, and Fenton's reagent. Use of hydrogen peroxide and carbon tetrachloride resulted in the enhancement of the extent of degradation at optimized conditions but significant enhancement was obtained with the combined use of hydrodynamic cavitation and Fenton's chemistry. The maximum extent of degradation as obtained by using a combination of hydrodynamic cavitation and Fenton's chemistry was 91.5% in 1h of treatment time. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of dichlorvos. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. On the enzymatic formation of platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Govender, Y.; Riddin, T. L.; Gericke, M.; Whiteley, C. G.

    2010-01-01

    A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 °C, respectively, a half-life stability of 36 min and a V max and K m of 3.57 nmol min-1 mL-1 and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H2PtCl6) at 1 or 2 mM with a K i value of 118 μM. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 °C) afforded <10% bioreduction after 8 h while at conditions suitable for platinum nanoparticle formation (pH 9, 65 °C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

  16. Short communication: Urea hydrolysis in dairy cattle manure under different temperature, urea, and pH conditions.

    PubMed

    Moraes, L E; Burgos, S A; DePeters, E J; Zhang, R; Fadel, J G

    2017-03-01

    The objective of the study was to quantify the rate of urea hydrolysis in dairy cattle manure under different initial urea concentration, temperature, and pH conditions. In particular, by varying all 3 factors simultaneously, the interactions between them could also be determined. Fresh feces and artificial urine solutions were combined into a slurry to characterize the rate of urea hydrolysis under 2 temperatures (15°C and 35°C), 3 urea concentrations in urine solutions (500, 1,000, and 1,500 mg of urea-N/dL), and 3 pH levels (6, 7, and 8). Urea N concentration in slurry was analyzed at 0.0167, 1, 2, 4, 6, 8, 12, 16, 20, and 24 h after initial mixing. A nonlinear mixed effects model was used to determine the effects of urea concentration, pH, and temperature treatments on the exponential rate of urea hydrolysis and to predict the hydrolysis rate for each treatment combination. We detected a significant interaction between pH and initial urea level. Increasing urea concentration from 1,000 to 1,500 mg of urea-N/dL decreased the rate of urea hydrolysis across all pH levels. Across all pH and initial urea levels, the rate of urea hydrolysis increased with temperature, but the effect of pH was only observed for pH 6 versus pH 8 at the intermediate initial urea concentration. The fast rates of urea hydrolysis indicate that urea was almost completely hydrolyzed within a few hours of urine mixing with feces. The estimated urea hydrolysis rates from this study are likely maximum rates because of the thorough mixing before each sampling. Although considerable mixing of feces and urine occurs on the barn floor of commercial dairy operations from cattle walking through the manure, such mixing may be not as quick and thorough as in this study. Consequently, the urea hydrolysis rates from this study indicate the maximum loss of urea and should be accounted for in management aimed at mitigating ammonia emissions from dairy cattle manure under similar urea concentration, pH, and temperature conditions reported in this experiment. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Validation of a portable, waterproof blood pH analyser for elasmobranchs

    PubMed Central

    Bouyoucos, Ian A.; Shipley, Oliver; Rummer, Jodie L.; Mandelman, John W.; Brooks, Edward J.; Grubbs, R. Dean

    2017-01-01

    Abstract Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i-STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i-STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8–7.1 pH 24–30°C; lemon sharks: 7.0–7.45 pH 25–31°C). The relative error in the pH meter's measurements was ~±2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal. PMID:28616238

  18. Controllable dissociations of PH3 molecules on Si(001)

    NASA Astrophysics Data System (ADS)

    Liu, Qin; Lei, Yanhua; Shao, Xiji; Ming, Fangfei; Xu, Hu; Wang, Kedong; Xiao, Xudong

    2016-04-01

    We demonstrate for the first time to our knowledge that controllable dissociation of PH3 adsorption products PH x (x = 2, 1) can be realized by STM (scanning tunneling microscope) manipulation techniques at room temperature. Five dissociative products and their geometric structures are identified via combining STM experiments and first-principle calculations and simulations. In total we realize nine kinds of controllable dissociations by applying a voltage pulse among the PH3-related structures on Si(001). The dissociation rates of the five most common reactions are measured by the I-t spectrum method as a function of voltage. The suddenly increased dissociation rate at 3.3 V indicates a transition from multivibrational excitation to single-step excitation induced by inelastic tunneling electrons. Our studies prove that selectively breaking the chemical bonds of a single molecule on semiconductor surface by STM manipulation technique is feasible.

  19. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    PubMed

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  20. Stability of tacrolimus solutions in polyolefin containers.

    PubMed

    Lee, Jun H; Goldspiel, Barry R; Ryu, Sujung; Potti, Gopal K

    2016-02-01

    Results of a study to determine the stability of tacrolimus solutions stored in polyolefin containers under various temperature conditions are reported. Triplicate solutions of tacrolimus (0.001, 0.01, and 0.1 mg/mL) in 0.9% sodium chloride injection or 5% dextrose injection were prepared in polyolefin containers. Some samples were stored at room temperature (20-25 °C); others were refrigerated (2-8 °C) for 20 hours and then stored at room temperature for up to 28 hours. The solutions were analyzed by stability-indicating high-performance liquid chromatography (HPLC) assay at specified time points over 48 hours. Solution pH was measured and containers were visually inspected at each time point. Stability was defined as retention of at least 90% of the initial tacrolimus concentration. All tested solutions retained over 90% of the initial tacrolimus concentration at all time points, with the exception of the 0.001-mg/mL solution prepared in 0.9% sodium chloride injection, which was deemed unstable beyond 24 hours. At all evaluated concentrations, mean solution pH values did not change significantly over 48 hours; no particle formation was detected. During storage in polyolefin bags at room temperature, a 0.001-mg/mL solution of tacrolimus was stable for 24 hours when prepared in 0.9% sodium chloride injection and for at least 48 hours when prepared in 5% dextrose injection. Solutions of 0.01 and 0.1 mg/mL prepared in either diluent were stable for at least 48 hours, and the 0.01-mg/mL tacrolimus solution was also found to be stable throughout a sequential temperature protocol. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  1. Poly(alkylmethylsiloxanes) thermally immobilized on silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Bottoli, Carla B G; Chaudhry, Zahra F; Fonseca, Dania A; Collins, Kenneth E; Collins, Carol H

    2002-03-01

    Poly(methyloctylsiloxane) (PMOS) and poly(methyloctadecylsiloxane) (PMODS) were sorbed onto porous HPLC silica and thermally immobilized, in the absence of radical initiators, at temperatures in the range of 80 to 180 degrees C. Following extraction of non-immobilized polymer the materials were packed into columns and their chromatographic properties evaluated. The shorter chain (PMOS) stationary phase showed good HPLC characteristics after thermal immobilizations up to 120 degrees C while the longer chain (PMODS) phase gave satisfactory HPLC phases following thermal immobilizations at 80 and 100 degrees C. Stability evaluation for the PMOS and PMODS columns immobilized at 100 degrees C required 250 ml of pH 8.5 mobile phase at 60 degrees C to significantly decrease efficiency, suggesting a long useful life time at neutral pH and ambient temperature.

  2. Separation of no-carrier-added rhenium from bulk tantalum by the sodium malonate-PEG aqueous biphasic system.

    PubMed

    Dutta, Binita; Lahiri, Susanta; Tomar, B S

    2014-02-01

    The aqueous biphasic system (ABS) involving sodium malonate-polyethylene glycol (PEG) phases has been applied for the first time for separation of no-carrier-added (183)Re (T1/2=70 d) from α-particle irradiated bulk tantalum target. The various ABS conditions were applied for investigating the separation by varying pH, temperature, PEG-molecular weight, concentration of salt. The extraction pattern was hardly affected by change in pH and the molecular weight of PEG. One step separation of nca (183)Re from Ta was achieved at the optimal conditions of (i) 50% (w/w) PEG-4000-2 M sodium malonate, 40 °C and (ii) 50% (w/w) PEG-4000-3 M sodium malonate, room temperature (27 °C). © 2013 Published by Elsevier Ltd.

  3. Final report of the key comparison APMP.QM-K9: APMP comparison on pH measurement of phosphate buffer

    NASA Astrophysics Data System (ADS)

    Hioki, Akiharu; Ohata, Masaki; Cherdchu, Chainarong; Tangpaisarnkul, Nongluck

    2011-01-01

    The APMP.QM-K9 was organised by TCQM of APMP to test the abilities of the national metrology institutes in the APMP region to measure a pH value of a phosphate buffer. This APMP comparison on pH measurement was proposed by the National Metrology Institute of Japan, NMIJ, and the National Institute of Metrology of Thailand, NIMT, in August 2009. After approval by TCQM, the comparison has been conducted by NMIJ and NIMT. The comparison is a key comparison following CCQM-K9, CCQM-K9.1 and CCQM-K9.2. The comparison material was a phosphate buffer of pH around 6.86 and the measurement temperatures were 15 °C, 25 °C and 37 °C. This is the first APMP key comparison on pH measurement and the third APMP comparison on pH measurement following APMP.QM-P06 (two phosphate buffers) in 2004 and APMP.QM-P09 (a phthalate buffer) in 2006. The results can be used further by any participant to support its CMC claim for a phosphate buffer. That claim will concern the pH method employed by the participant during this comparison and will cover the temperature(s) used or the full temperature range between 15 °C and 37 °C for the participant which measured pH values at the three temperatures. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  4. Heat-induced gelation of casein micelles in aqueous suspensions at different pH.

    PubMed

    Thomar, Peggy; Nicolai, Taco

    2016-10-01

    Heat-induced gelation of casein micelles in aqueous solution was investigated between pH 5.2 and pH 6.7 over a wide range of protein concentrations (C=25-160gL(-1)). For C≥40gL(-1) the casein micelles rapidly formed a self-supporting gel above a critical temperature (Tc). At C=160gL(-1), Tc decreased from 90°C at pH 6.5 to 30°C at pH 5.4 and increased with decreasing protein concentration. Oscillatory shear measurements during heating showed that the elastic modulus (Gel) of the gels increased strongly with increasing protein concentration, but was insensitive to the pH and the heating temperature except close to Tc where Gel decreased sharply with decreasing temperature. The microstructure of the gels was observed by confocal scanning laser microscopy. Heat-induced gelation of casein micelles was compared with that of sodium caseinate solutions free of calcium phosphate. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Activity, conformation and dynamics of cutinase adsorbed on poly(methyl methacrylate) latex particles.

    PubMed

    Baptista, R P; Santos, A M; Fedorov, A; Martinho, J M G; Pichot, C; Elaïssari, A; Cabral, J M S; Taipa, M A

    2003-05-08

    The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.

