Sample records for time regression analysis

  1. The use of segmented regression in analysing interrupted time series studies: an example in pre-hospital ambulance care.

    PubMed

    Taljaard, Monica; McKenzie, Joanne E; Ramsay, Craig R; Grimshaw, Jeremy M

    2014-06-19

    An interrupted time series design is a powerful quasi-experimental approach for evaluating effects of interventions introduced at a specific point in time. To utilize the strength of this design, a modification to standard regression analysis, such as segmented regression, is required. In segmented regression analysis, the change in intercept and/or slope from pre- to post-intervention is estimated and used to test causal hypotheses about the intervention. We illustrate segmented regression using data from a previously published study that evaluated the effectiveness of a collaborative intervention to improve quality in pre-hospital ambulance care for acute myocardial infarction (AMI) and stroke. In the original analysis, a standard regression model was used with time as a continuous variable. We contrast the results from this standard regression analysis with those from segmented regression analysis. We discuss the limitations of the former and advantages of the latter, as well as the challenges of using segmented regression in analysing complex quality improvement interventions. Based on the estimated change in intercept and slope from pre- to post-intervention using segmented regression, we found insufficient evidence of a statistically significant effect on quality of care for stroke, although potential clinically important effects for AMI cannot be ruled out. Segmented regression analysis is the recommended approach for analysing data from an interrupted time series study. Several modifications to the basic segmented regression analysis approach are available to deal with challenges arising in the evaluation of complex quality improvement interventions.

  2. Time series regression studies in environmental epidemiology.

    PubMed

    Bhaskaran, Krishnan; Gasparrini, Antonio; Hajat, Shakoor; Smeeth, Liam; Armstrong, Ben

    2013-08-01

    Time series regression studies have been widely used in environmental epidemiology, notably in investigating the short-term associations between exposures such as air pollution, weather variables or pollen, and health outcomes such as mortality, myocardial infarction or disease-specific hospital admissions. Typically, for both exposure and outcome, data are available at regular time intervals (e.g. daily pollution levels and daily mortality counts) and the aim is to explore short-term associations between them. In this article, we describe the general features of time series data, and we outline the analysis process, beginning with descriptive analysis, then focusing on issues in time series regression that differ from other regression methods: modelling short-term fluctuations in the presence of seasonal and long-term patterns, dealing with time varying confounding factors and modelling delayed ('lagged') associations between exposure and outcome. We finish with advice on model checking and sensitivity analysis, and some common extensions to the basic model.

  3. Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.

    PubMed

    Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias

    2016-01-01

    To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.

  4. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  5. Modelling fourier regression for time series data- a case study: modelling inflation in foods sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Prahutama, Alan; Suparti; Wahyu Utami, Tiani

    2018-03-01

    Regression analysis is an analysis to model the relationship between response variables and predictor variables. The parametric approach to the regression model is very strict with the assumption, but nonparametric regression model isn’t need assumption of model. Time series data is the data of a variable that is observed based on a certain time, so if the time series data wanted to be modeled by regression, then we should determined the response and predictor variables first. Determination of the response variable in time series is variable in t-th (yt), while the predictor variable is a significant lag. In nonparametric regression modeling, one developing approach is to use the Fourier series approach. One of the advantages of nonparametric regression approach using Fourier series is able to overcome data having trigonometric distribution. In modeling using Fourier series needs parameter of K. To determine the number of K can be used Generalized Cross Validation method. In inflation modeling for the transportation sector, communication and financial services using Fourier series yields an optimal K of 120 parameters with R-square 99%. Whereas if it was modeled by multiple linear regression yield R-square 90%.

  6. Regression analysis of informative current status data with the additive hazards model.

    PubMed

    Zhao, Shishun; Hu, Tao; Ma, Ling; Wang, Peijie; Sun, Jianguo

    2015-04-01

    This paper discusses regression analysis of current status failure time data arising from the additive hazards model in the presence of informative censoring. Many methods have been developed for regression analysis of current status data under various regression models if the censoring is noninformative, and also there exists a large literature on parametric analysis of informative current status data in the context of tumorgenicity experiments. In this paper, a semiparametric maximum likelihood estimation procedure is presented and in the method, the copula model is employed to describe the relationship between the failure time of interest and the censoring time. Furthermore, I-splines are used to approximate the nonparametric functions involved and the asymptotic consistency and normality of the proposed estimators are established. A simulation study is conducted and indicates that the proposed approach works well for practical situations. An illustrative example is also provided.

  7. Interrupted time series regression for the evaluation of public health interventions: a tutorial.

    PubMed

    Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio

    2017-02-01

    Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design.

  8. Interrupted time series regression for the evaluation of public health interventions: a tutorial

    PubMed Central

    Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio

    2017-01-01

    Abstract Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design. PMID:27283160

  9. Selecting risk factors: a comparison of discriminant analysis, logistic regression and Cox's regression model using data from the Tromsø Heart Study.

    PubMed

    Brenn, T; Arnesen, E

    1985-01-01

    For comparative evaluation, discriminant analysis, logistic regression and Cox's model were used to select risk factors for total and coronary deaths among 6595 men aged 20-49 followed for 9 years. Groups with mortality between 5 and 93 per 1000 were considered. Discriminant analysis selected variable sets only marginally different from the logistic and Cox methods which always selected the same sets. A time-saving option, offered for both the logistic and Cox selection, showed no advantage compared with discriminant analysis. Analysing more than 3800 subjects, the logistic and Cox methods consumed, respectively, 80 and 10 times more computer time than discriminant analysis. When including the same set of variables in non-stepwise analyses, all methods estimated coefficients that in most cases were almost identical. In conclusion, discriminant analysis is advocated for preliminary or stepwise analysis, otherwise Cox's method should be used.

  10. Immortal time bias in observational studies of time-to-event outcomes.

    PubMed

    Jones, Mark; Fowler, Robert

    2016-12-01

    The purpose of the study is to show, through simulation and example, the magnitude and direction of immortal time bias when an inappropriate analysis is used. We compare 4 methods of analysis for observational studies of time-to-event outcomes: logistic regression, standard Cox model, landmark analysis, and time-dependent Cox model using an example data set of patients critically ill with influenza and a simulation study. For the example data set, logistic regression, standard Cox model, and landmark analysis all showed some evidence that treatment with oseltamivir provides protection from mortality in patients critically ill with influenza. However, when the time-dependent nature of treatment exposure is taken account of using a time-dependent Cox model, there is no longer evidence of a protective effect of treatment. The simulation study showed that, under various scenarios, the time-dependent Cox model consistently provides unbiased treatment effect estimates, whereas standard Cox model leads to bias in favor of treatment. Logistic regression and landmark analysis may also lead to bias. To minimize the risk of immortal time bias in observational studies of survival outcomes, we strongly suggest time-dependent exposures be included as time-dependent variables in hazard-based analyses. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. No Evidence of Reaction Time Slowing in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Ferraro, F. Richard

    2016-01-01

    A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n?=?964) and controls (n?=?1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as…

  12. Modeling time-to-event (survival) data using classification tree analysis.

    PubMed

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  13. Regression analysis using dependent Polya trees.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    PubMed

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  15. Optimizing methods for linking cinematic features to fMRI data.

    PubMed

    Kauttonen, Janne; Hlushchuk, Yevhen; Tikka, Pia

    2015-04-15

    One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features. Copyright © 2015. Published by Elsevier Inc.

  16. Ultrasound-enhanced bioscouring of greige cotton: regression analysis of process factors

    USDA-ARS?s Scientific Manuscript database

    Process factors of enzyme concentration, time, power and frequency were investigated for ultrasound-enhanced bioscouring of greige cotton. A fractional factorial experimental design and subsequent regression analysis of the process factors were employed to determine the significance of each factor a...

  17. What Is Wrong with ANOVA and Multiple Regression? Analyzing Sentence Reading Times with Hierarchical Linear Models

    ERIC Educational Resources Information Center

    Richter, Tobias

    2006-01-01

    Most reading time studies using naturalistic texts yield data sets characterized by a multilevel structure: Sentences (sentence level) are nested within persons (person level). In contrast to analysis of variance and multiple regression techniques, hierarchical linear models take the multilevel structure of reading time data into account. They…

  18. Simple estimation procedures for regression analysis of interval-censored failure time data under the proportional hazards model.

    PubMed

    Sun, Jianguo; Feng, Yanqin; Zhao, Hui

    2015-01-01

    Interval-censored failure time data occur in many fields including epidemiological and medical studies as well as financial and sociological studies, and many authors have investigated their analysis (Sun, The statistical analysis of interval-censored failure time data, 2006; Zhang, Stat Modeling 9:321-343, 2009). In particular, a number of procedures have been developed for regression analysis of interval-censored data arising from the proportional hazards model (Finkelstein, Biometrics 42:845-854, 1986; Huang, Ann Stat 24:540-568, 1996; Pan, Biometrics 56:199-203, 2000). For most of these procedures, however, one drawback is that they involve estimation of both regression parameters and baseline cumulative hazard function. In this paper, we propose two simple estimation approaches that do not need estimation of the baseline cumulative hazard function. The asymptotic properties of the resulting estimates are given, and an extensive simulation study is conducted and indicates that they work well for practical situations.

  19. Replica analysis of overfitting in regression models for time-to-event data

    NASA Astrophysics Data System (ADS)

    Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.

    2017-09-01

    Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.

  20. Survival analysis: Part I — analysis of time-to-event

    PubMed Central

    2018-01-01

    Length of time is a variable often encountered during data analysis. Survival analysis provides simple, intuitive results concerning time-to-event for events of interest, which are not confined to death. This review introduces methods of analyzing time-to-event. The Kaplan-Meier survival analysis, log-rank test, and Cox proportional hazards regression modeling method are described with examples of hypothetical data. PMID:29768911

  1. On the equivalence of case-crossover and time series methods in environmental epidemiology.

    PubMed

    Lu, Yun; Zeger, Scott L

    2007-04-01

    The case-crossover design was introduced in epidemiology 15 years ago as a method for studying the effects of a risk factor on a health event using only cases. The idea is to compare a case's exposure immediately prior to or during the case-defining event with that same person's exposure at otherwise similar "reference" times. An alternative approach to the analysis of daily exposure and case-only data is time series analysis. Here, log-linear regression models express the expected total number of events on each day as a function of the exposure level and potential confounding variables. In time series analyses of air pollution, smooth functions of time and weather are the main confounders. Time series and case-crossover methods are often viewed as competing methods. In this paper, we show that case-crossover using conditional logistic regression is a special case of time series analysis when there is a common exposure such as in air pollution studies. This equivalence provides computational convenience for case-crossover analyses and a better understanding of time series models. Time series log-linear regression accounts for overdispersion of the Poisson variance, while case-crossover analyses typically do not. This equivalence also permits model checking for case-crossover data using standard log-linear model diagnostics.

  2. CUSUM-Logistic Regression analysis for the rapid detection of errors in clinical laboratory test results.

    PubMed

    Sampson, Maureen L; Gounden, Verena; van Deventer, Hendrik E; Remaley, Alan T

    2016-02-01

    The main drawback of the periodic analysis of quality control (QC) material is that test performance is not monitored in time periods between QC analyses, potentially leading to the reporting of faulty test results. The objective of this study was to develop a patient based QC procedure for the more timely detection of test errors. Results from a Chem-14 panel measured on the Beckman LX20 analyzer were used to develop the model. Each test result was predicted from the other 13 members of the panel by multiple regression, which resulted in correlation coefficients between the predicted and measured result of >0.7 for 8 of the 14 tests. A logistic regression model, which utilized the measured test result, the predicted test result, the day of the week and time of day, was then developed for predicting test errors. The output of the logistic regression was tallied by a daily CUSUM approach and used to predict test errors, with a fixed specificity of 90%. The mean average run length (ARL) before error detection by CUSUM-Logistic Regression (CSLR) was 20 with a mean sensitivity of 97%, which was considerably shorter than the mean ARL of 53 (sensitivity 87.5%) for a simple prediction model that only used the measured result for error detection. A CUSUM-Logistic Regression analysis of patient laboratory data can be an effective approach for the rapid and sensitive detection of clinical laboratory errors. Published by Elsevier Inc.

  3. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  4. Robust analysis of trends in noisy tokamak confinement data using geodesic least squares regression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdoolaege, G., E-mail: geert.verdoolaege@ugent.be; Laboratory for Plasma Physics, Royal Military Academy, B-1000 Brussels; Shabbir, A.

    Regression analysis is a very common activity in fusion science for unveiling trends and parametric dependencies, but it can be a difficult matter. We have recently developed the method of geodesic least squares (GLS) regression that is able to handle errors in all variables, is robust against data outliers and uncertainty in the regression model, and can be used with arbitrary distribution models and regression functions. We here report on first results of application of GLS to estimation of the multi-machine scaling law for the energy confinement time in tokamaks, demonstrating improved consistency of the GLS results compared to standardmore » least squares.« less

  5. Multivariate time series analysis of neuroscience data: some challenges and opportunities.

    PubMed

    Pourahmadi, Mohsen; Noorbaloochi, Siamak

    2016-04-01

    Neuroimaging data may be viewed as high-dimensional multivariate time series, and analyzed using techniques from regression analysis, time series analysis and spatiotemporal analysis. We discuss issues related to data quality, model specification, estimation, interpretation, dimensionality and causality. Some recent research areas addressing aspects of some recurring challenges are introduced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Using Time Series Analysis to Predict Cardiac Arrest in a PICU.

    PubMed

    Kennedy, Curtis E; Aoki, Noriaki; Mariscalco, Michele; Turley, James P

    2015-11-01

    To build and test cardiac arrest prediction models in a PICU, using time series analysis as input, and to measure changes in prediction accuracy attributable to different classes of time series data. Retrospective cohort study. Thirty-one bed academic PICU that provides care for medical and general surgical (not congenital heart surgery) patients. Patients experiencing a cardiac arrest in the PICU and requiring external cardiac massage for at least 2 minutes. None. One hundred three cases of cardiac arrest and 109 control cases were used to prepare a baseline dataset that consisted of 1,025 variables in four data classes: multivariate, raw time series, clinical calculations, and time series trend analysis. We trained 20 arrest prediction models using a matrix of five feature sets (combinations of data classes) with four modeling algorithms: linear regression, decision tree, neural network, and support vector machine. The reference model (multivariate data with regression algorithm) had an accuracy of 78% and 87% area under the receiver operating characteristic curve. The best model (multivariate + trend analysis data with support vector machine algorithm) had an accuracy of 94% and 98% area under the receiver operating characteristic curve. Cardiac arrest predictions based on a traditional model built with multivariate data and a regression algorithm misclassified cases 3.7 times more frequently than predictions that included time series trend analysis and built with a support vector machine algorithm. Although the final model lacks the specificity necessary for clinical application, we have demonstrated how information from time series data can be used to increase the accuracy of clinical prediction models.

  7. The use of regression analysis in determining reference intervals for low hematocrit and thrombocyte count in multiple electrode aggregometry and platelet function analyzer 100 testing of platelet function.

    PubMed

    Kuiper, Gerhardus J A J M; Houben, Rik; Wetzels, Rick J H; Verhezen, Paul W M; Oerle, Rene van; Ten Cate, Hugo; Henskens, Yvonne M C; Lancé, Marcus D

    2017-11-01

    Low platelet counts and hematocrit levels hinder whole blood point-of-care testing of platelet function. Thus far, no reference ranges for MEA (multiple electrode aggregometry) and PFA-100 (platelet function analyzer 100) devices exist for low ranges. Through dilution methods of volunteer whole blood, platelet function at low ranges of platelet count and hematocrit levels was assessed on MEA for four agonists and for PFA-100 in two cartridges. Using (multiple) regression analysis, 95% reference intervals were computed for these low ranges. Low platelet counts affected MEA in a positive correlation (all agonists showed r 2 ≥ 0.75) and PFA-100 in an inverse correlation (closure times were prolonged with lower platelet counts). Lowered hematocrit did not affect MEA testing, except for arachidonic acid activation (ASPI), which showed a weak positive correlation (r 2 = 0.14). Closure time on PFA-100 testing was inversely correlated with hematocrit for both cartridges. Regression analysis revealed different 95% reference intervals in comparison with originally established intervals for both MEA and PFA-100 in low platelet or hematocrit conditions. Multiple regression analysis of ASPI and both tests on the PFA-100 for combined low platelet and hematocrit conditions revealed that only PFA-100 testing should be adjusted for both thrombocytopenia and anemia. 95% reference intervals were calculated using multiple regression analysis. However, coefficients of determination of PFA-100 were poor, and some variance remained unexplained. Thus, in this pilot study using (multiple) regression analysis, we could establish reference intervals of platelet function in anemia and thrombocytopenia conditions on PFA-100 and in thrombocytopenia conditions on MEA.

  8. Linear regression analysis of survival data with missing censoring indicators.

    PubMed

    Wang, Qihua; Dinse, Gregg E

    2011-04-01

    Linear regression analysis has been studied extensively in a random censorship setting, but typically all of the censoring indicators are assumed to be observed. In this paper, we develop synthetic data methods for estimating regression parameters in a linear model when some censoring indicators are missing. We define estimators based on regression calibration, imputation, and inverse probability weighting techniques, and we prove all three estimators are asymptotically normal. The finite-sample performance of each estimator is evaluated via simulation. We illustrate our methods by assessing the effects of sex and age on the time to non-ambulatory progression for patients in a brain cancer clinical trial.

  9. Use of Time-Series, ARIMA Designs to Assess Program Efficacy.

    ERIC Educational Resources Information Center

    Braden, Jeffery P.; And Others

    1990-01-01

    Illustrates use of time-series designs for determining efficacy of interventions with fictitious data describing drug-abuse prevention program. Discusses problems and procedures associated with time-series data analysis using Auto Regressive Integrated Moving Averages (ARIMA) models. Example illustrates application of ARIMA analysis for…

  10. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    PubMed

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  11. Optimizing the time-frame for the definition of bleeding-related death after acute variceal bleeding in cirrhosis.

    PubMed

    Merkel, C; Gatta, A; Bellumat, A; Bolognesi, M; Borsato, L; Caregaro, L; Cavallarin, G; Cielo, R; Cristina, P; Cucci, E; Donada, C; Donadon, V; Enzo, E; Martin, R; Mazzaro, C; Sacerdoti, D; Torboli, P

    1996-01-01

    To identify the best time-frame for defining bleeding-related death after variceal bleeding in patients with cirrhosis. Prospective long-term evaluation of a cohort of 155 patients admitted with variceal bleeding. Eight medical departments in seven hospitals in north-eastern Italy. Non-linear regression analysis of a hazard curve for death, and Cox's multiple regression analyses using different zero-time points. Cumulative hazard plots gave two slopes, the first corresponding to the risk of death from acute bleeding, the second a baseline risk of death. The first 30 days were outside the confidence limits of the regression curve for the baseline risk of death. Using Cox's regression analysis, the significant predictors of overall mortality risk were balanced between factors related to severity of bleeding and those related to severity of liver disease. If only deaths occurring after 30 days were considered, only predictors related to the severity of liver disease were found to be of importance. Thirty days after bleeding is considered to be a reasonable time-frame for the definition of bleeding-related death in patients with cirrhosis and variceal bleeding.

  12. Estimating time-varying exposure-outcome associations using case-control data: logistic and case-cohort analyses.

    PubMed

    Keogh, Ruth H; Mangtani, Punam; Rodrigues, Laura; Nguipdop Djomo, Patrick

    2016-01-05

    Traditional analyses of standard case-control studies using logistic regression do not allow estimation of time-varying associations between exposures and the outcome. We present two approaches which allow this. The motivation is a study of vaccine efficacy as a function of time since vaccination. Our first approach is to estimate time-varying exposure-outcome associations by fitting a series of logistic regressions within successive time periods, reusing controls across periods. Our second approach treats the case-control sample as a case-cohort study, with the controls forming the subcohort. In the case-cohort analysis, controls contribute information at all times they are at risk. Extensions allow left truncation, frequency matching and, using the case-cohort analysis, time-varying exposures. Simulations are used to investigate the methods. The simulation results show that both methods give correct estimates of time-varying effects of exposures using standard case-control data. Using the logistic approach there are efficiency gains by reusing controls over time and care should be taken over the definition of controls within time periods. However, using the case-cohort analysis there is no ambiguity over the definition of controls. The performance of the two analyses is very similar when controls are used most efficiently under the logistic approach. Using our methods, case-control studies can be used to estimate time-varying exposure-outcome associations where they may not previously have been considered. The case-cohort analysis has several advantages, including that it allows estimation of time-varying associations as a continuous function of time, while the logistic regression approach is restricted to assuming a step function form for the time-varying association.

  13. Principal regression analysis and the index leverage effect

    NASA Astrophysics Data System (ADS)

    Reigneron, Pierre-Alain; Allez, Romain; Bouchaud, Jean-Philippe

    2011-09-01

    We revisit the index leverage effect, that can be decomposed into a volatility effect and a correlation effect. We investigate the latter using a matrix regression analysis, that we call ‘Principal Regression Analysis' (PRA) and for which we provide some analytical (using Random Matrix Theory) and numerical benchmarks. We find that downward index trends increase the average correlation between stocks (as measured by the most negative eigenvalue of the conditional correlation matrix), and makes the market mode more uniform. Upward trends, on the other hand, also increase the average correlation between stocks but rotates the corresponding market mode away from uniformity. There are two time scales associated to these effects, a short one on the order of a month (20 trading days), and a longer time scale on the order of a year. We also find indications of a leverage effect for sectorial correlations as well, which reveals itself in the second and third mode of the PRA.

  14. Practical application of cure mixture model for long-term censored survivor data from a withdrawal clinical trial of patients with major depressive disorder.

    PubMed

    Arano, Ichiro; Sugimoto, Tomoyuki; Hamasaki, Toshimitsu; Ohno, Yuko

    2010-04-23

    Survival analysis methods such as the Kaplan-Meier method, log-rank test, and Cox proportional hazards regression (Cox regression) are commonly used to analyze data from randomized withdrawal studies in patients with major depressive disorder. However, unfortunately, such common methods may be inappropriate when a long-term censored relapse-free time appears in data as the methods assume that if complete follow-up were possible for all individuals, each would eventually experience the event of interest. In this paper, to analyse data including such a long-term censored relapse-free time, we discuss a semi-parametric cure regression (Cox cure regression), which combines a logistic formulation for the probability of occurrence of an event with a Cox proportional hazards specification for the time of occurrence of the event. In specifying the treatment's effect on disease-free survival, we consider the fraction of long-term survivors and the risks associated with a relapse of the disease. In addition, we develop a tree-based method for the time to event data to identify groups of patients with differing prognoses (cure survival CART). Although analysis methods typically adapt the log-rank statistic for recursive partitioning procedures, the method applied here used a likelihood ratio (LR) test statistic from a fitting of cure survival regression assuming exponential and Weibull distributions for the latency time of relapse. The method is illustrated using data from a sertraline randomized withdrawal study in patients with major depressive disorder. We concluded that Cox cure regression reveals facts on who may be cured, and how the treatment and other factors effect on the cured incidence and on the relapse time of uncured patients, and that cure survival CART output provides easily understandable and interpretable information, useful both in identifying groups of patients with differing prognoses and in utilizing Cox cure regression models leading to meaningful interpretations.

  15. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    PubMed

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  16. Determining delayed admission to intensive care unit for mechanically ventilated patients in the emergency department.

    PubMed

    Hung, Shih-Chiang; Kung, Chia-Te; Hung, Chih-Wei; Liu, Ber-Ming; Liu, Jien-Wei; Chew, Ghee; Chuang, Hung-Yi; Lee, Wen-Huei; Lee, Tzu-Chi

    2014-08-23

    The adverse effects of delayed admission to the intensive care unit (ICU) have been recognized in previous studies. However, the definitions of delayed admission varies across studies. This study proposed a model to define "delayed admission", and explored the effect of ICU-waiting time on patients' outcome. This retrospective cohort study included non-traumatic adult patients on mechanical ventilation in the emergency department (ED), from July 2009 to June 2010. The primary outcomes measures were 21-ventilator-day mortality and prolonged hospital stays (over 30 days). Models of Cox regression and logistic regression were used for multivariate analysis. The non-delayed ICU-waiting was defined as a period in which the time effect on mortality was not statistically significant in a Cox regression model. To identify a suitable cut-off point between "delayed" and "non-delayed", subsets from the overall data were made based on ICU-waiting time and the hazard ratio of ICU-waiting hour in each subset was iteratively calculated. The cut-off time was then used to evaluate the impact of delayed ICU admission on mortality and prolonged length of hospital stay. The final analysis included 1,242 patients. The time effect on mortality emerged after 4 hours, thus we deduced ICU-waiting time in ED > 4 hours as delayed. By logistic regression analysis, delayed ICU admission affected the outcomes of 21 ventilator-days mortality and prolonged hospital stay, with odds ratio of 1.41 (95% confidence interval, 1.05 to 1.89) and 1.56 (95% confidence interval, 1.07 to 2.27) respectively. For patients on mechanical ventilation at the ED, delayed ICU admission is associated with higher probability of mortality and additional resource expenditure. A benchmark waiting time of no more than 4 hours for ICU admission is recommended.

  17. Generating linear regression model to predict motor functions by use of laser range finder during TUG.

    PubMed

    Adachi, Daiki; Nishiguchi, Shu; Fukutani, Naoto; Hotta, Takayuki; Tashiro, Yuto; Morino, Saori; Shirooka, Hidehiko; Nozaki, Yuma; Hirata, Hinako; Yamaguchi, Moe; Yorozu, Ayanori; Takahashi, Masaki; Aoyama, Tomoki

    2017-05-01

    The purpose of this study was to investigate which spatial and temporal parameters of the Timed Up and Go (TUG) test are associated with motor function in elderly individuals. This study included 99 community-dwelling women aged 72.9 ± 6.3 years. Step length, step width, single support time, variability of the aforementioned parameters, gait velocity, cadence, reaction time from starting signal to first step, and minimum distance between the foot and a marker placed to 3 in front of the chair were measured using our analysis system. The 10-m walk test, five times sit-to-stand (FTSTS) test, and one-leg standing (OLS) test were used to assess motor function. Stepwise multivariate linear regression analysis was used to determine which TUG test parameters were associated with each motor function test. Finally, we calculated a predictive model for each motor function test using each regression coefficient. In stepwise linear regression analysis, step length and cadence were significantly associated with the 10-m walk test, FTSTS and OLS test. Reaction time was associated with the FTSTS test, and step width was associated with the OLS test. Each predictive model showed a strong correlation with the 10-m walk test and OLS test (P < 0.01), which was not significant higher correlation than TUG test time. We showed which TUG test parameters were associated with each motor function test. Moreover, the TUG test time regarded as the lower extremity function and mobility has strong predictive ability in each motor function test. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  18. Evaluation of methodology for the analysis of 'time-to-event' data in pharmacogenomic genome-wide association studies.

    PubMed

    Syed, Hamzah; Jorgensen, Andrea L; Morris, Andrew P

    2016-06-01

    To evaluate the power to detect associations between SNPs and time-to-event outcomes across a range of pharmacogenomic study designs while comparing alternative regression approaches. Simulations were conducted to compare Cox proportional hazards modeling accounting for censoring and logistic regression modeling of a dichotomized outcome at the end of the study. The Cox proportional hazards model was demonstrated to be more powerful than the logistic regression analysis. The difference in power between the approaches was highly dependent on the rate of censoring. Initial evaluation of single-nucleotide polymorphism association signals using computationally efficient software with dichotomized outcomes provides an effective screening tool for some design scenarios, and thus has important implications for the development of analytical protocols in pharmacogenomic studies.

  19. Detecting a Change in School Performance: A Bayesian Analysis for a Multilevel Join Point Problem. CSE Technical Report 542.

    ERIC Educational Resources Information Center

    Thum, Yeow Meng; Bhattacharya, Suman Kumar

    To better describe individual behavior within a system, this paper uses a sample of longitudinal test scores from a large urban school system to consider hierarchical Bayes estimation of a multilevel linear regression model in which each individual regression slope of test score on time switches at some unknown point in time, "kj."…

  20. A dynamic regression analysis tool for quantitative assessment of bacterial growth written in Python.

    PubMed

    Hoeflinger, Jennifer L; Hoeflinger, Daniel E; Miller, Michael J

    2017-01-01

    Herein, an open-source method to generate quantitative bacterial growth data from high-throughput microplate assays is described. The bacterial lag time, maximum specific growth rate, doubling time and delta OD are reported. Our method was validated by carbohydrate utilization of lactobacilli, and visual inspection revealed 94% of regressions were deemed excellent. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Symplectic geometry spectrum regression for prediction of noisy time series

    NASA Astrophysics Data System (ADS)

    Xie, Hong-Bo; Dokos, Socrates; Sivakumar, Bellie; Mengersen, Kerrie

    2016-05-01

    We present the symplectic geometry spectrum regression (SGSR) technique as well as a regularized method based on SGSR for prediction of nonlinear time series. The main tool of analysis is the symplectic geometry spectrum analysis, which decomposes a time series into the sum of a small number of independent and interpretable components. The key to successful regularization is to damp higher order symplectic geometry spectrum components. The effectiveness of SGSR and its superiority over local approximation using ordinary least squares are demonstrated through prediction of two noisy synthetic chaotic time series (Lorenz and Rössler series), and then tested for prediction of three real-world data sets (Mississippi River flow data and electromyographic and mechanomyographic signal recorded from human body).

  2. Regression analysis of case K interval-censored failure time data in the presence of informative censoring.

    PubMed

    Wang, Peijie; Zhao, Hui; Sun, Jianguo

    2016-12-01

    Interval-censored failure time data occur in many fields such as demography, economics, medical research, and reliability and many inference procedures on them have been developed (Sun, 2006; Chen, Sun, and Peace, 2012). However, most of the existing approaches assume that the mechanism that yields interval censoring is independent of the failure time of interest and it is clear that this may not be true in practice (Zhang et al., 2007; Ma, Hu, and Sun, 2015). In this article, we consider regression analysis of case K interval-censored failure time data when the censoring mechanism may be related to the failure time of interest. For the problem, an estimated sieve maximum-likelihood approach is proposed for the data arising from the proportional hazards frailty model and for estimation, a two-step procedure is presented. In the addition, the asymptotic properties of the proposed estimators of regression parameters are established and an extensive simulation study suggests that the method works well. Finally, we apply the method to a set of real interval-censored data that motivated this study. © 2016, The International Biometric Society.

  3. Regression analysis for bivariate gap time with missing first gap time data.

    PubMed

    Huang, Chia-Hui; Chen, Yi-Hau

    2017-01-01

    We consider ordered bivariate gap time while data on the first gap time are unobservable. This study is motivated by the HIV infection and AIDS study, where the initial HIV contracting time is unavailable, but the diagnosis times for HIV and AIDS are available. We are interested in studying the risk factors for the gap time between initial HIV contraction and HIV diagnosis, and gap time between HIV and AIDS diagnoses. Besides, the association between the two gap times is also of interest. Accordingly, in the data analysis we are faced with two-fold complexity, namely data on the first gap time is completely missing, and the second gap time is subject to induced informative censoring due to dependence between the two gap times. We propose a modeling framework for regression analysis of bivariate gap time under the complexity of the data. The estimating equations for the covariate effects on, as well as the association between, the two gap times are derived through maximum likelihood and suitable counting processes. Large sample properties of the resulting estimators are developed by martingale theory. Simulations are performed to examine the performance of the proposed analysis procedure. An application of data from the HIV and AIDS study mentioned above is reported for illustration.

  4. A Review of the Study Designs and Statistical Methods Used in the Determination of Predictors of All-Cause Mortality in HIV-Infected Cohorts: 2002–2011

    PubMed Central

    Otwombe, Kennedy N.; Petzold, Max; Martinson, Neil; Chirwa, Tobias

    2014-01-01

    Background Research in the predictors of all-cause mortality in HIV-infected people has widely been reported in literature. Making an informed decision requires understanding the methods used. Objectives We present a review on study designs, statistical methods and their appropriateness in original articles reporting on predictors of all-cause mortality in HIV-infected people between January 2002 and December 2011. Statistical methods were compared between 2002–2006 and 2007–2011. Time-to-event analysis techniques were considered appropriate. Data Sources Pubmed/Medline. Study Eligibility Criteria Original English-language articles were abstracted. Letters to the editor, editorials, reviews, systematic reviews, meta-analysis, case reports and any other ineligible articles were excluded. Results A total of 189 studies were identified (n = 91 in 2002–2006 and n = 98 in 2007–2011) out of which 130 (69%) were prospective and 56 (30%) were retrospective. One hundred and eighty-two (96%) studies described their sample using descriptive statistics while 32 (17%) made comparisons using t-tests. Kaplan-Meier methods for time-to-event analysis were commonly used in the earlier period (n = 69, 76% vs. n = 53, 54%, p = 0.002). Predictors of mortality in the two periods were commonly determined using Cox regression analysis (n = 67, 75% vs. n = 63, 64%, p = 0.12). Only 7 (4%) used advanced survival analysis methods of Cox regression analysis with frailty in which 6 (3%) were used in the later period. Thirty-two (17%) used logistic regression while 8 (4%) used other methods. There were significantly more articles from the first period using appropriate methods compared to the second (n = 80, 88% vs. n = 69, 70%, p-value = 0.003). Conclusion Descriptive statistics and survival analysis techniques remain the most common methods of analysis in publications on predictors of all-cause mortality in HIV-infected cohorts while prospective research designs are favoured. Sophisticated techniques of time-dependent Cox regression and Cox regression with frailty are scarce. This motivates for more training in the use of advanced time-to-event methods. PMID:24498313

  5. [Analysis of risk factors for dry eye syndrome in visual display terminal workers].

    PubMed

    Zhu, Yong; Yu, Wen-lan; Xu, Ming; Han, Lei; Cao, Wen-dong; Zhang, Hong-bing; Zhang, Heng-dong

    2013-08-01

    To analyze the risk factors for dry eye syndrome in visual display terminal (VDT) workers and to provide a scientific basis for protecting the eye health of VDT workers. Questionnaire survey, Schirmer I test, tear break-up time test, and workshop microenvironment evaluation were performed in 185 VDT workers. Multivariate logistic regression analysis was performed to determine the risk factors for dry eye syndrome in VDT workers after adjustment for confounding factors. In the logistic regression model, the regression coefficients of daily mean time of exposure to screen, daily mean time of watching TV, parallel screen-eye angle, upward screen-eye angle, eye-screen distance of less than 20 cm, irregular breaks during screen-exposed work, age, and female gender on the results of Schirmer I test were 0.153, 0.548, 0.400, 0.796, 0.234, 0.516, 0.559, and -0.685, respectively; the regression coefficients of daily mean time of exposure to screen, parallel screen-eye angle, upward screen-eye angle, age, working years, and female gender on tear break-up time were 0.021, 0.625, 2.652, 0.749, 0.403, and 1.481, respectively. Daily mean time of exposure to screen, daily mean time of watching TV, parallel screen-eye angle, upward screen-eye angle, eye-screen distance of less than 20 cm, irregular breaks during screen-exposed work, age, and working years are risk factors for dry eye syndrome in VDT workers.

  6. Modeling and Analysis of Process Parameters for Evaluating Shrinkage Problems During Plastic Injection Molding of a DVD-ROM Cover

    NASA Astrophysics Data System (ADS)

    Öktem, H.

    2012-01-01

    Plastic injection molding plays a key role in the production of high-quality plastic parts. Shrinkage is one of the most significant problems of a plastic part in terms of quality in the plastic injection molding. This article focuses on the study of the modeling and analysis of the effects of process parameters on the shrinkage by evaluating the quality of the plastic part of a DVD-ROM cover made with Acrylonitrile Butadiene Styrene (ABS) polymer material. An effective regression model was developed to determine the mathematical relationship between the process parameters (mold temperature, melt temperature, injection pressure, injection time, and cooling time) and the volumetric shrinkage by utilizing the analysis data. Finite element (FE) analyses designed by Taguchi (L27) orthogonal arrays were run in the Moldflow simulation program. Analysis of variance (ANOVA) was then performed to check the adequacy of the regression model and to determine the effect of the process parameters on the shrinkage. Experiments were conducted to control the accuracy of the regression model with the FE analyses obtained from Moldflow. The results show that the regression model agrees very well with the FE analyses and the experiments. From this, it can be concluded that this study succeeded in modeling the shrinkage problem in our application.

  7. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    NASA Astrophysics Data System (ADS)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  8. Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression

    PubMed Central

    2014-01-01

    Background Support vector regression (SVR) and Gaussian process regression (GPR) were used for the analysis of electroanalytical experimental data to estimate diffusion coefficients. Results For simulated cyclic voltammograms based on the EC, Eqr, and EqrC mechanisms these regression algorithms in combination with nonlinear kernel/covariance functions yielded diffusion coefficients with higher accuracy as compared to the standard approach of calculating diffusion coefficients relying on the Nicholson-Shain equation. The level of accuracy achieved by SVR and GPR is virtually independent of the rate constants governing the respective reaction steps. Further, the reduction of high-dimensional voltammetric signals by manual selection of typical voltammetric peak features decreased the performance of both regression algorithms compared to a reduction by downsampling or principal component analysis. After training on simulated data sets, diffusion coefficients were estimated by the regression algorithms for experimental data comprising voltammetric signals for three organometallic complexes. Conclusions Estimated diffusion coefficients closely matched the values determined by the parameter fitting method, but reduced the required computational time considerably for one of the reaction mechanisms. The automated processing of voltammograms according to the regression algorithms yields better results than the conventional analysis of peak-related data. PMID:24987463

  9. Quantile Regression with Censored Data

    ERIC Educational Resources Information Center

    Lin, Guixian

    2009-01-01

    The Cox proportional hazards model and the accelerated failure time model are frequently used in survival data analysis. They are powerful, yet have limitation due to their model assumptions. Quantile regression offers a semiparametric approach to model data with possible heterogeneity. It is particularly powerful for censored responses, where the…

  10. Regression modeling and prediction of road sweeping brush load characteristics from finite element analysis and experimental results.

    PubMed

    Wang, Chong; Sun, Qun; Wahab, Magd Abdel; Zhang, Xingyu; Xu, Limin

    2015-09-01

    Rotary cup brushes mounted on each side of a road sweeper undertake heavy debris removal tasks but the characteristics have not been well known until recently. A Finite Element (FE) model that can analyze brush deformation and predict brush characteristics have been developed to investigate the sweeping efficiency and to assist the controller design. However, the FE model requires large amount of CPU time to simulate each brush design and operating scenario, which may affect its applications in a real-time system. This study develops a mathematical regression model to summarize the FE modeled results. The complex brush load characteristic curves were statistically analyzed to quantify the effects of cross-section, length, mounting angle, displacement and rotational speed etc. The data were then fitted by a multiple variable regression model using the maximum likelihood method. The fitted results showed good agreement with the FE analysis results and experimental results, suggesting that the mathematical regression model may be directly used in a real-time system to predict characteristics of different brushes under varying operating conditions. The methodology may also be used in the design and optimization of rotary brush tools. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The time frame of Epstein-Barr virus latent membrane protein-1 gene to disappear in nasopharyngeal swabs after initiation of primary radiotherapy is an independently significant prognostic factor predicting local control for patients with nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.-Y.; Chang, K.-P.; Graduate Institute of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan

    Purpose: The presence of Epstein-Barr virus latent membrane protein-1 (LMP-1) gene in nasopharyngeal swabs indicates the presence of nasopharyngeal carcinoma (NPC) mucosal tumor cells. This study was undertaken to investigate whether the time taken for LMP-1 to disappear after initiation of primary radiotherapy (RT) was inversely associated with NPC local control. Methods and Materials: During July 1999 and October 2002, there were 127 nondisseminated NPC patients receiving serial examinations of nasopharyngeal swabbing with detection of LMP-1 during the RT course. The time for LMP-1 regression was defined as the number of days after initiation of RT for LMP-1 results tomore » turn negative. The primary outcome was local control, which was represented by freedom from local recurrence. Results: The time for LMP-1 regression showed a statistically significant influence on NPC local control both univariately (p < 0.0001) and multivariately (p = 0.004). In multivariate analysis, the administration of chemotherapy conferred a significantly more favorable local control (p = 0.03). Advanced T status ({>=} T2b), overall treatment time of external photon radiotherapy longer than 55 days, and older age showed trends toward being poor prognosticators. The time for LMP-1 regression was very heterogeneous. According to the quartiles of the time for LMP-1 regression, we defined the pattern of LMP-1 regression as late regression if it required 40 days or more. Kaplan-Meier plots indicated that the patients with late regression had a significantly worse local control than those with intermediate or early regression (p 0.0129). Conclusion: Among the potential prognostic factors examined in this study, the time for LMP-1 regression was the most independently significant factor that was inversely associated with NPC local control.« less

  12. Regression Analysis of Mixed Recurrent-Event and Panel-Count Data with Additive Rate Models

    PubMed Central

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L.

    2015-01-01

    Summary Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007; Zhao et al., 2011). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013). In this paper, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. PMID:25345405

  13. Marginal regression analysis of recurrent events with coarsened censoring times.

    PubMed

    Hu, X Joan; Rosychuk, Rhonda J

    2016-12-01

    Motivated by an ongoing pediatric mental health care (PMHC) study, this article presents weakly structured methods for analyzing doubly censored recurrent event data where only coarsened information on censoring is available. The study extracted administrative records of emergency department visits from provincial health administrative databases. The available information of each individual subject is limited to a subject-specific time window determined up to concealed data. To evaluate time-dependent effect of exposures, we adapt the local linear estimation with right censored survival times under the Cox regression model with time-varying coefficients (cf. Cai and Sun, Scandinavian Journal of Statistics 2003, 30, 93-111). We establish the pointwise consistency and asymptotic normality of the regression parameter estimator, and examine its performance by simulation. The PMHC study illustrates the proposed approach throughout the article. © 2016, The International Biometric Society.

  14. Survival analysis of postoperative nausea and vomiting in patients receiving patient-controlled epidural analgesia.

    PubMed

    Lee, Shang-Yi; Hung, Chih-Jen; Chen, Chih-Chieh; Wu, Chih-Cheng

    2014-11-01

    Postoperative nausea and vomiting as well as postoperative pain are two major concerns when patients undergo surgery and receive anesthetics. Various models and predictive methods have been developed to investigate the risk factors of postoperative nausea and vomiting, and different types of preventive managements have subsequently been developed. However, there continues to be a wide variation in the previously reported incidence rates of postoperative nausea and vomiting. This may have occurred because patients were assessed at different time points, coupled with the overall limitation of the statistical methods used. However, using survival analysis with Cox regression, and thus factoring in these time effects, may solve this statistical limitation and reveal risk factors related to the occurrence of postoperative nausea and vomiting in the following period. In this retrospective, observational, uni-institutional study, we analyzed the results of 229 patients who received patient-controlled epidural analgesia following surgery from June 2007 to December 2007. We investigated the risk factors for the occurrence of postoperative nausea and vomiting, and also assessed the effect of evaluating patients at different time points using the Cox proportional hazards model. Furthermore, the results of this inquiry were compared with those results using logistic regression. The overall incidence of postoperative nausea and vomiting in our study was 35.4%. Using logistic regression, we found that only sex, but not the total doses and the average dose of opioids, had significant effects on the occurrence of postoperative nausea and vomiting at some time points. Cox regression showed that, when patients consumed a higher average dose of opioids, this correlated with a higher incidence of postoperative nausea and vomiting with a hazard ratio of 1.286. Survival analysis using Cox regression showed that the average consumption of opioids played an important role in postoperative nausea and vomiting, a result not found by logistic regression. Therefore, the incidence of postoperative nausea and vomiting in patients cannot be reliably determined on the basis of a single visit at one point in time. Copyright © 2014. Published by Elsevier Taiwan.

  15. Regression analysis of mixed recurrent-event and panel-count data with additive rate models.

    PubMed

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L

    2015-03-01

    Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.

  16. Time Series Analysis and Forecasting of Wastewater Inflow into Bandar Tun Razak Sewage Treatment Plant in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Abunama, Taher; Othman, Faridah

    2017-06-01

    Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.

  17. “Smooth” Semiparametric Regression Analysis for Arbitrarily Censored Time-to-Event Data

    PubMed Central

    Zhang, Min; Davidian, Marie

    2008-01-01

    Summary A general framework for regression analysis of time-to-event data subject to arbitrary patterns of censoring is proposed. The approach is relevant when the analyst is willing to assume that distributions governing model components that are ordinarily left unspecified in popular semiparametric regression models, such as the baseline hazard function in the proportional hazards model, have densities satisfying mild “smoothness” conditions. Densities are approximated by a truncated series expansion that, for fixed degree of truncation, results in a “parametric” representation, which makes likelihood-based inference coupled with adaptive choice of the degree of truncation, and hence flexibility of the model, computationally and conceptually straightforward with data subject to any pattern of censoring. The formulation allows popular models, such as the proportional hazards, proportional odds, and accelerated failure time models, to be placed in a common framework; provides a principled basis for choosing among them; and renders useful extensions of the models straightforward. The utility and performance of the methods are demonstrated via simulations and by application to data from time-to-event studies. PMID:17970813

  18. No evidence of reaction time slowing in autism spectrum disorder.

    PubMed

    Ferraro, F Richard

    2016-01-01

    A total of 32 studies comprising 238 simple reaction time and choice reaction time conditions were examined in individuals with autism spectrum disorder (n = 964) and controls (n = 1032). A Brinley plot/multiple regression analysis was performed on mean reaction times, regressing autism spectrum disorder performance onto the control performance as a way to examine any generalized simple reaction time/choice reaction time slowing exhibited by the autism spectrum disorder group. The resulting regression equation was Y (autism spectrum disorder) = 0.99 × (control) + 87.93, which accounted for 92.3% of the variance. These results suggest that there are little if any simple reaction time/choice reaction time slowing in this sample of individual with autism spectrum disorder, in comparison with controls. While many cognitive and information processing domains are compromised in autism spectrum disorder, it appears that simple reaction time/choice reaction time remain relatively unaffected in autism spectrum disorder. © The Author(s) 2014.

  19. Regression analysis of clustered failure time data with informative cluster size under the additive transformation models.

    PubMed

    Chen, Ling; Feng, Yanqin; Sun, Jianguo

    2017-10-01

    This paper discusses regression analysis of clustered failure time data, which occur when the failure times of interest are collected from clusters. In particular, we consider the situation where the correlated failure times of interest may be related to cluster sizes. For inference, we present two estimation procedures, the weighted estimating equation-based method and the within-cluster resampling-based method, when the correlated failure times of interest arise from a class of additive transformation models. The former makes use of the inverse of cluster sizes as weights in the estimating equations, while the latter can be easily implemented by using the existing software packages for right-censored failure time data. An extensive simulation study is conducted and indicates that the proposed approaches work well in both the situations with and without informative cluster size. They are applied to a dental study that motivated this study.

  20. Identifying Autocorrelation Generated by Various Error Processes in Interrupted Time-Series Regression Designs: A Comparison of AR1 and Portmanteau Tests

    ERIC Educational Resources Information Center

    Huitema, Bradley E.; McKean, Joseph W.

    2007-01-01

    Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…

  1. Frequency-domain nonlinear regression algorithm for spectral analysis of broadband SFG spectroscopy.

    PubMed

    He, Yuhan; Wang, Ying; Wang, Jingjing; Guo, Wei; Wang, Zhaohui

    2016-03-01

    The resonant spectral bands of the broadband sum frequency generation (BB-SFG) spectra are often distorted by the nonresonant portion and the lineshapes of the laser pulses. Frequency domain nonlinear regression (FDNLR) algorithm was proposed to retrieve the first-order polarization induced by the infrared pulse and to improve the analysis of SFG spectra through simultaneous fitting of a series of time-resolved BB-SFG spectra. The principle of FDNLR was presented, and the validity and reliability were tested by the analysis of the virtual and measured SFG spectra. The relative phase, dephasing time, and lineshapes of the resonant vibrational SFG bands can be retrieved without any preset assumptions about the SFG bands and the incident laser pulses.

  2. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  3. Analysis and generation of groundwater concentration time series

    NASA Astrophysics Data System (ADS)

    Crăciun, Maria; Vamoş, Călin; Suciu, Nicolae

    2018-01-01

    Concentration time series are provided by simulated concentrations of a nonreactive solute transported in groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are not captured by the first two moments which characterize the approximate Gaussian distribution of the two-dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear regression terms, accounting for correlations between fluctuations around the trend and their increments in time, and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The algorithm generalizes mixing models used in probability density function approaches. The well-known interaction by exchange with the mean mixing model is a special case consisting of a linear regression with constant coefficients.

  4. An investigation of correlation between pilot scanning behavior and workload using stepwise regression analysis

    NASA Technical Reports Server (NTRS)

    Waller, M. C.

    1976-01-01

    An electro-optical device called an oculometer which tracks a subject's lookpoint as a time function has been used to collect data in a real-time simulation study of instrument landing system (ILS) approaches. The data describing the scanning behavior of a pilot during the instrument approaches have been analyzed by use of a stepwise regression analysis technique. A statistically significant correlation between pilot workload, as indicated by pilot ratings, and scanning behavior has been established. In addition, it was demonstrated that parameters derived from the scanning behavior data can be combined in a mathematical equation to provide a good representation of pilot workload.

  5. Extended cox regression model: The choice of timefunction

    NASA Astrophysics Data System (ADS)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  6. Introduction to the use of regression models in epidemiology.

    PubMed

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  7. A matching framework to improve causal inference in interrupted time-series analysis.

    PubMed

    Linden, Ariel

    2018-04-01

    Interrupted time-series analysis (ITSA) is a popular evaluation methodology in which a single treatment unit's outcome is studied over time and the intervention is expected to "interrupt" the level and/or trend of the outcome, subsequent to its introduction. When ITSA is implemented without a comparison group, the internal validity may be quite poor. Therefore, adding a comparable control group to serve as the counterfactual is always preferred. This paper introduces a novel matching framework, ITSAMATCH, to create a comparable control group by matching directly on covariates and then use these matches in the outcomes model. We evaluate the effect of California's Proposition 99 (passed in 1988) for reducing cigarette sales, by comparing California to other states not exposed to smoking reduction initiatives. We compare ITSAMATCH results to 2 commonly used matching approaches, synthetic controls (SYNTH), and regression adjustment; SYNTH reweights nontreated units to make them comparable to the treated unit, and regression adjusts covariates directly. Methods are compared by assessing covariate balance and treatment effects. Both ITSAMATCH and SYNTH achieved covariate balance and estimated similar treatment effects. The regression model found no treatment effect and produced inconsistent covariate adjustment. While the matching framework achieved results comparable to SYNTH, it has the advantage of being technically less complicated, while producing statistical estimates that are straightforward to interpret. Conversely, regression adjustment may "adjust away" a treatment effect. Given its advantages, ITSAMATCH should be considered as a primary approach for evaluating treatment effects in multiple-group time-series analysis. © 2017 John Wiley & Sons, Ltd.

  8. Subsonic Aircraft With Regression and Neural-Network Approximators Designed

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    2004-01-01

    At the NASA Glenn Research Center, NASA Langley Research Center's Flight Optimization System (FLOPS) and the design optimization testbed COMETBOARDS with regression and neural-network-analysis approximators have been coupled to obtain a preliminary aircraft design methodology. For a subsonic aircraft, the optimal design, that is the airframe-engine combination, is obtained by the simulation. The aircraft is powered by two high-bypass-ratio engines with a nominal thrust of about 35,000 lbf. It is to carry 150 passengers at a cruise speed of Mach 0.8 over a range of 3000 n mi and to operate on a 6000-ft runway. The aircraft design utilized a neural network and a regression-approximations-based analysis tool, along with a multioptimizer cascade algorithm that uses sequential linear programming, sequential quadratic programming, the method of feasible directions, and then sequential quadratic programming again. Optimal aircraft weight versus the number of design iterations is shown. The central processing unit (CPU) time to solution is given. It is shown that the regression-method-based analyzer exhibited a smoother convergence pattern than the FLOPS code. The optimum weight obtained by the approximation technique and the FLOPS code differed by 1.3 percent. Prediction by the approximation technique exhibited no error for the aircraft wing area and turbine entry temperature, whereas it was within 2 percent for most other parameters. Cascade strategy was required by FLOPS as well as the approximators. The regression method had a tendency to hug the data points, whereas the neural network exhibited a propensity to follow a mean path. The performance of the neural network and regression methods was considered adequate. It was at about the same level for small, standard, and large models with redundancy ratios (defined as the number of input-output pairs to the number of unknown coefficients) of 14, 28, and 57, respectively. In an SGI octane workstation (Silicon Graphics, Inc., Mountainview, CA), the regression training required a fraction of a CPU second, whereas neural network training was between 1 and 9 min, as given. For a single analysis cycle, the 3-sec CPU time required by the FLOPS code was reduced to milliseconds by the approximators. For design calculations, the time with the FLOPS code was 34 min. It was reduced to 2 sec with the regression method and to 4 min by the neural network technique. The performance of the regression and neural network methods was found to be satisfactory for the analysis and design optimization of the subsonic aircraft.

  9. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  10. Modelling lecturer performance index of private university in Tulungagung by using survival analysis with multivariate adaptive regression spline

    NASA Astrophysics Data System (ADS)

    Hasyim, M.; Prastyo, D. D.

    2018-03-01

    Survival analysis performs relationship between independent variables and survival time as dependent variable. In fact, not all survival data can be recorded completely by any reasons. In such situation, the data is called censored data. Moreover, several model for survival analysis requires assumptions. One of the approaches in survival analysis is nonparametric that gives more relax assumption. In this research, the nonparametric approach that is employed is Multivariate Regression Adaptive Spline (MARS). This study is aimed to measure the performance of private university’s lecturer. The survival time in this study is duration needed by lecturer to obtain their professional certificate. The results show that research activities is a significant factor along with developing courses material, good publication in international or national journal, and activities in research collaboration.

  11. Predictors of course in obsessive-compulsive disorder: logistic regression versus Cox regression for recurrent events.

    PubMed

    Kempe, P T; van Oppen, P; de Haan, E; Twisk, J W R; Sluis, A; Smit, J H; van Dyck, R; van Balkom, A J L M

    2007-09-01

    Two methods for predicting remissions in obsessive-compulsive disorder (OCD) treatment are evaluated. Y-BOCS measurements of 88 patients with a primary OCD (DSM-III-R) diagnosis were performed over a 16-week treatment period, and during three follow-ups. Remission at any measurement was defined as a Y-BOCS score lower than thirteen combined with a reduction of seven points when compared with baseline. Logistic regression models were compared with a Cox regression for recurrent events model. Logistic regression yielded different models at different evaluation times. The recurrent events model remained stable when fewer measurements were used. Higher baseline levels of neuroticism and more severe OCD symptoms were associated with a lower chance of remission, early age of onset and more depressive symptoms with a higher chance. Choice of outcome time affects logistic regression prediction models. Recurrent events analysis uses all information on remissions and relapses. Short- and long-term predictors for OCD remission show overlap.

  12. Chandra X-ray Center Science Data Systems Regression Testing of CIAO

    NASA Astrophysics Data System (ADS)

    Lee, N. P.; Karovska, M.; Galle, E. C.; Bonaventura, N. R.

    2011-07-01

    The Chandra Interactive Analysis of Observations (CIAO) is a software system developed for the analysis of Chandra X-ray Observatory observations. An important component of a successful CIAO release is the repeated testing of the tools across various platforms to ensure consistent and scientifically valid results. We describe the procedures of the scientific regression testing of CIAO and the enhancements made to the testing system to increase the efficiency of run time and result validation.

  13. Pre-hospital electrocardiogram triage with telemedicine near halves time to treatment in STEMI: A meta-analysis and meta-regression analysis of non-randomized studies.

    PubMed

    Brunetti, Natale Daniele; De Gennaro, Luisa; Correale, Michele; Santoro, Francesco; Caldarola, Pasquale; Gaglione, Antonio; Di Biase, Matteo

    2017-04-01

    A shorter time to treatment has been shown to be associated with lower mortality rates in acute myocardial infarction (AMI). Several strategies have been adopted with the aim to reduce any delay in diagnosis of AMI: pre-hospital triage with telemedicine is one of such strategies. We therefore aimed to measure the real effect of pre-hospital triage with telemedicine in case of AMI in a meta-analysis study. We performed a meta-analysis of non-randomized studies with the aim to quantify the exact reduction of time to treatment achieved by pre-hospital triage with telemedicine. Data were pooled and compared by relative time reduction and 95% C.I.s. A meta-regression analysis was performed in order to find possible predictors of shorter time to treatment. Eleven studies were selected and finally evaluated in the study. The overall relative reduction of time to treatment with pre-hospital triage and telemedicine was -38/-40% (p<0.001). Absolute time reduction was significantly correlated to time to treatment in the control groups (p<0.001), while relative time reduction was independent. A non-significant trend toward shorter relative time reductions was observed over years. Pre-hospital triage with telemedicine is associated with a near halved time to treatment in AMI. The benefit is larger in terms of absolute time to treatment reduction in populations with larger delays to treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Wavelet analysis for the study of the relations among soil radon anomalies, volcanic and seismic events: the case of Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Ferrera, Elisabetta; Giammanco, Salvatore; Cannata, Andrea; Montalto, Placido

    2013-04-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol® probe located on the upper NE flank of Mt. Etna volcano, close either to the Piano Provenzana fault or to the NE-Rift. Seismic and volcanological data have been analyzed together with radon data. We also analyzed air and soil temperature, barometric pressure, snow and rain fall data. In order to find possible correlations among the above parameters, and hence to reveal possible anomalies in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-days time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-days moving averages showed that, similar to multivariate linear regression analysis, the summer period is characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allows to study the relations among different signals either in time or frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Our work suggests that in order to make an accurate analysis of the relations among distinct signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be very effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  15. Urinary tract infection in small children: the evolution of renal damage over time.

