Muijres, Florian T; Bowlin, Melissa S; Johansson, L Christoffer; Hedenström, Anders
2012-02-07
Many small passerines regularly fly slowly when catching prey, flying in cluttered environments or landing on a perch or nest. While flying slowly, passerines generate most of the flight forces during the downstroke, and have a 'feathered upstroke' during which they make their wing inactive by retracting it close to the body and by spreading the primary wing feathers. How this flight mode relates aerodynamically to the cruising flight and so-called 'normal hovering' as used in hummingbirds is not yet known. Here, we present time-resolved fluid dynamics data in combination with wingbeat kinematics data for three pied flycatchers flying across a range of speeds from near hovering to their calculated minimum power speed. Flycatchers are adapted to low speed flight, which they habitually use when catching insects on the wing. From the wake dynamics data, we constructed average wingbeat wakes and determined the time-resolved flight forces, the time-resolved downwash distributions and the resulting lift-to-drag ratios, span efficiencies and flap efficiencies. During the downstroke, slow-flying flycatchers generate a single-vortex loop wake, which is much more similar to that generated by birds at cruising flight speeds than it is to the double loop vortex wake in hovering hummingbirds. This wake structure results in a relatively high downwash behind the body, which can be explained by the relatively active tail in flycatchers. As a result of this, slow-flying flycatchers have a span efficiency which is similar to that of the birds in cruising flight and which can be assumed to be higher than in hovering hummingbirds. During the upstroke, the wings of slowly flying flycatchers generated no significant forces, but the body-tail configuration added 23 per cent to weight support. This is strikingly similar to the 25 per cent weight support generated by the wing upstroke in hovering hummingbirds. Thus, for slow-flying passerines, the upstroke cannot be regarded as inactive, and the tail may be of importance for flight efficiency and possibly manoeuvrability.
NASA Astrophysics Data System (ADS)
Vanicek, Jiri
2014-03-01
Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.
In vivo measurement of aerodynamic weight support in freely flying birds
NASA Astrophysics Data System (ADS)
Lentink, David; Haselsteiner, Andreas; Ingersoll, Rivers
2014-11-01
Birds dynamically change the shape of their wing during the stroke to support their body weight aerodynamically. The wing is partially folded during the upstroke, which suggests that the upstroke of birds might not actively contribute to aerodynamic force production. This hypothesis is supported by the significant mass difference between the large pectoralis muscle that powers the down-stroke and the much smaller supracoracoideus that drives the upstroke. Previous works used indirect or incomplete techniques to measure the total force generated by bird wings ranging from muscle force, airflow, wing surface pressure, to detailed kinematics measurements coupled with bird mass-distribution models to derive net force through second derivatives. We have validated a new method that measures aerodynamic force in vivo time-resolved directly in freely flying birds which can resolve this question. The validation of the method, using independent force measurements on a quadcopter with pulsating thrust, show the aerodynamic force and impulse are measured within 2% accuracy and time-resolved. We demonstrate results for quad-copters and birds of similar weight and size. The method is scalable and can be applied to both engineered and natural flyers across taxa. The first author invented the method, the second and third authors validated the method and present results for quadcopters and birds.
Animal behavior: fly flight moves forward.
Fox, Jessica L; Frye, Mark
2013-04-08
A new study has resolved the paradox of how flies maintain reflexive aversion to your approaching swatter, whilst tolerating similar visual signals during normal forward flight. Copyright © 2013 Elsevier Ltd. All rights reserved.
Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.
Schuster, Stefan; Strauss, Roland; Götz, Karl G
2002-09-17
Insects can estimate distance or time-to-contact of surrounding objects from locomotion-induced changes in their retinal position and/or size. Freely walking fruit flies (Drosophila melanogaster) use the received mixture of different distance cues to select the nearest objects for subsequent visits. Conventional methods of behavioral analysis fail to elucidate the underlying data extraction. Here we demonstrate first comprehensive solutions of this problem by substituting virtual for real objects; a tracker-controlled 360 degrees panorama converts a fruit fly's changing coordinates into object illusions that require the perception of specific cues to appear at preselected distances up to infinity. An application reveals the following: (1) en-route sampling of retinal-image changes accounts for distance discrimination within a surprising range of at least 8-80 body lengths (20-200 mm). Stereopsis and peering are not involved. (2) Distance from image translation in the expected direction (motion parallax) outweighs distance from image expansion, which accounts for impact-avoiding flight reactions to looming objects. (3) The ability to discriminate distances is robust to artificially delayed updating of image translation. Fruit flies appear to interrelate self-motion and its visual feedback within a surprisingly long time window of about 2 s. The comparative distance inspection practiced in the small fruit fly deserves utilization in self-moving robots.
Boström, Jannika E; Dimitrova, Marina; Canton, Cindy; Håstad, Olle; Qvarnström, Anna; Ödeen, Anders
2016-01-01
Flying animals need to accurately detect, identify and track fast-moving objects and these behavioral requirements are likely to strongly select for abilities to resolve visual detail in time. However, evidence of highly elevated temporal acuity relative to non-flying animals has so far been confined to insects while it has been missing in birds. With behavioral experiments on three wild passerine species, blue tits, collared and pied flycatchers, we demonstrate temporal acuities of vision far exceeding predictions based on the sizes and metabolic rates of these birds. This implies a history of strong natural selection on temporal resolution. These birds can resolve alternating light-dark cycles at up to 145 Hz (average: 129, 127 and 137, respectively), which is ca. 50 Hz over the highest frequency shown in any other vertebrate. We argue that rapid vision should confer a selective advantage in many bird species that are ecologically similar to the three species examined in our study. Thus, rapid vision may be a more typical avian trait than the famously sharp vision found in birds of prey.
Episodic radiations in the fly tree of life
Wiegmann, Brian M.; Trautwein, Michelle D.; Winkler, Isaac S.; Barr, Norman B.; Kim, Jung-Wook; Lambkin, Christine; Bertone, Matthew A.; Cassel, Brian K.; Bayless, Keith M.; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Pape, Thomas; Sinclair, Bradley J.; Skevington, Jeffrey H.; Blagoderov, Vladimir; Caravas, Jason; Kutty, Sujatha Narayanan; Schmidt-Ott, Urs; Kampmeier, Gail E.; Thompson, F. Christian; Grimaldi, David A.; Beckenbach, Andrew T.; Courtney, Gregory W.; Friedrich, Markus; Meier, Rudolf; Yeates, David K.
2011-01-01
Flies are one of four superradiations of insects (along with beetles, wasps, and moths) that account for the majority of animal life on Earth. Diptera includes species known for their ubiquity (Musca domestica house fly), their role as pests (Anopheles gambiae malaria mosquito), and their value as model organisms across the biological sciences (Drosophila melanogaster). A resolved phylogeny for flies provides a framework for genomic, developmental, and evolutionary studies by facilitating comparisons across model organisms, yet recent research has suggested that fly relationships have been obscured by multiple episodes of rapid diversification. We provide a phylogenomic estimate of fly relationships based on molecules and morphology from 149 of 157 families, including 30 kb from 14 nuclear loci and complete mitochondrial genomes combined with 371 morphological characters. Multiple analyses show support for traditional groups (Brachycera, Cyclorrhapha, and Schizophora) and corroborate contentious findings, such as the anomalous Deuterophlebiidae as the sister group to all remaining Diptera. Our findings reveal that the closest relatives of the Drosophilidae are highly modified parasites (including the wingless Braulidae) of bees and other insects. Furthermore, we use micro-RNAs to resolve a node with implications for the evolution of embryonic development in Diptera. We demonstrate that flies experienced three episodes of rapid radiation—lower Diptera (220 Ma), lower Brachycera (180 Ma), and Schizophora (65 Ma)—and a number of life history transitions to hematophagy, phytophagy, and parasitism in the history of fly evolution over 260 million y. PMID:21402926
A precedence effect resolves phantom sound source illusions in the parasitoid fly Ormia ochracea
Lee, Norman; Elias, Damian O.; Mason, Andrew C.
2009-01-01
Localizing individual sound sources under reverberant environmental conditions can be a challenge when the original source and its acoustic reflections arrive at the ears simultaneously from different paths that convey ambiguous directional information. The acoustic parasitoid fly Ormia ochracea (Diptera: Tachinidae) relies on a pair of ears exquisitely sensitive to sound direction to localize the 5-kHz tone pulsatile calling song of their host crickets. In nature, flies are expected to encounter a complex sound field with multiple sources and their reflections from acoustic clutter potentially masking temporal information relevant to source recognition and localization. In field experiments, O. ochracea were lured onto a test arena and subjected to small random acoustic asymmetries between 2 simultaneous sources. Most flies successfully localize a single source but some localize a ‘phantom’ source that is a summed effect of both source locations. Such misdirected phonotaxis can be elicited reliably in laboratory experiments that present symmetric acoustic stimulation. By varying onset delay between 2 sources, we test whether hyperacute directional hearing in O. ochracea can function to exploit small time differences to determine source location. Selective localization depends on both the relative timing and location of competing sources. Flies preferred phonotaxis to a forward source. With small onset disparities within a 10-ms temporal window of attention, flies selectively localize the leading source while the lagging source has minimal influence on orientation. These results demonstrate the precedence effect as a mechanism to overcome phantom source illusions that arise from acoustic reflections or competing sources. PMID:19332794
Muijres, Florian T.; Johansson, L. Christoffer; Winter, York; Hedenström, Anders
2011-01-01
Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776
Children's Use of Gesture to Resolve Lexical Ambiguity
ERIC Educational Resources Information Center
Kidd, Evan; Holler, Judith
2009-01-01
We report on a study investigating 3-5-year-old children's use of gesture to resolve lexical ambiguity. Children were told three short stories that contained two homonym senses; for example, "bat" (flying mammal) and "bat" (sports equipment). They were then asked to re-tell these stories to a second experimenter. The data were coded for the means…
Microsaccadic sampling of moving image information provides Drosophila hyperacute vision
Solanki, Narendra; Rien, Diana; Jaciuch, David; Dongre, Sidhartha Anil; Blanchard, Florence; de Polavieja, Gonzalo G; Hardie, Roger C; Takalo, Jouni
2017-01-01
Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes’ optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements. PMID:28870284
The Utilization of Sugars and Other Substances by Drosophila,
1948-03-01
many compounds, including sugars, polysaccharides , polyhydric alcohols, aliphatic acids, etc. 2. In equivalent solutions, ’the order of usefulness of...span’between flies fed on disaccharides and their constituent monosaccharides . 4’. Doubtful sugars can usually be resolved into toxic, reprl- lent...The molaritie.s of the sugar solutions were varied so as to equate the monosaccharides and disaccharides. The longevity of flies fed on di- and
Time resolved EUV spectra from Zpinching capillary discharge plasma
NASA Astrophysics Data System (ADS)
Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad
2015-09-01
We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.
High-Speed Hopping: Time-Resolved Tomographic PIV Measurements of Water Flea Swimming
NASA Astrophysics Data System (ADS)
Murphy, D. W.; Webster, D. R.; Yen, J.
2012-11-01
Daphniids, also known as water fleas, are small, freshwater crustaceans that live in a low-to-intermediate Reynolds number regime. These plankters are equipped with a pair of branched, setae-bearing antennae that they beat to impulsively propel themselves, or ``hop,'' through the water. A typical hop carries the daphniid one body length forward and is followed by a period of sinking. We present time-resolved tomographic PIV measurements of swimming by Daphnia magna. The body kinematics and flow physics of the daphniid hop are quantified. It is shown that the flow generated by each stroking antenna resembles an asymmetric viscous vortex ring. It is proposed that the flow produced by the daphniid hop can be modeled as a double Stokeslet consisting of two impulsively applied point forces separated by the animal width. The flow physics are discussed in the context of other species operating in the same Reynolds number range of 10 to 100: sea butterfly swimming and flight by the smallest flying insects.
Timing matters: sonar call groups facilitate target localization in bats.
Kothari, Ninad B; Wohlgemuth, Melville J; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F
2014-01-01
To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment.
Timing matters: sonar call groups facilitate target localization in bats
Kothari, Ninad B.; Wohlgemuth, Melville J.; Hulgard, Katrine; Surlykke, Annemarie; Moss, Cynthia F.
2014-01-01
To successfully negotiate a cluttered environment, an echolocating bat must control the timing of motor behaviors in response to dynamic sensory information. Here we detail the big brown bat's adaptive temporal control over sonar call production for tracking prey, moving predictably or unpredictably, under different experimental conditions. We studied the adaptive control of vocal-motor behaviors in free-flying big brown bats, Eptesicus fuscus, as they captured tethered and free-flying insects, in open and cluttered environments. We also studied adaptive sonar behavior in bats trained to track moving targets from a resting position. In each of these experiments, bats adjusted the features of their calls to separate target and clutter. Under many task conditions, flying bats produced prominent sonar sound groups identified as clusters of echolocation pulses with relatively stable intervals, surrounded by longer pulse intervals. In experiments where bats tracked approaching targets from a resting position, bats also produced sonar sound groups, and the prevalence of these sonar sound groups increased when motion of the target was unpredictable. We hypothesize that sonar sound groups produced during flight, and the sonar call doublets produced by a bat tracking a target from a resting position, help the animal resolve dynamic target location and represent the echo scene in greater detail. Collectively, our data reveal adaptive temporal control over sonar call production that allows the bat to negotiate a complex and dynamic environment. PMID:24860509
Roberts, Billie J.; Catterall, Carla P.; Eby, Peggy; Kanowski, John
2012-01-01
Flying-foxes (Pteropodidae) are large bats capable of long-distance flight. Many species are threatened; some are considered pests. Effective conservation and management of flying-foxes are constrained by lack of knowledge of their ecology, especially of movement patterns over large spatial scales. Using satellite telemetry, we quantified long-distance movements of the grey-headed flying-fox Pteropus poliocephalus among roost sites in eastern Australia. Fourteen adult males were tracked for 2–40 weeks (mean 25 weeks). Collectively, these individuals utilised 77 roost sites in an area spanning 1,075 km by 128 km. Movement patterns varied greatly between individuals, with some travelling long distances. Five individuals travelled cumulative distances >1,000 km over the study period. Five individuals showed net displacements >300 km during one month, including one movement of 500 km within 48 hours. Seasonal movements were consistent with facultative latitudinal migration in part of the population. Flying-foxes shifted roost sites frequently: 64% of roost visits lasted <5 consecutive days, although some individuals remained at one roost for several months. Modal 2-day distances between consecutive roosts were 21–50 km (mean 45 km, range 3–166 km). Of 13 individuals tracked for >12 weeks, 10 moved >100 km in one or more weeks. Median cumulative displacement distances over 1, 10 and 30 weeks were 0 km, 260 km and 821 km, respectively. On average, over increasing time-periods, one additional roost site was visited for each additional 100 km travelled. These findings explain why culling and relocation attempts have had limited success in resolving human-bat conflicts in Australia. Flying-foxes are highly mobile between camps and regularly travel long distances. Consequently, local control actions are likely to have only temporary effects on local flying-fox populations. Developing alternative methods to manage these conflicts remains an important challenge that should be informed by a better understanding of the species’ movement patterns. PMID:22880021
Fuller, Sawyer Buckminster; Straw, Andrew D.; Peek, Martin Y.; Murray, Richard M.; Dickinson, Michael H.
2014-01-01
Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly’s velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies’ multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae. PMID:24639532
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Christian, Hugh J.; Rust, W. David
1988-01-01
The optical-pulse characteristics of intracloud (IC) and cloud-to-ground (CG) lightning flashes were investigated. The time-resolved optical waveforms at 777.4 nm and electric-field changes produced by lightning flashes were measured aboard a U2 aircraft flying above clouds at the same time that ground-based lightning measurements were carried out. The pulse shapes and intensities of IC and CG flashes, as viewed from above cloud, were found to exhibit remarkably similar waveshapes, radiances, and radiant energy densities. The median radiance at cloud top was found to be about 0.007 W/sq m per sr, and the median energy density about 0.000003 J/sq m per sr.
Biosonar resolving power: echo-acoustic perception of surface structures in the submillimeter range.
Simon, Ralph; Knörnschild, Mirjam; Tschapka, Marco; Schneider, Annkathrin; Passauer, Nadine; Kalko, Elisabeth K V; von Helversen, Otto
2014-01-01
The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be around half a millimeter for bats employing frequency modulated (FM) echolocation calls. Only few studies measured such thresholds with physical objects, most often bats were trained on virtual echoes i.e., echoes generated and played back by a computer; moreover, bats were sitting while they received the stimuli. In these studies differences in structure depth between 200 and 340 μm were found. However, these low thresholds were never verified for free-flying bats and real physical objects. Here, we show behavioral evidence that the echo-acoustic resolving power for surface structures in fact can be as low as measured for computer generated echoes and even lower, sometimes below 100 μm. We found this exceptional fine discrimination ability only when one of the targets showed spectral interferences in the frequency range of the bats' echolocation call while the other target did not. This result indicates that surface structure is likely to be perceived as a spectral quality rather than being perceived strictly in the time domain. Further, it points out that sonar resolving power directly depends on the highest frequency/shortest wavelength of the signal employed.
Biosonar resolving power: echo-acoustic perception of surface structures in the submillimeter range
Simon, Ralph; Knörnschild, Mirjam; Tschapka, Marco; Schneider, Annkathrin; Passauer, Nadine; Kalko, Elisabeth K. V.; von Helversen, Otto
2014-01-01
The minimum distance for which two points still can be separated from each other defines the resolving power of a visual system. In an echo-acoustic context, the resolving power is usually measured as the smallest perceivable distance of two reflecting surfaces on the range axis and is found to be around half a millimeter for bats employing frequency modulated (FM) echolocation calls. Only few studies measured such thresholds with physical objects, most often bats were trained on virtual echoes i.e., echoes generated and played back by a computer; moreover, bats were sitting while they received the stimuli. In these studies differences in structure depth between 200 and 340 μm were found. However, these low thresholds were never verified for free-flying bats and real physical objects. Here, we show behavioral evidence that the echo-acoustic resolving power for surface structures in fact can be as low as measured for computer generated echoes and even lower, sometimes below 100 μm. We found this exceptional fine discrimination ability only when one of the targets showed spectral interferences in the frequency range of the bats′ echolocation call while the other target did not. This result indicates that surface structure is likely to be perceived as a spectral quality rather than being perceived strictly in the time domain. Further, it points out that sonar resolving power directly depends on the highest frequency/shortest wavelength of the signal employed. PMID:24616703
Aw, Wen C.; Dowell, Floyd E.; Ballard, J. William O.
2012-01-01
The aim of the study was to determine the accuracy of near-infrared spectroscopy (NIRS) in determining species, gender, age, and the presence of the common endosymbiont Wolbachia in laboratory-reared Drosophila. NIRS measures the absorption of light by organic molecules. Initially, a calibration model was developed for each study. An independent set with flies not involved in initial cross-validation was then used to validate the accuracy of each calibration model. Flies from the independent sets were correctly classified into Drosophila melanogaster and Drosophila simulans with 94% and 82% accuracy, respectively, whereas flies were successfully classified by gender with accuracy greater than 90%. In the age grading test, correlation plots of the actual and predicted age for males and females of D. melanogaster and D. simulans were shown to be overlapping between the adjacent age groups. It is, however, possible to predict the age of flies as less than 9 days of age with 62–88% accuracy and flies that are equal to or older than 9 days of age with 91–98% accuracy. Finally, we used NIRS to detect the presence of Wolbachia in flies. Flies from the independent sets were successfully identified as infected or not infected with Wolbachia with approximately 90% accuracy. These results suggest that NIRS has the potential to quantify the species, gender, and presence of Wolbachia in fly populations. However, additional optimization of the protocol may be necessary before the technique can reliably estimate fly age. PMID:22973543
How insect flight steering muscles work.
Hedenström, Anders
2014-03-01
Insights into how exactly a fly powers and controls flight have been hindered by the need to unpick the dynamic complexity of the muscles involved. The wingbeats of insects are driven by two antagonistic groups of power muscles and the force is funneled to the wing via a very complex hinge mechanism. The hinge consists of several hardened and articulated cuticle elements called sclerites. This articulation is controlled by a great number of small steering muscles, whose function has been studied by means of kinematics and muscle activity. The details and partly novel function of some of these steering muscles and their tendons have now been revealed in research published in this issue of PLOS Biology. The new study from Graham Taylor and colleagues applies time-resolved X-ray microtomography to obtain a three-dimensional view of the blowfly wingbeat. Asymmetric power output is achieved by differential wingbeat amplitude on the left and right wing, which is mediated by muscular control of the hinge elements to mechanically block the wing stroke and by absorption of work by steering muscles on one of the sides. This new approach permits visualization of the motion of the thorax, wing muscles, and the hinge mechanism. This very promising line of work will help to reveal the complete picture of the flight motor of a fly. It also holds great potential for novel bio-inspired designs of fly-like micro air vehicles.
Antipov, Sergey V; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří
2017-11-01
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research "Molecular Ultrafast Science and Technology," are presented: These include Bohmian dynamics description of the collision of H with H 2 , local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.
Antipov, Sergey V.; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří
2018-01-01
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research “Molecular Ultrafast Science and Technology,” are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase. PMID:29376107
Mavromoustakos, Elena; Clark, Gavin I; Rock, Adam J
2016-01-01
Probability bias regarding threat-relevant outcomes has been demonstrated across anxiety disorders but has not been investigated in flying phobia. Individual temporal orientation (time perspective) may be hypothesised to influence estimates of negative outcomes occurring. The present study investigated whether probability bias could be demonstrated in flying phobia and whether probability estimates of negative flying events was predicted by time perspective. Sixty flying phobic and fifty-five non-flying-phobic adults were recruited to complete an online questionnaire. Participants completed the Flight Anxiety Scale, Probability Scale (measuring perceived probability of flying-negative events, general-negative and general positive events) and the Past-Negative, Future and Present-Hedonistic subscales of the Zimbardo Time Perspective Inventory (variables argued to predict mental travel forward and backward in time). The flying phobic group estimated the probability of flying negative and general negative events occurring as significantly higher than non-flying phobics. Past-Negative scores (positively) and Present-Hedonistic scores (negatively) predicted probability estimates of flying negative events. The Future Orientation subscale did not significantly predict probability estimates. This study is the first to demonstrate probability bias for threat-relevant outcomes in flying phobia. Results suggest that time perspective may influence perceived probability of threat-relevant outcomes but the nature of this relationship remains to be determined.
Mavromoustakos, Elena; Clark, Gavin I.; Rock, Adam J.
2016-01-01
Probability bias regarding threat-relevant outcomes has been demonstrated across anxiety disorders but has not been investigated in flying phobia. Individual temporal orientation (time perspective) may be hypothesised to influence estimates of negative outcomes occurring. The present study investigated whether probability bias could be demonstrated in flying phobia and whether probability estimates of negative flying events was predicted by time perspective. Sixty flying phobic and fifty-five non-flying-phobic adults were recruited to complete an online questionnaire. Participants completed the Flight Anxiety Scale, Probability Scale (measuring perceived probability of flying-negative events, general-negative and general positive events) and the Past-Negative, Future and Present-Hedonistic subscales of the Zimbardo Time Perspective Inventory (variables argued to predict mental travel forward and backward in time). The flying phobic group estimated the probability of flying negative and general negative events occurring as significantly higher than non-flying phobics. Past-Negative scores (positively) and Present-Hedonistic scores (negatively) predicted probability estimates of flying negative events. The Future Orientation subscale did not significantly predict probability estimates. This study is the first to demonstrate probability bias for threat-relevant outcomes in flying phobia. Results suggest that time perspective may influence perceived probability of threat-relevant outcomes but the nature of this relationship remains to be determined. PMID:27557054
Winterton, Shaun L; Wiegmann, Brian M; Schlinger, Evert I
2007-06-01
The first formal analysis of phylogenetic relationships among small-headed flies (Acroceridae) is presented based on DNA sequence data from two ribosomal (16S and 28S) and two protein-encoding genes: carbomoylphosphate synthase (CPS) domain of CAD (i.e., rudimentary locus) and cytochrome oxidase I (COI). DNA sequences from 40 species in 22 genera of Acroceridae (representing all three subfamilies) were compared with outgroup exemplars from Nemestrinidae, Stratiomyidae, Tabanidae, and Xylophagidae. Parsimony and Bayesian simultaneous analyses of the full data set recover a well-resolved and strongly supported hypothesis of phylogenetic relationships for major lineages within the family. Molecular evidence supports the monophyly of traditionally recognised subfamilies Philopotinae and Panopinae, but Acrocerinae are polyphyletic. Panopinae, sometimes considered "primitive" based on morphology and host-use, are always placed in a more derived position in the current study. Furthermore, these data support emerging morphological evidence that the type genus Acrocera Meigen, and its sister genus Sphaerops, are atypical acrocerids, comprising a sister lineage to all other Acroceridae. Based on the phylogeny generated in the simultaneous analysis, historical divergence times were estimated using Bayesian methodology constrained with fossil data. These estimates indicate Acroceridae likely evolved during the late Triassic but did not diversify greatly until the Cretaceous.
NASA Astrophysics Data System (ADS)
Schlicker, Lukas; Doran, Andrew; Schneppmüller, Peter; Gili, Albert; Czasny, Mathias; Penner, Simon; Gurlo, Aleksander
2018-03-01
This work describes a device for time-resolved synchrotron-based in situ and operando X-ray powder diffraction measurements at elevated temperatures under controllable gaseous environments. The respective gaseous sample environment is realized via a gas-tight capillary-in-capillary design, where the gas flow is achieved through an open-end 0.5 mm capillary located inside a 0.7 mm capillary filled with a sample powder. Thermal mass flow controllers provide appropriate gas flows and computer-controlled on-the-fly gas mixing capabilities. The capillary system is centered inside an infrared heated, proportional integral differential-controlled capillary furnace allowing access to temperatures up to 1000 °C.
Gao, Na; Aono, Hikaru; Liu, Hao
2011-02-07
Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes. Copyright © 2010 Elsevier Ltd. All rights reserved.
McGuire, Jimmy A; Cotoras, Darko D; O'Connell, Brendan; Lawalata, Shobi Z S; Wang-Claypool, Cynthia Y; Stubbs, Alexander; Huang, Xiaoting; Wogan, Guinevere O U; Hykin, Sarah M; Reilly, Sean B; Bi, Ke; Riyanto, Awal; Arida, Evy; Smith, Lydia L; Milne, Heather; Streicher, Jeffrey W; Iskandar, Djoko T
2018-01-01
We used Massively Parallel High-Throughput Sequencing to obtain genetic data from a 145-year old holotype specimen of the flying lizard, Draco cristatellus . Obtaining genetic data from this holotype was necessary to resolve an otherwise intractable taxonomic problem involving the status of this species relative to closely related sympatric Draco species that cannot otherwise be distinguished from one another on the basis of museum specimens. Initial analyses suggested that the DNA present in the holotype sample was so degraded as to be unusable for sequencing. However, we used a specialized extraction procedure developed for highly degraded ancient DNA samples and MiSeq shotgun sequencing to obtain just enough low-coverage mitochondrial DNA (721 base pairs) to conclusively resolve the species status of the holotype as well as a second known specimen of this species. The holotype was prepared before the advent of formalin-fixation and therefore was most likely originally fixed with ethanol and never exposed to formalin. Whereas conventional wisdom suggests that formalin-fixed samples should be the most challenging for DNA sequencing, we propose that evaporation during long-term alcohol storage and consequent water-exposure may subject older ethanol-fixed museum specimens to hydrolytic damage. If so, this may pose an even greater challenge for sequencing efforts involving historical samples.