  6. The vulvar skin microenvironment: influence of different panty liners on temperature, pH and microflora.

    PubMed

    Runeman, Bo; Rybo, Göran; Forsgren-Brusk, Ulla; Larkö, Olle; Larsson, Peter; Faergemann, Jan

    2004-01-01

    The aim of this study was to confirm findings that vapour-impermeable panty liners might impair skin climate, and to assess their impact on the skin microflora. Temperature, surface pH and aerobic microflora were measured on vulvar skin of 102 women. The mean skin temperature was 1.1 degrees C higher when using a vapour-impermeable panty liner compared with not using one. Use of panty liners with vapour-permeable back sheets and acidic cores resulted in skin temperature, pH and microflora levels that were very close to those observed in persons not using liners. The temperature, pH and total number of microorganisms were significantly lower for users of vapour-permeable panty liners than for users of vapour-impermeable ones (p <0.05, p<0.001 and p<0.001, respectively). The microorganism densities were usually higher when using the vapour-impermeable panty liner, but mean differences were minor. The use of panty liners seems not to imply a microbial risk for normal, healthy women.

  7. Linking ocean acidification and warming to the larval development of the American lobster (Homarus americanus)

    NASA Astrophysics Data System (ADS)

    Waller, J. D.; Fields, D.; Wahle, R.; Mcveigh, H.; Greenwood, S.

    2016-02-01

    The American lobster upholds the most culturally and economically iconic fishery in New England. Over the past three decades lobster landings have risen steadily in northern New England as lobster populations have shifted northward, leaving policy makers and coastal communities wondering what the future of this fishery may hold. The underlying causes of this population shift are likely due to a suite of environmental stressors including increasing temperature and ocean acidification. In this study we investigated the interactive effects of IPCC predicted temperature and pH on key aspects of larval lobster development (size, survival, development time, respiration rate, swimming speed, prey consumption and gene expression). Our experiments showed that larvae raised in the high temperature treatments (19 °C) experienced significantly higher mortality than larvae in our control treatments (16 °C) with 50% mortality occurring in the high temperature treatment one week after hatching. The larvae in these high temperature treatments developed twice as fast and experienced respiration rates that were three times higher in the third and fourth larval stages. While temperature had a distinct effect, pH treatment had few significant effects on any of our measured parameters. These data suggest that projected end-century warming will have greater adverse effects than acidification on early larval survival, despite the hurrying effect of higher temperatures on lobster larval development and increase in physiological activity. There were no significant treatment effects on carapace length, dry weight, or carbon and nitrogen content. Analysis of swimming speed and gene expression (through RNA sequencing) are in progress. Understanding how the most vulnerable life stages of the lobster life cycle responds to climate change is essential in connecting the northward geographic shifts projected by habitat quality models, and the underlying physiological and genetic mechanisms that drive their ecology.

  8. Determining pH at elevated pressure and temperature using in situ ¹³C NMR.

    PubMed

    Surface, J Andrew; Wang, Fei; Zhu, Yanzhe; Hayes, Sophia E; Giammar, Daniel E; Conradi, Mark S

    2015-02-03

    We have developed an approach for determining pH at elevated pressures and temperatures by using (13)C NMR measurements of inorganic carbon species together with a geochemical equilibrium model. The approach can determine in situ pH with precision better than 0.1 pH units at pressures, temperatures, and ionic strengths typical of geologic carbon sequestration systems. A custom-built high pressure NMR probe was used to collect (13)C NMR spectra of (13)C-labeled CO2 reactions with NaOH solutions and Mg(OH)2 suspensions at pressures up to 107 bar and temperatures of 80 °C. The quantitative nature of NMR spectroscopy allows the concentration ratio [CO2]/[HCO3(-)] to be experimentally determined. This ratio is then used with equilibrium constants calculated for the specific pressure and temperature conditions and appropriate activity coefficients for the solutes to calculate the in situ pH. The experimentally determined [CO2]/[HCO3(-)] ratios agree well with the predicted values for experiments performed with three different concentrations of NaOH and equilibration with multiple pressures of CO2. The approach was then applied to experiments with Mg(OH)2 slurries in which the change in pH could track the dissolution of CO2 into solution, rapid initial Mg(OH)2 dissolution, and onset of magnesium carbonate precipitation.

  9. A ph sensor based on a flexible substrate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor implanted inside the esophagus. Our pH electrode can monitor the pH changes of gastric juice in real time when the reflux happening in the esophagus. Our micro flexible pH sensor performed clear responses in each distinct pH reflux episode quickly and accurately comparing with the other commercial pH monitoring system. For the food freshness monitoring applications, we used the flexible pH sensor as a freshness indicator to monitor the pH changing profile during the food spoilage procedure. The sensor was then embedded with radio frequency identification (RFID) based passive telemetry enabling remote monitoring of food freshness. In the result, our pH-wireless RFID system presented 633Hz/pH of the sensitivity in the frequency calibration. The calibration of stability and dynamical response of the RFID system were also demonstrated before the test on food freshness monitoring. Finally, a white fish meat for long term spoilage procedure monitoring was applied and tested by using our wireless IrOx pH sensing system. Our RFID pH sensing module is able to monitor, collect and transmit the pH information continuously for 18 hours during the food spoilage procedure. In this dissertation, a micro size of IrOx/AgCl pH sensor was fabricated on a flexible substrate. The physical properties of the IrO x thin film was verified in the work. The different sensing capability such as the sensitivity, stability, reversibility, response time, repeatability, selectivity, and temperature dependence was then demonstrated in this work. After the different in-vitro tests, the pH sensor were embedded with our passive RFID circuitry for the in-vivo GERD diagnosis and food freshness monitoring application. Our wireless pH sensing system was able to deliver the accurate and quick pH sensing data wirelessly. In conclusion, our deformable IrOx pH electrodes have been demonstrated with the advantages of accommodating and conforming sensors in small spaces or curved surfaces. This miniature IrOx pH sensor can respond to distinct potentials of the various pH levels as traditional glass electrodes, however, the miniature, bio-compatible and flexible substrate and the ability to be integrated in batterryless telemetry enable the pH sensor to be applied on many new medical, bio-chemical and biological field.

  10. Removal Efficiency of the Heavy Metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at Different pH Values and Temperature Degrees

    PubMed Central

    Hashem, Mohamed

    2007-01-01

    The removal efficiency of the heavy metals Zn, Pb and Cd by the zoosporic fungal species Saprolegnia delica and the terrestrial fungus Trichoderma viride, isolated from polluted water drainages in the Delta of Nile in Egypt, as affected by various ranges of pH values and different temperature degrees,was extensively investigated. The maximum removal efficiency of S. delica for Zn(II) and Cd(II) was obtained at pH 8 and for Pb(II) was at pH 6 whilst the removal efficiency of T. viride was found to be optimum at pH 6 for the three applied heavy metals. Regardless the median lethal doses of the three heavy metals, Zn recorded the highest bioaccumulation potency by S. delica at all pH values except at pH 4, followed by Pb whereas Cd showed the lowest removal potency by the fungal species and vice versa in case of T. viride. The optimum biomass dry weight production by S. delica was found when the fungus was grown in the medium treated with the heavy metal Pb at pH 6, followed by Zn at pH 8 and Cd at pH 8. The optimum biomass dry weight yield by T. viride amended with Zn,Pb and Cd was obtained at pH 6 for the three heavy metals with the maximum value at Zn. The highest yield of biomass dry weight was found when T. viride treated with Cd at all different pH values followed by Pb whilst Zn output was the lowest and this result was reversed in case of S. delica. The maximum removal efficiency and the biomass dry weight production for the three tested heavy metals was obtained at the incubation temperature 20℃ in case of S. delica while it was 25℃ for T. viride. Incubation of T. viride at higher temperatures (30℃ and 35℃) enhanced the removal efficiency of Pb and Cd than low temperatures (15℃ and 20℃) and vice versa in case of Zn removal. At all tested incubation temperatures, the maximum yield of biomass dry weight was attained at Zn treatment by the two tested fungal species. The bioaccumulation potency of S. delica for Zn was higher than that for Pb at all temperature degrees of incubation and Cd bioaccumulation was the lowest whereas T. viride showed the highest removal efficiency for Pb followed by Cd and Zn was the minor of the heavy metals. PMID:24015084

  11. NIR Ratiometric Luminescence Detection of pH Fluctuation in Living Cells with Hemicyanine Derivative-Assembled Upconversion Nanophosphors.

    PubMed

    Li, Haixia; Dong, Hao; Yu, Mingming; Liu, Chunxia; Li, Zhanxian; Wei, Liuhe; Sun, Ling-Dong; Zhang, Hongyan

    2017-09-05

    It is crucial for cell physiology to keep the homeostasis of pH, and it is highly demanded yet challenging to develop luminescence resonance energy transfer (LRET)-based near-infrared (NIR) ratiometric luminescent sensor for the detection of pH fluctuation with NIR excitation. As promising energy donors for LRET, upconversion nanoparticles (UCNPs) have been widely used to fabricate nanosensors, but the relatively low LRET efficiency limits their application in bioassay. To improve the LRET efficiency, core/shell/shell structured β-NaGdF 4 @NaYF 4 :Yb,Tm@NaYF 4 UCNPs were prepared and decorated with hemicyanine dyes as an LRET-based NIR ratiometric luminescent pH fluctuation-nanosensor for the first time. The as-developed nanosensor not only exhibits good antidisturbance ability, but it also can reversibly sense pH and linearly sense pH in a range of 6.0-9.0 and 6.8-9.0 from absorption and upconversion emission spectra, respectively. In addition, the nanosensor displays low dark toxicity under physiological temperature, indicating good biocompatibility. Furthermore, live cell imaging results revealed that the sensor can selectively monitor pH fluctuation via ratiometric upconversion luminescence behavior.

  12. Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents

    NASA Astrophysics Data System (ADS)

    Paksamut, J.; Boonsong, P.

    2018-03-01

    In this study, the purpose of our interest is to investigatethe adsorption behavior of copper (II) ions in aqueous solution using some tannin-rich plants as natural bio-adsorbents such as mangosteen peels (Garciniamangostana L.), cassava leaves (Manihotesculenta Crantz) and Thai copper pod leaves (Sennasiamea (Lam.)) as powder form in different dosage of adsorbent plant materials.The adsorption capacities at different pH of solution and contact time were performed.All the experiments in this studywere chosen at room temperature by batch technique. From the experimental results showed that cassava leaves gave better adsorbent properties than mangosteen peels and Thai copper pod leaves. The increasing dosage of all adsorbents and contact time have been found to increase adsorption capacities. In this respect, the adsorption capacities depend crucially on the adsorbents and contact time. The optimum pH of copper (II) ions adsorption was pH4. According to this work, it was observed that bioadsorbent materials from tannin-rich plants could be used to remove copper (II) ions from aqueous solutions.