    PubMed

    Swerkersson, Svante; Jodal, Ulf; Sixt, Rune; Stokland, Eira; Hansson, Sverker

    2017-10-01

    Our objective was to analyze the evolution of kidney damage over time in small children with urinary tract infection (UTI) and factors associated with progression of renal damage. From a cohort of 1003 children <2 years of age with first-time UTI, a retrospective analysis of 103 children was done. Children were selected because of renal damage at index 99m Tc-dimercaptosuccinic acid (DMSA) scintigraphy at least 3 months after UTI, and a late DMSA scan was performed after at least 2 years. Damage was classified as progression when there was a decline in differential renal function (DRF) by ≥4%, as regression when there was complete or partial resolution of uptake defects. Of 103 children, 20 showed progression, 20 regression, and 63 remained unchanged. There were no differences between groups regarding gender or age. In the progression group, 16/20 (80%) children had vesicoureteral reflux (VUR) grade III-V and 13 (65%) had recurrent UTI. In multivariable regression analysis, both VUR grade III-V and recurrent UTI were associated with progression. In the regression group, 16/20 (80%) had no VUR or grade I-II, and two (10%) had recurrent UTI. Most small children with febrile UTI do not develop renal damage and if they do the majority remain unchanged or regress over time. However, up to one-fifth of children with renal damage diagnosed after UTI are at risk of renal deterioration. These children are characterized by the presence of VUR grades III-V and recurrent febrile UTI and may benefit from follow-up.

  16. An INAR(1) Negative Multinomial Regression Model for Longitudinal Count Data.

    ERIC Educational Resources Information Center

    Bockenholt, Ulf

    1999-01-01

    Discusses a regression model for the analysis of longitudinal count data in a panel study by adapting an integer-valued first-order autoregressive (INAR(1)) Poisson process to represent time-dependent correlation between counts. Derives a new negative multinomial distribution by combining INAR(1) representation with a random effects approach.…

  17. Two-factor logistic regression in pediatric liver transplantation

    NASA Astrophysics Data System (ADS)

    Uzunova, Yordanka; Prodanova, Krasimira; Spasov, Lyubomir

    2017-12-01

    Using a two-factor logistic regression analysis an estimate is derived for the probability of absence of infections in the early postoperative period after pediatric liver transplantation. The influence of both the bilirubin level and the international normalized ratio of prothrombin time of blood coagulation at the 5th postoperative day is studied.

  18. Time Advice and Learning Questions in Computer Simulations

    ERIC Educational Resources Information Center

    Rey, Gunter Daniel

    2011-01-01

    Students (N = 101) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without time advice) x 3 (with learning questions and corrective feedback, with…

  19. Novel Index (Hepatic Receptor: IHR) to Evaluate Hepatic Functional Reserve Using (99m)Tc-GSA Scintigraphy.

    PubMed

    Hasegawa, Daisuke; Onishi, Hideo; Matsutomo, Norikazu

    2016-02-01

    This study aimed to evaluate the novel index of hepatic receptor (IHR) on the regression analysis derived from time activity curve of the liver for hepatic functional reserve. Sixty patients had undergone (99m)Tc-galactosyl serum albumin ((99m)Tc-GSA) scintigraphy in the retrospective clinical study. Time activity curves for liver were obtained by region of interest (ROI) on the whole liver. A novel hepatic functional predictor was calculated with multiple regression analysis of time activity curves. In the multiple regression function, the objective variables were the indocyanine green (ICG) retention rate at 15 min, and the explanatory variables were the liver counts in 3-min intervals until end from beginning. Then, this result was defined by IHR, and we analyzed the correlation between IHR and ICG, uptake ratio of the heart at 15 minutes to that at 3 minutes (HH15), uptake ratio of the liver to the liver plus heart at 15 minutes (LHL15), and index of convexity (IOC). Regression function of IHR was derived as follows: IHR=0.025×L(6)-0.052×L(12)+0.027×L(27). The multiple regression analysis indicated that liver counts at 6 min, 12 min, and 27 min were significantly related to objective variables. The correlation coefficient between IHR and ICG was 0.774, and the correlation coefficient between ICG and conventional indices (HH15, LHL15, and IOC) were 0.837, 0.773, and 0.793, respectively. IHR had good correlation with HH15, LHL15, and IOC. The finding results suggested that IHR would provide clinical benefit for hepatic functional assessment in the (99m)Tc-GSA scintigraphy.

  20. Determinants of children's use of and time spent in fast-food and full-service restaurants.

    PubMed

    McIntosh, Alex; Kubena, Karen S; Tolle, Glen; Dean, Wesley; Kim, Mi-Jeong; Jan, Jie-Sheng; Anding, Jenna

    2011-01-01

    Identify parental and children's determinants of children's use of and time spent in fast-food (FF) and full-service (FS) restaurants. Analysis of cross-sectional data. Parents were interviewed by phone; children were interviewed in their homes. Parents and children ages 9-11 or 13-15 from 312 families were obtained via random-digit dialing. Dependent variables were the use of and the time spent in FF and FS restaurants by children. Determinants included parental work schedules, parenting style, and family meal ritual perceptions. Logistic regression was used for multivariate analysis of use of restaurants. Least squares regression was used for multivariate analysis of time spent in restaurants. Significance set at P < .05. Factors related to use of and time spent in FF and FS restaurants included parental work schedules, fathers' use of such restaurants, and children's time spent in the family automobile. Parenting style, parental work, parental eating habits and perceptions of family meals, and children's other uses of their time influence children's use of and time spent in FF and FS restaurants. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  1. A Subsonic Aircraft Design Optimization With Neural Network and Regression Approximators

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Guptill, James D.; Hopkins, Dale A.; Haller, William J.

    2004-01-01

    The Flight-Optimization-System (FLOPS) code encountered difficulty in analyzing a subsonic aircraft. The limitation made the design optimization problematic. The deficiencies have been alleviated through use of neural network and regression approximations. The insight gained from using the approximators is discussed in this paper. The FLOPS code is reviewed. Analysis models are developed and validated for each approximator. The regression method appears to hug the data points, while the neural network approximation follows a mean path. For an analysis cycle, the approximate model required milliseconds of central processing unit (CPU) time versus seconds by the FLOPS code. Performance of the approximators was satisfactory for aircraft analysis. A design optimization capability has been created by coupling the derived analyzers to the optimization test bed CometBoards. The approximators were efficient reanalysis tools in the aircraft design optimization. Instability encountered in the FLOPS analyzer was eliminated. The convergence characteristics were improved for the design optimization. The CPU time required to calculate the optimum solution, measured in hours with the FLOPS code was reduced to minutes with the neural network approximation and to seconds with the regression method. Generation of the approximators required the manipulation of a very large quantity of data. Design sensitivity with respect to the bounds of aircraft constraints is easily generated.

  2. Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography.

    PubMed

    Morais, Helena; Ramos, Cristina; Forgács, Esther; Cserháti, Tibor; Oliviera, José

    2002-04-25

    The effect of light, storage time and temperature on the decomposition rate of monomeric anthocyanin pigments extracted from skins of grape (Vitis vinifera var. Red globe) was determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The impact of various storage conditions on the pigment stability was assessed by stepwise regression analysis. RP-HPLC separated well the five anthocyanins identified and proved the presence of other unidentified pigments at lower concentrations. Stepwise regression analysis confirmed that the overall decomposition rate of monomeric anthocyanins, peonidin-3-glucoside and malvidin-3-glucoside significantly depended on the time and temperature of storage, the effect of storage time being the most important. The presence or absence of light exerted a negligible impact on the decomposition rate.

  3. Practical aspects of estimating energy components in rodents

    PubMed Central

    van Klinken, Jan B.; van den Berg, Sjoerd A. A.; van Dijk, Ko Willems

    2013-01-01

    Recently there has been an increasing interest in exploiting computational and statistical techniques for the purpose of component analysis of indirect calorimetry data. Using these methods it becomes possible to dissect daily energy expenditure into its components and to assess the dynamic response of the resting metabolic rate (RMR) to nutritional and pharmacological manipulations. To perform robust component analysis, however, is not straightforward and typically requires the tuning of parameters and the preprocessing of data. Moreover the degree of accuracy that can be attained by these methods depends on the configuration of the system, which must be properly taken into account when setting up experimental studies. Here, we review the methods of Kalman filtering, linear, and penalized spline regression, and minimal energy expenditure estimation in the context of component analysis and discuss their results on high resolution datasets from mice and rats. In addition, we investigate the effect of the sample time, the accuracy of the activity sensor, and the washout time of the chamber on the estimation accuracy. We found that on the high resolution data there was a strong correlation between the results of Kalman filtering and penalized spline (P-spline) regression, except for the activity respiratory quotient (RQ). For low resolution data the basal metabolic rate (BMR) and resting RQ could still be estimated accurately with P-spline regression, having a strong correlation with the high resolution estimate (R2 > 0.997; sample time of 9 min). In contrast, the thermic effect of food (TEF) and activity related energy expenditure (AEE) were more sensitive to a reduction in the sample rate (R2 > 0.97). In conclusion, for component analysis on data generated by single channel systems with continuous data acquisition both Kalman filtering and P-spline regression can be used, while for low resolution data from multichannel systems P-spline regression gives more robust results. PMID:23641217

  4. Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine

    DTIC Science & Technology

    2016-09-01

    are suitable. To model the behavior of the engine, an autoregressive distributed lag (ARDL) time series model of engine speed and exhaust gas... time series model of engine speed and exhaust gas temperature is derived. The lag length for ARDL is determined by whitening of residuals using the...15 B. REGRESSION ANALYSIS ....................................................................15 1. Time Series Analysis

  5. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX.

    PubMed

    Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A

    2018-04-15

    For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Fast Quantitative Analysis Of Museum Objects Using Laser-Induced Breakdown Spectroscopy And Multiple Regression Algorithms

    NASA Astrophysics Data System (ADS)

    Lorenzetti, G.; Foresta, A.; Palleschi, V.; Legnaioli, S.

    2009-09-01

    The recent development of mobile instrumentation, specifically devoted to in situ analysis and study of museum objects, allows the acquisition of many LIBS spectra in very short time. However, such large amount of data calls for new analytical approaches which would guarantee a prompt analysis of the results obtained. In this communication, we will present and discuss the advantages of statistical analytical methods, such as Partial Least Squares Multiple Regression algorithms vs. the classical calibration curve approach. PLS algorithms allows to obtain in real time the information on the composition of the objects under study; this feature of the method, compared to the traditional off-line analysis of the data, is extremely useful for the optimization of the measurement times and number of points associated with the analysis. In fact, the real time availability of the compositional information gives the possibility of concentrating the attention on the most `interesting' parts of the object, without over-sampling the zones which would not provide useful information for the scholars or the conservators. Some example on the applications of this method will be presented, including the studies recently performed by the researcher of the Applied Laser Spectroscopy Laboratory on museum bronze objects.

  7. Multiple Linear Regression Analysis of Factors Affecting Real Property Price Index From Case Study Research In Istanbul/Turkey

    NASA Astrophysics Data System (ADS)

    Denli, H. H.; Koc, Z.

    2015-12-01

    Estimation of real properties depending on standards is difficult to apply in time and location. Regression analysis construct mathematical models which describe or explain relationships that may exist between variables. The problem of identifying price differences of properties to obtain a price index can be converted into a regression problem, and standard techniques of regression analysis can be used to estimate the index. Considering regression analysis for real estate valuation, which are presented in real marketing process with its current characteristics and quantifiers, the method will help us to find the effective factors or variables in the formation of the value. In this study, prices of housing for sale in Zeytinburnu, a district in Istanbul, are associated with its characteristics to find a price index, based on information received from a real estate web page. The associated variables used for the analysis are age, size in m2, number of floors having the house, floor number of the estate and number of rooms. The price of the estate represents the dependent variable, whereas the rest are independent variables. Prices from 60 real estates have been used for the analysis. Same price valued locations have been found and plotted on the map and equivalence curves have been drawn identifying the same valued zones as lines.

  8. INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less

  9. Analysis of geographical disparities in temporal trends of health outcomes using space-time joinpoint regression

    NASA Astrophysics Data System (ADS)

    Goovaerts, Pierre

    2013-06-01

    Analyzing temporal trends in health outcomes can provide a more comprehensive picture of the burden of a disease like cancer and generate new insights about the impact of various interventions. In the United States such an analysis is increasingly conducted using joinpoint regression outside a spatial framework, which overlooks the existence of significant variation among U.S. counties and states with regard to the incidence of cancer. This paper presents several innovative ways to account for space in joinpoint regression: (1) prior filtering of noise in the data by binomial kriging and use of the kriging variance as measure of reliability in weighted least-square regression, (2) detection of significant boundaries between adjacent counties based on tests of parallelism of time trends and confidence intervals of annual percent change of rates, and (3) creation of spatially compact groups of counties with similar temporal trends through the application of hierarchical cluster analysis to the results of boundary analysis. The approach is illustrated using time series of proportions of prostate cancer late-stage cases diagnosed yearly in every county of Florida since 1980s. The annual percent change (APC) in late-stage diagnosis and the onset years for significant declines vary greatly across Florida. Most counties with non-significant average APC are located in the north-western part of Florida, known as the Panhandle, which is more rural than other parts of Florida. The number of significant boundaries peaked in the early 1990s when prostate-specific antigen (PSA) test became widely available, a temporal trend that suggests the existence of geographical disparities in the implementation and/or impact of the new screening procedure, in particular as it began available.

  10. Instructional Advice, Time Advice and Learning Questions in Computer Simulations

    ERIC Educational Resources Information Center

    Rey, Gunter Daniel

    2010-01-01

    Undergraduate students (N = 97) used an introductory text and a computer simulation to learn fundamental concepts about statistical analyses (e.g., analysis of variance, regression analysis and General Linear Model). Each learner was randomly assigned to one cell of a 2 (with or without instructional advice) x 2 (with or without time advice) x 2…

  11. A Comparison of Alternative Approaches to the Analysis of Interrupted Time-Series.

    ERIC Educational Resources Information Center

    Harrop, John W.; Velicer, Wayne F.

    1985-01-01

    Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)

  12. Economic Conditions and the Divorce Rate: A Time-Series Analysis of the Postwar United States.

    ERIC Educational Resources Information Center

    South, Scott J.

    1985-01-01

    Challenges the belief that the divorce rate rises during prosperity and falls during economic recessions. Time-series regression analysis of postwar United States reveals small but positive effects of unemployment on divorce rate. Stronger influences on divorce rates are changes in age structure and labor-force participation rate of women.…

  13. Creep analysis of silicone for podiatry applications.

    PubMed

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Modeling vertebrate diversity in Oregon using satellite imagery

    NASA Astrophysics Data System (ADS)

    Cablk, Mary Elizabeth

    Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.

  15. Conditional Poisson models: a flexible alternative to conditional logistic case cross-over analysis.

    PubMed

    Armstrong, Ben G; Gasparrini, Antonio; Tobias, Aurelio

    2014-11-24

    The time stratified case cross-over approach is a popular alternative to conventional time series regression for analysing associations between time series of environmental exposures (air pollution, weather) and counts of health outcomes. These are almost always analyzed using conditional logistic regression on data expanded to case-control (case crossover) format, but this has some limitations. In particular adjusting for overdispersion and auto-correlation in the counts is not possible. It has been established that a Poisson model for counts with stratum indicators gives identical estimates to those from conditional logistic regression and does not have these limitations, but it is little used, probably because of the overheads in estimating many stratum parameters. The conditional Poisson model avoids estimating stratum parameters by conditioning on the total event count in each stratum, thus simplifying the computing and increasing the number of strata for which fitting is feasible compared with the standard unconditional Poisson model. Unlike the conditional logistic model, the conditional Poisson model does not require expanding the data, and can adjust for overdispersion and auto-correlation. It is available in Stata, R, and other packages. By applying to some real data and using simulations, we demonstrate that conditional Poisson models were simpler to code and shorter to run than are conditional logistic analyses and can be fitted to larger data sets than possible with standard Poisson models. Allowing for overdispersion or autocorrelation was possible with the conditional Poisson model but when not required this model gave identical estimates to those from conditional logistic regression. Conditional Poisson regression models provide an alternative to case crossover analysis of stratified time series data with some advantages. The conditional Poisson model can also be used in other contexts in which primary control for confounding is by fine stratification.

  16. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    PubMed

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  17. Statistical Evaluation of Time Series Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Benignus, V. A.

    1973-01-01

    The performance of a modified version of NASA's multivariate spectrum analysis program is discussed. A multiple regression model was used to make the revisions. Performance improvements were documented and compared to the standard fast Fourier transform by Monte Carlo techniques.

  18. A framework for longitudinal data analysis via shape regression

    NASA Astrophysics Data System (ADS)

    Fishbaugh, James; Durrleman, Stanley; Piven, Joseph; Gerig, Guido

    2012-02-01

    Traditional longitudinal analysis begins by extracting desired clinical measurements, such as volume or head circumference, from discrete imaging data. Typically, the continuous evolution of a scalar measurement is estimated by choosing a 1D regression model, such as kernel regression or fitting a polynomial of fixed degree. This type of analysis not only leads to separate models for each measurement, but there is no clear anatomical or biological interpretation to aid in the selection of the appropriate paradigm. In this paper, we propose a consistent framework for the analysis of longitudinal data by estimating the continuous evolution of shape over time as twice differentiable flows of deformations. In contrast to 1D regression models, one model is chosen to realistically capture the growth of anatomical structures. From the continuous evolution of shape, we can simply extract any clinical measurements of interest. We demonstrate on real anatomical surfaces that volume extracted from a continuous shape evolution is consistent with a 1D regression performed on the discrete measurements. We further show how the visualization of shape progression can aid in the search for significant measurements. Finally, we present an example on a shape complex of the brain (left hemisphere, right hemisphere, cerebellum) that demonstrates a potential clinical application for our framework.

  19. An overview of longitudinal data analysis methods for neurological research.

    PubMed

    Locascio, Joseph J; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models.

  20. Clinical evaluation of a novel population-based regression analysis for detecting glaucomatous visual field progression.

    PubMed

    Kovalska, M P; Bürki, E; Schoetzau, A; Orguel, S F; Orguel, S; Grieshaber, M C

    2011-04-01

    The distinction of real progression from test variability in visual field (VF) series may be based on clinical judgment, on trend analysis based on follow-up of test parameters over time, or on identification of a significant change related to the mean of baseline exams (event analysis). The aim of this study was to compare a new population-based method (Octopus field analysis, OFA) with classic regression analyses and clinical judgment for detecting glaucomatous VF changes. 240 VF series of 240 patients with at least 9 consecutive examinations available were included into this study. They were independently classified by two experienced investigators. The results of such a classification served as a reference for comparison for the following statistical tests: (a) t-test global, (b) r-test global, (c) regression analysis of 10 VF clusters and (d) point-wise linear regression analysis. 32.5 % of the VF series were classified as progressive by the investigators. The sensitivity and specificity were 89.7 % and 92.0 % for r-test, and 73.1 % and 93.8 % for the t-test, respectively. In the point-wise linear regression analysis, the specificity was comparable (89.5 % versus 92 %), but the sensitivity was clearly lower than in the r-test (22.4 % versus 89.7 %) at a significance level of p = 0.01. A regression analysis for the 10 VF clusters showed a markedly higher sensitivity for the r-test (37.7 %) than the t-test (14.1 %) at a similar specificity (88.3 % versus 93.8 %) for a significant trend (p = 0.005). In regard to the cluster distribution, the paracentral clusters and the superior nasal hemifield progressed most frequently. The population-based regression analysis seems to be superior to the trend analysis in detecting VF progression in glaucoma, and may eliminate the drawbacks of the event analysis. Further, it may assist the clinician in the evaluation of VF series and may allow better visualization of the correlation between function and structure owing to VF clusters. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Outcomes of an intervention to improve hospital antibiotic prescribing: interrupted time series with segmented regression analysis.

    PubMed

    Ansari, Faranak; Gray, Kirsteen; Nathwani, Dilip; Phillips, Gabby; Ogston, Simon; Ramsay, Craig; Davey, Peter

    2003-11-01

    To evaluate an intervention to reduce inappropriate use of key antibiotics with interrupted time series analysis. The intervention is a policy for appropriate use of Alert Antibiotics (carbapenems, glycopeptides, amphotericin, ciprofloxacin, linezolid, piperacillin-tazobactam and third-generation cephalosporins) implemented through concurrent, patient-specific feedback by clinical pharmacists. Statistical significance and effect size were calculated by segmented regression analysis of interrupted time series of drug use and cost for 2 years before and after the intervention started. Use of Alert Antibiotics increased before the intervention started but decreased steadily for 2 years thereafter. The changes in slope of the time series were 0.27 defined daily doses/100 bed-days per month (95% CI 0.19-0.34) and pound 1908 per month (95% CI pound 1238- pound 2578). The cost of development, dissemination and implementation of the intervention ( pound 20133) was well below the most conservative estimate of the reduction in cost ( pound 133296), which is the lower 95% CI of effect size assuming that cost would not have continued to increase without the intervention. However, if use had continued to increase, the difference between predicted and actual cost of Alert Antibiotics was pound 572448 (95% CI pound 435696- pound 709176) over the 24 months after the intervention started. Segmented regression analysis of pharmacy stock data is a simple, practical and robust method for measuring the impact of interventions to change prescribing. The Alert Antibiotic Monitoring intervention was associated with significant decreases in total use and cost in the 2 years after the programme was implemented. In our hospital, the value of the data far exceeded the cost of processing and analysis.

  2. ACTN3 genotype and physical function and frailty in an elderly Chinese population: the Rugao Longevity and Ageing Study.

    PubMed

    Ma, Teng; Lu, Deyi; Zhu, Yin-Sheng; Chu, Xue-Feng; Wang, Yong; Shi, Guo-Ping; Wang, Zheng-Dong; Yu, Li; Jiang, Xiao-Yan; Wang, Xiao-Feng

    2018-05-01

    To examine the associations of the actinin alpha 3 gene (ACTN3) R577X polymorphism with physical performance and frailty in an older Chinese population. Data from 1,463 individuals (57.8% female) aged 70-87 years from the Rugao Longevity and Ageing Study were used. The associations between R577X and timed 5-m walk, grip strength, timed Up and Go test, and frailty index (FI) based on deficits of 23 laboratory tests (FI-Lab) were examined. Analysis of variance and linear regression models were used to evaluate the genetic effects of ACTN3 R577X on physical performance and FI-Lab. The XX and RX genotypes of the ACTN3 R557X polymorphism accounted for 17.1 and 46.9%, respectively. Multivariate regression analysis revealed that in men aged 70-79 years, the ACTN3 577X allele was significantly associated with physical performance (5-m walk time, regression coefficient (β) = 0.258, P = 0.006; grip strength, β = -1.062, P = 0.012; Up and Go test time β = 0.368, P = 0.019). In women aged 70-79 years, a significant association between the ACTN3 577X allele and the FI-Lab score was observed, with a regression coefficient of β = 0.019 (P = 0.003). These findings suggest an age- and gender-specific X-additive model of R577X for 5-m walk time, grip strength, Up and Go Test time, and FI-Lab score. The ACTN3 577X allele is associated with an age- and sex-specific decrease in physical performance and an increase in frailty in an older population.

  3. Development of precursors recognition methods in vector signals

    NASA Astrophysics Data System (ADS)

    Kapralov, V. G.; Elagin, V. V.; Kaveeva, E. G.; Stankevich, L. A.; Dremin, M. M.; Krylov, S. V.; Borovov, A. E.; Harfush, H. A.; Sedov, K. S.

    2017-10-01

    Precursor recognition methods in vector signals of plasma diagnostics are presented. Their requirements and possible options for their development are considered. In particular, the variants of using symbolic regression for building a plasma disruption prediction system are discussed. The initial data preparation using correlation analysis and symbolic regression is discussed. Special attention is paid to the possibility of using algorithms in real time.

  4. Innovating patient care delivery: DSRIP's interrupted time series analysis paradigm.

    PubMed

    Shenoy, Amrita G; Begley, Charles E; Revere, Lee; Linder, Stephen H; Daiger, Stephen P

    2017-12-08

    Adoption of Medicaid Section 1115 waiver is one of the many ways of innovating healthcare delivery system. The Delivery System Reform Incentive Payment (DSRIP) pool, one of the two funding pools of the waiver has four categories viz. infrastructure development, program innovation and redesign, quality improvement reporting and lastly, bringing about population health improvement. A metric of the fourth category, preventable hospitalization (PH) rate was analyzed in the context of eight conditions for two time periods, pre-reporting years (2010-2012) and post-reporting years (2013-2015) for two hospital cohorts, DSRIP participating and non-participating hospitals. The study explains how DSRIP impacted Preventable Hospitalization (PH) rates of eight conditions for both hospital cohorts within two time periods. Eight PH rates were regressed as the dependent variable with time, intervention and post-DSRIP Intervention as independent variables. PH rates of eight conditions were then consolidated into one rate for regressing with the above independent variables to evaluate overall impact of DSRIP. An interrupted time series regression was performed after accounting for auto-correlation, stationarity and seasonality in the dataset. In the individual regression model, PH rates showed statistically significant coefficients for seven out of eight conditions in DSRIP participating hospitals. In the combined regression model, the coefficient of the PH rate showed a statistically significant decrease with negative p-values for regression coefficients in DSRIP participating hospitals compared to positive/increased p-values for regression coefficients in DSRIP non-participating hospitals. Several macro- and micro-level factors may have likely contributed DSRIP hospitals outperforming DSRIP non-participating hospitals. Healthcare organization/provider collaboration, support from healthcare professionals, DSRIP's design, state reimbursement and coordination in care delivery methods may have led to likely success of DSRIP. IV, a retrospective cohort study based on longitudinal data. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Improved Correction of Atmospheric Pressure Data Obtained by Smartphones through Machine Learning

    PubMed Central

    Kim, Yong-Hyuk; Ha, Ji-Hun; Kim, Na-Young; Im, Hyo-Hyuc; Sim, Sangjin; Choi, Reno K. Y.

    2016-01-01

    A correction method using machine learning aims to improve the conventional linear regression (LR) based method for correction of atmospheric pressure data obtained by smartphones. The method proposed in this study conducts clustering and regression analysis with time domain classification. Data obtained in Gyeonggi-do, one of the most populous provinces in South Korea surrounding Seoul with the size of 10,000 km2, from July 2014 through December 2014, using smartphones were classified with respect to time of day (daytime or nighttime) as well as day of the week (weekday or weekend) and the user's mobility, prior to the expectation-maximization (EM) clustering. Subsequently, the results were analyzed for comparison by applying machine learning methods such as multilayer perceptron (MLP) and support vector regression (SVR). The results showed a mean absolute error (MAE) 26% lower on average when regression analysis was performed through EM clustering compared to that obtained without EM clustering. For machine learning methods, the MAE for SVR was around 31% lower for LR and about 19% lower for MLP. It is concluded that pressure data from smartphones are as good as the ones from national automatic weather station (AWS) network. PMID:27524999

  6. Weather variability and the incidence of cryptosporidiosis: comparison of time series poisson regression and SARIMA models.

    PubMed

    Hu, Wenbiao; Tong, Shilu; Mengersen, Kerrie; Connell, Des

    2007-09-01

    Few studies have examined the relationship between weather variables and cryptosporidiosis in Australia. This paper examines the potential impact of weather variability on the transmission of cryptosporidiosis and explores the possibility of developing an empirical forecast system. Data on weather variables, notified cryptosporidiosis cases, and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics for the period of January 1, 1996-December 31, 2004, respectively. Time series Poisson regression and seasonal auto-regression integrated moving average (SARIMA) models were performed to examine the potential impact of weather variability on the transmission of cryptosporidiosis. Both the time series Poisson regression and SARIMA models show that seasonal and monthly maximum temperature at a prior moving average of 1 and 3 months were significantly associated with cryptosporidiosis disease. It suggests that there may be 50 more cases a year for an increase of 1 degrees C maximum temperature on average in Brisbane. Model assessments indicated that the SARIMA model had better predictive ability than the Poisson regression model (SARIMA: root mean square error (RMSE): 0.40, Akaike information criterion (AIC): -12.53; Poisson regression: RMSE: 0.54, AIC: -2.84). Furthermore, the analysis of residuals shows that the time series Poisson regression appeared to violate a modeling assumption, in that residual autocorrelation persisted. The results of this study suggest that weather variability (particularly maximum temperature) may have played a significant role in the transmission of cryptosporidiosis. A SARIMA model may be a better predictive model than a Poisson regression model in the assessment of the relationship between weather variability and the incidence of cryptosporidiosis.

  7. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    PubMed

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  8. Carbon financial markets: A time-frequency analysis of CO2 prices

    NASA Astrophysics Data System (ADS)

    Sousa, Rita; Aguiar-Conraria, Luís; Soares, Maria Joana

    2014-11-01

    We characterize the interrelation of CO2 prices with energy prices (electricity, gas and coal), and with economic activity. Previous studies have relied on time-domain techniques, such as Vector Auto-Regressions. In this study, we use multivariate wavelet analysis, which operates in the time-frequency domain. Wavelet analysis provides convenient tools to distinguish relations at particular frequencies and at particular time horizons. Our empirical approach has the potential to identify relations getting stronger and then disappearing over specific time intervals and frequencies. We are able to examine the coherency of these variables and lead-lag relations at different frequencies for the time periods in focus.

  9. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  10. Further comments on sensitivities, parameter estimation, and sampling design in one-dimensional analysis of solute transport in porous media

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1988-01-01

    Sensitivities of solute concentration to parameters associated with first-order chemical decay, boundary conditions, initial conditions, and multilayer transport are examined in one-dimensional analytical models of transient solute transport in porous media. A sensitivity is a change in solute concentration resulting from a change in a model parameter. Sensitivity analysis is important because minimum information required in regression on chemical data for the estimation of model parameters by regression is expressed in terms of sensitivities. Nonlinear regression models of solute transport were tested on sets of noiseless observations from known models that exceeded the minimum sensitivity information requirements. Results demonstrate that the regression models consistently converged to the correct parameters when the initial sets of parameter values substantially deviated from the correct parameters. On the basis of the sensitivity analysis, several statements may be made about design of sampling for parameter estimation for the models examined: (1) estimation of parameters associated with solute transport in the individual layers of a multilayer system is possible even when solute concentrations in the individual layers are mixed in an observation well; (2) when estimating parameters in a decaying upstream boundary condition, observations are best made late in the passage of the front near a time chosen by adding the inverse of an hypothesized value of the source decay parameter to the estimated mean travel time at a given downstream location; (3) estimation of a first-order chemical decay parameter requires observations to be made late in the passage of the front, preferably near a location corresponding to a travel time of √2 times the half-life of the solute; and (4) estimation of a parameter relating to spatial variability in an initial condition requires observations to be made early in time relative to passage of the solute front.

  11. Poor Smokers, Poor Quitters, and Cigarette Tax Regressivity

    PubMed Central

    Remler, Dahlia K.

    2004-01-01

    The traditional view that excise taxes are regressive has been challenged. I document the history of the term regressive tax, show that traditional definitions have always found cigarette taxes to be regressive, and illustrate the implications of the greater price responsiveness observed among the poor. I explain the different definitions of tax burden: accounting, welfare-based willingness to pay, and welfare-based time inconsistent. Progressivity (equity across income groups) is sensitive to the way in which tax burden is assessed. Analysis of horizontal equity (fairness within a given income group) shows that cigarette taxes heavily burden poor smokers who do not quit, no matter how tax burden is assessed. PMID:14759931

  12. Poisson Regression Analysis of Illness and Injury Surveillance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frome E.L., Watkins J.P., Ellis E.D.

    2012-12-12

    The Department of Energy (DOE) uses illness and injury surveillance to monitor morbidity and assess the overall health of the work force. Data collected from each participating site include health events and a roster file with demographic information. The source data files are maintained in a relational data base, and are used to obtain stratified tables of health event counts and person time at risk that serve as the starting point for Poisson regression analysis. The explanatory variables that define these tables are age, gender, occupational group, and time. Typical response variables of interest are the number of absences duemore » to illness or injury, i.e., the response variable is a count. Poisson regression methods are used to describe the effect of the explanatory variables on the health event rates using a log-linear main effects model. Results of fitting the main effects model are summarized in a tabular and graphical form and interpretation of model parameters is provided. An analysis of deviance table is used to evaluate the importance of each of the explanatory variables on the event rate of interest and to determine if interaction terms should be considered in the analysis. Although Poisson regression methods are widely used in the analysis of count data, there are situations in which over-dispersion occurs. This could be due to lack-of-fit of the regression model, extra-Poisson variation, or both. A score test statistic and regression diagnostics are used to identify over-dispersion. A quasi-likelihood method of moments procedure is used to evaluate and adjust for extra-Poisson variation when necessary. Two examples are presented using respiratory disease absence rates at two DOE sites to illustrate the methods and interpretation of the results. In the first example the Poisson main effects model is adequate. In the second example the score test indicates considerable over-dispersion and a more detailed analysis attributes the over-dispersion to extra-Poisson variation. The R open source software environment for statistical computing and graphics is used for analysis. Additional details about R and the data that were used in this report are provided in an Appendix. Information on how to obtain R and utility functions that can be used to duplicate results in this report are provided.« less

  13. Relations among soil radon, environmental parameters, volcanic and seismic events at Mt. Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Giammanco, S.; Ferrera, E.; Cannata, A.; Montalto, P.; Neri, M.

    2013-12-01

    From November 2009 to April 2011 soil radon activity was continuously monitored using a Barasol probe located on the upper NE flank of Mt. Etna volcano (Italy), close both to the Piano Provenzana fault and to the NE-Rift. Seismic, volcanological and radon data were analysed together with data on environmental parameters, such as air and soil temperature, barometric pressure, snow and rain fall. In order to find possible correlations among the above parameters, and hence to reveal possible anomalous trends in the radon time-series, we used different statistical methods: i) multivariate linear regression; ii) cross-correlation; iii) coherence analysis through wavelet transform. Multivariate regression indicated a modest influence on soil radon from environmental parameters (R2 = 0.31). When using 100-day time windows, the R2 values showed wide variations in time, reaching their maxima (~0.63-0.66) during summer. Cross-correlation analysis over 100-day moving averages showed that, similar to multivariate linear regression analysis, the summer period was characterised by the best correlation between radon data and environmental parameters. Lastly, the wavelet coherence analysis allowed a multi-resolution coherence analysis of the time series acquired. This approach allowed to study the relations among different signals either in the time or in the frequency domain. It confirmed the results of the previous methods, but also allowed to recognize correlations between radon and environmental parameters at different observation scales (e.g., radon activity changed during strong precipitations, but also during anomalous variations of soil temperature uncorrelated with seasonal fluctuations). Using the above analysis, two periods were recognized when radon variations were significantly correlated with marked soil temperature changes and also with local seismic or volcanic activity. This allowed to produce two different physical models of soil gas transport that explain the observed anomalies. Our work suggests that in order to make an accurate analysis of the relations among different signals it is necessary to use different techniques that give complementary analytical information. In particular, the wavelet analysis showed to be the most effective in discriminating radon changes due to environmental influences from those correlated with impending seismic or volcanic events.

  14. Time series regression model for infectious disease and weather.

    PubMed

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. An Attempt at Quantifying Factors that Affect Efficiency in the Management of Solid Waste Produced by Commercial Businesses in the City of Tshwane, South Africa

    PubMed Central

    Worku, Yohannes; Muchie, Mammo

    2012-01-01

    Objective. The objective was to investigate factors that affect the efficient management of solid waste produced by commercial businesses operating in the city of Pretoria, South Africa. Methods. Data was gathered from 1,034 businesses. Efficiency in solid waste management was assessed by using a structural time-based model designed for evaluating efficiency as a function of the length of time required to manage waste. Data analysis was performed using statistical procedures such as frequency tables, Pearson's chi-square tests of association, and binary logistic regression analysis. Odds ratios estimated from logistic regression analysis were used for identifying key factors that affect efficiency in the proper disposal of waste. Results. The study showed that 857 of the 1,034 businesses selected for the study (83%) were found to be efficient enough with regards to the proper collection and disposal of solid waste. Based on odds ratios estimated from binary logistic regression analysis, efficiency in the proper management of solid waste was significantly influenced by 4 predictor variables. These 4 influential predictor variables are lack of adherence to waste management regulations, wrong perception, failure to provide customers with enough trash cans, and operation of businesses by employed managers, in a decreasing order of importance. PMID:23209483

  16. Logistic regression analysis of factors associated with avascular necrosis of the femoral head following femoral neck fractures in middle-aged and elderly patients.

    PubMed

    Ai, Zi-Sheng; Gao, You-Shui; Sun, Yuan; Liu, Yue; Zhang, Chang-Qing; Jiang, Cheng-Hua

    2013-03-01

    Risk factors for femoral neck fracture-induced avascular necrosis of the femoral head have not been elucidated clearly in middle-aged and elderly patients. Moreover, the high incidence of screw removal in China and its effect on the fate of the involved femoral head require statistical methods to reflect their intrinsic relationship. Ninety-nine patients older than 45 years with femoral neck fracture were treated by internal fixation between May 1999 and April 2004. Descriptive analysis, interaction analysis between associated factors, single factor logistic regression, multivariate logistic regression, and detailed interaction analysis were employed to explore potential relationships among associated factors. Avascular necrosis of the femoral head was found in 15 cases (15.2 %). Age × the status of implants (removal vs. maintenance) and gender × the timing of reduction were interactive according to two-factor interactive analysis. Age, the displacement of fractures, the quality of reduction, and the status of implants were found to be significant factors in single factor logistic regression analysis. Age, age × the status of implants, and the quality of reduction were found to be significant factors in multivariate logistic regression analysis. In fine interaction analysis after multivariate logistic regression analysis, implant removal was the most important risk factor for avascular necrosis in 56-to-85-year-old patients, with a risk ratio of 26.00 (95 % CI = 3.076-219.747). The middle-aged and elderly have less incidence of avascular necrosis of the femoral head following femoral neck fractures treated by cannulated screws. The removal of cannulated screws can induce a significantly high incidence of avascular necrosis of the femoral head in elderly patients, while a high-quality reduction is helpful to reduce avascular necrosis.

  17. Local Linear Regression for Data with AR Errors.

    PubMed

    Li, Runze; Li, Yan

    2009-07-01

    In many statistical applications, data are collected over time, and they are likely correlated. In this paper, we investigate how to incorporate the correlation information into the local linear regression. Under the assumption that the error process is an auto-regressive process, a new estimation procedure is proposed for the nonparametric regression by using local linear regression method and the profile least squares techniques. We further propose the SCAD penalized profile least squares method to determine the order of auto-regressive process. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed procedure, and to compare the performance of the proposed procedures with the existing one. From our empirical studies, the newly proposed procedures can dramatically improve the accuracy of naive local linear regression with working-independent error structure. We illustrate the proposed methodology by an analysis of real data set.

  18. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    PubMed

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An Overview of Longitudinal Data Analysis Methods for Neurological Research

    PubMed Central

    Locascio, Joseph J.; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models. PMID:22203825

  20. Discrete mixture modeling to address genetic heterogeneity in time-to-event regression

    PubMed Central

    Eng, Kevin H.; Hanlon, Bret M.

    2014-01-01

    Motivation: Time-to-event regression models are a critical tool for associating survival time outcomes with molecular data. Despite mounting evidence that genetic subgroups of the same clinical disease exist, little attention has been given to exploring how this heterogeneity affects time-to-event model building and how to accommodate it. Methods able to diagnose and model heterogeneity should be valuable additions to the biomarker discovery toolset. Results: We propose a mixture of survival functions that classifies subjects with similar relationships to a time-to-event response. This model incorporates multivariate regression and model selection and can be fit with an expectation maximization algorithm, we call Cox-assisted clustering. We illustrate a likely manifestation of genetic heterogeneity and demonstrate how it may affect survival models with little warning. An application to gene expression in ovarian cancer DNA repair pathways illustrates how the model may be used to learn new genetic subsets for risk stratification. We explore the implications of this model for censored observations and the effect on genomic predictors and diagnostic analysis. Availability and implementation: R implementation of CAC using standard packages is available at https://gist.github.com/programeng/8620b85146b14b6edf8f Data used in the analysis are publicly available. Contact: kevin.eng@roswellpark.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24532723

  1. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city.

    PubMed

    Rimaityte, Ingrida; Ruzgas, Tomas; Denafas, Gintaras; Racys, Viktoras; Martuzevicius, Dainius

    2012-01-01

    Forecasting of generation of municipal solid waste (MSW) in developing countries is often a challenging task due to the lack of data and selection of suitable forecasting method. This article aimed to select and evaluate several methods for MSW forecasting in a medium-scaled Eastern European city (Kaunas, Lithuania) with rapidly developing economics, with respect to affluence-related and seasonal impacts. The MSW generation was forecast with respect to the economic activity of the city (regression modelling) and using time series analysis. The modelling based on social-economic indicators (regression implemented in LCA-IWM model) showed particular sensitivity (deviation from actual data in the range from 2.2 to 20.6%) to external factors, such as the synergetic effects of affluence parameters or changes in MSW collection system. For the time series analysis, the combination of autoregressive integrated moving average (ARIMA) and seasonal exponential smoothing (SES) techniques were found to be the most accurate (mean absolute percentage error equalled to 6.5). Time series analysis method was very valuable for forecasting the weekly variation of waste generation data (r (2) > 0.87), but the forecast yearly increase should be verified against the data obtained by regression modelling. The methods and findings of this study may assist the experts, decision-makers and scientists performing forecasts of MSW generation, especially in developing countries.

  2. [Effect of occupational stress on mental health].

    PubMed

    Yu, Shan-fa; Zhang, Rui; Ma, Liang-qing; Gu, Gui-zhen; Yang, Yan; Li, Kui-rong

    2003-02-01

    To study the effect of job psychological demands and job control on mental health and their interaction. 93 male freight train dispatchers were evaluated by using revised Job Demand-Control Scale and 7 strain scales. Stepwise regression analysis, Univariate ANOVA, Kruskal-Wallis H and Modian methods were used in statistic analysis. Kruskal-Wallis H and Modian methods analysis revealed the difference in mental health scores among groups of decision latitude (mean rank 55.57, 47.95, 48.42, 33.50, P < 0.05), the differences in scores of mental health (37.45, 40.01, 58.35), job satisfaction (53.18, 46.91, 32.43), daily life strains (33.00, 44.96, 56.12) and depression (36.45, 42.25, 53.61) among groups of job time demands (P < 0.05) were all statistically significant. ANOVA showed that job time demands and decision latitude had interaction effects on physical complains (R(2) = 0.24), state-anxiety (R(2) = 0.26), and daytime fatigue (R(2) = 0.28) (P < 0.05). Regression analysis revealed a significant job time demands and job decision latitude interaction effect as well as significant main effects of the some independent variables on different job strains (R(2) > 0.05). Job time demands and job decision latitude have direct and interactive effects on psychosomatic health, the more time demands, the more psychological strains, the effect of job time demands is greater than that of job decision latitude.

  3. Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer’s Disease

    PubMed Central

    Jie, Biao; Liu, Mingxia; Liu, Jun

    2016-01-01

    Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, where the sparse model is learned using data from a single time-point. Actually, multiple time-points of data are often available in brain imaging applications, which can be used in some longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in this paper we propose a novel temporally-constrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear regression model by using the imaging data from multiple time-points, where a group regularization term is first employed to group the weights for the same brain region across different time-points together. Furthermore, to reflect the smooth changes between data derived from adjacent time-points, we incorporate two smoothness regularization terms into the objective function, i.e., one fused smoothness term which requires that the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term which requires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient optimization algorithm to solve the proposed objective function. Experimental results on ADNI database demonstrate that, compared with conventional sparse learning-based methods, our proposed method can achieve improved regression performance and also help in discovering disease-related biomarkers. PMID:27093313

  4. Additive hazards regression and partial likelihood estimation for ecological monitoring data across space.

    PubMed

    Lin, Feng-Chang; Zhu, Jun

    2012-01-01

    We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.

  5. A systematic review of methodology: time series regression analysis for environmental factors and infectious diseases.

    PubMed

    Imai, Chisato; Hashizume, Masahiro

    2015-03-01

    Time series analysis is suitable for investigations of relatively direct and short-term effects of exposures on outcomes. In environmental epidemiology studies, this method has been one of the standard approaches to assess impacts of environmental factors on acute non-infectious diseases (e.g. cardiovascular deaths), with conventionally generalized linear or additive models (GLM and GAM). However, the same analysis practices are often observed with infectious diseases despite of the substantial differences from non-infectious diseases that may result in analytical challenges. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, systematic review was conducted to elucidate important issues in assessing the associations between environmental factors and infectious diseases using time series analysis with GLM and GAM. Published studies on the associations between weather factors and malaria, cholera, dengue, and influenza were targeted. Our review raised issues regarding the estimation of susceptible population and exposure lag times, the adequacy of seasonal adjustments, the presence of strong autocorrelations, and the lack of a smaller observation time unit of outcomes (i.e. daily data). These concerns may be attributable to features specific to infectious diseases, such as transmission among individuals and complicated causal mechanisms. The consequence of not taking adequate measures to address these issues is distortion of the appropriate risk quantifications of exposures factors. Future studies should pay careful attention to details and examine alternative models or methods that improve studies using time series regression analysis for environmental determinants of infectious diseases.

  6. A study on industrial accident rate forecasting and program development of estimated zero accident time in Korea.

    PubMed

    Kim, Tae-gu; Kang, Young-sig; Lee, Hyung-won

    2011-01-01

    To begin a zero accident campaign for industry, the first thing is to estimate the industrial accident rate and the zero accident time systematically. This paper considers the social and technical change of the business environment after beginning the zero accident campaign through quantitative time series analysis methods. These methods include sum of squared errors (SSE), regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, and the proposed analytic function method (AFM). The program is developed to estimate the accident rate, zero accident time and achievement probability of an efficient industrial environment. In this paper, MFC (Microsoft Foundation Class) software of Visual Studio 2008 was used to develop a zero accident program. The results of this paper will provide major information for industrial accident prevention and be an important part of stimulating the zero accident campaign within all industrial environments.

  7. Applicational possibilities of linear and non-linear (polynomial) regression and analysis of variance. III. Stability determination of pharmaceutical preparations: stability of diclofenac-sodium in Diclofen injections.

    PubMed

    Arambasić, M B; Jatić-Slavković, D

    2004-05-01

    This paper presents the application of the regression analysis program and the program for comparing linear regressions (modified method for one-way, analysis of variance), writtens in BASIC program language, for instance, determination of content of Diclofenac-Sodium (active ingredient in DIKLOFEN injections, ampules á 75 mg/3 ml). Stability testing of Diclofenac-Sodium was done by isothermic method of accelerated aging at 4 different temperatures (30 degrees, 40 degrees, 50 degrees and 60 degrees C) as a function of time (4 different duration of treatment: (0-155, 0-145, 0-74 and 0-44 days). The decrease in stability (decrease in the mean value of the content of Diclofenac-Sodium (in %), at different temperatures as a function of time, is possible to describe by, linear dependance. According to the value for regression equation values, the times are assessed in which the content of Diclofenac-Sodium (in %) will decrease by 10%, of the initial value. The times are follows at 30 degrees C 761.02 days, at 40 degrees C 397.26 days, at 50 degrees C 201.96 days and at 60 degrees C 58.85 days. The estimated times (in days) in which the mean value for Diclofenac-Sodium content (in %) will by 10% of the initial values, as a junction of time, are most suitably described by 3rd order parabola. Based on the parameter values which describe the 3rd order parabola, the time was estimated in which Diclofenac-Sodium content mean value (in %) will fall by 10% of the initial one at average ambient temperatures of 20 degrees C and 25 degrees C. The times are: 1409.47 days (20 degrees C) and 1042.39 days (25 degrees C). Based on the value for Fischer's coefficien (F), the comparison of trenf of Diclofenac-Sodium content (in %) shows that, under the influence of different temperatures as a function of time, among them, depending on temperature value, there is: statistically very significant difference (P < .05) at 50 degrees C and lower toward 60 degrees C, i.e. statistically probably significant difference (P > 0.01) at 40 degrees C and lower towards 50 degrees C and there is no statistically significance difference (P > 0.05) at 30 degrees C towards 40 degrees C.

  8. [Hazard function and life table: an introduction to the failure time analysis].

    PubMed

    Matsushita, K; Inaba, H

    1987-04-01

    Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.

  9. Analysis of regression methods for solar activity forecasting

    NASA Technical Reports Server (NTRS)

    Lundquist, C. A.; Vaughan, W. W.

    1979-01-01

    The paper deals with the potential use of the most recent solar data to project trends in the next few years. Assuming that a mode of solar influence on weather can be identified, advantageous use of that knowledge presumably depends on estimating future solar activity. A frequently used technique for solar cycle predictions is a linear regression procedure along the lines formulated by McNish and Lincoln (1949). The paper presents a sensitivity analysis of the behavior of such regression methods relative to the following aspects: cycle minimum, time into cycle, composition of historical data base, and unnormalized vs. normalized solar cycle data. Comparative solar cycle forecasts for several past cycles are presented as to these aspects of the input data. Implications for the current cycle, No. 21, are also given.

  10. Survival Data and Regression Models

    NASA Astrophysics Data System (ADS)

    Grégoire, G.

    2014-12-01

    We start this chapter by introducing some basic elements for the analysis of censored survival data. Then we focus on right censored data and develop two types of regression models. The first one concerns the so-called accelerated failure time models (AFT), which are parametric models where a function of a parameter depends linearly on the covariables. The second one is a semiparametric model, where the covariables enter in a multiplicative form in the expression of the hazard rate function. The main statistical tool for analysing these regression models is the maximum likelihood methodology and, in spite we recall some essential results about the ML theory, we refer to the chapter "Logistic Regression" for a more detailed presentation.

  11. Application of artificial neural network to fMRI regression analysis.

    PubMed

    Misaki, Masaya; Miyauchi, Satoru

    2006-01-15

    We used an artificial neural network (ANN) to detect correlations between event sequences and fMRI (functional magnetic resonance imaging) signals. The layered feed-forward neural network, given a series of events as inputs and the fMRI signal as a supervised signal, performed a non-linear regression analysis. This type of ANN is capable of approximating any continuous function, and thus this analysis method can detect any fMRI signals that correlated with corresponding events. Because of the flexible nature of ANNs, fitting to autocorrelation noise is a problem in fMRI analyses. We avoided this problem by using cross-validation and an early stopping procedure. The results showed that the ANN could detect various responses with different time courses. The simulation analysis also indicated an additional advantage of ANN over non-parametric methods in detecting parametrically modulated responses, i.e., it can detect various types of parametric modulations without a priori assumptions. The ANN regression analysis is therefore beneficial for exploratory fMRI analyses in detecting continuous changes in responses modulated by changes in input values.

  12. Donor Behavior and Voluntary Support for Higher Education Institutions.

    ERIC Educational Resources Information Center

    Leslie, Larry L.; Ramey, Garey

    Voluntary support of higher education in America is investigated through regression analysis of institutional characteristics at two points in time. The assumption of donor rationality together with explicit consideration of interorganizational relationships offers a coherent framework for the analysis of voluntary support by the major…

  13. Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California

    NASA Astrophysics Data System (ADS)

    Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye

    2018-05-01

    The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.

  14. Neural Network and Regression Approximations in High Speed Civil Transport Aircraft Design Optimization

    NASA Technical Reports Server (NTRS)

    Patniak, Surya N.; Guptill, James D.; Hopkins, Dale A.; Lavelle, Thomas M.

    1998-01-01

    Nonlinear mathematical-programming-based design optimization can be an elegant method. However, the calculations required to generate the merit function, constraints, and their gradients, which are frequently required, can make the process computational intensive. The computational burden can be greatly reduced by using approximating analyzers derived from an original analyzer utilizing neural networks and linear regression methods. The experience gained from using both of these approximation methods in the design optimization of a high speed civil transport aircraft is the subject of this paper. The Langley Research Center's Flight Optimization System was selected for the aircraft analysis. This software was exercised to generate a set of training data with which a neural network and a regression method were trained, thereby producing the two approximating analyzers. The derived analyzers were coupled to the Lewis Research Center's CometBoards test bed to provide the optimization capability. With the combined software, both approximation methods were examined for use in aircraft design optimization, and both performed satisfactorily. The CPU time for solution of the problem, which had been measured in hours, was reduced to minutes with the neural network approximation and to seconds with the regression method. Instability encountered in the aircraft analysis software at certain design points was also eliminated. On the other hand, there were costs and difficulties associated with training the approximating analyzers. The CPU time required to generate the input-output pairs and to train the approximating analyzers was seven times that required for solution of the problem.

  15. Changes in aerobic power of men, ages 25-70 yr

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Beard, E. F.; Wier, L. T.; Ross, R. M.; Stuteville, J. E.; Blair, S. N.

    1995-01-01

    This study quantified and compared the cross-sectional and longitudinal influence of age, self-report physical activity (SR-PA), and body composition (%fat) on the decline of maximal aerobic power (VO2peak). The cross-sectional sample consisted of 1,499 healthy men ages 25-70 yr. The 156 men of the longitudinal sample were from the same population and examined twice, the mean time between tests was 4.1 (+/- 1.2) yr. Peak oxygen uptake was determined by indirect calorimetry during a maximal treadmill exercise test. The zero-order correlations between VO2peak and %fat (r = -0.62) and SR-PA (r = 0.58) were significantly (P < 0.05) higher that the age correlation (r = -0.45). Linear regression defined the cross-sectional age-related decline in VO2peak at 0.46 ml.kg-1.min-1.yr-1. Multiple regression analysis (R = 0.79) showed that nearly 50% of this cross-sectional decline was due to %fat and SR-PA, adding these lifestyle variables to the multiple regression model reduced the age regression weight to -0.26 ml.kg-1.min-1.yr-1. Statistically controlling for time differences between tests, general linear models analysis showed that longitudinal changes in aerobic power were due to independent changes in %fat and SR-PA, confirming the cross-sectional results.

  16. Multifactorial analysis of human blood cell responses to clinical total body irradiation

    NASA Technical Reports Server (NTRS)

    Yuhas, J. M.; Stokes, T. R.; Lushbaugh, C. C.

    1972-01-01

    Multiple regression analysis techniques are used to study the effects of therapeutic radiation exposure, number of fractions, and time on such quantal responses as tumor control and skin injury. The potential of these methods for the analysis of human blood cell responses is demonstrated and estimates are given of the effects of total amount of exposure and time of protraction in determining the minimum white blood cell concentration observed after exposure of patients from four disease groups.

  17. Time series regression-based pairs trading in the Korean equities market

    NASA Astrophysics Data System (ADS)

    Kim, Saejoon; Heo, Jun

    2017-07-01

    Pairs trading is an instance of statistical arbitrage that relies on heavy quantitative data analysis to profit by capitalising low-risk trading opportunities provided by anomalies of related assets. A key element in pairs trading is the rule by which open and close trading triggers are defined. This paper investigates the use of time series regression to define the rule which has previously been identified with fixed threshold-based approaches. Empirical results indicate that our approach may yield significantly increased excess returns compared to ones obtained by previous approaches on large capitalisation stocks in the Korean equities market.

  18. Quantile Regression for Recurrent Gap Time Data

    PubMed Central

    Luo, Xianghua; Huang, Chiung-Yu; Wang, Lan

    2014-01-01

    Summary Evaluating covariate effects on gap times between successive recurrent events is of interest in many medical and public health studies. While most existing methods for recurrent gap time analysis focus on modeling the hazard function of gap times, a direct interpretation of the covariate effects on the gap times is not available through these methods. In this article, we consider quantile regression that can provide direct assessment of covariate effects on the quantiles of the gap time distribution. Following the spirit of the weighted risk-set method by Luo and Huang (2011, Statistics in Medicine 30, 301–311), we extend the martingale-based estimating equation method considered by Peng and Huang (2008, Journal of the American Statistical Association 103, 637–649) for univariate survival data to analyze recurrent gap time data. The proposed estimation procedure can be easily implemented in existing software for univariate censored quantile regression. Uniform consistency and weak convergence of the proposed estimators are established. Monte Carlo studies demonstrate the effectiveness of the proposed method. An application to data from the Danish Psychiatric Central Register is presented to illustrate the methods developed in this article. PMID:23489055

  19. Part-Time Community-College Faculty and the Desire for Full-Time Tenure-Track Positions: Results of a Single Institution Case Study

    ERIC Educational Resources Information Center

    Jacoby, Dan

    2005-01-01

    According to data derived from a community-college survey in the state of Washington, the majority of part-time faculty prefer full-time work. Using a logit regression analysis, the study reported in this paper suggests that typical part-timers enter their part-time teaching situations with the intent of becoming full-time, but gradually become…

  20. Kernel analysis of partial least squares (PLS) regression models.

    PubMed

    Shinzawa, Hideyuki; Ritthiruangdej, Pitiporn; Ozaki, Yukihiro

    2011-05-01

    An analytical technique based on kernel matrix representation is demonstrated to provide further chemically meaningful insight into partial least squares (PLS) regression models. The kernel matrix condenses essential information about scores derived from PLS or principal component analysis (PCA). Thus, it becomes possible to establish the proper interpretation of the scores. A PLS model for the total nitrogen (TN) content in multiple Thai fish sauces is built with a set of near-infrared (NIR) transmittance spectra of the fish sauce samples. The kernel analysis of the scores effectively reveals that the variation of the spectral feature induced by the change in protein content is substantially associated with the total water content and the protein hydration. Kernel analysis is also carried out on a set of time-dependent infrared (IR) spectra representing transient evaporation of ethanol from a binary mixture solution of ethanol and oleic acid. A PLS model to predict the elapsed time is built with the IR spectra and the kernel matrix is derived from the scores. The detailed analysis of the kernel matrix provides penetrating insight into the interaction between the ethanol and the oleic acid.