Fly-ear inspired acoustic sensors for gunshot localization
NASA Astrophysics Data System (ADS)
Liu, Haijun; Currano, Luke; Gee, Danny; Yang, Benjamin; Yu, Miao
2009-05-01
The supersensitive ears of the parasitoid fly Ormia ochracea have inspired researchers to develop bio-inspired directional microphone for sound localization. Although the fly ear is optimized for localizing the narrow-band calling song of crickets at 5 kHz, experiments and simulation have shown that it can amplify directional cues for a wide frequency range. In this article, a theoretical investigation is presented to study the use of fly-ear inspired directional microphones for gunshot localization. Using an equivalent 2-DOF model of the fly ear, the time responses of the fly ear structure to a typical shock wave are obtained and the associated time delay is estimated by using cross-correlation. Both near-field and far-field scenarios are considered. The simulation shows that the fly ear can greatly amplify the time delay by ~20 times, which indicates that with an interaural distance of only 1.2 mm the fly ear is able to generate a time delay comparable to that obtained by a conventional microphone pair with a separation as large as 24 mm. Since the parameters of the fly ear structure can also be tuned for muzzle blast and other impulse stimulus, fly-ear inspired acoustic sensors offers great potential for developing portable gunshot localization systems.
NASA Astrophysics Data System (ADS)
Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro
2016-04-01
We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.
Pilot Fatigue and Circadian Desynchronosis
NASA Technical Reports Server (NTRS)
1981-01-01
Pilot fatigue and circadian desynchronosis, its significance to air transport safety, and research approaches, were examined. There is a need for better data on sleep, activity, and other pertinent factors from pilots flying a variety of demanding schedules. Simulation studies of flight crew performance should be utilized to determine the degree of fatigue induced by demanding schedules and to delineate more precisely the factors responsible for performance decrements in flight and to test solutions proposed to resolve problems induced by fatigue and desynchronosis. It was concluded that there is a safety problem of uncertain magnitude due to transmeridian flying and a potential problem due to fatigue associated with various factors found in air transport operations.
Resolving cryptic species complexes of major tephritid pests
Hendrichs, Jorge; Vera, M. Teresa; De Meyer, Marc; Clarke, Anthony R.
2015-01-01
Abstract An FAO/IAEA Co-ordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade” was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex – Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex – Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, Bactrocera papayae, Bactrocera philippinensis and Bactrocera invadens, the latter three species were synonymized with Bactrocera dorsalis. Of the five target pest taxa studied, only Bactrocera dorsalis and Bactrocera carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish Bactrocera dorsalis from Bactrocera carambolae. Ceratitis FAR Complex (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa) – Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, Ceratitis fasciventris (F1 and F2), Ceratitis rosa and a new species related to Ceratitis rosa (R2). The biological limits within Ceratitis fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) – Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level. PMID:26798252
Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.
2010-01-01
Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147
NASA Astrophysics Data System (ADS)
Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja
2017-10-01
The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.
Coarse Grid CFD for underresolved simulation
NASA Astrophysics Data System (ADS)
Class, Andreas G.; Viellieber, Mathias O.; Himmel, Steffen R.
2010-11-01
CFD simulation of the complete reactor core of a nuclear power plant requires exceedingly huge computational resources so that this crude power approach has not been pursued yet. The traditional approach is 1D subchannel analysis employing calibrated transport models. Coarse grid CFD is an attractive alternative technique based on strongly under-resolved CFD and the inviscid Euler equations. Obviously, using inviscid equations and coarse grids does not resolve all the physics requiring additional volumetric source terms modelling viscosity and other sub-grid effects. The source terms are implemented via correlations derived from fully resolved representative simulations which can be tabulated or computed on the fly. The technique is demonstrated for a Carnot diffusor and a wire-wrap fuel assembly [1]. [4pt] [1] Himmel, S.R. phd thesis, Stuttgart University, Germany 2009, http://bibliothek.fzk.de/zb/berichte/FZKA7468.pdf
Performance evaluation of a 64-slice CT system with z-flying focal spot.
Flohr, T; Stierstorfer, K; Raupach, R; Ulzheimer, S; Bruder, H
2004-12-01
The meanwhile established generation of 16-slice CT systems enables routine sub-millimeter imaging at short breath-hold times. Clinical progress in the development of multidetector row CT (MDCT) technology beyond 16 slices can more likely be expected from further improvement in spatial and temporal resolution rather than from a mere increase in the speed of volume coverage. We present an evaluation of a recently introduced 64-slice CT system (SOMATOM Sensation 64, Siemens AG, Forchheim, Germany), which uses a periodic motion of the focal spot in longitudinal direction (z-flying focal spot) to double the number of simultaneously acquired slices. This technique acquires 64 overlapping 0.6 mm slices per rotation. The sampling scheme corresponds to that of a 64 x 0.3 mm detector, with the goal of improved longitudinal resolution and reduced spiral artifacts. After an introduction to the detector design, we discuss the basics of z-flying focal spot technology (z-Sharp). We present phantom and specimen scans for performance evaluation. The measured full width at half maximum (FWHM) of the thinnest spiral slice is 0.65 mm. All spiral slice widths are almost independent of the pitch, with deviations of less than 0.1 mm from the nominal value. Using a high-resolution bar pattern phantom (CATPHAN, Phantom Laboratories, Salem, NY), the longitudinal resolution can be demonstrated to be up to 15 lp/cm at the isocenter independent of the pitch, corresponding to a bar diameter of 0.33 mm. Longitudinal resolution is only slightly degraded for off-center locations. At a distance of 100 mm from the isocenter, 14 lp/cm can be resolved in the z-direction, corresponding to a bar diameter of 0.36 mm. Spiral "windmill" artifacts presenting as hyper- and hypodense structures around osseous edges are effectively reduced by the z-flying focal spot technique. Cardiac scanning benefits from the short gantry rotation time of 0.33 s, providing up to 83 ms temporal resolution with 2-segment ECG-gated reconstruction.
NASA Astrophysics Data System (ADS)
Antoni, Herianto, Jason Ghorman; Anastasia, Evelin; Hardjito, Djwantoro
2017-09-01
Fly ash with high calcium oxide content when used as the base material in geopolymer concrete could cause flash setting or rapid hardening. However, it might increase the compressive strength of geopolymer concrete. This rapid hardening could cause problems if the geopolymer concrete is used on a large scale casting that requires a long setting time. CaO content can be indicated by pH values of the fly ash, while higher pH is correlated with the rapid setting time of fly ash-based geopolymer. This study investigates the addition of acid solution to reduce the initial pH of the fly ash and to prolong the setting time of the mixture. The acids used in this study are hydrochloric acid (HCl), sulfuric acid (H2 SO4), nitric acid (HNO3) and acetic acid (CH3 COOH). It was found that the addition of acid solution in fly ash was able to decrease the initial pH of fly ash, however, the initial setting time of geopolymer was not reduced. It was even faster than that of the control mixture. The acid type causes various influence, depending on the fly ash properties. In addition, the use of acid solution in fly ash reduces the compressive strength of geopolymer mortar. It is concluded that the addition of acid solution cannot prolong the rapid hardening of high calcium fly ash geopolymer, and it causes adverse effect on the compressive strength.
The Geo Quick Ride (GQR) Program: Providing Inexpensive and Frequent Access to Space
NASA Technical Reports Server (NTRS)
Caffrey, Robert; Baniszewski, John
2004-01-01
This paper examines piggybacking NASA, university, and industry payloads on commercial geosynchronous satellites. NASA's RSDO Office awarded Geo Quick Ride (GQR) study contracts in 1998 to spacecraft manufactures to examine the issues with flying secondary payloads. The study results were very promising. Commercial communication satellites have frequent flights and significant unused resources that could be used to fly secondary payloads. However, manifesting secondary payloads on a commercial revenue-generating satellite is a complex problem to solve. The solution requires multiple simultaneous approaches in order to be successful. There are business, economic, technical, schedule, and organizational issues to be resolved. This paper examines the Geo Quick Ride (GQR) concept, discusses the development issues, and describes how this concept solves many of these issues.
14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...
14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...
14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...
14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...
14 CFR 121.517 - Flight time limitations: Other commercial flying: airplanes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Other commercial flying: airplanes. 121.517 Section 121.517 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Supplemental Operations § 121.517 Flight time limitations: Other commercial flying: airplanes. No...
The point-spread function measure of resolution for the 3-D electrical resistivity experiment
NASA Astrophysics Data System (ADS)
Oldenborger, Greg A.; Routh, Partha S.
2009-02-01
The solution appraisal component of the inverse problem involves investigation of the relationship between our estimated model and the actual model. However, full appraisal is difficult for large 3-D problems such as electrical resistivity tomography (ERT). We tackle the appraisal problem for 3-D ERT via the point-spread functions (PSFs) of the linearized resolution matrix. The PSFs represent the impulse response of the inverse solution and quantify our parameter-specific resolving capability. We implement an iterative least-squares solution of the PSF for the ERT experiment, using on-the-fly calculation of the sensitivity via an adjoint integral equation with stored Green's functions and subgrid reduction. For a synthetic example, analysis of individual PSFs demonstrates the truly 3-D character of the resolution. The PSFs for the ERT experiment are Gaussian-like in shape, with directional asymmetry and significant off-diagonal features. Computation of attributes representative of the blurring and localization of the PSF reveal significant spatial dependence of the resolution with some correlation to the electrode infrastructure. Application to a time-lapse ground-water monitoring experiment demonstrates the utility of the PSF for assessing feature discrimination, predicting artefacts and identifying model dependence of resolution. For a judicious selection of model parameters, we analyse the PSFs and their attributes to quantify the case-specific localized resolving capability and its variability over regions of interest. We observe approximate interborehole resolving capability of less than 1-1.5m in the vertical direction and less than 1-2.5m in the horizontal direction. Resolving capability deteriorates significantly outside the electrode infrastructure.
Rotationally resolved colors of the targets of NASA's Lucy mission
NASA Astrophysics Data System (ADS)
Emery, Joshua; Mottola, Stefano; Brown, Mike; Noll, Keith; Binzel, Richard
2018-05-01
We propose rotationally resolved photometry at 3.6 and 4.5 um of 5 Trojan asteroids and one Main Belt asteroid - the targets of NASA's Lucy mission. The proposed Spitzer observations are designed to meet a combination of science goals and mission support objectives. Science goals 1) Search for signatures of volatiles and/or organics on the surfaces. a. This goal includes resolving a discrepancy between previous WISE and Spitzer measurements of Trojans 2) Provide new constraints on the cause of rotational spectral heterogeneity detected on 3548 Eurybates at shorter wavelengths a. Determine whether the heterogeneity (Fig 1) extends to the 3-5 um region 3) Assess the possibility for spectral heterogeneity on the other targets a. This goal will help test the hypothesis of Wong and Brown (2015) that the near-surface interiors of Trojans differ from their surfaces 4) Thermal data at 4.5 um for the Main Belt target Donaldjohanson will refine estimates of size, albedo, and provide the first estimate of thermal inertia Mission support objectives 1) Assess scientifically optimal encounter times (viewing geometries) for the fly-bys a. Characterizing rotational spectral units now will enable the team to choose the most scientifically valuable part of the asteroid to view 2) Gather data to optimize observing parameters for Lucy instruments a. Measuring brightness in the 3 - 5 um region and resolving the discrepancy between WISE and Spitzer will enable better planning of the Lucy spectral observations in this wavelength range 3) The size, albedo, and thermal inertia of Donaldjohanson are fundamental data for planning the encounter with that Main Belt asteroid
Flared landing approach flying qualities. Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Weingarten, Norman C.; Berthe, Charles J., Jr.; Rynaski, Edmund G.; Sarrafian, Shahan K.
1986-01-01
An in-flight research study was conducted utilizing the USAF/Total In-Flight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. A consistent set of data were generated for: determining what kind of command response the pilot prefers/requires in order to flare and land an aircraft with precision, and refining a time history criterion that took into account all the necessary variables and the characteristics that would accurately predict flying qualities. Seven evaluation pilots participated representing NASA Langley, NASA Dryden, Calspan, Boeing, Lockheed, and DFVLR (Braunschweig, Germany). The results of the first part of the study provide guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots prefer in flared landings. The results of the second part provide the flying qualities engineer with a derived flying qualities predictive tool which appears to be highly accurate. This time-domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1%, 60% of the time.
Flared landing approach flying qualities. Volume 1: Experiment design and analysis
NASA Technical Reports Server (NTRS)
Weingarten, Norman C.; Berthe, Charles J., Jr.; Rynaski, Edmund G.; Sarrafian, Shahan K.
1986-01-01
An inflight research study was conducted utilizing the USAF Total Inflight Simulator (TIFS) to investigate longitudinal flying qualities for the flared landing approach phase of flight. The purpose of the experiment was to generate a consistent set of data for: (1) determining what kind of commanded response the pilot prefers in order to flare and land an airplane with precision, and (2) refining a time history criterion that took into account all the necessary variables and their characteristics that would accurately predict flying qualities. The result of the first part provides guidelines to the flight control system designer, using MIL-F-8785-(C) as a guide, that yield the dynamic behavior pilots perfer in flared landings. The results of the second part provides the flying qualities engineer with a newly derived flying qualities predictive tool which appears to be highly accurate. This time domain predictive flying qualities criterion was applied to the flight data as well as six previous flying qualities studies, and the results indicate that the criterion predicted the flying qualities level 81% of the time and the Cooper-Harper pilot rating, within + or - 1, 60% of the time.
NASA Astrophysics Data System (ADS)
Saito, Y.; Fujimoto, M.; Maezawa, K.; Kojima, H.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Tsuda, Y.; Higuchi, K.; Toda, T.
Japan Aerospace Exploration Agency JAXA is currently planning a next generation magnetosphere observation mission called SCOPE cross-Scale COupling in the Plasma universE The main purpose of this mission is to investigate the dynamic behaviors of plasmas in the Terrestrial magnetosphere that range over various time and spatial scales The basic idea of the SCOPE mission is to distinguish temporal and spatial variations of physical processes by putting five formation flying spacecraft into the key region of the Terrestrial magnetosphere The orbit of SCOPE is a highly elliptical orbit with its apogee 30Re from the Earth center SCOPE consists of one 450kg mother satellite and four 90kg daughter satellites flying 5 to 5000km apart from each other The inter-satellite link is used for telemetry command operation as well as ranging to determine the relative orbit of 5 satellites in a small distance which cannot be resolved by the ground-based orbit determination The SCOPE mission is designed such that observational studies from the new perspective that is the cross-scale coupling viewpoint are enabled The orbit is so designed that the spacecraft will visit most of the key regions in the magnetosphere that is the bow shock the magnetospheric boundary the inner-magnetosphere and the near-Earth magnetotail In order to realize the science objectives high performance Plasma Particle sensors DC AC Magnetic and Electric field sensors and Wave Particle Correlator are planned to be onboard the SCOPE satellite All the SCOPE satellites have two 5m spin-axis antenna
A Study about the Taboo of Rotation Timing for the Flapping Wing Flight
NASA Astrophysics Data System (ADS)
Wang, An-Bang; Hsueh, Chia-Hsien; Chen, Shih-Shen
2004-11-01
Influence of rotation timing for flapping wing flight on the flying lift has been experimentally investigated in this study. Since the insects cannot extend and shrink their wings like birds, the rotation timing of wings becomes the major influential factor to affect the flying lift of the flapping wing flight. The results reveal that rotation timing has significant influence on the flying lift. The averaged flying lift increases for high rotation wing velocity. Based on the comparisons of flying lift, too late A-rotation (connecting from wing downward motion to upward one) is the most serious taboo for the motion design of the micro air vehicles with flapping wings. Too late B-rotation (connection from upward motion to downward one) should also be avoided.
Baker, Richard H; Narechania, Apurva; Johns, Philip M; Wilkinson, Gerald S
2012-08-19
Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.
Baker, Richard H.; Narechania, Apurva; Johns, Philip M.; Wilkinson, Gerald S.
2012-01-01
Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict. PMID:22777023
Haemoproteus iwa in Great Frigatebirds (Fregata minor) in the Islands of the Western Indian Ocean
Bastien, Matthieu; Jaeger, Audrey; Le Corre, Matthieu; Tortosa, Pablo; Lebarbenchon, Camille
2014-01-01
Blood parasites of the sub-genus Haemoproteus have been reported in seabirds, in particular in species in the Suliformes order. These parasites are transmitted by hippoboscid flies of the genus Olfersia; strong specificity has been suggested between the vector and its vertebrate host. We investigated the prevalence of Haemoproteus infection in Suliformes and hippoboscid flies in two oceanic islands of the Western Indian Ocean: Europa and Tromelin. In total, 209 blood samples were collected from great frigatebirds (Fregata minor), masked boobies (Sula dactylatra) and red-footed boobies (Sula sula). Forty-one hippoboscid flies were also collected from birds. Seventeen frigatebirds and one fly collected on Europa tested positive for the presence of Haemoproteus parasites by polymerase chain reaction. Phylogenetic analyses based on partial sequences of the Cytochrome b gene showed that parasites were closely related to Haemoproteus iwa reported from frigatebirds in the Pacific Ocean and in the Caribbean. Plasmodium was also detected in a frigatebird on Europa; however, its placement on the phylogenetic tree could not be resolved. We provide strong support for transmission of blood parasites in seabirds in the Western Indian Ocean and suggest that migrations between the Pacific and the Indian oceans could favor the large-scale distribution of Haemoproteus iwa in frigatebird populations. PMID:24810172
Du, Ke; Yuen, Wangki; Wang, Wei; Rood, Mark J; Varma, Ravi M; Hashmonay, Ram A; Kim, Byung J; Kemme, Michael R
2011-01-15
Quantification of emissions of fugitive particulate matter (PM) into the atmosphere from military training operations is of interest by the United States Department of Defense. A new range-resolved optical remote sensing (ORS) method was developed to quantify fugitive PM emissions from puff sources (i.e., artillery back blasts), ground-level mobile sources (i.e., movement of tracked vehicles), and elevated mobile sources (i.e., airborne helicopters) in desert areas that are prone to generating fugitive dust plumes. Real-time, in situ mass concentration profiles for PM mass with particle diameters <10 μm (PM(10)) and <2.5 μm (PM(2.5)) were obtained across the dust plumes that were generated by these activities with this new method. Back blasts caused during artillery firing were characterized as a stationary short-term puff source whose plumes typically dispersed to <10 m above the ground with durations of 10-30 s. Fugitive PM emissions caused by artillery back blasts were related to the zone charge and ranged from 51 to 463 g PM/firing for PM(10) and 9 to 176 g PM/firing for PM(2.5). Movement of tracked vehicles and flying helicopters was characterized as mobile continuous sources whose plumes typically dispersed 30-50 m above the ground with durations of 100-200 s. Fugitive PM emissions caused by moving tracked vehicles ranged from 8.3 to 72.5 kg PM/km for PM(10) and 1.1 to 17.2 kg PM/km for PM(2.5), and there was no obvious correlation between PM emission and vehicle speed. The emission factor for the helicopter flying at 3 m above the ground ranged from 14.5 to 114.1 kg PM/km for PM(10) and 5.0 to 39.5 kg PM/km for PM(2.5), depending on the velocity of the helicopter and type of soil it flies over. Fugitive PM emissions by an airborne helicopter were correlated with helicopter speed for a particular soil type. The results from this range-resolved ORS method were also compared with the data obtained with another path-integrated ORS method and a Flux Tower method.
NASA Astrophysics Data System (ADS)
Braun, A.; Parvar, K.; Burns, M.
2017-12-01
Uninhabited Aerial Vehicles (UAV) provide the operational flexibility and ease of use which makes them ideal tools for low altitude and high resolution magnetic surveys. Being able to fly at lower altitudes compared to manned aircrafts provides the proximity to the target needed to increase the sensitivity to detect smaller and less magnetic targets. Considering the same sensor specifications, this further increases the signal to noise ratio. However, to increase spatial resolution, a tighter line spacing is needed which increases the survey time. We describe a case study in the Seabee mine in Saskatchewan, Canada. Using Pioneer Exploration Ltd. UAV-MAG™ technology, we emphasize the importance of altitude and line spacing in magnetic surveys with UAVs in order to resolve smaller and less magnetic targets compared to conventional manned airborne magnetic surveys. Mapping lithological or stratigraphic changes along the target structure requires an existing gradient in magnetic susceptibility. Mostly, this criterium is either not presented or the is weaker than the sensor's signal to noise ratio at a certain flying altitude. However, the folded structure in the study region shows high susceptibility changes in rock formations in high altitude regional magnetic surveys. In order to confirm that there are no missed structural elements in the target region, a UAV magnetic survey using a GEM Systems GSMP-35A potassium vapor magnetometer on Pioneer Exploration's UAV-MAG™ platform was conducted to exploit the structure in detail and compare the gain in spatial resolution from flying at lower altitude and with denser flight lines. The survey was conducted at 25 meters above ground level (AGL). Line spacing was set to 15 meters and a total of 550 kilometers was covered using an autonomous UAV. The collected data were compared to the regional airborne data which were collected at 150 meters AGL with a line spacing of 100 meters. Comparison revealed an anticline with plunge in the northeastern side of the gird. The analysis of the magnetic data, both total magnetic intensity and gradients, reveals that the UAV survey is able to resolve much smaller structures than the manned airborne survey. These details also match observations made in previous geological mapping missions.
Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly
Klopsch, Christian; Kuhlmann, Hendrik C.; Barth, Friedrich G.
2012-01-01
The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I–III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little fluctuation (0.013 ± 0.006 m s−1) and a strength that increases nearly exponentially with time (maximum: 0.164 ± 0.051 m s−1 s.d.). The spider detects this flow while the fly is still 38.4 ± 5.6 mm away. The fluctuation of the airflow above the sensors increases linearly up to 0.037 m s−1 with the fly's altitude. Differences in the time of arrival and intensity of the fly signal at different legs probably inform the spider about the direction to the prey. (II) Phase II abruptly follows phase I with a much higher degree of fluctuation (fluctuation amplitudes: 0.114 ± 0.050 m s−1). It starts when the fly is directly above the sensor and corresponds to the time-dependent flow in the wake below and behind the fly. Its onset indicates to the spider that its prey is now within reach and triggers its jump. The spider derives information on the fly's position from the airflow characteristics, enabling it to properly time its jump. The horizontal velocity of the approaching fly is reflected by the time of arrival differences (ranging from 0.038 to 0.108 s) of the flow at different legs and the exponential velocity growth rate (16–79 s−1) during phase I. (III) The air flow velocity decays again after the fly has passed the spider. PMID:22572032
Winkler, Isaac S; Blaschke, Jeremy D; Davis, Daniel J; Stireman, John O; O'Hara, James E; Cerretti, Pierfilippo; Moulton, John K
2015-07-01
Molecular phylogenetic studies at all taxonomic levels often infer rapid radiation events based on short, poorly resolved internodes. While such rapid episodes of diversification are an important and widespread evolutionary phenomenon, much of this poor phylogenetic resolution may be attributed to the continuing widespread use of "traditional" markers (mitochondrial, ribosomal, and some nuclear protein-coding genes) that are often poorly suited to resolve difficult, higher-level phylogenetic problems. Here we reconstruct phylogenetic relationships among a representative set of taxa of the parasitoid fly family Tachinidae and related outgroups of the superfamily Oestroidea. The Tachinidae are one of the most species rich, yet evolutionarily recent families of Diptera, providing an ideal case study for examining the differential performance of loci in resolving phylogenetic relationships and the benefits of adding more loci to phylogenetic analyses. We assess the phylogenetic utility of nine genes including both traditional genes (e.g., CO1 mtDNA, 28S rDNA) and nuclear protein-coding genes newly developed for phylogenetic analysis. Our phylogenetic findings, based on a limited set of taxa, include: a close relationship between Tachinidae and the calliphorid subfamily Polleninae, monophyly of Tachinidae and the subfamilies Exoristinae and Dexiinae, subfamily groupings of Dexiinae+Phasiinae and Tachininae+Exoristinae, and robust phylogenetic placement of the somewhat enigmatic genera Strongygaster, Euthera, and Ceracia. In contrast to poor resolution and phylogenetic incongruence of "traditional genes," we find that a more selective set of highly informative genes is able to more precisely identify regions of the phylogeny that experienced rapid radiation of lineages, while more accurately depicting their phylogenetic context. Although much expanded taxon sampling is necessary to effectively assess the monophyly of and relationships among major tachinid lineages and their relatives, we show that a small number of well-chosen nuclear protein-coding genes can successfully resolve even difficult phylogenetic problems. Copyright © 2015 Elsevier Inc. All rights reserved.
Noninvasive analysis of microbiome dynamics in the fruit fly Drosophila melanogaster.
Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F; Roeder, Thomas
2013-11-01
The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.
Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J.; Bezner-Kerr, Wayne; Guglielmo, Christopher G.; Kopp, Gregory A.; Gurka, Roi
2013-01-01
Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight. PMID:24278243
Interstellar Medium Absorption Profile Spectrograph (IMAPS)
NASA Technical Reports Server (NTRS)
Jenkins, E. B.
1985-01-01
The design and fabrication of an objective-grating echelle spectrograph to fly on sounding rockets and record spectra of stars from approximately 920 to 1120A with a resolving power lambda/delta lambda = 200,000 is discussed. The scientific purpose of the program is to observe, with ten times better velocity resolution than before, the plentiful absorption lines in this spectral region produced by atoms, ions and molecules in the interstellar medium. In addition, an important technical goal is to develop and flight-quality a new ultraviolet, photon-counting image sensor which has a windowless, opaque photocathode and a CCD bombarded directly by the accelerated photoelectrons. Except for some initial difficulties with the performance of CCDs, the development of the payload instrument is relatively straightforward and our overall design goals are satisfied. The first flight occurred in late 1984, but no data were obtained because of an inrush of air degraded the instrument's vacuum and caused the detector's high voltage to arc. A second flight in early 1985 was a complete success and obtained a spectrum of pi Sco. Data from this mission are currently being reduced; quick-look versions of the spectra indicate that excellent results will be obtained. Currently, the payload is being reconfigured to fly on a Spartan mission in 1988.
NASA Astrophysics Data System (ADS)
Johansson, L. Christoffer; Håkansson, Jonas; Jakobsen, Lasse; Hedenström, Anders
2016-04-01
Large ears enhance perception of echolocation and prey generated sounds in bats. However, external ears likely impair aerodynamic performance of bats compared to birds. But large ears may generate lift on their own, mitigating the negative effects. We studied flying brown long-eared bats, using high resolution, time resolved particle image velocimetry, to determine the aerodynamics of flying with large ears. We show that the ears and body generate lift at medium to cruising speeds (3-5 m/s), but at the cost of an interaction with the wing root vortices, likely reducing inner wing performance. We also propose that the bats use a novel wing pitch mechanism at the end of the upstroke generating thrust at low speeds, which should provide effective pitch and yaw control. In addition, the wing tip vortices show a distinct spiraling pattern. The tip vortex of the previous wingbeat remains into the next wingbeat and rotates together with a newly formed tip vortex. Several smaller vortices, related to changes in circulation around the wing also spiral the tip vortex. Our results thus show a new level of complexity in bat wakes and suggest large eared bats are less aerodynamically limited than previous wake studies have suggested.