  13. Optimization of maltodextrin production from avocado seed starch by response surface methodology

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Viet; Ma, Tuyen-Hoang Nguyen; Nguyen, Tha Thi; Ho, Vinh-Nghi Kim; Vo, Hau Tan

    2018-04-01

    A process for maltodextrin production from avocado seed starch was reported in this study. Response surface methodology was used to investigate the effects of three independent variables for hydrolysis of the starch using a commercial food-grade α-amylase, Termamyl SC. These variables included enzyme concentration (0.05 - 0.15% starch), pH (5.0 - 6.0) and hydrolysis time (1.0 - 3.0 h), while the temperature fixed at 95°C. The result showed that the optimum conditions were using enzyme concentration at 0.12%, pH at 5.5 and 2.75 h of the incubation time. Under the optimum conditions, the recovered starch yield was 79.8% and the maltodextrin powder had 15.8 of dextrose equivalent.

  14. Production of bio ethanol from waste potatoes

    NASA Astrophysics Data System (ADS)

    Jaber Noufal, Mohamad; Li, Baizhan; Maalla, Zena Ali

    2017-03-01

    In this research, production of ethanol from waste potatoes fermentation was studied using Saccharomyces cerevisiae. Potato Flour prepared from potato tubers after cooking and drying at 85°C. A homogenous slurry of potato flour prepared in water at solid-liquid ratio 1:10. Liquefaction of potato starch slurry was done with α-amylase at 80°C for 40 min followed by saccharification process which was done with glucoamylase at 65°C for two hr. Fermentation of hydrolysate with Saccharomyces cerevisiae at 35°C for two days resulted in the production of 33 g/l ethanol. The following parameters have been analysed: temperature, time of fermentation and pH. It found that Saccharification process is affected by enzyme Amylase 300 concentration and concentration of 1000μl/100ml gives the efficient effect of the process. The best temperature for fermentation process was found to be about 35°C. Also, it noticed that ethanol production increased as a time of fermentation increased but after 48 hr further growth in fermentation time did not have an appreciable effect. Finally, the optimal value of pH for fermentation process was about 5 to 6.

  15. Solid-phase micro-extraction procedure for the determination of 1,3-dichloro-2-propanol in water by on-fibre derivatisation with bis(trimethylsilyl)trifluoroacetamide.

    PubMed

    Carro, Antonia María; González, Paula; Fajar, Noelia; Lorenzo, Rosa Antonia; Cela, Rafael

    2009-06-01

    The headspace solid-phase micro-extraction technique with on-fibre derivatisation followed by gas chromatography-tandem mass spectrometry has been evaluated for the analysis of 1,3-dichloro-2-propanol in water. An asymmetric factorial design has been performed to study the influence of five experimental factors: extraction time and temperature, derivatisation time and temperature and pH. The best extraction performance is achieved in the headspace mode, with 5 mL stirred water samples (pH 4) containing 1.3 g of NaCl, equilibrated for 30 min at 25 degrees C, using divinylbenzene-carboxen-polydimethylsiloxane as the fibre coating. On-fibre derivatisation has been used for the first time with 50 microL of bis(trimethylsilyl)trifluoroacetamide at 25 degrees C during 15 min, leading to effective yields. The proposed method provides high sensitivity, good linearity and repeatability (relative standard deviation of 5.1% for 10 ng mL(-1) and n = 5). The limits of detection and quantification were 0.4 and 1.4 ng mL(-1), respectively. Analytical recoveries obtained for different water samples were approx. 100%.

  16. Adsorption of a textile dye "Indanthrene Blue RS (C.I. Vat Blue 4)" from aqueous solutions onto smectite-rich clayey rock.

    PubMed

    Chaari, Islem; Feki, Mongi; Medhioub, Mounir; Bouzid, Jalel; Fakhfakh, Emna; Jamoussi, Fakher

    2009-12-30

    The adsorption of a textile dye, namely, Indanthrene Blue RS (C.I. Vat Blue 4) onto smectite-rich clayey rock (AYD) and its sulphuric acid-activated products (AYDS) in aqueous solution was studied in a batch system with respect to contact time, pH, and temperature. The adsorbents employed were characterized by X-ray diffraction, infrared spectroscopy and specific surface area, cation exchange capacity and point of zero charge were also estimated. The effect of contact time on dye adsorption showed that the equilibrium was reached after a contact time of 40 min for the both adsorbents. The optimum pH for dye retention was found 6.0 for AYDS and 7.3 for AYD. The equilibrium adsorption data were analysed using the Langmuir and Freundlich isotherms. The adsorption capacities (Q(m)) for AYD and AYDS were found 13.92 mg/g and 17.85 mg/g, respectively. The effect of temperature on the adsorption was also investigated; adsorption of Indanthrene Blue RS is an endothermic process. This study demonstrates that all the considered adsorbents can be used as an alternative emerging technology for water treatment.

  17. Short-term harmful effects of unionised ammonia on natural populations of Moina micrura and Brachionus rubens in a deep waste treatment pond.

    PubMed

    Arauzo, M; Valladolid, M

    2003-06-01

    Populations of Moina micrura and Brachionus rubens in a deep waste treatment pond were exposed to the natural short-term fluctuations of unionised ammonia (90-min intervals of monitoring) that occur in the course of a day during a summer algal bloom. Under natural conditions, three replicate experiments were conducted in which water temperature, pH, dissolved oxygen, total ammonia, unionised ammonia, phytoplankton biomass and zooplankton (number of living and dead organisms, mortality rate and instant mortality) were studied. The time-course of unionised ammonia concentration was consistent with those shown by temperature, pH, phytoplankton biomass, dissolved oxygen, Moina micrura mortality and Brachionus rubens mortality. On the other hand, temperature, pH and dissolved oxygen never exceeded the tolerance ranges described for Moina and Brachionus, which led us to attribute the cause of zooplankton mortality to unionised ammonia toxicity. Mortality rates of 63%, 27% and 34% were recorded for Moina in each replicate experiment. Brachionus was less affected, with mortalities of 7.3%, 6.2% and 6.0%. These results confirm previous field observations (Water Res. 34(14) (2000) 3666; Water Res. 37(5) (2003) 1048) that attributed a reduction in zooplankton biomass during certain periods of summer (algal blooms) to a harmful side-effect of an excessive increase in phytoplankton biomass: high photosynthetic activity during these periods of proliferation of algae gives rise to an increased pH (>/=8) and, subsequently, leads to production of unionised ammonia (toxic for aquatic organisms) from its ionised fraction.

  18. Effect of fire-retardant treatment on plywood pH and the relationship of pH to strength properties

    Treesearch

    S. T. Lebow; J. E. Winandy

    1999-01-01

    This paper investigates the relationship between wood pH and the strength properties of fire-retardant-treated (FRT) plywood, as it is affected by fire-retardant (FR) formulations, processing variables, and extended high temperature exposure conditions. The objectives of this study were to (1) identify the effect of post-treatment kiln-drying temperature, followed by...

  19. Cell Membrane Fatty Acid Composition of Chryseobacterium frigidisoli PB4T, Isolated from Antarctic Glacier Forefield Soils, in Response to Changing Temperature and pH Conditions

    PubMed Central

    Bajerski, Felizitas; Wagner, Dirk; Mangelsdorf, Kai

    2017-01-01

    Microorganisms in Antarctic glacier forefields are directly exposed to the hostile environment of their habitat characterized by extremely low temperatures and changing geochemical conditions. To survive under those stress conditions microorganisms adapt, among others, their cell membrane fatty acid inventory. However, only little is known about the adaptation potential of microorganisms from Antarctic soil environments. In this study, we examined the adaptation of the cell membrane polar lipid fatty acid inventory of Chryseobacterium frigidisoli PB4T in response to changing temperature (0°C to 20°C) and pH (5.5 to 8.5) regimes, because this new strain isolated from an Antarctic glacier forefield showed specific adaptation mechanisms during its detailed physiological characterization. Flavobacteriaceae including Chryseobacterium species occur frequently in extreme habitats such as ice-free oases in Antarctica. C. frigidisoli shows a complex restructuring of membrane derived fatty acids in response to different stress levels. Thus, from 20°C to 10°C a change from less iso-C15:0 to more iso-C17:1ω7 is observed. Below 10°C temperature adaptation is regulated by a constant increase of anteiso-FAs and decrease of iso-FAs. An anteiso- and bis-unsaturated fatty acid, anteiso-heptadeca-9,13-dienoic acid, shows a continuous increase with decreasing cultivation temperatures underlining the particular importance of this fatty acid for temperature adaptation in C. frigidisoli. Concerning adaptation to changing pH conditions, most of the dominant fatty acids reveal constant relative proportions around neutral pH (pH 6–8). Strong variations are mainly observed at the pH extremes (pH 5.5 and 8.5). At high pH short chain saturated iso- and anteiso-FAs increase while longer chain unsaturated iso- and anteiso-FAs decrease. At low pH the opposite trend is observed. The study shows a complex interplay of different membrane components and provides, therefore, deep insights into adaptation strategies of microorganisms from extreme habitats to changing environmental conditions. PMID:28469614

  20. Effects of increased pCO2 and temperature on trace element (Ag, Cd and Zn) bioaccumulation in the eggs of the common cuttlefish, Sepia officinalis

    NASA Astrophysics Data System (ADS)

    Lacoue-Labarthe, T.; Martin, S.; Oberhänsli, F.; Teyssié, J.-L.; Markich, S.; Jeffree, R.; Bustamante, P.

    2009-05-01

    Cephalopods play a key role in many marine trophic networks and constitute alternative fisheries resources, especially given the ongoing decline in finfish stocks. Along the European coast, the eggs of the cuttlefish Sepia officinalis are characterized by an increasing permeability of the eggshell during development, which leads to selective accumulation of essential and non-essential elements in the embryo. Temperature and pH are two critical factors that affect the metabolism of marine organisms in the coastal shallow waters. In this study, we are testing the effects of pH and temperature through a crossed (3×2) laboratory experiment. Seawater pH showed a strong effect on the egg weight and non-significant impact on the hatchlings weight at the end of development implying egg swelling process and embryo growth disturbances. The lower pH of incubation seawater of eggs, the more the hatchlings accumulated 110m Ag in their tissues. The 109Cd CF decreased with increasing pH and 65Zn CF reached the maximal values pH 7.85, independent of temperature. Our results suggest that pH and temperature affected both the permeability properties of the eggshell and the embryo metabolism. To the best of our knowledge, this is one of the first studies on the ocean acidification and ocean warming consequences on the metal uptake in marine organisms, stimulating further interest to evaluate the likely ecotoxicological impact of the global change on the early-life stage of the cuttlefish.