  1. Markov chains and semi-Markov models in time-to-event analysis.

    PubMed

    Abner, Erin L; Charnigo, Richard J; Kryscio, Richard J

    2013-10-25

    A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields.

  2. Markov chains and semi-Markov models in time-to-event analysis

    PubMed Central

    Abner, Erin L.; Charnigo, Richard J.; Kryscio, Richard J.

    2014-01-01

    A variety of statistical methods are available to investigators for analysis of time-to-event data, often referred to as survival analysis. Kaplan-Meier estimation and Cox proportional hazards regression are commonly employed tools but are not appropriate for all studies, particularly in the presence of competing risks and when multiple or recurrent outcomes are of interest. Markov chain models can accommodate censored data, competing risks (informative censoring), multiple outcomes, recurrent outcomes, frailty, and non-constant survival probabilities. Markov chain models, though often overlooked by investigators in time-to-event analysis, have long been used in clinical studies and have widespread application in other fields. PMID:24818062

  3. Tolerance of ciliated protozoan Paramecium bursaria (Protozoa, Ciliophora) to ammonia and nitrites

    NASA Astrophysics Data System (ADS)

    Xu, Henglong; Song, Weibo; Lu, Lu; Alan, Warren

    2005-09-01

    The tolerance to ammonia and nitrites in freshwater ciliate Paramecium bursaria was measured in a conventional open system. The ciliate was exposed to different concentrations of ammonia and nitrites for 2h and 12h in order to determine the lethal concentrations. Linear regression analysis revealed that the 2h-LC50 value for ammonia was 95.94 mg/L and for nitrite 27.35 mg/L using probit scale method (with 95% confidence intervals). There was a linear correlation between the mortality probit scale and logarithmic concentration of ammonia which fit by a regression equation y=7.32 x 9.51 ( R 2=0.98; y, mortality probit scale; x, logarithmic concentration of ammonia), by which 2 h-LC50 value for ammonia was found to be 95.50 mg/L. A linear correlation between mortality probit scales and logarithmic concentration of nitrite is also followed the regression equation y=2.86 x+0.89 ( R 2=0.95; y, mortality probit scale; x, logarithmic concentration of nitrite). The regression analysis of toxicity curves showed that the linear correlation between exposed time of ammonia-N LC50 value and ammonia-N LC50 value followed the regression equation y=2 862.85 e -0.08 x ( R 2=0.95; y, duration of exposure to LC50 value; x, LC50 value), and that between exposed time of nitrite-N LC50 value and nitrite-N LC50 value followed the regression equation y=127.15 e -0.13 x ( R 2=0.91; y, exposed time of LC50 value; x, LC50 value). The results demonstrate that the tolerance to ammonia in P. bursaria is considerably higher than that of the larvae or juveniles of some metozoa, e.g. cultured prawns and oysters. In addition, ciliates, as bacterial predators, are likely to play a positive role in maintaining and improving water quality in aquatic environments with high-level ammonium, such as sewage treatment systems.

  4. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell

    PubMed Central

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-01-01

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200–300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene. PMID:27929387

  5. Real-Time Analysis of Isoprene in Breath by Using Ultraviolet-Absorption Spectroscopy with a Hollow Optical Fiber Gas Cell.

    PubMed

    Iwata, Takuro; Katagiri, Takashi; Matsuura, Yuji

    2016-12-05

    A breath analysis system based on ultraviolet-absorption spectroscopy was developed by using a hollow optical fiber as a gas cell for real-time monitoring of isoprene in breath. The hollow optical fiber functions as an ultra-small-volume gas cell with a long path. The measurement sensitivity of the system was evaluated by using nitric-oxide gas as a gas sample. The evaluation result showed that the developed system, using a laser-driven, high-intensity light source and a 3-m-long, aluminum-coated hollow optical fiber, could successfully measure nitric-oxide gas with a 50 ppb concentration. An absorption spectrum of a breath sample in the wavelength region of around 200-300 nm was measured, and the measured spectrum revealed the main absorbing components in breath as water vapor, isoprene, and ozone converted from oxygen by radiation of ultraviolet light. The concentration of isoprene in breath was estimated by multiple linear regression. The regression analysis results showed that the proposed analysis system enables real-time monitoring of isoprene during the exhaling of breath. Accordingly, it is suitable for measuring the circadian variation of isoprene.

  6. Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane and nonpurgeable total organic-halide formation potentials were determined for the chlorination of water samples from the Mississippi, Ohio and Missouri Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at twelve locations on the Mississippi from New Orleans to Minneapolis, and on the Ohio and Missouri 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH, initial free-chlorine concentration, and reaction time. Multiple linear regression analysis of the data indicated that pH, reaction time, and the dissolved organic carbon concentration and/or the ultraviolet absorbance of the water were the most significant variables. The initial free-chlorine concentration had less significance and bromide concentration had little or no significance. Analysis of combinations of the dissolved organic carbon concentration and the ultraviolet absorbance indicated that use of the ultraviolet absorbance alone provided the best prediction of the experimental data. Regression coefficients for the variables were generally comparable to coefficients previously presented in the literature for waters from other parts of the United States.

  7. Brain networks of temporal preparation: A multiple regression analysis of neuropsychological data.

    PubMed

    Triviño, Mónica; Correa, Ángel; Lupiáñez, Juan; Funes, María Jesús; Catena, Andrés; He, Xun; Humphreys, Glyn W

    2016-11-15

    There are only a few studies on the brain networks involved in the ability to prepare in time, and most of them followed a correlational rather than a neuropsychological approach. The present neuropsychological study performed multiple regression analysis to address the relationship between both grey and white matter (measured by magnetic resonance imaging in patients with brain lesion) and different effects in temporal preparation (Temporal orienting, Foreperiod and Sequential effects). Two versions of a temporal preparation task were administered to a group of 23 patients with acquired brain injury. In one task, the cue presented (a red versus green square) to inform participants about the time of appearance (early versus late) of a target stimulus was blocked, while in the other task the cue was manipulated on a trial-by-trial basis. The duration of the cue-target time intervals (400 versus 1400ms) was always manipulated within blocks in both tasks. Regression analysis were conducted between either the grey matter lesion size or the white matter tracts disconnection and the three temporal preparation effects separately. The main finding was that each temporal preparation effect was predicted by a different network of structures, depending on cue expectancy. Specifically, the Temporal orienting effect was related to both prefrontal and temporal brain areas. The Foreperiod effect was related to right and left prefrontal structures. Sequential effects were predicted by both parietal cortex and left subcortical structures. These findings show a clear dissociation of brain circuits involved in the different ways to prepare in time, showing for the first time the involvement of temporal areas in the Temporal orienting effect, as well as the parietal cortex in the Sequential effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [Influencing factors on depression among medical staff in Hunan province under ordinal regression analysis].

    PubMed

    Liu, Zhi-yu; Zhong, Meng; Hai, Yan; Du, Qi-yun; Wang, Ai-hua; Xie, Dong-hua

    2012-11-01

    To understand the situation of depression and its related influencing factors among medical staff in Hunan province. Data were collected through random sampling with multi-stage stratified cluster. Wilcoxon rank sum test, Kruskal-Wallis H test and Ordinal regression analysis were used for data analysis by SPSS 17.0 software. This survey was including 16,000 medical personnel with 14, 988 valid questionnaires and the effective rate was 93.68%. from the single factor analysis showed that factors as: level of the hospital grading, gender, education background, age, occupation, title, departments, the number of continue education, income, working overtime every week, the frequency of night work, the number of patients treated in the emergency room etc., had statistical significances (P < 0.05). Data from ordinal regression showed that the probabilities related to depression that clinicians and nurses suffering from were 1.58 times more than the pharmacists (OR = 1.58, 95%CI: 1.30 - 1.92). The probability among those whose income was less than 2000 Yuan/month was 2.19 times of the ones whose earned more than 3000 Yuan/month (OR = 2.19, 95%CI: 2.05 - 2.35). The higher the numbers of days with working overtime every week, the frequencies of night work, and the numbers of patients being treated at the emergency room, with more probabilities of the people with depression seen in our study. Depression seemed to be common among doctors and nurses. We suggested that the government need to increase the monthly income and to reduce the workload and intensity, lessen the overworking time, etc.

  9. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friddle, Carl J; Koga, Teiichiro; Rubin, Edward M.

    2000-03-15

    While cardiac hypertrophy has been the subject of intensive investigation, regression of hypertrophy has been significantly less studied, precluding large-scale analysis of the relationship between these processes. In the present study, using pharmacological models of hypertrophy in mice, expression profiling was performed with fragments of more than 3,000 genes to characterize and contrast expression changes during induction and regression of hypertrophy. Administration of angiotensin II and isoproterenol by osmotic minipump produced increases in heart weight (15% and 40% respectively) that returned to pre-induction size following drug withdrawal. From multiple expression analyses of left ventricular RNA isolated at daily time-points duringmore » cardiac hypertrophy and regression, we identified sets of genes whose expression was altered at specific stages of this process. While confirming the participation of 25 genes or pathways previously known to be altered by hypertrophy, a larger set of 30 genes was identified whose expression had not previously been associated with cardiac hypertrophy or regression. Of the 55 genes that showed reproducible changes during the time course of induction and regression, 32 genes were altered only during induction and 8 were altered only during regression. This study identified both known and novel genes whose expression is affected at different stages of cardiac hypertrophy and regression and demonstrates that cardiac remodeling during regression utilizes a set of genes that are distinct from those used during induction of hypertrophy.« less

  10. Combining synthetic controls and interrupted time series analysis to improve causal inference in program evaluation.

    PubMed

    Linden, Ariel

    2018-04-01

    Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied over time and the intervention is expected to "interrupt" the level and/or trend of the outcome. The internal validity is strengthened considerably when the treated unit is contrasted with a comparable control group. In this paper, we introduce a robust evaluation framework that combines the synthetic controls method (SYNTH) to generate a comparable control group and ITSA regression to assess covariate balance and estimate treatment effects. We evaluate the effect of California's Proposition 99 for reducing cigarette sales, by comparing California to other states not exposed to smoking reduction initiatives. SYNTH is used to reweight nontreated units to make them comparable to the treated unit. These weights are then used in ITSA regression models to assess covariate balance and estimate treatment effects. Covariate balance was achieved for all but one covariate. While California experienced a significant decrease in the annual trend of cigarette sales after Proposition 99, there was no statistically significant treatment effect when compared to synthetic controls. The advantage of using this framework over regression alone is that it ensures that a comparable control group is generated. Additionally, it offers a common set of statistical measures familiar to investigators, the capability for assessing covariate balance, and enhancement of the evaluation with a comprehensive set of postestimation measures. Therefore, this robust framework should be considered as a primary approach for evaluating treatment effects in multiple group time series analysis. © 2018 John Wiley & Sons, Ltd.

  11. Epistasis analysis for quantitative traits by functional regression model.

    PubMed

    Zhang, Futao; Boerwinkle, Eric; Xiong, Momiao

    2014-06-01

    The critical barrier in interaction analysis for rare variants is that most traditional statistical methods for testing interactions were originally designed for testing the interaction between common variants and are difficult to apply to rare variants because of their prohibitive computational time and poor ability. The great challenges for successful detection of interactions with next-generation sequencing (NGS) data are (1) lack of methods for interaction analysis with rare variants, (2) severe multiple testing, and (3) time-consuming computations. To meet these challenges, we shift the paradigm of interaction analysis between two loci to interaction analysis between two sets of loci or genomic regions and collectively test interactions between all possible pairs of SNPs within two genomic regions. In other words, we take a genome region as a basic unit of interaction analysis and use high-dimensional data reduction and functional data analysis techniques to develop a novel functional regression model to collectively test interactions between all possible pairs of single nucleotide polymorphisms (SNPs) within two genome regions. By intensive simulations, we demonstrate that the functional regression models for interaction analysis of the quantitative trait have the correct type 1 error rates and a much better ability to detect interactions than the current pairwise interaction analysis. The proposed method was applied to exome sequence data from the NHLBI's Exome Sequencing Project (ESP) and CHARGE-S study. We discovered 27 pairs of genes showing significant interactions after applying the Bonferroni correction (P-values < 4.58 × 10(-10)) in the ESP, and 11 were replicated in the CHARGE-S study. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation to be more reliable and precise with a proper statistical estimation. Proper confidence intervals are necessary for unambiguous prediction of trangene copy number. The four different statistical methods are compared for their advantages and disadvantages. Moreover, the statistical methods can also be applied for other real-time PCR-based quantification assays including transfection efficiency analysis and pathogen quantification.

  13. Follow-Up Imaging of Inflammatory Myofibroblastic Tumor of the Uterus and Its Spontaneous Regression

    PubMed Central

    Markovic Vasiljkovic, Biljana; Plesinac Karapandzic, Vesna; Pejcic, Tomislav; Djuric Stefanovic, Aleksandra; Milosevic, Zorica; Plesinac, Snezana

    2016-01-01

    Inflammatory myofibroblastic tumor (IMT) is an aggressive benign mass that may arise from various tissues and organs with a great variability of histological and clinical appearances. Due to variable and nonspecific imaging findings, diagnosis of IMT is not obtained before surgery. The aim of this paper is to present CT and MRI findings during four-year follow-up of complete, spontaneous regression of IMT of the uterus. The diagnosis was made by histology and immunohistochemistry analysis of the open excisional biopsy specimen. At that time, the organ of origin was not specified. After analysis of the follow-up imaging findings and the mode of tumor regression, the uterus was proclaimed as the probable site of origin. IMT of the uterus is extremely rare and has been reported in ten cases up to now. The gradual, complete regression of uterine IMT documented by CT and MRI may contribute to understanding of its nature. PMID:27110328

  14. Spectral Regression Discriminant Analysis for Hyperspectral Image Classification

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wu, J.; Huang, H.; Liu, J.

    2012-08-01

    Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for Hyperspectral Image Classification. The manifold learning methods are popular for dimensionality reduction, such as Locally Linear Embedding, Isomap, and Laplacian Eigenmap. However, a disadvantage of many manifold learning methods is that their computations usually involve eigen-decomposition of dense matrices which is expensive in both time and memory. In this paper, we introduce a new dimensionality reduction method, called Spectral Regression Discriminant Analysis (SRDA). SRDA casts the problem of learning an embedding function into a regression framework, which avoids eigen-decomposition of dense matrices. Also, with the regression based framework, different kinds of regularizes can be naturally incorporated into our algorithm which makes it more flexible. It can make efficient use of data points to discover the intrinsic discriminant structure in the data. Experimental results on Washington DC Mall and AVIRIS Indian Pines hyperspectral data sets demonstrate the effectiveness of the proposed method.

  15. Reference-Free Removal of EEG-fMRI Ballistocardiogram Artifacts with Harmonic Regression

    PubMed Central

    Krishnaswamy, Pavitra; Bonmassar, Giorgio; Poulsen, Catherine; Pierce, Eric T; Purdon, Patrick L.; Brown, Emery N.

    2016-01-01

    Combining electroencephalogram (EEG) recording and functional magnetic resonance imaging (fMRI) offers the potential for imaging brain activity with high spatial and temporal resolution. This potential remains limited by the significant ballistocardiogram (BCG) artifacts induced in the EEG by cardiac pulsation-related head movement within the magnetic field. We model the BCG artifact using a harmonic basis, pose the artifact removal problem as a local harmonic regression analysis, and develop an efficient maximum likelihood algorithm to estimate and remove BCG artifacts. Our analysis paradigm accounts for time-frequency overlap between the BCG artifacts and neurophysiologic EEG signals, and tracks the spatiotemporal variations in both the artifact and the signal. We evaluate performance on: simulated oscillatory and evoked responses constructed with realistic artifacts; actual anesthesia-induced oscillatory recordings; and actual visual evoked potential recordings. In each case, the local harmonic regression analysis effectively removes the BCG artifacts, and recovers the neurophysiologic EEG signals. We further show that our algorithm outperforms commonly used reference-based and component analysis techniques, particularly in low SNR conditions, the presence of significant time-frequency overlap between the artifact and the signal, and/or large spatiotemporal variations in the BCG. Because our algorithm does not require reference signals and has low computational complexity, it offers a practical tool for removing BCG artifacts from EEG data recorded in combination with fMRI. PMID:26151100

  16. Enhancing the estimation of blood pressure using pulse arrival time and two confounding factors.

    PubMed

    Baek, Hyun Jae; Kim, Ko Keun; Kim, Jung Soo; Lee, Boreom; Park, Kwang Suk

    2010-02-01

    A new method of blood pressure (BP) estimation using multiple regression with pulse arrival time (PAT) and two confounding factors was evaluated in clinical and unconstrained monitoring situations. For the first analysis with clinical data, electrocardiogram (ECG), photoplethysmogram (PPG) and invasive BP signals were obtained by a conventional patient monitoring device during surgery. In the second analysis, ECG, PPG and non-invasive BP were measured using systems developed to obtain data under conditions in which the subject was not constrained. To enhance the performance of BP estimation methods, heart rate (HR) and arterial stiffness were considered as confounding factors in regression analysis. The PAT and HR were easily extracted from ECG and PPG signals. For arterial stiffness, the duration from the maximum derivative point to the maximum of the dicrotic notch in the PPG signal, a parameter called TDB, was employed. In two experiments that normally cause BP variation, the correlation between measured BP and the estimated BP was investigated. Multiple-regression analysis with the two confounding factors improved correlation coefficients for diastolic blood pressure and systolic blood pressure to acceptable confidence levels, compared to existing methods that consider PAT only. In addition, reproducibility for the proposed method was determined using constructed test sets. Our results demonstrate that non-invasive, non-intrusive BP estimation can be obtained using methods that can be applied in both clinical and daily healthcare situations.

  17. A Simple and Specific Stability- Indicating RP-HPLC Method for Routine Assay of Adefovir Dipivoxil in Bulk and Tablet Dosage Form.

    PubMed

    Darsazan, Bahar; Shafaati, Alireza; Mortazavi, Seyed Alireza; Zarghi, Afshin

    2017-01-01

    A simple and reliable stability-indicating RP-HPLC method was developed and validated for analysis of adefovir dipivoxil (ADV).The chromatographic separation was performed on a C 18 column using a mixture of acetonitrile-citrate buffer (10 mM at pH 5.2) 36:64 (%v/v) as mobile phase, at a flow rate of 1.5 mL/min. Detection was carried out at 260 nm and a sharp peak was obtained for ADV at a retention time of 5.8 ± 0.01 min. No interferences were observed from its stress degradation products. The method was validated according to the international guidelines. Linear regression analysis of data for the calibration plot showed a linear relationship between peak area and concentration over the range of 0.5-16 μg/mL; the regression coefficient was 0.9999and the linear regression equation was y = 24844x-2941.3. The detection (LOD) and quantification (LOQ) limits were 0.12 and 0.35 μg/mL, respectively. The results proved the method was fast (analysis time less than 7 min), precise, reproducible, and accurate for analysis of ADV over a wide range of concentration. The proposed specific method was used for routine quantification of ADV in pharmaceutical bulk and a tablet dosage form.

  18. Hazard Regression Models of Early Mortality in Trauma Centers

    PubMed Central

    Clark, David E; Qian, Jing; Winchell, Robert J; Betensky, Rebecca A

    2013-01-01

    Background Factors affecting early hospital deaths after trauma may be different from factors affecting later hospital deaths, and the distribution of short and long prehospital times may vary among hospitals. Hazard regression (HR) models may therefore be more useful than logistic regression (LR) models for analysis of trauma mortality, especially when treatment effects at different time points are of interest. Study Design We obtained data for trauma center patients from the 2008–9 National Trauma Data Bank (NTDB). Cases were included if they had complete data for prehospital times, hospital times, survival outcome, age, vital signs, and severity scores. Cases were excluded if pulseless on admission, transferred in or out, or ISS<9. Using covariates proposed for the Trauma Quality Improvement Program and an indicator for each hospital, we compared LR models predicting survival at 8 hours after injury to HR models with survival censored at 8 hours. HR models were then modified to allow time-varying hospital effects. Results 85,327 patients in 161 hospitals met inclusion criteria. Crude hazards peaked initially, then steadily declined. When hazard ratios were assumed constant in HR models, they were similar to odds ratios in LR models associating increased mortality with increased age, firearm mechanism, increased severity, more deranged physiology, and estimated hospital-specific effects. However, when hospital effects were allowed to vary by time, HR models demonstrated that hospital outliers were not the same at different times after injury. Conclusions HR models with time-varying hazard ratios reveal inconsistencies in treatment effects, data quality, and/or timing of early death among trauma centers. HR models are generally more flexible than LR models, can be adapted for censored data, and potentially offer a better tool for analysis of factors affecting early death after injury. PMID:23036828

  19. Forecasting daily patient volumes in the emergency department.

    PubMed

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by seasonal and weekly patterns. The authors compared several time series forecasting methods to a benchmark multiple linear regression model. The results suggest that the existing methodology proposed in the literature, multiple linear regression based on calendar variables, is a reasonable approach to forecasting daily patient volumes in the ED. However, the authors conclude that regression-based models that incorporate calendar variables, account for site-specific special-day effects, and allow for residual autocorrelation provide a more appropriate, informative, and consistently accurate approach to forecasting daily ED patient volumes.

  20. Regression analysis of sparse asynchronous longitudinal data.

    PubMed

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

  1. Sequence analysis to assess labour market participation following vocational rehabilitation: an observational study among patients sick-listed with low back pain from a randomised clinical trial in Denmark

    PubMed Central

    Lindholdt, Louise; Labriola, Merete; Nielsen, Claus Vinther; Horsbøl, Trine Allerslev; Lund, Thomas

    2017-01-01

    Introduction The return-to-work (RTW) process after long-term sickness absence is often complex and long and implies multiple shifts between different labour market states for the absentee. Standard methods for examining RTW research typically rely on the analysis of one outcome measure at a time, which will not capture the many possible states and transitions the absentee can go through. The purpose of this study was to explore the potential added value of sequence analysis in supplement to standard regression analysis of a multidisciplinary RTW intervention among patients with low back pain (LBP). Methods The study population consisted of 160 patients randomly allocated to either a hospital-based brief or a multidisciplinary intervention. Data on labour market participation following intervention were obtained from a national register and analysed in two ways: as a binary outcome expressed as active or passive relief at a 1-year follow-up and as four different categories for labour market participation. Logistic regression and sequence analysis were performed. Results The logistic regression analysis showed no difference in labour market participation for patients in the two groups after 1 year. Applying sequence analysis showed differences in subsequent labour market participation after 2 years after baseline in favour of the brief intervention group versus the multidisciplinary intervention group. Conclusion The study indicated that sequence analysis could provide added analytical value as a supplement to traditional regression analysis in prospective studies of RTW among patients with LBP. PMID:28729315

  2. The isoform A of reticulon-4 (Nogo-A) in cerebrospinal fluid of primary brain tumor patients: influencing factors.

    PubMed

    Koper, Olga Martyna; Kamińska, Joanna; Milewska, Anna; Sawicki, Karol; Mariak, Zenon; Kemona, Halina; Matowicka-Karna, Joanna

    2018-05-18

    The influence of isoform A of reticulon-4 (Nogo-A), also known as neurite outgrowth inhibitor, on primary brain tumor development was reported. Therefore the aim was the evaluation of Nogo-A concentrations in cerebrospinal fluid (CSF) and serum of brain tumor patients compared with non-tumoral individuals. All serum results, except for two cases, obtained both in brain tumors and non-tumoral individuals, were below the lower limit of ELISA detection. Cerebrospinal fluid Nogo-A concentrations were significantly lower in primary brain tumor patients compared to non-tumoral individuals. The univariate linear regression analysis found that if white blood cell count increases by 1 × 10 3 /μL, the mean cerebrospinal fluid Nogo-A concentration value decreases 1.12 times. In the model of multiple linear regression analysis predictor variables influencing cerebrospinal fluid Nogo-A concentrations included: diagnosis, sex, and sodium level. The mean cerebrospinal fluid Nogo-A concentration value was 1.9 times higher for women in comparison to men. In the astrocytic brain tumor group higher sodium level occurs with lower cerebrospinal fluid Nogo-A concentrations. We found the opposite situation in non-tumoral individuals. Univariate linear regression analysis revealed, that cerebrospinal fluid Nogo-A concentrations change in relation to white blood cell count. In the created model of multiple linear regression analysis we found, that within predictor variables influencing CSF Nogo-A concentrations were diagnosis, sex, and sodium level. Results may be relevant to the search for cerebrospinal fluid biomarkers and potential therapeutic targets in primary brain tumor patients. Nogo-A concentrations were tested by means of enzyme-linked immunosorbent assay (ELISA).

  3. Regarding to the Variance Analysis of Regression Equation of the Surface Roughness obtained by End Milling process of 7136 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    POP, A. B.; ȚÎȚU, M. A.

    2016-11-01

    In the metal cutting process, surface quality is intrinsically related to the cutting parameters and to the cutting tool geometry. At the same time, metal cutting processes are closely related to the machining costs. The purpose of this paper is to reduce manufacturing costs and processing time. A study was made, based on the mathematical modelling of the average of the absolute value deviation (Ra) resulting from the end milling process on 7136 aluminium alloy, depending on cutting process parameters. The novel element brought by this paper is the 7136 aluminium alloy type, chosen to conduct the experiments, which is a material developed and patented by Universal Alloy Corporation. This aluminium alloy is used in the aircraft industry to make parts from extruded profiles, and it has not been studied for the proposed research direction. Based on this research, a mathematical model of surface roughness Ra was established according to the cutting parameters studied in a set experimental field. A regression analysis was performed, which identified the quantitative relationships between cutting parameters and the surface roughness. Using the variance analysis ANOVA, the degree of confidence for the achieved results by the regression equation was determined, and the suitability of this equation at every point of the experimental field.

  4. Association between sociability and diffusion tensor imaging in BALB/cJ mice.

    PubMed

    Kim, Sungheon; Pickup, Stephen; Fairless, Andrew H; Ittyerah, Ranjit; Dow, Holly C; Abel, Ted; Brodkin, Edward S; Poptani, Harish

    2012-01-01

    The purpose of this study was to use high-resolution diffusion tensor imaging (DTI) to investigate the association between DTI metrics and sociability in BALB/c inbred mice. The sociability of prepubescent (30-day-old) BALB/cJ mice was operationally defined as the time that the mice spent sniffing a stimulus mouse in a social choice test. High-resolution ex vivo DTI data on 12 BALB/cJ mouse brains were acquired using a 9.4-T vertical-bore magnet. Regression analysis was conducted to investigate the association between DTI metrics and sociability. Significant positive regression (p < 0.001) between social sniffing time and fractional anisotropy was found in 10 regions located in the thalamic nuclei, zona incerta/substantia nigra, visual/orbital/somatosensory cortices and entorhinal cortex. In addition, significant negative regression (p < 0.001) between social sniffing time and mean diffusivity was found in five areas located in the sensory cortex, motor cortex, external capsule and amygdaloid region. In all regions showing significant regression with either the mean diffusivity or fractional anisotropy, the tertiary eigenvalue correlated negatively with the social sniffing time. This study demonstrates the feasibility of using DTI to detect brain regions associated with sociability in a mouse model system. Copyright © 2011 John Wiley & Sons, Ltd.

  5. A Systematic Review of Methodology: Time Series Regression Analysis for Environmental Factors and Infectious Diseases

    PubMed Central

    Imai, Chisato; Hashizume, Masahiro

    2015-01-01

    Background: Time series analysis is suitable for investigations of relatively direct and short-term effects of exposures on outcomes. In environmental epidemiology studies, this method has been one of the standard approaches to assess impacts of environmental factors on acute non-infectious diseases (e.g. cardiovascular deaths), with conventionally generalized linear or additive models (GLM and GAM). However, the same analysis practices are often observed with infectious diseases despite of the substantial differences from non-infectious diseases that may result in analytical challenges. Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, systematic review was conducted to elucidate important issues in assessing the associations between environmental factors and infectious diseases using time series analysis with GLM and GAM. Published studies on the associations between weather factors and malaria, cholera, dengue, and influenza were targeted. Findings: Our review raised issues regarding the estimation of susceptible population and exposure lag times, the adequacy of seasonal adjustments, the presence of strong autocorrelations, and the lack of a smaller observation time unit of outcomes (i.e. daily data). These concerns may be attributable to features specific to infectious diseases, such as transmission among individuals and complicated causal mechanisms. Conclusion: The consequence of not taking adequate measures to address these issues is distortion of the appropriate risk quantifications of exposures factors. Future studies should pay careful attention to details and examine alternative models or methods that improve studies using time series regression analysis for environmental determinants of infectious diseases. PMID:25859149

  6. [Design and implementation of online statistical analysis function in information system of air pollution and health impact monitoring].

    PubMed

    Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun

    2018-01-01

    To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.

  7. Numerical simulations on unsteady operation processes of N2O/HTPB hybrid rocket motor with/without diaphragm

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Hu, Fan; Wang, Donghui; Okolo. N, Patrick; Zhang, Weihua

    2017-07-01

    Numerical simulations on processes within a hybrid rocket motor were conducted in the past, where most of these simulations carried out majorly focused on steady state analysis. Solid fuel regression rate strongly depends on complicated physicochemical processes and internal fluid dynamic behavior within the rocket motor, which changes with both space and time during its operation, and are therefore more unsteady in characteristics. Numerical simulations on the unsteady operational processes of N2O/HTPB hybrid rocket motor with and without diaphragm are conducted within this research paper. A numerical model is established based on two dimensional axisymmetric unsteady Navier-Stokes equations having turbulence, combustion and coupled gas/solid phase formulations. Discrete phase model is used to simulate injection and vaporization of the liquid oxidizer. A dynamic mesh technique is applied to the non-uniform regression of fuel grain, while results of unsteady flow field, variation of regression rate distribution with time, regression process of burning surface and internal ballistics are all obtained. Due to presence of eddy flow, the diaphragm increases regression rate further downstream. Peak regression rates are observed close to flow reattachment regions, while these peak values decrease gradually, and peak position shift further downstream with time advancement. Motor performance is analyzed accordingly, and it is noticed that the case with diaphragm included results in combustion efficiency and specific impulse efficiency increase of roughly 10%, and ground thrust increase of 17.8%.

  8. Network structure and travel time perception.

    PubMed

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

  9. Statistical methods and regression analysis of stratospheric ozone and meteorological variables in Isfahan

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.

    2008-04-01

    Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.

  10. River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach

    NASA Astrophysics Data System (ADS)

    Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal

    2018-06-01

    Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.

  11. Historical Data Analysis of Hospital Discharges Related to the Amerithrax Attack in Florida

    PubMed Central

    Burke, Lauralyn K.; Brown, C. Perry; Johnson, Tammie M.

    2016-01-01

    Interrupted time-series analysis (ITSA) can be used to identify, quantify, and evaluate the magnitude and direction of an event on the basis of time-series data. This study evaluates the impact of the bioterrorist anthrax attacks (“Amerithrax”) on hospital inpatient discharges in the metropolitan statistical area of Palm Beach, Broward, and Miami-Dade counties in the fourth quarter of 2001. Three statistical methods—standardized incidence ratio (SIR), segmented regression, and an autoregressive integrated moving average (ARIMA)—were used to determine whether Amerithrax influenced inpatient utilization. The SIR found a non–statistically significant 2 percent decrease in hospital discharges. Although the segmented regression test found a slight increase in the discharge rate during the fourth quarter, it was also not statistically significant; therefore, it could not be attributed to Amerithrax. Segmented regression diagnostics preparing for ARIMA indicated that the quarterly data time frame was not serially correlated and violated one of the assumptions for the use of the ARIMA method and therefore could not properly evaluate the impact on the time-series data. Lack of data granularity of the time frames hindered the successful evaluation of the impact by the three analytic methods. This study demonstrates that the granularity of the data points is as important as the number of data points in a time series. ITSA is important for the ability to evaluate the impact that any hazard may have on inpatient utilization. Knowledge of hospital utilization patterns during disasters offer healthcare and civic professionals valuable information to plan, respond, mitigate, and evaluate any outcomes stemming from biothreats. PMID:27843420

  12. Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model.

    PubMed

    Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan

    2016-10-01

    Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Personal Best Time, Percent Body Fat, and Training Are Differently Associated with Race Time for Male and Female Ironman Triathletes

    ERIC Educational Resources Information Center

    Knechtle, Beat; Wirth, Andrea; Baumann, Barbara; Knechtle, Patrizia; Rosemann, Thomas

    2010-01-01

    We studied male and female nonprofessional Ironman triathletes to determine whether percent body fat, training, and/or previous race experience were associated with race performance. We used simple linear regression analysis, with total race time as the dependent variable, to investigate the relationship among athletes' percent body fat, average…

  14. Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian; Punjabi, Naresh M.

    2013-01-01

    Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings of subjects and repeated measures within those subjects, as comparing diseased to non-diseased subjects while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed. Supplementary material includes the analyzed data set as well as the code for a reproducible analysis. PMID:22241689

  15. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert M.

    2013-01-01

    A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.

  16. Local regression type methods applied to the study of geophysics and high frequency financial data

    NASA Astrophysics Data System (ADS)

    Mariani, M. C.; Basu, K.

    2014-09-01

    In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.

  17. Extension of the Haseman-Elston regression model to longitudinal data.

    PubMed

    Won, Sungho; Elston, Robert C; Park, Taesung

    2006-01-01

    We propose an extension to longitudinal data of the Haseman and Elston regression method for linkage analysis. The proposed model is a mixed model having several random effects. As response variable, we investigate the sibship sample mean corrected cross-product (smHE) and the BLUP-mean corrected cross product (pmHE), comparing them with the original squared difference (oHE), the overall mean corrected cross-product (rHE), and the weighted average of the squared difference and the squared mean-corrected sum (wHE). The proposed model allows for the correlation structure of longitudinal data. Also, the model can test for gene x time interaction to discover genetic variation over time. The model was applied in an analysis of the Genetic Analysis Workshop 13 (GAW13) simulated dataset for a quantitative trait simulating systolic blood pressure. Independence models did not preserve the test sizes, while the mixed models with both family and sibpair random effects tended to preserve size well. Copyright 2006 S. Karger AG, Basel.

  18. Analysis of Market Opportunities for Chinese Private Express Delivery Industry

    NASA Astrophysics Data System (ADS)

    Jiang, Changbing; Bai, Lijun; Tong, Xiaoqing

    China's express delivery market has become the arena in which each express enterprise struggles to chase due to the huge potential demand and high profitable prospects. So certain qualitative and quantitative forecast for the future changes of China's express delivery market will help enterprises understand various types of market conditions and social changes in demand and adjust business activities to enhance their competitiveness timely. The development of China's express delivery industry is first introduced in this chapter. Then the theoretical basis of the regression model is overviewed. We also predict the demand trends of China's express delivery market by using Pearson correlation analysis and regression analysis from qualitative and quantitative aspects, respectively. Finally, we draw some conclusions and recommendations for China's express delivery industry.

  19. A comparison of time dependent Cox regression, pooled logistic regression and cross sectional pooling with simulations and an application to the Framingham Heart Study.

    PubMed

    Ngwa, Julius S; Cabral, Howard J; Cheng, Debbie M; Pencina, Michael J; Gagnon, David R; LaValley, Michael P; Cupples, L Adrienne

    2016-11-03

    Typical survival studies follow individuals to an event and measure explanatory variables for that event, sometimes repeatedly over the course of follow up. The Cox regression model has been used widely in the analyses of time to diagnosis or death from disease. The associations between the survival outcome and time dependent measures may be biased unless they are modeled appropriately. In this paper we explore the Time Dependent Cox Regression Model (TDCM), which quantifies the effect of repeated measures of covariates in the analysis of time to event data. This model is commonly used in biomedical research but sometimes does not explicitly adjust for the times at which time dependent explanatory variables are measured. This approach can yield different estimates of association compared to a model that adjusts for these times. In order to address the question of how different these estimates are from a statistical perspective, we compare the TDCM to Pooled Logistic Regression (PLR) and Cross Sectional Pooling (CSP), considering models that adjust and do not adjust for time in PLR and CSP. In a series of simulations we found that time adjusted CSP provided identical results to the TDCM while the PLR showed larger parameter estimates compared to the time adjusted CSP and the TDCM in scenarios with high event rates. We also observed upwardly biased estimates in the unadjusted CSP and unadjusted PLR methods. The time adjusted PLR had a positive bias in the time dependent Age effect with reduced bias when the event rate is low. The PLR methods showed a negative bias in the Sex effect, a subject level covariate, when compared to the other methods. The Cox models yielded reliable estimates for the Sex effect in all scenarios considered. We conclude that survival analyses that explicitly account in the statistical model for the times at which time dependent covariates are measured provide more reliable estimates compared to unadjusted analyses. We present results from the Framingham Heart Study in which lipid measurements and myocardial infarction data events were collected over a period of 26 years.

  20. Experimental investigation of fuel regression rate in a HTPB based lab-scale hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Xintian; Tian, Hui; Yu, Nanjia; Cai, Guobiao

    2014-12-01

    The fuel regression rate is an important parameter in the design process of the hybrid rocket motor. Additives in the solid fuel may have influences on the fuel regression rate, which will affect the internal ballistics of the motor. A series of firing experiments have been conducted on lab-scale hybrid rocket motors with 98% hydrogen peroxide (H2O2) oxidizer and hydroxyl terminated polybutadiene (HTPB) based fuels in this paper. An innovative fuel regression rate analysis method is established to diminish the errors caused by start and tailing stages in a short time firing test. The effects of the metal Mg, Al, aromatic hydrocarbon anthracene (C14H10), and carbon black (C) on the fuel regression rate are investigated. The fuel regression rate formulas of different fuel components are fitted according to the experiment data. The results indicate that the influence of C14H10 on the fuel regression rate of HTPB is not evident. However, the metal additives in the HTPB fuel can increase the fuel regression rate significantly.

  1. Learning investment indicators through data extension

    NASA Astrophysics Data System (ADS)

    Dvořák, Marek

    2017-07-01

    Stock prices in the form of time series were analysed using single and multivariate statistical methods. After simple data preprocessing in the form of logarithmic differences, we augmented this single variate time series to a multivariate representation. This method makes use of sliding windows to calculate several dozen of new variables using simple statistic tools like first and second moments as well as more complicated statistic, like auto-regression coefficients and residual analysis, followed by an optional quadratic transformation that was further used for data extension. These were used as a explanatory variables in a regularized logistic LASSO regression which tried to estimate Buy-Sell Index (BSI) from real stock market data.

  2. Psychosocial variables and time to injury onset: a hurdle regression analysis model.

    PubMed

    Sibold, Jeremy; Zizzi, Samuel

    2012-01-01

    Psychological variables have been shown to be related to athletic injury and time missed from participation in sport. We are unaware of any empirical examination of the influence of psychological variables on time to onset of injury. To examine the influence of orthopaedic and psychosocial variables on time to injury in college athletes. One hundred seventy-seven (men 5 116, women 5 61; age 5 19.45 6 1.39 years) National Collegiate Athletic Association Division II athletes. Hurdle regression analysis (HRA) was used to determine the influence of predictor variables on days to first injury. Worry (z = 2.98, P = .003), concentration disruption (z = -3.95, P < .001), and negative life-event stress (z = 5.02, P < .001) were robust predictors of days to injury. Orthopaedic risk score was not a predictor (z = 1.28, P = .20). These findings support previous research on the stress-injury relationship, and our group is the first to use HRA in athletic injury data. These data support the addition of psychological screening as part of preseason health examinations for collegiate athletes.

  3. Modeling Longitudinal Data Containing Non-Normal Within Subject Errors

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan; Glenn, Nancy L.

    2013-01-01

    The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.

  4. Principal component regression analysis with SPSS.

    PubMed

    Liu, R X; Kuang, J; Gong, Q; Hou, X L

    2003-06-01

    The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.

  5. Convergent Time-Varying Regression Models for Data Streams: Tracking Concept Drift by the Recursive Parzen-Based Generalized Regression Neural Networks.

    PubMed

    Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek

    2018-03-01

    One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.

  6. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    NASA Technical Reports Server (NTRS)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  7. The contributing role of physical education in youth's daily physical activity and sedentary behavior.

    PubMed

    Chen, Senlin; Kim, Youngwon; Gao, Zan

    2014-02-04

    School physical education (PE) is considered as an effective channel for youth to accumulate moderate-to-vigorous physical activity (MVPA) and reduce sedentary time. The purpose of this study was to determine the contributing role of PE in daily MVPA and sedentary time among youth. The study recruited 67 sixth grade children (29 boys; Mean age = 11.75) from two suburban schools at a U.S. Midwest state, 48 of whom contributed ≥10 hours of physical activity (PA) data per day were included for analysis. An objective monitoring tool (i.e., Sensewear armband monitor) was used to capture the participants' MVPA and sedentary time for 7-14 days. Pearson product-moment correlation analysis (r), multi-level regression analyses, and analysis of variance were conducted for data analysis. MVPA and sedentary time in PE showed significant positive associations with daily MVPA and sedentary time, respectively (r = 0.35, p < 0.01; r = 0.55, p < 0.01). Regression analyses revealed that one minute increase in MVPA and sedentary behavior in PE was associated with 2.04 minutes and 5.30 minutes increases in daily MVPA and sedentary behavior, respectively, after controlling for sex and BMI. The participants demonstrated a significantly higher level of MVPA (p = .05) but similar sedentary time (p = 0.61) on PE days than on non-PE days. Boys had significantly more daily MVPA (p < .01) and less sedentary time (p < .01) than girls; while higher BMI was associated with more sedentary time (p < .01). PE displayed a positive contribution to increasing daily MVPA and decreasing daily sedentary time among youth. Active participation in PE classes increases the chance to be more active and less sedentary beyond PE among youth.

  8. Combining fixed effects and instrumental variable approaches for estimating the effect of psychosocial job quality on mental health: evidence from 13 waves of a nationally representative cohort study.

    PubMed

    Milner, Allison; Aitken, Zoe; Kavanagh, Anne; LaMontagne, Anthony D; Pega, Frank; Petrie, Dennis

    2017-06-23

    Previous studies suggest that poor psychosocial job quality is a risk factor for mental health problems, but they use conventional regression analytic methods that cannot rule out reverse causation, unmeasured time-invariant confounding and reporting bias. This study combines two quasi-experimental approaches to improve causal inference by better accounting for these biases: (i) linear fixed effects regression analysis and (ii) linear instrumental variable analysis. We extract 13 annual waves of national cohort data including 13 260 working-age (18-64 years) employees. The exposure variable is self-reported level of psychosocial job quality. The instruments used are two common workplace entitlements. The outcome variable is the Mental Health Inventory (MHI-5). We adjust for measured time-varying confounders. In the fixed effects regression analysis adjusted for time-varying confounders, a 1-point increase in psychosocial job quality is associated with a 1.28-point improvement in mental health on the MHI-5 scale (95% CI: 1.17, 1.40; P < 0.001). When the fixed effects was combined with the instrumental variable analysis, a 1-point increase psychosocial job quality is related to 1.62-point improvement on the MHI-5 scale (95% CI: -0.24, 3.48; P = 0.088). Our quasi-experimental results provide evidence to confirm job stressors as risk factors for mental ill health using methods that improve causal inference. © The Author 2017. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. Identification of extremely premature infants at high risk of rehospitalization.

    PubMed

    Ambalavanan, Namasivayam; Carlo, Waldemar A; McDonald, Scott A; Yao, Qing; Das, Abhik; Higgins, Rosemary D

    2011-11-01

    Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002-2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%-42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge.

  10. Identification of Extremely Premature Infants at High Risk of Rehospitalization

    PubMed Central

    Carlo, Waldemar A.; McDonald, Scott A.; Yao, Qing; Das, Abhik; Higgins, Rosemary D.

    2011-01-01

    OBJECTIVE: Extremely low birth weight infants often require rehospitalization during infancy. Our objective was to identify at the time of discharge which extremely low birth weight infants are at higher risk for rehospitalization. METHODS: Data from extremely low birth weight infants in Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network centers from 2002–2005 were analyzed. The primary outcome was rehospitalization by the 18- to 22-month follow-up, and secondary outcome was rehospitalization for respiratory causes in the first year. Using variables and odds ratios identified by stepwise logistic regression, scoring systems were developed with scores proportional to odds ratios. Classification and regression-tree analysis was performed by recursive partitioning and automatic selection of optimal cutoff points of variables. RESULTS: A total of 3787 infants were evaluated (mean ± SD birth weight: 787 ± 136 g; gestational age: 26 ± 2 weeks; 48% male, 42% black). Forty-five percent of the infants were rehospitalized by 18 to 22 months; 14.7% were rehospitalized for respiratory causes in the first year. Both regression models (area under the curve: 0.63) and classification and regression-tree models (mean misclassification rate: 40%–42%) were moderately accurate. Predictors for the primary outcome by regression were shunt surgery for hydrocephalus, hospital stay of >120 days for pulmonary reasons, necrotizing enterocolitis stage II or higher or spontaneous gastrointestinal perforation, higher fraction of inspired oxygen at 36 weeks, and male gender. By classification and regression-tree analysis, infants with hospital stays of >120 days for pulmonary reasons had a 66% rehospitalization rate compared with 42% without such a stay. CONCLUSIONS: The scoring systems and classification and regression-tree analysis models identified infants at higher risk of rehospitalization and might assist planning for care after discharge. PMID:22007016

  11. [Logistic regression model of noninvasive prediction for portal hypertensive gastropathy in patients with hepatitis B associated cirrhosis].

    PubMed

    Wang, Qingliang; Li, Xiaojie; Hu, Kunpeng; Zhao, Kun; Yang, Peisheng; Liu, Bo

    2015-05-12

    To explore the risk factors of portal hypertensive gastropathy (PHG) in patients with hepatitis B associated cirrhosis and establish a Logistic regression model of noninvasive prediction. The clinical data of 234 hospitalized patients with hepatitis B associated cirrhosis from March 2012 to March 2014 were analyzed retrospectively. The dependent variable was the occurrence of PHG while the independent variables were screened by binary Logistic analysis. Multivariate Logistic regression was used for further analysis of significant noninvasive independent variables. Logistic regression model was established and odds ratio was calculated for each factor. The accuracy, sensitivity and specificity of model were evaluated by the curve of receiver operating characteristic (ROC). According to univariate Logistic regression, the risk factors included hepatic dysfunction, albumin (ALB), bilirubin (TB), prothrombin time (PT), platelet (PLT), white blood cell (WBC), portal vein diameter, spleen index, splenic vein diameter, diameter ratio, PLT to spleen volume ratio, esophageal varices (EV) and gastric varices (GV). Multivariate analysis showed that hepatic dysfunction (X1), TB (X2), PLT (X3) and splenic vein diameter (X4) were the major occurring factors for PHG. The established regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4. The accuracy of model for PHG was 79.1% with a sensitivity of 77.2% and a specificity of 80.8%. Hepatic dysfunction, TB, PLT and splenic vein diameter are risk factors for PHG and the noninvasive predicted Logistic regression model was Logit P=-2.667+2.186X1-2.167X2+0.725X3+0.976X4.

  12. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into account the internal fluctuations in time series. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Sequence analysis to assess labour market participation following vocational rehabilitation: an observational study among patients sick-listed with low back pain from a randomised clinical trial in Denmark.

    PubMed

    Lindholdt, Louise; Labriola, Merete; Nielsen, Claus Vinther; Horsbøl, Trine Allerslev; Lund, Thomas

    2017-07-20

    The return-to-work (RTW) process after long-term sickness absence is often complex and long and implies multiple shifts between different labour market states for the absentee. Standard methods for examining RTW research typically rely on the analysis of one outcome measure at a time, which will not capture the many possible states and transitions the absentee can go through. The purpose of this study was to explore the potential added value of sequence analysis in supplement to standard regression analysis of a multidisciplinary RTW intervention among patients with low back pain (LBP). The study population consisted of 160 patients randomly allocated to either a hospital-based brief or a multidisciplinary intervention. Data on labour market participation following intervention were obtained from a national register and analysed in two ways: as a binary outcome expressed as active or passive relief at a 1-year follow-up and as four different categories for labour market participation. Logistic regression and sequence analysis were performed. The logistic regression analysis showed no difference in labour market participation for patients in the two groups after 1 year. Applying sequence analysis showed differences in subsequent labour market participation after 2 years after baseline in favour of the brief intervention group versus the multidisciplinary intervention group. The study indicated that sequence analysis could provide added analytical value as a supplement to traditional regression analysis in prospective studies of RTW among patients with LBP. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Use of partial least squares regression to impute SNP genotypes in Italian cattle breeds.

    PubMed

    Dimauro, Corrado; Cellesi, Massimo; Gaspa, Giustino; Ajmone-Marsan, Paolo; Steri, Roberto; Marras, Gabriele; Macciotta, Nicolò P P

    2013-06-05

    The objective of the present study was to test the ability of the partial least squares regression technique to impute genotypes from low density single nucleotide polymorphisms (SNP) panels i.e. 3K or 7K to a high density panel with 50K SNP. No pedigree information was used. Data consisted of 2093 Holstein, 749 Brown Swiss and 479 Simmental bulls genotyped with the Illumina 50K Beadchip. First, a single-breed approach was applied by using only data from Holstein animals. Then, to enlarge the training population, data from the three breeds were combined and a multi-breed analysis was performed. Accuracies of genotypes imputed using the partial least squares regression method were compared with those obtained by using the Beagle software. The impact of genotype imputation on breeding value prediction was evaluated for milk yield, fat content and protein content. In the single-breed approach, the accuracy of imputation using partial least squares regression was around 90 and 94% for the 3K and 7K platforms, respectively; corresponding accuracies obtained with Beagle were around 85% and 90%. Moreover, computing time required by the partial least squares regression method was on average around 10 times lower than computing time required by Beagle. Using the partial least squares regression method in the multi-breed resulted in lower imputation accuracies than using single-breed data. The impact of the SNP-genotype imputation on the accuracy of direct genomic breeding values was small. The correlation between estimates of genetic merit obtained by using imputed versus actual genotypes was around 0.96 for the 7K chip. Results of the present work suggested that the partial least squares regression imputation method could be useful to impute SNP genotypes when pedigree information is not available.

  15. [Risk factors for anorexia in children].

    PubMed

    Liu, Wei-Xiao; Lang, Jun-Feng; Zhang, Qin-Feng

    2016-11-01

    To investigate the risk factors for anorexia in children, and to reduce the prevalence of anorexia in children. A questionnaire survey and a case-control study were used to collect the general information of 150 children with anorexia (case group) and 150 normal children (control group). Univariate analysis and multivariate logistic stepwise regression analysis were performed to identify the risk factors for anorexia in children. The results of the univariate analysis showed significant differences between the case and control groups in the age in months when supplementary food were added, feeding pattern, whether they liked meat, vegetables and salty food, whether they often took snacks and beverages, whether they liked to play while eating, and whether their parents asked them to eat food on time (P<0.05). The results of the multivariate logistic regression analysis showed that late addition of supplementary food (OR=5.408), high frequency of taking snacks and/or drinks (OR=11.813), and eating while playing (OR=6.654) were major risk factors for anorexia in children. Liking of meat (OR=0.093) and vegetables (OR=0.272) and eating on time required by parents (OR=0.079) were protective factors against anorexia in children. Timely addition of supplementary food, a proper diet, and development of children's proper eating and living habits can reduce the incidence of anorexia in children.

  16. [The trial of business data analysis at the Department of Radiology by constructing the auto-regressive integrated moving-average (ARIMA) model].

    PubMed

    Tani, Yuji; Ogasawara, Katsuhiko

    2012-01-01

    This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.

  17. MIXOR: a computer program for mixed-effects ordinal regression analysis.

    PubMed

    Hedeker, D; Gibbons, R D

    1996-03-01

    MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.

  18. Regression Analysis by Example. 5th Edition

    ERIC Educational Resources Information Center

    Chatterjee, Samprit; Hadi, Ali S.

    2012-01-01

    Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgment. "Regression Analysis by Example, Fifth Edition" has been expanded and thoroughly…

  19. FPGA implementation of predictive degradation model for engine oil lifetime

    NASA Astrophysics Data System (ADS)

    Idros, M. F. M.; Razak, A. H. A.; Junid, S. A. M. Al; Suliman, S. I.; Halim, A. K.

    2018-03-01

    This paper presents the implementation of linear regression model for degradation prediction on Register Transfer Logic (RTL) using QuartusII. A stationary model had been identified in the degradation trend for the engine oil in a vehicle in time series method. As for RTL implementation, the degradation model is written in Verilog HDL and the data input are taken at a certain time. Clock divider had been designed to support the timing sequence of input data. At every five data, a regression analysis is adapted for slope variation determination and prediction calculation. Here, only the negative value are taken as the consideration for the prediction purposes for less number of logic gate. Least Square Method is adapted to get the best linear model based on the mean values of time series data. The coded algorithm has been implemented on FPGA for validation purposes. The result shows the prediction time to change the engine oil.

  20. Network Structure and Travel Time Perception

    PubMed Central

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time. PMID:24204932

  1. A New Hybrid-Multiscale SSA Prediction of Non-Stationary Time Series

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, Mitra; Aminghafari, Mina

    2016-02-01

    Singular spectral analysis (SSA) is a non-parametric method used in the prediction of non-stationary time series. It has two parameters, which are difficult to determine and very sensitive to their values. Since, SSA is a deterministic-based method, it does not give good results when the time series is contaminated with a high noise level and correlated noise. Therefore, we introduce a novel method to handle these problems. It is based on the prediction of non-decimated wavelet (NDW) signals by SSA and then, prediction of residuals by wavelet regression. The advantages of our method are the automatic determination of parameters and taking account of the stochastic structure of time series. As shown through the simulated and real data, we obtain better results than SSA, a non-parametric wavelet regression method and Holt-Winters method.

  2. The Role of Habit and Perceived Control on Health Behavior among Pregnant Women.

    PubMed

    Mullan, Barbara; Henderson, Joanna; Kothe, Emily; Allom, Vanessa; Orbell, Sheina; Hamilton, Kyra

    2016-05-01

    Many pregnant women do not adhere to physical activity and dietary recommendations. Research investigating what psychological processes might predict physical activity and healthy eating (fruit and vegetable consumption) during pregnancy is scant. We explored the role of intention, habit, and perceived behavioral control as predictors of physical activity and healthy eating. Pregnant women (N = 195, Mage = 30.17, SDage = 4.46) completed questionnaires at 2 time points. At Time 1, participants completed measures of intention, habit, and perceived behavioral control. At Time 2, participants reported on their behavior (physical activity and healthy eating) within the intervening week. Regression analysis determined whether Time 1 variables predicted behavior at Time 2. Interaction terms also were tested. Final regression models indicated that only intention and habit explained significant variance in physical activity, whereas habit and the interaction between intention and habit explained significant variance in healthy eating. Simple slopes analysis indicated that the relationship between intention and healthy eating behavior was only significant at high levels of habit. Findings highlight the influence of habit on behavior and suggest that automaticity interventions may be useful in changing health behaviors during pregnancy.

  3. Taxi-Out Time Prediction for Departures at Charlotte Airport Using Machine Learning Techniques

    NASA Technical Reports Server (NTRS)

    Lee, Hanbong; Malik, Waqar; Jung, Yoon C.

    2016-01-01

    Predicting the taxi-out times of departures accurately is important for improving airport efficiency and takeoff time predictability. In this paper, we attempt to apply machine learning techniques to actual traffic data at Charlotte Douglas International Airport for taxi-out time prediction. To find the key factors affecting aircraft taxi times, surface surveillance data is first analyzed. From this data analysis, several variables, including terminal concourse, spot, runway, departure fix and weight class, are selected for taxi time prediction. Then, various machine learning methods such as linear regression, support vector machines, k-nearest neighbors, random forest, and neural networks model are applied to actual flight data. Different traffic flow and weather conditions at Charlotte airport are also taken into account for more accurate prediction. The taxi-out time prediction results show that linear regression and random forest techniques can provide the most accurate prediction in terms of root-mean-square errors. We also discuss the operational complexity and uncertainties that make it difficult to predict the taxi times accurately.

  4. Principal components and iterative regression analysis of geophysical series: Application to Sunspot number (1750 2004)

    NASA Astrophysics Data System (ADS)

    Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.