Ben-Gida, Hadar; Kirchhefer, Adam; Taylor, Zachary J; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Kopp, Gregory A; Gurka, Roi
2013-01-01
Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV) in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.
Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft
NASA Technical Reports Server (NTRS)
Hogge, Edward F.; Bole, Brian M.; Vazquez, Sixto L.; Celaya, Jose R.; Strom, Thomas H.; Hill, Boyd L.; Smalling, Kyle M.; Quach, Cuong C.
2015-01-01
This paper addresses the problem of building trust in online predictions of a battery powered aircraft's remaining available flying time. A set of ground tests is described that make use of a small unmanned aerial vehicle to verify the performance of remaining flying time predictions. The algorithm verification procedure described here uses a fully functional vehicle that is restrained to a platform for repeated run-to-functional-failure experiments. The vehicle under test is commanded to follow a predefined propeller RPM profile in order to create battery demand profiles similar to those expected in flight. The fully integrated aircraft is repeatedly operated until the charge stored in powertrain batteries falls below a specified lower-limit. The time at which the lower-limit on battery charge is crossed is then used to measure the accuracy of remaining flying time predictions. Accuracy requirements are considered in this paper for an alarm that warns operators when remaining flying time is estimated to fall below a specified threshold.
Formation Algorithms and Simulation Testbed
NASA Technical Reports Server (NTRS)
Wette, Matthew; Sohl, Garett; Scharf, Daniel; Benowitz, Edward
2004-01-01
Formation flying for spacecraft is a rapidly developing field that will enable a new era of space science. For one of its missions, the Terrestrial Planet Finder (TPF) project has selected a formation flying interferometer design to detect earth-like planets orbiting distant stars. In order to advance technology needed for the TPF formation flying interferometer, the TPF project has been developing a distributed real-time testbed to demonstrate end-to-end operation of formation flying with TPF-like functionality and precision. This is the Formation Algorithms and Simulation Testbed (FAST) . This FAST was conceived to bring out issues in timing, data fusion, inter-spacecraft communication, inter-spacecraft sensing and system-wide formation robustness. In this paper we describe the FAST and show results from a two-spacecraft formation scenario. The two-spacecraft simulation is the first time that precision end-to-end formation flying operation has been demonstrated in a distributed real-time simulation environment.
Effect of chemical admixtures on properties of high-calcium fly ash geopolymer
NASA Astrophysics Data System (ADS)
Rattanasak, Ubolluk; Pankhet, Kanokwan; Chindaprasirt, Prinya
2011-06-01
Owing to the high viscosity of sodium silicate solution, fly ash geopolymer has the problems of low workability and rapid setting time. Therefore, the effect of chemical admixtures on the properties of fly ash geopolymer was studied to overcome the rapid set of the geopolymer in this paper. High-calcium fly ash and alkaline solution were used as starting materials to synthesize the geopolymer. Calcium chloride, calcium sulfate, sodium sulfate, and sucrose at dosages of 1wt% and 2wt% of fly ash were selected as admixtures based on concrete knowledge to improve the properties of the geopolymer. The setting time, compressive strength, and degree of reaction were recorded, and the microstructure was examined. The results show that calcium chloride significantly shortens both the initial and final setting times of the geopolymer paste. In addition, sucrose also delays the final setting time significantly. The degrees of reaction of fly ash in the geopolymer paste with the admixtures are all higher than those of the control paste. This contributes to the obvious increases in compressive strength.
NASA Technical Reports Server (NTRS)
Hogge, Edward F.; Kulkarni, Chetan S.; Vazquez, Sixto L.; Smalling, Kyle M.; Strom, Thomas H.; Hill, Boyd L.; Quach, Cuong C.
2017-01-01
This paper addresses the problem of building trust in the online prediction of a battery powered aircraft's remaining flying time. A series of flight tests is described that make use of a small electric powered unmanned aerial vehicle (eUAV) to verify the performance of the remaining flying time prediction algorithm. The estimate of remaining flying time is used to activate an alarm when the predicted remaining time is two minutes. This notifies the pilot to transition to the landing phase of the flight. A second alarm is activated when the battery charge falls below a specified limit threshold. This threshold is the point at which the battery energy reserve would no longer safely support two repeated aborted landing attempts. During the test series, the motor system is operated with the same predefined timed airspeed profile for each test. To test the robustness of the prediction, half of the tests were performed with, and half were performed without, a simulated powertrain fault. The pilot remotely engages a resistor bank at a specified time during the test flight to simulate a partial powertrain fault. The flying time prediction system is agnostic of the pilot's activation of the fault and must adapt to the vehicle's state. The time at which the limit threshold on battery charge is reached is then used to measure the accuracy of the remaining flying time predictions. Accuracy requirements for the alarms are considered and the results discussed.
2008-05-01
Autogenic training exercise; A treatment for airsickness in military pilots. International Journal of Aviation Psychology, 2005; 15(4): 395-412...flying during training , humanitarian, and operational missions can be extremely taxing. Flight surgeons often observe or hear of changes in the...health care is to ease and resolve the emotional or behavioral difficulties of an aviator while attempting to preserve a highly trained USAF asset
Arredondo, José; Ruiz, Lía; Hernández, Emilio; Montoya, Pablo; Díaz-Fleischer, Francisco
2016-04-01
The use of genetic sexing strain (GSS) insects in the sterile insect technique (SIT) makes necessary the revision of quality parameters of some stressful steps used during the packing process for aerial release because of possible differences in tolerance between fly strains. Here, we determined the effect of three periods of hypoxia (12, 24, and 36 h at pupal stage), three cage densities (1.0, 1.3, and 1.5 flies/cm2), two different foods (protein/sugar (1/24) and Mubarqui), and three chilling times (20 min [control], 90, and 180 min) on the quality parameters of flies of two Anastrepha ludens (Loew) strains (bisexual and GSS Tapachula-7). In general, the response to stressful conditions of both fly strains was qualitatively equivalent but quantitatively different, as flies of both strains responded equally to the stressful factors; however, flies of Tapachula-7 exhibited lower quality parameters than the control flies. Thus, hypoxia affected the flying ability but not the emergence or longevity of flies. The food type affected the adult weight; protein/sugar produced heavier flies that also survived longer and had a greater mating propensity. Flies under the lowest density were better fliers that those at the other two densities. Increasing chilling time reduced flight ability but not longevity or mating propensity. The implications of these findings for the use of A. ludens GSS in SIT programs are discussed herein.
The Effects of Bottom Ash on Setting Time and Compressive Strength of Fly Ash Geopolymer Paste
NASA Astrophysics Data System (ADS)
Affandhie, B. A.; Kurniasari, P. T.; Darmawan, M. S.; Subekti, S.; Wibowo, B.; Husin, N. A.; Bayuaji, R.; Irawan, S.
2017-11-01
This research is to find out the contribution of waste energy utilization of fly ash and bottom ash coal as binding agent of geopolymer concrete. This research methodology uses experimental approach in laboratory by making cylinder paste test object with dimension diameter of 2.5 cm x height 5 cm with some combination of fly ash and bottom ash mix with time setting test (ASTM C 191-04a) and compressive strength (ASTM C 39-04a). The research concludes that the effect of bottom ash on fly ash-based geopolymer paste shows good results in setting time and compressive strength.
Dose-dependent fate of GFP-E. coli in the alimentary canal of adult house flies
Naveen, Kumar H.V.; Nayduch, Dana
2015-01-01
Adult house flies (Diptera: Muscidae; Musca domestica L.) can disseminate bacteria from microbe-rich substrates to areas where humans and domesticated animals reside. Because bacterial abundance fluctuates widely across substrates, flies encounter and ingest varying amounts of bacteria. We investigated the dose-dependent survival of bacteria in house flies. Flies were fed four different “doses” of GFP-expressing Escherichia coli (GFP E. coli; very low, low, medium, high, defined in text) and survival was determined at 1, 4, 10 and 22 h post-ingestion via culture and epiflourescent microscopy. Over 22 h, decline of GFP E. coli was significant for all treatments (P<0.04) except the very low dose (P=0.235). Change in survival (Δ S) did not differ between flies fed low and very low doses of bacteria across all time points, although both treatments differed from flies fed high and medium bacterial doses at several time points. At 4, 10 and 22 h, GFP E. coli Δ S significantly differed between medium and high dose-fed flies. A threshold dose, above which bacteria are detected and destroyed by house flies, may exist and likely is immune-mediated. Understanding dose-dependent bacterial survival in flies can help in predicting bacteria transmission potential. PMID:26843509
USDA-ARS?s Scientific Manuscript database
The acquisition of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) by the stable fly (Stomoxys calcitrans L.) was assessed through a bloodmeal, and virus persistence in the digestive organs of the fly using virus isolation and real-time PCR. Stable flies were fed blood containing live vi...
NASA Astrophysics Data System (ADS)
Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.
2014-03-01
In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.
Grasping rigid objects in zero-g
NASA Astrophysics Data System (ADS)
Anderson, Greg D.
1993-12-01
The extra vehicular activity helper/retriever (EVAHR) is a prototype for an autonomous free- flying robotic astronaut helper. The ability to grasp a moving object is a fundamental skill required for any autonomous free-flyer. This paper discusses an algorithm that couples resolved acceleration control with potential field based obstacle avoidance to enable a manipulator to track and capture a rigid object in (imperfect) zero-g while avoiding joint limits, singular configurations, and unintentional impacts between the manipulator and the environment.
Spline-Based Parameter Estimation Techniques for Two-Dimensional Convection and Diffusion Equations.
1986-07-01
brassicae ) were related at a point adjacent to and downwind from a cabbage ( brassica ) crop (9]. Although Wright [161 had rejected anemotaxis as a...tunnel experiments by Coaker and Smith [71 indicated that female E. brassicae do fly upwind in the presence of brassica odor. To resolve this issue Hawkes...sought to calculate dispersal rates of E. Brassicae released from a point exposed to brassica odor. When recapture data suggested random dispersal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.
2016-08-11
Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
NASA Astrophysics Data System (ADS)
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; Glover, William J.; Mori, Toshifumi; Schultz, Thomas; Schuurman, Michael S.; Martínez, Todd J.; Stolow, Albert
2018-04-01
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1Bu (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us to report the direct observation of the famously elusive S1(21Ag) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 11Bu and 21Ag states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S2(11Bu) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1Bu surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. In Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1B u (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans’ correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us tomore » report the direct observation of the famously elusive S 1(2 1A g) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 1 1B u and 2 1A g states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S 2(1 1B u) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1B u surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. Lastly, in Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.« less
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; ...
2018-04-27
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1B u (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans’ correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us tomore » report the direct observation of the famously elusive S 1(2 1A g) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 1 1B u and 2 1A g states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S 2(1 1B u) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1B u surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. Lastly, in Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.« less
Herforth, R. S.
1978-01-01
A strain of Drosophila melanogaster bearing the mutant gene ebony has been found to slow the development of symptoms (carbon dioxide sensitivity) in adult flies inoculated with sigma virus, a member of the rhabdovirus group. This inhibition is made evident by comparing mean incubation times of the virus in ebony and wild-type (Oregon) flies. The increase in mean incubation time in ebony flies has ranged from about 3 to 8 days, depending on the virus strain, amount of virus injected, and the age of the flies at the time of inoculation. This delay in development of symptoms appears to be due to a dominant autosomal gene, although further work is needed to confirm this. When accumulation of infectious virus after inoculation is compared in ebony and Oregon flies, there seems to be no inhibition of multiplication in ebony at the level of the entire fly. The relationship of this work to current theories on the mechanism of symptom production by sigma virus is discussed. PMID:17248809
Time flies when we read taboo words.
Tipples, Jason
2010-08-01
Does time fly or stand still when one is reading highly arousing words? A temporal bisection task was used to test the effects of sexual taboo words on time perception. Forty participants judged the duration of sexual taboo, high-arousal negative, high-arousal positive, low-arousal negative, low-arousal positive, and category-related neutral words. The results support the hypothesis that sexual taboo stimuli receive more attention and reduce the perceived time that has passed ("time flies")-the duration of high sexual taboo words was underestimated for taboo-word stimuli relative to all other word types. The findings are discussed in the context of internal clock theories of time perception.
3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila
NASA Astrophysics Data System (ADS)
Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong
2016-09-01
Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.
A manipulator arm for zero-g simulations
NASA Technical Reports Server (NTRS)
Brodie, S. B.; Grant, C.; Lazar, J. J.
1975-01-01
A 12-ft counterbalanced Slave Manipulator Arm (SMA) was designed and fabricated to be used for resolving the questions of operational applications, capabilities, and limitations for such remote manned systems as the Payload Deployment and Retrieval Mechanism (PDRM) for the shuttle, the Free-Flying Teleoperator System, the Advanced Space Tug, and Planetary Rovers. As a developmental tool for the shuttle manipulator system (or PDRM), the SMA represents an approximate one-quarter scale working model for simulating and demonstrating payload handling, docking assistance, and satellite servicing. For the Free-Flying Teleoperator System and the Advanced Tug, the SMA provides a near full-scale developmental tool for satellite servicing, docking, and deployment/retrieval procedures, techniques, and support equipment requirements. For the Planetary Rovers, it provides an oversize developmental tool for sample handling and soil mechanics investigations. The design of the SMA was based on concepts developed for a 40-ft NASA technology arm to be used for zero-g shuttle manipulator simulations.
The selective digital integrator: A new device for modulated polarization spectroscopy
NASA Astrophysics Data System (ADS)
Vrancic, Aljosa
1998-12-01
A new device, a selective digital integrator (SDI), for the acquisition of modulated polarization spectroscopy (MPS) signals is described. Special attention is given to the accurate measurement of very small (AC component of interest <10-3 x DC component), rapidly modulated (~50 kHz) signals at or below noise levels. Various data acquisition methods and problems associated with the collection of modulated signals are discussed. The SDI solves most of these problems and has the following advantages: it provides the average-time resolved profile of a modulated signal; it eliminates errors if the modulation is not sinusoidal; it enables separate measurements of the various phases of the signal modulation cycle; it permits simultaneous measurement of absorption, circular dichroism (CD) and linear dichroism (LD) spectra; it facilitates 3-D absorbance measurements; it has a wide gain-switching-free dynamic range (10 orders of magnitude or more); it offers a constant S/N ratio mode of operation; it eliminates the need for photomultiplier voltage feedback, and it has faster scanning speeds. The time-resolution, selectivity, wide dynamic range, and low-overhead on-the-fly data processing are useful for other modulated spectroscopy (MS) and non-MS experiments such as pulse height distribution and time-resolved pulse counting measurements. The advantages of the MPS-SDI method are tested on the first Rydberg electronic transitions of (+)-3- methylcyclopentanone. The experimental results validate the predicted SDI capabilities. However, they also point to two difficulties that had not been noted previously: the presence of LD in a gaseous sample and a pressure- dependence of the relative peak heights of the CD spectrum. Models for these anomalies are proposed. The presence of the oscillatory LD (but not an LD background) is explained with a sample cell model based on the observed polarization-dependent time-resolved profiles of transmitted light intensity. To obtain expressions for these intensities, a theoretical background, which provides a new approach to the treatment of light/matter interaction, is included as an Appendix. To explain the second anomaly, present only at high optical densities, a model based on the presence of scattered light is introduced and verified. The mode of correction for the scattering problem is outlined.
Holden, Daniel; Socha, John J; Cardwell, Nicholas D; Vlachos, Pavlos P
2014-02-01
A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore-aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snake's cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snake's cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000-15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snake's shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack, but more complex models that account for 3D effects and the dynamic movements of aerial undulation are required to fully understand the gliding performance of flying snakes.
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
Ozturk, Hande; Yan, Hanfei; He, Yan; ...
2018-05-09
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Multi-slice ptychography with large numerical aperture multilayer Laue lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Hande; Yan, Hanfei; He, Yan
Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less
Feeding and attraction of non-target flies to spinosad-based fruit fly bait.
Wang, Xin-Geng; Messing, Russell H
2006-10-01
A spinosad-based fruit fly bait, GF-120, has recently become a primary tool for area-wide suppression or eradication of pest tephritid fruit flies. The present study assessed the attraction and feeding of five non-target fly species to GF-120 in Hawaii. These non-target flies include three beneficial tephritid species [Eutreta xanthochaeta (Aldrich), Tetreuaresta obscuriventris (Loew), Ensina sonchi (L.)] introduced for weed biological control, an endemic Hawaiian tephritid [Trupanea dubautiae (Bryan)] (all Diptera: Tephritidae) and the cosmopolitan Drosophila melanogaster Meigen (Diptera: Drosophilidae). All five non-target fly species were susceptible to GF-120, as was the target pest Mediterranean fruit fly Ceratitis capitata (Wiedemann). Feeding on, or even brief tasting of, GF-120 killed all fly species within 2 h. When individual flies were provided with a choice of GF-120 or honey solution, there was no difference in the frequency of first food encounter by E. xanthochaeta, D. melanogaster or C. capitata. The other three non-target species approached honey more often than GF-120 in their first food encounter. Feeding times on GF-120 and honey were not significantly different for D. melanogaster and C. capitata, while the other four non-target species fed longer on honey than on GF-120. There was no significant difference in feeding time on honey versus GF-120 between males and females of each species. These results suggest that area-wide treatment using GF-120 for the purpose of eradication of pest fruit flies has potential negative impacts on these and other non-target fly species in Hawaii.
Garrigue, D; Godier, A; Glacet, A; Labreuche, J; Kipnis, E; Paris, C; Duhamel, A; Resch, E; Bauters, A; Machuron, F; Renom, P; Goldstein, P; Tavernier, B; Sailliol, A; Susen, S
2018-03-01
Essentials An immediate supply of plasma in case of trauma-induced coagulopathy is required. The Traucc trial compared French Lyophilised Plasma (FLyP) and Fresh Frozen Plasma (FFP). FLyP achieved higher fibrinogen concentrations compared with FFP. FLyP led to a more rapid coagulopathy improvement than FFP. Background Guidelines recommend beginning hemostatic resuscitation immediately in trauma patients. We aimed to investigate if French lyophilized plasma (FLyP) was more effective than fresh frozen plasma (FFP) for the initial management of trauma-induced coagulopathy. Methods In an open-label, phase 3, randomized trial (NCT02750150), we enrolled adult trauma patients requiring an emergency pack of 4 plasma units within 6 h of injury. We randomly assigned patients to receive 4-FLyP units or 4-FFP units. The primary endpoint was fibrinogen concentration at 45 min after randomization. Secondary outcomes included time to transfusion, changes in hemostatic parameters at different time-points, blood product requirements and 30-day in-hospital mortality. Results Forty-eight patients were randomized (FLyP, n = 24; FFP, n = 24). FLyP reduced the time from randomization to transfusion of first plasma unit compared with FFP (median[IQR],14[5-30] vs. 77[64-90] min). FLyP achieved a higher fibrinogen concentration 45 min after randomization compared with FFP (baseline-adjusted mean difference, 0.29 g L -1 ; 95% confidence interval [CI], 0.08-0.49) and a greater improvement in prothrombin time ratio, factor V and factor II. The between-group differences in coagulation parameters remained significant at 6 h. FLyP reduced fibrinogen concentrate requirements. Thirty-day in-hospital mortality rate was 22% with FLyP and 29% with FFP. Conclusion FLyP led to a more rapid, pronounced and extended increase in fibrinogen concentrations and coagulopathy improvement compared with FFP in the initial management of trauma patients. FLyP represents an attractive option for trauma management, especially when facing logistical issues such as combat casualties or mass casualties related to terror attacks or disasters. © 2017 International Society on Thrombosis and Haemostasis.
Analysis of Interactive Conflict Resolution Tool Usage in a Mixed Equipage Environment
NASA Technical Reports Server (NTRS)
Homola, Jeffrey; Morey, Susan; Cabrall, Christopher; Martin, Lynne; Mercer, Joey; Prevot, Thomas
2013-01-01
A human-in-the-loop simulation was conducted that examined separation assurance concepts in varying levels of traffic density with mixtures of aircraft equipage and automation. This paper's analysis focuses on one of the experimental conditions in which traffic levels were approximately fifty percent higher than today, and approximately fifty percent of the traffic within the test area were equipped with data communications (data comm) capabilities. The other fifty percent of the aircraft required control by voice much like today. Within this environment, the air traffic controller participants were provided access to tools and automation designed to support the primary task of separation assurance that are currently unavailable. Two tools were selected for analysis in this paper: 1) a pre-probed altitude fly-out menu that provided instant feedback of conflict probe results for a range of altitudes, and 2) an interactive auto resolver that provided on-demand access to an automation-generated conflict resolution trajectory. Although encouraged, use of the support tools was not required; the participants were free to use the tools as they saw fit, and they were also free to accept, reject, or modify the resolutions offered by the automation. This mode of interaction provided a unique opportunity to examine exactly when and how these tools were used, as well as how acceptable the resolutions were. Results showed that the participants used the pre-probed altitude fly-out menu in 14% of conflict cases and preferred to use it in a strategic timeframe on data comm equipped and level flight aircraft. The interactive auto resolver was also used in a primarily strategic timeframe on 22% of conflicts and that their preference was to use it on conflicts involving data comm equipped aircraft as well. Of the 258 resolutions displayed, 46% were implemented and 54% were not. The auto resolver was rated highly by participants in terms of confidence and preference. Factors such as aircraft equipage, ownership, and location of predicted separation loss appeared to play a role in the decision of controllers to accept or reject the auto resolver's resolutions.
Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2016-01-01
Flight testing and modeling techniques were developed to accurately identify global nonlinear aerodynamic models for aircraft in real time. The techniques were developed and demonstrated during flight testing of a remotely-piloted subscale propeller-driven fixed-wing aircraft using flight test maneuvers designed to simulate a Learn-To-Fly scenario. Prediction testing was used to evaluate the quality of the global models identified in real time. The real-time global nonlinear aerodynamic modeling algorithm will be integrated and further tested with learning adaptive control and guidance for NASA Learn-To-Fly concept flight demonstrations.
Energy efficiency and allometry of movement of swimming and flying animals.
Bale, Rahul; Hao, Max; Bhalla, Amneet Pal Singh; Patankar, Neelesh A
2014-05-27
Which animals use their energy better during movement? One metric to answer this question is the energy cost per unit distance per unit weight. Prior data show that this metric decreases with mass, which is considered to imply that massive animals are more efficient. Although useful, this metric also implies that two dynamically equivalent animals of different sizes will not be considered equally efficient. We resolve this longstanding issue by first determining the scaling of energy cost per unit distance traveled. The scale is found to be M(2/3) or M(1/2), where M is the animal mass. Second, we introduce an energy-consumption coefficient (CE) defined as energy per unit distance traveled divided by this scale. CE is a measure of efficiency of swimming and flying, analogous to how drag coefficient quantifies aerodynamic drag on vehicles. Derivation of the energy-cost scale reveals that the assumption that undulatory swimmers spend energy to overcome drag in the direction of swimming is inappropriate. We derive allometric scalings that capture trends in data of swimming and flying animals over 10-20 orders of magnitude by mass. The energy-consumption coefficient reveals that swimmers beyond a critical mass, and most fliers are almost equally efficient as if they are dynamically equivalent; increasingly massive animals are not more efficient according to the proposed metric. Distinct allometric scalings are discovered for large and small swimmers. Flying animals are found to require relatively more energy compared with swimmers.
Energy efficiency and allometry of movement of swimming and flying animals
Bale, Rahul; Hao, Max; Bhalla, Amneet Pal Singh; Patankar, Neelesh A.
2014-01-01
Which animals use their energy better during movement? One metric to answer this question is the energy cost per unit distance per unit weight. Prior data show that this metric decreases with mass, which is considered to imply that massive animals are more efficient. Although useful, this metric also implies that two dynamically equivalent animals of different sizes will not be considered equally efficient. We resolve this longstanding issue by first determining the scaling of energy cost per unit distance traveled. The scale is found to be M2/3 or M1/2, where M is the animal mass. Second, we introduce an energy-consumption coefficient (CE) defined as energy per unit distance traveled divided by this scale. CE is a measure of efficiency of swimming and flying, analogous to how drag coefficient quantifies aerodynamic drag on vehicles. Derivation of the energy-cost scale reveals that the assumption that undulatory swimmers spend energy to overcome drag in the direction of swimming is inappropriate. We derive allometric scalings that capture trends in data of swimming and flying animals over 10–20 orders of magnitude by mass. The energy-consumption coefficient reveals that swimmers beyond a critical mass, and most fliers are almost equally efficient as if they are dynamically equivalent; increasingly massive animals are not more efficient according to the proposed metric. Distinct allometric scalings are discovered for large and small swimmers. Flying animals are found to require relatively more energy compared with swimmers. PMID:24821764
Predicting fruit fly's sensing rate with insect flight simulations.
Chang, Song; Wang, Z Jane
2014-08-05
Without sensory feedback, flies cannot fly. Exactly how various feedback controls work in insects is a complex puzzle to solve. What do insects measure to stabilize their flight? How often and how fast must insects adjust their wings to remain stable? To gain insights into algorithms used by insects to control their dynamic instability, we develop a simulation tool to study free flight. To stabilize flight, we construct a control algorithm that modulates wing motion based on discrete measurements of the body-pitch orientation. Our simulations give theoretical bounds on both the sensing rate and the delay time between sensing and actuation. Interpreting our findings together with experimental results on fruit flies' reaction time and sensory motor reflexes, we conjecture that fruit flies sense their kinematic states every wing beat to stabilize their flight. We further propose a candidate for such a control involving the fly's haltere and first basalar motor neuron. Although we focus on fruit flies as a case study, the framework for our simulation and discrete control algorithms is applicable to studies of both natural and man-made fliers.
ERIC Educational Resources Information Center
Mercurio, Frank X.
1975-01-01
Describes a five-day summer camp which provided 12 children, ages 9-14, with a complete flying experience. The training consisted of ground school and one hour actual flying time, including the basics of aircraft control and a flight prepared and executed by the students. (MLH)
The house fly, Musca domestica: once again a vector of pathogens of public health significance
USDA-ARS?s Scientific Manuscript database
During the time of Walter Reed in Cuba and in subsequent years of the early 20th century, the house fly lost its image of a being a good fly to have around, and became a dreaded vector of disease-causing organisms. In the U.S., it was dubbed the typhoid fly and many research projects were launched t...
The house fly, Musca domestica: An overlooked vector of pathogens of public health significance
USDA-ARS?s Scientific Manuscript database
During the time of Walter Reed in Cuba and in subsequent years of the early 20th century, the house fly lost its image of a being a good fly to have around, and became a dreaded vector of disease-causing organisms. In the US, it was dubbed the typhoid fly and many research projects were launched to ...