  1. Alternative Antimicrobial Commercial Egg Washing Procedures.

    PubMed

    Hudson, Lauren K; Harrison, Mark A; Berrang, Mark E; Jones, Deana R

    2016-07-01

    Commercial table eggs are washed prior to packaging. Standard wash procedures use an alkaline pH and warm water. If a cool water method could be developed that would still provide a microbiologically safe egg, the industry may save energy costs associated with water heating. Four wash procedures were evaluated for Salmonella reduction: pH 11 at 48.9°C (industry standard), pH 11 at ambient temperature (∼20°C), pH 6 at 48.9°C, and pH 6 at ambient temperature. Alkaline washes contained potassium hydroxide-based detergent, while pH 6 washes contained approximately 200 ppm of chlorine and a proprietary chlorine stabilizer (T-128). When eggs were inoculated by immersion in a cell suspension of Salmonella Enteritidis and Salmonella Typhimurium, all treatments resulted in a slight and similar reduction of Salmonella numbers (approximately 0.77 log CFU/ml of shell emulsion reduction). When eggs were inoculated by droplet on the shell surface, Salmonella counts were reduced by approximately 5 log CFU when washed with chlorine plus the chlorine stabilizer at both temperatures and with the alkaline wash at the high temperature. The reductions in Salmonella by these treatments were not significantly (P > 0.05) different from each other but were significantly (P < 0.05) more than the reduction observed for the 20°C alkaline treatment and 20°C control water treatments. Ambient temperature acidic washes reduced Salmonella contamination to the same degree as the standard pH 11 warm water wash and may be a viable option to reduce cost, increase shelf life, and slow pathogen growth in and on shell eggs.

  2. High-Pressure-High-Temperature Processing Reduces Maillard Reaction and Viscosity in Whey Protein-Sugar Solutions.

    PubMed

    Avila Ruiz, Geraldine; Xi, Bingyan; Minor, Marcel; Sala, Guido; van Boekel, Martinus; Fogliano, Vincenzo; Stieger, Markus

    2016-09-28

    The aim of the study was to determine the influence of pressure in high-pressure-high-temperature (HPHT) processing on Maillard reactions and protein aggregation of whey protein-sugar solutions. Solutions of whey protein isolate containing either glucose or trehalose at pH 6, 7, and 9 were treated by HPHT processing or conventional high-temperature (HT) treatments. Browning was reduced, and early and advanced Maillard reactions were retarded under HPHT processing at all pH values compared to HT treatment. HPHT induced a larger pH drop than HT treatments, especially at pH 9, which was not associated with Maillard reactions. After HPHT processing at pH 7, protein aggregation and viscosity of whey protein isolate-glucose/trehalose solutions remained unchanged. It was concluded that HPHT processing can potentially improve the quality of protein-sugar-containing foods, for which browning and high viscosities are undesired, such as high-protein beverages.

  3. Monitoring of the interconversion of gamma-butyrolactone (GBL) to gamma hydroxybutyric acid (GHB) by Raman spectroscopy.

    PubMed

    Munshi, Tasnim; Brewster, Victoria L; Edwards, Howell G M; Hargreaves, Michael D; Jilani, Shelina K; Scowen, Ian J

    2013-08-01

    Gamma-hydroxybutyric acid (GHB) is a drug-of-abuse that has recently become associated with drug-facilitated sexual assault, known as date rape. For this reason the drug is commonly found 'spiked' in alcoholic beverages. When GHB is in solution it may undergo conversion into the corresponding lactone, Gamma-butyrolactone (GBL). Studies have been carried out to determine the detection limits of GHB and GBL in various solutions by Raman spectroscopy and to monitor the interconversion of GHB and GBL in solution with different pH conditions and temperature. In this study, a portable Raman spectrometer was used to study the interconversion of GHB and GBL in water and ethanol solutions as a function of pH, time, and temperature. The aim of this was to determine the optimum pH range for conversion in order to relate this to the pH ranges that the drug is likely to be subjected to, first in spiked beverages and secondly after ingestion in the digestive system. The aim was also to identify a timescale for this conversion in relation to possible scenarios, for example if GHB takes a number of hours to convert to GBL, it is likely for the beverage to be ingested before esterification can take place. GHB and GBL were then spiked into a selection of beverages of known pH in order to study the stability of GHB and GBL in real systems. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Modeling the Effect of pH and Temperature for Cellulases Immobilized on Enzymogel Nanoparticles.

    PubMed

    Samaratunga, Ashani; Kudina, Olena; Nahar, Nurun; Zakharchenko, Andrey; Minko, Sergiy; Voronov, Andriy; Pryor, Scott W

    2015-06-01

    Production costs of cellulosic biofuels can be lowered if cellulases are recovered and reused using particulate carriers that can be extracted after biomass hydrolysis. Such enzyme recovery was recently demonstrated using enzymogel nanoparticles with grafted polymer brushes loaded with cellulases. In this work, cellulase (NS50013) and β-glucosidase (Novozyme 188) were immobilized on enzymogels made of poly(acrylic acid) polymer brushes grafted to the surface of silica nanoparticles. Response surface methodology was used to model effects of pH and temperature on hydrolysis and recovery of free and attached enzymes. Hydrolysis yields using both enzymogels and free cellulase and β-glucosidase were highest at the maximum temperature tested, 50 °C. The optimal pH for cellulase enzymogels and free enzyme was 5.0 and 4.4, respectively, while both free β-glucosidase and enzymogels had an optimal pH near 4.4. Highest hydrolysis sugar concentrations with cellulase and β-glucosidase enzymogels were 69 and 53 % of those with free enzymes, respectively. Enzyme recovery using enzymogels decreased with increasing pH, but cellulase recovery remained greater than 88 % throughout the operating range of pH values less than 5.0 and was greater than 95 % at pH values below 4.3. Recovery of β-glucosidase enzymogels was not affected by temperature and had little impact on cellulase recovery.

  5. Effects of salinity, pH and temperature on the re-establishment of bioluminescence and copper or SDS toxicity in the marine dinoflagellate Pyrocystis lunula using bioluminescence as an endpoint

    USGS Publications Warehouse

    Craig, J.M.; Klerks, P.L.; Heimann, K.; Waits, J.L.

    2003-01-01

    Pyrocystis lunula is a unicellular, marine, photoautotrophic, bioluminescent dinoflagellate. This organism is used in the Lumitox ?? bioassay with inhibition of bioluminescence re-establishment as the endpoint. Experiments determined if acute changes in pH, salinity, or temperature had an effect on the organisms' ability to re-establish bioluminescence, or on the bioassay's potential to detect sodium dodecyl sulfate (SDS) and copper toxicity. The re-establishment of bioluminescence itself was not very sensitive to changes in pH within the pH 6-10 range, though reducing pH from 8 to levels below 6 decreased this capacity. Increasing the pH had little effect on Cu or SDS toxicity, but decreasing the pH below 7 virtually eliminated the toxicity of either compound in the bioassay. Lowering the salinity from 33 to 27??? or less resulted in a substantial decrease in re-establishment of bioluminescence, while increasing the salinity to 43 or 48 ??? resulted in a small decline. Salinity had little influence on the bioassay's quantification of Cu toxicity, while the data showed a weak negative relationship between SDS toxicity and salinity. Re-establishment of bioluminescence showed a direct dependence on temperature, but only at 10??C did temperature have an obvious effect on the toxicity of Cu in this bioassay. ?? 2003 Elsevier Science Ltd. All rights reserved.

  6. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  7. Effects of the Treating Time on Microstructure and Erosion Corrosion Behavior of Salt-Bath-Nitrided 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji

    2013-08-01

    The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.

  8. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  9. 40 CFR 411.25 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (maximum for any 1 day) Metric units (kg/kkg of dust leached) TSS 0.4. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the range 6.0 to 9.0. English units (lb/1,000 lb of dust leached) TSS 0.4. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the range...

  10. 40 CFR 411.25 - Standards of performance for new sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (maximum for any 1 day) Metric units (kg/kkg of dust leached) TSS 0.4. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the range 6.0 to 9.0. English units (lb/1,000 lb of dust leached) TSS 0.4. Temperature (heat) Not to exceed 3 °C rise above inlet temperature. pH Within the range...

  11. Molecular Identification of a Newly Isolated Bacillus subtilis BI19 and Optimization of Production Conditions for Enhanced Production of Extracellular Amylase

    PubMed Central

    Dash, Biplab Kumar; Rahman, M. Mizanur; Sarker, Palash Kumar

    2015-01-01

    A study was carried out with a newly isolated bacterial strain yielding extracellular amylase. The phylogenetic tree constructed on the basis of 16S rDNA gene sequences revealed this strain as clustered with the closest members of Bacillus sp. and identified as Bacillus subtilis BI19. The effect of various fermentation conditions on amylase production through shake-flask culture was investigated. Rice flour (1.25%) as a cheap natural carbon source was found to induce amylase production mostly. A combination of peptone and tryptone as organic and ammonium sulfate as inorganic nitrogen sources gave highest yield. Maximum production was obtained after 24 h of incubation at 37°C with an initial medium pH 8.0. Addition of surfactants like Tween 80 (0.25 g/L) and sodium lauryl sulfate (0.2 g/L) resulted in 28% and 15% increase in enzyme production, respectively. Amylase production was 3.06 times higher when optimized production conditions were used. Optimum reaction temperature and pH for crude amylase activity were 50°C and 6.0, respectively. The crude enzyme showed activity and stability over a fair range of temperature and pH. These results suggest that B. subtilis BI19 could be exploited for production of amylase at relatively low cost and time. PMID:26180814

  12. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon.

    PubMed

    Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk

    2014-04-15

    In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.

    PubMed

    Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui

    2017-09-01

    In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

  14. Adsorptive removal of 2-chlorophenol by low-cost coir pith carbon.

    PubMed

    Namasivayam, C; Kavitha, D

    2003-03-17

    Adsorption of 2-chlorophenol (2-CP) by coir pith carbon was carried out by varying the parameters such as agitation time, 2-CP concentration, adsorbent dose, pH and temperature. Adsorption equilibrium reached at 40, 60, 80 and 100 min for 2-CP concentration of 10, 20, 30 and 40 mg/l, respectively. Adsorption followed second-order kinetics. The adsorption equilibrium data obeyed Freundlich isotherm. Acidic pH was favorable for the adsorption of 2-CP. Desorption studies showed that chemisorption plays a major role in the adsorption process. Copyright 2003 Elsevier Science B.V.

  15. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    PubMed

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  16. Effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment.