    2008-11-01

    We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.

  5. Comparative study of Poincaré plot analysis using short electroencephalogram signals during anaesthesia with spectral edge frequency 95 and bispectral index.

    PubMed

    Hayashi, K; Yamada, T; Sawa, T

    2015-03-01

    The return or Poincaré plot is a non-linear analytical approach in a two-dimensional plane, where a timed signal is plotted against itself after a time delay. Its scatter pattern reflects the randomness and variability in the signals. Quantification of a Poincaré plot of the electroencephalogram has potential to determine anaesthesia depth. We quantified the degree of dispersion (i.e. standard deviation, SD) along the diagonal line of the electroencephalogram-Poincaré plot (named as SD1/SD2), and compared SD1/SD2 values with spectral edge frequency 95 (SEF95) and bispectral index values. The regression analysis showed a tight linear regression equation with a coefficient of determination (R(2) ) value of 0.904 (p < 0.0001) between the Poincaré index (SD1/SD2) and SEF95, and a moderate linear regression equation between SD1/SD2 and bispectral index (R(2)  = 0.346, p < 0.0001). Quantification of the Poincaré plot tightly correlates with SEF95, reflecting anaesthesia-dependent changes in electroencephalogram oscillation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  6. Forecasting Container Throughput at the Doraleh Port in Djibouti through Time Series Analysis

    NASA Astrophysics Data System (ADS)

    Mohamed Ismael, Hawa; Vandyck, George Kobina

    The Doraleh Container Terminal (DCT) located in Djibouti has been noted as the most technologically advanced container terminal on the African continent. DCT's strategic location at the crossroads of the main shipping lanes connecting Asia, Africa and Europe put it in a unique position to provide important shipping services to vessels plying that route. This paper aims to forecast container throughput through the Doraleh Container Port in Djibouti by Time Series Analysis. A selection of univariate forecasting models has been used, namely Triple Exponential Smoothing Model, Grey Model and Linear Regression Model. By utilizing the above three models and their combination, the forecast of container throughput through the Doraleh port was realized. A comparison of the different forecasting results of the three models, in addition to the combination forecast is then undertaken, based on commonly used evaluation criteria Mean Absolute Deviation (MAD) and Mean Absolute Percentage Error (MAPE). The study found that the Linear Regression forecasting Model was the best prediction method for forecasting the container throughput, since its forecast error was the least. Based on the regression model, a ten (10) year forecast for container throughput at DCT has been made.

  7. Socio-demographic, clinical characteristics and utilization of mental health care services associated with SF-6D utility scores in patients with mental disorders: contributions of the quantile regression.

    PubMed

    Prigent, Amélie; Kamendje-Tchokobou, Blaise; Chevreul, Karine

    2017-11-01

    Health-related quality of life (HRQoL) is a widely used concept in the assessment of health care. Some generic HRQoL instruments, based on specific algorithms, can generate utility scores which reflect the preferences of the general population for the different health states described by the instrument. This study aimed to investigate the relationships between utility scores and potentially associated factors in patients with mental disorders followed in inpatient and/or outpatient care settings using two statistical methods. Patients were recruited in four psychiatric sectors in France. Patient responses to the SF-36 generic HRQoL instrument were used to calculate SF-6D utility scores. The relationships between utility scores and patient socio-demographic, clinical characteristics, and mental health care utilization, considered as potentially associated factors, were studied using OLS and quantile regressions. One hundred and seventy six patients were included. Women, severely ill patients and those hospitalized full-time tended to report lower utility scores, whereas psychotic disorders (as opposed to mood disorders) and part-time care were associated with higher scores. The quantile regression highlighted that the size of the associations between the utility scores and some patient characteristics varied along with the utility score distribution, and provided more accurate estimated values than OLS regression. The quantile regression may constitute a relevant complement for the analysis of factors associated with utility scores. For policy decision-making, the association of full-time hospitalization with lower utility scores while part-time care was associated with higher scores supports the further development of alternatives to full-time hospitalizations.

  8. A comparison between the use of Cox regression and the use of partial least squares-Cox regression to predict the survival of kidney-transplant patients

    NASA Astrophysics Data System (ADS)

    Solimun

    2017-05-01

    The aim of this research is to model survival data from kidney-transplant patients using the partial least squares (PLS)-Cox regression, which can both meet and not meet the no-multicollinearity assumption. The secondary data were obtained from research entitled "Factors affecting the survival of kidney-transplant patients". The research subjects comprised 250 patients. The predictor variables consisted of: age (X1), sex (X2); two categories, prior hemodialysis duration (X3), diabetes (X4); two categories, prior transplantation number (X5), number of blood transfusions (X6), discrepancy score (X7), use of antilymphocyte globulin(ALG) (X8); two categories, while the response variable was patient survival time (in months). Partial least squares regression is a model that connects the predictor variables X and the response variable y and it initially aims to determine the relationship between them. Results of the above analyses suggest that the survival of kidney transplant recipients ranged from 0 to 55 months, with 62% of the patients surviving until they received treatment that lasted for 55 months. The PLS-Cox regression analysis results revealed that patients' age and the use of ALG significantly affected the survival time of patients. The factor of patients' age (X1) in the PLS-Cox regression model merely affected the failure probability by 1.201. This indicates that the probability of dying for elderly patients with a kidney transplant is 1.152 times higher than that for younger patients.

  9. Classifying machinery condition using oil samples and binary logistic regression

    NASA Astrophysics Data System (ADS)

    Phillips, J.; Cripps, E.; Lau, John W.; Hodkiewicz, M. R.

    2015-08-01

    The era of big data has resulted in an explosion of condition monitoring information. The result is an increasing motivation to automate the costly and time consuming human elements involved in the classification of machine health. When working with industry it is important to build an understanding and hence some trust in the classification scheme for those who use the analysis to initiate maintenance tasks. Typically "black box" approaches such as artificial neural networks (ANN) and support vector machines (SVM) can be difficult to provide ease of interpretability. In contrast, this paper argues that logistic regression offers easy interpretability to industry experts, providing insight to the drivers of the human classification process and to the ramifications of potential misclassification. Of course, accuracy is of foremost importance in any automated classification scheme, so we also provide a comparative study based on predictive performance of logistic regression, ANN and SVM. A real world oil analysis data set from engines on mining trucks is presented and using cross-validation we demonstrate that logistic regression out-performs the ANN and SVM approaches in terms of prediction for healthy/not healthy engines.

  10. A Method of Trigonometric Modelling of Seasonal Variation Demonstrated with Multiple Sclerosis Relapse Data.

    PubMed

    Spelman, Tim; Gray, Orla; Lucas, Robyn; Butzkueven, Helmut

    2015-12-09

    This report describes a novel Stata-based application of trigonometric regression modelling to 55 years of multiple sclerosis relapse data from 46 clinical centers across 20 countries located in both hemispheres. Central to the success of this method was the strategic use of plot analysis to guide and corroborate the statistical regression modelling. Initial plot analysis was necessary for establishing realistic hypotheses regarding the presence and structural form of seasonal and latitudinal influences on relapse probability and then testing the performance of the resultant models. Trigonometric regression was then necessary to quantify these relationships, adjust for important confounders and provide a measure of certainty as to how plausible these associations were. Synchronization of graphing techniques with regression modelling permitted a systematic refinement of models until best-fit convergence was achieved, enabling novel inferences to be made regarding the independent influence of both season and latitude in predicting relapse onset timing in MS. These methods have the potential for application across other complex disease and epidemiological phenomena suspected or known to vary systematically with season and/or geographic location.

  11. Application of software technology to automatic test data analysis

    NASA Technical Reports Server (NTRS)

    Stagner, J. R.

    1991-01-01

    The verification process for a major software subsystem was partially automated as part of a feasibility demonstration. The methods employed are generally useful and applicable to other types of subsystems. The effort resulted in substantial savings in test engineer analysis time and offers a method for inclusion of automatic verification as a part of regression testing.

  12. A Semiparametric Change-Point Regression Model for Longitudinal Observations.

    PubMed

    Xing, Haipeng; Ying, Zhiliang

    2012-12-01

    Many longitudinal studies involve relating an outcome process to a set of possibly time-varying covariates, giving rise to the usual regression models for longitudinal data. When the purpose of the study is to investigate the covariate effects when experimental environment undergoes abrupt changes or to locate the periods with different levels of covariate effects, a simple and easy-to-interpret approach is to introduce change-points in regression coefficients. In this connection, we propose a semiparametric change-point regression model, in which the error process (stochastic component) is nonparametric and the baseline mean function (functional part) is completely unspecified, the observation times are allowed to be subject-specific, and the number, locations and magnitudes of change-points are unknown and need to be estimated. We further develop an estimation procedure which combines the recent advance in semiparametric analysis based on counting process argument and multiple change-points inference, and discuss its large sample properties, including consistency and asymptotic normality, under suitable regularity conditions. Simulation results show that the proposed methods work well under a variety of scenarios. An application to a real data set is also given.

  13. A Regional Analysis of Non-Methane Hydrocarbons And Meteorology of The Rural Southeast United States

    DTIC Science & Technology

    1996-01-01

    Zt is an ARIMA time series. This is a typical regression model , except that it allows for autocorrelation in the error term Z. In this work, an ARMA...data=folder; var residual; run; II Statistical output of 1992 regression model on 1993 ozone data ARIMA Procedure Maximum Likelihood Estimation Approx...at each of the sites, and to show the effect of synoptic meteorology on high ozone by examining NOAA daily weather maps and climatic data

  14. The use of gas chromatographic-mass spectrometric-computer systems in pharmacokinetic studies.

    PubMed

    Horning, M G; Nowlin, J; Stafford, M; Lertratanangkoon, K; Sommer, K R; Hill, R M; Stillwell, R N

    1975-10-29

    Pharmacokinetic studies involving plasma, urine, breast milk, saliva and liver homogenates have been carried out by selective ion detection with a gas chromatographic-mass spectrometric-computer system operated in the chemical ionization mode. Stable isotope labeled drugs were used as internal standards for quantification. The half-lives, the concentration at zero time, the slope (regression coefficient), the maximum velocity of the reaction and the apparent Michaelis constant of the reaction were determined by regression analysis, and also by graphic means.

  15. Who Stays and for How Long: Examining Attrition in Canadian Graduate Programs

    ERIC Educational Resources Information Center

    DeClou, Lindsay

    2016-01-01

    Attrition from Canadian graduate programs is a point of concern on a societal, institutional, and individual level. To improve retention in graduate school, a better understanding of what leads to withdrawal needs to be reached. This paper uses logistic regression and discrete-time survival analysis with time-varying covariates to analyze data…

  16. Multivariate meta-analysis for non-linear and other multi-parameter associations

    PubMed Central

    Gasparrini, A; Armstrong, B; Kenward, M G

    2012-01-01

    In this paper, we formalize the application of multivariate meta-analysis and meta-regression to synthesize estimates of multi-parameter associations obtained from different studies. This modelling approach extends the standard two-stage analysis used to combine results across different sub-groups or populations. The most straightforward application is for the meta-analysis of non-linear relationships, described for example by regression coefficients of splines or other functions, but the methodology easily generalizes to any setting where complex associations are described by multiple correlated parameters. The modelling framework of multivariate meta-analysis is implemented in the package mvmeta within the statistical environment R. As an illustrative example, we propose a two-stage analysis for investigating the non-linear exposure–response relationship between temperature and non-accidental mortality using time-series data from multiple cities. Multivariate meta-analysis represents a useful analytical tool for studying complex associations through a two-stage procedure. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22807043

  17. Systematic Review and Meta-Analysis: Dose-Response Relationship of Selective Serotonin Reuptake Inhibitors in Major Depressive Disorder.

    PubMed

    Jakubovski, Ewgeni; Varigonda, Anjali L; Freemantle, Nicholas; Taylor, Matthew J; Bloch, Michael H

    2016-02-01

    Previous studies suggested that the treatment response to selective serotonin reuptake inhibitors (SSRIs) in major depressive disorder follows a flat response curve within the therapeutic dose range. The present study was designed to clarify the relationship between dosage and treatment response in major depressive disorder. The authors searched PubMed for randomized placebo-controlled trials examining the efficacy of SSRIs for treating adults with major depressive disorder. Trials were also required to assess improvement in depression severity at multiple time points. Additional data were collected on treatment response and all-cause and side effect-related discontinuation. All medication doses were transformed into imipramine-equivalent doses. The longitudinal data were analyzed with a mixed-regression model. Endpoint and tolerability analyses were analyzed using meta-regression and stratified subgroup analysis by predefined SSRI dose categories in order to assess the effect of SSRI dosing on the efficacy and tolerability of SSRIs for major depressive disorder. Forty studies involving 10,039 participants were included. Longitudinal modeling (dose-by-time interaction=0.0007, 95% CI=0.0001-0.0013) and endpoint analysis (meta-regression: β=0.00053, 95% CI=0.00018-0.00088, z=2.98) demonstrated a small but statistically significant positive association between SSRI dose and efficacy. Higher doses of SSRIs were associated with an increased likelihood of dropouts due to side effects (meta-regression: β=0.00207, 95% CI=0.00071-0.00342, z=2.98) and decreased likelihood of all-cause dropout (meta-regression: β=-0.00093, 95% CI=-0.00165 to -0.00021, z=-2.54). Higher doses of SSRIs appear slightly more effective in major depressive disorder. This benefit appears to plateau at around 250 mg of imipramine equivalents (50 mg of fluoxetine). The slightly increased benefits of SSRIs at higher doses are somewhat offset by decreased tolerability at high doses.

  18. Comparison of different functional EIT approaches to quantify tidal ventilation distribution.

    PubMed

    Zhao, Zhanqi; Yun, Po-Jen; Kuo, Yen-Liang; Fu, Feng; Dai, Meng; Frerichs, Inez; Möller, Knut

    2018-01-30

    The aim of the study was to examine the pros and cons of different types of functional EIT (fEIT) to quantify tidal ventilation distribution in a clinical setting. fEIT images were calculated with (1) standard deviation of pixel time curve, (2) regression coefficients of global and local impedance time curves, or (3) mean tidal variations. To characterize temporal heterogeneity of tidal ventilation distribution, another fEIT image of pixel inspiration times is also proposed. fEIT-regression is very robust to signals with different phase information. When the respiratory signal should be distinguished from the heart-beat related signal, or during high-frequency oscillatory ventilation, fEIT-regression is superior to other types. fEIT-tidal variation is the most stable image type regarding the baseline shift. We recommend using this type of fEIT image for preliminary evaluation of the acquired EIT data. However, all these fEITs would be misleading in their assessment of ventilation distribution in the presence of temporal heterogeneity. The analysis software provided by the currently available commercial EIT equipment only offers either fEIT of standard deviation or tidal variation. Considering the pros and cons of each fEIT type, we recommend embedding more types into the analysis software to allow the physicians dealing with more complex clinical applications with on-line EIT measurements.

  19. Multivariate random regression analysis for body weight and main morphological traits in genetically improved farmed tilapia (Oreochromis niloticus).

    PubMed

    He, Jie; Zhao, Yunfeng; Zhao, Jingli; Gao, Jin; Han, Dandan; Xu, Pao; Yang, Runqing

    2017-11-02

    Because of their high economic importance, growth traits in fish are under continuous improvement. For growth traits that are recorded at multiple time-points in life, the use of univariate and multivariate animal models is limited because of the variable and irregular timing of these measures. Thus, the univariate random regression model (RRM) was introduced for the genetic analysis of dynamic growth traits in fish breeding. We used a multivariate random regression model (MRRM) to analyze genetic changes in growth traits recorded at multiple time-point of genetically-improved farmed tilapia. Legendre polynomials of different orders were applied to characterize the influences of fixed and random effects on growth trajectories. The final MRRM was determined by optimizing the univariate RRM for the analyzed traits separately via penalizing adaptively the likelihood statistical criterion, which is superior to both the Akaike information criterion and the Bayesian information criterion. In the selected MRRM, the additive genetic effects were modeled by Legendre polynomials of three orders for body weight (BWE) and body length (BL) and of two orders for body depth (BD). By using the covariance functions of the MRRM, estimated heritabilities were between 0.086 and 0.628 for BWE, 0.155 and 0.556 for BL, and 0.056 and 0.607 for BD. Only heritabilities for BD measured from 60 to 140 days of age were consistently higher than those estimated by the univariate RRM. All genetic correlations between growth time-points exceeded 0.5 for either single or pairwise time-points. Moreover, correlations between early and late growth time-points were lower. Thus, for phenotypes that are measured repeatedly in aquaculture, an MRRM can enhance the efficiency of the comprehensive selection for BWE and the main morphological traits.

  20. Value of Information Analysis for Time-lapse Seismic Data by Simulation-Regression

    NASA Astrophysics Data System (ADS)

    Dutta, G.; Mukerji, T.; Eidsvik, J.

    2016-12-01

    A novel method to estimate the Value of Information (VOI) of time-lapse seismic data in the context of reservoir development is proposed. VOI is a decision analytic metric quantifying the incremental value that would be created by collecting information prior to making a decision under uncertainty. The VOI has to be computed before collecting the information and can be used to justify its collection. Previous work on estimating the VOI of geophysical data has involved explicit approximation of the posterior distribution of reservoir properties given the data and then evaluating the prospect values for that posterior distribution of reservoir properties. Here, we propose to directly estimate the prospect values given the data by building a statistical relationship between them using regression. Various regression techniques such as Partial Least Squares Regression (PLSR), Multivariate Adaptive Regression Splines (MARS) and k-Nearest Neighbors (k-NN) are used to estimate the VOI, and the results compared. For a univariate Gaussian case, the VOI obtained from simulation-regression has been shown to be close to the analytical solution. Estimating VOI by simulation-regression is much less computationally expensive since the posterior distribution of reservoir properties given each possible dataset need not be modeled and the prospect values need not be evaluated for each such posterior distribution of reservoir properties. This method is flexible, since it does not require rigid model specification of posterior but rather fits conditional expectations non-parametrically from samples of values and data.

  1. The association of lung function and St. George's respiratory questionnaire with exacerbations in COPD: a systematic literature review and regression analysis.

    PubMed

    Martin, Amber L; Marvel, Jessica; Fahrbach, Kyle; Cadarette, Sarah M; Wilcox, Teresa K; Donohue, James F

    2016-04-16

    This study investigated the relationship between changes in lung function (as measured by forced expiratory volume in one second [FEV1]) and the St. George's Respiratory Questionnaire (SGRQ) and economically significant outcomes of exacerbations and health resource utilization, with an aim to provide insight into whether the effects of COPD treatment on lung function and health status relate to a reduced risk for exacerbations. A systematic literature review was conducted in MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials to identify randomized controlled trials of adult COPD patients published in English since 2002 in order to relate mean change in FEV1 and SGRQ total score to exacerbations and hospitalizations. These predictor/outcome pairs were analyzed using sample-size weighted regression analyses, which estimated a regression slope relating the two treatment effects, as well as a confidence interval and a test of statistical significance. Sixty-seven trials were included in the analysis. Significant relationships were seen between: FEV1 and any exacerbation (time to first exacerbation or patients with at least one exacerbation, p = 0.001); between FEV1 and moderate-to-severe exacerbations (time to first exacerbation, patients with at least one exacerbation, or annualized rate, p = 0.045); between SGRQ score and any exacerbation (time to first exacerbation or patients with at least one exacerbation, p = 0.0002) and between SGRQ score and moderate-to-severe exacerbations (time to first exacerbation or patients with at least one exacerbation, p = 0.0279; annualized rate, p = 0.0024). Relationships between FEV1 or SGRQ score and annualized exacerbation rate for any exacerbation or hospitalized exacerbations were not significant. The regression analysis demonstrated a significant association between improvements in FEV1 and SGRQ score and lower risk for COPD exacerbations. Even in cases of non-significant relationships, results were in the expected direction with few exceptions. The results of this analysis offer health care providers and payers a broader picture of the relationship between exacerbations and mean change in FEV1 as well as SGRQ score, and will help inform clinical and formulary-making decisions while stimulating new research questions for future prospective studies.

  2. Regression analysis of sparse asynchronous longitudinal data

    PubMed Central

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P.

    2015-01-01

    Summary We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus. PMID:26568699

  3. Automating approximate Bayesian computation by local linear regression.

    PubMed

    Thornton, Kevin R

    2009-07-07

    In several biological contexts, parameter inference often relies on computationally-intensive techniques. "Approximate Bayesian Computation", or ABC, methods based on summary statistics have become increasingly popular. A particular flavor of ABC based on using a linear regression to approximate the posterior distribution of the parameters, conditional on the summary statistics, is computationally appealing, yet no standalone tool exists to automate the procedure. Here, I describe a program to implement the method. The software package ABCreg implements the local linear-regression approach to ABC. The advantages are: 1. The code is standalone, and fully-documented. 2. The program will automatically process multiple data sets, and create unique output files for each (which may be processed immediately in R), facilitating the testing of inference procedures on simulated data, or the analysis of multiple data sets. 3. The program implements two different transformation methods for the regression step. 4. Analysis options are controlled on the command line by the user, and the program is designed to output warnings for cases where the regression fails. 5. The program does not depend on any particular simulation machinery (coalescent, forward-time, etc.), and therefore is a general tool for processing the results from any simulation. 6. The code is open-source, and modular.Examples of applying the software to empirical data from Drosophila melanogaster, and testing the procedure on simulated data, are shown. In practice, the ABCreg simplifies implementing ABC based on local-linear regression.

  4. The solar wind effect on cosmic rays and solar activity

    NASA Technical Reports Server (NTRS)

    Fujimoto, K.; Kojima, H.; Murakami, K.

    1985-01-01

    The relation of cosmic ray intensity to solar wind velocity is investigated, using neutron monitor data from Kiel and Deep River. The analysis shows that the regression coefficient of the average intensity for a time interval to the corresponding average velocity is negative and that the absolute effect increases monotonously with the interval of averaging, tau, that is, from -0.5% per 100km/s for tau = 1 day to -1.1% per 100km/s for tau = 27 days. For tau 27 days the coefficient becomes almost constant independently of the value of tau. The analysis also shows that this tau-dependence of the regression coefficiently is varying with the solar activity.

  5. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Sheyenne River, North Dakota, 1980-2006

    USGS Publications Warehouse

    Ryberg, Karen R.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the North Dakota State Water Commission, to estimate water-quality constituent concentrations at seven sites on the Sheyenne River, N. Dak. Regression analysis of water-quality data collected in 1980-2006 was used to estimate concentrations for hardness, dissolved solids, calcium, magnesium, sodium, and sulfate. The explanatory variables examined for the regression relations were continuously monitored streamflow, specific conductance, and water temperature. For the conditions observed in 1980-2006, streamflow was a significant explanatory variable for some constituents. Specific conductance was a significant explanatory variable for all of the constituents, and water temperature was not a statistically significant explanatory variable for any of the constituents in this study. The regression relations were evaluated using common measures of variability, including R2, the proportion of variability in the estimated constituent concentration explained by the explanatory variables and regression equation. R2 values ranged from 0.784 for calcium to 0.997 for dissolved solids. The regression relations also were evaluated by calculating the median relative percentage difference (RPD) between measured constituent concentration and the constituent concentration estimated by the regression equations. Median RPDs ranged from 1.7 for dissolved solids to 11.5 for sulfate. The regression relations also may be used to estimate daily constituent loads. The relations should be monitored for change over time, especially at sites 2 and 3 which have a short period of record. In addition, caution should be used when the Sheyenne River is affected by ice or when upstream sites are affected by isolated storm runoff. Almost all of the outliers and highly influential samples removed from the analysis were made during periods when the Sheyenne River might be affected by ice.

  6. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes.

    PubMed

    Nateghi, Roshanak; Guikema, Seth D; Quiring, Steven M

    2011-12-01

    This article compares statistical methods for modeling power outage durations during hurricanes and examines the predictive accuracy of these methods. Being able to make accurate predictions of power outage durations is valuable because the information can be used by utility companies to plan their restoration efforts more efficiently. This information can also help inform customers and public agencies of the expected outage times, enabling better collective response planning, and coordination of restoration efforts for other critical infrastructures that depend on electricity. In the long run, outage duration estimates for future storm scenarios may help utilities and public agencies better allocate risk management resources to balance the disruption from hurricanes with the cost of hardening power systems. We compare the out-of-sample predictive accuracy of five distinct statistical models for estimating power outage duration times caused by Hurricane Ivan in 2004. The methods compared include both regression models (accelerated failure time (AFT) and Cox proportional hazard models (Cox PH)) and data mining techniques (regression trees, Bayesian additive regression trees (BART), and multivariate additive regression splines). We then validate our models against two other hurricanes. Our results indicate that BART yields the best prediction accuracy and that it is possible to predict outage durations with reasonable accuracy. © 2011 Society for Risk Analysis.

  7. Nonlinear multivariate and time series analysis by neural network methods

    NASA Astrophysics Data System (ADS)

    Hsieh, William W.

    2004-03-01

    Methods in multivariate statistical analysis are essential for working with large amounts of geophysical data, data from observational arrays, from satellites, or from numerical model output. In classical multivariate statistical analysis, there is a hierarchy of methods, starting with linear regression at the base, followed by principal component analysis (PCA) and finally canonical correlation analysis (CCA). A multivariate time series method, the singular spectrum analysis (SSA), has been a fruitful extension of the PCA technique. The common drawback of these classical methods is that only linear structures can be correctly extracted from the data. Since the late 1980s, neural network methods have become popular for performing nonlinear regression and classification. More recently, neural network methods have been extended to perform nonlinear PCA (NLPCA), nonlinear CCA (NLCCA), and nonlinear SSA (NLSSA). This paper presents a unified view of the NLPCA, NLCCA, and NLSSA techniques and their applications to various data sets of the atmosphere and the ocean (especially for the El Niño-Southern Oscillation and the stratospheric quasi-biennial oscillation). These data sets reveal that the linear methods are often too simplistic to describe real-world systems, with a tendency to scatter a single oscillatory phenomenon into numerous unphysical modes or higher harmonics, which can be largely alleviated in the new nonlinear paradigm.

  8. The effectiveness of manual and mechanical instrumentation for the retreatment of three different root canal filling materials.

    PubMed

    Somma, Francesco; Cammarota, Giuseppe; Plotino, Gianluca; Grande, Nicola M; Pameijer, Cornelis H

    2008-04-01

    The aim of this study was to compare the effectiveness of the Mtwo R (Sweden & Martina, Padova, Italy), ProTaper retreatment files (Dentsply-Maillefer, Ballaigues, Switzerland), and a Hedström manual technique in the removal of three different filling materials (gutta-percha, Resilon [Resilon Research LLC, Madison, CT], and EndoRez [Ultradent Products Inc, South Jordan, UT]) during retreatment. Ninety single-rooted straight premolars were instrumented and randomly divided into 9 groups of 10 teeth each (n = 10) with regards to filling material and instrument used. For all roots, the following data were recorded: procedural errors, time of retreatment, apically extruded material, canal wall cleanliness through optical stereomicroscopy (OSM), and scanning electron microscopy (SEM). A linear regression analysis and three logistic regression analyses were performed to assess the level of significance set at p = 0.05. The results indicated that the overall regression models were statistically significant. The Mtwo R, ProTaper retreatment files, and Resilon filling material had a positive impact in reducing the time for retreatment. Both ProTaper retreatment files and Mtwo R showed a greater extrusion of debris. For both OSM and SEM logistic regression models, the root canal apical third had the greatest impact on the score values. EndoRez filling material resulted in cleaner root canal walls using OSM analysis, whereas Resilon filling material and both engine-driven NiTi rotary techniques resulted in less clean root canal walls according to SEM analysis. In conclusion, all instruments left remnants of filling material and debris on the root canal walls irrespective of the root filling material used. Both the engine-driven NiTi rotary systems proved to be safe and fast devices for the removal of endodontic filling material.

  9. Surrogate Analysis and Index Developer (SAID) tool

    USGS Publications Warehouse

    Domanski, Marian M.; Straub, Timothy D.; Landers, Mark N.

    2015-10-01

    The regression models created in SAID can be used in utilities that have been developed to work with the USGS National Water Information System (NWIS) and for the USGS National Real-Time Water Quality (NRTWQ) Web site. The real-time dissemination of predicted SSC and prediction intervals for each time step has substantial potential to improve understanding of sediment-related water quality and associated engineering and ecological management decisions.

  10. Sleep disorder risk factors among student athletes.

    PubMed

    Monma, Takafumi; Ando, Akira; Asanuma, Tohru; Yoshitake, Yutaka; Yoshida, Goichiro; Miyazawa, Taiki; Ebine, Naoyuki; Takeda, Satoko; Omi, Naomi; Satoh, Makoto; Tokuyama, Kumpei; Takeda, Fumi

    2018-04-01

    To clarify sleep disorder risk factors among student athletes, this study examined the relationship between lifestyle habits, competition activities, psychological distress, and sleep disorders. Student athletes (N = 906; male: 70.1%; average age: 19.1 ± 0.8 years) in five university sports departments from four Japanese regions were targeted for analysis. Survey items were attributes (age, gender, and body mass index), sleep disorders (recorded through the Pittsburgh Sleep Quality Index), lifestyle habits (bedtime, wake-up time, smoking, drinking alcohol, meals, part-time jobs, and use of electronics after lights out), competition activities (activity contents and competition stressors), and psychological distress (recorded through the K6 scale). The relation between lifestyle habits, competition activities, psychological distress, and sleep disorders was explored using logistic regression analysis. Results of multivariate logistic regression analysis with attributes as adjustment variables showed that "bedtime," "wake-up time," "psychological distress," "part-time jobs," "smartphone/cellphone use after lights out," "morning practices," and "motivation loss stressors," were risk factors that were independently related to sleep disorders. Sleep disorders among student athletes are related to lifestyle habits such as late bedtime, early wake-up time, late night part-time jobs, and use of smartphones/cellphones after lights out; psychological distress; and competition activities such as morning practices and motivation loss stressors related to competition. Therefore, this study suggests the importance of improving these lifestyle habits, mental health, and competition activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning.

    PubMed

    Formisano, Elia; De Martino, Federico; Valente, Giancarlo

    2008-09-01

    Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.

  12. Three-way analysis of the UPLC-PDA dataset for the multicomponent quantitation of hydrochlorothiazide and olmesartan medoxomil in tablets by parallel factor analysis and three-way partial least squares.

    PubMed

    Dinç, Erdal; Ertekin, Zehra Ceren

    2016-01-01

    An application of parallel factor analysis (PARAFAC) and three-way partial least squares (3W-PLS1) regression models to ultra-performance liquid chromatography-photodiode array detection (UPLC-PDA) data with co-eluted peaks in the same wavelength and time regions was described for the multicomponent quantitation of hydrochlorothiazide (HCT) and olmesartan medoxomil (OLM) in tablets. Three-way dataset of HCT and OLM in their binary mixtures containing telmisartan (IS) as an internal standard was recorded with a UPLC-PDA instrument. Firstly, the PARAFAC algorithm was applied for the decomposition of three-way UPLC-PDA data into the chromatographic, spectral and concentration profiles to quantify the concerned compounds. Secondly, 3W-PLS1 approach was subjected to the decomposition of a tensor consisting of three-way UPLC-PDA data into a set of triads to build 3W-PLS1 regression for the analysis of the same compounds in samples. For the proposed three-way analysis methods in the regression and prediction steps, the applicability and validity of PARAFAC and 3W-PLS1 models were checked by analyzing the synthetic mixture samples, inter-day and intra-day samples, and standard addition samples containing HCT and OLM. Two different three-way analysis methods, PARAFAC and 3W-PLS1, were successfully applied to the quantitative estimation of the solid dosage form containing HCT and OLM. Regression and prediction results provided from three-way analysis were compared with those obtained by traditional UPLC method. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. [Quantitative Analysis of Heavy Metals in Water with LIBS Based on Signal-to-Background Ratio].

    PubMed

    Hu, Li; Zhao, Nan-jing; Liu, Wen-qing; Fang, Li; Zhang, Da-hai; Wang, Yin; Meng, De Shuo; Yu, Yang; Ma, Ming-jun

    2015-07-01

    There are many influence factors in the precision and accuracy of the quantitative analysis with LIBS technology. According to approximately the same characteristics trend of background spectrum and characteristic spectrum along with the change of temperature through in-depth analysis, signal-to-background ratio (S/B) measurement and regression analysis could compensate the spectral line intensity changes caused by system parameters such as laser power, spectral efficiency of receiving. Because the measurement dates were limited and nonlinear, we used support vector machine (SVM) for regression algorithm. The experimental results showed that the method could improve the stability and the accuracy of quantitative analysis of LIBS, and the relative standard deviation and average relative error of test set respectively were 4.7% and 9.5%. Data fitting method based on signal-to-background ratio(S/B) is Less susceptible to matrix elements and background spectrum etc, and provides data processing reference for real-time online LIBS quantitative analysis technology.

  14. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  15. Using within-day hive weight changes to measure environmental effects on honey bee colonies

    PubMed Central

    Holst, Niels; Weiss, Milagra; Carroll, Mark J.; McFrederick, Quinn S.; Barron, Andrew B.

    2018-01-01

    Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony’s daily activity cycle, hive weight change at night, hive weight loss due to departing foragers and weight gain due to returning foragers. Assumptions about the meaning of the timing and size of the morning weight changes were tested in a third study by delaying the forager departure times from one to three hours using screen entrance gates. A regression of planned vs. observed departure delays showed that the initial hive weight loss around dawn was largely due to foragers. In a similar experiment in Australia, hive weight loss due to departing foragers in the morning was correlated with net bee traffic (difference between the number of departing bees and the number of arriving bees) and from those data the payload of the arriving bees was estimated to be 0.02 g. The piecewise regression approach was then used to analyze a fifth study involving hives with and without access to natural forage. The analysis showed that, during a commercial pollination event, hives with previous access to forage had a significantly higher rate of weight gain as the foragers returned in the afternoon, and, in the weeks after the pollination event, a significantly higher rate of weight loss in the morning, as foragers departed. This combination of continuous weight data and piecewise regression proved effective in detecting treatment differences in foraging activity that other methods failed to detect. PMID:29791462

  16. Using within-day hive weight changes to measure environmental effects on honey bee colonies.

    PubMed

    Meikle, William G; Holst, Niels; Colin, Théotime; Weiss, Milagra; Carroll, Mark J; McFrederick, Quinn S; Barron, Andrew B

    2018-01-01

    Patterns in within-day hive weight data from two independent datasets in Arizona and California were modeled using piecewise regression, and analyzed with respect to honey bee colony behavior and landscape effects. The regression analysis yielded information on the start and finish of a colony's daily activity cycle, hive weight change at night, hive weight loss due to departing foragers and weight gain due to returning foragers. Assumptions about the meaning of the timing and size of the morning weight changes were tested in a third study by delaying the forager departure times from one to three hours using screen entrance gates. A regression of planned vs. observed departure delays showed that the initial hive weight loss around dawn was largely due to foragers. In a similar experiment in Australia, hive weight loss due to departing foragers in the morning was correlated with net bee traffic (difference between the number of departing bees and the number of arriving bees) and from those data the payload of the arriving bees was estimated to be 0.02 g. The piecewise regression approach was then used to analyze a fifth study involving hives with and without access to natural forage. The analysis showed that, during a commercial pollination event, hives with previous access to forage had a significantly higher rate of weight gain as the foragers returned in the afternoon, and, in the weeks after the pollination event, a significantly higher rate of weight loss in the morning, as foragers departed. This combination of continuous weight data and piecewise regression proved effective in detecting treatment differences in foraging activity that other methods failed to detect.

  17. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool.

    PubMed

    Aqil, Muhammad; Kita, Ichiro; Yano, Akira; Nishiyama, Soichi

    2007-10-01

    Traditionally, the multiple linear regression technique has been one of the most widely used models in simulating hydrological time series. However, when the nonlinear phenomenon is significant, the multiple linear will fail to develop an appropriate predictive model. Recently, neuro-fuzzy systems have gained much popularity for calibrating the nonlinear relationships. This study evaluated the potential of a neuro-fuzzy system as an alternative to the traditional statistical regression technique for the purpose of predicting flow from a local source in a river basin. The effectiveness of the proposed identification technique was demonstrated through a simulation study of the river flow time series of the Citarum River in Indonesia. Furthermore, in order to provide the uncertainty associated with the estimation of river flow, a Monte Carlo simulation was performed. As a comparison, a multiple linear regression analysis that was being used by the Citarum River Authority was also examined using various statistical indices. The simulation results using 95% confidence intervals indicated that the neuro-fuzzy model consistently underestimated the magnitude of high flow while the low and medium flow magnitudes were estimated closer to the observed data. The comparison of the prediction accuracy of the neuro-fuzzy and linear regression methods indicated that the neuro-fuzzy approach was more accurate in predicting river flow dynamics. The neuro-fuzzy model was able to improve the root mean square error (RMSE) and mean absolute percentage error (MAPE) values of the multiple linear regression forecasts by about 13.52% and 10.73%, respectively. Considering its simplicity and efficiency, the neuro-fuzzy model is recommended as an alternative tool for modeling of flow dynamics in the study area.

  18. Metabolomics study on primary dysmenorrhea patients during the luteal regression stage based on ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry

    PubMed Central

    Fang, Ling; Gu, Caiyun; Liu, Xinyu; Xie, Jiabin; Hou, Zhiguo; Tian, Meng; Yin, Jia; Li, Aizhu; Li, Yubo

    2017-01-01

    Primary dysmenorrhea (PD) is a common gynecological disorder which, while not life-threatening, severely affects the quality of life of women. Most patients with PD suffer ovarian hormone imbalances caused by uterine contraction, which results in dysmenorrhea. PD patients may also suffer from increases in estrogen levels caused by increased levels of prostaglandin synthesis and release during luteal regression and early menstruation. Although PD pathogenesis has been previously reported on, these studies only examined the menstrual period and neglected the importance of the luteal regression stage. Therefore, the present study used urine metabolomics to examine changes in endogenous substances and detect urine biomarkers for PD during luteal regression. Ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry was used to create metabolomic profiles for 36 patients with PD and 27 healthy controls. Principal component analysis and partial least squares discriminate analysis were used to investigate the metabolic alterations associated with PD. Ten biomarkers for PD were identified, including ornithine, dihydrocortisol, histidine, citrulline, sphinganine, phytosphingosine, progesterone, 17-hydroxyprogesterone, androstenedione, and 15-keto-prostaglandin F2α. The specificity and sensitivity of these biomarkers was assessed based on the area under the curve of receiver operator characteristic curves, which can be used to distinguish patients with PD from healthy controls. These results provide novel targets for the treatment of PD. PMID:28098892

  19. Changes in aerobic power of women, ages 20-64 yr

    NASA Technical Reports Server (NTRS)

    Jackson, A. S.; Wier, L. T.; Ayers, G. W.; Beard, E. F.; Stuteville, J. E.; Blair, S. N.

    1996-01-01

    This study quantified and compared the cross-sectional and longitudinal influence of age, self-report physical activity (SR-PA), and body composition (%fat) on the decline of maximal aerobic power (VO2peak) of women. The cross-sectional sample consisted of 409 healthy women, ages 20-64 yr. The 43 women of the longitudinal sample were from the same population and examined twice, the mean time between tests was 3.7 (+/-2.2) yr. Peak oxygen uptake was determined by indirect calorimetry during a maximal treadmill test. The zero-order correlation of -0.742 between VO2peak and %fat was significantly (P < 0.05) higher then the SR-PA (r = 0.626) and age correlations (r = -0.633). Linear regression defined the cross-sectional age-related decline in VO2peak at 0.537 ml.kg-1.min-1.yr-1. Multiple regression analysis (R = 0.851) showed that adding %fat and SR-PA and their interaction to the regression model reduced the age regression weight of -0.537, to -0.265 ml.kg-1.min-1.yr-1. Statistically controlling for time differences between tests, general linear models analysis showed that longitudinal changes in aerobic power were due to independent changes in %fat and SR-PA, confirming the cross-sectional results. These findings are consistent with men's data from the same lab showing that about 50% of the cross-sectional age-related decline in VO2peak was due to %fat and SR-PA.

  20. Sitting Time in Adults 65 Years and Over: Behavior, Knowledge, and Intentions to Change.

    PubMed

    Alley, Stephanie; van Uffelen, Jannique G Z; Duncan, Mitch J; De Cocker, Katrien; Schoeppe, Stephanie; Rebar, Amanda L; Vandelanotte, Corneel

    2018-04-01

    This study examined sitting time, knowledge, and intentions to change sitting time in older adults. An online survey was completed by 494 Australians aged 65+. Average daily sitting was high (9.0 hr). Daily sitting time was the highest during TV (3.3 hr), computer (2.1 hr), and leisure (1.7 hr). A regression analysis demonstrated that women were more knowledgeable about the health risks of sitting compared to men. The percentage of older adults intending to sit less were the highest for TV (24%), leisure (24%), and computer (19%) sitting time. Regression analyses demonstrated that intentions varied by gender (for TV sitting), education (leisure and work sitting), body mass index (computer, leisure, and transport sitting), and physical activity (TV, computer, and leisure sitting). Interventions should target older adults' TV, computer, and leisure time sitting, with a focus on intentions in older males and older adults with low education, those who are active, and those with a normal weight.

  1. Unpredictability of fighter pilots' g duration tolerance by anthropometric and physiological characteristics.

    PubMed

    Park, Myunghwan; Yoo, Seunghoon; Seol, Hyeongju; Kim, Cheonyoung; Hong, Youngseok

    2015-04-01

    While the factors affecting fighter pilots' G level tolerance have been widely accepted, the factors affecting fighter pilots' G duration tolerance have not been well understood. Thirty-eight subjects wearing anti-G suits were exposed to sustained high G forces using a centrifuge. The subjects exerted AGSM and decelerated the centrifuge when they reached the point of loss of peripheral vision. The G profile consisted of a +2.3 G onset rate, +7.3 G single plateau, and -1.6 G offset rate. Each subject's G tolerance time was recorded and the relationship between the tolerance time and the subject's anthropometric and physiological factors were analyzed. The mean tolerance time of the 38 subjects was 31.6 s, and the min and max tolerance times were 20 s and 58 s, respectively. The correlation analysis indicated that none of the factors had statistically significant correlations with the subjects' G duration tolerance. Stepwise multiple regression analysis showed that G duration tolerance was not dependent on any personal factors of the subjects. After the values of personal factors were simplified into 0 or 1, the t-test analysis showed that subjects' heights were inversely correlated with G duration tolerance at a statistically significant level. However, a logistic regression analysis suggested that the effect of the height factor to a pilot's G duration tolerance was too weak to be used as a predictor of a pilot's G tolerance. Fighter pilots' G duration tolerance could not be predicted by pilots' anthropometric and physiological factors.

  2. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    NASA Astrophysics Data System (ADS)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  3. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  4. A Time Series Analysis: Weather Factors, Human Migration and Malaria Cases in Endemic Area of Purworejo, Indonesia, 2005–2014

    PubMed Central

    REJEKI, Dwi Sarwani Sri; NURHAYATI, Nunung; AJI, Budi; MURHANDARWATI, E. Elsa Herdiana; KUSNANTO, Hari

    2018-01-01

    Background: Climatic and weather factors become important determinants of vector-borne diseases transmission like malaria. This study aimed to prove relationships between weather factors with considering human migration and previous case findings and malaria cases in endemic areas in Purworejo during 2005–2014. Methods: This study employed ecological time series analysis by using monthly data. The independent variables were the maximum temperature, minimum temperature, maximum humidity, minimum humidity, precipitation, human migration, and previous malaria cases, while the dependent variable was positive malaria cases. Three models of count data regression analysis i.e. Poisson model, quasi-Poisson model, and negative binomial model were applied to measure the relationship. The least Akaike Information Criteria (AIC) value was also performed to find the best model. Negative binomial regression analysis was considered as the best model. Results: The model showed that humidity (lag 2), precipitation (lag 3), precipitation (lag 12), migration (lag1) and previous malaria cases (lag 12) had a significant relationship with malaria cases. Conclusion: Weather, migration and previous malaria cases factors need to be considered as prominent indicators for the increase of malaria case projection. PMID:29900134

  5. Factors Influencing Cecal Intubation Time during Retrograde Approach Single-Balloon Enteroscopy

    PubMed Central

    Chen, Peng-Jen; Shih, Yu-Lueng; Huang, Hsin-Hung; Hsieh, Tsai-Yuan

    2014-01-01

    Background and Aim. The predisposing factors for prolonged cecal intubation time (CIT) during colonoscopy have been well identified. However, the factors influencing CIT during retrograde SBE have not been addressed. The aim of this study was to determine the factors influencing CIT during retrograde SBE. Methods. We investigated patients who underwent retrograde SBE at a medical center from January 2011 to March 2014. The medical charts and SBE reports were reviewed. The patients' characteristics and procedure-associated data were recorded. These data were analyzed with univariate analysis as well as multivariate logistic regression analysis to identify the possible predisposing factors. Results. We enrolled 66 patients into this study. The median CIT was 17.4 minutes. With univariate analysis, there was no statistical difference in age, sex, BMI, or history of abdominal surgery, except for bowel preparation (P = 0.021). Multivariate logistic regression analysis showed that inadequate bowel preparation (odds ratio 30.2, 95% confidence interval 4.63–196.54; P < 0.001) was the independent predisposing factors for prolonged CIT during retrograde SBE. Conclusions. For experienced endoscopist, inadequate bowel preparation was the independent predisposing factor for prolonged CIT during retrograde SBE. PMID:25505904

  6. Big Data Toolsets to Pharmacometrics: Application of Machine Learning for Time-to-Event Analysis.

    PubMed

    Gong, Xiajing; Hu, Meng; Zhao, Liang

    2018-05-01

    Additional value can be potentially created by applying big data tools to address pharmacometric problems. The performances of machine learning (ML) methods and the Cox regression model were evaluated based on simulated time-to-event data synthesized under various preset scenarios, i.e., with linear vs. nonlinear and dependent vs. independent predictors in the proportional hazard function, or with high-dimensional data featured by a large number of predictor variables. Our results showed that ML-based methods outperformed the Cox model in prediction performance as assessed by concordance index and in identifying the preset influential variables for high-dimensional data. The prediction performances of ML-based methods are also less sensitive to data size and censoring rates than the Cox regression model. In conclusion, ML-based methods provide a powerful tool for time-to-event analysis, with a built-in capacity for high-dimensional data and better performance when the predictor variables assume nonlinear relationships in the hazard function. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  7. Individual risk factors for deep infection and compromised fracture healing after intramedullary nailing of tibial shaft fractures: a single centre experience of 480 patients.

    PubMed

    Metsemakers, W-J; Handojo, K; Reynders, P; Sermon, A; Vanderschot, P; Nijs, S

    2015-04-01

    Despite modern advances in the treatment of tibial shaft fractures, complications including nonunion, malunion, and infection remain relatively frequent. A better understanding of these injuries and its complications could lead to prevention rather than treatment strategies. A retrospective study was performed to identify risk factors for deep infection and compromised fracture healing after intramedullary nailing (IMN) of tibial shaft fractures. Between January 2000 and January 2012, 480 consecutive patients with 486 tibial shaft fractures were enrolled in the study. Statistical analysis was performed to determine predictors of deep infection and compromised fracture healing. Compromised fracture healing was subdivided in delayed union and nonunion. The following independent variables were selected for analysis: age, sex, smoking, obesity, diabetes, American Society of Anaesthesiologists (ASA) classification, polytrauma, fracture type, open fractures, Gustilo type, primary external fixation (EF), time to nailing (TTN) and reaming. As primary statistical evaluation we performed a univariate analysis, followed by a multiple logistic regression model. Univariate regression analysis revealed similar risk factors for delayed union and nonunion, including fracture type, open fractures and Gustilo type. Factors affecting the occurrence of deep infection in this model were primary EF, a prolonged TTN, open fractures and Gustilo type. Multiple logistic regression analysis revealed polytrauma as the single risk factor for nonunion. With respect to delayed union, no risk factors could be identified. In the same statistical model, deep infection was correlated with primary EF. The purpose of this study was to evaluate risk factors of poor outcome after IMN of tibial shaft fractures. The univariate regression analysis showed that the nature of complications after tibial shaft nailing could be multifactorial. This was not confirmed in a multiple logistic regression model, which only revealed polytrauma and primary EF as risk factors for nonunion and deep infection, respectively. Future strategies should focus on prevention in high-risk populations such as polytrauma patients treated with EF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Standardized Regression Coefficients as Indices of Effect Sizes in Meta-Analysis

    ERIC Educational Resources Information Center

    Kim, Rae Seon

    2011-01-01

    When conducting a meta-analysis, it is common to find many collected studies that report regression analyses, because multiple regression analysis is widely used in many fields. Meta-analysis uses effect sizes drawn from individual studies as a means of synthesizing a collection of results. However, indices of effect size from regression analyses…

  9. Leaf phenological characters of main tree species in urban forest of Shenyang.

    PubMed

    Xu, Sheng; Xu, Wenduo; Chen, Wei; He, Xingyuan; Huang, Yanqing; Wen, Hua

    2014-01-01

    Plant leaves, as the main photosynthetic organs and the high energy converters among primary producers in terrestrial ecosystems, have attracted significant research attention. Leaf lifespan is an adaptive characteristic formed by plants to obtain the maximum carbon in the long-term adaption process. It determines important functional and structural characteristics exhibited in the environmental adaptation of plants. However, the leaf lifespan and leaf characteristics of urban forests were not studied up to now. By using statistic, linear regression methods and correlation analysis, leaf phenological characters of main tree species in urban forest of Shenyang were observed for five years to obtain the leafing phenology (including leafing start time, end time, and duration), defoliating phenology (including defoliation start time, end time, and duration), and the leaf lifespan of the main tree species. Moreover, the relationships between temperature and leafing phenology, defoliating phenology, and leaf lifespan were analyzed. The timing of leafing differed greatly among species. The early leafing species would have relatively early end of leafing; the longer it took to the end of leafing would have a later time of completed leafing. The timing of defoliation among different species varied significantly, the early defoliation species would have relatively longer duration of defoliation. If the mean temperature rise for 1°C in spring, the time of leafing would experience 5 days earlier in spring. If the mean temperature decline for 1°C, the time of defoliation would experience 3 days delay in autumn. There is significant correlation between leaf longevity and the time of leafing and defoliation. According to correlation analysis and regression analysis, there is significant correlation between temperature and leafing and defoliation phenology. Early leafing species would have a longer life span and consequently have advantage on carbon accumulation compared with later defoliation species.

  10. Placement Model for First-Time Freshmen in Calculus I (Math 131): University of Northern Colorado

    ERIC Educational Resources Information Center

    Heiny, Robert L.; Heiny, Erik L.; Raymond, Karen

    2017-01-01

    Two approaches, Linear Discriminant Analysis, and Logistic Regression are used and compared to predict success or failure for first-time freshmen in the first calculus course at a medium-sized public, 4-year institution prior to Fall registration. The predictor variables are high school GPA, the number, and GPA's of college prep mathematics…

  11. A secure distributed logistic regression protocol for the detection of rare adverse drug events

    PubMed Central

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-01-01

    Background There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. Objective To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. Methods We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. Results The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. Conclusion The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models. PMID:22871397

  12. A secure distributed logistic regression protocol for the detection of rare adverse drug events.

    PubMed

    El Emam, Khaled; Samet, Saeed; Arbuckle, Luk; Tamblyn, Robyn; Earle, Craig; Kantarcioglu, Murat

    2013-05-01

    There is limited capacity to assess the comparative risks of medications after they enter the market. For rare adverse events, the pooling of data from multiple sources is necessary to have the power and sufficient population heterogeneity to detect differences in safety and effectiveness in genetic, ethnic and clinically defined subpopulations. However, combining datasets from different data custodians or jurisdictions to perform an analysis on the pooled data creates significant privacy concerns that would need to be addressed. Existing protocols for addressing these concerns can result in reduced analysis accuracy and can allow sensitive information to leak. To develop a secure distributed multi-party computation protocol for logistic regression that provides strong privacy guarantees. We developed a secure distributed logistic regression protocol using a single analysis center with multiple sites providing data. A theoretical security analysis demonstrates that the protocol is robust to plausible collusion attacks and does not allow the parties to gain new information from the data that are exchanged among them. The computational performance and accuracy of the protocol were evaluated on simulated datasets. The computational performance scales linearly as the dataset sizes increase. The addition of sites results in an exponential growth in computation time. However, for up to five sites, the time is still short and would not affect practical applications. The model parameters are the same as the results on pooled raw data analyzed in SAS, demonstrating high model accuracy. The proposed protocol and prototype system would allow the development of logistic regression models in a secure manner without requiring the sharing of personal health information. This can alleviate one of the key barriers to the establishment of large-scale post-marketing surveillance programs. We extended the secure protocol to account for correlations among patients within sites through generalized estimating equations, and to accommodate other link functions by extending it to generalized linear models.

  13. Preoperative Thromboelastometry as a Predictor of Transfusion Requirements during Adult Living Donor Liver Transplantation.

    PubMed

    Fayed, Nirmeen; Mourad, Wessam; Yassen, Khaled; Görlinger, Klaus

    2015-03-01

    The ability to predict transfusion requirements may improve perioperative bleeding management as an integral part of a patient blood management program. Therefore, the aim of our study was to evaluate preoperative thromboelastometry as a predictor of transfusion requirements for adult living donor liver transplant recipients. The correlation between preoperative thromboelastometry variables in 100 adult living donor liver transplant recipients and intraoperative blood transfusion requirements was examined by univariate and multivariate linear regression analysis. Thresholds of thromboelastometric parameters for prediction of packed red blood cells (PRBCs), fresh frozen plasma (FFP), platelets, and cryoprecipitate transfusion requirements were determined with receiver operating characteristics analysis. The attending anesthetists were blinded to the preoperative thromboelastometric analysis. However, a thromboelastometry-guided transfusion algorithm with predefined trigger values was used intraoperatively. The transfusion triggers in this algorithm did not change during the study period. Univariate analysis confirmed significant correlations between PRBCs, FFP, platelets or cryoprecipitate transfusion requirements and most thromboelastometric variables. Backward stepwise logistic regression indicated that EXTEM coagulation time (CT), maximum clot firmness (MCF) and INTEM CT, clot formation time (CFT) and MCF are independent predictors for PRBC transfusion. EXTEM CT, CFT and FIBTEM MCF are independent predictors for FFP transfusion. Only EXTEM and INTEM MCF were independent predictors of platelet transfusion. EXTEM CFT and MCF, INTEM CT, CFT and MCF as well as FIBTEM MCF are independent predictors for cryoprecipitate transfusion. Thromboelastometry-based regression equation accounted for 63% of PRBC, 83% of FFP, 61% of cryoprecipitate, and 44% of platelet transfusion requirements. Preoperative thromboelastometric analysis is helpful to predict transfusion requirements in adult living donor liver transplant recipients. This may allow for better preparation and less cross-matching prior to surgery. The findings of our study need to be re-validated in a second prospective patient population.

  14. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis.

    PubMed

    Zaggia, Luca; Lorenzetti, Giuliano; Manfé, Giorgia; Scarpa, Gian Marco; Molinaroli, Emanuela; Parnell, Kevin Ellis; Rapaglia, John Paul; Gionta, Maria; Soomere, Tarmo

    2017-01-01

    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3-4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968-2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide.

  15. Long-term response of total ozone content at different latitudes of the Northern and Southern Hemispheres caused by solar activity during 1958-2006 (results of regression analysis)

    NASA Astrophysics Data System (ADS)

    Krivolutsky, Alexei A.; Nazarova, Margarita; Knyazeva, Galina

    Solar activity influences on atmospheric photochemical system via its changebale electromag-netic flux with eleven-year period and also by energetic particles during solar proton event (SPE). Energetic particles penetrate mostly into polar regions and induce additional produc-tion of NOx and HOx chemical compounds, which can destroy ozone in photochemical catalytic cycles. Solar irradiance variations cause in-phase variability of ozone in accordance with photo-chemical theory. However, real ozone response caused by these two factors, which has different physical nature, is not so clear on long-term time scale. In order to understand the situation multiply linear regression statistical method was used. Three data series, which covered the period 1958-2006, have been used to realize such analysis: yearly averaged total ozone at dif-ferent latitudes (World Ozone Data Centre, Canada, WMO); yearly averaged proton fluxes with E¿ 10 MeV ( IMP, GOES, METEOR satellites); yearly averaged numbers of solar spots (Solar Data). Then, before the analysis, the data sets of ozone deviations from the mean values for whole period (1958-2006) at each latitudinal belt were prepared. The results of multiply regression analysis (two factors) revealed rather complicated time-dependent behavior of ozone response with clear negative peaks for the years of strong SPEs. The magnitudes of such peaks on annual mean basis are not greater than 10 DU. The unusual effect -positive response of ozone to solar proton activity near both poles-was discovered by statistical analysis. The pos-sible photochemical nature of found effect is discussed. This work was supported by Russian Science Foundation for Basic Research (grant 09-05-009949) and by the contract 1-6-08 under Russian Sub-Program "Research and Investigation of Antarctica".