Structure, properties, and surfactant adsorption behavior of fly ash carbon
NASA Astrophysics Data System (ADS)
Kulaots, Indrek
The objective of this research was to suggest methods by which certain problems associated with use of coal fly ash as a pozzolanic agent in concrete mixtures could be alleviated, guided by a better characterization of fly ash properties. A sample suite of eighty fly ashes was gathered from utilities across the world (mainly US-based) and included ashes from coals ranging in rank from bituminous to lignite. The widely used foam index test is used to characterize ashes with respect to their propensity to adsorb surfactants (called Air Entraining Admixtures or AEAs) used to impart freeze-thaw resistance to concrete. In ash-containing concrete mixtures, AEAs are adsorbed from the polar concrete-water solution onto non-polar unburned carbon surfaces in the ash. The AEA uptake by fly ashes only crudely correlates with the amount of carbon in the fly ash, because carbon surface area, accessibility and polarity all play a role in determining adsorption capacities. Fly ash carbon particle size distribution is also a key factor. Fine carbon particles in fly ash fractions of <106mum are responsible for about 90% of surfactant adsorption capacity. Surfactant adsorption on fly ash carbon is, in the foam index test, a dynamic process. The time of the test (typically <10 minutes) is not long enough to permit penetration of small porosity by the relatively large AEA molecules, and only the most readily available adsorption surface near the geometrical surface of the carbon particles is utilized. The nature of the foam index test was also examined, and it is recommended that a more standardized test procedure based upon pure reagents be adopted for examining the nature of fly ashes. Several possible reagents were identified. Room temperature fly ash ozonation is a powerful technique that allows increasing fly ash surface polarity in a relatively short time and thus is very effective for decreasing the AEA uptake capacity. Depending on the ozone input concentration, sample amount and contact time, surfactant uptake capacity decreases by a factor of two or more following reaction of only 0--1g O3/kg-ash, bringing many ashes into compliance with AEA uptake requirements.
Sintering of MSW fly ash for reuse as a concrete aggregate.
Mangialardi, T
2001-10-12
The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.
NASA Astrophysics Data System (ADS)
Elezaj, I. R.; Letaj, K. Rr.; Selimi, Q. I.; Zhushi-Etemi, F.
2003-05-01
The concentration of Pb, Cd, Zn and Cu, δ-aminolevulinic acid dehydratase activity (ALA-D: EC.4.2.1.24) hemoglobin and protein amount have been determined in three different populations of fruit fly (Drosophila melanogaster) caught at two urban sites (Mitrovica town, which is situated close to smelter of “Trepça” don close and Prishtina the capital of Kosova) and in Luki village as uncontaminated area. The results show that in the fruit fly of Mitrovica the concentration of Pb, Cd and Zn was significantly higher (P<0.00l) in comparison with that on the f-Liit fly of Prishtina and Luki. The concentration of Pb of fruit fly from Mitrovica was 3.1 times higher in comparison with that on fruit fly of Prishtina and 4.9 times higher in comparison with uncontaminated group of fruit fly. The ALA-D activity was significantly inhibited in the homogenate of fruit fly from Mitrovica in comparison with Prishtina and Luki localities (P<0.00l). ALA-D activity was also inhibited in the homogenate of Prishtina fruit fly in comparison with Luki group (P<0.00l). The amount of proteins was significantly lower in Mitrovica fruit fly in comparison with that in control and Prishtina group. The hemoglobin value was relatively unchanged.
Winzen, A; Roidl, B; Schröder, W
2016-04-01
Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.
Shiravi, AH; Mostafavi, R; Akbarzadeh, K; Oshaghi, MA
2011-01-01
Background: The aim of his study was to determine development time and thermal requirements of three myiasis flies including Chrysomya albiceps, Lucilia sericata, and Sarcophaga sp. Methods: Rate of development (ROD) and accumulated degree day (ADD) of three important forensic flies in Iran, Chrysomya albiceps, Lucilia sericata, and Sarcophaga sp. by rearing individuals under a single constant temperature (28° C) was calculated using specific formula for four developmental events including egg hatching, larval stages, pupation, and eclosion. Results: Rates of development decreased step by step as the flies grew from egg to larvae and then to adult stage; however, this rate was bigger for blowflies (C. albiceps and L. sericata) in comparison with the flesh fly Sarcophaga sp. Egg hatching, larval stages, and pupation took about one fourth and half of the time of the total pre-adult development time for all of the three species. In general, the flesh fly Sarcophaga sp. required more heat for development than the blowflies. The thermal constants (K) were 130–195, 148–222, and 221–323 degree-days (DD) for egg hatching to adult stages of C. albiceps, L. sericata, and Sarcophaga sp., respectively. Conclusion: This is the first report on thermal requirement of three forensic flies in Iran. The data of this study provide preliminary information for forensic entomologist to establish PMI in the area of study. PMID:22808410
Starvation Promotes Odor/Feeding-Time Associations in Flies
ERIC Educational Resources Information Center
Chouhan, Nitin Singh; Wolf, Reinard; Heisenberg, Martin
2017-01-01
Starvation causes a motivational state that facilitates diverse behaviors such as feeding, walking, and search. Starved "Drosophila" can form odor/feeding-time associations but the role of starvation in encoding of "time" is poorly understood. Here we show that the extent of starvation is correlated with the fly's ability to…
DOT National Transportation Integrated Search
1995-01-01
What does "Time in Your Tanks" mean? Depending upon your aircraft's particular fuel consumption rate, the amount of usable fuel in your aircraft equates directly to how long your aircraft will fly. The longer you can fly, the more choices you have fo...
Ertit Taştan, Burcu
2017-09-15
In Turkey approximately 45 million tons of coals are burned in a year and 19.3 million tons of fly ash have emerged. The bioremediation of heavy metals or different elements from fly ash makes them bio-available. However, in previous studies, requiring of long operational time and failing to show tolerance to high pulp densities of fly ash of selected fungal species makes them impractical. In this work, bioremediation of fly ash by new isolated fungi Fusarium oxysporum and Penicillium glabrum were investigated in one step and two step bioremediation process. Ca, Si, Fe and S were found to be considerable amount in studied fly ashes by ED-XRF element analysis. The bioremediation yields of Mo (100%), S (64.36%) Ni (50%) and Cu (33.33%) by F. oxysporum were high. The remediated elements by P. glabrum in fly ash were Mo (100%), S (57.43%), Ni (25%), Si (24.66%), V (12.5%), Ti (5%) and Sr (3.2%). The isolation of high fly ash resistant fungi and reduction of the bioremediation time will allow the practical applications of the bioremediation technology when it is scaled up. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biology and control of tabanids, stable flies and horn flies.
Foil, L D; Hogsette, J A
1994-12-01
Tabanids are among the most free-living adult flies which play a role as livestock pests. A single blood meal is used as a source of energy for egg production (100-1,000 eggs per meal), and females of certain species can oviposit before a blood meal is obtained (autogeny). Therefore, the maintenance of annual populations requires successful oviposition by only 2% of females. Wild animal blood sources are usually available to maintain annual tabanid populations. Larval habitats are also independent of domestic livestock. Thus, the use of repellents or partial repellents is the only effective chemical strategy to reduce the incidence of tabanids on livestock. Permanent traps (and possibly treated silhouette traps) can be employed to intercept flies. Selective grazing or confinement can also reduce the impact of tabanids. Stable fly adults are dependent on vertebrate blood for survival and reproduction, but the amount of time spent in contact with the host is relatively small. Stable fly larvae develop in manure, spilled feed and decaying vegetation. Management of larval habitats by sanitation is the key to stable fly control. Treatment of animals with residual insecticides can aid in control; thorough application to the lower body parts of livestock is important. Proper use of modified traps, using either treated targets or solar-powered electrocution grids, can be effective in reducing stable fly populations. Adult horn flies spend the major part of their time on the host, and the larvae are confined to bovid manure. Therefore, almost any form of topical insecticide application for livestock is effective against horn flies, in the absence of insecticide resistance. Treatments should be applied when economic benefit is possible; economic gains are associated with increased weaning weights and weight gains of yearling and growing cattle. Oral chemical treatments (insect growth regulators or insecticides) administered at appropriate rates via bolus, water, food or mineral mixtures can inhibit horn fly larval development. However, adult horn fly movement among cattle herds limits the use of larval control for horn fly population management. The augmentation of native parasites, predators and competitors has been attempted and even promoted for horn fly and stable fly control, but evidence for the success of such programmes is equivocal.
From flying wheel to square flow: Dynamics of a flow driven by acoustic forcing
NASA Astrophysics Data System (ADS)
Cambonie, Tristan; Moudjed, Brahim; Botton, Valéry; Henry, Daniel; Ben Hadid, Hamda
2017-12-01
Acoustic streaming designates the ability to drive quasisteady flows by acoustic propagation in dissipative fluids and results from an acoustohydrodynamics coupling. It is a noninvasive way of putting a fluid into motion using the volumetric acoustic force and can be used for different applications such as mixing purposes. We present an experimental investigation of a kind of square flow driven by acoustic streaming, with the use of beam reflections, in a water tank. Time-resolved experiments using particle image velocimetry have been performed to investigate the velocity field in the reference plane of the experiments for six powers: 0.5, 1, 2, 4, 6, and 8 W. The evolution of the flow regime from almost steady to strongly unsteady states is characterized using different tools: the plot of time-averaged and instantaneous velocity fields, the calculation of presence density maps for vortex positions and for the maximal velocity and vorticity crest lines, and the use of spatiotemporal maps of the waving observed on the jets created by acoustic streaming. A transition is observed between two regimes at moderate and high acoustic forcing.
Szyniszewska, A. M.; Leppla, N. C.; Huang, Z.; Tatem, A. J.
2016-01-01
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most economically damaging pests in the world and has repeatedly invaded two major agricultural states in the United States, Florida and California, each time requiring costly eradication. The Mediterranean fruit fly gains entry primarily in infested fruit carried by airline passengers and, since Florida and California each receive about 13 million international passengers annually, the risk of Mediterranean fruit fly entering the United States is potentially very high. The risk of passengers bringing the pest into Florida or California from Mediterranean fruit fly-infested countries was determined with two novel models, one estimated seasonal variation in airline passenger number and the other defined the seasonal and spatial variability in Mediterranean fruit fly abundance. These models elucidated relationships among the risk factors for Mediterranean fruit fly introduction, such as amount of passenger traffic, routes traveled, season of travel, abundance of Mediterranean fruit fly in countries where flights departed, and risk of the pest arriving at destination airports. The risk of Mediterranean fruit fly being introduced into Florida was greatest from Colombia, Brazil, Panama, Venezuela, Argentina, and Ecuador during January–August, whereas primarily the risk to California was from Brazil, Panama, Colombia, and Italy in May–August. About three times more Mediterranean fruit flies were intercepted in passenger baggage at airports in Florida than California, although the data were compromised by a lack of systematic sampling and other limitations. Nevertheless, this study achieved the goal of analyzing available data on seasonal passenger flow and Mediterranean fruit fly population levels to determine when surveillance should be intensified at key airports in Florida and California. PMID:27594703
(T2L2) Time Transfer by Laser Link
NASA Technical Reports Server (NTRS)
Veillet, Christian; Fridelance, Patricia
1995-01-01
T2L2 (Time Transfer by Laser Link) is a new generation time transfer experiment based on the principles of LASSO (Laser Synchronization from Synchronous Orbit) and used with an operational procedure developed at OCA (Observatoire de la Cote d'Azur) during the active intercontinental phase of LASSO. The hardware improvements could lead to a precision better than 10 ps for time transfer (flying clock monitoring or ground based clock comparison). Such a package could fly on any spacecraft with a stable clock. It has been developed in France in the frame of the PHARAO project (cooled atom clock in orbit) involving CNES and different laboratories. But T2L2 could fly on any spacecraft carrying a stable oscillator. A GPS satellite would be a good candidate, as T2L2 could allow to link the flying clock directly to ground clocks using light, aiming to important accuracy checks, both for time and for geodesy. Radioastron (a flying VLBI antenna with a H-maser) is also envisioned, waiting for a PHARAO flight. The ultimate goal of T2L2 is to be part of more ambitious missions, as SORT (Solar Orbit Relativity Test), aiming to examine aspects of the gravitation in the vicinity of the Sun.
Characterization of typical heavy metals in pyrolysis MSWI fly ash.
Xu, Tengtun; Wang, Li'ao; Zeng, Yunmin; Zhao, Xue; Wang, Lei; Zhan, Xinyuan; Li, Tong; Yang, Lu
2018-06-07
Thermal treatment methods are used extensively in the process of municipal solid waste incineration fly ash. However, the characterization of heavy metals during this process should be understood more clearly in order to control secondary pollution. In this paper, the content, speciation and leaching toxicity of mercury (Hg), plumbum (Pb), cadmium (Cd) and zinc (Zn) in fly ash treated under different temperatures and time were firstly analysed as pre-tests. Later, pilot-scale pyrolysis equipment was used to explore the concentration and speciation changes in the heavy metals of fly ash. Finally, the phase constitution and microstructure changes in fly ash were compared before and after pyrolysis using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The results showed that (a) The appropriate processing temperature was between 400°C and 450°C, and the processing time should be 1 h. (b) The stability of heavy metals in fly ash increased after pyrolysis. (c) XRD and SEM results indicated that phase constitution changed a little, but the microstructure varied to a porous structure similar to that of a coral reef after pyrolysis. These results suggest that pyrolysis could be an effective method in controlling heavy metal pollution in fly ash.
Recovery of aluminum and other metal values from fly ash
McDowell, William J.; Seeley, Forest G.
1981-01-01
The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.
Recovery of aluminum and other metal values from fly ash
McDowell, W.J.; Seeley, F.G.
1979-11-01
The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.
Stalnov, Oksana; Ben-Gida, Hadar; Kirchhefer, Adam J; Guglielmo, Christopher G; Kopp, Gregory A; Liberzon, Alexander; Gurka, Roi
2015-01-01
We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion.
Stalnov, Oksana; Ben-Gida, Hadar; Kirchhefer, Adam J.; Guglielmo, Christopher G.; Kopp, Gregory A.; Liberzon, Alexander; Gurka, Roi
2015-01-01
We study the role of unsteady lift in the context of flapping wing bird flight. Both aerodynamicists and biologists have attempted to address this subject, yet it seems that the contribution of unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through two approaches, the unsteady thin airfoil theory and using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both approaches are presented over the duration of wingbeat cycles. Using long-time sampling data, several wingbeat cycles have been analyzed in order to cover both the downstroke and upstroke phases. It appears that the unsteady lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion. PMID:26394213
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1997-10-28
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1997-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.
Sand fly feeding on noxious plants: a potential method for the control of leishmaniasis.
Schlein, Y; Jacobson, R L; Müller, G C
2001-10-01
The sand fly Phlebotomus papatasi transmits Leishmania major, which causes cutaneous leishmaniasis, in vast regions of the Old World. In addition to blood, the sand flies feed on plants. In a study of this diet, we observed that one night of feeding on branches of Solanum jasminoides, Ricinus communis, or Bougainvillea glabra drastically shortened the life span of the sand flies. Flowering B. glabra attracted P. papatasi in the field. Nevertheless, in the region endemic for L. major in yards abounding with vector sand flies, the number of P. papatasi trapped near hedges of B. glabra was eight times less (62 versus 502 flies trapped) than in the control sites. The results imply that B. glabra affords local protection against sand fly bites and decreases the risk of leishmaniasis. We suggest that this and other ornamental plants that are harmful to sand flies can be used as a tool for this purpose.
Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete
Liu, Jun; Qiu, Qiwen; Xing, Feng; Pan, Dong
2014-01-01
This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days. PMID:28788677
Identification of phlebotomine sand fly blood meals by real-time PCR.
Sales, Kamila Gaudêncio da Silva; Costa, Pietra Lemos; de Morais, Rayana Carla Silva; Otranto, Domenico; Brandão-Filho, Sinval Pinto; Cavalcanti, Milena de Paiva; Dantas-Torres, Filipe
2015-04-16
Phlebotomine sand flies are blood-feeding insects of great medical and veterinary significance acting as vectors of Leishmania parasites. Studying the blood-feeding pattern of these insects may help in the understanding of their interactions with potential reservoir hosts of Leishmania parasites. In this study, we developed real time PCR assays for the identification of sand fly blood meal. Six pairs of primers were designed based on cytochrome b gene sequences available in GenBank of the following potential hosts: dog, cat, horse, chicken, black rat, and human. Firstly, SYBR Green-based real time PCR assays were conducted using a standard curve with eight different concentrations (i.e., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg per 2 μl) of DNA samples extracted from EDTA blood samples from each target animal. Then, DNA samples extracted from field-collected engorged female sand flies belonging to three species (i.e., Lutzomyia longipalpis, L. migonei and L. lenti) were tested by the protocols standardized herein. Additionally, female sand flies were experimentally fed on a black rat (Rattus rattus) and used for evaluating the time course of the detection of the protocol targeting this species. The protocols performed well with detection limits of 10 pg to 100 fg. Field-collected female sand flies were fed on blood from humans (73%), chickens (23%), dogs (22%), horses (15%), black rats (11%) and cats (2%). Interestingly, 76.1% of the L. longipalpis females were positive for human blood. In total, 48% of the tested females were fed on single sources, 31% on two and 12% on three. The analysis of the time course showed that the real time PCR protocol targeting the black rat DNA was able to detect small amounts of the host DNA up to 5 days after the blood meal. The real time PCR assays standardized herein successfully detected small amounts of host DNA in female sand flies fed on different vertebrate species and, specifically for the black rats, up to 5 days after the blood meal. These assays represent promising tools for the identification of blood meal in field-collected female sand flies.
[Pretreatment technology for fly ash from MSWI and the corresponding study of chloride behavior].
Zhu, Fen-Fen; Takaoka, Masaki; Oshita, Kazuyuki; Jiang, Hui-Min; Kitajima, Yoshinori
2013-06-01
The introduced pretreatment technology, WCCB (Washing + Calcination), was effective to reduce chlorides in fly ash by consuming relatively low energy for recycling fly ash as the raw material for cement industry. The washing conditions are: twice-washing, liquid/solid = 3, mixing speed = 150 r x min(-1), 1st mixing time = 5 min, and 2nd mixing time = 10 min. The original incinerator was used for the calcination process, 1 000 degrees C, 10% O2 and dwelling time of 1 hour were adopted. By adopting X-ray absorption near edge structure and X-ray diffraction, the behavior of chlorides was explained and NaCl, KCl and CaCl2 are the main form of chlorides existing in fly ash. The reagent used in the air pollution control system to neutralize the acid component in the discharged gas surely acted a very important role in the formation of chlorides. The insoluble chlorides in fly ash had a very similar structure as that of Friedel's salt, which was related with CaCl2.
Jacques, Christopher N.; Zweep, James S.; Scheihing, Mary E.; Rechkemmer, Will T.; Jenkins, Sean E.; Klaver, Robert W.; Dubay, Shelli A.
2017-01-01
Sherman traps are the most commonly used live traps in studies of small mammals and have been successfully used in the capture of arboreal species such as the southern flying squirrel (Glaucomys volans). However, southern flying squirrels spend proportionately less time foraging on the ground, which necessitates above-ground trapping methods and modifications of capture protocols. Further, quantitative estimates of the factors affecting capture success of flying squirrel populations have focused solely on effects of trapping methodologies. We developed and evaluated the efficacy of a portable Sherman trap design for capturing southern flying squirrels during 2015–2016 at the Alice L. Kibbe Field Station, Illinois, USA. Additionally, we used logistic regression to quantify potential effects of time-dependent (e.g., weather) and time-independent (e.g., habitat, extrinsic) factors on capture success of southern flying squirrels. We recorded 165 capture events (119 F, 44 M, 2 unknown) using our modified Sherman trap design. Probability of capture success decreased 0.10/1° C increase in daily maximum temperature and by 0.09/unit increase (km/hr) in wind speed. Conversely, probability of capture success increased by 1.2/1° C increase in daily minimum temperature. The probability of capturing flying squirrels was negatively associated with trap orientation. When tree-mounted traps are required, our modified trap design is a safe, efficient, and cost-effective method of capturing animals when moderate weather (temp and wind speed) conditions prevail. Further, we believe that strategic placement of traps (e.g., northeast side of tree) and quantitative information on site-specific (e.g., trap location) characteristics (e.g., topographical features, slope, aspect, climatologic factors) could increase southern flying squirrel capture success. © 2017 The Wildlife Society.
On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes.
Guo, Xin; Minakata, Daisuke; Crittenden, John
2015-08-04
We have developed an on-the-fly kinetic Monte Carlo (KMC) model to predict the degradation mechanisms and fates of intermediates and byproducts that are produced during aqueous-phase advanced oxidation processes (AOPs). The on-the-fly KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, a mechanistic reduction module, and a KMC solver. The novelty of this work is that we develop the pathway as we march forward in time rather than developing the pathway before we use the KMC method to solve the equations. As a result, we have fewer reactions to consider, and we have greater computational efficiency. We have verified this on-the-fly KMC model for the degradation of polyacrylamide (PAM) using UV light and titanium dioxide (i.e., UV/TiO2). Using the on-the-fly KMC model, we were able to predict the time-dependent profiles of the average molecular weight for PAM. The model provided detailed and quantitative insights into the time evolution of the molecular weight distribution and reaction mechanism. We also verified our on-the-fly KMC model for the destruction of (1) acetone, (2) trichloroethylene (TCE), and (3) polyethylene glycol (PEG) for the ultraviolet light and hydrogen peroxide AOP. We demonstrated that the on-the-fly KMC model can achieve the same accuracy as the computer-based first-principles KMC (CF-KMC) model, which has already been validated in our earlier work. The on-the-fly KMC is particularly suitable for molecules with large molecular weights (e.g., polymers) because the degradation mechanisms for large molecules can result in hundreds of thousands to even millions of reactions. The ordinary differential equations (ODEs) that describe the degradation pathways cannot be solved using traditional numerical methods, but the KMC can solve these equations.
Pava-Ripoll, Monica; Pearson, Rachel E Goeriz; Miller, Amy K; Tall, Ben D; Keys, Christine E; Ziobro, George C
2015-07-31
The mechanical transmission of pathogenic bacteria by synanthropic filth flies is widely recognized. While many studies report the fate and the temporospatial distribution of ingested foodborne bacteria by filth flies, there is little evidence about the transmission dynamics of ingested foodborne bacteria by adult house flies (Musca domestica) to their progeny. In this study, we fed parental house fly adults with food contaminated with low, medium, and high concentrations of Salmonella enterica, Cronobacter sakazakii, Escherichia coli O157:H7, and Listeria monocytogenes and evaluated the probability of transmission of these pathogens to house fly eggs and the surface and the alimentary canal of their first filial (F1) generation adults. All foodborne pathogens were present in samples containing pooled house fly eggs. The probability of transmission was higher after parental house flies ingested food containing medium bacterial loads. Cronobacter sakazakii was 16, 6, and 3 times more likely to be transmitted to house fly eggs than S. enterica, E. coli O157:H7, and L. monocytogenes, respectively. Only S. enterica and C. sakazakii were transmitted to F1 generation adults and their presence was 2.4 times more likely on their body surfaces than in their alimentary canals. The highest probabilities of finding S. enterica (60 %) and C. sakazakii (28 %) on newly emerged F1 adults were observed after parental house flies ingested food containing medium and high levels of these pathogens, respectively. Our study demonstrates that adult house flies that fed from food contaminated with various levels of foodborne bacteria were able to transmit those pathogens to their eggs and some were further transmitted to newly emerged F1 generation adults, enhancing the vector potential of these insects. Understanding the type of associations that synanthropic filth flies establish with foodborne pathogens will help to elucidate transmission mechanisms and possible ways to mitigate the spread of foodborne pathogens.
Autonomous formation flying sensor for the Star Light Mission
NASA Technical Reports Server (NTRS)
Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.
2002-01-01
The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.
Mechanical transmission of turkey coronavirus by domestic houseflies (Musca domestica Linnaeaus).
Calibeo-Hayes, Dawn; Denning, Steve S; Stringham, S M; Guy, James S; Smith, Lynda G; Watson, D Wes
2003-01-01
Domestic houseflies (Musca domestica Linnaeaus) were examined for their ability to harbor and transmit turkey coronavirus (TCV). Laboratory-reared flies were experimentally exposed to TCV by allowing flies to imbibe an inoculum comprised of turkey embryo-propagated virus (NC95 strain). TCV was detected in dissected crops from exposed flies for up to 9 hr postexposure; no virus was detected in crops of sham-exposed flies. TCV was not detected in dissected intestinal tissues collected from exposed or sham-exposed flies at any time postexposure. The potential of the housefly to directly transmit TCV to live turkey poults was examined by placing 7-day-old turkey poults in contact with TCV-exposed houseflies 3 hr after flies consumed TCV inoculum. TCV infection was detected in turkeys placed in contact with TCV-exposed flies at densities as low as one fly/bird (TCV antigens detected at 3 days post fly contact in tissues of 3/12 turkeys); however, increased rates of infection were observed with higher fly densities (TCV antigens detected in 9/12 turkeys after contact with 10 flies/bird). This study demonstrates the potential of the housefly to serve as a mechanical vector of TCV.
Hydrodynamic Tests in the N.A.C.A. Tank of a Model of the Hull of the Short Calcutta Flying Boat
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1937-01-01
The hydrodynamic characteristics of a model of the hull of the Short Calcutta (N.A.C.A. Model 47) are presented in non-dimensional form. This model represents one of a series of hulls of successful foreign and domestic flying boats the characteristics of which are being obtained under similar test conditions in the N.A.C.A. tank. The take-off distance and time for a flying boat having the hull of the Calcutta are compared at two values of the gross load with the corresponding distances and times for the same flying boat having hulls of two representative American types, the Sikorsky S-40 and the N.A.C.A. 11-A. This comparison indicates that for hulls of the widely different forms compared, the differences in take-off time and distance are negligible.
Ultrasonic Vocalizations Emitted by Flying Squirrels
Murrant, Meghan N.; Bowman, Jeff; Garroway, Colin J.; Prinzen, Brian; Mayberry, Heather; Faure, Paul A.
2013-01-01
Anecdotal reports of ultrasound use by flying squirrels have existed for decades, yet there has been little detailed analysis of their vocalizations. Here we demonstrate that two species of flying squirrel emit ultrasonic vocalizations. We recorded vocalizations from northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels calling in both the laboratory and at a field site in central Ontario, Canada. We demonstrate that flying squirrels produce ultrasonic emissions through recorded bursts of broadband noise and time-frequency structured frequency modulated (FM) vocalizations, some of which were purely ultrasonic. Squirrels emitted three types of ultrasonic calls in laboratory recordings and one type in the field. The variety of signals that were recorded suggest that flying squirrels may use ultrasonic vocalizations to transfer information. Thus, vocalizations may be an important, although still poorly understood, aspect of flying squirrel social biology. PMID:24009728
Electrical control of flying spin precession in chiral 1D edge states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Takashi; Komiyama, Susumu; Lin, Kuan-Ting
2013-12-04
Electrical control and detection of spin precession are experimentally demonstrated by using spin-resolved edge states in the integer quantum Hall regime. Spin precession is triggered at a corner of a biased metal gate, where electron orbital motion makes a sharp turn leading to a nonadiabatic change in the effective magnetic field via spin-orbit interaction. The phase of precession is controlled by the group velocity of edge-state electrons tuned by gate bias voltage: Spin-FET-like coherent control of spin precession is thus realized by all-electrical means.
Space Shuttle Aging Elastomers
NASA Technical Reports Server (NTRS)
Curtis, Cris E.
2007-01-01
The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The Space Shuttle's uses various types of elastomers and they play a vital role in mission success. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the elastomers are performing. This paper will outline a strategic assessment plan, how identified problems were resolved and the integration activities between subsystems and Aging Orbiter Working Group.
jmzML, an open-source Java API for mzML, the PSI standard for MS data.
Côté, Richard G; Reisinger, Florian; Martens, Lennart
2010-04-01
We here present jmzML, a Java API for the Proteomics Standards Initiative mzML data standard. Based on the Java Architecture for XML Binding and XPath-based XML indexer random-access XML parser, jmzML can handle arbitrarily large files in minimal memory, allowing easy and efficient processing of mzML files using the Java programming language. jmzML also automatically resolves internal XML references on-the-fly. The library (which includes a viewer) can be downloaded from http://jmzml.googlecode.com.