    PubMed

    Zhang, Chaosheng; Zhang, Shaoqing; Zhang, Liqiu; Rong, Hongwei; Zhang, Kefang

    2015-04-01

    On the basis of achieving shortcut nitrification in a lab-scale SBR, the effects of constant pH and unsteady pH at different free ammonia concentrations on shortcut nitrification for landfill leachate treatment was investigated. The results indicate that under the condition of DO of 0.5 ± 0.2 mg/L and temperature of 30 ± 2 °C, the absolute value of nitrite accumulation increased significantly with the increase in free ammonia (FA) concentration from 5.30 to 48.67 mg/L; however, the nitrite accumulation rate remained almost constant at a constant pH of 8.0 ± 0.1. Ammonia oxidation and the nitrite accumulation become slow with the pH decreased from 8.0 ± 0.1 to 7.5 ± 0.2, and the activities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were severely inhibited when the pH further decreased to 6.5. More importantly, this study confirmed that the pH decrease from 8.0 to 6.5 within a short time exhibited significant negative effect on the ammonia oxidation rather than the FA concentration.

  17. Hydroponic system design with real time OS based on ARM Cortex-M microcontroller

    NASA Astrophysics Data System (ADS)

    Atmadja, Wiedjaja; Liawatimena, Suryadiputra; Lukas, Jonathan; Nata, Eka Putra Leo; Alexander, Ivan

    2017-12-01

    Hydroponic is the process of growing plants without soil, plant root flooded or moist with nutrient-rich solutions in inert material. Hydroponics has become a reality for greenhouse growers in virtually all climates. Large hydroponic installations exist throughout the world for growing flowers, vegetables and some short period fruit like tomato and cucumber. In soilless culture, we must maintain stable pH and conductivity level of nutrient solution to make plant grow well, large variation of pH of certain time will poisoned plant. This paper describes development complete automation hydroponic system, from maintaining stable nutrient composition (conductivity and pH), grow light, and monitor plant environment such as CO2, temperature and humidity. The heart of our automation is ARM Cortex-M4 from ST Microelectronic running ARM mbed OS, the official Real Time Operating System (RTOS) for ARM Cortex-M microcontroller. Using RTOS gives us flexibility to have multithreaded process. Results show that system capable to control desired concentration level with variation of less than 3%, pH sensor show good accuracy 5.83% from pH value 3.23-10. Growing light intensity measurement show result 105 μmol/m2/s therefore we need turn on the light at least 17 hours/day to fulfil plant light requirement. RTOS give good performance with latency and jitter less than 15 us, system overall show good performance and accuracy for automating hydroponic plant in vegetative phase of growth.

  18. Biotherapeutic formulation factors affecting metal leachables from stainless steel studied by design of experiments.

    PubMed

    Zhou, Shuxia; Evans, Brad; Schöneich, Christian; Singh, Satish K

    2012-03-01

    Trace amounts of metals are inevitably present in biotherapeutic products. They can arise from various sources. The impact of common formulation factors such as protein concentration, antioxidant, metal chelator concentration and type, surfactant, pH, and contact time with stainless steel on metal leachables was investigated by a design of experiments approach. Three major metal leachables, iron, chromium, and nickel were monitored by inductively coupled plasma-mass spectrometry. It was observed that among all the tested factors, contact time, metal chelator concentration, and protein concentration were statistically significant factors with higher temperature resulting in higher levels of leached metals. Within a pH range of 5.5-6.5, solution pH played a minor role for chromium leaching at 25°C. No statistically significant difference was observed due to type of chelator, presence of antioxidant, or surfactant. In order to optimize a biotherapeutic formulation to achieve a target drug product shelf life with acceptable quality, each formulation component must be evaluated for its impact.

  19. Chlorine Disinfection of Atypical Mycobacteria Isolated from a Water Distribution System

    PubMed Central

    Le Dantec, Corinne; Duguet, Jean-Pierre; Montiel, Antoine; Dumoutier, Nadine; Dubrou, Sylvie; Vincent, Véronique

    2002-01-01

    We studied the resistance of various mycobacteria isolated from a water distribution system to chlorine. Chlorine disinfection efficiency is expressed as the coefficient of lethality (liters per minute per milligram) as follows: Mycobacterium fortuitum (0.02) > M. chelonae (0.03) > M. gordonae (0.09) > M. aurum (0.19). For a C · t value (product of the disinfectant concentration and contact time) of 60 mg · min · liter−1, frequently used in water treatment lines, chlorine disinfection inactivates over 4 log units of M. gordonae and 1.5 log units of M. fortuitum or M. chelonae. C · t values determined under similar conditions show that even the most susceptible species, M. aurum and M. gordonae, are 100 and 330 times more resistant to chlorine than Escherichia coli. We also investigated the effects of different parameters (medium, pH, and temperature) on chlorine disinfection in a chlorine-resistant M. gordonae model. Our experimental results follow the Arrhenius equation, allowing the inactivation rate to be predicted at different temperatures. Our results show that M. gordonae is more resistant to chlorine in low-nutrient media, such as those encountered in water, and that an increase in temperature (from 4°C to 25°C) and a decrease in pH result in better inactivation. PMID:11872446

  20. Thermal wet decomposition of Prussian Blue: implications for prebiotic chemistry.

    PubMed

    Ruiz-Bermejo, Marta; Rogero, Celia; Menor-Salván, César; Osuna-Esteban, Susana; Martín-Gago, José Angel; Veintemillas-Verdaguer, Sabino

    2009-09-01

    The complex salt named Prussian Blue, Fe4[Fe(CN)6]3 x 15 H2O, can release cyanide at pH > 10. From the point of view of the origin of life, this fact is of interest, since the oligomers of HCN, formed in the presence of ammonium or amines, leads to a variety of biomolecules. In this work, for the first time, the thermal wet decomposition of Prussian Blue was studied. To establish the influence of temperature and reaction time on the ability of Prussian Blue to release cyanide and to subsequently generate other compounds, suspensions of Prussian Blue were heated at temperatures from room temperature to 150 degrees at pH 12 in NH3 environment for several days. The NH3 wet decomposition of Prussian Blue generated hematite, alpha-Fe2O3, the soluble complex salt (NH4)4[Fe(CN6)] x 1.5 H2O, and several organic compounds, the nature and yield of which depend on the experimental conditions. Urea, lactic acid, 5,5-dimethylhydantoin, and several amino acids and carboxylic acids were identified by their trimethylsilyl (TMS) derivatives. HCN, cyanogen (C2N2), and formamide (HCONH2) were detected in the gas phase by GC/MS analysis.

  1. Kinetic study of alkaline protease 894 for the hydrolysis of the pearl oyster Pinctada martensii

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Chen, Hua; Cai, Bingna; Liu, Qingqin; Sun, Huili

    2013-05-01

    A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.

  2. A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets.

    PubMed

    Rostamian, Rahele; Behnejad, Hassan

    2018-01-01

    The adsorption behavior of tetracycline (TCN), doxycycline (DCN) as the most common antibiotics in veterinary and ciprofloxacin (CPN) onto graphene oxide nanosheets (GOS) in aqueous solution was evaluated. The four factors influencing the adsorption of antibiotics (initial concentration, pH, temperature and contact time) were studied. The results showed that initial pH ∼ 6 to 7 and contact time ∼ 100 - 200min are optimum for each drug. The monolayer adsorption capacity was reduced with the increasing temperature from 25°C to 45°C. Non-linear regressions were carried out in order to define the best fit model for every system. To do this, eight error functions were applied to predict the optimum model. Among various models, Hill and Toth isotherm models represented the equilibrium adsorption data of antibiotics while the kinetic data were well fitted by pseudo second-order (PSO) kinetic model (DCN and TCN) and Elovich (CPN) models. The maximum adsorption capacity (q max ) is found to be in the following order: CPN > DCN > TCN, obtained from sips equation at the same temperature. The GOS shows highest adsorption capacity towards CPN up to 173.4mgg -1 . The study showed that GOS can be removed more efficiently from water solution. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effect of pH and aging time on the kinetic dissociation of 243Am(III) from humic acid-coated gamma-Al2O3: a chelating resin exchange study.

    PubMed

    Wang, Xiangke; Chen, Changlun; Du, Jinzhou; Tan, Xiaoli; Di, Xu; Yu, Shaoming

    2005-09-15

    The chelating resin was studied to assess its influence on metal availability and mobility in the environment. The association of organic-inorganic colloid-borne trace elements was investigated in this work. The radionuclide 243Am(III) was chosen as the representative and chemical homologue for trivalent lanthanide and actinide ions present in radioactive nuclear waste. The kinetic dissociation behavior of 243Am(III) from humic acid-coated gamma-Al2O3 was studied at pH values of 4.0 +/- 0.1, 5.0 +/- 0.2, and 6.0 +/- 0.2 with a contact time of 2 days after the addition of a chelating cation exchanger resin. The concentrations of the components were: 243Am(III) 3.0 x 10(-7) mol/L, gamma-Al2O3 0.5 g/L, HA 10 mg/L (pH 4.0 +/- 0.1, 5.0 +/- 0.2, and 6.0 +/- 0.2) and 50 mg/L (pH 6.0 +/- 0.2), respectively. The kinetics of dissociation of 243Am(III) after different equilibration time with humic acid-coated gamma-Al2O3 was also investigated at pH 5.0 +/- 0.2. The experiments were carried out in air and at ambient temperature. The results suggest that the fraction of irreversible bonding of radionuclides to HA-coated Al2O3 increases with increasing pH and is independent of aging time. The assumption of two different 243Am(III)-HA-Al2O3 species, with "fast" and "slow" dissociation kinetics, is required to explain the experimental results. 243Am(III) species present on HA-Al2O3 colloids moves from the "fast" to the "slow" dissociating sites with the increase of aging time.

  4. Selective solvent extraction of cellulosic material

    DOEpatents

    Wang, D.I.C.; Avgerinos, G.C.

    1983-07-26

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15 and about 70 C and for a time period between about 2 and about 80 hours. 6 figs.

  5. Remediation and recycling of WBP-treated lumber for use as flakeboard

    Treesearch

    Ronald Sabo; Jerrold E. Winandy; Carol A. Clausen; Altaf Basta

    2008-01-01

    Laboratory-scale experiments were conducted in which preservative metals (As, Cr, & Cu) were thermochemically extracted from CCA-treated spruce (Picea engelmannii) using oxalic acid and sodium hydroxide. The effects of extraction time, temperature, and pH were examined and laboratory scale optimization was achieved. Two series of experiments were carried out. In...

  6. Selective solvent extraction of cellulosic material

    DOEpatents

    Wang, Daniel I. C.; Avgerinos, George C.

    1983-01-01

    Cellulosic products having a high hemicellulose to lignin weight ratio are obtained by extracting a cellulosic composition with basic ethanol-water solution having a pH between about 12 and about 14 at a temperature between about 15.degree. and about 70.degree. C. and for a time period between about 2 and about 80 hours.