  16. The Association of Fever with Total Mechanical Ventilation Time in Critically Ill Patients.

    PubMed

    Park, Dong Won; Egi, Moritoki; Nishimura, Masaji; Chang, Youjin; Suh, Gee Young; Lim, Chae Man; Kim, Jae Yeol; Tada, Keiichi; Matsuo, Koichi; Takeda, Shinhiro; Tsuruta, Ryosuke; Yokoyama, Takeshi; Kim, Seon Ok; Koh, Younsuck

    2016-12-01

    This research aims to investigate the impact of fever on total mechanical ventilation time (TVT) in critically ill patients. Subgroup analysis was conducted using a previous prospective, multicenter observational study. We included mechanically ventilated patients for more than 24 hours from 10 Korean and 15 Japanese intensive care units (ICU), and recorded maximal body temperature under the support of mechanical ventilation (MAX(MV)). To assess the independent association of MAX(MV) with TVT, we used propensity-matched analysis in a total of 769 survived patients with medical or surgical admission, separately. Together with multiple linear regression analysis to evaluate the association between the severity of fever and TVT, the effect of MAX(MV) on ventilator-free days was also observed by quantile regression analysis in all subjects including non-survivors. After propensity score matching, a MAX(MV) ≥ 37.5°C was significantly associated with longer mean TVT by 5.4 days in medical admission, and by 1.2 days in surgical admission, compared to those with MAX(MV) of 36.5°C to 37.4°C. In multivariate linear regression analysis, patients with three categories of fever (MAX(MV) of 37.5°C to 38.4°C, 38.5°C to 39.4°C, and ≥ 39.5°C) sustained a significantly longer duration of TVT than those with normal range of MAX(MV) in both categories of ICU admission. A significant association between MAX(MV) and mechanical ventilator-free days was also observed in all enrolled subjects. Fever may be a detrimental factor to prolong TVT in mechanically ventilated patients. These findings suggest that fever in mechanically ventilated patients might be associated with worse mechanical ventilation outcome.

  17. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis

    PubMed Central

    Lorenzetti, Giuliano; Manfé, Giorgia; Scarpa, Gian Marco; Molinaroli, Emanuela; Parnell, Kevin Ellis; Rapaglia, John Paul; Gionta, Maria; Soomere, Tarmo

    2017-01-01

    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3˗4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968˗2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide. PMID:29088244

  18. Gender differences in social support and leisure-time physical activity.

    PubMed

    Oliveira, Aldair J; Lopes, Claudia S; Rostila, Mikael; Werneck, Guilherme Loureiro; Griep, Rosane Härter; Leon, Antônio Carlos Monteiro Ponce de; Faerstein, Eduardo

    2014-08-01

    To identify gender differences in social support dimensions' effect on adults' leisure-time physical activity maintenance, type, and time. Longitudinal study of 1,278 non-faculty public employees at a university in Rio de Janeiro, RJ, Southeastern Brazil. Physical activity was evaluated using a dichotomous question with a two-week reference period, and further questions concerning leisure-time physical activity type (individual or group) and time spent on the activity. Social support was measured with the Medical Outcomes Study Social Support Scale. For the analysis, logistic regression models were adjusted separately by gender. A multinomial logistic regression showed an association between material support and individual activities among women (OR = 2.76; 95%CI 1.2;6.5). Affective support was associated with time spent on leisure-time physical activity only among men (OR = 1.80; 95%CI 1.1;3.2). All dimensions of social support that were examined influenced either the type of, or the time spent on, leisure-time physical activity. In some social support dimensions, the associations detected varied by gender. Future studies should attempt to elucidate the mechanisms involved in these gender differences.

  19. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    NASA Astrophysics Data System (ADS)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  20. Exploring the relationships between free-time management and boredom in leisure.

    PubMed

    Wang, Wei-Ching; Wu, Chung-Chi; Wu, Chang-Yang; Huan, Tzung-Cheng

    2012-04-01

    The purpose of the study was to examine the relations of five dimensions of free-time management (including goal setting and evaluating, technique, values, immediate response, and scheduling) with leisure boredom, and whether these factors could predict leisure boredom. A total of 500 undergraduates from a university in southern Taiwan were surveyed with 403 usable questionnaires was returned. Pearson correlation analysis revealed that five dimensions of free-time management had significant negative relationships with leisure boredom. Furthermore, the results of stepwise regression analysis revealed that four dimensions of free-time management were significant contributors to leisure boredom. Finally, we suggested students can avoid boredom by properly planning and organizing leisure time and applying techniques for managing leisure time.

  1. Regression Analysis to Identify Factors Associated with Urinary Iodine Concentration at the Sub-National Level in India, Ghana, and Senegal

    PubMed Central

    Knowles, Jacky; Kupka, Roland; Dumble, Sam; Garrett, Greg S.; Pandav, Chandrakant S.; Yadav, Kapil; Touré, Ndeye Khady; Foriwa Amoaful, Esi; Gorstein, Jonathan

    2018-01-01

    Single and multiple variable regression analyses were conducted using data from stratified, cluster sample design, iodine surveys in India, Ghana, and Senegal to identify factors associated with urinary iodine concentration (UIC) among women of reproductive age (WRA) at the national and sub-national level. Subjects were survey household respondents, typically WRA. For all three countries, UIC was significantly different (p < 0.05) by household salt iodine category. Other significant differences were by strata and by household vulnerability to poverty in India and Ghana. In multiple variable regression analysis, UIC was significantly associated with strata and household salt iodine category in India and Ghana (p < 0.001). Estimated UIC was 1.6 (95% confidence intervals (CI) 1.3, 2.0) times higher (India) and 1.4 (95% CI 1.2, 1.6) times higher (Ghana) among WRA from households using adequately iodised salt than among WRA from households using non-iodised salt. Other significant associations with UIC were found in India, with having heard of iodine deficiency (1.2 times higher; CI 1.1, 1.3; p < 0.001) and having improved dietary diversity (1.1 times higher, CI 1.0, 1.2; p = 0.015); and in Ghana, with the level of tomato paste consumption the previous week (p = 0.029) (UIC for highest consumption level was 1.2 times lowest level; CI 1.1, 1.4). No significant associations were found in Senegal. Sub-national data on iodine status are required to assess equity of access to optimal iodine intake and to develop strategic responses as needed. PMID:29690505

  2. Surrogate analysis and index developer (SAID) tool and real-time data dissemination utilities

    USGS Publications Warehouse

    Domanski, Marian M.; Straub, Timothy D.; Wood, Molly S.; Landers, Mark N.; Wall, Gary R.; Brady, Steven J.

    2015-01-01

    The use of acoustic and other parameters as surrogates for suspended-sediment concentrations (SSC) in rivers has been successful in multiple applications across the Nation. Critical to advancing the operational use of surrogates are tools to process and evaluate the data along with the subsequent development of regression models from which real-time sediment concentrations can be made available to the public. Recent developments in both areas are having an immediate impact on surrogate research, and on surrogate monitoring sites currently in operation. The Surrogate Analysis and Index Developer (SAID) standalone tool, under development by the U.S. Geological Survey (USGS), assists in the creation of regression models that relate response and explanatory variables by providing visual and quantitative diagnostics to the user. SAID also processes acoustic parameters to be used as explanatory variables for suspended-sediment concentrations. The sediment acoustic method utilizes acoustic parameters from fixed-mount stationary equipment. The background theory and method used by the tool have been described in recent publications, and the tool also serves to support sediment-acoustic-index methods being drafted by the multi-agency Sediment Acoustic Leadership Team (SALT), and other surrogate guidelines like USGS Techniques and Methods 3-C4 for turbidity and SSC. The regression models in SAID can be used in utilities that have been developed to work with the USGS National Water Information System (NWIS) and for the USGS National Real-Time Water Quality (NRTWQ) Web site. The real-time dissemination of predicted SSC and prediction intervals for each time step has substantial potential to improve understanding of sediment-related water-quality and associated engineering and ecological management decisions.

  3. Sulfur Mustard Induces Apoptosis in Lung Epithelial Cells via a Caspase Amplification Loop

    DTIC Science & Technology

    2010-01-01

    analysis using antibodies specific for exe- cutioner caspase-3. The positions of the immunoreactive proteins are indicated. Results shown are representative...respectively. The emission at 460nm from each sample was plotted against time, and linear regression analysis was used to determine the initial veloc- ity...follows, **pɘ.01, ***pɘ.001. .4. Immunoblot analysis SDS-PAGE and transfer of separated proteins to nitrocellulosemembranes were erformed according to

  4. Time course for tail regression during metamorphosis of the ascidian Ciona intestinalis.

    PubMed

    Matsunobu, Shohei; Sasakura, Yasunori

    2015-09-01

    In most ascidians, the tadpole-like swimming larvae dramatically change their body-plans during metamorphosis and develop into sessile adults. The mechanisms of ascidian metamorphosis have been researched and debated for many years. Until now information on the detailed time course of the initiation and completion of each metamorphic event has not been described. One dramatic and important event in ascidian metamorphosis is tail regression, in which ascidian larvae lose their tails to adjust themselves to sessile life. In the present study, we measured the time associated with tail regression in the ascidian Ciona intestinalis. Larvae are thought to acquire competency for each metamorphic event in certain developmental periods. We show that the timing with which the competence for tail regression is acquired is determined by the time since hatching, and this timing is not affected by the timing of post-hatching events such as adhesion. Because larvae need to adhere to substrates with their papillae to induce tail regression, we measured the duration for which larvae need to remain adhered in order to initiate tail regression and the time needed for the tail to regress. Larvae acquire the ability to adhere to substrates before they acquire tail regression competence. We found that when larvae adhered before they acquired tail regression competence, they were able to remember the experience of adhesion until they acquired the ability to undergo tail regression. The time course of the events associated with tail regression provides a valuable reference, upon which the cellular and molecular mechanisms of ascidian metamorphosis can be elucidated. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. STATISTICAL METHOD FOR DETECTION OF A TREND IN ATMOSPHERIC SULFATE

    EPA Science Inventory

    Daily atmospheric concentrations of sulfate collected in northeastern Pennsylvania are regressed against meteorological factors, ozone, and time in order to determine if a significant trend in sulfate can be detected. he data used in this analysis were collected during the Sulfat...

  6. An unjustified benefit: immortal time bias in the analysis of time-dependent events.

    PubMed

    Gleiss, Andreas; Oberbauer, Rainer; Heinze, Georg

    2018-02-01

    Immortal time bias is a problem arising from methodologically wrong analyses of time-dependent events in survival analyses. We illustrate the problem by analysis of a kidney transplantation study. Following patients from transplantation to death, groups defined by the occurrence or nonoccurrence of graft failure during follow-up seemingly had equal overall mortality. Such naive analysis assumes that patients were assigned to the two groups at time of transplantation, which actually are a consequence of occurrence of a time-dependent event later during follow-up. We introduce landmark analysis as the method of choice to avoid immortal time bias. Landmark analysis splits the follow-up time at a common, prespecified time point, the so-called landmark. Groups are then defined by time-dependent events having occurred before the landmark, and outcome events are only considered if occurring after the landmark. Landmark analysis can be easily implemented with common statistical software. In our kidney transplantation example, landmark analyses with landmarks set at 30 and 60 months clearly identified graft failure as a risk factor for overall mortality. We give further typical examples from transplantation research and discuss strengths and limitations of landmark analysis and other methods to address immortal time bias such as Cox regression with time-dependent covariables. © 2017 Steunstichting ESOT.

  7. Multivariate logistic regression analysis of postoperative complications and risk model establishment of gastrectomy for gastric cancer: A single-center cohort report.

    PubMed

    Zhou, Jinzhe; Zhou, Yanbing; Cao, Shougen; Li, Shikuan; Wang, Hao; Niu, Zhaojian; Chen, Dong; Wang, Dongsheng; Lv, Liang; Zhang, Jian; Li, Yu; Jiao, Xuelong; Tan, Xiaojie; Zhang, Jianli; Wang, Haibo; Zhang, Bingyuan; Lu, Yun; Sun, Zhenqing

    2016-01-01

    Reporting of surgical complications is common, but few provide information about the severity and estimate risk factors of complications. If have, but lack of specificity. We retrospectively analyzed data on 2795 gastric cancer patients underwent surgical procedure at the Affiliated Hospital of Qingdao University between June 2007 and June 2012, established multivariate logistic regression model to predictive risk factors related to the postoperative complications according to the Clavien-Dindo classification system. Twenty-four out of 86 variables were identified statistically significant in univariate logistic regression analysis, 11 significant variables entered multivariate analysis were employed to produce the risk model. Liver cirrhosis, diabetes mellitus, Child classification, invasion of neighboring organs, combined resection, introperative transfusion, Billroth II anastomosis of reconstruction, malnutrition, surgical volume of surgeons, operating time and age were independent risk factors for postoperative complications after gastrectomy. Based on logistic regression equation, p=Exp∑BiXi / (1+Exp∑BiXi), multivariate logistic regression predictive model that calculated the risk of postoperative morbidity was developed, p = 1/(1 + e((4.810-1.287X1-0.504X2-0.500X3-0.474X4-0.405X5-0.318X6-0.316X7-0.305X8-0.278X9-0.255X10-0.138X11))). The accuracy, sensitivity and specificity of the model to predict the postoperative complications were 86.7%, 76.2% and 88.6%, respectively. This risk model based on Clavien-Dindo grading severity of complications system and logistic regression analysis can predict severe morbidity specific to an individual patient's risk factors, estimate patients' risks and benefits of gastric surgery as an accurate decision-making tool and may serve as a template for the development of risk models for other surgical groups.

  8. [Risk factors for elevated serum total bile acid in preterm infants].

    PubMed

    Song, Yan-Ting; Wang, Yong-Qin; Zhao, Yue-Hua; Zhu, Hai-Ling; Liu, Qian; Zhang, Xiao; Gao, Yi-Wen; Zhang, Wei-Ye; Sang, Yu-Tong

    2018-03-01

    To study the risk factors for elevated serum total bile acid (TBA) in preterm infants. A retrospective analysis was performed for the clinical data of 216 preterm infants who were admitted to the neonatal intensive care unit. According to the presence or absence of elevated TBA (TBA >24.8 μmol/L), the preterm infants were divided into elevated TBA group with 53 infants and non-elevated TBA group with 163 infants. A univariate analysis and an unconditional multivariate logistic regression analysis were used to investigate the risk factors for elevated TBA. The univariate analysis showed that there were significant differences between the elevated TBA group and the non-elevated TBA group in gestational age at birth, birth weight, proportion of small-for-gestational-age infants, proportion of infants undergoing ventilator-assisted ventilation, fasting time, parenteral nutrition time, and incidence of neonatal respiratory failure and sepsis (P<0.05). The unconditional multivariate logistic regression analysis showed that low birth weight (OR=3.84, 95%CI: 1.53-9.64) and neonatal sepsis (OR=2.56, 95%CI: 1.01-6.47) were independent risk factors for elevated TBA in preterm infants. Low birth weight and neonatal sepsis may lead to elevated TBA in preterm infants.

  9. Body sway, aim point fluctuation and performance in rifle shooters: inter- and intra-individual analysis.

    PubMed

    Ball, Kevin A; Best, Russell J; Wrigley, Tim V

    2003-07-01

    In this study, we examined the relationships between body sway, aim point fluctuation and performance in rifle shooting on an inter- and intra-individual basis. Six elite shooters performed 20 shots under competition conditions. For each shot, body sway parameters and four aim point fluctuation parameters were quantified for the time periods 5 s to shot, 3 s to shot and 1 s to shot. Three parameters were used to indicate performance. An AMTI LG6-4 force plate was used to measure body sway parameters, while a SCATT shooting analysis system was used to measure aim point fluctuation and shooting performance. Multiple regression analysis indicated that body sway was related to performance for four shooters. Also, body sway was related to aim point fluctuation for all shooters. These relationships were specific to the individual, with the strength of association, parameters of importance and time period of importance different for different shooters. Correlation analysis of significant regressions indicated that, as body sway increased, performance decreased and aim point fluctuation increased for most relationships. We conclude that body sway and aim point fluctuation are important in elite rifle shooting and performance errors are highly individual-specific at this standard. Individual analysis should be a priority when examining elite sports performance.

  10. Trend analysis of salt load and evaluation of the frequency of water-quality measurements for the Gunnison, the Colorado, and the Dolores rivers in Colorado and Utah

    USGS Publications Warehouse

    Kircher, J.E.; Dinicola, Richard S.; Middelburg, R.F.

    1984-01-01

    Monthly values were computed for water-quality constituents at four streamflow gaging stations in the Upper Colorado River basin for the determination of trends. Seasonal regression and seasonal Kendall trend analysis techniques were applied to two monthly data sets at each station site for four different time periods. A recently developed method for determining optimal water-discharge data-collection frequency was also applied to the monthly water-quality data. Trend analysis results varied with each monthly load computational method, period of record, and trend detection model used. No conclusions could be reached regarding which computational method was best to use in trend analysis. Time-period selection for analysis was found to be important with regard to intended use of the results. Seasonal Kendall procedures were found to be applicable to most data sets. Seasonal regression models were more difficult to apply and were sometimes of questionable validity; however, those results were more informative than seasonal Kendall results. The best model to use depends upon the characteristics of the data and the amount of trend information needed. The measurement-frequency optimization method had potential for application to water-quality data, but refinements are needed. (USGS)

  11. Using Dominance Analysis to Determine Predictor Importance in Logistic Regression

    ERIC Educational Resources Information Center

    Azen, Razia; Traxel, Nicole

    2009-01-01

    This article proposes an extension of dominance analysis that allows researchers to determine the relative importance of predictors in logistic regression models. Criteria for choosing logistic regression R[superscript 2] analogues were determined and measures were selected that can be used to perform dominance analysis in logistic regression. A…

  12. Multiscale characterization and prediction of monsoon rainfall in India using Hilbert-Huang transform and time-dependent intrinsic correlation analysis

    NASA Astrophysics Data System (ADS)

    Adarsh, S.; Reddy, M. Janga

    2017-07-01

    In this paper, the Hilbert-Huang transform (HHT) approach is used for the multiscale characterization of All India Summer Monsoon Rainfall (AISMR) time series and monsoon rainfall time series from five homogeneous regions in India. The study employs the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for multiscale decomposition of monsoon rainfall in India and uses the Normalized Hilbert Transform and Direct Quadrature (NHT-DQ) scheme for the time-frequency characterization. The cross-correlation analysis between orthogonal modes of All India monthly monsoon rainfall time series and that of five climate indices such as Quasi Biennial Oscillation (QBO), El Niño Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multi Decadal Oscillation (AMO), and Equatorial Indian Ocean Oscillation (EQUINOO) in the time domain showed that the links of different climate indices with monsoon rainfall are expressed well only for few low-frequency modes and for the trend component. Furthermore, this paper investigated the hydro-climatic teleconnection of ISMR in multiple time scales using the HHT-based running correlation analysis technique called time-dependent intrinsic correlation (TDIC). The results showed that both the strength and nature of association between different climate indices and ISMR vary with time scale. Stemming from this finding, a methodology employing Multivariate extension of EMD and Stepwise Linear Regression (MEMD-SLR) is proposed for prediction of monsoon rainfall in India. The proposed MEMD-SLR method clearly exhibited superior performance over the IMD operational forecast, M5 Model Tree (MT), and multiple linear regression methods in ISMR predictions and displayed excellent predictive skill during 1989-2012 including the four extreme events that have occurred during this period.

  13. Comparing lagged linear correlation, lagged regression, Granger causality, and vector autoregression for uncovering associations in EHR data.

    PubMed

    Levine, Matthew E; Albers, David J; Hripcsak, George

    2016-01-01

    Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.

  14. Trend Estimation and Regression Analysis in Climatological Time Series: An Application of Structural Time Series Models and the Kalman Filter.

    NASA Astrophysics Data System (ADS)

    Visser, H.; Molenaar, J.

    1995-05-01

    The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of the model is rather poor, and possible explanations are discussed.

  15. Using Time-Series Regression to Predict Academic Library Circulations.

    ERIC Educational Resources Information Center

    Brooks, Terrence A.

    1984-01-01

    Four methods were used to forecast monthly circulation totals in 15 midwestern academic libraries: dummy time-series regression, lagged time-series regression, simple average (straight-line forecasting), monthly average (naive forecasting). In tests of forecasting accuracy, dummy regression method and monthly mean method exhibited smallest average…

  16. Participation and Performance Trends in Triple Iron Ultra-triathlon – a Cross-sectional and Longitudinal Data Analysis

    PubMed Central

    Rüst, Christoph Alexander; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Lepers, Romuald

    2012-01-01

    Purpose The aims of the present study were to investigate (i) the changes in participation and performance and (ii) the gender difference in Triple Iron ultra-triathlon (11.4 km swimming, 540 km cycling and 126.6 km running) across years from 1988 to 2011. Methods For the cross-sectional data analysis, the association between with overall race times and split times was investigated using simple linear regression analyses and analysis of variance. For the longitudinal data analysis, the changes in race times for the five men and women with the highest number of participations were analysed using simple linear regression analyses. Results During the studied period, the number of finishers were 824 (71.4%) for men and 80 (78.4%) for women. Participation increased for men (r 2=0.27, P<0.01) while it remained stable for women (8%). Total race times were 2,146 ± 127.3 min for men and 2,615 ± 327.2 min for women (P<0.001). Total race time decreased for men (r 2=0.17; P=0.043), while it increased for women (r 2=0.49; P=0.001) across years. The gender difference in overall race time for winners increased from 10% in 1992 to 42% in 2011 (r 2=0.63; P<0.001). The longitudinal analysis of the five women and five men with the highest number of participations showed that performance decreased in one female (r 2=0.45; P=0.01). The four other women as well as all five men showed no change in overall race times across years. Conclusions Participation increased and performance improved for male Triple Iron ultra-triathletes while participation remained unchanged and performance decreased for females between 1988 and 2011. The reasons for the increase of the gap between female and male Triple Iron ultra-triathletes need further investigations. PMID:23012633

  17. [Optimization of processing technology for semen cuscuta by uniform and regression analysis].

    PubMed

    Li, Chun-yu; Luo, Hui-yu; Wang, Shu; Zhai, Ya-nan; Tian, Shu-hui; Zhang, Dan-shen

    2011-02-01

    To optimize the best preparation technology for the contains of total flavornoids, polysaccharides, the percentage of water and alcohol-soluble components in Semen Cuscuta herb processing. UV-spectrophotometry was applied to determine the contains of total flavornoids and polysaccharides, which were extracted from Semen Cuscuta. And the processing was optimized by the way of uniform design and contour map. The best preparation technology was satisfied with some conditions as follows: baking temperature 150 degrees C, baking time 140 seconds. The regression models are notable and reasonable, which can forecast results precisely.

  18. Machine learning of swimming data via wisdom of crowd and regression analysis.

    PubMed

    Xie, Jiang; Xu, Junfu; Nie, Celine; Nie, Qing

    2017-04-01

    Every performance, in an officially sanctioned meet, by a registered USA swimmer is recorded into an online database with times dating back to 1980. For the first time, statistical analysis and machine learning methods are systematically applied to 4,022,631 swim records. In this study, we investigate performance features for all strokes as a function of age and gender. The variances in performance of males and females for different ages and strokes were studied, and the correlations of performances for different ages were estimated using the Pearson correlation. Regression analysis show the performance trends for both males and females at different ages and suggest critical ages for peak training. Moreover, we assess twelve popular machine learning methods to predict or classify swimmer performance. Each method exhibited different strengths or weaknesses in different cases, indicating no one method could predict well for all strokes. To address this problem, we propose a new method by combining multiple inference methods to derive Wisdom of Crowd Classifier (WoCC). Our simulation experiments demonstrate that the WoCC is a consistent method with better overall prediction accuracy. Our study reveals several new age-dependent trends in swimming and provides an accurate method for classifying and predicting swimming times.

  19. Agreement evaluation of AVHRR and MODIS 16-day composite NDVI data sets

    USGS Publications Warehouse

    Ji, Lei; Gallo, Kevin P.; Eidenshink, Jeffery C.; Dwyer, John L.

    2008-01-01

    Satellite-derived normalized difference vegetation index (NDVI) data have been used extensively to detect and monitor vegetation conditions at regional and global levels. A combination of NDVI data sets derived from AVHRR and MODIS can be used to construct a long NDVI time series that may also be extended to VIIRS. Comparative analysis of NDVI data derived from AVHRR and MODIS is critical to understanding the data continuity through the time series. In this study, the AVHRR and MODIS 16-day composite NDVI products were compared using regression and agreement analysis methods. The analysis shows a high agreement between the AVHRR-NDVI and MODIS-NDVI observed from 2002 and 2003 for the conterminous United States, but the difference between the two data sets is appreciable. Twenty per cent of the total difference between the two data sets is due to systematic difference, with the remainder due to unsystematic difference. The systematic difference can be eliminated with a linear regression-based transformation between two data sets, and the unsystematic difference can be reduced partially by applying spatial filters to the data. We conclude that the continuity of NDVI time series from AVHRR to MODIS is satisfactory, but a linear transformation between the two sets is recommended.

  20. Granger causality--statistical analysis under a configural perspective.

    PubMed

    von Eye, Alexander; Wiedermann, Wolfgang; Mun, Eun-Young

    2014-03-01

    The concept of Granger causality can be used to examine putative causal relations between two series of scores. Based on regression models, it is asked whether one series can be considered the cause for the second series. In this article, we propose extending the pool of methods available for testing hypotheses that are compatible with Granger causation by adopting a configural perspective. This perspective allows researchers to assume that effects exist for specific categories only or for specific sectors of the data space, but not for other categories or sectors. Configural Frequency Analysis (CFA) is proposed as the method of analysis from a configural perspective. CFA base models are derived for the exploratory analysis of Granger causation. These models are specified so that they parallel the regression models used for variable-oriented analysis of hypotheses of Granger causation. An example from the development of aggression in adolescence is used. The example shows that only one pattern of change in aggressive impulses over time Granger-causes change in physical aggression against peers.

  1. Estimating Time to Event From Longitudinal Categorical Data: An Analysis of Multiple Sclerosis Progression.

    PubMed

    Mandel, Micha; Gauthier, Susan A; Guttmann, Charles R G; Weiner, Howard L; Betensky, Rebecca A

    2007-12-01

    The expanded disability status scale (EDSS) is an ordinal score that measures progression in multiple sclerosis (MS). Progression is defined as reaching EDSS of a certain level (absolute progression) or increasing of one point of EDSS (relative progression). Survival methods for time to progression are not adequate for such data since they do not exploit the EDSS level at the end of follow-up. Instead, we suggest a Markov transitional model applicable for repeated categorical or ordinal data. This approach enables derivation of covariate-specific survival curves, obtained after estimation of the regression coefficients and manipulations of the resulting transition matrix. Large sample theory and resampling methods are employed to derive pointwise confidence intervals, which perform well in simulation. Methods for generating survival curves for time to EDSS of a certain level, time to increase of EDSS of at least one point, and time to two consecutive visits with EDSS greater than three are described explicitly. The regression models described are easily implemented using standard software packages. Survival curves are obtained from the regression results using packages that support simple matrix calculation. We present and demonstrate our method on data collected at the Partners MS center in Boston, MA. We apply our approach to progression defined by time to two consecutive visits with EDSS greater than three, and calculate crude (without covariates) and covariate-specific curves.

  2. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis.

    PubMed

    Jiang, Wei; Xu, Chao-Zhen; Jiang, Si-Zhi; Zhang, Tang-Duo; Wang, Shi-Zhen; Fang, Bai-Shan

    2017-04-01

    L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L -1  day -1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.

  3. [Association between the office, visit-to-visit and 24-hour ambulatory systolic blood pressure and vascular damages in the elderly].

    PubMed

    Zheng, X M; Li, C H; Wu, Y T; Zhao, H Y; Jin, C; Song, L; Zhao, H L; Liu, J; Zhang, R Y; Li, W; Chen, S H; Wu, S L

    2016-07-24

    To investigate the association between different kinds of systolic blood pressure (SBP, including office, visit-to-visit, 24-hour ambulatory) and vascular damages (represented by carotid intima-media thickness, CIMT; brachial-ankle pulse wave velocity, baPWV) in the elderly. A total of 2 814 participants aged of ≥60 years old and retired employees were selected with random sampling method from the individuals who took part in 2006-2007, 2008-2009, 2010-2011 health examination in Tangshan Kailuan Hospital, Kailuan Linxi Hospital, Kailuan Zhaogezhuang Hospital and with 24-hour ambulatory blood pressure monitoring data, CIMT and baPWV.Finally, 2 146 participants (1 438 males, average age (67.3±6.0) years old) were included to the analysis.Multivariable regression analysis was used to analyze association between the office, visit-to-visit, 24-hour, day-time, night-time SBP and CIMT and baPWV, respectively. (1) The average SBP, DBP, CIMT and baPWV were (137.0±20.4) mmHg(1 mmHg=0.133 kPa), (83.5±11.0) mmHg, (0.92±0.18)mm and (1 781.7±353.2)cm/s.(2) The participants were divided into high and low level groups according to the median of different SBPs, respectively.The results indicated that CIMT and baPWV were significantly higher in high level groups than in low level groups (all P<0.01). (3) After adjusting for gender and age, the partial correlate analysis showed that the office, visit-to-visit, 24-hour, day-time, night-time SBP positively associated with CIMT and baPWV (all P<0.01). (4) After adjusting for confounding factors, multivariable regression analysis showed that the office, visit-to-visit, 24-hour, day-time, night-time SBP were positively and linearly associated with CIMT and baPWV in total cohort, and standard regression coefficients were 0.157, 0.208, 0.175, 0.169, 0.163, 0.479, 0.420, 0.401, 0.389 and 0.354, respectively.In addition, similar results were observed in male and female participants but there was no significance between night-time SBP and CIMT in female participants. Office, visit-to-visit, 24-hour, day-time, night-time SBP are associated with vascular damages, and the best associations are observed between visit-to-visit SBP and vascular function damage. Chinese CLINICAL TRIAL REGISTRY, ChiCTR-TNC-1100 1489.

  4. Cooperation without culture? The null effect of generalized trust on intentional homicide: a cross-national panel analysis, 1995-2009.

    PubMed

    Robbins, Blaine

    2013-01-01

    Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation.

  5. Is objectively measured sitting time associated with low back pain? A cross-sectional investigation in the NOMAD study.

    PubMed

    Gupta, Nidhi; Christiansen, Caroline Stordal; Hallman, David M; Korshøj, Mette; Carneiro, Isabella Gomes; Holtermann, Andreas

    2015-01-01

    Studies on the association between sitting time and low back pain (LBP) have found contrasting results. This may be due to the lack of objectively measured sitting time or because socioeconomic confounders were not considered in the analysis. To investigate the association between objectively measured sitting time (daily total, and occupational and leisure-time periods) and LBP among blue-collar workers. Two-hundred-and-one blue-collar workers wore two accelerometers (GT3X+ Actigraph) for up to four consecutive working days to obtain objective measures of sitting time, estimated via Acti4 software. Workers reported their LBP intensity the past month on a scale from 0 (no pain) to 9 (worst imaginable pain) and were categorized into either low (≤ 5) or high (> 5) LBP intensity groups. In the multivariate-adjusted binary logistic regression analysis, total sitting time, and occupational and leisure-time sitting were both modeled as continuous (hours/day) and categorical variables (i.e. low, moderate and high sitting time). The multivariate logistic regression analysis showed a significant positive association between total sitting time (per hour) and high LBP intensity (odds ratio; OR = 1.43, 95%CI = 1.15-1.77, P = 0.01). Similar results were obtained for leisure-time sitting (OR = 1.45, 95%CI = 1.10-1.91, P = 0.01), and a similar but non-significant trend was obtained for occupational sitting time (OR = 1.34, 95%CI 0.99-1.82, P = 0.06). In the analysis on categorized sitting time, high sitting time was positively associated with high LBP for total (OR = 3.31, 95%CI = 1.18-9.28, P = 0.03), leisure (OR = 5.31, 95%CI = 1.57-17.90, P = 0.01), and occupational (OR = 3.26, 95%CI = 0.89-11.98, P = 0.08) periods, referencing those with low sitting time. Sitting time is positively associated with LBP intensity among blue-collar workers. Future studies using a prospective design with objective measures of sitting time are recommended.

  6. Is Objectively Measured Sitting Time Associated with Low Back Pain? A Cross-Sectional Investigation in the NOMAD study

    PubMed Central

    Gupta, Nidhi; Christiansen, Caroline Stordal; Hallman, David M.; Korshøj, Mette; Carneiro, Isabella Gomes; Holtermann, Andreas

    2015-01-01

    Background Studies on the association between sitting time and low back pain (LBP) have found contrasting results. This may be due to the lack of objectively measured sitting time or because socioeconomic confounders were not considered in the analysis. Objectives To investigate the association between objectively measured sitting time (daily total, and occupational and leisure-time periods) and LBP among blue-collar workers. Methods Two-hundred-and-one blue-collar workers wore two accelerometers (GT3X+ Actigraph) for up to four consecutive working days to obtain objective measures of sitting time, estimated via Acti4 software. Workers reported their LBP intensity the past month on a scale from 0 (no pain) to 9 (worst imaginable pain) and were categorized into either low (≤5) or high (>5) LBP intensity groups. In the multivariate-adjusted binary logistic regression analysis, total sitting time, and occupational and leisure-time sitting were both modeled as continuous (hours/day) and categorical variables (i.e. low, moderate and high sitting time). Results The multivariate logistic regression analysis showed a significant positive association between total sitting time (per hour) and high LBP intensity (odds ratio; OR=1.43, 95%CI=1.15-1.77, P=0.01). Similar results were obtained for leisure-time sitting (OR=1.45, 95%CI=1.10-1.91, P=0.01), and a similar but non-significant trend was obtained for occupational sitting time (OR=1.34, 95%CI 0.99-1.82, P=0.06). In the analysis on categorized sitting time, high sitting time was positively associated with high LBP for total (OR=3.31, 95%CI=1.18-9.28, P=0.03), leisure (OR=5.31, 95%CI=1.57-17.90, P=0.01), and occupational (OR=3.26, 95%CI=0.89-11.98, P=0.08) periods, referencing those with low sitting time. Conclusion Sitting time is positively associated with LBP intensity among blue-collar workers. Future studies using a prospective design with objective measures of sitting time are recommended. PMID:25806808

  7. Geographical Text Analysis: A new approach to understanding nineteenth-century mortality.

    PubMed

    Porter, Catherine; Atkinson, Paul; Gregory, Ian

    2015-11-01

    This paper uses a combination of Geographic Information Systems (GIS) and corpus linguistic analysis to extract and analyse disease related keywords from the Registrar-General's Decennial Supplements. Combined with known mortality figures, this provides, for the first time, a spatial picture of the relationship between the Registrar-General's discussion of disease and deaths in England and Wales in the nineteenth and early twentieth centuries. Techniques such as collocation, density analysis, the Hierarchical Regional Settlement matrix and regression analysis are employed to extract and analyse the data resulting in new insight into the relationship between the Registrar-General's published texts and the changing mortality patterns during this time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.

  9. A classical regression framework for mediation analysis: fitting one model to estimate mediation effects.

    PubMed

    Saunders, Christina T; Blume, Jeffrey D

    2017-10-26

    Mediation analysis explores the degree to which an exposure's effect on an outcome is diverted through a mediating variable. We describe a classical regression framework for conducting mediation analyses in which estimates of causal mediation effects and their variance are obtained from the fit of a single regression model. The vector of changes in exposure pathway coefficients, which we named the essential mediation components (EMCs), is used to estimate standard causal mediation effects. Because these effects are often simple functions of the EMCs, an analytical expression for their model-based variance follows directly. Given this formula, it is instructive to revisit the performance of routinely used variance approximations (e.g., delta method and resampling methods). Requiring the fit of only one model reduces the computation time required for complex mediation analyses and permits the use of a rich suite of regression tools that are not easily implemented on a system of three equations, as would be required in the Baron-Kenny framework. Using data from the BRAIN-ICU study, we provide examples to illustrate the advantages of this framework and compare it with the existing approaches. © The Author 2017. Published by Oxford University Press.

  10. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis

    PubMed Central

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B.; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain

    2017-01-01

    Abstract Background: The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Results: Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Conclusions: Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. PMID:28327993

  11. Stepwise Distributed Open Innovation Contests for Software Development: Acceleration of Genome-Wide Association Analysis.

    PubMed

    Hill, Andrew; Loh, Po-Ru; Bharadwaj, Ragu B; Pons, Pascal; Shang, Jingbo; Guinan, Eva; Lakhani, Karim; Kilty, Iain; Jelinsky, Scott A

    2017-05-01

    The association of differing genotypes with disease-related phenotypic traits offers great potential to both help identify new therapeutic targets and support stratification of patients who would gain the greatest benefit from specific drug classes. Development of low-cost genotyping and sequencing has made collecting large-scale genotyping data routine in population and therapeutic intervention studies. In addition, a range of new technologies is being used to capture numerous new and complex phenotypic descriptors. As a result, genotype and phenotype datasets have grown exponentially. Genome-wide association studies associate genotypes and phenotypes using methods such as logistic regression. As existing tools for association analysis limit the efficiency by which value can be extracted from increasing volumes of data, there is a pressing need for new software tools that can accelerate association analyses on large genotype-phenotype datasets. Using open innovation (OI) and contest-based crowdsourcing, the logistic regression analysis in a leading, community-standard genetics software package (PLINK 1.07) was substantially accelerated. OI allowed us to do this in <6 months by providing rapid access to highly skilled programmers with specialized, difficult-to-find skill sets. Through a crowd-based contest a combination of computational, numeric, and algorithmic approaches was identified that accelerated the logistic regression in PLINK 1.07 by 18- to 45-fold. Combining contest-derived logistic regression code with coarse-grained parallelization, multithreading, and associated changes to data initialization code further developed through distributed innovation, we achieved an end-to-end speedup of 591-fold for a data set size of 6678 subjects by 645 863 variants, compared to PLINK 1.07's logistic regression. This represents a reduction in run time from 4.8 hours to 29 seconds. Accelerated logistic regression code developed in this project has been incorporated into the PLINK2 project. Using iterative competition-based OI, we have developed a new, faster implementation of logistic regression for genome-wide association studies analysis. We present lessons learned and recommendations on running a successful OI process for bioinformatics. © The Author 2017. Published by Oxford University Press.

  12. Time-resolved perfusion imaging at the angiography suite: preclinical comparison of a new flat-detector application to computed tomography perfusion.

    PubMed

    Jürgens, Julian H W; Schulz, Nadine; Wybranski, Christian; Seidensticker, Max; Streit, Sebastian; Brauner, Jan; Wohlgemuth, Walter A; Deuerling-Zheng, Yu; Ricke, Jens; Dudeck, Oliver

    2015-02-01

    The objective of this study was to compare the parameter maps of a new flat-panel detector application for time-resolved perfusion imaging in the angiography room (FD-CTP) with computed tomography perfusion (CTP) in an experimental tumor model. Twenty-four VX2 tumors were implanted into the hind legs of 12 rabbits. Three weeks later, FD-CTP (Artis zeego; Siemens) and CTP (SOMATOM Definition AS +; Siemens) were performed. The parameter maps for the FD-CTP were calculated using a prototype software, and those for the CTP were calculated with VPCT-body software on a dedicated syngo MultiModality Workplace. The parameters were compared using Pearson product-moment correlation coefficient and linear regression analysis. The Pearson product-moment correlation coefficient showed good correlation values for both the intratumoral blood volume of 0.848 (P < 0.01) and the blood flow of 0.698 (P < 0.01). The linear regression analysis of the perfusion between FD-CTP and CTP showed for the blood volume a regression equation y = 4.44x + 36.72 (P < 0.01) and for the blood flow y = 0.75x + 14.61 (P < 0.01). This preclinical study provides evidence that FD-CTP allows a time-resolved (dynamic) perfusion imaging of tumors similar to CTP, which provides the basis for clinical applications such as the assessment of tumor response to locoregional therapies directly in the angiography suite.

  13. Improvement of Storm Forecasts Using Gridded Bayesian Linear Regression for Northeast United States

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Schwartz, C. S.

    2017-12-01

    Bayesian linear regression (BLR) is a post-processing technique in which regression coefficients are derived and used to correct raw forecasts based on pairs of observation-model values. This study presents the development and application of a gridded Bayesian linear regression (GBLR) as a new post-processing technique to improve numerical weather prediction (NWP) of rain and wind storm forecasts over northeast United States. Ten controlled variables produced from ten ensemble members of the National Center for Atmospheric Research (NCAR) real-time prediction system are used for a GBLR model. In the GBLR framework, leave-one-storm-out cross-validation is utilized to study the performances of the post-processing technique in a database composed of 92 storms. To estimate the regression coefficients of the GBLR, optimization procedures that minimize the systematic and random error of predicted atmospheric variables (wind speed, precipitation, etc.) are implemented for the modeled-observed pairs of training storms. The regression coefficients calculated for meteorological stations of the National Weather Service are interpolated back to the model domain. An analysis of forecast improvements based on error reductions during the storms will demonstrate the value of GBLR approach. This presentation will also illustrate how the variances are optimized for the training partition in GBLR and discuss the verification strategy for grid points where no observations are available. The new post-processing technique is successful in improving wind speed and precipitation storm forecasts using past event-based data and has the potential to be implemented in real-time.

  14. The ice age cycle and the deglaciations: an application of nonlinear regression modelling

    NASA Astrophysics Data System (ADS)

    Dalgleish, A. N.; Boulton, G. S.; Renshaw, E.

    2000-03-01

    We have applied the nonlinear regression technique known as additivity and variance stabilisation (AVAS) to time series which reflect Earth's climate over the last 600 ka. AVAS estimates a smooth, nonlinear transform for each variable, under the assumption of an additive model. The Earth's orbital parameters and insolation variations have been used as regression variables. Analysis of the contribution of each variable shows that the deglaciations are characterised by periods of increasing obliquity and perihelion approaching the vernal equinox, but not by any systematic change in eccentricity. The magnitude of insolation changes also plays no role. By approximating the transforms we can obtain a future prediction, with a glacial maximum at 60 ka AP, and a subsequent obliquity and precession forced deglaciation.

  15. Relationship of physical activity to fundamental movement skills among adolescents.

    PubMed

    Okely, A D; Booth, M L; Patterson, J W

    2001-11-01

    To determine the relationship of participation in organized and nonorganized physical activity with fundamental movement skills among adolescents. Male and female children in Grade 8 (mean age, 13.3 yr) and Grade 10 (mean age, 15.3 yr) were assessed on six fundamental movement skills (run, vertical jump, catch, overhand throw, forehand strike, and kick). Physical activity was assessed using a self-report recall measure where students reported the type, duration, and frequency of participation in organized physical activity and nonorganized physical activity during a usual week. Multiple regression analysis indicated that fundamental movement skills significantly predicted time in organized physical activity, although the percentage of variance it could explain was small. This prediction was stronger for girls than for boys. Multiple regression analysis showed no relationship between time in nonorganized physical activity and fundamental movement skills. Fundamental movement skills are significantly associated with adolescents' participation in organized physical activity, but predict only a small portion of it.

  16. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    PubMed

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A comparative study on generating simulated Landsat NDVI images using data fusion and regression method-the case of the Korean Peninsula.

    PubMed

    Lee, Mi Hee; Lee, Soo Bong; Eo, Yang Dam; Kim, Sun Woong; Woo, Jung-Hun; Han, Soo Hee

    2017-07-01

    Landsat optical images have enough spatial and spectral resolution to analyze vegetation growth characteristics. But, the clouds and water vapor degrade the image quality quite often, which limits the availability of usable images for the time series vegetation vitality measurement. To overcome this shortcoming, simulated images are used as an alternative. In this study, weighted average method, spatial and temporal adaptive reflectance fusion model (STARFM) method, and multilinear regression analysis method have been tested to produce simulated Landsat normalized difference vegetation index (NDVI) images of the Korean Peninsula. The test results showed that the weighted average method produced the images most similar to the actual images, provided that the images were available within 1 month before and after the target date. The STARFM method gives good results when the input image date is close to the target date. Careful regional and seasonal consideration is required in selecting input images. During summer season, due to clouds, it is very difficult to get the images close enough to the target date. Multilinear regression analysis gives meaningful results even when the input image date is not so close to the target date. Average R 2 values for weighted average method, STARFM, and multilinear regression analysis were 0.741, 0.70, and 0.61, respectively.

  18. Regression analysis of longitudinal data with correlated censoring and observation times.

    PubMed

    Li, Yang; He, Xin; Wang, Haiying; Sun, Jianguo

    2016-07-01

    Longitudinal data occur in many fields such as the medical follow-up studies that involve repeated measurements. For their analysis, most existing approaches assume that the observation or follow-up times are independent of the response process either completely or given some covariates. In practice, it is apparent that this may not be true. In this paper, we present a joint analysis approach that allows the possible mutual correlations that can be characterized by time-dependent random effects. Estimating equations are developed for the parameter estimation and the resulted estimators are shown to be consistent and asymptotically normal. The finite sample performance of the proposed estimators is assessed through a simulation study and an illustrative example from a skin cancer study is provided.

  19. Trends in Mathematics and Science Performance in 18 Countries: Multiple Regression Analysis of the Cohort Effects of TIMSS 1995-2007

    ERIC Educational Resources Information Center

    Hong, Hee Kyung

    2012-01-01

    The purpose of this study was to simultaneously examine relationships between teacher quality and instructional time and mathematics and science achievement of 8th grade cohorts in 18 advanced and developing economies. In addition, the study examined changes in mathematics and science performance across the two groups of economies over time using…

  20. Semi-automatic assessment of skin capillary density: proof of principle and validation.

    PubMed

    Gronenschild, E H B M; Muris, D M J; Schram, M T; Karaca, U; Stehouwer, C D A; Houben, A J H M

    2013-11-01

    Skin capillary density and recruitment have been proven to be relevant measures of microvascular function. Unfortunately, the assessment of skin capillary density from movie files is very time-consuming, since this is done manually. This impedes the use of this technique in large-scale studies. We aimed to develop a (semi-) automated assessment of skin capillary density. CapiAna (Capillary Analysis) is a newly developed semi-automatic image analysis application. The technique involves four steps: 1) movement correction, 2) selection of the frame range and positioning of the region of interest (ROI), 3) automatic detection of capillaries, and 4) manual correction of detected capillaries. To gain insight into the performance of the technique, skin capillary density was measured in twenty participants (ten women; mean age 56.2 [42-72] years). To investigate the agreement between CapiAna and the classic manual counting procedure, we used weighted Deming regression and Bland-Altman analyses. In addition, intra- and inter-observer coefficients of variation (CVs), and differences in analysis time were assessed. We found a good agreement between CapiAna and the classic manual method, with a Pearson's correlation coefficient (r) of 0.95 (P<0.001) and a Deming regression coefficient of 1.01 (95%CI: 0.91; 1.10). In addition, we found no significant differences between the two methods, with an intercept of the Deming regression of 1.75 (-6.04; 9.54), while the Bland-Altman analysis showed a mean difference (bias) of 2.0 (-13.5; 18.4) capillaries/mm(2). The intra- and inter-observer CVs of CapiAna were 2.5% and 5.6% respectively, while for the classic manual counting procedure these were 3.2% and 7.2%, respectively. Finally, the analysis time for CapiAna ranged between 25 and 35min versus 80 and 95min for the manual counting procedure. We have developed a semi-automatic image analysis application (CapiAna) for the assessment of skin capillary density, which agrees well with the classic manual counting procedure, is time-saving, and has a better reproducibility as compared to the classic manual counting procedure. As a result, the use of skin capillaroscopy is feasible in large-scale studies, which importantly extends the possibilities to perform microcirculation research in humans. © 2013.

  1. Quantitative characterization of the regressive ecological succession by fractal analysis of plant spatial patterns

    USGS Publications Warehouse

    Alados, C.L.; Pueyo, Y.; Giner, M.L.; Navarro, T.; Escos, J.; Barroso, F.; Cabezudo, B.; Emlen, J.M.

    2003-01-01

    We studied the effect of grazing on the degree of regression of successional vegetation dynamic in a semi-arid Mediterranean matorral. We quantified the spatial distribution patterns of the vegetation by fractal analyses, using the fractal information dimension and spatial autocorrelation measured by detrended fluctuation analyses (DFA). It is the first time that fractal analysis of plant spatial patterns has been used to characterize the regressive ecological succession. Plant spatial patterns were compared over a long-term grazing gradient (low, medium and heavy grazing pressure) and on ungrazed sites for two different plant communities: A middle dense matorral of Chamaerops and Periploca at Sabinar-Romeral and a middle dense matorral of Chamaerops, Rhamnus and Ulex at Requena-Montano. The two communities differed also in the microclimatic characteristics (sea oriented at the Sabinar-Romeral site and inland oriented at the Requena-Montano site). The information fractal dimension increased as we moved from a middle dense matorral to discontinuous and scattered matorral and, finally to the late regressive succession, at Stipa steppe stage. At this stage a drastic change in the fractal dimension revealed a change in the vegetation structure, accurately indicating end successional vegetation stages. Long-term correlation analysis (DFA) revealed that an increase in grazing pressure leads to unpredictability (randomness) in species distributions, a reduction in diversity, and an increase in cover of the regressive successional species, e.g. Stipa tenacissima L. These comparisons provide a quantitative characterization of the successional dynamic of plant spatial patterns in response to grazing perturbation gradient. ?? 2002 Elsevier Science B.V. All rights reserved.

  2. PSHREG: A SAS macro for proportional and nonproportional subdistribution hazards regression

    PubMed Central

    Kohl, Maria; Plischke, Max; Leffondré, Karen; Heinze, Georg

    2015-01-01

    We present a new SAS macro %pshreg that can be used to fit a proportional subdistribution hazards model for survival data subject to competing risks. Our macro first modifies the input data set appropriately and then applies SAS's standard Cox regression procedure, PROC PHREG, using weights and counting-process style of specifying survival times to the modified data set. The modified data set can also be used to estimate cumulative incidence curves for the event of interest. The application of PROC PHREG has several advantages, e.g., it directly enables the user to apply the Firth correction, which has been proposed as a solution to the problem of undefined (infinite) maximum likelihood estimates in Cox regression, frequently encountered in small sample analyses. Deviation from proportional subdistribution hazards can be detected by both inspecting Schoenfeld-type residuals and testing correlation of these residuals with time, or by including interactions of covariates with functions of time. We illustrate application of these extended methods for competing risk regression using our macro, which is freely available at: http://cemsiis.meduniwien.ac.at/en/kb/science-research/software/statistical-software/pshreg, by means of analysis of a real chronic kidney disease study. We discuss differences in features and capabilities of %pshreg and the recent (January 2014) SAS PROC PHREG implementation of proportional subdistribution hazards modelling. PMID:25572709

  3. Assessment of contrast-enhanced ultrasonography of the hepatic vein for detection of hemodynamic changes associated with experimentally induced portal hypertension in dogs.

    PubMed

    Morishita, Keitaro; Hiramoto, Akira; Michishita, Asuka; Takagi, Satoshi; Hoshino, Yuki; Itami, Takaharu; Lim, Sue Yee; Osuga, Tatsuyuki; Nakamura, Sayuri; Ochiai, Kenji; Nakamura, Kensuke; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2017-04-01

    OBJECTIVE To assess the use of contrast-enhanced ultrasonography (CEUS) of the hepatic vein for the detection of hemodynamic changes associated with experimentally induced portal hypertension in dogs. ANIMALS 6 healthy Beagles. PROCEDURES A prospective study was conducted. A catheter was surgically placed in the portal vein of each dog. Hypertension was induced by intraportal injection of microspheres (10 to 15 mg/kg) at 5-day intervals via the catheter. Microsphere injections were continued until multiple acquired portosystemic shunts were created. Portal vein pressure (PVP) was measured through the catheter. Contrast-enhanced ultrasonography was performed before and after establishment of hypertension. Time-intensity curves were generated from the region of interest in the hepatic vein. Perfusion variables measured for statistical analysis were hepatic vein arrival time, time to peak, time to peak phase (TTPP), and washout ratio. The correlation between CEUS variables and PVP was assessed by use of simple regression analysis. RESULTS Time to peak and TTPP were significantly less after induction of portal hypertension. Simple regression analysis revealed a significant negative correlation between TTPP and PVP. CONCLUSIONS AND CLINICAL RELEVANCE CEUS was useful for detecting hemodynamic changes associated with experimentally induced portal hypertension in dogs, which was characterized by a rapid increase in the intensity of the hepatic vein. Furthermore, TTPP, a time-dependent variable, provided useful complementary information for predicting portal hypertension. IMPACT FOR HUMAN MEDICINE Because the method described here induced presinusoidal portal hypertension, these results can be applied to idiopathic portal hypertension in humans.

  4. Isolated and synergistic effects of PM10 and average temperature on cardiovascular and respiratory mortality.

    PubMed

    Pinheiro, Samya de Lara Lins de Araujo; Saldiva, Paulo Hilário Nascimento; Schwartz, Joel; Zanobetti, Antonella

    2014-12-01

    OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter < 10 µm (PM10) on the mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure to different levels of environmental factors can create synergistic effects that are as disturbing as those caused by extreme concentrations.

  5. Applying Kaplan-Meier to Item Response Data

    ERIC Educational Resources Information Center

    McNeish, Daniel

    2018-01-01

    Some IRT models can be equivalently modeled in alternative frameworks such as logistic regression. Logistic regression can also model time-to-event data, which concerns the probability of an event occurring over time. Using the relation between time-to-event models and logistic regression and the relation between logistic regression and IRT, this…

  6. Regression: The Apple Does Not Fall Far From the Tree.

    PubMed

    Vetter, Thomas R; Schober, Patrick

    2018-05-15

    Researchers and clinicians are frequently interested in either: (1) assessing whether there is a relationship or association between 2 or more variables and quantifying this association; or (2) determining whether 1 or more variables can predict another variable. The strength of such an association is mainly described by the correlation. However, regression analysis and regression models can be used not only to identify whether there is a significant relationship or association between variables but also to generate estimations of such a predictive relationship between variables. This basic statistical tutorial discusses the fundamental concepts and techniques related to the most common types of regression analysis and modeling, including simple linear regression, multiple regression, logistic regression, ordinal regression, and Poisson regression, as well as the common yet often underrecognized phenomenon of regression toward the mean. The various types of regression analysis are powerful statistical techniques, which when appropriately applied, can allow for the valid interpretation of complex, multifactorial data. Regression analysis and models can assess whether there is a relationship or association between 2 or more observed variables and estimate the strength of this association, as well as determine whether 1 or more variables can predict another variable. Regression is thus being applied more commonly in anesthesia, perioperative, critical care, and pain research. However, it is crucial to note that regression can identify plausible risk factors; it does not prove causation (a definitive cause and effect relationship). The results of a regression analysis instead identify independent (predictor) variable(s) associated with the dependent (outcome) variable. As with other statistical methods, applying regression requires that certain assumptions be met, which can be tested with specific diagnostics.

  7. High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples.

    PubMed

    Bian, Xihui; Li, Shujuan; Lin, Ligang; Tan, Xiaoyao; Fan, Qingjie; Li, Ming

    2016-06-21

    Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize abundant information embedded over frequency and time domains, a novel regression model is presented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decomposition (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed method, the original signals are firstly decomposed into a finite number of intrinsic mode functions (IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with single PLSR and other signal processing techniques, the proposed method shows superiority in prediction ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for quantitative analysis of complex samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Managing Complexity in Evidence Analysis: A Worked Example in Pediatric Weight Management.

    PubMed

    Parrott, James Scott; Henry, Beverly; Thompson, Kyle L; Ziegler, Jane; Handu, Deepa

    2018-05-02

    Nutrition interventions are often complex and multicomponent. Typical approaches to meta-analyses that focus on individual causal relationships to provide guideline recommendations are not sufficient to capture this complexity. The objective of this study is to describe the method of meta-analysis used for the Pediatric Weight Management (PWM) Guidelines update and provide a worked example that can be applied in other areas of dietetics practice. The effects of PWM interventions were examined for body mass index (BMI), body mass index z-score (BMIZ), and waist circumference at four different time periods. For intervention-level effects, intervention types were identified empirically using multiple correspondence analysis paired with cluster analysis. Pooled effects of identified types were examined using random effects meta-analysis models. Differences in effects among types were examined using meta-regression. Context-level effects are examined using qualitative comparative analysis. Three distinct types (or families) of PWM interventions were identified: medical nutrition, behavioral, and missing components. Medical nutrition and behavioral types showed statistically significant improvements in BMIZ across all time points. Results were less consistent for BMI and waist circumference, although four distinct patterns of weight status change were identified. These varied by intervention type as well as outcome measure. Meta-regression indicated statistically significant differences between the medical nutrition and behavioral types vs the missing component type for both BMIZ and BMI, although the pattern varied by time period and intervention type. Qualitative comparative analysis identified distinct configurations of context characteristics at each time point that were consistent with positive outcomes among the intervention types. Although analysis of individual causal relationships is invaluable, this approach is inadequate to capture the complexity of dietetics practice. An alternative approach that integrates intervention-level with context-level meta-analyses may provide deeper understanding in the development of practice guidelines. Copyright © 2018 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  9. Analyzing Seasonal Variations in Suicide With Fourier Poisson Time-Series Regression: A Registry-Based Study From Norway, 1969-2007.