DISCOVER AQ Research Plane Arrives
2011-06-28
A 117-foot P-3B NASA research aircraft is seen on the tarmac at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)
DISCOVER AQ Research Plane Arrives
2011-06-28
An unidentified researcher works aboard the P-3B NASA research aircraft at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)
NASA Technical Reports Server (NTRS)
Parke, Michael E.; Born, George; Mclaughlin, Craig
1994-01-01
The advantages of having Geosat Follow-On in a Geosat orbit flying simultaneously with Topex Follow-On in a Topex/Poseidon orbit are examined. The orbits are evaluated using two criteria. The first is the acute crossover angle. This angle should be at least 40 degrees in order to accurately resolve the slope of sea level at crossover locations. The second is tidal aliasing. In order to solve for tides, the largest constituents should not be aliased to a frequency lower than two cycles/year and should be at least one cycle discrete from one another and from exactly two cycles/year over the mission life. The results show that TFO and GFO in these orbits complement each other. Both satellites have large crossover angles over a wide latitude range. In addition, the Topex orbit has good aliasing characteristics for the M2 and P1 tides for which the Geosat orbit has difficulty.
Gerry, Alec C; Higginbotham, G E; Periera, L N; Lam, A; Shelton, C R
2011-06-01
Relative house fly, Musca domestica L., activity at three large dairies in central California was monitored during the peak fly activity period from June to August 2005 by using spot cards, fly tapes, bait traps, and Alsynite traps. Counts for all monitoring methods were significantly related at two of three dairies; with spot card counts significantly related to fly tape counts recorded the same week, and both spot card counts and fly tape counts significantly related to bait trap counts 1-2 wk later. Mean fly counts differed significantly between dairies, but a significant interaction between dairies sampled and monitoring methods used demonstrates that between-dairy comparisons are unwise. Estimate precision was determined by the coefficient of variability (CV) (or SE/mean). Using a CV = 0.15 as a desired level of estimate precision and assuming an integrate pest management (IPM) action threshold near the peak house fly activity measured by each monitoring method, house fly monitoring at a large dairy would require 12 spot cards placed in midafternoon shaded fly resting sites near cattle or seven bait traps placed in open areas near cattle. Software (FlySpotter; http://ucanr.org/ sites/FlySpotter/download/) using computer vision technology was developed to count fly spots on a scanned image of a spot card to dramatically reduce time invested in monitoring house flies. Counts provided by the FlySpotter software were highly correlated to visual counts. The use of spot cards for monitoring house flies is recommended for dairy IPM programs.
Baum, Maurício; de Castro, Edilene Alcântara; Pinto, Mara Cristina; Goulart, Thais Marchi; Baura, Walter; Klisiowicz, Débora do Rocio; Vieira da Costa-Ribeiro, Magda Clara
2015-03-01
The feeding behavior of sand flies provides valuable information about the vector/host interactions and elucidates the epidemiological patterns of American cutaneous leishmaniasis (ACL) transmission. The aim of this study was to identify the blood meal sources of sand flies in endemic areas of leishmaniasis in Paraná State through polymerase chain reaction (PCR) amplification of a prepronociceptin (PNOC) gene fragment and its subsequent DNA sequencing. Moreover, molecular assays were conducted to evaluate the sensitivity and reproducibility of the PNOC gene amplification. Besides that, a time-course digestion test of the blood using sand flies that fed artificially on BALB/c mice was performed. Of 1263 female sand flies collected in the field, 93 (3.6%) specimens were engorged and 27 allowed efficient amplification of the PNOC gene. These flies had fed on equine (Equus caballus), porcine (Sus scrofa) and canine (Canis lupus familiaris) species. The results also showed that the identification of the blood meal sources of the sand flies using the molecular method was directly linked to the level of digestion of the blood (time-course) and not to the amount of blood that had been ingested or to the presence of inhibitors in the blood. Copyright © 2014 Elsevier B.V. All rights reserved.
Gill, Carson; Bahrndorff, Simon; Lowenberger, Carl
2017-08-01
The house fly, Musca domestica, has been implicated as a vector of Campylobacter spp., a major cause of human disease. Little is known whether house flies serve as biological amplifying hosts or mechanical vectors for Campylobacter jejuni. We investigated the period after C. jejuni had been ingested by house flies in which viable C. jejuni colonies could be isolated from whole bodies, the vomitus and the excreta of adult M. domestica and evaluated the activation of innate immune responses of house flies to ingested C. jejuni over time. C. jejuni could be cultured from infected houseflies soon after ingestion but no countable C. jejuni colonies were observed > 24 h postingestion. We detected viable C. jejuni in house fly vomitus and excreta up to 4 h after ingestion, but no viable bacteria were detected ≥ 8 h. Suppression subtractive hybridization identified pathogen-induced gene expression in the intestinal tracts of adult house flies 4-24 h after ingesting C. jejuni. We measured the expression of immune regulatory (thor, JNK, and spheroide) and effector (cecropin, diptericin, attacin, defensing, and lysozyme) genes in C. jejuni-infected and -uninfected house flies using quantitative real time PCR. Some house fly factor, or combination of factors, eliminates C. jejuni within 24 h postingestion. Because C. jejuni is not amplified within the body of the housefly, this insect likely serves as a mechanical vector rather than as a true biological, amplifying vector for C. jejuni, and adds to our understanding of insect-pathogen interactions. © 2016 Institute of Zoology, Chinese Academy of Sciences.
How to Design a Genetic Mating Scheme: A Basic Training Package for Drosophila Genetics
Roote, John; Prokop, Andreas
2013-01-01
Drosophila melanogaster is a powerful model organism for biological research. The essential and common instrument of fly research is genetics, the art of applying Mendelian rules in the specific context of Drosophila with its unique classical genetic tools and the breadth of modern genetic tools and strategies brought in by molecular biology, transgenic technologies and the use of recombinases. Training newcomers to fly genetics is a complex and time-consuming task but too important to be left to chance. Surprisingly, suitable training resources for beginners currently are not available. Here we provide a training package for basic Drosophila genetics, designed to ensure that basic knowledge on all key areas is covered while reducing the time invested by trainers. First, a manual introduces to fly history, rationale for mating schemes, fly handling, Mendelian rules in fly, markers and balancers, mating scheme design, and transgenic technologies. Its self-study is followed by a practical training session on gender and marker selection, introducing real flies under the dissecting microscope. Next, through self-study of a PowerPoint presentation, trainees are guided step-by-step through a mating scheme. Finally, to consolidate knowledge, trainees are asked to design similar mating schemes reflecting routine tasks in a fly laboratory. This exercise requires individual feedback but also provides unique opportunities for trainers to spot weaknesses and strengths of each trainee and take remedial action. This training package is being successfully applied at the Manchester fly facility and may serve as a model for further training resources covering other aspects of fly research. PMID:23390611
Grangeon, Sylvain; De Nolf, Wout; Harker, Nicholas; Boulahya, Faiza; Bourbon, Xavier
2018-01-01
To understand the main properties of cement, a ubiquitous material, a sound description of its chemistry and mineralogy, including its reactivity in aggressive environments and its mechanical properties, is vital. In particular, the porosity distribution and associated sample carbonation, both of which affect cement’s properties and durability, should be quantified accurately, and their kinetics and mechanisms of formation known both in detail and in situ. However, traditional methods of cement mineralogy analysis (e.g. chemical mapping) involve sample preparation (e.g. slicing) that can be destructive and/or expose cement to the atmosphere, leading to preparation artefacts (e.g. dehydration). In addition, the kinetics of mineralogical development during hydration, and associated porosity development, cannot be examined. To circumvent these issues, X-ray diffraction computed tomography (XRD-CT) has been used. This allowed the mineralogy of ternary blended cement composed of clinker, fly ash and blast furnace slag to be deciphered. Consistent with previous results obtained for both powdered samples and dilute systems, it was possible, using a consolidated cement paste (with a water-to-solid ratio akin to that used in civil engineering), to determine that the mineralogy consists of alite (only detected in the in situ hydration experiment), calcite, calcium silicate hydrates (C-S-H), ettringite, mullite, portlandite, and an amorphous fraction of unreacted slag and fly ash. Mineralogical evolution during the first hydration steps indicated fast ferrite reactivity. Insights were also gained into how the cement porosity evolves over time and into associated spatially and time-resolved carbonation mechanisms. It was observed that macroporosity developed in less than 30 h of hydration, with pore sizes reaching about 100–150 µm in width. Carbonation was not observed for this time scale, but was found to affect the first 100 µm of cement located around macropores in a sample cured for six months. Regarding this carbonation, the only mineral detected was calcite. PMID:29765604
L.S. Bauer; J. Granett
1979-01-01
Black flies have been long-time residents of Maine and cause extensive nuisance problems for people, domestic animals, and wildlife. The black fly problem has no simple solution because of the multitude of species present, the diverse and ecologically sensitive habitats in which they are found, and the problems inherent in measuring the extent of the damage they cause...
Jensen, Annette Bruun; Eilenberg, Jørgen; López Lastra, Claudia
2009-11-01
Three DNA regions (ITS 1, LSU rRNA and GPD) of isolates from the insect-pathogenic fungus genus Entomophthora originating from different fly (Diptera) and aphid (Hemiptera) host taxa were sequenced. The results documented a large genetic diversity among the fly-pathogenic Entomophthora and only minor differences among aphid-pathogenic Entomophthora. The evolutionary time of divergence of the fly and the aphid host taxa included cannot account for this difference. The host-driven divergence of Entomophthora, therefore, has been much greater in flies than in aphids. Host-range differences or a recent host shift to aphid are possible explanations.
A Coincidental Sound Track for "Time Flies"
ERIC Educational Resources Information Center
Cardany, Audrey Berger
2014-01-01
Sound tracks serve a valuable purpose in film and video by helping tell a story, create a mood, and signal coming events. Holst's "Mars" from "The Planets" yields a coincidental soundtrack to Eric Rohmann's Caldecott-winning book, "Time Flies." This pairing provides opportunities for upper elementary and…
Vargas, Roger I; Long, Jay; Miller, Neil W; Delate, Kathleen; Jackson, Charles G; Uchida, Grant K; Bautista, Renato C; Harris, Ernie J
2004-10-01
Ivy gourd, Coccinia grandis (L.) Voigt, patches throughout Kailua-Kona, Hawaii Island, HI, were identified as persistent sources of melon fly, Bactrocera cucurbitae (Coquillett). These patches had a low incidence of Psyttalia fletcheri (Silvestri), its major braconid parasitoid natural enemy in Hawaii, and were used to evaluate augmentative releases of P. fletcheri against melon fly. In field cage studies of releases, numbers of melon flies emerging from ivy gourd fruit placed inside treatment cages were reduced up to 21-fold, and numbers of parasitoids were increased 11-fold. In open field releases of P. fletcheri into ivy gourd patches, parasitization rates were increased 4.7 times in release plots compared with those in control plots. However, there was no significant reduction in emergence of melon flies from fruit. In subsequent cage tests with sterile melon flies and P. fletcheri, combinations of sterile flies and P. fletcheri produced the greatest reduction (9-fold) in melon fly emergence from zucchini, Cucurbita pepo L. Reductions obtained with sterile flies alone or in combination with parasitoids were significantly greater than those in the control, whereas those for parasitoids alone were not. Although these results suggest that the effects of sterile flies were greater than those for parasitoids, from a multitactic melon fly management strategy, sterile flies would complement the effects of P. fletcheri. Cost and sustainability of these nonchemical approaches will be examined further in an ongoing areawide pest management program for melon fly in Hawaii.
Restoration of fly ash dump through biological interventions.
Juwarkar, Asha A; Jambhulkar, Hemlata P
2008-04-01
Field experiment on 10 ha area of fly ash dump was conducted to restore and revegetate it using biological interventions, which involves use of organic amendment, selection of suitable plant species along with specialized nitrogen fixing strains of biofertilizer. The results of the study indicated that amendment with farm yard manure at 50 t/ha improved the physical properties of fly ash such as maximum water holding capacity from 40.0 to 62.42% while porosity improved from 56.78 to 58.45%. The nitrogen content was increased by 4.5 times due to addition of nitrogen fixing strains of Bradyrhizobium and Azotobacter species, while phosphate content was increased by 10.0 times due to addition of VAM, which helps in phosphate immobilization. Due to biofertilizer inoculation different microbial groups such as Rhizobium, Azotobacter and VAM spores, which were practically absent in fly ash improved to 7.1 x 10(7), 9.2 x 10(7) CFU/g and 35 VAM spores/10 g of fly ash, respectively. Inoculation of biofertilizer and application of FYM helped in reducing the toxicity of heavy metals such as cadmium, copper, nickel and lead which were reduced by 25, 46, 48 and 47%, respectively, due to the increased organic matter content in the fly ash which complexes the heavy metals thereby decreasing the toxicity of metals. Amendment of fly ash with FYM and biofertilizer helped in profuse root development showing 15 times higher growth in Dendrocalamus strictus plant as compared to the control. Thus amendment and biofertilizer application provided better supportive material for anchorage and growth of the plant.
The effect of water binder ratio and fly ash on the properties of foamed concrete
NASA Astrophysics Data System (ADS)
Saloma, Hanafiah, Urmila, Dea
2017-11-01
Foamed concrete is a lightweight concrete composed by cement, water, fine aggregate and evenly distributed foam. Foamed concrete is produced by adding foam to the mixture. The function of foam is to create air voids in the mixture, so the weight of the concrete becomes lighter. The foaming agent is diluted in water then given air pressure by foam generator to produce foam. This research utilizes coal combustion, which is fly ash as cementitious material with a percentage of 0%, 10%, 15%, and 20%. The purpose of the research is to examine the effect of water binder ratio 0.425, 0.450, 0.475, and 0.500 using fly ash on the properties of foamed concrete. Fresh concrete tests include slump flow and setting time test while hardened concrete tests include density and compressive strength. The maximum value of slump flow test result is 59.50 cm on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The results of the setting time tests indicate the fastest initial and final time are 335 and 720 minutes, respectively on FC-0-0.425 mixture with w/b = 0.425 without fly ash. The lowest density is 978.344 kg/m3 on FC-20-0.500 mixture with w/b = 0.500 and 20% of fly ash percentage. The maximum compressive strength value is 4.510 MPa at 28 days on FC-10-0.450 mixture with w/b = 0.450 and 10% of fly ash percentage.
Fly ash in landfill top covers - a review.
Brännvall, E; Kumpiene, J
2016-01-01
Increase of energy recovery from municipal solid waste by incineration results in the increased amounts of incineration residues, such as fly ash, that have to be taken care of. Material properties should define whether fly ash is a waste or a viable resource to be used for various applications. Here, two areas of potential fly ash application are reviewed: the use of fly ash in a landfill top cover either as a liner material or as a soil amendment in vegetation layer. Fly ashes from incineration of three types of fuel are considered: refuse derived fuel (RDF), municipal solid waste incineration (MSWI) and biofuel. Based on the observations, RDF and MSWI fly ash is considered as suitable materials to be used in a landfill top cover liner. Whereas MSWI and biofuel fly ashes based on element availability for plant studies, could be considered suitable for the vegetation layer of the top cover. Responsible application of MSWI ashes is, however, warranted in order to avoid element accumulation in soil and elevation of background values over time.
Suchan, Tomasz; Espíndola, Anahí; Rutschmann, Sereina; Emerson, Brent C; Gori, Kevin; Dessimoz, Christophe; Arrigo, Nils; Ronikier, Michał; Alvarez, Nadir
2017-09-01
Determining phylogenetic relationships among recently diverged species has long been a challenge in evolutionary biology. Cytoplasmic DNA markers, which have been widely used, notably in the context of molecular barcoding, have not always proved successful in resolving such phylogenies. However, with the advent of next-generation-sequencing technologies and associated techniques of reduced genome representation, phylogenies of closely related species have been resolved at a much higher detail in the last couple of years. Here we examine the potential and limitations of one of such techniques-Restriction-site Associated DNA (RAD) sequencing, a method that produces thousands of (mostly) anonymous nuclear markers, in disentangling the phylogeny of the fly genus Chiastocheta (Diptera: Anthomyiidae). In Europe, this genus encompasses seven species of seed predators, which have been widely studied in the context of their ecological and evolutionary interactions with the plant Trollius europaeus (Ranunculaceae). So far, phylogenetic analyses using mitochondrial markers failed to resolve monophyly of most of the species from this recently diversified genus, suggesting that their taxonomy may need a revision. However, relying on a single, non-recombining marker and ignoring potential incongruences between mitochondrial and nuclear loci may provide an incomplete account of the lineage history. In this study, we applied both classical Sanger sequencing of three mtDNA regions and RAD-sequencing, for reconstructing the phylogeny of the genus. Contrasting with results based on mitochondrial markers, RAD-sequencing analyses retrieved the monophyly of all seven species, in agreement with the morphological species assignment. We found robust nuclear-based species assignment of individual samples, and low levels of estimated contemporary gene flow among them. However, despite recovering species' monophyly, interspecific relationships varied depending on the set of RAD loci considered, producing contradictory topologies. Moreover, coalescence-based phylogenetic analyses revealed low supports for most of the interspecific relationships. Our results indicate that despite the higher performance of RAD-sequencing in terms of species trees resolution compared to cytoplasmic markers, reconstructing inter-specific relationships among recently-diverged lineages may lie beyond the possibilities offered by large sets of RAD-sequencing markers in cases of strong gene tree incongruence. Copyright © 2017 Elsevier Inc. All rights reserved.
Did a stellar fly-by shape the planetary system around Pr 0211 in the cluster M44?
NASA Astrophysics Data System (ADS)
Pfalzner, Susanne; Bhandare, Asmita; Vincke, Kirsten
2018-02-01
Out of the 3000 exoplanets detected so far, only 14 planets are members of open clusters: one of them is the exoplanet system around Pr 0211 in the cluster M44. The system consists of at least 2 planets, and the outer planet moves on a highly eccentric orbit at 5.5 AU. One hypothesis is that a close fly-by of a neighbouring star was responsible for the eccentric orbit. We test this hypothesis. First we determined the type of fly-by that would lead to the observed parameters, and then we used this result to determine the history of such fly-bys in simulations of the early dynamics in an M44-like environment. We find that although very close fly-bys are required to obtain the observed properties of Pr 0211c, such fly-bys are relatively common as a result of the high stellar density and longevity of the cluster. Such close fly-bys are most frequent during the first 1‑2 Myr after cluster formation, corresponding to a cluster age ≤3 Myr. During the first 2 to 3 Myr, about 6.5% of stars experience a fly-by that would lead to such a small system-size as observed for Pr 0211 or even smaller. It is unclear whether planets generally form on such short timescales. However, after this time, the close fly-by rate is still 0.2‑0.5 Myr‑1, which means that 12‑20% of stars would experience such close fly-bys over this time span when we extrapolate the situation to the age of M44. Our simulations show that the fly-by scenario is a realistic option for the formation of eccentricity orbits of the planets in M44 (Wang et al. 2015). The occurrence of such events is relatively high, leading to the expectation that similar systems are likely common in open clusters in general.
Szyniszewska, A M; Leppla, N C; Huang, Z; Tatem, A J
2016-12-01
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann), is one of the most economically damaging pests in the world and has repeatedly invaded two major agricultural states in the United States, Florida and California, each time requiring costly eradication. The Mediterranean fruit fly gains entry primarily in infested fruit carried by airline passengers and, since Florida and California each receive about 13 million international passengers annually, the risk of Mediterranean fruit fly entering the United States is potentially very high. The risk of passengers bringing the pest into Florida or California from Mediterranean fruit fly-infested countries was determined with two novel models, one estimated seasonal variation in airline passenger number and the other defined the seasonal and spatial variability in Mediterranean fruit fly abundance. These models elucidated relationships among the risk factors for Mediterranean fruit fly introduction, such as amount of passenger traffic, routes traveled, season of travel, abundance of Mediterranean fruit fly in countries where flights departed, and risk of the pest arriving at destination airports. The risk of Mediterranean fruit fly being introduced into Florida was greatest from Colombia, Brazil, Panama, Venezuela, Argentina, and Ecuador during January-August, whereas primarily the risk to California was from Brazil, Panama, Colombia, and Italy in May-August. About three times more Mediterranean fruit flies were intercepted in passenger baggage at airports in Florida than California, although the data were compromised by a lack of systematic sampling and other limitations. Nevertheless, this study achieved the goal of analyzing available data on seasonal passenger flow and Mediterranean fruit fly population levels to determine when surveillance should be intensified at key airports in Florida and California. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Occupational allergy after exposure to caddis flies at a hydroelectric power plant.
Kraut, A; Sloan, J; Silviu-Dan, F; Peng, Z; Gagnon, D; Warrington, R
1994-01-01
A cross sectional survey was conducted in a hydroelectric power plant in which the workforce was exposed to large numbers of caddis flies. 28 of 57 employees participated. About 50% of the participants reported work related eye, nose, and sinus symptoms and wheezing. Working in locations with greater exposure to caddis flies was significantly associated with work related symptoms. 17 workers (61%) were skin prick positive to a laboratory prepared caddis fly antigen (LCFA) made from the remains of caddis flies present in the plant and 11 (39%) had positive reactions to a commercial caddis fly antigen (CCFA). Workers stationed in heavily exposed areas were 3.7 times as likely to have a positive response to the LCFA (p = 0.009) and 5.3 times as likely to have a positive response to the CCFA (p = 0.036). 13 (46%) of survey respondents reported three or more work related symptoms. 10 (91%) CCFA positive workers reported three or more work related symptoms. Pulmonary function studies revealed slight, but not significantly decreased forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and FEV1/FVC ratios in workers who were skin test positive to either caddis fly preparation when compared with those who were negative. One worker who was skin test positive to both antigens had a cross shift fall in FEV1 of 20% predicted. Occupational allergy to caddis flies proved to be a significant health problem at this work site. PMID:8044233
Normal vision can compensate for the loss of the circadian clock
Schlichting, Matthias; Menegazzi, Pamela; Helfrich-Förster, Charlotte
2015-01-01
Circadian clocks are thought to be essential for timing the daily activity of animals, and consequently increase fitness. This view was recently challenged for clock-less fruit flies and mice that exhibited astonishingly normal activity rhythms under outdoor conditions. Compensatory mechanisms appear to enable even clock mutants to live a normal life in nature. Here, we show that gradual daily increases/decreases of light in the laboratory suffice to provoke normally timed sharp morning (M) and evening (E) activity peaks in clock-less flies. We also show that the compound eyes, but not Cryptochrome (CRY), mediate the precise timing of M and E peaks under natural-like conditions, as CRY-less flies do and eyeless flies do not show these sharp peaks independently of a functional clock. Nevertheless, the circadian clock appears critical for anticipating dusk, as well as for inhibiting sharp activity peaks during midnight. Clock-less flies only increase E activity after dusk and not before the beginning of dusk, and respond strongly to twilight exposure in the middle of the night. Furthermore, the circadian clock responds to natural-like light cycles, by slightly broadening Timeless (TIM) abundance in the clock neurons, and this effect is mediated by CRY. PMID:26378222
Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha
Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less
Leaching kinetics of As, Mo, and Se from acidic coal fly ash samples
Neupane, Ghanashyam; Donahoe, Rona J.; Bhattacharyya, Siddhartha; ...
2017-07-03
Annually, coal-fired electric power plants produce large volumes potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment and hydrogeology. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leachingmore » data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is largely controlled by the dissolution of the fly ash particles. Furthermore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.« less
González, Estela; Álvarez, Ana; Ruiz, Sonia; Molina, Ricardo; Jiménez, Maribel
2017-07-01
Since 2010 a human leishmaniasis outbreak has been notified in southwestern Madrid region that still remains active. Entomological surveys have been carried out in the affected area in order to obtain information about species diversity, distribution, and density of sand flies. Moreover, molecular identification of blood meal preferences of sand flies and molecular detection of Leishmania infantum has been performed. In this work, we optimized a real time PCR assay in order to determine parasite loads in unfed and blood-fed Phlebotomus perniciosus female sand flies caught in the focus area. Results showed elevated parasite loads in nearly 70% of the studied positive sand flies. Furthermore, significantly higher parasite loads were observed in females without blood in their guts. In conclusion, high L. infantum loads found in P. perniciosus sand flies from the Madrid focus support the exceptional characteristics of this outbreak. Copyright © 2017 Elsevier B.V. All rights reserved.
Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster.
Zhu, Junwei; Park, Kye-Chung; Baker, Thomas C
2003-04-01
Bioassays with a variety of overripe fruits, including mango, plum, pear, and grape, and their extracts showed that odors from overripe mango were most attractive to adult vinegar flies, Drosophila melanogaster. Combined gas chromatography-electroantennographic detection (GC-EAD) analyses of solid-phase microextraction (SPME) and Tenax extracts of overripe mango odors showed that several volatile compounds, including ethanol, acetic acid, amyl acetate, 2-phenylethanol, and phenylethyl acetate elicited significant EAG responses from antennae of female flies. Most of the volatile compounds in the extracts were identified by mass spectral and retention index comparisons with synthetic standards. In cage bioassays, lures with a blend of ethanol, acetic acid, and 2-phenylethanol in a ratio of 1:22:5 attracted six times more flies than any single EAG-active compound. This blend also attracted four times more flies than traps baited with overripe mango or unripe mango. However, in field trials, the blend was not as attractive as suggested by the laboratory bioassay.
Kurihara, Miki; Ikeda, Koji; Izawa, Yoshinori; Deguchi, Yoshihiro; Tarui, Hitoshi
2003-10-20
A laser-induced breakdown spectroscopy (LIBS) technique has been applied for detection of unburned carbon in fly ash, and an automated LIBS unit has been developed and applied in a 1000-MW pulverized-coal-fired power plant for real-time measurement, specifically of unburned carbon in fly ash. Good agreement was found between measurement results from the LIBS method and those from the conventional method (Japanese Industrial Standard 8815), with a standard deviation of 0.27%. This result confirms that the measurement of unburned carbon in fly ash by use of LIBS is sufficiently accurate for boiler control. Measurements taken by this apparatus were also integrated into a boiler-control system with the objective of achieving optimal and stable combustion. By control of the rotating speed of a mill rotary separator relative to measured unburned-carbon content, it has been demonstrated that boiler control is possible in an optimized manner by use of the value of the unburned-carbon content of fly ash.
Zuha, R M; Jenarthanan, L X Q; Disney, R H L; Omar, B
2015-09-01
In forensic entomology, larval rearing usually includes the presence of biological contaminants including scuttle flies (Diptera: Phoridae). Scuttle flies are recognized as forensically important insects and have been reported causing nuisance and contamination in laboratory environments. This paper reports for the first time the finding of multiple scuttle fly species affecting colonies of third instar larvae of the Oriental latrine blowfly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae), reared indoors at the Forensic Science Simulation Site, Universiti Kebangsaan Malaysia. Adult scuttle flies were discovered inside a rearing container after the emergence of adult C. megacephala., The scuttle fly species are Megaselia scalaris (Loew), M. spiracularis Schmitz and Puliciphora borinquenensis (Wheeler). Notes on the life history and biology of these species are discussed herein.
Gaenko, Alexander; DeFusco, Albert; Varganov, Sergey A.; ...