  7. Fluid inclusion geothermometry

    USGS Publications Warehouse

    Cunningham, C.G.

    1977-01-01

    Fluid inclusions trapped within crystals either during growth or at a later time provide many clues to the histories of rocks and ores. Estimates of fluid-inclusion homogenization temperature and density can be obtained using a petrographic microscope with thin sections, and they can be refined using heating and freezing stages. Fluid inclusion studies, used in conjunction with paragenetic studies, can provide direct data on the time and space variations of parameters such as temperature, pressure, density, and composition of fluids in geologic environments. Changes in these parameters directly affect the fugacity, composition, and pH of fluids, thus directly influencing localization of ore metals. ?? 1977 Ferdinand Enke Verlag Stuttgart.

  8. A rapid and low energy consumption method to decolorize the high concentration triphenylmethane dye wastewater: operational parameters optimization for the ultrasonic-assisted ozone oxidation process.

    PubMed

    Zhou, Xian-Jiao; Guo, Wan-Qian; Yang, Shan-Shan; Ren, Nan-Qi

    2012-02-01

    This research set up an ultrasonic-assisted ozone oxidation process (UAOOP) to decolorize the triphenylmethane dyes wastewater. Five factors - temperature, initial pH, reaction time, ultrasonic power (low frequency 20 kHz), and ozone concentration - were investigated. Response surface methodology was used to find out the major factors influencing color removal rate and the interactions between these factors, and optimized the operating parameters as well. Under the experimental conditions: reaction temperature 39.81 °C, initial pH 5.29, ultrasonic power 60 W and ozone concentration 0.17 g/L, the highest color removals were achieved with 10 min reaction time and the initial concentration of the MG solution was 1000 mg/L. The optimal results indicated that the UAOOP was a rapid, efficient and low energy consumption technique to decolorize the high concentration MG wastewater. The predicted model was approximately in accordance with the experimental cases with correlation coefficients R(2) and R(adj)(2) of 0.9103 and 0.8386. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  9. [Characteristics and mechanism of sodium removal by the synergistic action of flue gas and waste solid].

    PubMed

    Yi, Yuan-Rong; Han, Min-Fang

    2012-07-01

    The carbon dioxide (CO2) in flue gas was used to remove the sodium in the red mud (RM) , a kind of alkaline solid waste generated during alumina production. The reaction characteristics and mechanism of sodium removal by the synergistic action of CO2 and RM were studied with different medium pH, reaction time and temperature. It was demonstrated that the remove of sodium by RM was actually the result of the synergistic action of sodium-based solid waste in RM with the CO2-H2O and OH(-)-CO2 systems. The sodium removal efficiency was correlated with pH, reaction temperature and time. The characteristics of RM before and after sodium removal were analyzed using X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the results showed that the alkaline materials in the red mud reacted with CO2 and the sodium content in solid phases decreased significantly after reaction. The sodium removal efficiency could reach up to 70% with scientific procedure. The results of this research will offer an efficient way for low-cost sodium removal.

  10. Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents.

    PubMed

    Sashidhar, R B; Selvi, S Kalaignana; Vinod, V T P; Kosuri, Tanuja; Raju, D; Karuna, R

    2015-10-01

    An ecofriendly green chemistry method using a natural biopolymer, Gum Kondagogu (GK) for the removal of U (VI) from aqueous, simulated nuclear effluents was studied. The adsorption characteristic of GK towards U (VI) from aqueous solution was studied at varied pH, contact time, adsorbent dose, initial U (VI) concentration and temperature using UV-Visible spectroscopy and ICP-MS. Maximum adsorption was seen at pH 4, 0.1% GK with 60 min contact time at room temperature. The GK- U (VI) composite was characterized by FT-IR, zeta potential, TEM and SEM-EDAX. The Langmuir isotherm was found to be 487 mg of U (VI) g(-1) of GK. The adsorption capacity and (%) of U (VI) was found to be 490 ± 5.4 mg g(-1) and 98.5%. Moreover adsorption of U (VI) by GK was not influenced by other cations present in the simulated effluents. The adsorbed U (VI) was efficiently stripped from composite using 1 M HCl. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Experimental Evaluation of Preservation Techniques for Benzene, Toluene, Ethylbenzene, and Total Xylenes in Water Samples.

    PubMed

    Arnold, Ray; Kong, Deyuan; Douglas, Gregory; Hardenstine, Jeffery; Rouhani, Shahrokh; Gala, William

    2018-01-01

    An experiment was designed to address the validity of the prescribed maximum allowable holding-time limit of 14 days when acidified at < 2 pH and maintained at 4°C to prevent significant loss of benzene, toluene, ethyl benzene, and xylenes (BTEX) in preserved water samples. Preservation methods prescribed by the United State Environmental Protection Agency were used as well as adaptions of that procedure to determine stability between 3 and 21 days. Water samples preserved at 4°C and pH of < 2 with hydrochloric acid did not result in unacceptable (> 15%) BTEX losses during the study as defined by procedures and statistical methods described by the American Society for Testing and Materials International. In addition, water samples preserved only with acid (pH < 2) at ambient temperatures (20-27°C) also provided acceptable results during the 21-day study. These results have demonstrated the acceptability of BTEX data derived from water samples exceeding the standard holding-time and/or temperature limits.

  12. Response surface methodology for cadmium biosorption on Pseudomonas aeruginosa.

    PubMed

    Ahmady-Asbchin, Salman

    2016-01-01

    In this research the effects of various physicochemical factors on Cd(2+) biosorption such as initial metal concentration, pH and contact exposure time were studied. This study has shown a Cd(2+) biosorption, equilibrium time of about 5 min for Pseudomonas aeruginosa and the adsorption equilibrium data were well described by Langmuir equation. The maximum capacity for biosorption has been extrapolated to 0.56 mmol.g(-1) for P. aeruginosa. The thermodynamic properties ΔG(0), ΔH(0), and ΔS(0) of Cd(2+) for biosorption were analyzed by the equilibrium constant value obtained from experimented data at different temperatures. The results show that biosorption of Cd(2+) by P. aeruginosa are endothermic and spontaneous with ΔH value of 36.35 J.mol(-1). By response surface methodology, the quadratic model has adequately described the experimental data based on the adjusted determination coefficient (R(2) = 0.98). The optimum conditions for maximum uptake onto the biosorbent were established at 0.5 g.l(-1) biosorbent concentration, pH 6 for the aqueous solution, and a temperature of 30 °C.

  13. Halloysite nanotubule clay for efficient water purification.

    PubMed

    Zhao, Yafei; Abdullayev, Elshad; Vasiliev, Alexandre; Lvov, Yuri

    2013-09-15

    Halloysite clay has chemical structure similar to kaolinite but it is rolled in tubes with diameter of 50 nm and length of ca. 1000 nm. Halloysite exhibits higher adsorption capacity for both cationic and anionic dyes because it has negative SiO2 outermost and positive Al2O3 inner lumen surface; therefore, these clay nanotubes have efficient bivalent adsorbancy. An adsorption study using cationic Rhodamine 6G and anionic Chrome azurol S has shown approximately two times better dye removal for halloysite as compared to kaolin. Halloysite filters have been effectively regenerated up to 50 times by burning the adsorbed dyes. Overall removal efficiency of anionic Chrome azurol S exceeded 99.9% for 5th regeneration cycle of halloysite. Chrome azurol S adsorption capacity decreases with the increase of ionic strength, temperature and pH. For cationic Rhodamine 6G, higher ionic strength, temperature and initial solution concentration were favorable to enhanced adsorption with optimal pH 8. The equilibrium adsorption data were described by Langmuir and Freundlich isotherms. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology.

    PubMed

    Muhammad Auwal, Shehu; Zarei, Mohammad; Abdul-Hamid, Azizah; Saari, Nazamid

    2017-03-31

    The stone fish is an under-utilized sea cucumber with many nutritional and ethno-medicinal values. This study aimed to establish the conditions for its optimum hydrolysis with bromelain to generate angiotensin I-converting enzyme (ACE)-inhibitory hydrolysates. Response surface methodology (RSM) based on a central composite design was used to model and optimize the degree of hydrolysis (DH) and ACE-inhibitory activity. Process conditions including pH (4-7), temperature (40-70 °C), enzyme/substrate (E/S) ratio (0.5%-2%) and time (30-360 min) were used. A pH of 7.0, temperature of 40 °C, E/S ratio of 2% and time of 240 min were determined using a response surface model as the optimum levels to obtain the maximum ACE-inhibitory activity of 84.26% at 44.59% degree of hydrolysis. Hence, RSM can serve as an effective approach in the design of experiments to improve the antihypertensive effect of stone fish hydrolysates, which can thus be used as a value-added ingredient for various applications in the functional foods industries.

  15. By-product identification and phytotoxicity of biodegraded Direct Yellow 4 dye.

    PubMed

    Nouren, Shazia; Bhatti, Haq Nawaz; Iqbal, Munawar; Bibi, Ismat; Kamal, Shagufta; Sadaf, Sana; Sultan, Misbah; Kausar, Abida; Safa, Yusra

    2017-02-01

    Citrus limon peroxidase mediated decolourization of Direct Yellow 4 (DY4) was investigated. The process variables (pH, temperature, incubation time, enzyme dose, H 2 O 2 amount, dye concentration, co-metal ions and surfactants) were optimized for maximum degradation of dye. Maximum dye decolourization of 89.47% was achieved at pH 5.0, temperature 50 °C, enzyme dose 24 U/mL, H 2 O 2 concentration 0.25 mM and DY4 concentration 18.75 mg/L and incubation time 10 min. The co-metal ions and surfactants did not affect the dye decolourization significantly. Response surface analysis revealed that predicted values were in agreement with experimentally determined responses. The degradation products were identified by UPLC/MS analysis and degradation pathway was proposed. Besides, phytotoxicity assay revealed a considerable detoxification in response of biodegradation of DY4 dye. C. limon showed promising efficiency for DY4 degradation and could possibly be used for the remediation of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Crystallization of a salt of a weak organic acid and base: solubility relations, supersaturation control and polymorphic behavior.

    PubMed

    Jones, H P; Davey, R J; Cox, B G

    2005-03-24

    Control of crystallization processes for organic salts is of importance to the pharmaceutical industry as many active pharmaceutical materials are marketed as salts. In this study, a method for estimating the solubility product of a salt of a weak acid and weak base from measured pH-solubility data is described for the first time. This allows calculation of the supersaturation of solutions at known pH. Ethylenediammonium 3,5-dinitrobenzoate is a polymorphic organic salt. A detailed study of the effects of pH, supersaturation, and temperature of crystallization on the physical properties of this salt shows that the desired polymorph may be produced by appropriate selection of the pH and supersaturation of crystallization. Crystal morphology is also controlled by these crystallization conditions.