    PubMed

    Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo

    2015-08-01

    Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Systematic analysis of factors associated with progression and regression of ulcerative colitis in 918 patients.

    PubMed

    Safroneeva, E; Vavricka, S; Fournier, N; Seibold, F; Mottet, C; Nydegger, A; Ezri, J; Straumann, A; Rogler, G; Schoepfer, A M

    2015-09-01

    Studies that systematically assess change in ulcerative colitis (UC) extent over time in adult patients are scarce. To assess changes in disease extent over time and to evaluate clinical parameters associated with this change. Data from the Swiss IBD cohort study were analysed. We used logistic regression modelling to identify factors associated with a change in disease extent. A total of 918 UC patients (45.3% females) were included. At diagnosis, UC patients presented with the following disease extent: proctitis [199 patients (21.7%)], left-sided colitis [338 patients (36.8%)] and extensive colitis/pancolitis [381 (41.5%)]. During a median disease duration of 9 [4-16] years, progression and regression was documented in 145 patients (15.8%) and 149 patients (16.2%) respectively. In addition, 624 patients (68.0%) had a stable disease extent. The following factors were identified to be associated with disease progression: treatment with systemic glucocorticoids [odds ratio (OR) 1.704, P = 0.025] and calcineurin inhibitors (OR: 2.716, P = 0.005). No specific factors were found to be associated with disease regression. Over a median disease duration of 9 [4-16] years, about two-thirds of UC patients maintained the initial disease extent; the remaining one-third had experienced either progression or regression of the disease extent. © 2015 John Wiley & Sons Ltd.

  11. Applied Multiple Linear Regression: A General Research Strategy

    ERIC Educational Resources Information Center

    Smith, Brandon B.

    1969-01-01

    Illustrates some of the basic concepts and procedures for using regression analysis in experimental design, analysis of variance, analysis of covariance, and curvilinear regression. Applications to evaluation of instruction and vocational education programs are illustrated. (GR)

  12. Neural correlates of gait variability in people with multiple sclerosis with fall history.

    PubMed

    Kalron, Alon; Allali, Gilles; Achiron, Anat

    2018-05-28

    Investigate the association between step time variability and related brain structures in accordance with fall status in people with multiple sclerosis (PwMS). The study included 225 PwMS. A whole-brain MRI was performed by a high-resolution 3.0-Telsa MR scanner in addition to volumetric analysis based on 3D T1-weighted images using the FreeSurfer image analysis suite. Step time variability was measured by an electronic walkway. Participants were defined as "fallers" (at least two falls during the previous year) and "non-fallers". One hundred and five PwMS were defined as fallers and had a greater step time variability compared to non-fallers (5.6% (S.D.=3.4) vs. 3.4% (S.D.=1.5); p=0.001). MS fallers exhibited a reduced volume in the left caudate and both cerebellum hemispheres compared to non-fallers. By using a linear regression analysis no association was found between gait variability and related brain structures in the total cohort and non-fallers group. However, the analysis found an association between the left hippocampus and left putamen volumes with step time variability in the faller group; p=0.031, 0.048, respectively, controlling for total cranial volume, walking speed, disability, age and gender. Nevertheless, according to the hierarchical regression model, the contribution of these brain measures to predict gait variability was relatively small compared to walking speed. An association between low left hippocampal, putamen volumes and step time variability was found in PwMS with a history of falls, suggesting brain structural characteristics may be related to falls and increased gait variability in PwMS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.

    PubMed

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P < 0.05 at cluster level, false discovery rate). ROI analysis revealed that T 1 values in the nucleus accumbens linearly decreased with aging (P = 0.0016), supporting the VBA result. T 1 values in the thalamus (P < 0.0001), substantia nigra (P = 0.0003), and globus pallidus (P < 0.0001) had a best fit to quadratic curves, with the minimum T 1 values observed between 30 and 50 years of age. Age-related changes in T 1 relaxation time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Time Series Analysis of Soil Radon Data Using Multiple Linear Regression and Artificial Neural Network in Seismic Precursory Studies

    NASA Astrophysics Data System (ADS)

    Singh, S.; Jaishi, H. P.; Tiwari, R. P.; Tiwari, R. C.

    2017-07-01

    This paper reports the analysis of soil radon data recorded in the seismic zone-V, located in the northeastern part of India (latitude 23.73N, longitude 92.73E). Continuous measurements of soil-gas emission along Chite fault in Mizoram (India) were carried out with the replacement of solid-state nuclear track detectors at weekly interval. The present study was done for the period from March 2013 to May 2015 using LR-115 Type II detectors, manufactured by Kodak Pathe, France. In order to reduce the influence of meteorological parameters, statistical analysis tools such as multiple linear regression and artificial neural network have been used. Decrease in radon concentration was recorded prior to some earthquakes that occurred during the observation period. Some false anomalies were also recorded which may be attributed to the ongoing crustal deformation which was not major enough to produce an earthquake.

  15. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error‐based weighting and one objective function

    USGS Publications Warehouse

    Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.

    2009-01-01

    We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.

  16. Regression Analysis of Mixed Panel Count Data with Dependent Terminal Events

    PubMed Central

    Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L.

    2017-01-01

    Event history studies are commonly conducted in many fields and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data above, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally the methodology is applied to a childhood cancer study that motivated this study. PMID:28098397

  17. MicroCT angiography detects vascular formation and regression in skin wound healing

    PubMed Central

    Urao, Norifumi; Okonkwo, Uzoagu A.; Fang, Milie M.; Zhuang, Zhen W.; Koh, Timothy J.; DiPietro, Luisa A.

    2016-01-01

    Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to day 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5 μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. PMID:27009591

  18. Evaluation of sampling methods used to estimate irrigation pumpage in Chase, Dundy, and Perkins counties, Nebraska

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.; Stephens, D.M.

    1986-01-01

    Combining estimates of applied irrigation water, determined for selected sample sites, with information on irrigated acreage provides one alternative for developing areal estimates of groundwater pumpage for irrigation. The reliability of this approach was evaluated by comparing estimated pumpage with metered pumpage for two years for a three-county area in southwestern Nebraska. Meters on all irrigation wells in the three counties provided a complete data set for evaluation of equipment and comparison with pumpage estimates. Regression analyses were conducted on discharge, time-of-operation, and pumpage data collected at 52 irrigation sites in 1983 and at 57 irrigation sites in 1984 using data from inline flowmeters as the independent variable. The standard error of the estimate for regression analysis of discharge measurements made using a portable flowmeter was 6.8% of the mean discharge metered by inline flowmeters. The standard error of the estimate for regression analysis of time of operation determined from electric meters was 8.1% of the mean time of operation determined from in-line and 15.1% for engine-hour meters. Sampled pumpage, calculated by multiplying the average discharge obtained from the portable flowmeter by the time of operation obtained from energy or hour meters, was compared with metered pumpage from in-line flowmeters at sample sites. The standard error of the estimate for the regression analysis of sampled pumpage was 10.3% of the mean of the metered pumpage for 1983 and 1984 combined. The difference in the mean of the sampled pumpage and the mean of the metered pumpage was only 1.8% for 1983 and 2.3% for 1984. Estimated pumpage, for each county and for the study area, was calculated by multiplying application (sampled pumpage divided by irrigated acreages at sample sites) by irrigated acreage compiled from Landsat (Land satellite) imagery. Estimated pumpage was compared with total metered pumpage for each county and the study area. Estimated pumpage by county varied from 9% less, to 20% more, than metered pumpage in 1983 and from 0 to 15% more than metered pumpage in 1984. Estimated pumpage for the study area was 11 % more than metered pumpage in 1983 and 5% more than metered pumpage in 1984. (Author 's abstract)

  19. The area-time-integral technique to estimate convective rain volumes over areas applied to satellite data - A preliminary investigation

    NASA Technical Reports Server (NTRS)

    Doneaud, Andre A.; Miller, James R., Jr.; Johnson, L. Ronald; Vonder Haar, Thomas H.; Laybe, Patrick

    1987-01-01

    The use of the area-time-integral (ATI) technique, based only on satellite data, to estimate convective rain volume over a moving target is examined. The technique is based on the correlation between the radar echo area coverage integrated over the lifetime of the storm and the radar estimated rain volume. The processing of the GOES and radar data collected in 1981 is described. The radar and satellite parameters for six convective clusters from storm events occurring on June 12 and July 2, 1981 are analyzed and compared in terms of time steps and cluster lifetimes. Rain volume is calculated by first using the regression analysis to generate the regression equation used to obtain the ATI; the ATI versus rain volume relation is then employed to compute rain volume. The data reveal that the ATI technique using satellite data is applicable to the calculation of rain volume.

  20. Hyperopic photorefractive keratectomy and central islands

    NASA Astrophysics Data System (ADS)

    Gobbi, Pier Giorgio; Carones, Francesco; Morico, Alessandro; Vigo, Luca; Brancato, Rosario

    1998-06-01

    We have evaluated the refractive evolution in patients treated with yhyperopic PRK to assess the extent of the initial overcorrection and the time constant of regression. To this end, the time history of the refractive error (i.e. the difference between achieved and intended refractive correction) has been fitted by means of an exponential statistical model, giving information characterizing the surgical procedure with a direct clinical meaning. Both hyperopic and myopic PRk procedures have been analyzed by this method. The analysis of the fitting model parameters shows that hyperopic PRK patients exhibit a definitely higher initial overcorrection than myopic ones, and a regression time constant which is much longer. A common mechanism is proposed to be responsible for the refractive outcomes in hyperopic treatments and in myopic patients exhibiting significant central islands. The interpretation is in terms of superhydration of the central cornea, and is based on a simple physical model evaluating the amount of centripetal compression in the apical cornea.

  1. Using exogenous variables in testing for monotonic trends in hydrologic time series

    USGS Publications Warehouse

    Alley, William M.

    1988-01-01

    One approach that has been used in performing a nonparametric test for monotonic trend in a hydrologic time series consists of a two-stage analysis. First, a regression equation is estimated for the variable being tested as a function of an exogenous variable. A nonparametric trend test such as the Kendall test is then performed on the residuals from the equation. By analogy to stagewise regression and through Monte Carlo experiments, it is demonstrated that this approach will tend to underestimate the magnitude of the trend and to result in some loss in power as a result of ignoring the interaction between the exogenous variable and time. An alternative approach, referred to as the adjusted variable Kendall test, is demonstrated to generally have increased statistical power and to provide more reliable estimates of the trend slope. In addition, the utility of including an exogenous variable in a trend test is examined under selected conditions.

  2. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  3. "Knife to skin" time is a poor marker of operating room utilization and efficiency in cardiac surgery.

    PubMed

    Luthra, Suvitesh; Ramady, Omar; Monge, Mary; Fitzsimons, Michael G; Kaleta, Terry R; Sundt, Thoralf M

    2015-06-01

    Markers of operation room (OR) efficiency in cardiac surgery are focused on "knife to skin" and "start time tardiness." These do not evaluate the middle and later parts of the cardiac surgical pathway. The purpose of this analysis was to evaluate knife to skin time as an efficiency marker in cardiac surgery. We looked at knife to skin time, procedure time, and transfer times in the cardiac operational pathway for their correlation with predefined indices of operational efficiency (Index of Operation Efficiency - InOE, Surgical Index of Operational Efficiency - sInOE). A regression analysis was performed to test the goodness of fit of the regression curves estimated for InOE relative to the times on the operational pathway. The mean knife to skin time was 90.6 ± 13 minutes (23% of total OR time). The mean procedure time was 282 ± 123 minutes (71% of total OR time). Utilization efficiencies were highest for aortic valve replacement and coronary artery bypass grafting and least for complex aortic procedures. There were no significant procedure-specific or team-specific differences for standard procedures. Procedure times correlated the strongest with InOE (r = -0.98, p < 0.01). Compared to procedure times, knife to skin is not as strong an indicator of efficiency. A statistically significant linear dependence on InOE was observed with "procedure times" only. Procedure times are a better marker of OR efficiency than knife to skin in cardiac cases. Strategies to increase OR utilization and efficiency should address procedure times in addition to knife to skin times. © 2015 Wiley Periodicals, Inc.

  4. Data-driven discovery of partial differential equations.

    PubMed

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  5. Cerebral autoregulation in the preterm newborn using near-infrared spectroscopy: a comparison of time-domain and frequency-domain analyses

    NASA Astrophysics Data System (ADS)

    Eriksen, Vibeke R.; Hahn, Gitte H.; Greisen, Gorm

    2015-03-01

    The aim was to compare two conventional methods used to describe cerebral autoregulation (CA): frequency-domain analysis and time-domain analysis. We measured cerebral oxygenation (as a surrogate for cerebral blood flow) and mean arterial blood pressure (MAP) in 60 preterm infants. In the frequency domain, outcome variables were coherence and gain, whereas the cerebral oximetry index (COx) and the regression coefficient were the outcome variables in the time domain. Correlation between coherence and COx was poor. The disagreement between the two methods was due to the MAP and cerebral oxygenation signals being in counterphase in three cases. High gain and high coherence may arise spuriously when cerebral oxygenation decreases as MAP increases; hence, time-domain analysis appears to be a more robust-and simpler-method to describe CA.

  6. Demonstration of a Fiber Optic Regression Probe in a High-Temperature Flow

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt

    2011-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media to demonstrate the capabilities in a number of regressing environments. In the present work, sensors were installed in the eroding/regressing throat region of a converging-diverging flow, with the working gas heated to high temperatures by means of a high-pressure arc discharge at steady-state discharge power levels up to 500 kW. The amount of regression observed in each material sample was quantified using a later profilometer, which was compared to the in-situ erosion measurements to demonstrate the efficacy of the measurement technique in very harsh, high-temperature environments.

  7. External Tank Liquid Hydrogen (LH2) Prepress Regression Analysis Independent Review Technical Consultation Report

    NASA Technical Reports Server (NTRS)

    Parsons, Vickie s.

    2009-01-01

    The request to conduct an independent review of regression models, developed for determining the expected Launch Commit Criteria (LCC) External Tank (ET)-04 cycle count for the Space Shuttle ET tanking process, was submitted to the NASA Engineering and Safety Center NESC on September 20, 2005. The NESC team performed an independent review of regression models documented in Prepress Regression Analysis, Tom Clark and Angela Krenn, 10/27/05. This consultation consisted of a peer review by statistical experts of the proposed regression models provided in the Prepress Regression Analysis. This document is the consultation's final report.

  8. Four Major South Korea's Rivers Using Deep Learning Models.

    PubMed

    Lee, Sangmok; Lee, Donghyun

    2018-06-24

    Harmful algal blooms are an annual phenomenon that cause environmental damage, economic losses, and disease outbreaks. A fundamental solution to this problem is still lacking, thus, the best option for counteracting the effects of algal blooms is to improve advance warnings (predictions). However, existing physical prediction models have difficulties setting a clear coefficient indicating the relationship between each factor when predicting algal blooms, and many variable data sources are required for the analysis. These limitations are accompanied by high time and economic costs. Meanwhile, artificial intelligence and deep learning methods have become increasingly common in scientific research; attempts to apply the long short-term memory (LSTM) model to environmental research problems are increasing because the LSTM model exhibits good performance for time-series data prediction. However, few studies have applied deep learning models or LSTM to algal bloom prediction, especially in South Korea, where algal blooms occur annually. Therefore, we employed the LSTM model for algal bloom prediction in four major rivers of South Korea. We conducted short-term (one week) predictions by employing regression analysis and deep learning techniques on a newly constructed water quality and quantity dataset drawn from 16 dammed pools on the rivers. Three deep learning models (multilayer perceptron, MLP; recurrent neural network, RNN; and long short-term memory, LSTM) were used to predict chlorophyll-a, a recognized proxy for algal activity. The results were compared to those from OLS (ordinary least square) regression analysis and actual data based on the root mean square error (RSME). The LSTM model showed the highest prediction rate for harmful algal blooms and all deep learning models out-performed the OLS regression analysis. Our results reveal the potential for predicting algal blooms using LSTM and deep learning.

  9. A comparison between standard methods and structural nested modelling when bias from a healthy worker survivor effect is suspected: an iron-ore mining cohort study.

    PubMed

    Björ, Ove; Damber, Lena; Jonsson, Håkan; Nilsson, Tohr

    2015-07-01

    Iron-ore miners are exposed to extremely dusty and physically arduous work environments. The demanding activities of mining select healthier workers with longer work histories (ie, the Healthy Worker Survivor Effect (HWSE)), and could have a reversing effect on the exposure-response association. The objective of this study was to evaluate an iron-ore mining cohort to determine whether the effect of respirable dust was confounded by the presence of an HWSE. When an HWSE exists, standard modelling methods, such as Cox regression analysis, produce biased results. We compared results from g-estimation of accelerated failure-time modelling adjusted for HWSE with corresponding unadjusted Cox regression modelling results. For all-cause mortality when adjusting for the HWSE, cumulative exposure from respirable dust was associated with a 6% decrease of life expectancy if exposed ≥15 years, compared with never being exposed. Respirable dust continued to be associated with mortality after censoring outcomes known to be associated with dust when adjusting for the HWSE. In contrast, results based on Cox regression analysis did not support that an association was present. The adjustment for the HWSE made a difference when estimating the risk of mortality from respirable dust. The results of this study, therefore, support the recommendation that standard methods of analysis should be complemented with structural modelling analysis techniques, such as g-estimation of accelerated failure-time modelling, to adjust for the HWSE. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation

    PubMed Central

    Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

    2018-01-01

    Background Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Objective Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Methods Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Results Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. Conclusions To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. PMID:29506966

  11. Hepatitis B virus mutation may play a role in hepatocellular carcinoma recurrence: A systematic review and meta-regression analysis.

    PubMed

    Zhou, Hua-ying; Luo, Yue; Chen, Wen-dong; Gong, Guo-zhong

    2015-06-01

    A number of studies have confirmed that antiviral therapy with nucleotide analogs (NAs) can improve the prognosis of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after curative therapy. However, what factors affected the prognosis of HBV-HCC after removal of the primary tumor and inhibition of HBV replication? A meta-regression analysis was conducted to explore the prognostic factor for this subgroup of patients. MEDLINE, EMBASE, Web of Science, and Cochrane library were searched from January 1995 to February 2014 for clinical trials evaluating the effect of NAs on the prognosis of HBV-HCC after curative therapy. Data were extracted for host, viral, and intervention information. Single-arm meta-analysis was performed to assess overall survival (OS) rates and HCC recurrence. Meta-regression analysis was carried out to explore risk factors for 1-year OS rate and HCC recurrence for HBV-HCC patients after curative therapy and antiviral therapy. Fourteen observational studies with 1284 patients met the inclusion criteria. Influential factors for prognosis of HCC were mainly baseline HBeAg positivity, cirrhotic stage, advanced Tumor-Node-Metastasis (TNM) stage, macrovascular invasion, and antiviral agent type. The 1-year OS rate decreased by more than four times (coefficient -4.45, P<0.001) and the 1-year HCC recurrence increased by more than one time (coefficient 1.20, P=0.003) when lamivudine was chosen for HCC after curative therapy, relative to entecavir for HCC. HBV mutation may play a role in HCC recurrence. Entecavir or tenofovir, a high genetic barrier to resistance, should be recommended for HBV-HCC patients. © 2015 The Authors. Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  12. Secure and Efficient Regression Analysis Using a Hybrid Cryptographic Framework: Development and Evaluation.

    PubMed

    Sadat, Md Nazmus; Jiang, Xiaoqian; Aziz, Md Momin Al; Wang, Shuang; Mohammed, Noman

    2018-03-05

    Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective: preserving the privacy of individuals while discovering knowledge from data. Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed data in a secure and efficient way. Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at the same time. Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly similar to plaintext results. To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework, which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed framework ensures data security and computational efficiency at the same time. ©Md Nazmus Sadat, Xiaoqian Jiang, Md Momin Al Aziz, Shuang Wang, Noman Mohammed. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2018.

  13. Highly comparative time-series analysis: the empirical structure of time series and their methods.

    PubMed

    Fulcher, Ben D; Little, Max A; Jones, Nick S

    2013-06-06

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

  14. Highly comparative time-series analysis: the empirical structure of time series and their methods

    PubMed Central

    Fulcher, Ben D.; Little, Max A.; Jones, Nick S.

    2013-01-01

    The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines. PMID:23554344

  15. Analysis of Variables to Predict First Year Persistence Using Logistic Regression Analysis at the University of South Florida: Model v2.0

    ERIC Educational Resources Information Center

    Herreid, Charlene H.; Miller, Thomas E.

    2009-01-01

    This article is the fourth in a series of articles describing an attrition prediction and intervention project at the University of South Florida (USF) in Tampa. In this article, the researchers describe the updated version of the prediction model. The original model was developed from a sample of about 900 First Time in College (FTIC) students…

  16. Investigation of shift in decay hazard (Scheffer) index values over the period 1969-2008 in the conterminous United States

    Treesearch

    Patricia K. Lebow; Charles G. Carll

    2010-01-01

    A statistical analysis was performed that identified time trends in the Scheffer Index value for 167 locations in the conterminous United States over the period 1969-2008. Year-to-year variation in Index values was found to be larger than year-to-year variation in most other weather parameters. Despite the substantial yearly variation, regression equations, with time (...

  17. Can cover data be used as a surrogate for seedling counts in regeneration stocking evaluations in northern hardwood forests?

    Treesearch

    Todd E. Ristau; Susan L. Stout

    2014-01-01

    Assessment of regeneration can be time-consuming and costly. Often, foresters look for ways to minimize the cost of doing inventories. One potential method to reduce time required on a plot is use of percent cover data rather than seedling count data to determine stocking. Robust linear regression analysis was used in this report to predict seedling count data from...

  18. Binary Logistic Regression Analysis in Assessment and Identifying Factors That Influence Students' Academic Achievement: The Case of College of Natural and Computational Science, Wolaita Sodo University, Ethiopia

    ERIC Educational Resources Information Center

    Zewude, Bereket Tessema; Ashine, Kidus Meskele

    2016-01-01

    An attempt has been made to assess and identify the major variables that influence student academic achievement at college of natural and computational science of Wolaita Sodo University in Ethiopia. Study time, peer influence, securing first choice of department, arranging study time outside class, amount of money received from family, good life…

  19. Effect of mobile phone use on metal ion release from fixed orthodontic appliances.

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Mehriar, Peiman; Sheibani, Nader

    2015-06-01

    The aim of this study was to evaluate the effect of exposure to radiofrequency electromagnetic fields emitted by mobile phones on the level of nickel in saliva. Fifty healthy patients with fixed orthodontic appliances were asked not to use their cell phones for a week, and their saliva samples were taken at the end of the week (control group). The patients recorded their time of mobile phone usage during the next week and returned for a second saliva collection (experimental group). Samples at both times were taken between 8:00 and 10:00 pm, and the nickel levels were measured. Two-tailed paired-samples t test, linear regression, independent t test, and 1-way analysis of variance were used for data analysis. The 2-tailed paired-samples t test showed significant differences between the levels of nickel in the control and experimental groups (t [49] = 9.967; P <0.001). The linear regression test showed a significant relationship between mobile phone usage time and the nickel release (F [1, 48] = 60.263; P <0.001; R(2) = 0.577). Mobile phone usage has a time-dependent influence on the concentration of nickel in the saliva of patients with orthodontic appliances. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Prediction of Knee Joint Contact Forces From External Measures Using Principal Component Prediction and Reconstruction.

    PubMed

    Saliba, Christopher M; Clouthier, Allison L; Brandon, Scott C E; Rainbow, Michael J; Deluzio, Kevin J

    2018-05-29

    Abnormal loading of the knee joint contributes to the pathogenesis of knee osteoarthritis. Gait retraining is a non-invasive intervention that aims to reduce knee loads by providing audible, visual, or haptic feedback of gait parameters. The computational expense of joint contact force prediction has limited real-time feedback to surrogate measures of the contact force, such as the knee adduction moment. We developed a method to predict knee joint contact forces using motion analysis and a statistical regression model that can be implemented in near real-time. Gait waveform variables were deconstructed using principal component analysis and a linear regression was used to predict the principal component scores of the contact force waveforms. Knee joint contact force waveforms were reconstructed using the predicted scores. We tested our method using a heterogenous population of asymptomatic controls and subjects with knee osteoarthritis. The reconstructed contact force waveforms had mean (SD) RMS differences of 0.17 (0.05) bodyweight compared to the contact forces predicted by a musculoskeletal model. Our method successfully predicted subject-specific shape features of contact force waveforms and is a potentially powerful tool in biofeedback and clinical gait analysis.

  1. Mass Spectrometry Parameters Optimization for the 46 Multiclass Pesticides Determination in Strawberries with Gas Chromatography Ion-Trap Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Fernandes, Virgínia C.; Vera, Jose L.; Domingues, Valentina F.; Silva, Luís M. S.; Mateus, Nuno; Delerue-Matos, Cristina

    2012-12-01

    Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET), maximum excitation energy or " q" value (q), and isolation mass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit. Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.

  2. Reevaluation of Stratospheric Ozone Trends From SAGE II Data Using a Simultaneous Temporal and Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Damadeo, R. P.; Zawodny, J. M.; Thomason, L. W.

    2014-01-01

    This paper details a new method of regression for sparsely sampled data sets for use with time-series analysis, in particular the Stratospheric Aerosol and Gas Experiment (SAGE) II ozone data set. Non-uniform spatial, temporal, and diurnal sampling present in the data set result in biased values for the long-term trend if not accounted for. This new method is performed close to the native resolution of measurements and is a simultaneous temporal and spatial analysis that accounts for potential diurnal ozone variation. Results show biases, introduced by the way data is prepared for use with traditional methods, can be as high as 10%. Derived long-term changes show declines in ozone similar to other studies but very different trends in the presumed recovery period, with differences up to 2% per decade. The regression model allows for a variable turnaround time and reveals a hemispheric asymmetry in derived trends in the middle to upper stratosphere. Similar methodology is also applied to SAGE II aerosol optical depth data to create a new volcanic proxy that covers the SAGE II mission period. Ultimately this technique may be extensible towards the inclusion of multiple data sets without the need for homogenization.

  3. Reliability Analysis of the Gradual Degradation of Semiconductor Devices.

    DTIC Science & Technology

    1983-07-20

    under the heading of linear models or linear statistical models . 3 ,4 We have not used this material in this report. Assuming catastrophic failure when...assuming a catastrophic model . In this treatment we first modify our system loss formula and then proceed to the actual analysis. II. ANALYSIS OF...Failure Time 1 Ti Ti 2 T2 T2 n Tn n and are easily analyzed by simple linear regression. Since we have assumed a log normal/Arrhenius activation

  4. Using the Nobel Laureates in Economics to Teach Quantitative Methods

    ERIC Educational Resources Information Center

    Becker, William E.; Greene, William H.

    2005-01-01

    The authors show how the work of Nobel Laureates in economics can enhance student understanding and bring them up to date on topics such as probability, uncertainty and decision theory, hypothesis testing, regression to the mean, instrumental variable techniques, discrete choice modeling, and time-series analysis. (Contains 2 notes.)

  5. Comparative Research of Navy Voluntary Education at Operational Commands

    DTIC Science & Technology

    2017-03-01

    return on investment, ROI, logistic regression, multivariate analysis, descriptive statistics, Markov, time-series, linear programming 15. NUMBER...21  B.  DESCRIPTIVE STATISTICS TABLES ...............................................25  C.  PRIVACY CONSIDERATIONS...THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1.  Variables and Descriptions . Adapted from NETC (2016). .......................21

  6. A Quantitative Assessment of Student Performance and Examination Format

    ERIC Educational Resources Information Center

    Davison, Christopher B.; Dustova, Gandzhina

    2017-01-01

    This research study describes the correlations between student performance and examination format in a higher education teaching and research institution. The researchers employed a quantitative, correlational methodology utilizing linear regression analysis. The data was obtained from undergraduate student test scores over a three-year time span.…

  7. Accounting for the Relationship between Initial Status and Growth in Regression Models

    ERIC Educational Resources Information Center

    Kelly, Sean; Ye, Feifei

    2017-01-01

    Educational analysts studying achievement and other educational outcomes frequently encounter an association between initial status and growth, which has important implications for the analysis of covariate effects, including group differences in growth. As explicated by Allison (1990), where only two time points of data are available, identifying…

  8. How the Birth of a Child Affects Involvement with Stepchildren

    ERIC Educational Resources Information Center

    Stewart, Susan D.

    2005-01-01

    This study investigates the effect of childbearing on parental involvement in stepfamilies and intact families, based on the reports of 1,905 stepparents and biological parents from the National Survey of Families and Households. Regression analysis indicates that involvement with children declines over time, especially among respondents with only…

  9. Teacher Salaries and Teacher Aptitude: An Analysis Using Quantile Regressions

    ERIC Educational Resources Information Center

    Gilpin, Gregory A.

    2012-01-01

    This study investigates the relationship between salaries and scholastic aptitude for full-time public high school humanities and mathematics/sciences teachers. For identification, we rely on variation in salaries between adjacent school districts within the same state. The results indicate that teacher aptitude is positively correlated with…

  10. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  11. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  12. 40 CFR 86.1341-90 - Test cycle validation criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Test cycle validation criteria. 86... Procedures § 86.1341-90 Test cycle validation criteria. (a) To minimize the biasing effect of the time lag... brake horsepower-hour. (c) Regression line analysis to calculate validation statistics. (1) Linear...

  13. Covariate Measurement Error Correction Methods in Mediation Analysis with Failure Time Data

    PubMed Central

    Zhao, Shanshan

    2014-01-01

    Summary Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This paper focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error and error associated with temporal variation. The underlying model with the ‘true’ mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling design. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. PMID:25139469

  14. Covariate measurement error correction methods in mediation analysis with failure time data.

    PubMed

    Zhao, Shanshan; Prentice, Ross L

    2014-12-01

    Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the "true" mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. © 2014, The International Biometric Society.

  15. Gender differences in clinical status at time of coronary revascularisation in Spain

    PubMed Central

    Aguilar, M; Lazaro, P; Fitch, K; Luengo, S

    2002-01-01

    Design: Retrospective study of clinical records. Two stage stratified cluster sampling was used to select a nationally representative sample of patients receiving a coronary revascularisation procedure in 1997. Setting: All of Spain. Main outcome measures: Odds ratios (OR) in men and women for different clinical and diagnostic variables related with coronary disease. A logistic regression model was developed to estimate the association between coronary symptoms and gender. Results: In the univariate analysis the prevalence of the following risk factors for coronary heart disease was higher in women than in men: obesity (OR=1.8), hypertension (OR=2.9) and diabetes (OR=2.1). High surgical risk was also more prevalent among women (OR=2.6). In the logistic regression analysis women's risk of being symptomatic at the time of revascularisation was more than double that of men (OR=2.4). Conclusions: Women have more severe coronary symptoms at the time of coronary revascularisation than do men. These results suggest that women receive revascularisation at a more advanced stage of coronary disease. Further research is needed to clarify what social, cultural or biological factors may be implicated in the gender differences observed. PMID:12080167

  16. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment

    NASA Astrophysics Data System (ADS)

    Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe

    2018-01-01

    In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.

  17. Safety analysis of urban signalized intersections under mixed traffic.

    PubMed

    S, Anjana; M V L R, Anjaneyulu

    2015-02-01

    This study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models. Hierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections. The study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study. As a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Gender differences in social support and leisure-time physical activity

    PubMed Central

    Oliveira, Aldair J; Lopes, Claudia S; Rostila, Mikael; Werneck, Guilherme Loureiro; Griep, Rosane Härter; de Leon, Antônio Carlos Monteiro Ponce; Faerstein, Eduardo

    2014-01-01

    OBJECTIVE To identify gender differences in social support dimensions’ effect on adults’ leisure-time physical activity maintenance, type, and time. METHODS Longitudinal study of 1,278 non-faculty public employees at a university in Rio de Janeiro, RJ, Southeastern Brazil. Physical activity was evaluated using a dichotomous question with a two-week reference period, and further questions concerning leisure-time physical activity type (individual or group) and time spent on the activity. Social support was measured with the Medical Outcomes Study Social Support Scale. For the analysis, logistic regression models were adjusted separately by gender. RESULTS A multinomial logistic regression showed an association between material support and individual activities among women (OR = 2.76; 95%CI 1.2;6.5). Affective support was associated with time spent on leisure-time physical activity only among men (OR = 1.80; 95%CI 1.1;3.2). CONCLUSIONS All dimensions of social support that were examined influenced either the type of, or the time spent on, leisure-time physical activity. In some social support dimensions, the associations detected varied by gender. Future studies should attempt to elucidate the mechanisms involved in these gender differences. PMID:25210819

  19. Rapid and safe learning of robotic gastrectomy for gastric cancer: multidimensional analysis in a comparison with laparoscopic gastrectomy.

    PubMed

    Kim, H-I; Park, M S; Song, K J; Woo, Y; Hyung, W J

    2014-10-01

    The learning curve of robotic gastrectomy has not yet been evaluated in comparison with the laparoscopic approach. We compared the learning curves of robotic gastrectomy and laparoscopic gastrectomy based on operation time and surgical success. We analyzed 172 robotic and 481 laparoscopic distal gastrectomies performed by single surgeon from May 2003 to April 2009. The operation time was analyzed using a moving average and non-linear regression analysis. Surgical success was evaluated by a cumulative sum plot with a target failure rate of 10%. Surgical failure was defined as laparoscopic or open conversion, insufficient lymph node harvest for staging, resection margin involvement, postoperative morbidity, and mortality. Moving average and non-linear regression analyses indicated stable state for operation time at 95 and 121 cases in robotic gastrectomy, and 270 and 262 cases in laparoscopic gastrectomy, respectively. The cumulative sum plot identified no cut-off point for surgical success in robotic gastrectomy and 80 cases in laparoscopic gastrectomy. Excluding the initial 148 laparoscopic gastrectomies that were performed before the first robotic gastrectomy, the two groups showed similar number of cases to reach steady state in operation time, and showed no cut-off point in analysis of surgical success. The experience of laparoscopic surgery could affect the learning process of robotic gastrectomy. An experienced laparoscopic surgeon requires fewer cases of robotic gastrectomy to reach steady state. Moreover, the surgical outcomes of robotic gastrectomy were satisfactory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cooperation without Culture? The Null Effect of Generalized Trust on Intentional Homicide: A Cross-National Panel Analysis, 1995–2009

    PubMed Central

    Robbins, Blaine

    2013-01-01

    Sociologists, political scientists, and economists all suggest that culture plays a pivotal role in the development of large-scale cooperation. In this study, I used generalized trust as a measure of culture to explore if and how culture impacts intentional homicide, my operationalization of cooperation. I compiled multiple cross-national data sets and used pooled time-series linear regression, single-equation instrumental-variables linear regression, and fixed- and random-effects estimation techniques on an unbalanced panel of 118 countries and 232 observations spread over a 15-year time period. Results suggest that culture and large-scale cooperation form a tenuous relationship, while economic factors such as development, inequality, and geopolitics appear to drive large-scale cooperation. PMID:23527211

  1. Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time

    DOE PAGES

    Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.

    2017-12-20

    In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.

  2. Comparing Methods for Assessing Reliability Uncertainty Based on Pass/Fail Data Collected Over Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abes, Jeff I.; Hamada, Michael S.; Hills, Charles R.

    In this paper, we compare statistical methods for analyzing pass/fail data collected over time; some methods are traditional and one (the RADAR or Rationale for Assessing Degradation Arriving at Random) was recently developed. These methods are used to provide uncertainty bounds on reliability. We make observations about the methods' assumptions and properties. Finally, we illustrate the differences between two traditional methods, logistic regression and Weibull failure time analysis, and the RADAR method using a numerical example.

  3. Maintenance Operations in Mission Oriented Protective Posture Level IV (MOPPIV)

    DTIC Science & Technology

    1987-10-01

    Repair FADAC Printed Circuit Board ............. 6 3. Data Analysis Techniques ............................. 6 a. Multiple Linear Regression... ANALYSIS /DISCUSSION ............................... 12 1. Exa-ple of Regression Analysis ..................... 12 S2. Regression results for all tasks...6 * TABLE 9. Task Grouping for Analysis ........................ 7 "TABXLE 10. Remove/Replace H60A3 Power Pack................. 8 TABLE

  4. Estimation of the stand ages of tropical secondary forests after shifting cultivation based on the combination of WorldView-2 and time-series Landsat images

    NASA Astrophysics Data System (ADS)

    Fujiki, Shogoro; Okada, Kei-ichi; Nishio, Shogo; Kitayama, Kanehiro

    2016-09-01

    We developed a new method to estimate stand ages of secondary vegetation in the Bornean montane zone, where local people conduct traditional shifting cultivation and protected areas are surrounded by patches of recovering secondary vegetation of various ages. Identifying stand ages at the landscape level is critical to improve conservation policies. We combined a high-resolution satellite image (WorldView-2) with time-series Landsat images. We extracted stand ages (the time elapsed since the most recent slash and burn) from a change-detection analysis with Landsat time-series images and superimposed the derived stand ages on the segments classified by object-based image analysis using WorldView-2. We regarded stand ages as a response variable, and object-based metrics as independent variables, to develop regression models that explain stand ages. Subsequently, we classified the vegetation of the target area into six age units and one rubber plantation unit (1-3 yr, 3-5 yr, 5-7 yr, 7-30 yr, 30-50 yr, >50 yr and 'rubber plantation') using regression models and linear discriminant analyses. Validation demonstrated an accuracy of 84.3%. Our approach is particularly effective in classifying highly dynamic pioneer vegetation younger than 7 years into 2-yr intervals, suggesting that rapid changes in vegetation canopies can be detected with high accuracy. The combination of a spectral time-series analysis and object-based metrics based on high-resolution imagery enabled the classification of dynamic vegetation under intensive shifting cultivation and yielded an informative land cover map based on stand ages.

  5. Marginal analysis in assessing factors contributing time to physician in the Emergency Department using operations data.

    PubMed

    Pathan, Sameer A; Bhutta, Zain A; Moinudheen, Jibin; Jenkins, Dominic; Silva, Ashwin D; Sharma, Yogdutt; Saleh, Warda A; Khudabakhsh, Zeenat; Irfan, Furqan B; Thomas, Stephen H

    2016-01-01

    Background: Standard Emergency Department (ED) operations goals include minimization of the time interval (tMD) between patients' initial ED presentation and initial physician evaluation. This study assessed factors known (or suspected) to influence tMD with a two-step goal. The first step was generation of a multivariate model identifying parameters associated with prolongation of tMD at a single study center. The second step was the use of a study center-specific multivariate tMD model as a basis for predictive marginal probability analysis; the marginal model allowed for prediction of the degree of ED operations benefit that would be affected with specific ED operations improvements. Methods: The study was conducted using one month (May 2015) of data obtained from an ED administrative database (EDAD) in an urban academic tertiary ED with an annual census of approximately 500,000; during the study month, the ED saw 39,593 cases. The EDAD data were used to generate a multivariate linear regression model assessing the various demographic and operational covariates' effects on the dependent variable tMD. Predictive marginal probability analysis was used to calculate the relative contributions of key covariates as well as demonstrate the likely tMD impact on modifying those covariates with operational improvements. Analyses were conducted with Stata 14MP, with significance defined at p  < 0.05 and confidence intervals (CIs) reported at the 95% level. Results: In an acceptable linear regression model that accounted for just over half of the overall variance in tMD (adjusted r 2 0.51), important contributors to tMD included shift census ( p  = 0.008), shift time of day ( p  = 0.002), and physician coverage n ( p  = 0.004). These strong associations remained even after adjusting for each other and other covariates. Marginal predictive probability analysis was used to predict the overall tMD impact (improvement from 50 to 43 minutes, p  < 0.001) of consistent staffing with 22 physicians. Conclusions: The analysis identified expected variables contributing to tMD with regression demonstrating significance and effect magnitude of alterations in covariates including patient census, shift time of day, and number of physicians. Marginal analysis provided operationally useful demonstration of the need to adjust physician coverage numbers, prompting changes at the study ED. The methods used in this analysis may prove useful in other EDs wishing to analyze operations information with the goal of predicting which interventions may have the most benefit.

  6. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  7. A statistical approach to evaluate the performance of cardiac biomarkers in predicting death due to acute myocardial infarction: time-dependent ROC curve

    PubMed

    Karaismailoğlu, Eda; Dikmen, Zeliha Günnur; Akbıyık, Filiz; Karaağaoğlu, Ahmet Ergun

    2018-04-30

    Background/aim: Myoglobin, cardiac troponin T, B-type natriuretic peptide (BNP), and creatine kinase isoenzyme MB (CK-MB) are frequently used biomarkers for evaluating risk of patients admitted to an emergency department with chest pain. Recently, time- dependent receiver operating characteristic (ROC) analysis has been used to evaluate the predictive power of biomarkers where disease status can change over time. We aimed to determine the best set of biomarkers that estimate cardiac death during follow-up time. We also obtained optimal cut-off values of these biomarkers, which differentiates between patients with and without risk of death. A web tool was developed to estimate time intervals in risk. Materials and methods: A total of 410 patients admitted to the emergency department with chest pain and shortness of breath were included. Cox regression analysis was used to determine an optimal set of biomarkers that can be used for estimating cardiac death and to combine the significant biomarkers. Time-dependent ROC analysis was performed for evaluating performances of significant biomarkers and a combined biomarker during 240 h. The bootstrap method was used to compare statistical significance and the Youden index was used to determine optimal cut-off values. Results : Myoglobin and BNP were significant by multivariate Cox regression analysis. Areas under the time-dependent ROC curves of myoglobin and BNP were about 0.80 during 240 h, and that of the combined biomarker (myoglobin + BNP) increased to 0.90 during the first 180 h. Conclusion: Although myoglobin is not clinically specific to a cardiac event, in our study both myoglobin and BNP were found to be statistically significant for estimating cardiac death. Using this combined biomarker may increase the power of prediction. Our web tool can be useful for evaluating the risk status of new patients and helping clinicians in making decisions.

  8. Demonstration of a Fiber Optic Regression Probe

    NASA Technical Reports Server (NTRS)

    Korman, Valentin; Polzin, Kurt A.

    2010-01-01

    The capability to provide localized, real-time monitoring of material regression rates in various applications has the potential to provide a new stream of data for development testing of various components and systems, as well as serving as a monitoring tool in flight applications. These applications include, but are not limited to, the regression of a combusting solid fuel surface, the ablation of the throat in a chemical rocket or the heat shield of an aeroshell, and the monitoring of erosion in long-life plasma thrusters. The rate of regression in the first application is very fast, while the second and third are increasingly slower. A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor is optical, using two different, co-located fiber-optics to perform the regression measurement. The disparate optical transmission properties of the two fiber-optics makes it possible to measure the regression rate by monitoring the relative light attenuation through the fibers. As the fibers regress along with the parent material in which they are embedded, the relative light intensities through the two fibers changes, providing a measure of the regression rate. The optical nature of the system makes it relatively easy to use in a variety of harsh, high temperature environments, and it is also unaffected by the presence of electric and magnetic fields. In addition, the sensor could be used to perform optical spectroscopy on the light emitted by a process and collected by fibers, giving localized measurements of various properties. The capability to perform an in-situ measurement of material regression rates is useful in addressing a variety of physical issues in various applications. An in-situ measurement allows for real-time data regarding the erosion rates, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over an operating envelope could also be useful in the modeling detailed physical processes. The sensor has been embedded in many regressing media for the purposes of proof-of-concept testing. A gross demonstration of its capabilities was performed using a sanding wheel to remove layers of metal. A longer-term demonstration measurement involved the placement of the sensor in a brake pad, monitoring the removal of pad material associated with the normal wear-and-tear of driving. It was used to measure the regression rates of the combustable media in small model rocket motors and road flares. Finally, a test was performed using a sand blaster to remove small amounts of material at a time. This test was aimed at demonstrating the unit's present resolution, and is compared with laser profilometry data obtained simultaneously. At the lowest resolution levels, this unit should be useful in locally quantifying the erosion rates of the channel walls in plasma thrusters. .

  9. Adolescent sexual victimization: a prospective study on risk factors for first time sexual assault.

    PubMed

    Bramsen, Rikke Holm; Lasgaard, Mathias; Koss, Mary P; Elklit, Ask; Banner, Jytte

    2012-09-01

    The present study set out to investigate predictors of first time adolescent peer-on-peer sexual victimization (APSV) among 238 female Grade 9 students from 30 schools in Denmark. A prospective research design was utilized to examine the relationship among five potential predictors as measured at baseline and first time APSV during a 6-month period. Data analysis was a binary logistic regression analysis. Number of sexual partners and displaying sexual risk behaviors significantly predicted subsequent first time peer-on-peer sexual victimization, whereas a history of child sexual abuse, early sexual onset and failing to signal sexual boundaries did not. The present study identifies specific risk factors for first time sexual victimization that are potentially changeable. Thus, the results may inform prevention initiatives targeting initial experiences of APSV.

  10. An analysis of first-time blood donors return behaviour using regression models.

    PubMed

    Kheiri, S; Alibeigi, Z

    2015-08-01

    Blood products have a vital role in saving many patients' lives. The aim of this study was to analyse blood donor return behaviour. Using a cross-sectional follow-up design of 5-year duration, 864 first-time donors who had donated blood were selected using a systematic sampling. The behaviours of donors via three response variables, return to donation, frequency of return to donation and the time interval between donations, were analysed based on logistic regression, negative binomial regression and Cox's shared frailty model for recurrent events respectively. Successful return to donation rated at 49·1% and the deferral rate was 13·3%. There was a significant reverse relationship between the frequency of return to donation and the time interval between donations. Sex, body weight and job had an effect on return to donation; weight and frequency of donation during the first year had a direct effect on the total frequency of donations. Age, weight and job had a significant effect on the time intervals between donations. Aging decreases the chances of return to donation and increases the time interval between donations. Body weight affects the three response variables, i.e. the higher the weight, the more the chances of return to donation and the shorter the time interval between donations. There is a positive correlation between the frequency of donations in the first year and the total number of return to donations. Also, the shorter the time interval between donations is, the higher the frequency of donations. © 2015 British Blood Transfusion Society.

  11. Differing manifestations of hepatitis C and tacrolimus on hospitalized diabetes mellitus occurring after kidney transplantation.

    PubMed

    Abbott, Kevin C; Bernet, Victor J; Agodoa, Lawrence Y; Yuan, Christina M

    2005-09-01

    Previous studies suggest the association of recipient hepatitis C seropositivity (HCV+) and use of tacrolimus (TAC) with post-transplant diabetes mellitus (PTDM) may differ by manifestations of type I or type II diabetes, but this has not been assessed in the era of current immunosuppression. We performed a retrospective cohort study of 10,342 Medicare primary renal transplantation recipients without evidence of diabetes at the time of listing in the United States Renal Data System between January 1, 1998 and July 31, 2000, followed until December 31, 2000. Outcomes were hospitalizations for a primary diagnosis of diabetic ketoacidosis (DKA) or hyperglycemic hyperosmolar syndrome (HHS). Cox regression analysis was used to calculate adjusted hazard ratios (AHR) for time to DKA or HHS, stratified by diabetes status at the time of transplant. In Cox regression analysis, use of TAC at discharge was independently associated with shorter time to DKA (AHR, 1.88; 95% CI, 1.05-3.37, p=0.034) but not HHS. In contrast, recipient HCV+ was independently associated with shorter time to HHS (AHR, 3.90; 1.59-9.60, p=.003), but not DKA. There was no interaction between TAC and HCV+ for either outcome. These results confirm earlier findings that TAC and HCV+ may mediate the risk of PTDM through different mechanisms, even in the modern era.

  12. The influence of coping styles on long-term employment in multiple sclerosis: A prospective study.

    PubMed

    Grytten, Nina; Skår, Anne Br; Aarseth, Jan Harald; Assmus, Jorg; Farbu, Elisabeth; Lode, Kirsten; Nyland, Harald I; Smedal, Tori; Myhr, Kjell Morten

    2017-06-01

    The aim was to investigate predictive values of coping styles, clinical and demographic factors on time to unemployment in patients diagnosed with multiple sclerosis (MS) during 1998-2002 in Norway. All patients ( N = 108) diagnosed with MS 1998-2002 in Hordaland and Rogaland counties, Western Norway, were invited to participate in the long-term follow-up study in 2002. Baseline recordings included disability scoring (Expanded Disability Status Scale (EDSS)), fatigue (Fatigue Severity Scale (FSS)), depression (Beck Depression Inventory (BDI)), and questionnaire assessing coping (the Dispositional Coping Styles Scale (COPE)). Logistic regression analysis was used to identify factors associated with unemployed at baseline, and Cox regression analysis to identify factors at baseline associated with time to unemployment during follow-up. In all, 41 (44%) were employed at baseline. After 13 years follow-up in 2015, mean disease duration of 22 years, 16 (17%) were still employed. Median time from baseline to unemployment was 6 years (±5). Older age at diagnosis, female gender, and depression were associated with patients being unemployed at baseline. Female gender, long disease duration, and denial as avoidant coping strategy at baseline predicted shorter time to unemployment. Avoidant coping style, female gender, and longer disease duration were associated with shorter time to unemployment. These factors should be considered when advising patients on MS and future employment.

  13. Linear regression metamodeling as a tool to summarize and present simulation model results.

    PubMed

    Jalal, Hawre; Dowd, Bryan; Sainfort, François; Kuntz, Karen M

    2013-10-01

    Modelers lack a tool to systematically and clearly present complex model results, including those from sensitivity analyses. The objective was to propose linear regression metamodeling as a tool to increase transparency of decision analytic models and better communicate their results. We used a simplified cancer cure model to demonstrate our approach. The model computed the lifetime cost and benefit of 3 treatment options for cancer patients. We simulated 10,000 cohorts in a probabilistic sensitivity analysis (PSA) and regressed the model outcomes on the standardized input parameter values in a set of regression analyses. We used the regression coefficients to describe measures of sensitivity analyses, including threshold and parameter sensitivity analyses. We also compared the results of the PSA to deterministic full-factorial and one-factor-at-a-time designs. The regression intercept represented the estimated base-case outcome, and the other coefficients described the relative parameter uncertainty in the model. We defined simple relationships that compute the average and incremental net benefit of each intervention. Metamodeling produced outputs similar to traditional deterministic 1-way or 2-way sensitivity analyses but was more reliable since it used all parameter values. Linear regression metamodeling is a simple, yet powerful, tool that can assist modelers in communicating model characteristics and sensitivity analyses.

  14. Methodologic considerations in the design and analysis of nested case-control studies: association between cytokines and postoperative delirium.

    PubMed

    Ngo, Long H; Inouye, Sharon K; Jones, Richard N; Travison, Thomas G; Libermann, Towia A; Dillon, Simon T; Kuchel, George A; Vasunilashorn, Sarinnapha M; Alsop, David C; Marcantonio, Edward R

    2017-06-06

    The nested case-control study (NCC) design within a prospective cohort study is used when outcome data are available for all subjects, but the exposure of interest has not been collected, and is difficult or prohibitively expensive to obtain for all subjects. A NCC analysis with good matching procedures yields estimates that are as efficient and unbiased as estimates from the full cohort study. We present methodological considerations in a matched NCC design and analysis, which include the choice of match algorithms, analysis methods to evaluate the association of exposures of interest with outcomes, and consideration of overmatching. Matched, NCC design within a longitudinal observational prospective cohort study in the setting of two academic hospitals. Study participants are patients aged over 70 years who underwent scheduled major non-cardiac surgery. The primary outcome was postoperative delirium from in-hospital interviews and medical record review. The main exposure was IL-6 concentration (pg/ml) from blood sampled at three time points before delirium occurred. We used nonparametric signed ranked test to test for the median of the paired differences. We used conditional logistic regression to model the risk of IL-6 on delirium incidence. Simulation was used to generate a sample of cohort data on which unconditional multivariable logistic regression was used, and the results were compared to those of the conditional logistic regression. Partial R-square was used to assess the level of overmatching. We found that the optimal match algorithm yielded more matched pairs than the greedy algorithm. The choice of analytic strategy-whether to consider measured cytokine levels as the predictor or outcome-- yielded inferences that have different clinical interpretations but similar levels of statistical significance. Estimation results from NCC design using conditional logistic regression, and from simulated cohort design using unconditional logistic regression, were similar. We found minimal evidence for overmatching. Using a matched NCC approach introduces methodological challenges into the study design and data analysis. Nonetheless, with careful selection of the match algorithm, match factors, and analysis methods, this design is cost effective and, for our study, yields estimates that are similar to those from a prospective cohort study design.

  15. Time spent on health-related activities by senior Australians with chronic diseases: what is the role of multimorbidity and comorbidity?

    PubMed

    Islam, M Mofizul; McRae, Ian S; Yen, Laurann; Jowsey, Tanisha; Valderas, Jose M

    2015-06-01

    To examine the effect of various morbidity clusters of chronic diseases on health-related time use and to explore factors associated with heavy time burden (more than 30 hours/month) of health-related activities. Using a national survey, data were collected from 2,540 senior Australians. Natural clusters were identified using cluster analysis and clinical clusters using clinical expert opinion. We undertook a set of linear regressions to model people's time use, and logistic regressions to model heavy time burden. Time use increases with the number of chronic diseases. Six of the 12 diseases are significantly associated with higher time use, with the highest effect for diabetes followed by depression; 18% reported a heavy time burden, with diabetes again being the most significant disease. Clusters and dominant comorbid groupings do not contribute to predicting time use or time burden. Total number of diseases and specific diseases are useful determinants of time use and heavy time burden. Dominant groupings and disease clusters do not predict time use. In considering time demands on patients and the need for care co-ordination, care providers need to be aware of how many and what specific diseases the patient faces. © 2015 Public Health Association of Australia.

  16. Evaluating the relationship between wildfire extent and nitrogen dry deposition in a boreal forest in interior Alaska

    NASA Astrophysics Data System (ADS)

    Nagano, Hirohiko; Iwata, Hiroki

    2017-03-01

    Alaska wildfires may play an important role in nitrogen (N) dry deposition in Alaskan boreal forests. Here we used annual N dry deposition data measured by CASTNET at Denali National Park (DEN417) during 1999-2013, to evaluate the relationships between wildfire extent and N dry deposition in Alaska. We established six potential factors for multiple regression analysis, including burned area within 100 km of DEN417 (BA100km) and in other distant parts of Alaska (BAAK), the sum of indexes of North Atlantic Oscillation and Arctic Oscillation (OI), number of days with negative OI (OIday), precipitation (PRCP), and number of days with PRCP (PRCPday). Multiple regression analysis was conducted for both time scales, annual (using only annual values of factors) and six-month (using annual values of BAAK and BA100km, and fire and non-fire seasons' values of other four factors) time scales. Together, BAAK, BA100km, and OIday, along with PRCPday in the case of the six-month scale, explained more than 92% of the interannual variation in N dry deposition. The influence of BA100km on N dry deposition was ten-fold greater than from BAAK; the qualitative contribution was almost zero, however, due to the small BA100km. BAAK was the leading explanatory factor, with a 15 ± 14% contribution. We further calculated N dry deposition during 1950-2013 using the obtained regression equation and long-term records for the factors. The N dry deposition calculated for 1950-2013 revealed that an increased occurrence of wildfires during the 2000s led to the maximum N dry deposition exhibited during this decade. As a result, the effect of BAAK on N dry deposition remains sufficiently large, even when large possible uncertainties (>40%) in the measurement of N dry deposition are taken into account for the multiple regression analysis.

  17. Multiple regression analysis in modelling of carbon dioxide emissions by energy consumption use in Malaysia

    NASA Astrophysics Data System (ADS)

    Keat, Sim Chong; Chun, Beh Boon; San, Lim Hwee; Jafri, Mohd Zubir Mat

    2015-04-01

    Climate change due to carbon dioxide (CO2) emissions is one of the most complex challenges threatening our planet. This issue considered as a great and international concern that primary attributed from different fossil fuels. In this paper, regression model is used for analyzing the causal relationship among CO2 emissions based on the energy consumption in Malaysia using time series data for the period of 1980-2010. The equations were developed using regression model based on the eight major sources that contribute to the CO2 emissions such as non energy, Liquefied Petroleum Gas (LPG), diesel, kerosene, refinery gas, Aviation Turbine Fuel (ATF) and Aviation Gasoline (AV Gas), fuel oil and motor petrol. The related data partly used for predict the regression model (1980-2000) and partly used for validate the regression model (2001-2010). The results of the prediction model with the measured data showed a high correlation coefficient (R2=0.9544), indicating the model's accuracy and efficiency. These results are accurate and can be used in early warning of the population to comply with air quality standards.

  18. [Multivariate ordinal logistic regression analysis on the association between consumption of fried food and both esophageal cancer and precancerous lesions].