2014-10-20
This work presents a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane, using the ab initio multiple spawning (AIMS) program that has been interfaced with the General Atomic and Molecular Electronic Structure System (GAMESS) quantum chemistry package for on-the-fly electronic structure evaluation. The interface strategy is discussed, and the capabilities of the combined programs are demonstrated with a nonadiabatic molecular dynamics study of the nonradiative decay of photoexcited trans-azomethane. Energies, gradients, and nonadiabatic coupling matrix elements were obtained with the state-averaged complete active space self-consistent field method, as implemented in GAMESS. The influence of initial vibrational excitationmore » on the outcome of the photoinduced isomerization is explored. Increased vibrational excitation in the CNNC torsional mode shortens the excited state lifetime. Depending on the degree of vibrational excitation, the excited state lifetime varies from ~60–200 fs. As a result, these short lifetimes are in agreement with time-resolved photoionization mass spectroscopy experiments.« less
Inagaki, Hidehiko K; Jung, Yonil; Hoopfer, Eric D; Wong, Allan M; Mishra, Neeli; Lin, John Y; Tsien, Roger Y; Anderson, David J
2014-03-01
Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila melanogaster has been limited. Here we show that a recently described red activatable channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to interfere with normal visual function. This tool affords the opportunity to control neural activity over a broad dynamic range of stimulation intensities. Using time-resolved activation, we show that the neural control of male courtship song can be separated into (i) probabilistic, persistent and (ii) deterministic, command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, which supports the idea that they constitute a locus of state-dependent influence. This separation is not evident using thermogenetic tools, a result underscoring the importance of temporally precise control of neuronal activation in the functional dissection of neural circuits in Drosophila.
The Effect of Baggase Ash on Fly Ash-Based Geopolimer Binder
NASA Astrophysics Data System (ADS)
Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Banugraha, R.; Alfi, M.; Abdullah, M. M. A. B.
2018-06-01
Geopolymer concrete is an environmentally friendly concrete. However, the geopolymer binder has a problem with setting time; mainly the composition comprises high calcium fly ash. This study utilized bagasse ash to improve setting time on fly ash-based geopolymer binder. The characterization of bagasse ash was carried out by using chemical and phase analysis, while the morphology characterization was examined by scanning electron microscope (SEM). The setting time test and the compressive strength test used standard ASTM C 191-04 and ASTM C39 / C39M respectively. The compressive strength of the samples determined at 3, 28 and 56 days. The result compared the requirement of the standards.
Berlandi, Johannes; Lin, Fang-Ju; Ambrée, Oliver; Rieger, Dirk; Paulus, Werner; Jeibmann, Astrid
2017-01-01
Recent studies indicate that physical activity can slow down progression of neurodegeneration in humans. To date, automated ways to induce activity have been predominantly described in rodent models. To study the impact of activity on behavior and survival in adult Drosophila melanogaster, we aimed to develop a rotating tube device “swing boat” which is capable of monitoring activity and sleep patterns as well as survival rates of flies. For the purpose of a first application, we tested our device on a transgenic fly model of Alzheimer’s disease (AD). Activity of flies was recorded in a climate chamber using the Drosophila Activity Monitoring (DAM) System connected to data acquisition software. Locomotor activity was induced by a rotating tube device “swing boat” by repetitively tilting the tubes for 30 min per day. A non-exercising group of flies was used as control and activity and sleep patterns were obtained. The GAL4-/UAS system was used to drive pan-neuronal expression of human Aβ42 in flies. Immunohistochemical stainings for Aβ42 were performed on paraffin sections of adult fly brains. Daily rotation of the fly tubes evoked a pronounced peak of activity during the 30 min exercise period. Pan-neuronal expression of human Aβ42 in flies caused abnormalities in locomotor activity, reduction of life span and elevated sleep fragmentation in comparison to wild type flies. Furthermore, the formation of amyloid accumulations was observed in the adult fly brain. Gently induced activity over 12 days did not evoke prominent effects in wild type flies but resulted in prolongation of median survival time by 7 days (32.6%) in Aβ42-expressing flies. Additionally, restoration of abnormally decreased night time sleep (10%) and reduced sleep fragmentation (28%) were observed compared to non-exercising Aβ42-expressing flies. On a structural level no prominent effects regarding prevalence of amyloid aggregations and Aβ42 RNA expression were detected following activity induction. The rotating tube device successfully induced activity in flies shown by quantitative activity analysis. Our setup enabled quantitative analysis of activity and sleep patterns as well as of survival rates. Induced activity in a Drosophila model of Alzheimer’s disease improved survival and ameliorated sleep phenotypes. PMID:28912696
NASA Astrophysics Data System (ADS)
Huo, Pengwei; Yan, Yongsheng; Li, Songtian; Li, Huaming; Huang, Weihong
2010-03-01
A series of poly-o-phenylenediamine/TiO 2/fly-ash cenospheres(POPD/TiO 2/fly-ash cenospheres) composites have been prepared from o-phenylenediamine and TiO 2/fly-ash cenospheres under various polymerization conditions. The properties of the samples were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), specific surface area (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance spectrum (UV-vis DRS). Photocatalytic activity was studied by degradation of antibiotics waste water under visible light. The results indicate that the photo-induced method is viable for preparing modified photocatalysts, and the modified photocatalysts have good absorption in visible light range. The photocatalysts of POPD/TiO 2/fly-ash cenospheres which have good performance are prepared at pH 3 and 4, and the polymerized time around 40 min. When the photocatalysts are prepared under the conditions of pH 3 and polymerized time 40 min, the degradation rate of roxithromycin waste water could reach near 60%, and it indicates that the way of POPD modified TiO 2/fly-ash cenospheres to degrade the antibiotics waste water is viable.
Reconstructing the behavior of walking fruit flies
NASA Astrophysics Data System (ADS)
Berman, Gordon; Bialek, William; Shaevitz, Joshua
2010-03-01
Over the past century, the fruit fly Drosophila melanogaster has arisen as almost a lingua franca in the study of animal behavior, having been utilized to study questions in fields as diverse as sleep deprivation, aging, and drug abuse, amongst many others. Accordingly, much is known about what can be done to manipulate these organisms genetically, behaviorally, and physiologically. Most of the behavioral work on this system to this point has been experiments where the flies in question have been given a choice between some discrete set of pre-defined behaviors. Our aim, however, is simply to spend some time with a cadre of flies, using techniques from nonlinear dynamics, statistical physics, and machine learning in an attempt to reconstruct and gain understanding into their behavior. More specifically, we use a multi-camera set-up combined with a motion tracking stage in order to obtain long time-series of walking fruit flies moving about a glass plate. This experimental system serves as a test-bed for analytical, statistical, and computational techniques for studying animal behavior. In particular, we attempt to reconstruct the natural modes of behavior for a fruit fly through a data-driven approach in a manner inspired by recent work in C. elegans and cockroaches.
NASA Astrophysics Data System (ADS)
Daanen, R. P.; Emond, A.; Liljedahl, A. K.; Walter Anthony, K. M.; Barnes, D. L.; Romanovsky, V. E.; Graham, G.
2016-12-01
An airborne electromagnetic (AEM) survey was conducted in Goldstream Valley, Alaska, to map the electrical resistivity of the ground by sending a magnetic field down from a transmitter flying 30m above the ground into the subsurface. The recorded electromagnetic data are a function of the resistivity structure in the ground. The RESOLVE system used in the survey records data for six frequencies, resulting in a depth of investigation from 1-3 meters and up to 150 meters, depending on resistivity of the ground. Recording six frequencies enables the use of inversion methods to find a solution for a discretized resistivity model providing resistivity as a function of depth below ground surface. Using the airborne RESOLVE system in a populated study area involved challenges related to signal noise, access, and public opinion. Noise issues were mainly the consequence of power lines, which produce varying levels and frequencies of noise. We were not permitted to fly directly over homes, cars, animals, or people because of safety concerns, which resulted in gaps in our dataset. Public outreach well in advance of the survey informed residents about the methods used, their benefits to understanding the environment, and their potential impacts on the environment. Inversion of the data provided resistivity models that were interpreted for frozen and thawed ground conditions; these interpretation were constrained by alternate data sources such as well logs, borehole data, ground-based geophysics, and temperature measurements. The resulting permafrost map will be used to interpret groundwater movement into the valley and methane release from thermokarst lakes.
Effect of time delay on flying qualities: An update
NASA Technical Reports Server (NTRS)
Smith, R. E.; Sarrafian, S. K.
1986-01-01
Flying qualities problems of modern, full-authority electronic flight control systems are most often related to the introduction of additional time delay in aircraft response to a pilot input. These delays can have a significant effect on the flying qualities of the aircraft. Time delay effects are reexamined in light of recent flight test experience with aircraft incorporating new technology. Data from the X-29A forward-swept-wing demonstrator, a related preliminary in-flight experiment, and other flight observations are presented. These data suggest that the present MIL-F-8785C allowable-control system time delay specifications are inadequate or, at least, incomplete. Allowable time delay appears to be a function of the shape of the aircraft response following the initial delay. The cockpit feel system is discussed as a dynamic element in the flight control system. Data presented indicate that the time delay associated with a significant low-frequency feel system does not result in the predicted degradation in aircraft flying qualities. The impact of the feel system is discussed from two viewpoints: as a filter in the control system which can alter the initial response shape and, therefore, the allowable time delay, and as a unique dynamic element whose delay contribution can potentially be discounted by special pilot loop closures.
Acidification of calf bedding reduces fly development and bacterial abundance.
Calvo, M S; Gerry, A C; McGarvey, J A; Armitage, T L; Mitloehner, F M
2010-03-01
Environmental stressors, such as high fly density, can affect calf well-being. Sodium bisulfate (SBS) is an acidifier that reduces the pH of flooring and bedding, creating a medium that neither bacteria nor immature flies (also known as larvae or maggots) can thrive in. Two experiments were conducted to investigate the application of SBS to a mixture of rice hull calf bedding and calf slurry (BED) to reduce house fly (Musca domestica L.) larval density and the abundance of bacteria. In experiment 1, dish pans containing 1L of BED and 3,000 house fly eggs were treated with SBS at concentrations of 0, 8.9, 17.7, and 26.5g of SBS/0.05m(2) of BED (CON, LOW, MED, and HIGH, respectively), with each SBS concentration applied to 4 individual pans (16 pans total). Reapplication of the same SBS concentrations in each pan occurred 3 times/wk throughout the 23-d trial. Larval house fly survival was significantly reduced in all pans with SBS relative to CON pans, with lowest survival rates in the MED and HIGH pans (99% and 100% reduction, respectively). The mean pH for each treatment was inversely related to the SBS concentration. In experiment 2, pans containing 1L of BED and 3,000 house fly eggs were treated with either 0g of SBS (CON), 8.9g of SBS/0.05m(2) of BED with reapplication of the acidifier 3 times/wk (SB3x), or 8.9g of SBS/0.05m(2) of BED applied only once at 48h before the end of the 8 d-trial (SB48). Larval house fly survival and bacterial concentrations were reduced (90% larval reduction and 68% bacterial reduction) in the SB3x treatment relative to the CON. Mean pH was also reduced in SB3x pans relative to CON or SB48 pans. Overall, acidification of calf BED using the acidifier SBS resulted in a reduction of bacteria and house fly larval survival. This form of fly control might be expected to reduce adult fly production and, therefore, fly-related stress in calves.
Salt-soda sinter process for recovering aluminum from fly ash
McDowell, William J.; Seeley, Forest G.
1981-01-01
A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na.sub.2 CO.sub.3 to a temperature in the range 700.degree.-900.degree. C. for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.
Salt-soda sinter process for recovering aluminum from fly ash
McDowell, W.J.; Seeley, F.G.
A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na/sub 2/CO/sub 3/ to a temperature in the range 700/sup 0/ to 900/sup 0/C for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acidsoluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.
Cerretti, Pierfilippo; Stireman, John O; Pape, Thomas; O'Hara, James E; Marinho, Marco A T; Rognes, Knut; Grimaldi, David A
2017-01-01
Calyptrate flies include about 22,000 extant species currently classified into Hippoboscoidea (tsetse, louse, and bat flies), the muscoid grade (house flies and relatives) and the Oestroidea (blow flies, bot flies, flesh flies, and relatives). Calyptrates are abundant in nearly all terrestrial ecosystems, often playing key roles as decomposers, parasites, parasitoids, vectors of pathogens, and pollinators. For oestroids, the most diverse group within calyptrates, definitive fossils have been lacking. The first unambiguous fossil of Oestroidea is described based on a specimen discovered in amber from the Dominican Republic. The specimen was identified through digital dissection by CT scans, which provided morphological data for a cladistic analysis of its phylogenetic position among extant oestroids. The few known calyptrate fossils were used as calibration points for a molecular phylogeny (16S, 28S, CAD) to estimate the timing of major diversification events among the Oestroidea. Results indicate that: (a) the fossil belongs to the family Mesembrinellidae, and it is identified and described as Mesembrinella caenozoica sp. nov.; (b) the mesembrinellids form a sister clade to the Australian endemic Ulurumyia macalpinei (Ulurumyiidae) (McAlpine's fly), which in turn is sister to all remaining oestroids; (c) the most recent common ancestor of extant Calyptratae lived just before the K-Pg boundary (ca. 70 mya); and (d) the radiation of oestroids began in the Eocene (ca. 50 mya), with the origin of the family Mesembrinellidae dated at ca. 40 mya. These results provide new insight into the timing and rate of oestroid diversification and highlight the rapid radiation of some of the most diverse and ecologically important families of flies. ZooBank accession number-urn:lsid:zoobank.org:pub:0DC5170B-1D16-407A-889E-56EED3FE3627.
Stireman, John O.; Pape, Thomas; O’Hara, James E.; Marinho, Marco A. T.; Rognes, Knut; Grimaldi, David A.
2017-01-01
Calyptrate flies include about 22,000 extant species currently classified into Hippoboscoidea (tsetse, louse, and bat flies), the muscoid grade (house flies and relatives) and the Oestroidea (blow flies, bot flies, flesh flies, and relatives). Calyptrates are abundant in nearly all terrestrial ecosystems, often playing key roles as decomposers, parasites, parasitoids, vectors of pathogens, and pollinators. For oestroids, the most diverse group within calyptrates, definitive fossils have been lacking. The first unambiguous fossil of Oestroidea is described based on a specimen discovered in amber from the Dominican Republic. The specimen was identified through digital dissection by CT scans, which provided morphological data for a cladistic analysis of its phylogenetic position among extant oestroids. The few known calyptrate fossils were used as calibration points for a molecular phylogeny (16S, 28S, CAD) to estimate the timing of major diversification events among the Oestroidea. Results indicate that: (a) the fossil belongs to the family Mesembrinellidae, and it is identified and described as Mesembrinella caenozoica sp. nov.; (b) the mesembrinellids form a sister clade to the Australian endemic Ulurumyia macalpinei (Ulurumyiidae) (McAlpine’s fly), which in turn is sister to all remaining oestroids; (c) the most recent common ancestor of extant Calyptratae lived just before the K–Pg boundary (ca. 70 mya); and (d) the radiation of oestroids began in the Eocene (ca. 50 mya), with the origin of the family Mesembrinellidae dated at ca. 40 mya. These results provide new insight into the timing and rate of oestroid diversification and highlight the rapid radiation of some of the most diverse and ecologically important families of flies. ZooBank accession number–urn:lsid:zoobank.org:pub:0DC5170B-1D16-407A-889E-56EED3FE3627. PMID:28832610
Mechanical transmission of anaplasmosis by tabanids (Diptera: Tabanidae).
Hawkins, J A; Love, J N; Hidalgo, R J
1982-04-01
The role of tabanids in the mechanical transmission of anaplasmosis was further clarified by determining the number of horse fly bites needed to transmit the disease and the length of time that horse flies remain mechanically infective. Transmission of anaplasmosis from acutely infected calves to susceptible splenectomized calves was accomplished with as few as 10 horse fly bites. These flies were shown to remain mechanically infective for at least 2 hours after they had obtained a partial blood meal from an acutely infected calf. These data emphasize the efficiency of horse flies in the mechanical transmission of anaplasmosis and indicate that relatively short-distance barriers may not be adequate to prevent transmission between infected and noninfected herds.
Woudstra, Cedric; Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Bano, Luca; Koene, Miriam; Sansonetti, Marie-Hélène; Desoutter, Denise; Hansbauer, Eva-Maria; Dorner, Martin B.; Dorner, Brigitte G.
2015-01-01
We report the development of real-time PCR assays for genotyping Clostridium botulinum group III targeting the newly defined C. novyi sensu lato group; the nontoxic nonhemagglutinin (NTNH)-encoding gene ntnh; the botulinum neurotoxin (BoNT)-encoding genes bont/C, bont/C/D, bont/D, and bont/D/C; and the flagellin (fliC) gene. The genetic diversity of fliC among C. botulinum group III strains resulted in the definition of five major subgroups named fliC-I to fliC-V. Investigation of fliC subtypes in 560 samples, with various European origins, showed that fliC-I was predominant and found exclusively in samples contaminated by C. botulinum type C/D, fliC-II was rarely detected, no sample was recorded as fliC-III or fliC-V, and only C. botulinum type D/C samples tested positive for fliC-IV. The lack of genetic diversity of the flagellin gene of C. botulinum type C/D would support a clonal spread of type C/D strains in different geographical areas. fliC-I to fliC-III are genetically related (87% to 92% sequence identity), whereas fliC-IV from C. botulinum type D/C is more genetically distant from the other fliC types (with only 50% sequence identity). These findings suggest fliC-I to fliC-III have evolved in a common environment and support a different genetic evolution for fliC-IV. A combination of the C. novyi sensu lato, ntnh, bont, and fliC PCR assays developed in this study allowed better characterization of C. botulinum group III and showed the group to be less genetically diverse than C. botulinum groups I and II, supporting a slow genetic evolution of the strains belonging to C. botulinum group III. PMID:25636839
Substrate effects on pupation and adult emergence of Hermetia illucens (Diptera: Stratiomyidae).
Holmes, L A; Vanlaerhoven, S L; Tomberlin, J K
2013-04-01
Black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), are of particular interest for their applications in waste management. Feeding on decaying organic waste, black soldier flies successfully reduce manure in confined animal feeding operations of poultry, swine, and cattle. To optimize waste conversion in confined animal feeding operations and landfill facilities, it is imperative to optimize black soldier fly development. Unfortunately, black soldier flies only convert waste during their larval feeding stages and therefore it is of interest to optimize the nonfeeding stages of development, specifically, the postfeeding and pupal stages. The time spent in these stages is thought to be determined by the pupation substrate encountered by the postfeeding larvae. The objective of this study was to determine the effect different pupation substrates have on postfeeding development time, pupation time, and adult emergence success. Five pupation substrates were compared: wood shavings, potting soil, topsoil, sand, and nothing. Postfeeding larvae took longer to reach pupation in the absence of a pupation substrate, although reaching pupation in the shortest time in potting soil and wood shavings. The time spent in the pupal stage was shortest in the absence of a pupation substrate. However, fewer adults emerged when a pupation substrate was not provided.
Pearson, Rachel E. Goeriz; Miller, Amy K.; Ziobro, George C.
2012-01-01
Although flies are important vectors of food-borne pathogens, there is little information to accurately assess the food-related health risk of the presence of individual flies, especially in urban areas. This study quantifies the prevalence and the relative risk of food-borne pathogens associated with the body surfaces and guts of individual wild flies. One hundred flies were collected from the dumpsters of 10 randomly selected urban restaurants. Flies were identified using taxonomic keys before being individually dissected. Cronobacter spp., Salmonella spp., and Listeria monocytogenes were detected using the PCR-based BAX system Q7. Positive samples were confirmed by culture on specific media and through PCR amplification and sequencing or ribotyping. Among collected flies were the housefly, Musca domestica (47%), the blowflies, Lucilia cuprina (33%) and Lucilia sericata (14%), and others (6%). Cronobacter species were detected in 14% of flies, including C. sakazakii, C. turicensis, and C. universalis, leading to the proposal of flies as a natural reservoir of this food-borne pathogen. Six percent of flies carried Salmonella enterica, including the serovars Poona, Hadar, Schwarzengrund, Senftenberg, and Brackenridge. L. monocytogenes was detected in 3% of flies. Overall, the prevalence of food-borne pathogens was three times greater in the guts than on the body surfaces of the flies. The relative risk of flies carrying any of the three pathogens was associated with the type of pathogen, the body part of the fly, and the ambient temperature. These data enhance the ability to predict the microbiological risk associated with the presence of individual flies in food and food facilities. PMID:22941079
μPIXE for a μBrain: The vinegar fly's brain, antenna, sensilla hairs and eye ion concentrations
NASA Astrophysics Data System (ADS)
Reinert, Anja; Barapatre, Nirav; Sachse, Silke; Reinert, Tilo
2011-10-01
The vinegar fly Drosophila melanogaster is used as model organism to study a variety of different scientific purposes. Thus, our laboratory studies the olfactory system by neurobiological experiments. These techniques are often disruptive and need to compensate or exchange the body fluid, the lymph, with an artificial Ringer's solution in defined compartments of the fly. The solution mainly contains Na, Cl, K and Ca and is to keep physiological conditions. Therefore, the knowledge about the ion concentrations in the respective Drosophila lymph is required for a correct mixture of the ions. This paper presents the spatially resolved concentrations of P, S, Cl, K, Ca, Fe, Cu and Zn in lyophilised head cryosections of Drosophila by using quantitative μPIXE at the ion beam facility LIPSION in Leipzig. The PIXE maps enable a detailed analysis of particular regions of interest down to a spatial resolution of 0.5 μm. We quantified the ion concentrations especially in the brain, the antenna and its sensilla hairs acting as the olfactory organ of the fly, in the compound eye and in the mouthparts. The averaged element concentrations of these main compartments are (in descending order): P: 90 mM, K: 81 mM, S: 38 mM, Cl: 18 mM, Ca: 4.9 mM, Fe: 1.4 mM, Zn: 1.2 mM, Cu: 0.06 mM. Certain structures or cavities possess a remarkably high concentration of particular elements and might reflect the different functions of the compartments. An example presented in more detail is the composition of the compound eye. Conclusively, our findings on the ion concentrations might be useful for the mixture of the Drosophila Ringer's solution to ensure physiological conditions in experiments.
Evaluation of fly ash pellets for phosphorus removal in a laboratory scale denitrifying bioreactor.
Li, Shiyang; Cooke, Richard A; Huang, Xiangfeng; Christianson, Laura; Bhattarai, Rabin
2018-02-01
Nitrate and orthophosphate from agricultural activities contribute significantly to nutrient loading in surface water bodies around the world. This study evaluated the efficacy of woodchips and fly ash pellets in tandem to remove nitrate and orthophosphate from simulated agricultural runoff in flow-through tests. The fly ash pellets had previously been developed specifically for orthophosphate removal for this type of application, and the sorption bench testing showed a good promise for flow-through testing. The lab-scale horizontal-flow bioreactor used in this study consisted of an upstream column filled with woodchips followed by a downstream column filled with fly ash pellets (3 and 1 m lengths, respectively; both 0.15 m diameter). Using influent concentrations of 12 mg/L nitrate and 5 mg/L orthophosphate, the woodchip bioreactor section was able to remove 49-85% of the nitrate concentration at three hydraulic retention times ranging from 0.67 to 4.0 h. The nitrate removal rate for woodchips ranged from 40 to 49 g N/m 3 /d. Higher hydraulic retention times (i.e., smaller flow rates) corresponded with greater nitrate load reduction. The fly ash pellets showed relatively stable removal efficiency of 68-75% across all retention times. Total orthophosphate adsorption by the pellets was 0.059-0.114 mg P/g which was far less than the saturated capacity (1.69 mg/g; based on previous work). The fly ash pellets also removed some nitrate and the woodchips also removed some orthophosphate, but these reductions were not significant. Overall, woodchip denitrification followed by fly ash pellet P-sorption can be an effective treatment technology for nitrate and phosphate removal in subsurface drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization of coal fly ash components by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Ctvrtnickova, Tereza; Mateo, Mari-Paz; Yañez, Armando; Nicolas, Gines
2009-10-01
The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO 2, Al 2O 3, Fe 2O 3, CaO…) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004 [1]). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002 [2]) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003 [3]). In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis "on tape" was performed in order to establish the experimental conditions for the future "online analysis".
Construction procedures using self hardening fly ash
NASA Astrophysics Data System (ADS)
Thornton, S. I.; Parker, D. G.
1980-07-01
Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.
Steering a virtual blowfly: simulation of visual pursuit.
Boeddeker, Norbert; Egelhaaf, Martin
2003-09-22
The behavioural repertoire of male flies includes visually guided chasing after moving targets. The visuomotor control system for these pursuits belongs to the fastest found in the animal kingdom. We simulated a virtual fly, to test whether or not experimentally established hypotheses on the underlying control system are sufficient to explain chasing behaviour. Two operating instructions for steering the chasing virtual fly were derived from behavioural experiments: (i) the retinal size of the target controls the fly's forward speed and, thus, indirectly its distance to the target; and (ii) a smooth pursuit system uses the retinal position of the target to regulate the fly's flight direction. Low-pass filters implement neuronal processing time. Treating the virtual fly as a point mass, its kinematics are modelled in consideration of the effects of translatory inertia and air friction. Despite its simplicity, the model shows behaviour similar to that of real flies. Depending on its starting position and orientation as well as on target size and speed, the virtual fly either catches the target or follows it indefinitely without capture. These two behavioural modes of the virtual fly emerge from the control system for flight steering without implementation of an explicit decision maker.
, low-temperature and time-resolved photoluminescence spectrometers, and a microscope for time-resolved Diploma Physics, Vilnius University Featured Publications Kuciauskas et al., "Time-resolved ;Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved
Development of diet-induced insulin resistance in adult Drosophila melanogaster
Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N.; Bauer, Johannes H.
2013-01-01
The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson’s Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. PMID:22542511
2013-01-01
Background Wheat – Hessian fly interaction follows a typical gene-for-gene model. Hessian fly larvae die in wheat plants carrying an effective resistance gene, or thrive in susceptible plants that carry no effective resistance gene. Results Gene sets affected by Hessian fly attack in resistant plants were found to be very different from those in susceptible plants. Differential expression of gene sets was associated with differential accumulation of intermediates in defense pathways. Our results indicated that resources were rapidly mobilized in resistant plants for defense, including extensive membrane remodeling and release of lipids, sugar catabolism, and amino acid transport and degradation. These resources were likely rapidly converted into defense molecules such as oxylipins; toxic proteins including cysteine proteases, inhibitors of digestive enzymes, and lectins; phenolics; and cell wall components. However, toxicity alone does not cause immediate lethality to Hessian fly larvae. Toxic defenses might slow down Hessian fly development and therefore give plants more time for other types of defense to become effective. Conclusion Our gene expression and metabolic profiling results suggested that remodeling and fortification of cell wall and cuticle by increased deposition of phenolics and enhanced cross-linking were likely to be crucial for insect mortality by depriving Hessian fly larvae of nutrients from host cells. The identification of a large number of genes that were differentially expressed at different time points during compatible and incompatible interactions also provided a foundation for further research on the molecular pathways that lead to wheat resistance and susceptibility to Hessian fly infestation. PMID:23800119
Beutin, Lothar; Delannoy, Sabine; Fach, Patrick
2015-01-01
Enterohemorrhagic E. coli (EHEC) serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliCH25 and fliCH28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliCH25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliCH25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliCH28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC) O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliCH25[O145] and fliCH28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1-10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy) and detection of the respective fliCH25[O145] and fliCH28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates.