  17. Suitable Water Flow and Water Temperature Difference of Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zuo, Hai-bin; Li, Qian; Zhang, Jian-liang; Shen, Meng; Tie, Jin-yan; Jiao, Ke-xin

    This paper designs three factors such as temperature, pH, conductivity and three levels of orthogonal test. Temperature is a significant factor. However PH and conductivity are not significant through poor analysis. Further research is conducted on the temperature. Temperature stability is 50°C. Suitable water velocity is 2.3m/s, which is calculated based on the largest part of the heat flux intensity and the corresponding water temperature should be controlled with 1.5°C. Meanwhile, water velocity increased has little effect on the heat transfer capabilities.

  18. Assessment of CO2 discharge in a spring using time-variant stable carbon isotope data as a natural analogue study of CO2 leakage

    NASA Astrophysics Data System (ADS)

    Yu, Soonyoung; Chae, Gitak; Jo, Minki; Kim, Jeong-Chan; Yun, Seong-Taek

    2015-04-01

    CO2-rich springs have been studied as a natural analogue of CO2 leakage through shallow subsurface environment, as they provide information on the behaviors of CO2 during the leakage from geologic CO2 storage sites. For this study, we monitored the δ13C values as well as temperature, pH, EC, DO, and alkalinity for a CO2-rich spring for 48 hours. The water samples (N=47) were collected every hour in stopper bottles without headspace to avoid the interaction with air and the CO2 degassing. The δ13C values of total dissolved inorganic carbon (TDIC) in the water samples were analyzed using a cavity ring-down spectroscopy (CRDS) system (Picarro). The values of δ13CTDIC, temperature, pH, EC, DO, and alkalinity were in the range of -9.43 ~ -8.91 o 12.3 ~ 13.2oC, 4.86 ~ 5.02, 186 ~ 189 μS/cm, 1.8 ~ 3.4 mg/L, and 0.74 ~ 0.95 meq/L, respectively. The concentrations of TDIC calculated using pH and alkalinity values were between 22.5 and 34.8 mmol/L. The δ13CTDIC data imply that dissolved carbon in the spring was derived from a deep-seated source (i.e., magmatic) that was slightly intermixed with soil CO2. Careful examination of the time-series variation of measured parameters shows the following characteristics: 1) the δ13CTDIC values are negatively correlated with pH (r = -0.59) and positively correlated with TDIC (r = 0.58), and 2) delay times of the change of pH and alkalinity following the change of δ13CTDIC values are 0 and -3 hours, respectively; the pH change occurs simultaneously with the change of δ13CTDIC, while the alkalinity change happens before 3 hours. Our results indicate that the studied CO2-rich spring is influenced by the intermittent supply of deep-seated CO2. [Acknowledgment] This work was financially supported by the fundamental research project of KIGAM and partially by the "Geo-Advanced Innovative Action (GAIA) Project (2014000530003)" from Korea Ministry of Environment (MOE).

  19. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  20. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    PubMed

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  1. Sudden Collapse of Vacuoles in Saintpaulia sp. Palisade Cells Induced by a Rapid Temperature Decrease

    PubMed Central

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. ‘Iceberg’) and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury. PMID:23451194

  2. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process.

    PubMed

    Cui, Xianjin; Yu, Shu-Hong; Li, Lingling; Biao, Liu; Li, Huabin; Mo, Maosong; Liu, Xian-Ming

    2004-01-05

    Selective synthesis of uniform single crystalline silver molybdate/tungstate nanorods/nanowires in large scale can be easily realized by a facile hydrothermal recrystallization technique. The synthesis is strongly dependent on the pH conditions, temperature, and reaction time. The phase transformation was examined in details. Pure Ag(2)MoO(4) and Ag(6)Mo(10)O(33) can be easily obtained under neutral condition and pH 2, respectively, whereas other mixed phases of Mo(17)O(47), Ag(2)Mo(2)O(7,) Ag(6)Mo(10)O(33) were observed under different pH conditions. Ag(6)Mo(10)O(33) nanowires with uniform diameter 50-60 nm and length up to several hundred micrometers were synthesized in large scale for the first time at 140 degrees C. The melting point of Ag(6)Mo(10)O(33) nanowires were found to be about 238 degrees C. Similarly, Ag(2)WO(4), and Ag(2)W(2)O(7) nanorods/nanowires can be selectively synthesized by controlling pH value. The results demonstrated that this route could be a potential mild way to selectively synthesize various molybdate nanowires with various phases in large scale.

  3. Effect of pH and temperature on the uptake of cadmium by Lemna minor L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, G.; Singh, J.; Viswanathan, P.N.

    1991-07-01

    Many aquatic macrophytes have the capacity to take up toxic heavy metals from polluted water and accumulate them. Cut leaves and intact plants have been suggested for clearing polluted water bodies of heavy metals. However, uptake of metal ion from water is dependent on concentration, pH, temperature, presence of other substances and functional and morphological status of the biotic species. In an attempt to understand any correlation between metal bioconcentration, pH and temperature, the optimal conditions for the removal of cadmium ions by duckweed, Lemna minor (L.) were studied.

  4. Exploring the process-structure-function relationship of horseradish peroxidase through investigation of pH- and heat induced conformational changes

    NASA Astrophysics Data System (ADS)

    Stănciuc, Nicoleta; Aprodu, Iuliana; Ioniță, Elena; Bahrim, Gabriela; Râpeanu, Gabriela

    2015-08-01

    Given the importance of peroxidase as an indicator for the preservation of vegetables by heat treatment, the present study is focused on enzyme behavior under different pH and temperature conditions, in terms of process-structure-function relationships. Thus, the process-structure-function relationship of peroxidase was investigated by combining fluorescence spectroscopy, in silico prediction methods and inactivation kinetic studies. The fluorescence spectra indicated that at optimum pH value, the Trp117 residue is not located in the hydrophobic core of the protein. Significant blue- and red-shifts were obtained at different pH values, whereas the heat-treatment did not cause significant changes in Trp and Tyr environment. The ANS and quenching experiments demonstrated a more flexible conformation at lower pH and respectively at higher temperature. On the other hand molecular dynamics simulations at different temperatures highlighted that the secondary structure appeared better preserved against temperature, whereas the tertiary structure around the heme was more affected. Temperature dependent changes in the hydrogen bonding and ion paring involving amino acids from the heme-binding region (His170 and Asp247) might trigger miss-coordination of the heme iron atom by His170 residue and further enzyme activity loss.

  5. Bioaccumulation of total mercury in the earthworm Eisenia andrei.

    PubMed

    Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew

    2016-01-01

    Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1).

  6. The decrease of cylindrical pempek quality during boiling

    NASA Astrophysics Data System (ADS)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  7. Enhanced stability and catalytic activity of immobilized α-amylase on modified Fe3O4 nanoparticles for potential application in food industries

    NASA Astrophysics Data System (ADS)

    Hosseinipour, Seyyedeh Leila; Khiabani, Mahmoud Sowti; Hamishehkar, Hamed; Salehi, Roya

    2015-09-01

    Enzymes play an essential role in catalyzing various reactions. However, their instability upon repetitive/prolonged use, elevated temperature, acidic or alkaline pH remains an area of concern. α-Amylase, a widely used enzyme in food industries for starch hydrolysis, was covalently immobilized on the surface of two developed matrices, amino-functionalized silica-coated magnetite nanoparticles (AFSMNPs) alone and covered with chitosan. The synthesis steps and characterizations of NPs were examined by FT-IR, VSM, and SEM. Modified nanoparticles with average diameters of 20-80 nm were obtained. Enzyme immobilization efficiencies of 89 and 74 were obtained for AFSMNPs and chitosan-coated AFSMNPs, respectively. The optimum pH obtained was 6.5 and 8.0 for the enzyme immobilized on AFSMNPs and chitosan-coated AFSMNPs, respectively. Optimum temperature for the immobilized enzyme shifted toward higher temperatures. Considerable enhancements in thermal stabilities were observed for the immobilized enzyme at elevated temperatures up to 80 °C. A frequent use experiment demonstrated that the immobilized enzyme retained 74 and 85 % of its original activity even after 20 times of repeated use in AFSMNPs and chitosan-coated AFSMNPs, respectively. Storage stability demonstrated that free enzyme lost its activity completely within 30 days. But, immobilized enzyme on AFSMNPs and chitosan-coated AFSMNPs preserved 65.73 and 78.63 % of its initial activity, respectively, after 80 days of incubation. In conclusion, a substantial improvement in the performance of the immobilized enzyme with reference to the free enzyme was obtained. Furthermore, the relative activities of immobilized enzyme are superior than free enzyme over the broader pH and temperature ranges.

  8. Effect of rigor temperature, ageing and display time on the meat quality and lipid oxidative stability of hot boned beef Semimembranosus muscle.

    PubMed

    Mungure, Tanyaradzwa E; Bekhit, Alaa El-Din A; Birch, E John; Stewart, Ian

    2016-04-01

    The effects of rigor temperature (5, 15, 20 and 25°C), ageing (3, 7, 14, and 21 days) and display time on meat quality and lipid oxidative stability of hot boned beef M. Semimembranosus (SM) muscle were investigated. Ultimate pH (pH(u)) was rapidly attained at higher rigor temperatures. Electrical conductivity increased with rigor temperature (p<0.001). Tenderness, purge and cooking losses were not affected by rigor temperature; however purge loss and tenderness increased with ageing (p<0.01). Lightness (L*) and redness (a*) of the SM increased as rigor temperature increased (p<0.01). Lipid oxidation was assessed using (1)H NMR where changes in aliphatic to olefinic (R(ao)) and diallylmethylene (R(ad)) proton ratios can be rapidly monitored. R(ad), R(ao), PUFA and TBARS were not affected by rigor temperature, however ageing and display increased lipid oxidation (p<0.05). This study shows that rigor temperature manipulation of hot boned beef SM muscle does not have adverse effects on lipid oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The Influence of Virus Infection on the Extracellular pH of the Host Cell Detected on Cell Membrane.