    PubMed

    Guo, L W; Liu, S Z; Zhang, M; Chen, Q; Zhang, S K; Sun, X B

    2017-12-10

    Objective: To investigate the effect of fried food intake on the pathogenesis of esophageal cancer and precancerous lesions. Methods: From 2005 to 2013, all the residents aged 40-69 years from 11 counties (cities) where cancer screening of upper gastrointestinal cancer had been conducted in rural areas of Henan province, were recruited as the subjects of study. Information on demography and lifestyle was collected. The residents under study were screened with iodine staining endoscopic examination and biopsy samples were diagnosed pathologically, under standardized criteria. Subjects with high risk were divided into the groups based on their different pathological degrees. Multivariate ordinal logistic regression analysis was used to analyze the relationship between the frequency of fried food intake and esophageal cancer and precancerous lesions. Results: A total number of 8 792 cases with normal esophagus, 3 680 with mild hyperplasia, 972 with moderate hyperplasia, 413 with severe hyperplasia carcinoma in situ, and 336 cases of esophageal cancer were recruited. Results from multivariate logistic regression analysis showed that, when compared with those who did not eat fried food, the intake of fried food (<2 times/week: OR =1.60, 95% CI : 1.40-1.83; ≥2 times/week: OR =2.58, 95% CI : 1.98-3.37) appeared a risk factor for both esophageal cancer or precancerous lesions after adjustment for age, sex, marital status, educational level, body mass index, smoking and alcohol intake. Conclusion: The intake of fried food appeared a risk factor for both esophageal cancer and precancerous lesions.

  19. Assessing the risk of bovine fasciolosis using linear regression analysis for the state of Rio Grande do Sul, Brazil.

    PubMed

    Silva, Ana Elisa Pereira; Freitas, Corina da Costa; Dutra, Luciano Vieira; Molento, Marcelo Beltrão

    2016-02-15

    Fasciola hepatica is the causative agent of fasciolosis, a disease that triggers a chronic inflammatory process in the liver affecting mainly ruminants and other animals including humans. In Brazil, F. hepatica occurs in larger numbers in the most Southern state of Rio Grande do Sul. The objective of this study was to estimate areas at risk using an eight-year (2002-2010) time series of climatic and environmental variables that best relate to the disease using a linear regression method to municipalities in the state of Rio Grande do Sul. The positivity index of the disease, which is the rate of infected animal per slaughtered animal, was divided into three risk classes: low, medium and high. The accuracy of the known sample classification on the confusion matrix for the low, medium and high rates produced by the estimated model presented values between 39 and 88% depending of the year. The regression analysis showed the importance of the time-based data for the construction of the model, considering the two variables of the previous year of the event (positivity index and maximum temperature). The generated data is important for epidemiological and parasite control studies mainly because F. hepatica is an infection that can last from months to years. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Standards for Standardized Logistic Regression Coefficients

    ERIC Educational Resources Information Center

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  1. Deep cerebral microbleeds are negatively associated with HDL-C in elderly first-time ischemic stroke patients.

    PubMed

    Igase, Michiya; Kohara, Katsuhiko; Igase, Keiji; Yamashita, Shiro; Fujisawa, Mutsuo; Katagi, Ryosuke; Miki, Tetsuro

    2013-02-15

    Cerebral microbleeds (CMBs) detected on T2*-weighted MRI gradient-echo have been associated with increased risk of cerebral infarction. We evaluated risk factors for these lesions in a cohort of first-time ischemic stroke patients. Presence of CMBs in consecutive first-time ischemic stroke patients was evaluated. The location of CMBs was classified by cerebral region as strictly lobar (lobar CMBs) and deep or infratentorial (deep CMBs). Logistic regression analysis was performed to determine the contribution of lipid profile to the presence of CMBs. One hundred and sixteen patients with a mean age of 70±10years were recruited. CMBs were present in 74 patients. The deep CMBs group had significantly lower HDL-C levels than those without CMBs. In univariable analysis, advanced periventricular hyperintensity grade (PVH>2) and decreased HDL-C were significantly associated with the deep but not the lobar CMB group. On logistic regression analysis, HDL-C (beta=-0.06, p=0.002) and PVH grade >2 (beta=3.40, p=0.005) were independent determinants of deep CMBs. Low HDL-C may be a risk factor of deep CMBs, including advanced PVH status, in elderly patients with acute ischemic stroke. Management of HDL-C levels might be a therapeutic target for the prevention of recurrence of stroke. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Linear regression analysis: part 14 of a series on evaluation of scientific publications.

    PubMed

    Schneider, Astrid; Hommel, Gerhard; Blettner, Maria

    2010-11-01

    Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.

  3. An improved multiple linear regression and data analysis computer program package

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.

    1972-01-01

    NEWRAP, an improved version of a previous multiple linear regression program called RAPIER, CREDUC, and CRSPLT, allows for a complete regression analysis including cross plots of the independent and dependent variables, correlation coefficients, regression coefficients, analysis of variance tables, t-statistics and their probability levels, rejection of independent variables, plots of residuals against the independent and dependent variables, and a canonical reduction of quadratic response functions useful in optimum seeking experimentation. A major improvement over RAPIER is that all regression calculations are done in double precision arithmetic.

  4. Time to antibiotics and outcomes in cancer patients with febrile neutropenia

    PubMed Central

    2014-01-01

    Background Febrile neutropenia is an oncologic emergency. The timing of antibiotics administration in patients with febrile neutropenia may result in adverse outcomes. Our study aims to determine time-to- antibiotic administration in patients with febrile neutropenia, and its relationship with length of hospital stay, intensive care unit monitoring, and hospital mortality. Methods The study population was comprised of adult cancer patients with febrile neutropenia who were hospitalized, at a tertiary care hospital, between January 2010 and December 2011. Using Multination Association of Supportive Care in Cancer (MASCC) risk score, the study cohort was divided into high and low risk groups. A multivariate regression analysis was performed to assess relationship between time-to- antibiotic administration and various outcome variables. Results One hundred and five eligible patients with median age of 60 years (range: 18–89) and M:F of 43:62 were identified. Thirty-seven (35%) patients were in MASCC high risk group. Median time-to- antibiotic administration was 2.5 hrs (range: 0.03-50) and median length of hospital stay was 6 days (range: 1–57). In the multivariate analysis time-to- antibiotic administration (regression coefficient [RC]: 0.31 days [95% CI: 0.13-0.48]), known source of fever (RC: 4.1 days [95% CI: 0.76-7.5]), and MASCC high risk group (RC: 4 days [95% CI: 1.1-7.0]) were significantly correlated with longer hospital stay. Of 105 patients, 5 (4.7%) died & or required ICU monitoring. In multivariate analysis no variables significantly correlated with mortality or ICU monitoring. Conclusions Our study revealed that delay in antibiotics administration has been associated with a longer hospital stay. PMID:24716604

  5. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

    PubMed

    Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

    2015-02-01

    To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

  6. Static and moving solid/gas interface modeling in a hybrid rocket engine

    NASA Astrophysics Data System (ADS)

    Mangeot, Alexandre; William-Louis, Mame; Gillard, Philippe

    2018-07-01

    A numerical model was developed with CFD-ACE software to study the working condition of an oxygen-nitrogen/polyethylene hybrid rocket combustor. As a first approach, a simplified numerical model is presented. It includes a compressible transient gas phase in which a two-step combustion mechanism is implemented coupled to a radiative model. The solid phase from the fuel grain is a semi-opaque material with its degradation process modeled by an Arrhenius type law. Two versions of the model were tested. The first considers the solid/gas interface with a static grid while the second uses grid deformation during the computation to follow the asymmetrical regression. The numerical results are obtained with two different regression kinetics originating from ThermoGravimetry Analysis and test bench results. In each case, the fuel surface temperature is retrieved within a range of 5% error. However, good results are only found using kinetics from the test bench. The regression rate is found within 0.03 mm s-1 and average combustor pressure and its variation over time have the same intensity than the measurements conducted on the test bench. The simulation that uses grid deformation to follow the regression shows a good stability over a 10 s simulated time simulation.

  7. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  8. Selective principal component regression analysis of fluorescence hyperspectral image to assess aflatoxin contamination in corn

    USDA-ARS?s Scientific Manuscript database

    Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...

  9. Building information for systematic improvement of the prevention of hospital-acquired pressure ulcers with statistical process control charts and regression.

    PubMed

    Padula, William V; Mishra, Manish K; Weaver, Christopher D; Yilmaz, Taygan; Splaine, Mark E

    2012-06-01

    To demonstrate complementary results of regression and statistical process control (SPC) chart analyses for hospital-acquired pressure ulcers (HAPUs), and identify possible links between changes and opportunities for improvement between hospital microsystems and macrosystems. Ordinary least squares and panel data regression of retrospective hospital billing data, and SPC charts of prospective patient records for a US tertiary-care facility (2004-2007). A prospective cohort of hospital inpatients at risk for HAPUs was the study population. There were 337 HAPU incidences hospital wide among 43 844 inpatients. A probit regression model predicted the correlation of age, gender and length of stay on HAPU incidence (pseudo R(2)=0.096). Panel data analysis determined that for each additional day in the hospital, there was a 0.28% increase in the likelihood of HAPU incidence. A p-chart of HAPU incidence showed a mean incidence rate of 1.17% remaining in statistical control. A t-chart showed the average time between events for the last 25 HAPUs was 13.25 days. There was one 57-day period between two incidences during the observation period. A p-chart addressing Braden scale assessments showed that 40.5% of all patients were risk stratified for HAPUs upon admission. SPC charts complement standard regression analysis. SPC amplifies patient outcomes at the microsystem level and is useful for guiding quality improvement. Macrosystems should monitor effective quality improvement initiatives in microsystems and aid the spread of successful initiatives to other microsystems, followed by system-wide analysis with regression. Although HAPU incidence in this study is below the national mean, there is still room to improve HAPU incidence in this hospital setting since 0% incidence is theoretically achievable. Further assessment of pressure ulcer incidence could illustrate improvement in the quality of care and prevent HAPUs.

  10. Variable Selection for Regression Models of Percentile Flows

    NASA Astrophysics Data System (ADS)

    Fouad, G.

    2017-12-01

    Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high degree of multicollinearity, possibly illustrating the co-evolution of climatic and physiographic conditions. Given the ineffectiveness of many variables used here, future work should develop new variables that target specific processes associated with percentile flows.

  11. Leaf Phenological Characters of Main Tree Species in Urban Forest of Shenyang

    PubMed Central

    Xu, Sheng; Xu, Wenduo; Chen, Wei; He, Xingyuan; Huang, Yanqing; Wen, Hua

    2014-01-01

    Background Plant leaves, as the main photosynthetic organs and the high energy converters among primary producers in terrestrial ecosystems, have attracted significant research attention. Leaf lifespan is an adaptive characteristic formed by plants to obtain the maximum carbon in the long-term adaption process. It determines important functional and structural characteristics exhibited in the environmental adaptation of plants. However, the leaf lifespan and leaf characteristics of urban forests were not studied up to now. Methods By using statistic, linear regression methods and correlation analysis, leaf phenological characters of main tree species in urban forest of Shenyang were observed for five years to obtain the leafing phenology (including leafing start time, end time, and duration), defoliating phenology (including defoliation start time, end time, and duration), and the leaf lifespan of the main tree species. Moreover, the relationships between temperature and leafing phenology, defoliating phenology, and leaf lifespan were analyzed. Findings The timing of leafing differed greatly among species. The early leafing species would have relatively early end of leafing; the longer it took to the end of leafing would have a later time of completed leafing. The timing of defoliation among different species varied significantly, the early defoliation species would have relatively longer duration of defoliation. If the mean temperature rise for 1°C in spring, the time of leafing would experience 5 days earlier in spring. If the mean temperature decline for 1°C, the time of defoliation would experience 3 days delay in autumn. Interpretation There is significant correlation between leaf longevity and the time of leafing and defoliation. According to correlation analysis and regression analysis, there is significant correlation between temperature and leafing and defoliation phenology. Early leafing species would have a longer life span and consequently have advantage on carbon accumulation compared with later defoliation species. PMID:24963625

  12. Sexual possibility situations and sexual behaviors among young adolescents: the moderating role of protective factors.

    PubMed

    DiLorio, Colleen; Dudley, William N; Soet, Johanna E; McCarty, Frances

    2004-12-01

    To examine sexual possibility situations (SPS) and protective practices associated with involvement in intimate sexual behaviors and the initiation of sexual intercourse among young adolescents and to determine if protective factors moderate the relationship between SPS and sexual behaviors. Data for these analyses were obtained from the baseline assessment for adolescents conducted as part of an HIV prevention study called "Keepin' it R.E.A.L.!" The study was conducted with a community-based organization (CBO) in an urban area serving a predominantly African-American population. In addition to items assessing SPS, intimate sexual behaviors, and initiation of sexual intercourse, adolescents provided information on the following protective factors: educational goals, self-concept, future time perspective, orientation to health, self-efficacy, outcome expectations, parenting, communication, values, and prosocial activities. Background personal information, including age and gender, was also collected. The analyses were conducted on data from 491 predominantly African-American adolescents, 61% of whom were boys. Variables were combined to form SPS and protective indices that were used in the first set of regression analyses. In a second set of analyses, the indices were unbundled and individual variables were entered into regression analyses. Both SPS and protective indices explained significant portions of variance in intimate sexual behaviors, and the SPS index explained a significant portion of variance in the initiation of sexual intercourse. The regression analysis using the unbundled SPS and protective factors revealed the following statistically significant predictors for intimate sexual behaviors: age, gender, time alone with groups of peers, time alone with a member of the opposite sex, behavior self-concept, popularity self-concept, self-efficacy for abstinence, outcome expectations for abstinence, parental control, personal values, and parental values. A similar regression analysis revealed that age, time alone with a member of the opposite sex, and personal values were significant predictors of initiation of sexual intercourse. These results provide evidence for the important role of protective factors in explaining early involvement in sexual behaviors and show that protective factors extend beyond personal characteristics to include both familial and peer factors.

  13. Features of natural and gonadotropin-releasing hormone antagonist-induced corpus luteum regression and effects of in vivo human chorionic gonadotropin.

    PubMed

    Del Canto, Felipe; Sierralta, Walter; Kohen, Paulina; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2007-11-01

    The natural process of luteolysis and luteal regression is induced by withdrawal of gonadotropin support. The objectives of this study were: 1) to compare the functional changes and apoptotic features of natural human luteal regression and induced luteal regression; 2) to define the ultrastructural characteristics of the corpus luteum at the time of natural luteal regression and induced luteal regression; and 3) to examine the effect of human chorionic gonadotropin (hCG) on the steroidogenic response and apoptotic markers within the regressing corpus luteum. Twenty-three women with normal menstrual cycles undergoing tubal ligation donated corpus luteum at specific stages in the luteal phase. Some women received a GnRH antagonist prior to collection of corpus luteum, others received an injection of hCG with or without prior treatment with a GnRH antagonist. Main outcome measures were plasma hormone levels and analysis of excised luteal tissue for markers of apoptosis, histology, and ultrastructure. The progesterone and estradiol levels, corpus luteum DNA, and protein contents in induced luteal regression resembled those of natural luteal regression. hCG treatment raised progesterone and estradiol in both natural luteal regression and induced luteal regression. The increase in apoptosis detected in induced luteal regression by cytochrome c in the cytosol, activated caspase-3, and nuclear DNA fragmentation, was similar to that observed in natural luteal regression. The antiapoptotic protein Bcl-2 was significantly lower during natural luteal regression. The proapoptotic proteins Bax and Bak were at a constant level. Apoptotic and nonapoptotic death of luteal cells was observed in natural luteal regression and induced luteal regression at the ultrastructural level. hCG prevented apoptotic cell death, but not autophagy. The low number of apoptotic cells disclosed and the frequent autophagocytic suggest that multiple mechanisms are involved in cell death at luteal regression. hCG restores steroidogenic function and restrains the apoptotic process, but not autophagy.

  14. Modeling the outcomes of nursing home care.

    PubMed

    Rohrer, J E; Hogan, A J

    1987-01-01

    In this exploratory analysis using data on 290 patients, we use regression analysis to model patient outcomes in two Veterans Administration nursing homes. We find resource use, as measured with minutes of nursing time, to be associated with outcomes when case mix is controlled. Our results suggest that, under case-based reimbursement systems, nursing homes could increase their revenues by withholding unskilled and psychosocial care and discouraging physicians' visits. Implications for nursing home policy are discussed.

  15. An Analysis of the Number of Medical Malpractice Claims and Their Amounts

    PubMed Central

    Bonetti, Marco; Cirillo, Pasquale; Musile Tanzi, Paola; Trinchero, Elisabetta

    2016-01-01

    Starting from an extensive database, pooling 9 years of data from the top three insurance brokers in Italy, and containing 38125 reported claims due to alleged cases of medical malpractice, we use an inhomogeneous Poisson process to model the number of medical malpractice claims in Italy. The intensity of the process is allowed to vary over time, and it depends on a set of covariates, like the size of the hospital, the medical department and the complexity of the medical operations performed. We choose the combination medical department by hospital as the unit of analysis. Together with the number of claims, we also model the associated amounts paid by insurance companies, using a two-stage regression model. In particular, we use logistic regression for the probability that a claim is closed with a zero payment, whereas, conditionally on the fact that an amount is strictly positive, we make use of lognormal regression to model it as a function of several covariates. The model produces estimates and forecasts that are relevant to both insurance companies and hospitals, for quality assurance, service improvement and cost reduction. PMID:27077661

  16. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    PubMed

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  17. Discrimination and characterization of strawberry juice based on electronic nose and tongue: comparison of different juice processing approaches by LDA, PLSR, RF, and SVM.

    PubMed

    Qiu, Shanshan; Wang, Jun; Gao, Liping

    2014-07-09

    An electronic nose (E-nose) and an electronic tongue (E-tongue) have been used to characterize five types of strawberry juices based on processing approaches (i.e., microwave pasteurization, steam blanching, high temperature short time pasteurization, frozen-thawed, and freshly squeezed). Juice quality parameters (vitamin C, pH, total soluble solid, total acid, and sugar/acid ratio) were detected by traditional measuring methods. Multivariate statistical methods (linear discriminant analysis (LDA) and partial least squares regression (PLSR)) and neural networks (Random Forest (RF) and Support Vector Machines) were employed to qualitative classification and quantitative regression. E-tongue system reached higher accuracy rates than E-nose did, and the simultaneous utilization did have an advantage in LDA classification and PLSR regression. According to cross-validation, RF has shown outstanding and indisputable performances in the qualitative and quantitative analysis. This work indicates that the simultaneous utilization of E-nose and E-tongue can discriminate processed fruit juices and predict quality parameters successfully for the beverage industry.

  18. [In vitro testing of yeast resistance to antimycotic substances].

    PubMed

    Potel, J; Arndt, K

    1982-01-01

    Investigations have been carried out in order to clarify the antibiotic susceptibility determination of yeasts. 291 yeast strains of different species were tested for sensitivity to 7 antimycotics: amphotericin B, flucytosin, nystatin, pimaricin, clotrimazol, econazol and miconazol. Additionally to the evaluation of inhibition zone diameters and MIC-values the influence of pH was examined. 1. The dependence of inhibition zone diameters upon pH-values varies due to the antimycotic tested. For standardizing purposes the pH 6.0 is proposed; moreover, further experimental parameters, such as nutrient composition, agar depth, cell density, incubation time and -temperature, have to be normed. 2. The relation between inhibition zone size and logarythmic MIC does not fit a linear regression analysis when all species are considered together. Therefore regression functions have to be calculated selecting the individual species. In case of the antimycotics amphotericin B, nystatin and pimaricin the low scattering of the MIC-values does not allow regression analysis. 3. A quantitative susceptibility determination of yeasts--particularly to the fungistatical substances with systemic applicability, flucytosin and miconazol, -- is advocated by the results of the MIC-tests.

  19. Grassland and cropland net ecosystem production of the U.S. Great Plains: Regression tree model development and comparative analysis

    USGS Publications Warehouse

    Wylie, Bruce K.; Howard, Daniel; Dahal, Devendra; Gilmanov, Tagir; Ji, Lei; Zhang, Li; Smith, Kelcy

    2016-01-01

    This paper presents the methodology and results of two ecological-based net ecosystem production (NEP) regression tree models capable of up scaling measurements made at various flux tower sites throughout the U.S. Great Plains. Separate grassland and cropland NEP regression tree models were trained using various remote sensing data and other biogeophysical data, along with 15 flux towers contributing to the grassland model and 15 flux towers for the cropland model. The models yielded weekly mean daily grassland and cropland NEP maps of the U.S. Great Plains at 250 m resolution for 2000–2008. The grassland and cropland NEP maps were spatially summarized and statistically compared. The results of this study indicate that grassland and cropland ecosystems generally performed as weak net carbon (C) sinks, absorbing more C from the atmosphere than they released from 2000 to 2008. Grasslands demonstrated higher carbon sink potential (139 g C·m−2·year−1) than non-irrigated croplands. A closer look into the weekly time series reveals the C fluctuation through time and space for each land cover type.

  20. A statistical method for predicting seizure onset zones from human single-neuron recordings

    NASA Astrophysics Data System (ADS)

    Valdez, André B.; Hickman, Erin N.; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.

    2013-02-01

    Objective. Clinicians often use depth-electrode recordings to localize human epileptogenic foci. To advance the diagnostic value of these recordings, we applied logistic regression models to single-neuron recordings from depth-electrode microwires to predict seizure onset zones (SOZs). Approach. We collected data from 17 epilepsy patients at the Barrow Neurological Institute and developed logistic regression models to calculate the odds of observing SOZs in the hippocampus, amygdala and ventromedial prefrontal cortex, based on statistics such as the burst interspike interval (ISI). Main results. Analysis of these models showed that, for a single-unit increase in burst ISI ratio, the left hippocampus was approximately 12 times more likely to contain a SOZ; and the right amygdala, 14.5 times more likely. Our models were most accurate for the hippocampus bilaterally (at 85% average sensitivity), and performance was comparable with current diagnostics such as electroencephalography. Significance. Logistic regression models can be combined with single-neuron recording to predict likely SOZs in epilepsy patients being evaluated for resective surgery, providing an automated source of clinically useful information.

  1. SU-F-R-20: Image Texture Features Correlate with Time to Local Failure in Lung SBRT Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, M; Abazeed, M; Woody, N

    Purpose: To explore possible correlation between CT image-based texture and histogram features and time-to-local-failure in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT).Methods and Materials: From an IRB-approved lung SBRT registry for patients treated between 2009–2013 we selected 48 (20 male, 28 female) patients with local failure. Median patient age was 72.3±10.3 years. Mean time to local failure was 15 ± 7.1 months. Physician-contoured gross tumor volumes (GTV) on the planning CT images were processed and 3D gray-level co-occurrence matrix (GLCM) based texture and histogram features were calculated in Matlab. Data were exported tomore » R and a multiple linear regression model was used to examine the relationship between texture features and time-to-local-failure. Results: Multiple linear regression revealed that entropy (p=0.0233, multiple R2=0.60) from GLCM-based texture analysis and the standard deviation (p=0.0194, multiple R2=0.60) from the histogram-based features were statistically significantly correlated with the time-to-local-failure. Conclusion: Image-based texture analysis can be used to predict certain aspects of treatment outcomes of NSCLC patients treated with SBRT. We found entropy and standard deviation calculated for the GTV on the CT images displayed a statistically significant correlation with and time-to-local-failure in lung SBRT patients.« less

  2. Development of a User Interface for a Regression Analysis Software Tool

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    An easy-to -use user interface was implemented in a highly automated regression analysis tool. The user interface was developed from the start to run on computers that use the Windows, Macintosh, Linux, or UNIX operating system. Many user interface features were specifically designed such that a novice or inexperienced user can apply the regression analysis tool with confidence. Therefore, the user interface s design minimizes interactive input from the user. In addition, reasonable default combinations are assigned to those analysis settings that influence the outcome of the regression analysis. These default combinations will lead to a successful regression analysis result for most experimental data sets. The user interface comes in two versions. The text user interface version is used for the ongoing development of the regression analysis tool. The official release of the regression analysis tool, on the other hand, has a graphical user interface that is more efficient to use. This graphical user interface displays all input file names, output file names, and analysis settings for a specific software application mode on a single screen which makes it easier to generate reliable analysis results and to perform input parameter studies. An object-oriented approach was used for the development of the graphical user interface. This choice keeps future software maintenance costs to a reasonable limit. Examples of both the text user interface and graphical user interface are discussed in order to illustrate the user interface s overall design approach.

  3. Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements - a driver study

    NASA Astrophysics Data System (ADS)

    Ronsmans, Gaétane; Wespes, Catherine; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2018-04-01

    This study aims to understand the spatial and temporal variability of HNO3 total columns in terms of explanatory variables. To achieve this, multiple linear regressions are used to fit satellite-derived time series of HNO3 daily averaged total columns. First, an analysis of the IASI 9-year time series (2008-2016) is conducted based on various equivalent latitude bands. The strong and systematic denitrification of the southern polar stratosphere is observed very clearly. It is also possible to distinguish, within the polar vortex, three regions which are differently affected by the denitrification. Three exceptional denitrification episodes in 2011, 2014 and 2016 are also observed in the Northern Hemisphere, due to unusually low arctic temperatures. The time series are then fitted by multivariate regressions to identify what variables are responsible for HNO3 variability in global distributions and time series, and to quantify their respective influence. Out of an ensemble of proxies (annual cycle, solar flux, quasi-biennial oscillation, multivariate ENSO index, Arctic and Antarctic oscillations and volume of polar stratospheric clouds), only the those defined as significant (p value < 0.05) by a selection algorithm are retained for each equivalent latitude band. Overall, the regression gives a good representation of HNO3 variability, with especially good results at high latitudes (60-80 % of the observed variability explained by the model). The regressions show the dominance of annual variability in all latitudinal bands, which is related to specific chemistry and dynamics depending on the latitudes. We find that the polar stratospheric clouds (PSCs) also have a major influence in the polar regions, and that their inclusion in the model improves the correlation coefficients and the residuals. However, there is still a relatively large portion of HNO3 variability that remains unexplained by the model, especially in the intertropical regions, where factors not included in the regression model (such as vegetation fires or lightning) may be at play.

  4. Regression Analysis and the Sociological Imagination

    ERIC Educational Resources Information Center

    De Maio, Fernando

    2014-01-01

    Regression analysis is an important aspect of most introductory statistics courses in sociology but is often presented in contexts divorced from the central concerns that bring students into the discipline. Consequently, we present five lesson ideas that emerge from a regression analysis of income inequality and mortality in the USA and Canada.

  5. A method of determining bending properties of poultry long bones using beam analysis and micro-CT data.

    PubMed

    Vaughan, Patrick E; Orth, Michael W; Haut, Roger C; Karcher, Darrin M

    2016-01-01

    While conventional mechanical testing has been regarded as a gold standard for the evaluation of bone heath in numerous studies, with recent advances in medical imaging, virtual methods of biomechanics are rapidly evolving in the human literature. The objective of the current study was to evaluate the feasibility of determining the elastic and failure properties of poultry long bones using established methods of analysis from the human literature. In order to incorporate a large range of bone sizes and densities, a small number of specimens were utilized from an ongoing study of Regmi et al. (2016) that involved humeri and tibiae from 3 groups of animals (10 from each) including aviary, enriched, and conventional housing systems. Half the animals from each group were used for 'training' that involved the development of a regression equation relating bone density and geometry to bending properties from conventional mechanical tests. The remaining specimens from each group were used for 'testing' in which the mechanical properties from conventional tests were compared to those predicted by the regression equations. Based on the regression equations, the coefficients of determination for the 'test' set of data were 0.798 for bending bone stiffness and 0.901 for the yield (or failure) moment of the bones. All regression slopes and intercepts values for the tests versus predicted plots were not significantly different from 1 and 0, respectively. The study showed the feasibility of developing future methods of virtual biomechanics for the evaluation of poultry long bones. With further development, virtual biomechanics may have utility in future in vivo studies to assess laying hen bone health over time without the need to sacrifice large groups of animals at each time point. © 2016 Poultry Science Association Inc.

  6. Predictors of aggression in 3.322 patients with affective disorders and schizophrenia spectrum disorders evaluated in an emergency department setting.

    PubMed

    Blanco, Emily A; Duque, Laura M; Rachamallu, Vivekananda; Yuen, Eunice; Kane, John M; Gallego, Juan A

    2018-05-01

    The aim of this study is to determine odds of aggression and associated factors in patients with schizophrenia-spectrum disorders (SSD) and affective disorders who were evaluated in an emergency department setting. A retrospective study was conducted using de-identified data from electronic medical records from 3.322 patients who were evaluated at emergency psychiatric settings. Data extracted included demographic information, variables related to aggression towards people or property in the past 6months, and other factors that could potentially impact the risk of aggression, such as comorbid diagnoses, physical abuse and sexual abuse. Bivariate analyses and multivariate regression analyses were conducted to determine the variables significantly associated with aggression. An initial multivariate regression analysis showed that SSD had 3.1 times the odds of aggression, while bipolar disorder had 2.2 times the odds of aggression compared to unipolar depression. A second regression analysis including bipolar subtypes showed, using unipolar depression as the reference group, that bipolar disorder with a recent mixed episode had an odds ratio (OR) of 4.3, schizophrenia had an OR of 2.6 and bipolar disorder with a recent manic episode had an OR of 2.2. Generalized anxiety disorder was associated with lower odds in both regression analyses. As a whole, the SSD group had higher odds of aggression than the bipolar disorder group. However, after subdividing the groups, schizophrenia had higher odds of aggression than bipolar disorder with a recent manic episode and lower odds of aggression than bipolar disorder with a recent mixed episode. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Regression Verification Using Impact Summaries

    NASA Technical Reports Server (NTRS)

    Backes, John; Person, Suzette J.; Rungta, Neha; Thachuk, Oksana

    2013-01-01

    Regression verification techniques are used to prove equivalence of syntactically similar programs. Checking equivalence of large programs, however, can be computationally expensive. Existing regression verification techniques rely on abstraction and decomposition techniques to reduce the computational effort of checking equivalence of the entire program. These techniques are sound but not complete. In this work, we propose a novel approach to improve scalability of regression verification by classifying the program behaviors generated during symbolic execution as either impacted or unimpacted. Our technique uses a combination of static analysis and symbolic execution to generate summaries of impacted program behaviors. The impact summaries are then checked for equivalence using an o-the-shelf decision procedure. We prove that our approach is both sound and complete for sequential programs, with respect to the depth bound of symbolic execution. Our evaluation on a set of sequential C artifacts shows that reducing the size of the summaries can help reduce the cost of software equivalence checking. Various reduction, abstraction, and compositional techniques have been developed to help scale software verification techniques to industrial-sized systems. Although such techniques have greatly increased the size and complexity of systems that can be checked, analysis of large software systems remains costly. Regression analysis techniques, e.g., regression testing [16], regression model checking [22], and regression verification [19], restrict the scope of the analysis by leveraging the differences between program versions. These techniques are based on the idea that if code is checked early in development, then subsequent versions can be checked against a prior (checked) version, leveraging the results of the previous analysis to reduce analysis cost of the current version. Regression verification addresses the problem of proving equivalence of closely related program versions [19]. These techniques compare two programs with a large degree of syntactic similarity to prove that portions of one program version are equivalent to the other. Regression verification can be used for guaranteeing backward compatibility, and for showing behavioral equivalence in programs with syntactic differences, e.g., when a program is refactored to improve its performance, maintainability, or readability. Existing regression verification techniques leverage similarities between program versions by using abstraction and decomposition techniques to improve scalability of the analysis [10, 12, 19]. The abstractions and decomposition in the these techniques, e.g., summaries of unchanged code [12] or semantically equivalent methods [19], compute an over-approximation of the program behaviors. The equivalence checking results of these techniques are sound but not complete-they may characterize programs as not functionally equivalent when, in fact, they are equivalent. In this work we describe a novel approach that leverages the impact of the differences between two programs for scaling regression verification. We partition program behaviors of each version into (a) behaviors impacted by the changes and (b) behaviors not impacted (unimpacted) by the changes. Only the impacted program behaviors are used during equivalence checking. We then prove that checking equivalence of the impacted program behaviors is equivalent to checking equivalence of all program behaviors for a given depth bound. In this work we use symbolic execution to generate the program behaviors and leverage control- and data-dependence information to facilitate the partitioning of program behaviors. The impacted program behaviors are termed as impact summaries. The dependence analyses that facilitate the generation of the impact summaries, we believe, could be used in conjunction with other abstraction and decomposition based approaches, [10, 12], as a complementary reduction technique. An evaluation of our regression verification technique shows that our approach is capable of leveraging similarities between program versions to reduce the size of the queries and the time required to check for logical equivalence. The main contributions of this work are: - A regression verification technique to generate impact summaries that can be checked for functional equivalence using an off-the-shelf decision procedure. - A proof that our approach is sound and complete with respect to the depth bound of symbolic execution. - An implementation of our technique using the LLVMcompiler infrastructure, the klee Symbolic Virtual Machine [4], and a variety of Satisfiability Modulo Theory (SMT) solvers, e.g., STP [7] and Z3 [6]. - An empirical evaluation on a set of C artifacts which shows that the use of impact summaries can reduce the cost of regression verification.

  8. Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities.

    PubMed

    Zhang, Qun; Zhang, Qunzhi; Sornette, Didier

    2016-01-01

    We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the "S&P 500 1987" bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs.

  9. Analysis of Palm Oil Production, Export, and Government Consumption to Gross Domestic Product of Five Districts in West Kalimantan by Panel Regression

    NASA Astrophysics Data System (ADS)

    Sulistianingsih, E.; Kiftiah, M.; Rosadi, D.; Wahyuni, H.

    2017-04-01

    Gross Domestic Product (GDP) is an indicator of economic growth in a region. GDP is a panel data, which consists of cross-section and time series data. Meanwhile, panel regression is a tool which can be utilised to analyse panel data. There are three models in panel regression, namely Common Effect Model (CEM), Fixed Effect Model (FEM) and Random Effect Model (REM). The models will be chosen based on results of Chow Test, Hausman Test and Lagrange Multiplier Test. This research analyses palm oil about production, export, and government consumption to five district GDP are in West Kalimantan, namely Sanggau, Sintang, Sambas, Ketapang and Bengkayang by panel regression. Based on the results of analyses, it concluded that REM, which adjusted-determination-coefficient is 0,823, is the best model in this case. Also, according to the result, only Export and Government Consumption that influence GDP of the districts.

  10. Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction.

    PubMed

    Shi, J Q; Wang, B; Will, E J; West, R M

    2012-11-20

    We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Detection of Cutting Tool Wear using Statistical Analysis and Regression Model

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Rizal, Muhammad; Nuawi, Mohd Zaki; Haron, Che Hassan Che; Ramli, Rizauddin

    2010-10-01

    This study presents a new method for detecting the cutting tool wear based on the measured cutting force signals. A statistical-based method called Integrated Kurtosis-based Algorithm for Z-Filter technique, called I-kaz was used for developing a regression model and 3D graphic presentation of I-kaz 3D coefficient during machining process. The machining tests were carried out using a CNC turning machine Colchester Master Tornado T4 in dry cutting condition. A Kistler 9255B dynamometer was used to measure the cutting force signals, which were transmitted, analyzed, and displayed in the DasyLab software. Various force signals from machining operation were analyzed, and each has its own I-kaz 3D coefficient. This coefficient was examined and its relationship with flank wear lands (VB) was determined. A regression model was developed due to this relationship, and results of the regression model shows that the I-kaz 3D coefficient value decreases as tool wear increases. The result then is used for real time tool wear monitoring.

  12. The repeatability of mean defect with size III and size V standard automated perimetry.

    PubMed

    Wall, Michael; Doyle, Carrie K; Zamba, K D; Artes, Paul; Johnson, Chris A

    2013-02-15

    The mean defect (MD) of the visual field is a global statistical index used to monitor overall visual field change over time. Our goal was to investigate the relationship of MD and its variability for two clinically used strategies (Swedish Interactive Threshold Algorithm [SITA] standard size III and full threshold size V) in glaucoma patients and controls. We tested one eye, at random, for 46 glaucoma patients and 28 ocularly healthy subjects with Humphrey program 24-2 SITA standard for size III and full threshold for size V each five times over a 5-week period. The standard deviation of MD was regressed against the MD for the five repeated tests, and quantile regression was used to show the relationship of variability and MD. A Wilcoxon test was used to compare the standard deviations of the two testing methods following quantile regression. Both types of regression analysis showed increasing variability with increasing visual field damage. Quantile regression showed modestly smaller MD confidence limits. There was a 15% decrease in SD with size V in glaucoma patients (P = 0.10) and a 12% decrease in ocularly healthy subjects (P = 0.08). The repeatability of size V MD appears to be slightly better than size III SITA testing. When using MD to determine visual field progression, a change of 1.5 to 4 decibels (dB) is needed to be outside the normal 95% confidence limits, depending on the size of the stimulus and the amount of visual field damage.

  13. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery.

    PubMed

    Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin

    2012-06-01

    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

  14. Comparison of two-concentration with multi-concentration linear regressions: Retrospective data analysis of multiple regulated LC-MS bioanalytical projects.

    PubMed

    Musuku, Adrien; Tan, Aimin; Awaiye, Kayode; Trabelsi, Fethi

    2013-09-01

    Linear calibration is usually performed using eight to ten calibration concentration levels in regulated LC-MS bioanalysis because a minimum of six are specified in regulatory guidelines. However, we have previously reported that two-concentration linear calibration is as reliable as or even better than using multiple concentrations. The purpose of this research is to compare two-concentration with multiple-concentration linear calibration through retrospective data analysis of multiple bioanalytical projects that were conducted in an independent regulated bioanalytical laboratory. A total of 12 bioanalytical projects were randomly selected: two validations and two studies for each of the three most commonly used types of sample extraction methods (protein precipitation, liquid-liquid extraction, solid-phase extraction). When the existing data were retrospectively linearly regressed using only the lowest and the highest concentration levels, no extra batch failure/QC rejection was observed and the differences in accuracy and precision between the original multi-concentration regression and the new two-concentration linear regression are negligible. Specifically, the differences in overall mean apparent bias (square root of mean individual bias squares) are within the ranges of -0.3% to 0.7% and 0.1-0.7% for the validations and studies, respectively. The differences in mean QC concentrations are within the ranges of -0.6% to 1.8% and -0.8% to 2.5% for the validations and studies, respectively. The differences in %CV are within the ranges of -0.7% to 0.9% and -0.3% to 0.6% for the validations and studies, respectively. The average differences in study sample concentrations are within the range of -0.8% to 2.3%. With two-concentration linear regression, an average of 13% of time and cost could have been saved for each batch together with 53% of saving in the lead-in for each project (the preparation of working standard solutions, spiking, and aliquoting). Furthermore, examples are given as how to evaluate the linearity over the entire concentration range when only two concentration levels are used for linear regression. To conclude, two-concentration linear regression is accurate and robust enough for routine use in regulated LC-MS bioanalysis and it significantly saves time and cost as well. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Stochastic Frontier Estimation of Efficient Learning in Video Games

    ERIC Educational Resources Information Center

    Hamlen, Karla R.

    2012-01-01

    Stochastic Frontier Regression Analysis was used to investigate strategies and skills that are associated with the minimization of time required to achieve proficiency in video games among students in grades four and five. Students self-reported their video game play habits, including strategies and skills used to become good at the video games…

  16. Relationship Between Accreditation Status and Hourly Wages of Medical Record Technicians.

    ERIC Educational Resources Information Center

    Passmore, David Lynn; Marron, Michael

    A study examined the relationship between accreditation status and hourly wages of medical record technicians (MRTs) in four major metropolitan areas (Chicago, St. Louis, Kansas City, and Atlanta) during August 1975. Multiple regression analysis of the hourly wages of 590 female, full-time MRTs collected through a government hospital wage survey…

  17. Does Familism Lead to Increased Parental Monitoring?: Protective Factors for Coping with Risky Behaviors

    ERIC Educational Resources Information Center

    Romero, Andrea J.; Ruiz, Myrna

    2007-01-01

    We examined coping with risky behaviors (cigarettes, alcohol/drugs, yelling/ hitting, and anger), familism (family proximity and parental closeness) and parental monitoring (knowledge and discipline) in a sample of 56 adolescents (11-15 years old) predominantly of Mexican descent at two time points. Multiple linear regression analysis indicated…

  18. Association between Travel Times and Food Procurement Practices among Female Supplemental Nutrition Assistance Program Participants in Eastern North Carolina

    ERIC Educational Resources Information Center

    Jilcott, Stephanie B.; Moore, Justin B.; Wall-Bassett, Elizabeth D.; Liu, Haiyong; Saelens, Brian E.

    2011-01-01

    Objective: To examine associations between self-reported vehicular travel behaviors, perceived stress, food procurement practices, and body mass index among female Supplemental Nutrition Assistance Program (SNAP) participants. Analysis: The authors used correlation and regression analyses to examine cross-sectional associations between travel time…

  19. Fiscal Impacts and Redistributive Effects of the New Federalism on Michigan School Districts.

    ERIC Educational Resources Information Center

    Kearney, C. Philip; Kim, Taewan

    1990-01-01

    The fiscal impacts and redistribution effects of the recently enacted (1981) federal education block grant on 525 elementary and secondary school districts in Michigan were examined using a quasi-experimental time-series design and multiple regression and analysis of covariance techniques. Implications of changes in federal policy are discussed.…

  20. Bioassay of the Nucleopolyhedrosis Virus of Neodiprion sertifer (Hymenoptera: Diprionidae)

    Treesearch

    M.A. Mohamed; J.D. Podgwaite

    1982-01-01

    Linear regression analysis of probit mortality versus several concentrations of nucleopolyhedrosis virus of Neodiprion sertifer resulted in the equation Y = 2.170 + 0.872X. An LC50 was calculated at 1758 PIB/ml. Also, the incubation time of the virus was dependent on its concentration. Most insect viruses possess the potential...

  1. Analysis of Radiation Exposure for Troop Observers, Exercise Desert Rock V, Operation Upshot-Knothole.

    DTIC Science & Technology

    1981-04-28

    on initial doses. Residual doses are determined through an automiated procedure that utilizes raw data in regression analyses to fit space-time models...show their relationship to the observer positions. The computer-calculated doses do not reflect the presence of the human body in the radiological

  2. Communication Factors as Predictors of Relationship Quality: A National Study of Principals and School Counselors

    ERIC Educational Resources Information Center

    Duslak, Mark; Geier, Brett

    2017-01-01

    This study examined the effects of meeting frequency, structured meeting times, annual agreements, and demographic variables on school counselor perceptions of their relationship with their building principal. Results of a regression analysis indicated that meeting frequency accounted for 26.7% of the variance in school counselor-reported…

  3. Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis.

    PubMed

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series.

  4. Secular trends in Cherokee cranial morphology: Eastern vs Western bands.

    PubMed

    Sutphin, Rebecca; Ross, Ann H; Jantz, Richard L

    2014-01-01

    The research objective was to examine if secular trends can be identified for cranial data commissioned by Boas in 1892, specifically for cranial breadth and cranial length of the Eastern and Western band Cherokee who experienced environmental hardships. Multiple regression analysis was used to test the degree of relationship between each of the cranial measures: cranial length, cranial breadth and cephalic index, along with predictor variables (year-of-birth, location, sex, admixture); the model revealed a significant difference for all craniometric variables. Additional regression analysis was performed with smoothing Loess plots to observe cranial length and cranial breadth change over time (year-of-birth) separately for Eastern and Western Cherokee band females and males born between 1783-1874. This revealed the Western and Eastern bands show a decrease in cranial length over time. Eastern band individuals maintain a relatively constant head breadth, while Western Band individuals show a sharp decline beginning around 1860. These findings support negative secular trend occurring for both Cherokee bands where the environment made a detrimental impact; this is especially marked with the Western Cherokee band.

  5. Crude Oil Price Forecasting Based on Hybridizing Wavelet Multiple Linear Regression Model, Particle Swarm Optimization Techniques, and Principal Component Analysis

    PubMed Central

    Shabri, Ani; Samsudin, Ruhaidah

    2014-01-01

    Crude oil prices do play significant role in the global economy and are a key input into option pricing formulas, portfolio allocation, and risk measurement. In this paper, a hybrid model integrating wavelet and multiple linear regressions (MLR) is proposed for crude oil price forecasting. In this model, Mallat wavelet transform is first selected to decompose an original time series into several subseries with different scale. Then, the principal component analysis (PCA) is used in processing subseries data in MLR for crude oil price forecasting. The particle swarm optimization (PSO) is used to adopt the optimal parameters of the MLR model. To assess the effectiveness of this model, daily crude oil market, West Texas Intermediate (WTI), has been used as the case study. Time series prediction capability performance of the WMLR model is compared with the MLR, ARIMA, and GARCH models using various statistics measures. The experimental results show that the proposed model outperforms the individual models in forecasting of the crude oil prices series. PMID:24895666

  6. Pregnancy and race/ethnicity as predictors of motivation for drug treatment.

    PubMed

    Mitchell, Mary M; Severtson, S Geoff; Latimer, William W

    2008-01-01

    While drug use during pregnancy represents substantial obstetrical risks to mother and baby, little research has examined motivation for drug treatment among pregnant women. We analyzed data collected between 2000 and 2007 from 149 drug-using women located in Baltimore, Maryland. We hypothesized that pregnant drug-using women would be more likely than non-pregnant drug-using women to express greater motivation for treatment. Also, we explored race/ethnicity differences in motivation for treatment. Propensity score analysis was used to match a sample of 49 pregnant drug-using women with 100 non-pregnant drug-using women. The first logistic regression model indicated that pregnant women were more than four times as likely as non-pregnant women to express greater motivation for treatment. The second logistic regression analysis indicated a significant interaction between pregnancy status and race/ethnicity, such that white pregnant women were nearly eight times as likely as African-American pregnant women to score higher on the motivation for treatment measure. These results suggest that African-American pregnant drug-using women should be targeted for interventions that increase their motivation for treatment.

  7. Factors determining the smooth flow and the non-operative time in a one-induction room to one-operating room setting

    PubMed Central

    Mulier, Jan P; De Boeck, Liesje; Meulders, Michel; Beliën, Jeroen; Colpaert, Jan; Sels, Annabel

    2015-01-01

    Rationale, aims and objectives What factors determine the use of an anaesthesia preparation room and shorten non-operative time? Methods A logistic regression is applied to 18 751 surgery records from AZ Sint-Jan Brugge AV, Belgium, where each operating room has its own anaesthesia preparation room. Surgeries, in which the patient's induction has already started when the preceding patient's surgery has ended, belong to a first group where the preparation room is used as an induction room. Surgeries not fulfilling this property belong to a second group. A logistic regression model tries to predict the probability that a surgery will be classified into a specific group. Non-operative time is calculated as the time between end of the previous surgery and incision of the next surgery. A log-linear regression of this non-operative time is performed. Results It was found that switches in surgeons, being a non-elective surgery as well as the previous surgery being non-elective, increase the probability of being classified into the second group. Only a few surgery types, anaesthesiologists and operating rooms can be found exclusively in one of the two groups. Analysis of variance demonstrates that the first group has significantly lower non-operative times. Switches in surgeons, anaesthesiologists and longer scheduled durations of the previous surgery increases the non-operative time. A switch in both surgeon and anaesthesiologist strengthens this negative effect. Only a few operating rooms and surgery types influence the non-operative time. Conclusion The use of the anaesthesia preparation room shortens the non-operative time and is determined by several human and structural factors. PMID:25496600

  8. Weight Regain, But Not Weight Loss, Is Related to Competitive Success in Real-life Mixed Martial Arts Competition.

    PubMed

    Coswig, Victor Silveira; Miarka, Bianca; Pires, Daniel Alvarez; da Silva, Levy Mendes; Bartel, Charles; Del Vecchio, Fabrício Boscolo

    2018-05-14

    We aimed to describe the nutritional and behavioural strategies for rapid weight loss (RWL), investigate the effects of RWL and weight regain (WRG) in winners and losers and verify mood state and technical-tactical/time-motion parameters in Mixed Martial Arts (MMA). The sample consisted of MMA athletes after a single real match and was separated into two groups: Winners (n=8, age: 25.4±6.1yo., height: 173.9±0.2cm, habitual body mass (BM): 89.9±17.3kg) and Losers (n=7, age: 24.4±6.8yo., height: 178.4±0.9cm, habitual BM: 90.8±19.5kg). Both groups exhibited RWL and WRG, verified their macronutrient intake, underwent weight and height assessments and completed two questionnaires (POMS and RWL) at i) 24 h before weigh-in, ii) weigh-in, iii) post-bout and iv) during a validated time-motion and technical-tactical analysis during the bout. Variance analysis, repeated measures and a logistic regression analysis were used. The main results showed significant differences between the time points in terms of total caloric intake as well as carbohydrate, protein and lipid ingestion. Statistical differences in combat analysis were observed between the winners and losers in terms of high-intensity relative time [58(10;98) s and 32(1;60) s, respectively], lower limb sequences [3.5(1.0;7.5) sequences and 1.0(0.0;1.0) sequences, respectively], and ground and pound actions [2.5(0.0;4.5) actions and 0.0(0.0;0.5) actions, respectively], and logistic regression confirmed the importance of high-intensity relative time and lower limb sequences on MMA performance. RWL and WRG strategies were related to technical-tactical and time-motion patterns as well as match outcomes. Weight management should be carefully supervised by specialized professionals to reduce health risks and raise competitive performance.

  9. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project

    PubMed Central

    Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.

    2016-01-01

    Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276

  10. Multivariate Regression Analysis and Slaughter Livestock,

    DTIC Science & Technology

    AGRICULTURE, *ECONOMICS), (*MEAT, PRODUCTION), MULTIVARIATE ANALYSIS, REGRESSION ANALYSIS , ANIMALS, WEIGHT, COSTS, PREDICTIONS, STABILITY, MATHEMATICAL MODELS, STORAGE, BEEF, PORK, FOOD, STATISTICAL DATA, ACCURACY

  11. Transmission of linear regression patterns between time series: From relationship in time series to complex networks

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  12. Transmission of linear regression patterns between time series: from relationship in time series to complex networks.

    PubMed

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui

    2014-07-01

    The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.

  13. Comparing nouns and verbs in a lexical task.

    PubMed

    Cordier, Françoise; Croizet, Jean-Claude; Rigalleau, François

    2013-02-01

    We analyzed the differential processing of nouns and verbs in a lexical decision task. Moderate and high-frequency nouns and verbs were compared. The characteristics of our material were specified at the formal level (number of letters and syllables, number of homographs, orthographic neighbors, frequency and age of acquisition), and at the semantic level (imagery, number and strength of associations, number of meanings, context dependency). A regression analysis indicated a classical frequency effect and a word-type effect, with latencies for verbs being slower than for nouns. The regression analysis did not permit the conclusion that semantic effects were involved (particularly imageability). Nevertheless, the semantic opposition between nouns as prototypical representations of objects, and verbs as prototypical representation of actions was not tested in this experiment and remains a good candidate explanation of the response time discrepancies between verbs and nouns.

  14. Evaluation of the CEAS model for barley yields in North Dakota and Minnesota

    NASA Technical Reports Server (NTRS)

    Barnett, T. L. (Principal Investigator)

    1981-01-01

    The CEAS yield model is based upon multiple regression analysis at the CRD and state levels. For the historical time series, yield is regressed on a set of variables derived from monthly mean temperature and monthly precipitation. Technological trend is represented by piecewise linear and/or quadriatic functions of year. Indicators of yield reliability obtained from a ten-year bootstrap test (1970-79) demonstrated that biases are small and performance as indicated by the root mean square errors are acceptable for intended application, however, model response for individual years particularly unusual years, is not very reliable and shows some large errors. The model is objective, adequate, timely, simple and not costly. It considers scientific knowledge on a broad scale but not in detail, and does not provide a good current measure of modeled yield reliability.

  15. Regression analysis of mixed panel count data with dependent terminal events.

    PubMed

    Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L

    2017-05-10

    Event history studies are commonly conducted in many fields, and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data earlier, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established, and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally, the methodology is applied to a childhood cancer study that motivated this study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Early Parallel Activation of Semantics and Phonology in Picture Naming: Evidence from a Multiple Linear Regression MEG Study

    PubMed Central

    Miozzo, Michele; Pulvermüller, Friedemann; Hauk, Olaf

    2015-01-01

    The time course of brain activation during word production has become an area of increasingly intense investigation in cognitive neuroscience. The predominant view has been that semantic and phonological processes are activated sequentially, at about 150 and 200–400 ms after picture onset. Although evidence from prior studies has been interpreted as supporting this view, these studies were arguably not ideally suited to detect early brain activation of semantic and phonological processes. We here used a multiple linear regression approach to magnetoencephalography (MEG) analysis of picture naming in order to investigate early effects of variables specifically related to visual, semantic, and phonological processing. This was combined with distributed minimum-norm source estimation and region-of-interest analysis. Brain activation associated with visual image complexity appeared in occipital cortex at about 100 ms after picture presentation onset. At about 150 ms, semantic variables became physiologically manifest in left frontotemporal regions. In the same latency range, we found an effect of phonological variables in the left middle temporal gyrus. Our results demonstrate that multiple linear regression analysis is sensitive to early effects of multiple psycholinguistic variables in picture naming. Crucially, our results suggest that access to phonological information might begin in parallel with semantic processing around 150 ms after picture onset. PMID:25005037

  17. MicroCT angiography detects vascular formation and regression in skin wound healing.

    PubMed

    Urao, Norifumi; Okonkwo, Uzoagu A; Fang, Milie M; Zhuang, Zhen W; Koh, Timothy J; DiPietro, Luisa A

    2016-07-01

    Properly regulated angiogenesis and arteriogenesis are essential for effective wound healing. Tissue injury induces robust new vessel formation and subsequent vessel maturation, which involves vessel regression and remodeling. Although formation of functional vasculature is essential for healing, alterations in vascular structure over the time course of skin wound healing are not well understood. Here, using high-resolution ex vivo X-ray micro-computed tomography (microCT), we describe the vascular network during healing of skin excisional wounds with highly detailed three-dimensional (3D) reconstructed images and associated quantitative analysis. We found that relative vessel volume, surface area and branching number are significantly decreased in wounds from day 7 to days 14 and 21. Segmentation and skeletonization analysis of selected branches from high-resolution images as small as 2.5μm voxel size show that branching orders are decreased in the wound vessels during healing. In histological analysis, we found that the contrast agent fills mainly arterioles, but not small capillaries nor large veins. In summary, high-resolution microCT revealed dynamic alterations of vessel structures during wound healing. This technique may be useful as a key tool in the study of the formation and regression of wound vessels. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A FORTRAN program for multivariate survival analysis on the personal computer.

    PubMed

    Mulder, P G

    1988-01-01

    In this paper a FORTRAN program is presented for multivariate survival or life table regression analysis in a competing risks' situation. The relevant failure rate (for example, a particular disease or mortality rate) is modelled as a log-linear function of a vector of (possibly time-dependent) explanatory variables. The explanatory variables may also include the variable time itself, which is useful for parameterizing piecewise exponential time-to-failure distributions in a Gompertz-like or Weibull-like way as a more efficient alternative to Cox's proportional hazards model. Maximum likelihood estimates of the coefficients of the log-linear relationship are obtained from the iterative Newton-Raphson method. The program runs on a personal computer under DOS; running time is quite acceptable, even for large samples.

  19. Regression Analysis: Legal Applications in Institutional Research

    ERIC Educational Resources Information Center

    Frizell, Julie A.; Shippen, Benjamin S., Jr.; Luna, Andrew L.

    2008-01-01

    This article reviews multiple regression analysis, describes how its results should be interpreted, and instructs institutional researchers on how to conduct such analyses using an example focused on faculty pay equity between men and women. The use of multiple regression analysis will be presented as a method with which to compare salaries of…

  20. RAWS II: A MULTIPLE REGRESSION ANALYSIS PROGRAM,

    DTIC Science & Technology

    This memorandum gives instructions for the use and operation of a revised version of RAWS, a multiple regression analysis program. The program...of preprocessed data, the directed retention of variable, listing of the matrix of the normal equations and its inverse, and the bypassing of the regression analysis to provide the input variable statistics only. (Author)

  1. Temporal Drivers of Liking Based on Functional Data Analysis and Non-Additive Models for Multi-Attribute Time-Intensity Data of Fruit Chews.

    PubMed

    Kuesten, Carla; Bi, Jian

    2018-06-03

    Conventional drivers of liking analysis was extended with a time dimension into temporal drivers of liking (TDOL) based on functional data analysis methodology and non-additive models for multiple-attribute time-intensity (MATI) data. The non-additive models, which consider both direct effects and interaction effects of attributes to consumer overall liking, include Choquet integral and fuzzy measure in the multi-criteria decision-making, and linear regression based on variance decomposition. Dynamics of TDOL, i.e., the derivatives of the relative importance functional curves were also explored. Well-established R packages 'fda', 'kappalab' and 'relaimpo' were used in the paper for developing TDOL. Applied use of these methods shows that the relative importance of MATI curves offers insights for understanding the temporal aspects of consumer liking for fruit chews.

  2. Time Series Expression Analyses Using RNA-seq: A Statistical Approach

    PubMed Central

    Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P.

    2013-01-01

    RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis. PMID:23586021

  3. Methodological Issues in Design and Analysis of a Matched Case-Control Study of a Vaccine’s Effectiveness

    PubMed Central

    Niccolai, Linda M.; Ogden, Lorraine G.; Muehlenbein, Catherine E.; Dziura, James D.; Vázquez, Marietta; Shapiro, Eugene D.