Beutin, Lothar; Delannoy, Sabine; Fach, Patrick
2015-01-01
Enterohemorrhagic E. coli (EHEC) serogroup O145 is regarded as one of the major EHEC serogroups involved in severe infections in humans. EHEC O145 encompasses motile and non-motile strains of serotypes O145:H25 and O145:H28. Sequencing the fliC-genes associated with the flagellar antigens H25 and H28 revealed the genetic diversity of the fliC H25 and fliC H28 gene sequences in E. coli. Based on allele discrimination of these fliC-genes real-time PCR tests were designed for identification of EHEC O145:H25 and O145:H28. The fliC H25 genes present in O145:H25 were found to be very similar to those present in E. coli serogroups O2, O100, O165, O172 and O177 pointing to their common evolution but were different from fliC H25 genes of a multiple number of other E. coli serotypes. In a similar way, EHEC O145:H28 harbor a characteristic fliC H28 allele which, apart from EHEC O145:H28, was only found in enteropathogenic (EPEC) O28:H28 strains that shared some common traits with EHEC O145:H28. The real time PCR-assays targeting these fliC H25[O145] and fliC H28[O145] alleles allow better characterization of EHEC O145:H25 and EHEC O145:H28. Evaluation of these PCR assays in spiked ready-to eat salad samples resulted in specific detection of both types of EHEC O145 strains even when low spiking levels of 1–10 cfu/g were used. Furthermore these PCR assays allowed identification of non-motile E. coli strains which are serologically not typable for their H-antigens. The combined use of O-antigen genotyping (O145wzy) and detection of the respective fliC H25[O145] and fliC H28[O145] allele types contributes to improve identification and molecular serotyping of E. coli O145 isolates. PMID:26000885
WAYS OF ACQUIRING FLYING PHOBIA.
Schindler, Bettina; Vriends, Noortje; Margraf, Jürgen; Stieglitz, Rolf-Dieter
2016-02-01
The few studies that have explored how flying phobia is acquired have produced contradictory results. We hypothesized that classical conditioning plays a role in acquiring flying phobia and investigated if vicarious (model) learning, informational learning through media, and experiencing stressful life events at the time of onset of phobia also play a role. Thirty patients with flying phobia and thirty healthy controls matched on age, sex, and education were interviewed with the Mini-DIPS, the short German version of the Anxiety Disorders Interview Schedule (DSM-IV diagnostic criteria) and the Fear-of-Flying History Interview. Fifty Percent of patients with flying phobia and 53% of healthy controls reported frightening events in the air. There was no significant difference between the two samples. Thus there were not more classical conditioning events for patients with flying phobia. There also was no significant difference between the two samples for vicarious (model) learning: 37% of flying phobia patients and 23% of healthy controls felt influenced by model learning. The influence of informational learning through media was significantly higher for the clinical sample (70%) than for the control group (37%). Patients with flying phobia experienced significantly more stressful life events in the period of their frightening flight experience (60%) than healthy controls (19%). Frightening experiences while flying are quite common, but not everybody develops a flying phobia. Stressful life events and other factors might enhance conditionability. Informational learning through negative media reports probably reinforces the development of flying phobia. Clinical implications are discussed. © 2015 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), is native to bitter cherry, Prunus emarginata (Douglas ex Hooker) Eaton, but ~100 years ago established on earlier-fruiting domesticated sweet cherry, Prunus avium (L.) L. Here, we determined if eclosion times of ad...
A Stochastic Burst Follows the Periodic Morning Peak in Individual Drosophila Locomotion
Lazopulo, Stanislav; Lopez, Juan A.; Levy, Paul; Syed, Sheyum
2015-01-01
Coupling between cyclically varying external light and an endogenous biochemical oscillator known as the circadian clock, modulates a rhythmic pattern with two prominent peaks in the locomotion of Drosophila melanogaster. A morning peak appears around the time lights turn on and an evening peak appears just before lights turn off. The close association between the peaks and the external 12:12 hour light/dark photoperiod means that respective morning and evening peaks of individual flies are well-synchronized in time and, consequently, feature prominently in population-averaged data. Here, we report on a brief but strong stochastic burst in fly activity that, in contrast to morning and evening peaks, is detectable only in single fly recordings. This burst was observed across 3 wild-type strains of Drosophila melanogaster. In a single fly recording, the burst is likely to appear once randomly within 0.5–5 hours after lights turn on, last for only 2–3 minutes and yet show 5 times greater activity compared to the maximum of morning peak with data binned in 3 minutes. Owing to its variable timing and short duration, the burst is virtually undetectable in population-averaged data. We use a locally-built illumination system to study the burst and find that its incidence in a population correlates with light intensity, with ~85% of control flies showing the behavior at 8000 lux (1942 μW/cm2). Consistent with that finding, several mutant flies with impaired vision show substantially reduced frequency of the burst. Additionally, we find that genetic ablation of the clock has insignificant effect on burst frequency. Together, these data suggest that the pronounced burst is likely generated by a light-activated circuit that is independent of the circadian clock. PMID:26528813
The importance of ecological studies in the control of tsetse flies*
Glover, P. E.
1967-01-01
The author reviews recent ecological research on tsetse flies in East Africa and Northern Nigeria, particularly in connexion with the flies' sensory reactions, and stresses the importance of an accurate knowledge of their daytime and night-time resting-sites and of identifying the sources of their blood meals in order to elucidate the reservoirs of trypanosomiasis. The epidemiology of the disease is considered in the light of studies of trypanosome infections in host and fly. The control of tsetse flies must be based on the practical application of ecological knowledge by methods involving either a direct attack upon the fly (such as trapping or the use of insecticides) or an indirect attack (such as bush clearing or game destruction to eliminate the fly's habitat or food supply); these methods are dealt with in some detail. The author concludes with a discussion of modern trends in research, and a number of lines of research are suggested. PMID:4874781
Time-resolved fluorescence spectroscopy of human brain tumors
NASA Astrophysics Data System (ADS)
Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.
2002-05-01
Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.
Oesterling, Sven; Schalk, Oliver; Geng, Ting; Thomas, Richard D; Hansson, Tony; de Vivie-Riedle, Regina
2017-01-18
For the series furan, furfural and β-furfural we investigated the effect of substituents and their positioning on the photoinduced relaxation dynamics in a combined theoretical and experimental approach. Using time resolved photoelectron spectroscopy with a high intensity probe pulse, we can, for the first time, follow the whole deactivation process of furan through a two photon probe signal. Using the extended 2-electron 2-orbital model [Nenov et al., J. Chem. Phys., 2011, 135, 034304] we explain the formation of one central conical intersection and predict the influence of the aldehyde group of the derivatives on its geometry. This, as well as the relaxation mechanisms from photoexcitation to the final outcome was investigated using a variety of theoretical methods. Complete active space self consistent field was used for on-the-fly calculations while complete active space perturbation theory and coupled cluster theory were used to accurately describe critical configurations. Experiment and theory show the relaxation dynamics of furfural and β-furfural to be slowed down, and together they disclose an additional deactivation pathway, which is attributed to the n O lonepair state introduced with the aldehyde group.
NASA Astrophysics Data System (ADS)
Ciminelli, Cosimo; Granucci, Giovanni; Persico, Maurizio
2008-06-01
The aim of this work is to investigate the mechanism of photoisomerization of an azobenzenic chromophore in a supramolecular environment, where the primary photochemical act produces important changes in the whole system. We have chosen a derivative of azobenzene, with two cyclopeptides attached in the para positions, linked by hydrogen bonds when the chromophore is in the cis geometry. We have run computational simulations of the cis → trans photoisomerization of such derivative of azobenzene, by means of a surface hopping method. The potential energy surfaces and nonadiabatic couplings are computed "on the fly" with a hybrid QM/MM strategy, in which the quantum mechanical subsystem is treated semiempirically. The simulations show that the photoisomerization is fast (about 200 fs) and occurs with high quantum yields, as in free azobenzene. However, the two cyclopeptides are not promptly separated, and the breaking of the hydrogen bonds requires longer times (at least several picoseconds), with the intervention of the solvent molecules (water). As a consequence, the resulting trans-azobenzene is severely distorted, and we show how its approach to the equilibrium geometry could be monitored by time-resolved absorption spectroscopy.
Holographic optical coherence imaging of tumor spheroids
NASA Astrophysics Data System (ADS)
Yu, P.; Mustata, M.; Turek, J. J.; French, P. M. W.; Melloch, M. R.; Nolte, D. D.
2003-07-01
We present depth-resolved coherence-domain images of living tissue using a dynamic holographic semiconductor film. An AlGaAs photorefractive quantum-well device is used in an adaptive interferometer that records coherent backscattered (image-bearing) light from inside rat osteogenic sarcoma tumor spheroids up to 1 mm in diameter in vitro. The data consist of sequential holographic image frames at successive depths through the tumor represented as a visual video "fly-through." The images from the tumor spheroids reveal heterogeneous structures presumably caused by necrosis and microcalcifications characteristic of human tumors in their early avascular growth.
Anthropometric accommodation in USAF cockpits
NASA Technical Reports Server (NTRS)
Zehner, Gregory F.
1994-01-01
Over the past three years, a new set of methodologies has been developed to specify and evaluate anthropometric accommodation in USAF crewstation designs. These techniques are used to improve the ability of the pilot to reach controls, to safely escape the aircraft, to achieve adequate mobility and comfort, and to assure full access to the visual field both inside and outside the aircraft. This paper summarized commonly encountered aircraft accommodation problems, explains the failure of the traditional 'percentile man' design concept to resolve these difficulties, and suggests an alternative approach for improving cockpit design to better accommodate today's more heterogeneous flying population.
DISCOVER AQ Research Plane Arrives
2011-06-28
Pilots Shane Dover, left, and Mike Singer are seen on the flight deck of the P-3B NASA research aircraft at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)
DISCOVER AQ Research Plane Arrives
2011-06-28
WFF Pilots Mike Singer, left, and Shane Dover stand in front of the 117-foot P-3B NASA research aircraft on the tarmac at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)
Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B
2016-05-19
The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm.
Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI.
Ma, Lixia; Wei, Qi; Chen, Yueqin; Song, Qiuyang; Sun, Conghui; Wang, Zhiqiang; Wu, Guanghong
2018-02-01
Batch experiments were conducted to test the effects of various solution properties, such as pH, temperature, initial concentration and anoxic and aerobic atmosphere, on Cd removal by nanoscale zerovalent iron (nZVI) supported on industrial coal fly ash. Cd (II) could be removed by adsorption on fly ash-nZVI in a very short time (5 min) with high removal rates (greater than 99.9%) over a wide range of concentration (5-100 mg l -1 ). Cd (II) was physically adsorbed on the surface of fly ash-nZVI. The preparation of fly ash-nZVI can incorporate the use of waste media, making the overall adsorbent more removal efficient and low cost.
Removal of cadmium from aqueous solutions using industrial coal fly ash-nZVI
Ma, Lixia; Wei, Qi; Chen, Yueqin; Song, Qiuyang; Sun, Conghui; Wang, Zhiqiang
2018-01-01
Batch experiments were conducted to test the effects of various solution properties, such as pH, temperature, initial concentration and anoxic and aerobic atmosphere, on Cd removal by nanoscale zerovalent iron (nZVI) supported on industrial coal fly ash. Cd (II) could be removed by adsorption on fly ash-nZVI in a very short time (5 min) with high removal rates (greater than 99.9%) over a wide range of concentration (5–100 mg l−1). Cd (II) was physically adsorbed on the surface of fly ash-nZVI. The preparation of fly ash-nZVI can incorporate the use of waste media, making the overall adsorbent more removal efficient and low cost. PMID:29515830
Mechanically activated fly ash as a high performance binder for civil engineering
NASA Astrophysics Data System (ADS)
Rieger, D.; Kullová, L.; Čekalová, M.; Novotný, P.; Pola, M.
2017-01-01
This study is aimed for investigation of fly ash binder with suitable properties for civil engineering needs. The fly ash from Czech brown coal power plant Prunerov II was used and mechanically activated to achieve suitable particle size for alkaline activation of hardening process. This process is driven by dissolution of aluminosilicate content of fly ash and by subsequent development of inorganic polymeric network called geopolymer. Hardening kinetics at 25 and 30 °C were measured by strain controlled small amplitude oscillatory rheometry with strain of 0.01 % and microstructure of hardened binder was evaluated by scanning electron microscopy. Strength development of hardened binder was investigated according to compressional and flexural strength for a period of 180 days. Our investigation finds out, that mechanically activated fly ash can be comparable to metakaolin geopolymers, according to setting time and mechanical parameters even at room temperature curing. Moreover, on the bases of long time strength development, achieved compressional strength of 134.5 after 180 days is comparable to performance of high grade Portland cement concretes.
Major depression and fitness to fly by different aviation authorities.
Vuorio, Alpo; Laukkala, Tanja; Navathe, Pooshan
2012-09-01
Safety issues are paramount in aviation and careful treatment protocols have been developed to ensure fitness to fly among aviators recovering from major depressive episodes (MDE). Aeromedical examiners (AMEs) do not necessarily treat depressive patients frequently, so they often consult psychiatrists; however, psychiatrists are rarely familiar with aviator treatment protocols. U.S., Canadian, and Australian regulations allow several choices among antidepressant drugs for flying pilots recovering from an MDE. Symptom stability times before the possible return to flying duties vary from 4 wk to 12 mo. So far European regulations have not allowed antidepressants, but the situation may change.
The aerodynamics of free-flight maneuvers in Drosophila.
Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H
2003-04-18
Using three-dimensional infrared high-speed video, we captured the wing and body kinematics of free-flying fruit flies as they performed rapid flight maneuvers. We then "replayed" the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. The results show that a fly generates rapid turns with surprisingly subtle modifications in wing motion, which nonetheless generate sufficient torque for the fly to rotate its body through each turn. The magnitude and time course of the torque and body motion during rapid turns indicate that inertia, not friction, dominates the flight dynamics of insects.
Interaction of feel system and flight control system dynamics on lateral flying qualities
NASA Technical Reports Server (NTRS)
Bailey, R. E.; Knotts, L. H.
1990-01-01
An experimental investigation of the influence of lateral feel system characteristics on fighter aircraft roll flying qualities was conducted using the variable stability USAF NT-33. Forty-two evaluation flights were flown by three engineering test pilots. The investigation utilized the power approach, visual landing task and up-and-away tasks including formation, gun tracking, and computer-generated compensatory attitude tracking tasks displayed on the Head-Up Display. Experimental variations included the feel system frequency, force-deflection gradient, control system command type (force or position input command), aircraft roll mode time constant, control system prefilter frequency, and control system time delay. The primary data were task performance records and evaluation pilot comments and ratings using the Cooper-Harper scale. The data highlight the unique and powerful effect of the feel system of flying qualities. The data show that the feel system is not 'equivalent' in flying qualities influence to analogous control system elements. A lower limit of allowable feel system frequency appears warranted to ensure good lateral flying qualities. Flying qualities criteria should most properly treat the feel system dynamic influence separately from the control system, since the input and output of this dynamic element is apparent to the pilot and thus, does not produce a 'hidden' effect.
NASA Astrophysics Data System (ADS)
Bourg, Éric
2005-06-01
Previous studies have shown that exposing flies to hypergravity (3g or 5g) for the first 2 weeks of adult life slightly increases longevity of male flies and survival time at 37°C for both sexes, and delays an age-linked behavioral change. The present experiment tested whether the hypergravity could also protect flies from four successive deleterious non-lethal heat shocks at 4 and 5 weeks of age. Males that lived in hypergravity for the first 2 weeks of adult life lived slightly longer (ca. +15% or 1.2 day) after heat shocks (30 min or 45 min at 37°C) than flies that always lived at 1g, but this positive effect of hypergravity was not observed in females. Therefore, hypergravity exposure at young age can help the male flies recovering from a heat shock at older ages.
A New Flying Wire System for the Tevatron
NASA Astrophysics Data System (ADS)
Blokland, Willem; Dey, Joseph; Vogel, Greg
1997-05-01
A new Flying Wires system replaces the old system to enhance the analysis of the beam emittance, improve the reliability, and handle the upcoming upgrades of the Tevatron. New VME data acquisition modules and timing modules allow for more bunches to be sampled more precisely. The programming language LabVIEW, running on a Macintosh computer, controls the VME modules and the nuLogic motion board that flies the wires. LabVIEW also analyzes and stores the data, and handles local and remote commands. The new system flies three wires and fits profiles of 72 bunches to a gaussian function within two seconds. A new console application operates the flying wires from any control console. This paper discusses the hardware and software setup, the capabilities and measurement results of the new Flying Wires system.
Length Contraction Should not be Independent of Time
NASA Astrophysics Data System (ADS)
Smarandache, Florentin
2013-10-01
In Special Theory of Relativity it looks that the length contraction along the direction of the motion is independent of time, i.e. if a rocket flies one second, or the rocket flies one year the rocket's along-the-motion length contraction is the same, since the contraction factor C (v) =√{ 1 -v2/c2 } depends on the rocket's relativistic speed (v) and on the light speed in vacuum (c) only. We find this as unrealistic, incomplete. It is logical that flying more and more it should increase the length contraction. What about the cosmic bodies that continuously travel, do they contract only once or are they continuously contracting?
Recurrent and Transient Spinal Pain Among Commercial Helicopter Pilots.
Andersen, Knut; Baardsen, Roald; Dalen, Ingvild; Larsen, Jan Petter
2015-11-01
The aim of this study was to provide information on the occurrence of spinal pain, i.e., low back and neck pain, among commercial helicopter pilots, along with possible associations between pain and anthropometric and demographic factors and flying exposure. Data were collected through a subjective and retrospective survey among all the 313 (294 men, 19 women) full-time pilots employed by two helicopter companies. A questionnaire was used to assess the extent of spinal complaints in a transient and recurrent pain pattern along with information on physical activities, occupational flying experience, and airframes. The survey had 207 responders (194 men, 13 women). The pilots had extensive flying experience. Spinal pain was reported by 67%. Flying-related transient pain was reported among 50%, whereas recurrent spinal pain, not necessarily associated with flying, was reported by 52%. Women experienced more pain, but sample size prevented further conclusions. Male pilots reporting any spinal pain flew significantly more hours last year (median 500 h, IQR 400-650) versus men with no pain (median 445 h, IQR 300-550). Male pilots with transient or recurrent spinal pain did not differ from nonaffected male colleagues in the measured parameters. Spinal pain is a frequent problem among male and female commercial helicopter pilots. For men, no significant associations were revealed for transient or recurrent spinal pain with age, flying experience in years, total hours, annual flying time, type of aircraft, or anthropometric factors except for any spinal pain related to hours flown in the last year.
Daytime behavior of Pteropus vampyrus in a natural habitat: the driver of viral transmission.
Hengjan, Yupadee; Pramono, Didik; Takemae, Hitoshi; Kobayashi, Ryosuke; Iida, Keisuke; Ando, Takeshi; Kasmono, Supratikno; Basri, Chaerul; Fitriana, Yuli Sulistya; Arifin, Eko M Z; Ohmori, Yasushige; Maeda, Ken; Agungpriyono, Srihadi; Hondo, Eiichi
2017-06-29
Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11-25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox's behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild.
Flying the Needles: Flight Deck Automation Erodes Fine-Motor Flying Skills Among Airline Pilots.
Haslbeck, Andreas; Hoermann, Hans-Juergen
2016-06-01
The aim of this study was to evaluate the influence of practice and training on fine-motor flying skills during a manual instrument landing system (ILS) approach. There is an ongoing debate that manual flying skills of long-haul crews suffer from a lack of flight practice due to conducting only a few flights per month and the intensive use of automation. However, objective evidence is rare. One hundred twenty-six randomly selected airline pilots had to perform a manual flight scenario with a raw data precision approach. Pilots were assigned to four equal groups according to their level of practice and training by fleet (short-haul, long-haul) and rank (first officer, captain). Average ILS deviation scores differed significantly in relation to the group assignments. The strongest predictor variable was fleet, indicating degraded performance among long-haul pilots. Manual flying skills are subject to erosion due to a lack of practice on long-haul fleets: All results support the conclusion that recent flight practice is a significantly stronger predictor for fine-motor flying performance than the time period since flight school or even the total or type-specific flight experience. Long-haul crews have to be supported in a timely manner by adequate training tailored to address manual skills or by operational provisions like mixed-fleet flying or more frequent transitions between short-haul and long-haul operation. © 2016, Human Factors and Ergonomics Society.
Sukhoterin, A F; Pashchenko, P S
2014-01-01
Purpose of the work was to analyze morbidity among pilots of different categories of aircraft, and to investigate reactivity of the vegetative nervous system (VNS) in pilots flying high maneuver aircrafts varying in age and flying time. Morbidity was deduced from the data of aviation medical exams. The VNS investigation involved 56 pilots of fighter and assault aircrafts both in the inter-flight periods and during duty shifts. Cytochemistry was used to measure glycogen in peripheral blood neutrophils in 77 pilots. It was shown that the pre-stress condition in pilots with the flying time more than 1000 hours may transform to chronic stress, provided that the flight duties remain heavy. According to the cytochemical data, concentration of neutrophilic glycogen indicating the energy potential of peripheral blood leukocytes is controlled by hormones secreted by the VNS sympathetic and parasympathetic components.
Sound source localization inspired by the ears of the Ormia ochracea
NASA Astrophysics Data System (ADS)
Kuntzman, Michael L.; Hall, Neal A.
2014-07-01
The parasitoid fly Ormia ochracea has the remarkable ability to locate crickets using audible sound. This ability is, in fact, remarkable as the fly's hearing mechanism spans only 1.5 mm which is 50× smaller than the wavelength of sound emitted by the cricket. The hearing mechanism is, for all practical purposes, a point in space with no significant interaural time or level differences to draw from. It has been discovered that evolution has empowered the fly with a hearing mechanism that utilizes multiple vibration modes to amplify interaural time and level differences. Here, we present a fully integrated, man-made mimic of the Ormia's hearing mechanism capable of replicating the remarkable sound localization ability of the special fly. A silicon-micromachined prototype is presented which uses multiple piezoelectric sensing ports to simultaneously transduce two orthogonal vibration modes of the sensing structure, thereby enabling simultaneous measurement of sound pressure and pressure gradient.
Srinivasan, R; Jambulingam, P; Gunasekaran, K; Boopathidoss, P S
2008-02-01
The Directorate of Public Health (DPH), Tamil Nadu, in southern India employed spraying of dichlorvos (76% EC) for quick elimination of fly concentrations in the tsunami-hit coastal villages at the concentration of 304g (a.i.)/10,000m(2). However, nuisance of house flies remained high particularly in temporary shelters and centralized relief kitchens. Susceptibility of house fly, Musca domestica to dichlorvos was determined in the laboratory to provide information for an effective management of this pest. Various concentrations of dichlorvos (76% EC) viz., 0.1, 0.2, 0.4, 0.6 and 0.8microg (a.i.) per fly, were tested using topical application against F(1) progenies of house flies collected 12 months after insecticide applications from different habitats in the tsunami-hit coastal villages. Fly mortality was recorded at 24h post treatment. Parallel controls were maintained for comparison. Mortality of the house flies varied between 17.5% and 100% and increased with an increase in dosage of the insecticide. Mortality was >80% at 0.6 and 0.8microg (a.i.) per fly. The LD(50) of dichlorvos tested against flies collected from different villages varied from 0.218microg (a.i.) to 0.235microg (a.i.) per fly and the LD(90) varied from 0.574microg (a.i.) to 0.639microg (a.i.) per fly. House flies collected from a rural village, Thirukanur that had never been exposed for insecticide treatment in the past one decade, when tested, the mortality varied between 92.5% and 100% and increased with concentration of dichlorvos. Mortality was >90% from 0.2microg (a.i.) per fly and the LD(50) was 0.0399microg (a.i.)/fly, while the LD(90) was 0.1604microg (a.i.)/fly. The LD(90) values of the flies collected from the tsunami-hit villages were 3.5-3.9 times higher than that of the flies collected from Thirukanur. Fly abundance remained high in tsunami-hit villages with no marked reduction, suggesting that the flies had developed tolerance to dichlorvos. It is suggested that for an effective management of these resistant populations changing insecticides, application of unrelated insecticide, together with an appropriate environmental sanitation measure is necessary to keep the population under check.
Mattsson, Monte; Hood, Glen R; Feder, Jeffrey L; Ruedas, Luis A
2015-12-01
Host shifts of phytophagous insect specialists to novel plants can result in divergent ecological adaptation, generating reproductive isolation and potentially new species. Rhagoletis pomonella fruit flies in eastern North America underwent a host shift ~160 ya from native downy hawthorn (Crataegus mollis) to introduced, domesticated apple (Malus domestica). Divergent selection on diapause phenology related to the earlier fruiting time of apples versus downy hawthorns resulted in partial allochronic reproductive isolation between the fly races. Here, we test for how rapid and repeatable shifts in life-history timing are driving ecological divergence of R. pomonella in the Pacific Northwestern USA. The fly was introduced into the region via larval-infested apples 40-65 ya and now attacks native black hawthorn (Crataegus douglasii) and introduced ornamental hawthorn (Crataegus monogyna), in addition to early- and late-maturing apple varieties in the region. To investigate the life-history timing hypothesis, we used a field-based experiment to characterize the host-associated eclosion and flight activity patterns of adults, and the feeding times of larvae at a field site in Vancouver, Washington. We also assessed the degree to which differences in host-fruiting time generate allochronic isolation among apple-, black hawthorn-, and ornamental hawthorn-associated fly populations. We conclude that host-associated fly populations are temporally offset 24.4% to 92.6% in their seasonal distributions. Our results imply that R. pomonella possesses the capacity for rapid and repeatable shifts in diapause life history to match host-fruiting phenology, which can generate ecologically based reproductive isolation, and potentially biodiversity in the process.
Flight-Deck Strategies and Outcomes When Flying Schedule-Matching Descents
NASA Technical Reports Server (NTRS)
Kaneshige, John T.; Sharma, Shivanjli; Martin Lynne; Lozito, Sandra; Dulchinos, Victoria
2013-01-01
Recent studies at NASA Ames Research Center have investigated the development and use of ground-based (air traffic controller) tools to manage and schedule air traffic in future terminal airspace. An exploratory study was undertaken to investigate the impacts that such tools (and concepts) could have on the flight-deck. Ten Boeing 747-400 crews flew eight optimized profile descents in the Los Angeles terminal airspace, while receiving scripted current day and futuristic speed clearances, to ascertain their ability to fly schedulematching descents without prior training. Although the study was exploratory in nature, four variables were manipulated: route constraints, winds, speed changes, and clearance phraseology. Despite flying the same scenarios with the same events and timing, there were significant differences in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The focus of this paper is the examination of the crews' aircraft management strategies and outcomes. This includes potentially problematic human-automation interaction issues that may negatively impact arrival times, speed and altitude constraint compliance, and energy management efficiency.