    PubMed

    Liu, Hengjun; Maruyama, Hisataka; Masuda, Taisuke; Honda, Ayae; Arai, Fumihito

    2016-01-01

    Influenza virus infection can result in changes in the cellular ion levels at 2-3 h post-infection. More H(+) is produced by glycolysis, and the viral M2 proton channel also plays a role in the capture and release of H(+) during both viral entry and egress. Then the cells might regulate the intracellular pH by increasing the export of H(+) from the intracellular compartment. Increased H(+) export could lead indirectly to increased extracellular acidity. To detect changes in extracellular pH of both virus-infected and uninfected cells, pH sensors were synthesized using polystyrene beads (ϕ1 μm) containing Rhodamine B and Fluorescein isothiocyanate (FITC). The fluorescence intensity of FITC can respond to both pH and temperature. So Rhodamine B was also introduced in the sensor for temperature compensation. Then the pH can be measured after temperature compensation. The sensor was adhered to cell membrane for extracellular pH measurement. The results showed that the multiplication of influenza virus in host cell decreased extracellular pH of the host cell by 0.5-0.6 in 4 h after the virus bound to the cell membrane, compared to that in uninfected cells. Immunostaining revealed the presence of viral PB1 protein in the nucleus of virus-bound cells that exhibited extracellular pH changes, but no PB1 protein are detected in virus-unbound cells where the extracellular pH remained constant.

  10. Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks.

    PubMed

    Johnson, Kenneth S; Jannasch, Hans W; Coletti, Luke J; Elrod, Virginia A; Martz, Todd R; Takeshita, Yuichiro; Carlson, Robert J; Connery, James G

    2016-03-15

    Increasing atmospheric carbon dioxide is driving a long-term decrease in ocean pH which is superimposed on daily to seasonal variability. These changes impact ecosystem processes, and they serve as a record of ecosystem metabolism. However, the temporal variability in pH is observed at only a few locations in the ocean because a ship is required to support pH observations of sufficient precision and accuracy. This paper describes a pressure tolerant Ion Sensitive Field Effect Transistor pH sensor that is based on the Honeywell Durafet ISFET die. When combined with a AgCl pseudoreference sensor that is immersed directly in seawater, the system is capable of operating for years at a time on platforms that cycle from depths of several km to the surface. The paper also describes the calibration scheme developed to allow calibrated pH measurements to be derived from the activity of HCl reported by the sensor system over the range of ocean pressure and temperature. Deployments on vertical profiling platforms enable self-calibration in deep waters where pH values are stable. Measurements with the sensor indicate that it is capable of reporting pH with an accuracy of 0.01 or better on the total proton scale and a precision over multiyear periods of 0.005. This system enables a global ocean observing system for ocean pH.

  11. Removal of copper(II) from some environmental samples by sorptive-flotation using powdered marble wastes as sorbents and oleic acid as surfactant.

    PubMed

    Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M

    2004-11-01

    A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.

  12. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef

    PubMed Central

    Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  13. [Study on preparation of sagittatoside B with epimedin B converted from cellulase].

    PubMed

    Xu, Feng-Juan; Sun, E; Zhang, Zhen-Hai; Cui, Li; Jia, Xiao-Bin

    2014-01-01

    To prepare sagittatoside B with epimedin B Hydrolyzed from cellulase. With the conversion ratio as the index, the effects of pH value, temperature, reaction time, dosage of enzyme and concentration of substrates on the conversion ratio were detected. L9 (3(4)) orthogonal design was adopted to optimize the preparation process. Hydrolyzed products were identified by MS, 1H-NMR, and 13C-NMR. The results showed that the optimum reaction conditions for the enzymatic hydrolysis were that the temperature was 50 degrees C, the reaction medium was pH 5.6 acetic acid-sodium acetate buffer solution, the concentration of substrates was 20 g x L(-1), the mass ratio between enzyme and substrate was 3: 5, and the relative molecular mass of the reaction product was 646.23. NMR data proved that the product was sagittatoside B. The process is simple and reliable under mild reaction conditions, thus suitable for industrial production.

  14. In situ-forming hydrogels for sustained ophthalmic drug delivery.

    PubMed

    Nanjawade, Basavaraj K; Manvi, F V; Manjappa, A S

    2007-09-26

    Ophthalmic drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist. The conventional ocular drug delivery systems like solutions, suspensions, and ointments show drawbacks such as increased precorneal elimination, high variability in efficiency, and blurred vision respectively. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form visco-elastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. The choice of a particular hydrogel depends on its intrinsic properties and envisaged therapeutic use. This review includes various temperature, pH, and ion induced in situ-forming polymeric systems used to achieve prolonged contact time of drugs with the cornea and increase their bioavailability.

  15. Iron(II)-catalyzed amidation of aldehydes with iminoiodinanes at room temperature and under microwave-assisted conditions.

    PubMed

    Ton, Thi My Uyen; Tejo, Ciputra; Tania, Stefani; Chang, Joyce Wei Wei; Chan, Philip Wai Hong

    2011-06-17

    A method for the amidation of aldehydes with PhI=NTs/PhI=NNs as the nitrogen source and an inexpensive iron(II) chloride + pyridine as the in situ formed precatalyst under mild conditions at room temperature or microwave assisted conditions is described. The reaction was operationally straightforward and accomplished in moderate to excellent product yields (20-99%) and with complete chemoselectivity with the new C-N bond forming only at the formylic C-H bond in substrates containing other reactive functional groups. By utilizing microwave irradiation, comparable product yields and short reaction times of 1 h could be accomplished. The mechanism is suggested to involve insertion of a putative iron-nitrene/imido group to the formylic C-H bond of the substrate via a H-atom abstraction/radical rebound pathway mediated by the precatalyst [Fe(py)(4)Cl(2)] generated in situ from reaction of FeCl(2) with pyridine.

  16. Production of starch with antioxidative activity by baking starch with organic acids.

    PubMed

    Miwa, Shoji; Nakamura, Megumi; Okuno, Michiko; Miyazaki, Hisako; Watanabe, Jun; Ishikawa-Takano, Yuko; Miura, Makoto; Takase, Nao; Hayakawa, Sachio; Kobayashi, Shoichi

    2011-01-01

    A starch ingredient with antioxidative activity, as measured by the DPPH method, was produced by baking corn starch with an organic acid; it has been named ANOX sugar (antioxidative sugar). The baking temperature and time were fixed at 170 °C and 60 min, and the organic acid used was selected from preliminary trials of various kinds of acid. The phytic acid ANOX sugar preparation showed the highest antioxidative activity, but the color of the preparation was almost black; we therefore selected L-tartaric acid which had the second highest antioxidative activity. The antioxidative activity of the L-tartaric acid ANOX sugar preparation was stable against temperature, light, and enzyme treatments (α-amylase and glucoamylase). However, the activity was not stable against variations in water content and pH value. The antioxidative activity of ANOX sugar was stabilized by treating with boiled water or nitrogen gas, or by pH adjustment.

  17. Cloning and high-level expression of β-xylosidase from Selenomonas ruminantium in Pichia pastoris by optimizing of pH, methanol concentration and temperature conditions.

    PubMed

    Dehnavi, Ehsan; Ranaei Siadat, Seyed Omid; Fathi Roudsari, Mehrnoosh; Khajeh, Khosro

    2016-08-01

    β-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. β-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl β-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a β-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications. Copyright © 2016. Published by Elsevier Inc.

  18. Removal of methylene blue from aqueous solution by Artist's Bracket fungi: kinetic and equilibrium studies.

    PubMed

    Naghipour, Daryush; Taghavi, Kamran; Moslemzadeh, Mehrdad

    2016-01-01

    In this study, adsorption of methylene blue (MB) dye onto Artist's Bracket (AB) fungi was investigated in aqueous solution. Fourier transform infrared and scanning electron microscopy were used to investigate surface characteristic of AB fungi. Influence of operational parameters such as pH, contact time, biosorbent dosage, dye concentration, inorganic salts and temperature was studied on dye removal efficiency. With the increase of pH from 3 to 9, removal efficiency increased from 74.0% to 90.4%. Also, it reduced from 99.8% to 81.8% with increasing initial MB concentration from 25 mg L(-1) to 100 mg L(-1), whereas it increased from 54.7% to 98.7% and from 98.5% to 99.9% with increasing biosorbent dosage from 0.5 g L(-1) to 2 g L(-1) and with increasing temperature from 25 °C to 50 °C, respectively. Isotherm studies have shown adsorption of MB dye over the AB fungi had a better coefficient of determination (R(2)) of 0.98 for Langmuir isotherm. In addition, the maximum monolayer adsorption capacity (qm) was 100 mg g(-1). Also, the MB dye adsorption process followed pseudo-second-order kinetic. In general, AB fungi particles can be favorable for removal of MB dye from dye aqueous solution with natural pH and high temperature.

  19. Real time fish pond monitoring and automation using Arduino

    NASA Astrophysics Data System (ADS)

    Harun, Z.; Reda, E.; Hashim, H.

    2018-03-01

    Investment and operating costs are the biggest obstacles in modernizing fish ponds in an otherwise very lucrative industry i.e. food production, in this region. Small-scale farmers running on small ponds could not afford to hire workers to man daily operations which usually consists of monitoring water levels, temperature and feeding fish. Bigger scale enterprises usually have some kinds of automation for water monitoring and replacement. These entities have to consider employing pH and dissolved oxygen (DO) sensors to ensure the health and growth of fish, sooner or later as their farms grow. This project identifies one of the sites, located in Malacca. In this project, water, temperature, pH and DO levels are measured and integrated with aerating and water supply pumps using Arduino. User could receive information at predetermined intervals on preferred communication or display gadgets as long as they have internet. Since integrating devices are comparatively not expensive; it usually consists of Arduino board, internet and relay frames and display system, farmer could source these components easily. A sample of two days measurements of temperature, pH and DO levels show that this farm has a high-quality water. Oxygen levels increases in the day as sunshine supports photosynthesis in the pond. With this integration system, farmer need not hire worker at their site, consequently drive down operating costs and improve efficiency.

  20. Immobilization of α-amylase onto a calix[4]arene derivative: Evaluation of its enzymatic activity.

    PubMed

    Veesar, Irshad Ali; Solangi, Imam Bakhsh; Memon, Shahabuddin

    2015-06-01

    In order to enhance the cost-effectiveness practicability of enzymes in many industries such as pharmaceutical, food, medical and some other technological processes, there is great need to immobilize them onto a solid supports. In this study, a new and efficient immobilization of α-amylase from Saccharomyces cerevisiae has been developed by using the surface functionalization of calix[4]arene as support. A glutaraldehyde-containing amino group functionalized calix[4]arene was used to immobilize α-amylase covalently. In this procedure, imide bonds are formed between amino groups on the protein and aldehyde groups on the calix[4]arene surface. The surface modified support was characterized using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM). The effect of various preparation conditions on the immobilized α-amylase process such as immobilization time, enzyme concentration, temperature and pH were investigated. The influence of pH and temperature on the activity of free and immobilized α-amylase was also studied using starch as substrate. The optimum reaction temperature and pH value for the enzymatic conversion catalyzed by the immobilized α-amylase were 25°C and 7, respectively. Compared to the free enzyme, the immobilized α-amylase retained 85% of its original activity and exhibited significant thermal stability than the free one and excellent durability. Copyright © 2015 Elsevier Inc. All rights reserved.

Top