    2007-01-01

    Objective Case-control studies of the effectiveness of a vaccine are useful to answer important questions, such as the effectiveness of a vaccine over time, that usually are not addressed by pre-licensure clinical trials of the vaccine’s efficacy. This report describes methodological issues related to design and analysis that were used to determine the effects of time since vaccination and age at the time of vaccination. Study Design and Setting A matched case-control study of the effectiveness of varicella vaccine. Results Sampling procedures and conditional logistic regression models including interaction terms are described. Conclusion Use of these methods will allow investigators to assess the effects of a wide range of variables, such as time since vaccination and age at the time of vaccination, on the effectiveness of a vaccine. PMID:17938054

  4. Time series expression analyses using RNA-seq: a statistical approach.

    PubMed

    Oh, Sunghee; Song, Seongho; Grabowski, Gregory; Zhao, Hongyu; Noonan, James P

    2013-01-01

    RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis.

  5. Long term results of a randomized trial in locally advanced rectal cancer: No benefit from adding a brachytherapy boost

    PubMed Central

    Appelt, Ane L; Vogelius, Ivan R; Pløen, John; Rafaelsen, Søren R; Lindebjerg, Jan; Havelund, Birgitte M; Bentzen, Søren M; Jakobsen, Anders

    2014-01-01

    Purpose/Objective(s) Mature data on tumor control and survival are presented from a randomized trial of the addition of a brachytherapy boost to long-course neoadjuvant chemoradiation (CRT) for locally advanced rectal cancer. Methods and Materials Between March 2005 and November 2008, 248 patients withT3-4N0-2M0 rectal cancer were prospectively randomized to either long-course preoperative CRT (50.4Gy in 28 fractions, peroral UFT and L-leucovorin) alone or the same CRT schedule plus a brachytherapy boost (10Gy in 2 fractions). Primary trial endpoint was pathological complete response (pCR) at time of surgery; secondary endpoints included overall survival (OS), progression-free survival (PFS) and freedom from locoregional failure. Results Results for the primary endpoint have previously been reported. This analysis presents survival data for the 224 patients in the Danish part of the trial. 221 patients (111 control arm, 110 brachytherapy boost arm) had data available for analysis, with a median follow-up of 5.4 years. Despite a significant increase in tumor response at the time of surgery, no differences in 5-year OS (70.6% vs 63.6%, HR=1.24, p=0.34) and PFS (63.9% vs 52.0%, HR=1.22, p=0.32) were observed. Freedom from locoregional failure at 5 years were 93.9% and 85.7% (HR=2.60, 1.00–6.73, p=0.06) in the standard and in the brachytherapy arm, respectively. There was no difference in the prevalence of stoma. Explorative analysis based on stratification for tumor regression grade and resection margin status indicated the presence of response migration. Conclusions Despite increased pathological tumor regression at the time of surgery, we observed no benefit on late outcome. Improved tumor regression does not necessarily lead to a relevant clinical benefit when the neoadjuvant treatment is followed by high-quality surgery. PMID:25015203

  6. Spatial analysis of ambulance response times related to prehospital cardiac arrests in the city-state of Singapore.

    PubMed

    Earnest, Arul; Hock Ong, Marcus Eng; Shahidah, Nur; Min Ng, Wen; Foo, Chuanyang; Nott, David John

    2012-01-01

    The main objective of this study was to establish the spatial variation in ambulance response times for out-of-hospital cardiac arrests (OHCAs) in the city-state of Singapore. The secondary objective involved studying the relationships between various covariates, such as traffic condition and time and day of collapse, and ambulance response times. The study design was observational and ecological in nature. Data on OHCAs were collected from a nationally representative database for the period October 2001 to October 2004. We used the conditional autoregressive (CAR) model to analyze the data. Within the Bayesian framework of analysis, we used a Weibull regression model that took into account spatial random effects. The regression model was used to study the independent effects of each covariate. Our results showed that there was spatial heterogeneity in the ambulance response times in Singapore. Generally, areas in the far outskirts (suburbs), such as Boon Lay (in the west) and Sembawang (in the north), fared badly in terms of ambulance response times. This improved when adjusted for key covariates, including distance from the nearest fire station. Ambulance response time was also associated with better traffic conditions, weekend OHCAs, distance from the nearest fire station, and OHCAs occurring during nonpeak driving hours. For instance, the hazard ratio for good ambulance response time was 2.35 (95% credible interval [CI] 1.97-2.81) when traffic conditions were light and 1.72 (95% CI 1.51-1.97) when traffic conditions were moderate, as compared with heavy traffic. We found a clear spatial gradient for ambulance response times, with far-outlying areas' exhibiting poorer response times. Our study highlights the utility of this novel approach, which may be helpful for planning emergency medical services and public emergency responses.

  7. Data-driven discovery of partial differential equations

    PubMed Central

    Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2017-01-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable. PMID:28508044

  8. A primer for biomedical scientists on how to execute model II linear regression analysis.

    PubMed

    Ludbrook, John

    2012-04-01

    1. There are two very different ways of executing linear regression analysis. One is Model I, when the x-values are fixed by the experimenter. The other is Model II, in which the x-values are free to vary and are subject to error. 2. I have received numerous complaints from biomedical scientists that they have great difficulty in executing Model II linear regression analysis. This may explain the results of a Google Scholar search, which showed that the authors of articles in journals of physiology, pharmacology and biochemistry rarely use Model II regression analysis. 3. I repeat my previous arguments in favour of using least products linear regression analysis for Model II regressions. I review three methods for executing ordinary least products (OLP) and weighted least products (WLP) regression analysis: (i) scientific calculator and/or computer spreadsheet; (ii) specific purpose computer programs; and (iii) general purpose computer programs. 4. Using a scientific calculator and/or computer spreadsheet, it is easy to obtain correct values for OLP slope and intercept, but the corresponding 95% confidence intervals (CI) are inaccurate. 5. Using specific purpose computer programs, the freeware computer program smatr gives the correct OLP regression coefficients and obtains 95% CI by bootstrapping. In addition, smatr can be used to compare the slopes of OLP lines. 6. When using general purpose computer programs, I recommend the commercial programs systat and Statistica for those who regularly undertake linear regression analysis and I give step-by-step instructions in the Supplementary Information as to how to use loss functions. © 2011 The Author. Clinical and Experimental Pharmacology and Physiology. © 2011 Blackwell Publishing Asia Pty Ltd.

  9. Water quality parameter measurement using spectral signatures

    NASA Technical Reports Server (NTRS)

    White, P. E.

    1973-01-01

    Regression analysis is applied to the problem of measuring water quality parameters from remote sensing spectral signature data. The equations necessary to perform regression analysis are presented and methods of testing the strength and reliability of a regression are described. An efficient algorithm for selecting an optimal subset of the independent variables available for a regression is also presented.

  10. Assessing the effect of a partly unobserved, exogenous, binary time-dependent covariate on survival probabilities using generalised pseudo-values.

    PubMed

    Pötschger, Ulrike; Heinzl, Harald; Valsecchi, Maria Grazia; Mittlböck, Martina

    2018-01-19

    Investigating the impact of a time-dependent intervention on the probability of long-term survival is statistically challenging. A typical example is stem-cell transplantation performed after successful donor identification from registered donors. Here, a suggested simple analysis based on the exogenous donor availability status according to registered donors would allow the estimation and comparison of survival probabilities. As donor search is usually ceased after a patient's event, donor availability status is incompletely observed, so that this simple comparison is not possible and the waiting time to donor identification needs to be addressed in the analysis to avoid bias. It is methodologically unclear, how to directly address cumulative long-term treatment effects without relying on proportional hazards while avoiding waiting time bias. The pseudo-value regression technique is able to handle the first two issues; a novel generalisation of this technique also avoids waiting time bias. Inverse-probability-of-censoring weighting is used to account for the partly unobserved exogenous covariate donor availability. Simulation studies demonstrate unbiasedness and satisfying coverage probabilities of the new method. A real data example demonstrates that study results based on generalised pseudo-values have a clear medical interpretation which supports the clinical decision making process. The proposed generalisation of the pseudo-value regression technique enables to compare survival probabilities between two independent groups where group membership becomes known over time and remains partly unknown. Hence, cumulative long-term treatment effects are directly addressed without relying on proportional hazards while avoiding waiting time bias.

  11. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  12. Induction of osteoporosis with its influence on osteoporotic determinants and their interrelationships in rats by DEXA.

    PubMed

    Heiss, Christian; Govindarajan, Parameswari; Schlewitz, Gudrun; Hemdan, Nasr Y A; Schliefke, Nathalie; Alt, Volker; Thormann, Ulrich; Lips, Katrin Susanne; Wenisch, Sabine; Langheinrich, Alexander C; Zahner, Daniel; Schnettler, Reinhard

    2012-06-01

    As women are the population most affected by multifactorial osteoporosis, research is focused on unraveling the underlying mechanism of osteoporosis induction in rats by combining ovariectomy (OVX) either with calcium, phosphorus, vitamin C and vitamin D2/D3 deficiency, or by administration of glucocorticoid (dexamethasone). Different skeletal sites of sham, OVX-Diet and OVX-Steroid rats were analyzed by Dual Energy X-ray Absorptiometry (DEXA) at varied time points of 0, 4 and 12 weeks to determine and compare the osteoporotic factors such as bone mineral density (BMD), bone mineral content (BMC), area, body weight and percent fat among different groups and time points. Comparative analysis and interrelationships among osteoporotic determinants by regression analysis were also determined. T scores were below-2.5 in OVX-Diet rats at 4 and 12 weeks post-OVX. OVX-diet rats revealed pronounced osteoporotic status with reduced BMD and BMC than the steroid counterparts, with the spine and pelvis as the most affected skeletal sites. Increase in percent fat was observed irrespective of the osteoporosis inducers applied. Comparative analysis and interrelationships between osteoporotic determinants that are rarely studied in animals indicate the necessity to analyze BMC and area along with BMD in obtaining meaningful information leading to proper prediction of probability of osteoporotic fractures. Enhanced osteoporotic effect observed in OVX-Diet rats indicates that estrogen dysregulation combined with diet treatment induces and enhances osteoporosis with time when compared to the steroid group. Comparative and regression analysis indicates the need to determine BMC along with BMD and area in osteoporotic determination.

  13. Analysis of Radiation Effects in Digital Subtraction Angiography of Intracranial Artery Stenosis.

    PubMed

    Guo, Chaoqun; Shi, Xiaolei; Ding, Xianhui; Zhou, Zhiming

    2018-04-21

    Intracranial artery stenosis (IAS) is the most common cause for acute cerebral accidents. Digital subtraction angiography (DSA) is the gold standard to detect IAS and usually brings excess radiation exposure to examinees and examiners. The artery pathology might influence the interventional procedure, causing prolonged radiation effects. However, no studies on the association between IAS pathology and operational parameters are available. A retrospective analysis was conducted on 93 patients with first-ever stroke/transient ischemic attack, who received DSA examination within 3 months from onset in this single center. Comparison of baseline characteristics was determined by 2-tailed Student's t-test or the chi-square test between subjects with and without IAS. A binary logistic regression analysis was performed to determine the association between IAS pathology and the items with a P value <0.05 in Student's t-test or chi-square test. There were 93 candidates (42 with IAS and 51 without IAS) in this study. The 2 groups shared no significance of the baseline characteristics (P > 0.05). We found a significantly higher total time, higher kerma area product, greater total dose, and greater DSA dose in the IAS group than in those without IAS (P < 0.05). A binary logistic regression analysis indicated the significant association between total time and IAS pathology (P < 0.05) but no significance in kerma area product, radiation dose, and DSA dose (P > 0.05). IAS pathology would indicate a prolonged total time of DSA procedure in clinical practice. However, the radiation effects would not change with pathologic changes. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Regression analysis and real-time water-quality monitoring to estimate constituent concentrations, loads, and yields in the Little Arkansas River, south-central Kansas, 1995-99

    USGS Publications Warehouse

    Christensen, Victoria G.; Jian, Xiaodong; Ziegler, Andrew C.

    2000-01-01

    Water from the Little Arkansas River is used as source water for artificial recharge to the Equus Beds aquifer, which provides water for the city of Wichita in south-central Kansas. To assess the quality of the source water, continuous in-stream water-quality monitors were installed at two U.S. Geological Survey stream-gaging stations to provide real-time measurement of specific conductance, pH, water temperature, dissolved oxygen, and turbidity in the Little Arkansas River. In addition, periodic water samples were collected manually and analyzed for selected constituents, including alkalinity, dissolved solids, total suspended solids, chloride, sulfate, atrazine, and fecal coliform bacteria. However, these periodic samples do not provide real-time data on which to base aquifer-recharge operational decisions to prevent degradation of the Equus Beds aquifer. Continuous and periodic monitoring enabled identification of seasonal trends in selected physical properties and chemical constituents and estimation of chemical mass transported in the Little Arkansas River. Identification of seasonal trends was especially important because high streamflows have a substantial effect on chemical loads and because concentration data from manually collected samples often were not available. Therefore, real-time water-quality monitoring of surrogates for the estimation of selected chemical constituents in streamflow can increase the accuracy of load and yield estimates and can decrease some manual data-collection activities. Regression equations, which were based on physical properties and analysis of water samples collected from 1995 through 1998 throughout 95 percent of the stream's flow duration, were developed to estimate alkalinity, dissolved solids, total suspended solids, chloride, sulfate, atrazine, and fecal coliform bacteria concentrations. Error was evaluated for the first year of data collection and each subsequent year, and a decrease in error was observed as the number of samples increased. Generally, 2 years of data (35 to 55 samples) collected throughout 90 to 95 percent of the stream's flow duration were sufficient to define the relation between a constituent and its surrogate(s). Relations and resulting equations were site specific. To test the regression equations developed from the first 3 years of data collection (1995-98), the equations were applied to the fourth year of data collection (1999) to calculate estimated constituent loads and the errors associated with these loads. Median relative percentage differences between measured constituent loads determined using the analysis of periodic, manual water samples and estimated constituent loads were less than 25 percent for alkalinity, dissolved solids, chloride, and sulfate. The percentage differences for total suspended solids, atrazine, and bacteria loads were more than 25 percent. Even for those constituents with large relative percentage differences between the measured and estimated loads, the estimation of constituent concentrations with regression analysis and real-time water-quality monitoring has numerous advantages over periodic manual sampling. The timely availability of bacteria and other constituent data may be important when considering recreation and the whole-body contact criteria established by the Kansas Department of Health and Environment for a specific water body. In addition, water suppliers would have timely information to use in adjusting water-treatment strategies; environmental changes could be assessed in time to prevent negative effects on fish or other aquatic life; and officials for the Equus Beds Ground-Water Recharge Demonstration project could use this information to prevent the possible degradation of the Equus Beds aquifer by choosing not to recharge when constituent concentrations in the source water are large. Constituent loads calculated from the regression equations may be useful for calculating total maximum daily loads (TMDL's), wh

  15. Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.5°N, 155.6°W)

    NASA Astrophysics Data System (ADS)

    Li, Tao; Leblanc, Thierry; McDermid, I. Stuart

    2008-07-01

    The Jet Propulsion Laboratory Rayleigh-Raman lidar at Mauna Loa Observatory (MLO), Hawaii (19.5°N, 155.6°W) has been measuring atmospheric temperature vertical profiles routinely since 1993. Linear regression analysis was applied to the 13.5-yearlong (January 1994 to June 2007) deseasonalized monthly mean lidar temperature time series for each 1-km altitude bin between 15 and 85 km. The regression analysis included components representing the Quasi-Biennial Oscillation (QBO), El Niño-Southern Oscillation (ENSO), and the 11-year solar cycle. Where overlapping was possible, the results were compared to those obtained from the twice-daily National Weather Service (NWS) radiosonde profiles at Hilo (5-30 km) located 60 km east-north-east of the lidar site, and the four-times-daily temperature analysis of the European Centre for Medium Range Weather Forecast (ECMWF). The analysis revealed the dominance of the QBO (1-3 K) in the stratosphere and mesosphere, and a strong winter signature of ENSO in the troposphere and lowermost stratosphere (˜1.5 K/MEI). Additionally, and for the first time, a statistically significant signature of ENSO was observed in the mesosphere, consistent with the findings of recent model simulations. The annual mean response to the solar cycle shows two statistically significant maxima of ˜1.3 K/100 F10.7 units at 35 and 55 km. The temperature responses to QBO, ENSO, and solar cycle are all maximized in winter. Comparisons with the global ECMWF temperature analysis clearly showed that the middle atmosphere above MLO is under a subtropical/extratropical regime, i.e., generally out-of-phase with that in the equatorial regions, and synchronized to the northern hemisphere winter/spring.

  16. The PX-EM algorithm for fast stable fitting of Henderson's mixed model

    PubMed Central

    Foulley, Jean-Louis; Van Dyk, David A

    2000-01-01

    This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399

  17. qFeature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-09-14

    This package contains statistical routines for extracting features from multivariate time-series data which can then be used for subsequent multivariate statistical analysis to identify patterns and anomalous behavior. It calculates local linear or quadratic regression model fits to moving windows for each series and then summarizes the model coefficients across user-defined time intervals for each series. These methods are domain agnostic-but they have been successfully applied to a variety of domains, including commercial aviation and electric power grid data.

  18. An Analysis of Army Dentists Using Logistic Regression: A Discrete-Time Logit Model for Predicting Retention

    DTIC Science & Technology

    2009-06-10

    Reports (0704 0188), 1215 Jefferson Devis Highway, Suite 1204, Arlington, VA 22202 4302 Respondents should be aware that notwithstanding any other...NAME(S) AND ADDRESS(ES) US Army Medical Department Center and School BLDG 2841 MCCS-HGE-HA (Army-Baylor Program in Health & Business Administration...been used to model negative occurrences in the medical field, such as time to death from a certain disease. However, questions of whether and when

  19. An evaluation of dynamic mutuality measurements and methods in cyclic time series

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohua; Huang, Guitian; Duan, Na

    2010-12-01

    Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.

  20. Multiplication factor versus regression analysis in stature estimation from hand and foot dimensions.

    PubMed

    Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha

    2012-05-01

    Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  1. Mortality in patients with TIMI 3 flow after PCI in relation to time delay to reperfusion.

    PubMed

    Vichova, Teodora; Maly, Marek; Ulman, Jaroslav; Motovska, Zuzana

    2016-03-01

    Percutaneous coronary intervention (PCI) performed within 12 h from symptom onset enables complete blood flow restoration in infarct-related artery in 90% of patients. Nevertheless, even with complete restoration of epicardial blood flow in culprit vessel (postprocedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3), myocardial perfusion at tissue level may be insufficient. We hypothesized that the outcome of patients with STEMI/bundle branch block (BBB)-myocardial infarction and post-PCI TIMI 3 flow is related to the time to reperfusion. Observational study based on a retrospective analysis of population of 635 consecutive patients with STEMI/BBB-MI and post-PCI TIMI 3 flow from January 2009 to December 2011 (mean age 63 years, 69.6% males). Mortality of patients was evaluated in relation to the time from symptom onset to reperfusion. A total of 83 patients (13.07%) with postprocedural TIMI 3 flow after PCI had died at 1-year follow-up. Median TD in patients who survived was 3.92 h (iqr 5.43), in patients who died 6.0 h (iqr 11.42), P = 0.004. Multiple logistic regression analysis identified time delay ≥ 9 h as significantly related to 1-year mortality of patients with STEMI/BBB-MI and post-PCI TIMI 3 flow (OR 1.958, P = 0.026). Other significant variables associated with mortality in multivariate regression analysis were: left ventricle ejection fraction < 30% (P = 0.006), age > 65 years (P < 0.001), Killip class >2 (P <0.001), female gender (P = 0.019), and creatinine clearance < 30 mL/min (P < 0.001). Time delay to reperfusion is significantly related to 1-year mortality of patients with STEMI/BBB-MI and complete restoration of epicardial blood flow in culprit vessel after PCI.

  2. Learning curve analysis of mitral valve repair using telemanipulative technology.

    PubMed

    Charland, Patrick J; Robbins, Tom; Rodriguez, Evilio; Nifong, Wiley L; Chitwood, Randolph W

    2011-08-01

    To determine if the time required to perform mitral valve repairs using telemanipulation technology decreases with experience and how that decrease is influenced by patient and procedure variables. A single-center retrospective review was conducted using perioperative and outcomes data collected contemporaneously on 458 mitral valve repair surgeries using telemanipulative technology. A regression model was constructed to assess learning with this technology and predict total robot time using multiple predictive variables. Statistical analysis was used to determine if models were significantly useful, to rule out correlation between predictor variables, and to identify terms that did not contribute to the prediction of total robot time. We found a statistically significant learning curve (P < .01). The institutional learning percentage∗ derived from total robot times† for the first 458 recorded cases of mitral valve repair using telemanipulative technology is 95% (R(2) = .40). More than one third of the variability in total robot time can be explained through our model using the following variables: type of repair (chordal procedures, ablations, and leaflet resections), band size, use of clips alone in band implantation, and the presence of a fellow at bedside (P < .01). Learning in mitral valve repair surgery using telemanipulative technology occurs at the East Carolina Heart Institute according to a logarithmic curve, with a learning percentage of 95%. From our regression output, we can make an approximate prediction of total robot time using an additive model. These metrics can be used by programs for benchmarking to manage the implementation of this new technology, as well as for capacity planning, scheduling, and capital budget analysis. Copyright © 2011 The American Association for Thoracic Surgery. All rights reserved.

  3. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    PubMed

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  4. Quantile regression and clustering analysis of standardized precipitation index in the Tarim River Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Xia, Jun; Zhang, Yongyong; Han, Jian; Wu, Xia

    2017-11-01

    Because drought is a very common and widespread natural disaster, it has attracted a great deal of academic interest. Based on 12-month time scale standardized precipitation indices (SPI12) calculated from precipitation data recorded between 1960 and 2015 at 22 weather stations in the Tarim River Basin (TRB), this study aims to identify the trends of SPI and drought duration, severity, and frequency at various quantiles and to perform cluster analysis of drought events in the TRB. The results indicated that (1) both precipitation and temperature at most stations in the TRB exhibited significant positive trends during 1960-2015; (2) multiple scales of SPIs changed significantly around 1986; (3) based on quantile regression analysis of temporal drought changes, the positive SPI slopes indicated less severe and less frequent droughts at lower quantiles, but clear variation was detected in the drought frequency; and (4) significantly different trends were found in drought frequency probably between severe droughts and drought frequency.

  5. Analysis of an experiment aimed at improving the reliability of transmission centre shafts.

    PubMed

    Davis, T P

    1995-01-01

    Smith (1991) presents a paper proposing the use of Weibull regression models to establish dependence of failure data (usually times) on covariates related to the design of the test specimens and test procedures. In his article Smith made the point that good experimental design was as important in reliability applications as elsewhere, and in view of the current interest in design inspired by Taguchi and others, we pay some attention in this article to that topic. A real case study from the Ford Motor Company is presented. Our main approach is to utilize suggestions in the literature for applying standard least squares techniques of experimental analysis even when there is likely to be nonnormal error, and censoring. This approach lacks theoretical justification, but its appeal is its simplicity and flexibility. For completeness we also include some analysis based on the proportional hazards model, and in an attempt to link back to Smith (1991), look at a Weibull regression model.

  6. Time-localized wavelet multiple regression and correlation

    NASA Astrophysics Data System (ADS)

    Fernández-Macho, Javier

    2018-02-01

    This paper extends wavelet methodology to handle comovement dynamics of multivariate time series via moving weighted regression on wavelet coefficients. The concept of wavelet local multiple correlation is used to produce one single set of multiscale correlations along time, in contrast with the large number of wavelet correlation maps that need to be compared when using standard pairwise wavelet correlations with rolling windows. Also, the spectral properties of weight functions are investigated and it is argued that some common time windows, such as the usual rectangular rolling window, are not satisfactory on these grounds. The method is illustrated with a multiscale analysis of the comovements of Eurozone stock markets during this century. It is shown how the evolution of the correlation structure in these markets has been far from homogeneous both along time and across timescales featuring an acute divide across timescales at about the quarterly scale. At longer scales, evidence from the long-term correlation structure can be interpreted as stable perfect integration among Euro stock markets. On the other hand, at intramonth and intraweek scales, the short-term correlation structure has been clearly evolving along time, experiencing a sharp increase during financial crises which may be interpreted as evidence of financial 'contagion'.

  7. HIV-related ocular microangiopathic syndrome and color contrast sensitivity.

    PubMed

    Geier, S A; Hammel, G; Bogner, J R; Kronawitter, U; Berninger, T; Goebel, F D

    1994-06-01

    Color vision deficits in patients with acquired immunodeficiency syndrome (AIDS) or human immunodeficiency virus (HIV) disease were reported, and a retinal pathogenic mechanism was proposed. The purpose of this study was to evaluate the association of color vision deficits with HIV-related retinal microangiopathy. A computer graphics system was used to measure protan, deutan, and tritan color contrast sensitivity (CCS) thresholds in 60 HIV-infected patients. Retinal microangiopathy was measured by counting the number of cotton-wool spots, and conjunctival blood-flow sludging was determined. Additional predictors were CD4+ count, age, time on aerosolized pentamidine, time on zidovudine, and Walter Reed staging. The relative influence of each predictor was calculated by stepwise multiple regression analysis (inclusion criterion; incremental P value = < 0.05) using data for the right eyes (RE). The results were validated by using data for the left eyes (LE) and both eyes (BE). The only included predictors in multiple regression analyses for the RE were number of cotton-wool spots (tritan: R = .70; deutan: R = .46; and protan: R = .58; P < .0001 for all axes) and age (tritan: increment of R [Ri] = .05, P = .002; deutan: Ri = .10, P = .004; and protan: Ri = .05, P = .002). The predictors time on zidovudine (Ri = .05, P = .002) and Walter Reed staging (Ri = .03, P = .01) were additionally included in multiple regression analysis for tritan LE. The results for deutan LE were comparable to those for the RE. In the analysis for protan LE, the only included predictor was number of cotton-wool spots. In the analyses for BE, no further predictors were included. The predictors Walter Reed staging and CD4+ count showed a significant association with all three criteria in univariate analysis. Additionally, tritan CCS was significantly associated with conjunctival blood-flow sludging. CCS deficits in patients with HIV disease are primarily associated with the number of cotton-wool spots. Results of this study are in accordance with the hypothesis that CCS deficits are in a relevant part caused by neuroretinal damage secondary to HIV-related microangiopathy.

  8. Viability estimation of pepper seeds using time-resolved photothermal signal characterization

    NASA Astrophysics Data System (ADS)

    Kim, Ghiseok; Kim, Geon-Hee; Lohumi, Santosh; Kang, Jum-Soon; Cho, Byoung-Kwan

    2014-11-01

    We used infrared thermal signal measurement system and photothermal signal and image reconstruction techniques for viability estimation of pepper seeds. Photothermal signals from healthy and aged seeds were measured for seven periods (24, 48, 72, 96, 120, 144, and 168 h) using an infrared camera and analyzed by a regression method. The photothermal signals were regressed using a two-term exponential decay curve with two amplitudes and two time variables (lifetime) as regression coefficients. The regression coefficients of the fitted curve showed significant differences for each seed groups, depending on the aging times. In addition, the viability of a single seed was estimated by imaging of its regression coefficient, which was reconstructed from the measured photothermal signals. The time-resolved photothermal characteristics, along with the regression coefficient images, can be used to discriminate the aged or dead pepper seeds from the healthy seeds.

  9. TSS concentration in sewers estimated from turbidity measurements by means of linear regression accounting for uncertainties in both variables.

    PubMed

    Bertrand-Krajewski, J L

    2004-01-01

    In order to replace traditional sampling and analysis techniques, turbidimeters can be used to estimate TSS concentration in sewers, by means of sensor and site specific empirical equations established by linear regression of on-site turbidity Tvalues with TSS concentrations C measured in corresponding samples. As the ordinary least-squares method is not able to account for measurement uncertainties in both T and C variables, an appropriate regression method is used to solve this difficulty and to evaluate correctly the uncertainty in TSS concentrations estimated from measured turbidity. The regression method is described, including detailed calculations of variances and covariance in the regression parameters. An example of application is given for a calibrated turbidimeter used in a combined sewer system, with data collected during three dry weather days. In order to show how the established regression could be used, an independent 24 hours long dry weather turbidity data series recorded at 2 min time interval is used, transformed into estimated TSS concentrations, and compared to TSS concentrations measured in samples. The comparison appears as satisfactory and suggests that turbidity measurements could replace traditional samples. Further developments, including wet weather periods and other types of sensors, are suggested.

  10. Long-Term Results of a Randomized Trial in Locally Advanced Rectal Cancer: No Benefit From Adding a Brachytherapy Boost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appelt, Ane L., E-mail: ane.lindegaard.appelt@rsyd.dk; Faculty of Health Sciences, University of Southern Denmark, Odense; Vogelius, Ivan R.

    Purpose/Objective(s): Mature data on tumor control and survival are presented from a randomized trial of the addition of a brachytherapy boost to long-course neoadjuvant chemoradiation therapy (CRT) for locally advanced rectal cancer. Methods and Materials: Between March 2005 and November 2008, 248 patients with T3-4N0-2M0 rectal cancer were prospectively randomized to either long-course preoperative CRT (50.4 Gy in 28 fractions, per oral tegafur-uracil and L-leucovorin) alone or the same CRT schedule plus a brachytherapy boost (10 Gy in 2 fractions). The primary trial endpoint was pathologic complete response (pCR) at the time of surgery; secondary endpoints included overall survival (OS), progression-free survivalmore » (PFS), and freedom from locoregional failure. Results: Results for the primary endpoint have previously been reported. This analysis presents survival data for the 224 patients in the Danish part of the trial. In all, 221 patients (111 control arm, 110 brachytherapy boost arm) had data available for analysis, with a median follow-up time of 5.4 years. Despite a significant increase in tumor response at the time of surgery, no differences in 5-year OS (70.6% vs 63.6%, hazard ratio [HR] = 1.24, P=.34) and PFS (63.9% vs 52.0%, HR=1.22, P=.32) were observed. Freedom from locoregional failure at 5 years were 93.9% and 85.7% (HR=2.60, P=.06) in the standard and in the brachytherapy arms, respectively. There was no difference in the prevalence of stoma. Explorative analysis based on stratification for tumor regression grade and resection margin status indicated the presence of response migration. Conclusions: Despite increased pathologic tumor regression at the time of surgery, we observed no benefit on late outcome. Improved tumor regression does not necessarily lead to a relevant clinical benefit when the neoadjuvant treatment is followed by high-quality surgery.« less

  11. Using Robust Standard Errors to Combine Multiple Regression Estimates with Meta-Analysis

    ERIC Educational Resources Information Center

    Williams, Ryan T.

    2012-01-01

    Combining multiple regression estimates with meta-analysis has continued to be a difficult task. A variety of methods have been proposed and used to combine multiple regression slope estimates with meta-analysis, however, most of these methods have serious methodological and practical limitations. The purpose of this study was to explore the use…

  12. A Quality Assessment Tool for Non-Specialist Users of Regression Analysis

    ERIC Educational Resources Information Center

    Argyrous, George

    2015-01-01

    This paper illustrates the use of a quality assessment tool for regression analysis. It is designed for non-specialist "consumers" of evidence, such as policy makers. The tool provides a series of questions such consumers of evidence can ask to interrogate regression analysis, and is illustrated with reference to a recent study published…

  13. A retrospective analysis to identify the factors affecting infection in patients undergoing chemotherapy.

    PubMed

    Park, Ji Hyun; Kim, Hyeon-Young; Lee, Hanna; Yun, Eun Kyoung

    2015-12-01

    This study compares the performance of the logistic regression and decision tree analysis methods for assessing the risk factors for infection in cancer patients undergoing chemotherapy. The subjects were 732 cancer patients who were receiving chemotherapy at K university hospital in Seoul, Korea. The data were collected between March 2011 and February 2013 and were processed for descriptive analysis, logistic regression and decision tree analysis using the IBM SPSS Statistics 19 and Modeler 15.1 programs. The most common risk factors for infection in cancer patients receiving chemotherapy were identified as alkylating agents, vinca alkaloid and underlying diabetes mellitus. The logistic regression explained 66.7% of the variation in the data in terms of sensitivity and 88.9% in terms of specificity. The decision tree analysis accounted for 55.0% of the variation in the data in terms of sensitivity and 89.0% in terms of specificity. As for the overall classification accuracy, the logistic regression explained 88.0% and the decision tree analysis explained 87.2%. The logistic regression analysis showed a higher degree of sensitivity and classification accuracy. Therefore, logistic regression analysis is concluded to be the more effective and useful method for establishing an infection prediction model for patients undergoing chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

    PubMed

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2015-06-01

    To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

  15. Photoacoustic spectroscopy based investigatory approach to discriminate breast cancer from normal: a pilot study

    NASA Astrophysics Data System (ADS)

    Priya, Mallika; Rao, Bola Sadashiva Satish; Chandra, Subhash; Ray, Satadru; Mathew, Stanley; Datta, Anirbit; Nayak, Subramanya G.; Mahato, Krishna Kishore

    2016-02-01

    In spite of many efforts for early detection of breast cancer, there is still lack of technology for immediate implementation. In the present study, the potential photoacoustic spectroscopy was evaluated in discriminating breast cancer from normal, involving blood serum samples seeking early detection. Three photoacoustic spectra in time domain were recorded from each of 20 normal and 20 malignant samples at 281nm pulsed laser excitations and a total of 120 spectra were generated. The time domain spectra were then Fast Fourier Transformed into frequency domain and 116.5625 - 206.875 kHz region was selected for further analysis using a combinational approach of wavelet, PCA and logistic regression. Initially, wavelet analysis was performed on the FFT data and seven features (mean, median, area under the curve, variance, standard deviation, skewness and kurtosis) from each were extracted. PCA was then performed on the feature matrix (7x120) for discriminating malignant samples from the normal by plotting a decision boundary using logistic regression analysis. The unsupervised mode of classification used in the present study yielded specificity and sensitivity values of 100% in each respectively with a ROC - AUC value of 1. The results obtained have clearly demonstrated the capability of photoacoustic spectroscopy in discriminating cancer from the normal, suggesting its possible clinical implications.

  16. The association between meteorological factors and road traffic injuries: a case analysis from Shantou city, China

    PubMed Central

    Gao, Jinghong; Chen, Xiaojun; Woodward, Alistair; Liu, Xiaobo; Wu, Haixia; Lu, Yaogui; Li, Liping; Liu, Qiyong

    2016-01-01

    Few studies examined the associations of meteorological factors with road traffic injuries (RTIs). The purpose of the present study was to quantify the contributions of meteorological factors to RTI cases treated at a tertiary level hospital in Shantou city, China. A time-series diagram was employed to illustrate the time trends and seasonal variation of RTIs, and correlation analysis and multiple linear regression analysis were conducted to investigate the relationships between meteorological parameters and RTIs. RTIs followed a seasonal pattern as more cases occurred during summer and winter months. RTIs are positively correlated with temperature and sunshine duration, while negatively associated with wind speed. Temperature, sunshine hour and wind speed were included in the final linear model with regression coefficients of 0.65 (t = 2.36, P = 0.019), 2.23 (t = 2.72, P = 0.007) and −27.66 (t = −5.67, P < 0.001), respectively, accounting for 19.93% of the total variation of RTI cases. The findings can help us better understand the associations between meteorological factors and RTIs, and with potential contributions to the development and implementation of regional level evidence-based weather-responsive traffic management system in the future. PMID:27853316

  17. Pressure ulcer incidence and Braden subscales: Retrospective cohort analysis in general wards of a Portuguese hospital.

    PubMed

    Sardo, Pedro Miguel Garcez; Guedes, Jenifer Adriana Domingues; Alvarelhão, José Joaquim Marques; Machado, Paulo Alexandre Puga; Melo, Elsa Maria Oliveira Pinheiro

    2018-05-01

    To study the influence of Braden subscales scores (at the first pressure ulcer risk assessment) on pressure ulcer incidence using a univariate and a multivariate time to event analysis. Retrospective cohort analysis of electronic health record database from adult patients admitted without pressure ulcer(s) to medical and surgical wards of a Portuguese hospital during 2012. The hazard ratio of developing a pressure ulcer during the length of inpatient stay was calculated by univariate Cox regression for each variable of interest and by multivariate Cox regression for the Braden subscales that were statistically significant. This study included a sample of 6552 participants. During the length of stay, 153 participants developed (at least) one pressure ulcer, giving a pressure ulcer incidence of 2.3%. The univariate time to event analysis showed that all Braden subscales, except "nutrition", were associated with the development of pressure ulcer. By multivariate analysis the scores for "mobility" and "activity" were independently predictive of the development of pressure ulcer(s) for all participants. (Im)"mobility" (the lack of ability to change and control body position) and (in)"activity" (the limited degree of physical activity) were the major risk factors assessed by Braden Scale for pressure ulcer development during the length of inpatient stay. Thus, the greatest efforts in managing pressure ulcer risk should be on "mobility" and "activity", independently of the total Braden Scale score. Copyright © 2018 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  18. Influence of Japanese consumer gender and age on sensory attributes and preference (a case study on deep-fried peanuts).

    PubMed

    Miyagi, Atsushi

    2017-09-01

    Detailed exploration of sensory perception as well as preference across gender and age for a certain food is very useful for developing a vendible food commodity related to physiological and psychological motivation for food preference. Sensory tests including color, sweetness, bitterness, fried peanut aroma, textural preference and overall liking of deep-fried peanuts with varying frying time (2, 4, 6, 9, 12 and 15 min) at 150 °C were carried out using 417 healthy Japanese consumers. To determine the influence of gender and age on sensory evaluation, systematic statistical analysis including one-way analysis of variance, polynomial regression analysis and multiple regression analysis was conducted using the collected data. The results indicated that females were more sensitive to bitterness than males. This may affect sensory preference; female subjects favored peanuts prepared with a shorter frying time more than male subjects did. With advancing age, textural preference played a more important role in overall preference. Older subjects liked deeper-fried peanuts, which are more brittle, more than younger subjects did. In the present study, systematic statistical analysis based on collected sensory evaluation data using deep-fried peanuts was conducted and the tendency of sensory perception and preference across gender and age was clarified. These results may be useful for engineering optimal strategies to target specific segments to gain greater acceptance in the market. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Measuring multi-joint stiffness during single movements: numerical validation of a novel time-frequency approach.

    PubMed

    Piovesan, Davide; Pierobon, Alberto; DiZio, Paul; Lackner, James R

    2012-01-01

    This study presents and validates a Time-Frequency technique for measuring 2-dimensional multijoint arm stiffness throughout a single planar movement as well as during static posture. It is proposed as an alternative to current regressive methods which require numerous repetitions to obtain average stiffness on a small segment of the hand trajectory. The method is based on the analysis of the reassigned spectrogram of the arm's response to impulsive perturbations and can estimate arm stiffness on a trial-by-trial basis. Analytic and empirical methods are first derived and tested through modal analysis on synthetic data. The technique's accuracy and robustness are assessed by modeling the estimation of stiffness time profiles changing at different rates and affected by different noise levels. Our method obtains results comparable with two well-known regressive techniques. We also test how the technique can identify the viscoelastic component of non-linear and higher than second order systems with a non-parametrical approach. The technique proposed here is very impervious to noise and can be used easily for both postural and movement tasks. Estimations of stiffness profiles are possible with only one perturbation, making our method a useful tool for estimating limb stiffness during motor learning and adaptation tasks, and for understanding the modulation of stiffness in individuals with neurodegenerative diseases.

  20. Community-Based Management of Child Malnutrition in Zambia: HIV/AIDS Infection and Other Risk Factors on Child Survival.

    PubMed

    Moramarco, Stefania; Amerio, Giulia; Ciarlantini, Clarice; Chipoma, Jean Kasengele; Simpungwe, Matilda Kakungu; Nielsen-Saines, Karin; Palombi, Leonardo; Buonomo, Ersilia

    2016-07-01

    (1) BACKGROUND: Supplementary feeding programs (SFPs) are effective in the community-based treatment of moderate acute malnutrition (MAM) and prevention of severe acute malnutrition (SAM); (2) METHODS: A retrospective study was conducted on a sample of 1266 Zambian malnourished children assisted from 2012 to 2014 in the Rainbow Project SFPs. Nutritional status was evaluated according to WHO/Unicef methodology. We performed univariate and multivariate Cox proportional risk regression to identify the main predictors of mortality. In addition, a time-to event analysis was performed to identify predictors of failure and time to cure events; (3) RESULTS: The analysis included 858 malnourished children (19 months ± 9.4; 49.9% males). Program outcomes met international standards with a better performance for MAM compared to SAM. Cox regression identified SAM (3.8; 2.1-6.8), HIV infection (3.1; 1.7-5.5), and WAZ <-3 (3.1; 1.6-5.7) as predictors of death. Time to event showed 80% of children recovered by SAM/MAM at 24 weeks. (4) CONCLUSIONS: Preventing deterioration of malnutrition, coupled to early detection of HIV/AIDS with adequate antiretroviral treatment, and extending the duration of feeding supplementation, could be crucial elements for ensuring full recovery and improve child survival in malnourished Zambian children.

  1. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  2. REGRESSION ANALYSIS OF SEA-SURFACE-TEMPERATURE PATTERNS FOR THE NORTH PACIFIC OCEAN.

    DTIC Science & Technology

    SEA WATER, *SURFACE TEMPERATURE, *OCEANOGRAPHIC DATA, PACIFIC OCEAN, REGRESSION ANALYSIS , STATISTICAL ANALYSIS, UNDERWATER EQUIPMENT, DETECTION, UNDERWATER COMMUNICATIONS, DISTRIBUTION, THERMAL PROPERTIES, COMPUTERS.

  3. Cell cycle-related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients.

    PubMed

    Chen, Jinyun; Pande, Mala; Huang, Yu-Jing; Wei, Chongjuan; Amos, Christopher I; Talseth-Palmer, Bente A; Meldrum, Cliff J; Chen, Wei V; Gorlov, Ivan P; Lynch, Patrick M; Scott, Rodney J; Frazier, Marsha L

    2013-02-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle-related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle-related genes and 31 DNA repair-related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan-Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P < 5 × 10(-4)). Furthermore, risk modeling using CART analysis defined combinations of genotypes for these SNPs with which subjects could be classified into low-risk, moderate-risk and high-risk groups that had median ages of colorectal cancer onset of 63, 50 and 42 years, respectively. The age-associated risk of colorectal cancer in the high-risk group was more than four times the risk in the low-risk group (hazard ratio = 4.67, 95% CI = 3.16-6.92). The additional genetic markers identified may help in refining risk groups for more tailored screening and follow-up of non-Hispanic white patients with Lynch syndrome.

  4. Cell cycle–related genes as modifiers of age of onset of colorectal cancer in Lynch syndrome: a large-scale study in non-Hispanic white patients

    PubMed Central

    Chen, Jinyun; Pande, Mala

    2013-01-01

    Heterogeneity in age of onset of colorectal cancer in individuals with mutations in DNA mismatch repair genes (Lynch syndrome) suggests the influence of other lifestyle and genetic modifiers. We hypothesized that genes regulating the cell cycle influence the observed heterogeneity as cell cycle–related genes respond to DNA damage by arresting the cell cycle to provide time for repair and induce transcription of genes that facilitate repair. We examined the association of 1456 single nucleotide polymorphisms (SNPs) in 128 cell cycle–related genes and 31 DNA repair–related genes in 485 non-Hispanic white participants with Lynch syndrome to determine whether there are SNPs associated with age of onset of colorectal cancer. Genotyping was performed on an Illumina GoldenGate platform, and data were analyzed using Kaplan–Meier survival analysis, Cox regression analysis and classification and regression tree (CART) methods. Ten SNPs were independently significant in a multivariable Cox proportional hazards regression model after correcting for multiple comparisons (P < 5×10–4). Furthermore, risk modeling using CART analysis defined combinations of genotypes for these SNPs with which subjects could be classified into low-risk, moderate-risk and high-risk groups that had median ages of colorectal cancer onset of 63, 50 and 42 years, respectively. The age-associated risk of colorectal cancer in the high-risk group was more than four times the risk in the low-risk group (hazard ratio = 4.67, 95% CI = 3.16–6.92). The additional genetic markers identified may help in refining risk groups for more tailored screening and follow-up of non-Hispanic white patients with Lynch syndrome. PMID:23125224

  5. Asthma exacerbations in children immediately following stressful life events: a Cox's hierarchical regression.

    PubMed

    Sandberg, S; Järvenpää, S; Penttinen, A; Paton, J Y; McCann, D C

    2004-12-01

    A recent prospective study of children with asthma employing a within subject, over time analysis using dynamic logistic regression showed that severely negative life events significantly increased the risk of an acute exacerbation during the subsequent 6 week period. The timing of the maximum risk depended on the degree of chronic psychosocial stress also present. A hierarchical Cox regression analysis was undertaken to examine whether there were any immediate effects of negative life events in children without a background of high chronic stress. Sixty children with verified chronic asthma were followed prospectively for 18 months with continuous monitoring of asthma by daily symptom diaries and peak flow measurements, accompanied by repeated interview assessments of life events. The key outcome measures were asthma exacerbations and severely negative life events. An immediate effect evident within the first 2 days following a severely negative life event increased the risk of a new asthma attack by a factor of 4.69, 95% confidence interval 2.33 to 9.44 (p<0.001) [corrected] In the period 3-10 days after a severe event there was no increased risk of an asthma attack (p = 0.5). In addition to the immediate effect, an increased risk of 1.81 (95% confidence interval 1.24 to 2.65) [corrected] was found 5-7 weeks after a severe event (p = 0.002). This is consistent with earlier findings. There was a statistically significant variation due to unobserved factors in the incidence of asthma attacks between the children. The use of statistical methods capable of investigating short time lags showed that stressful life events significantly increase the risk of a new asthma attack immediately after the event; a more delayed increase in risk was also evident 5-7 weeks later.

  6. The increase in symptoms of anxiety and depressed mood among Icelandic adolescents: time trend between 2006 and 2016.

    PubMed

    Thorisdottir, Ingibjorg E; Asgeirsdottir, Bryndis B; Sigurvinsdottir, Rannveig; Allegrante, John P; Sigfusdottir, Inga D

    2017-10-01

    Both research and popular media reports suggest that adolescent mental health has been deteriorating across societies with advanced economies. This study sought to describe the trends in self-reported symptoms of depressed mood and anxiety among Icelandic adolescents. Data for this study come from repeated, cross-sectional, population-based school surveys of 43 482 Icelandic adolescents in 9th and 10th grade, with six waves of pooled data from 2006 to 2016. We used analysis of variance, linear regression and binomial logistic regression to examine trends in symptom scores of anxiety and depressed mood over time. Gender differences in trends of high symptoms were also tested for interactions. Linear regression analysis showed a significant linear increase over the course of the study period in mean symptoms of anxiety and depressed mood for girls only; however, symptoms of anxiety among boys decreased. The proportion of adolescents reporting high depressive symptoms increased by 1.6% for boys and 6.8% for girls; the proportion of those reporting high anxiety symptoms increased by 1.3% for boys and 8.6% for girls. Over the study period, the odds for reporting high depressive symptoms and high anxiety symptoms were significantly higher for both genders. Girls were more likely to report high symptoms of anxiety and depressed mood than boys. Self-reported symptoms of anxiety and depressed mood have increased over time among Icelandic adolescents. Our findings suggest that future research needs to look beyond mean changes and examine the trends among those adolescents who report high symptoms of emotional distress. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  7. A comparison of long-term parallel measurements of sunshine duration obtained with a Campbell-Stokes sunshine recorder and two automated sunshine sensors

    NASA Astrophysics Data System (ADS)

    Baumgartner, D. J.; Pötzi, W.; Freislich, H.; Strutzmann, H.; Veronig, A. M.; Foelsche, U.; Rieder, H. E.

    2017-06-01

    In recent decades, automated sensors for sunshine duration (SD) measurements have been introduced in meteorological networks, thereby replacing traditional instruments, most prominently the Campbell-Stokes (CS) sunshine recorder. Parallel records of automated and traditional SD recording systems are rare. Nevertheless, such records are important to understand the differences/similarities in SD totals obtained with different instruments and how changes in monitoring device type affect the homogeneity of SD records. This study investigates the differences/similarities in parallel SD records obtained with a CS and two automated SD sensors between 2007 and 2016 at the Kanzelhöhe Observatory, Austria. Comparing individual records of daily SD totals, we find differences of both positive and negative sign, with smallest differences between the automated sensors. The larger differences between CS-derived SD totals and those from automated sensors can be attributed (largely) to the higher sensitivity threshold of the CS instrument. Correspondingly, the closest agreement among all sensors is found during summer, the time of year when sensitivity thresholds are least critical. Furthermore, we investigate the performance of various models to create the so-called sensor-type-equivalent (STE) SD records. Our analysis shows that regression models including all available data on daily (or monthly) time scale perform better than simple three- (or four-) point regression models. Despite general good performance, none of the considered regression models (of linear or quadratic form) emerges as the "optimal" model. Although STEs prove useful for relating SD records of individual sensors on daily/monthly time scales, this does not ensure that STE (or joint) records can be used for trend analysis.

  8. Geographical, temporal and racial disparities in late-stage prostate cancer incidence across Florida: A multiscale joinpoint regression analysis

    PubMed Central

    2011-01-01

    Background Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Methods Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. Results State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Conclusions Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes. PMID:22142274

  9. Geographical, temporal and racial disparities in late-stage prostate cancer incidence across Florida: a multiscale joinpoint regression analysis.

    PubMed

    Goovaerts, Pierre; Xiao, Hong

    2011-12-05

    Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes.

  10. Evaluation of in-line Raman data for end-point determination of a coating process: Comparison of Science-Based Calibration, PLS-regression and univariate data analysis.

    PubMed

    Barimani, Shirin; Kleinebudde, Peter

    2017-10-01

    A multivariate analysis method, Science-Based Calibration (SBC), was used for the first time for endpoint determination of a tablet coating process using Raman data. Two types of tablet cores, placebo and caffeine cores, received a coating suspension comprising a polyvinyl alcohol-polyethylene glycol graft-copolymer and titanium dioxide to a maximum coating thickness of 80µm. Raman spectroscopy was used as in-line PAT tool. The spectra were acquired every minute and correlated to the amount of applied aqueous coating suspension. SBC was compared to another well-known multivariate analysis method, Partial Least Squares-regression (PLS) and a simpler approach, Univariate Data Analysis (UVDA). All developed calibration models had coefficient of determination values (R 2 ) higher than 0.99. The coating endpoints could be predicted with root mean square errors (RMSEP) less than 3.1% of the applied coating suspensions. Compared to PLS and UVDA, SBC proved to be an alternative multivariate calibration method with high predictive power. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The process and utility of classification and regression tree methodology in nursing research

    PubMed Central

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-01-01

    Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984–2013. Discussion Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Implications for Nursing Research Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Conclusion Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. PMID:24237048

  12. The process and utility of classification and regression tree methodology in nursing research.

    PubMed

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  13. Forecasting models for sugi (Cryptomeria japonica D. Don) pollen count showing an alternate dispersal rhythm.

    PubMed

    Ito, Yukiko; Hattori, Reiko; Mase, Hiroki; Watanabe, Masako; Shiotani, Itaru

    2008-12-01

    Pollen information is indispensable for allergic individuals and clinicians. This study aimed to develop forecasting models for the total annual count of airborne pollen grains based on data monitored over the last 20 years at the Mie Chuo Medical Center, Tsu, Mie, Japan. Airborne pollen grains were collected using a Durham sampler. Total annual pollen count and pollen count from October to December (OD pollen count) of the previous year were transformed to logarithms. Regression analysis of the total pollen count was performed using variables such as the OD pollen count and the maximum temperature for mid-July of the previous year. Time series analysis revealed an alternate rhythm of the series of total pollen count. The alternate rhythm consisted of a cyclic alternation of an "on" year (high pollen count) and an "off" year (low pollen count). This rhythm was used as a dummy variable in regression equations. Of the three models involving the OD pollen count, a multiple regression equation that included the alternate rhythm variable and the interaction of this rhythm with OD pollen count showed a high coefficient of determination (0.844). Of the three models involving the maximum temperature for mid-July, those including the alternate rhythm variable and the interaction of this rhythm with maximum temperature had the highest coefficient of determination (0.925). An alternate pollen dispersal rhythm represented by a dummy variable in the multiple regression analysis plays a key role in improving forecasting models for the total annual sugi pollen count.

  14. Advantages of the net benefit regression framework for economic evaluations of interventions in the workplace: a case study of the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders.

    PubMed

    Hoch, Jeffrey S; Dewa, Carolyn S

    2014-04-01

    Economic evaluations commonly accompany trials of new treatments or interventions; however, regression methods and their corresponding advantages for the analysis of cost-effectiveness data are not well known. To illustrate regression-based economic evaluation, we present a case study investigating the cost-effectiveness of a collaborative mental health care program for people receiving short-term disability benefits for psychiatric disorders. We implement net benefit regression to illustrate its strengths and limitations. Net benefit regression offers a simple option for cost-effectiveness analyses of person-level data. By placing economic evaluation in a regression framework, regression-based techniques can facilitate the analysis and provide simple solutions to commonly encountered challenges. Economic evaluations of person-level data (eg, from a clinical trial) should use net benefit regression to facilitate analysis and enhance results.

  15. Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields

    NASA Astrophysics Data System (ADS)

    Hansen, Scott K.; Haslauer, Claus P.; Cirpka, Olaf A.; Vesselinov, Velimir V.

    2018-01-01

    This paper presents a methodology to predict the shape of solute breakthrough curves in heterogeneous aquifers at early times and/or under high degrees of heterogeneity, both cases in which the classical macrodispersion theory may not be applicable. The methodology relies on the observation that breakthrough curves in heterogeneous media are generally well described by lognormal distributions, and mean breakthrough times can be predicted analytically. The log-variance of solute arrival is thus sufficient to completely specify the breakthrough curves, and this is calibrated as a function of aquifer heterogeneity and dimensionless distance from a source plane by means of Monte Carlo analysis and statistical regression. Using the ensemble of simulated groundwater flow and solute transport realizations employed to calibrate the predictive regression, reliability estimates for the prediction are also developed. Additional theoretical contributions include heuristics for the time until an effective macrodispersion coefficient becomes applicable, and also an expression for its magnitude that applies in highly heterogeneous systems. It is seen that the results here represent a way to derive continuous time random walk transition distributions from physical considerations rather than from empirical field calibration.

  16. Salutogenic resources in relation to teachers' work-life balance.

    PubMed

    Nilsson, Marie; Blomqvist, Kerstin; Andersson, Ingemar

    2017-01-01

    Experiencing work-life balance is considered a health promoting resource. To counter-balance the negative development of teachers' work situation, salutogenic resources need to be examined among teachers. To examine resources related to teachers' experience of their work-life balance. Using a cross-sectional design, a questionnaire was distributed to 455 teachers in compulsory schools in a Swedish community. A total of 338 teachers participated (74%). A multiple linear regression method was used for the analysis. Four variables in the regression model significantly explained work-life balance and were thereby possible resources: time experience at work; satisfaction with everyday life; self-rated health; and recovery. The strongest association with work-life balance was time experience at work. Except time experience at work, all were individual-related. This study highlights the importance of school management's support in reducing teachers' time pressure. It also emphasizes the need to address teachers' individual resources in relation to work-life balance. In order to support teachers' work-life balance, promote their well-being, and preventing teachers' attrition, we suggest that the school management would benefit from creating a work environment with strengthened resources.

  17. Can the displacement of a conservatively treated distal radius fracture be predicted at the beginning of treatment?

    PubMed Central

    Einsiedel, T.; Freund, W.; Sander, S.; Trnavac, S.; Gebhard, F.

    2008-01-01

    The aim of this study was to investigate whether the final displacement of conservatively treated distal radius fractures can be predicted after primary reduction. We analysed the radiographic documents of 311 patients with a conservatively treated distal radius fracture at the time of injury, after reduction and after bony consolidation. We measured the dorsal angulation (DA), the radial angle (RA) and the radial shortening (RS) at each time point. The parameters were analysed separately for metaphyseally “stable” (A2, C1) and “unstable” (A3, C2, C3) fractures, according to the AO classification system. Spearman’s rank correlations and regression functions were determined for the analysis. The highest correlations were found for the DA between the time points ‘reduction’ and ‘complete healing’ (r = 0.75) and for the RA between the time points ‘reduction’ and ‘complete healing’ (r = 0.80). The DA and the RA after complete healing can be predicted from the regression functions. PMID:18504577

  18. A comparison of regression methods for model selection in individual-based landscape genetic analysis

    Treesearch

    Andrew J. Shirk; Erin L. Landguth; Samuel A. Cushman

    2017-01-01

    Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time....

  19. Learning Models and Real-Time Speech Recognition.

    ERIC Educational Resources Information Center

    Danforth, Douglas G.; And Others

    This report describes the construction and testing of two "psychological" learning models for the purpose of computer recognition of human speech over the telephone. One of the two models was found to be superior in all tests. A regression analysis yielded a 92.3% recognition rate for 14 subjects ranging in age from 6 to 13 years. Tests…

  20. Approaches to Forecasting Demands for Library Network Services. Report No. 10.

    ERIC Educational Resources Information Center

    Kang, Jong Hoa

    The problem of forecasting monthly demands for library network services is considered in terms of using forecasts as inputs to policy analysis models, and in terms of using forecasts to aid in the making of budgeting and staffing decisions. Box-Jenkins time-series methodology, adaptive filtering, and regression approaches are examined and compared…

Top