A brief review on fly ash and its use in surface engineering
NASA Astrophysics Data System (ADS)
Bhajantri, Vishwanath; Krishna, Prasad; Jambagi, Sudhakar
2018-04-01
Fly ash is a by-product obtained from coal power plants. Over the past two decades, handling this industrial waste has been a great challenge for many developing countries. However, this menace can be used in many industrial applications viz., civil, automobile and aerospace applications. In civil industry, the fly ash has been used in concreate to enhance the porosity that increases the curing time of the concrete. The fly ash has been gaining importance these days as a feedstock material for many thermal spray processes. In automobile sector, the fly ash has been used as a thermal barrier coating in IC engines, whereas in aerospace industry, which demands lighter and stronger materials, the fly ash has been used as a reinforcement material. Hence, so far, fly ash has been used as an either single or a composite feed stock material in thermal spray processes. The fly ash with other materials like alumina, titania and red mud have been deposited using thermal spray processes. These coatings have exhibited higher wear, corrosion and erosion resistance as compared to the uncoated specimens. In this paper, a brief review on fly ash and its use, especially its use as a feed stock in thermal spray coating, is presented. Therefore, the use of fly ash has opened a new frontier of research in thermal spray coating area where economically viable coatings can be produced using industrial waste like fly ash.
Schulz, Tino; Rydzewski, Kerstin; Schunder, Eva; Holland, Gudrun; Bannert, Norbert; Heuner, Klaus
2012-12-01
In Legionella pneumophila, the regulation of the flagellum and the expression of virulence traits are linked. FleQ, RpoN and FliA are the major regulators of the flagellar regulon. We demonstrated here that all three regulatory proteins mentioned (FleQ, RpoN and FliA) are necessary for full in vivo fitness of L. pneumophila strains Corby and Paris. In this study, we clarified the role of FleQ for fliA expression from the level of mRNA toward protein translation. FleQ enhanced fliA expression, but FleQ and RpoN were not necessary for basal expression. In addition, we identified the initiation site of fliA in L. pneumophila and found a putative σ(70) promoter element localized upstream. The initiation site was not influenced in the ΔfleQ or ΔrpoN mutant strain. We demonstrated that there is no significant difference in the regulation of fliA between strains Corby and Paris, but the FleQ-dependent induction of fliA transcription in the exponential phase is stronger in strain Paris than in strain Corby. In addition, we showed for the first time the presence of a straight hook at the pole of the non-flagellated ΔfliA and ΔfliD mutant strains by electron microscopy, indicating the presence of an intact basal body in these strains.
Development of diet-induced insulin resistance in adult Drosophila melanogaster.
Morris, Siti Nur Sarah; Coogan, Claire; Chamseddin, Khalil; Fernandez-Kim, Sun Ok; Kolli, Santharam; Keller, Jeffrey N; Bauer, Johannes H
2012-08-01
The fruit fly Drosophila melanogaster is increasingly utilized as an alternative to costly rodent models to study human diseases. Fly models exist for a wide variety of human conditions, such as Alzheimer's and Parkinson's Disease, or cardiac function. Advantages of the fly system are its rapid generation time and its low cost. However, the greatest strength of the fly system are the powerful genetic tools that allow for rapid dissection of molecular disease mechanisms. Here, we describe the diet-dependent development of metabolic phenotypes in adult fruit flies. Depending on the specific type of nutrient, as well as its relative quantity in the diet, flies show weight gain and changes in the levels of storage macromolecules. Furthermore, the activity of insulin-signaling in the major metabolic organ of the fly, the fat body, decreases upon overfeeding. This decrease in insulin-signaling activity in overfed flies is moreover observed when flies are challenged with an acute food stimulus, suggesting that overfeeding leads to insulin resistance. Similar changes were observed in aging flies, with the development of the insulin resistance-like phenotype beginning at early middle ages. Taken together, these data demonstrate that imbalanced diet disrupts metabolic homeostasis in adult D. melanogaster and promotes insulin-resistant phenotypes. Therefore, the fly system may be a useful alternative tool in the investigation of molecular mechanisms of insulin resistance and the development of pharmacologic treatment options. © 2012 Elsevier B.V. All rights reserved.
Chauhan, Ved; Chauhan, Abha
2016-06-01
Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. Published by Elsevier Ltd.
Destruction kinetic of PCDDs/Fs in MSWI fly ash using microwave peroxide oxidation.
Chang, Yu-Min; Fang, Wen-Bin; Tsai, Kuo-Sheng; Kao, Jimmy C M; Lin, Kae-Long; Chen, Ching-Ho
2015-01-01
Microwave peroxide oxidation is a less greenhouse gas emission and energy-efficient technology to destroy toxic organic compounds in hazardous waste. The research novelty is to adopt the innovative microwave peroxide oxidation in H2SO4/HNO3 solution to efficiently destroy the polychlorinated dibenzo-p-dioxins (PCDDs)/Fs in municipal solid waste incineration fly ash. The major objective of this paper is to study dynamic destruction of PCDDs/Fs using the microwave peroxide oxidation. Almost all PCDDs/Fs in the raw fly ash can be destructed in 120 min at a temperature of 423 K using the microwave peroxide oxidation treatment. It was found that the microwave peroxide oxidation provides the potential to destruct the PCDDs/Fs content in municipal solid waste incinerator (MSWI) fly ash to a low level as a function of treatment time. A useful kinetic correlation between destruction efficiency and treatment conditions is proposed on the basis of the experimental data obtained in this study. The significance of this work in terms of practical engineering applications is that the necessary minimum treatment time can be solved using a proposed graphic illustration method, by which the minimum treatment time is obtained if the desired destruction efficiency and treatment temperature are known. Because of inorganic salt dissolution, the temperature would be a critical factor facilitating the parts of fly ash dissolution. Material loss problem caused by the microwave peroxide oxidation and the effects of treatment time and temperature are also discussed in this paper.
Vector potential of houseflies for the bacterium Aeromonas caviae.
Nayduch, D; Noblet, G Pittman; Stutzenberger, F J
2002-06-01
Houseflies, Musca domestica Linnaeus (Diptera: Muscidae), have been implicated as vectors or transporters of numerous gastrointestinal pathogens encountered during feeding and ovipositing on faeces. The putative enteropathogen Aeromonas caviae (Proteobacteria: Aeromonadaceae) may be present in faeces of humans and livestock. Recently A. caviae was detected in houseflies by PCR and isolated by culture methods. In this study, we assessed the vector potential of houseflies for A. caviae relative to multiplication and persistence of the bacterium in the fly and to contamination of other flies and food materials. In experimentally fed houseflies, the number of bacteria increased up to 2 days post-ingestion (d PI) and then decreased significantly 3 d PI. A large number of bacteria was detected in the vomitus and faeces of infected flies at 2-3 d PI. The bacteria persisted in flies for up to 8 d PI, but numbers were low. Experimentally infected flies transmitted A. caviae to chicken meat, and transmissibility was directly correlated with exposure time. Flies contaminated the meat for up to 7 d PI; however, a significant decrease in contamination was observed 2-3 d PI. In the fly-to-fly transmission experiments, the transmission of A. caviae was observed and was apparently mediated by flies sharing food. These results support houseflies as potential vectors for A. caviae because the bacterium multiplied, persisted in flies for up to 8 d PI, and could be transmitted to human food items.
Li, Kaili; Chen, Huiying; Jiang, Jinjin; Li, Xiangyu; Xu, Jiannong; Ma, Yajun
2016-01-01
Sand fly Phlebotomus chinensis is a primary vector of transmission of visceral leishmaniasis in China. The sand flies have adapted to various ecological niches in distinct ecosystems. Characterization of the microbial structure and function will greatly facilitate the understanding of the sand fly ecology, which would provide critical information for developing intervention strategy for sand fly control. In this study we compared the bacterial composition between two populations of Ph. chinensis from Henan and Sichuan, China. The phylotypes were taxonomically assigned to 29 genera of 19 families in 9 classes of 5 phyla. The core bacteria include Pseudomonas and enterobacteria, both are shared in the sand flies in the two regions. Interestingly, the endosymbionts Wolbachia and Rickettsia were detected only in Henan, while the Rickettsiella and Diplorickettsia only in Sichuan. The intracellular bacteria Rickettsia, Rickettsiella and Diplorickettsia were reported for the first time in sand flies. The influence of sex and feeding status on the microbial structure was also detected in the two populations. The findings suggest that the ecological diversity of sand fly in Sichuan and Henan may contribute to shaping the structure of associated microbiota. The structural classification paves the way to function characterization of the sand fly associated microbiome. PMID:27819272
Wu, Huanan; Zhu, Yu; Bian, Songwei; Ko, Jae Hac; Li, Sam Fong Yau; Xu, Qiyong
2018-03-01
As a byproduct of municipal solid waste incineration (MSWI) plant, fly ash is becoming a challenge for waste management in recent years. In this study, MSWI fly ash (FA) was evaluated for the potential capacity of odorous gas H 2 S removal. Results showed that fly ash demonstrated longer breakthrough time and higher H 2 S capacities than coal fly ash and sandy soil, due to its high content of alkali oxides of metals including heavy metals. H 2 S adsorption capacities of FA1 and FA2 were 15.89 and 12.59 mg H 2 S/g, respectively for 750 ppm H 2 S. The adsorption of H 2 S on fly ash led to formation of elemental sulfur and metal sulfide. More importantly, the formation of metal sulfide significantly reduced the leachability of heavy metals, such as Cr, Cu, Cd and Pb as shown by TCLP tests. The adsorption isotherms fit well with Langmuir model with the correlation coefficient over 0.99. The adsorption of H 2 S on fly ash features simultaneous H 2 S removal and stabilization and heavy metals found in most MSWI fly ash, making fly ash the potential low cost recycled sorbent material. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2009-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.
Schutze, Mark K; Virgilio, Massimiliano; Norrbom, Allen; Clarke, Anthony R
2017-01-31
Accurate species delimitation underpins good taxonomy. Formalization of integrative taxonomy in the past decade has provided a framework for using multidisciplinary data to make species delimitation hypotheses more rigorous. We address the current state of integrative taxonomy by using as a case study an international project targeted at resolving three important tephritid species complexes: Bactrocera dorsalis complex, Anastrepha fraterculus complex, and Ceratitis FAR (C. fasciventris, C. anonae, C. rosa) complex. The integrative taxonomic approach has helped deliver significant advances in resolving these complexes: It has been used to identify some taxa as belonging to the same biological species as well as to confirm hidden cryptic diversity under a single taxonomic name. Nevertheless, the general application of integrative taxonomy has not been without issue, revealing challenges that must be considered when undertaking an integrative taxonomy project. Scrutiny of this international case study provides a unique opportunity to document lessons learned for the benefit of not only tephritid taxonomists, but also the wider taxonomic community.
Awata, Hiroko; Watanabe, Takahito; Hamanaka, Yoshitaka; Mito, Taro; Noji, Sumihare; Mizunami, Makoto
2015-11-02
Elucidation of reinforcement mechanisms in associative learning is an important subject in neuroscience. In mammals, dopamine neurons are thought to play critical roles in mediating both appetitive and aversive reinforcement. Our pharmacological studies suggested that octopamine and dopamine neurons mediate reward and punishment, respectively, in crickets, but recent studies in fruit-flies concluded that dopamine neurons mediates both reward and punishment, via the type 1 dopamine receptor Dop1. To resolve the discrepancy between studies in different insect species, we produced Dop1 knockout crickets using the CRISPR/Cas9 system and found that they are defective in aversive learning with sodium chloride punishment but not appetitive learning with water or sucrose reward. The results suggest that dopamine and octopamine neurons mediate aversive and appetitive reinforcement, respectively, in crickets. We suggest unexpected diversity in neurotransmitters mediating appetitive reinforcement between crickets and fruit-flies, although the neurotransmitter mediating aversive reinforcement is conserved. This study demonstrates usefulness of the CRISPR/Cas9 system for producing knockout animals for the study of learning and memory.
Fussnecker, Brendon L; Smith, Brian H; Mustard, Julie A
2006-10-01
The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially affected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception.
Fussnecker, Brendon L.; Smith, Brian H.; Mustard, Julie A.
2006-01-01
The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially effected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception. PMID:17028016
NASA Astrophysics Data System (ADS)
Zhou, Wenyong; Yuan, Jianping; Luo, Jianjun
2005-11-01
Autonomous on-orbit servicing provides flexibility to space systems and has great value both in civil and in military. When a satellite performs on-orbit servicing tasks, flying around is the basic type of motion. This paper is concerned with the design and control problems of a chaser satellite flying around a target spacecraft in non-coplanar elliptical orbit for a long time. At first, a mathematical model used to design a long-term flying around trajectory is presented, which is applicable to the situation that the target spacecraft flies in an elliptical orbit. The conditions of the target at the centre of the flying around path are deduced. Considering the safety and task requirements, a long-term flying around trajectory is designed. Taking into account perturbations and navigation errors which can cause the trajectory unstable and mission impossible, a two-impulse control method is put forward. Genetic algorithm is used to minimize the cost function which considers fuel consumption and bias simultaneously. Some simulation works are carried out and the results indicate the flying around mathematical model and the trajectory control method can be used in the design and control of a long-term flying around trajectory.
Zheng, Chunyan; Yang, Dongyu; Li, Zhiqiang; Xu, Yijuan
2018-04-11
The objective of this study was to evaluate the toxicity of flavor enhancers to the oriental fruit fly Bactrocera dorsalis (Hendel). The flavor enhancers glycine, disodium guanylate, succinic acid disodium salt, monosodium glutamate (MSG), disodium inosinate, and L-alanine significantly increased the mortality of B. dorsalis flies. The mortality of flies that fed on glycine, disodium guanylate, succinic acid disodium salt, and MSG was greater than 90%. Additionally, fruit fly mortality increased with increases in both time and concentration. Glycine not only reduced the climbing ability of B. dorsalis but also affected the duration and frequency of its behavioral patterns (flight, walking, grooming and inactivity). Compared with adult flies in the control group, adult B. dorsalis flies that fed on glycine exhibited a significantly increased duration and frequency of inactivity and a decreased duration and frequency of both flight and walking. However, the effect of glycine on grooming activity was not significant. These findings demonstrate the toxic effects of flavor enhancers on B. dorsalis. Glycine also affected the behavior of adult flies at a low dose. Therefore, glycine has potentially toxic to insects and also likely to have a negative impact at sublethal concentrations.
A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture.
Zhong, Yuanhong; Gao, Junyuan; Lei, Qilun; Zhou, Yao
2018-05-09
Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications.
A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture
Zhong, Yuanhong; Gao, Junyuan; Lei, Qilun; Zhou, Yao
2018-01-01
Rapid and accurate counting and recognition of flying insects are of great importance, especially for pest control. Traditional manual identification and counting of flying insects is labor intensive and inefficient. In this study, a vision-based counting and classification system for flying insects is designed and implemented. The system is constructed as follows: firstly, a yellow sticky trap is installed in the surveillance area to trap flying insects and a camera is set up to collect real-time images. Then the detection and coarse counting method based on You Only Look Once (YOLO) object detection, the classification method and fine counting based on Support Vector Machines (SVM) using global features are designed. Finally, the insect counting and recognition system is implemented on Raspberry PI. Six species of flying insects including bee, fly, mosquito, moth, chafer and fruit fly are selected to assess the effectiveness of the system. Compared with the conventional methods, the test results show promising performance. The average counting accuracy is 92.50% and average classifying accuracy is 90.18% on Raspberry PI. The proposed system is easy-to-use and provides efficient and accurate recognition data, therefore, it can be used for intelligent agriculture applications. PMID:29747429
Drag-n-fly: a Proposal in Response to a Low Reynolds Number Station Keeping Mission
NASA Technical Reports Server (NTRS)
Foohey, Mark; Niehaus, John; Neumann, Jenny; Deviny, Pat; Zurovchak, Jerry; Brenner, Joey; Gendron, Peter
1990-01-01
The Drag-n-Fly is a remotely piloted, low Reynolds number vehicle. It was designed to maintain level controlled flight and fly a closed course at flight speeds corresponding to Reynolds numbers of less than 2 x 10(exp 5) and as close to 1 x 10(exp 5) as possible. The success of the mission will be associated with achieving the lowest mean chord Reynolds number possible and maximizing loiter time on the course. The flight plan for the Drag-n-Fly calls for the vehicle to ascent to a cruise altitude of 25 ft. The airfoil selected for the Drag-n-Fly is a Spica chosen for its high lift coefficient at low Reynolds number. The propulsion system for the Drag-n-Fly consists of a 10 inch diameter propeller mounted on the front of the vehicle. Structural support for the Drag-n-Fly comes from four box beams running the length of the fuselage. The tail and horizontal stabilizers are located far aft of the lifting surface in order to assure proper static stability. The present design for the Drag-n-Fly will meet the criteria for the present mission.
Improvements in brain activation detection using time-resolved diffuse optical means
NASA Astrophysics Data System (ADS)
Montcel, Bruno; Chabrier, Renee; Poulet, Patrick
2005-08-01
An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.
The repellency of lemongrass oil against stable flies, tested using video tracking
Baldacchino, Frédéric; Tramut, Coline; Salem, Ali; Liénard, Emmanuel; Delétré, Emilie; Franc, Michel; Martin, Thibaud; Duvallet, Gérard; Jay-Robert, Pierre
2013-01-01
Lemongrass oil (Cymbopogon citratus) is an effective repellent against mosquitoes (Diptera: Culicidae) and house flies (Diptera: Muscidae). In this study, its effectiveness was assessed on stable flies (Diptera: Muscidae) in laboratory conditions. First, we demonstrated that lemongrass oil is an active substance for antennal olfactory receptor cells of Stomoxys calcitrans as indicated by a significant increase in the electroantennogram responses to increasing doses of lemongrass oil. Feeding-choice tests in a flight cage with stable flies having access to two blood-soaked sanitary pads, one of which was treated with lemongrass oil, showed that stable flies (n = 24) spent significantly more time in the untreated zone (median value = 218.4 s) than in the treated zone (median value = 63.7 s). No stable flies fed on the treated pad, whereas nine fed on the untreated pad. These results suggest that lemongrass oil could be used as an effective repellent against stable flies. Additional studies to confirm its spatial repellent and feeding deterrent effects are warranted. PMID:23759542
Code of Federal Regulations, 2014 CFR
2014-07-01
... or more; or (b) Extend your travel time by 6 hours or more; or (c) Require a connecting time of 4... Fly America Act requirements apply when I travel solely outside the United States, and a U.S. flag air... Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...
Code of Federal Regulations, 2013 CFR
2013-07-01
... or more; or (b) Extend your travel time by 6 hours or more; or (c) Require a connecting time of 4... Fly America Act requirements apply when I travel solely outside the United States, and a U.S. flag air... Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...
Code of Federal Regulations, 2010 CFR
2010-07-01
... or more; or (b) Extend your travel time by 6 hours or more; or (c) Require a connecting time of 4... Fly America Act requirements apply when I travel solely outside the United States, and a U.S. flag air... Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...
Code of Federal Regulations, 2011 CFR
2011-07-01
... or more; or (b) Extend your travel time by 6 hours or more; or (c) Require a connecting time of 4... Fly America Act requirements apply when I travel solely outside the United States, and a U.S. flag air... Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...
Code of Federal Regulations, 2012 CFR
2012-07-01
... or more; or (b) Extend your travel time by 6 hours or more; or (c) Require a connecting time of 4... Fly America Act requirements apply when I travel solely outside the United States, and a U.S. flag air... Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...
Selenium content and oxidation states in fly ashes from western U.S. coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V; Quinn, Thomas R
2003-08-01
A selective extraction scheme was developed for the determination of the oxidation states of Se species in coal ashes. As compared to HF dissolution, extractions with 70% HC1O4 mobilized 90 to 100% of all compound and redox forms of Se from four of the five fly ashes. Extractions with 16M HNO3 did not mobilize all forms of Se as effectively as perchloric acid. Both oxidized forms of Se (IV and VI) were completely mobilized by 12M HCl extraction. Deionized-distilled water was not an effective extractant for mobilizing all compound forms of Se(IV) from fly ashes. Extraction data (70% HClO4, 16Mmore » HNO3, 12M HCl, DI water) indicated that the solid:solution ratio is a critical factor in Se extractability from fly ashes. Maximum extractions in all cases were obtained only with very high (1:500) solid:solution ratios. Extraction times from 1.5 to 25 hours did not significantly change Se extractability with any of the extractants except with 12M HCl, which required a minimum reaction time of 48 hours to attain maximum Se extractability. Reaction times shorter than the critical time and low solid:solution ratios significantly affected Se extractability from these fly ashes. Measurements of Se content and redox state in particle size and density fractions five western United States coal ashes indicated that typically, the Se content increased with decreasing particle size.. However, no consistent trend in Se concentration between the light and heavy density fractions of <2.7-m size fraction was observed. Selenium redox state data indicated that only Se(0) and Se(IV) forms were present in these five coal ashes. The presence of Se(IV) is significant since it is much more easily mobilized than the elemental form. Examination of fly ashes by the proposed scheme to determine Se redox species could permit better estimation of the Se content of plants grown on fly ash amended soils.« less
Mullens, Bradley A; Watson, D Wes; Gerry, Alec C; Sandelin, Broc A; Soto, Diane; Rawls, Diana; Denning, Steve; Guisewite, Lena; Cammack, Jonathan
2017-10-15
Adult horn fly populations were tracked on cattle for 2-week periods before, during and after multiple treatments (every 3-4days) with two repellents in a mineral oil carrier. Cattle were sprayed four times in a two-week period either with 2% geraniol (125ml/cow) or a 15% mixture of short chain fatty acids (C8-C9-C10)(250ml/cow), and there were untreated control cattle. Trials were conducted in California and North Carolina for 3 summers. Short-term fly counts (same day) on treated cattle were reduced by 61-99%, depending on material and trial, and the fatty acid mixture provided better control than geraniol. Horn fly counts were suppressed for 1-3 d and rebounded somewhat after both treatments. Consecutive treatments showed evidence of persistent impact in California where herds were more isolated. Rebounds to pre-treatment levels 3-4 d after treatment occurred more often in North Carolina, where other infested cattle were closer to treated herds. By 3-4 d post-treatment, horn flies were reduced by 29-61% in California and 0-83% in North Carolina, relative to pre-treatment. Background behavior frequencies were assessed from hundreds of counts on untreated, infested California cattle, where horn flies were the only abundant biting fly. Behavior averages were 16.5 tail flicks, 7.6 skin twitches, 1.2 head throws, or 0.2 leg stamps per 2min observation period. At horn fly densities from about 200 to more than 1000 flies per animal (moderate to high numbers), fly defensive behaviors on control cattle were poorly related (or unrelated) to fly numbers. Immediately after repellent application, however, flies were almost absent and behavior frequencies dropped distinctly. Cattle fly defensive behaviors therefore seem to be quite sensitive to low (less than 100 flies/animal) horn fly densities, and behaviors would be a poor quantitative tool to track fly stress at moderate densities and above. Both geraniol and the fatty acids show promise for horn fly control, especially in organic agriculture. Treatments at 1-2 d intervals probably would keep infestations below the economic threshold (200 flies/cow). Copyright © 2017 Elsevier B.V. All rights reserved.
Cost Avoidance Techniques for RC-135 Program Flying Training
2013-06-01
135, age has an even greater impact . Built in the 1960’s, RC-135s have covered tours 8 over Vietnam and Operations Southern/Northern Watch. Over...of one PFT done on a weekly basis, although seemingly insignificant, could have enormous impact over time. Even the smallest regular cost savings...Force Flying Hour Costs Four variables make up the flying hour program. They are supplies (tools used to repair aircraft), impact card (purchases by
Yee, Wee L.
2014-01-01
Abstract Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry ( Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) ( Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R . indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. PMID:25527581
Yee, Wee L
2014-01-01
Seasonal distributions of the western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), in sweet cherry (Prunus avium (L.) L.) (major host), black hawthorn (occasional developmental host) (Crataegus douglasii Lindley), and other trees were determined in a ponderosa pine ecosystem in Washington state, USA. The hypothesis that most fly dispersal from cherry trees occurs after fruit senesce or drop was tested, with emphasis on movement to black hawthorn trees. Sweet cherry fruit developed earlier than black hawthorn, bitter cherry (common host), choke cherry, and apple fruit. Flies were usually captured first in sweet cherry trees but were caught in bitter cherry and other trees throughout the season. Peak fly capture periods in sweet cherry began around the same time or slightly earlier than in other trees. However, peak fly capture periods in black hawthorn and other nonsweet cherry trees continued after peak periods in sweet cherry ended, or relative fly numbers within sweet cherry declined more quickly than those within other trees. Larvae were reared from sweet and bitter cherry but not black hawthorn fruit. Results provide partial support for the hypothesis in that although R. indifferens commonly disperses from sweet cherry trees with fruit, it could disperse more, or more flies are retained in nonsweet cherry trees after than before sweet cherries drop. This could allow opportunities for the flies to use other fruit for larval development. Although R. indifferens infestation in black hawthorn was not detected, early season fly dispersal to this and other trees and fly presence in bitter cherry could make fly management in sweet cherry difficult. Published by Oxford University Press on behalf of the Entomological Society of America 2014. This work is written by a US Government employee and is in the public domain in the US.
A novel lenticular arena to quantify locomotor competence in walking fruit flies.
Tom Mekdara, Nalong; Goto, Joy June; Choudhury, Songita; Jerry Mekdara, Prasong; Yingst, Nicholas; Cao, Yu; Berg, Otto; Katharina Müller, Ulrike
2012-07-01
Drosophila melanogaster has become an important invertebrate model organism in biological and medical research, for mutational and genetic analysis, and in toxicological screening. Many screening assays have been developed that assess the flies' mortality, reproduction, development, morphology, or behavioral competence. In this study, we describe a new assay for locomotor competence. It comprises a circular walking arena with a lenticular floor and a flat cover (the slope of the floor increases gradually from the center to the edge of the arena) plus automated fly tracking and statistical analysis. This simple modification of a flat arena presents a graduated physical challenge, with which we can assess fine gradations of motor ability, since a fly's time average radial distance from the arena center is a direct indicator of its climbing ability. The time averaged distribution of flies as a function of slope, activity levels, and walking speed, yields a fine grained picture of locomotory ability and motivation levels. We demonstrate the strengths and weaknesses of this assay (compared with a conventional tap-down test) by observing flies treated with a neurotoxin (BMAA) that acts as a glutamate agonist. The assay proves well suited to detect dose effects and progression effects with higher statistical power than the traditional tap-down, but it has a higher detection limit, making it less sensitive to treatment effects. © 2012 WILEY PERIODICALS, INC.
Mazzanti, Morena; Alessandrini, Federica; Tagliabracci, Adriano; Wells, Jeffrey D; Campobasso, Carlo P
2010-02-25
Puparial cases are common remnants of necrophagous flies in crime investigations. They usually represent the longest developmental time and, therefore, they can be very useful for the estimation of the post-mortem interval (PMI). However, before any PMI estimate, it is crucial to identify the species of fly eclosed from each puparium associated with the corpse. Morphological characteristics of the puparium are often distinctive enough to permit a species identification. But, even an accurate morphological analysis of empty puparia cannot discriminate among different species of closely related flies. Furthermore, morphological identification may be impossible if the fly puparia are poorly preserved or in fragments. This study explores the applicability of biomolecular techniques on empty puparia and their fragments for identification purposes. A total of 63 empty puparia of necrophagous Diptera resulting from forensic casework were examined. Samples were divided into three groups according to size, type and time of eclosion in order to verify whether the physical characteristics and puparia weathering can influence the amount of DNA extraction. The results suggest that a reliable genetic identification of forensically important flies may also be performed from empty puparia and/or their fragments. However, DNA degradation can deeply compromise the genetic analysis since the older the fly puparia, the smaller are the amplified fragments. 2009 Elsevier Ireland Ltd. All rights reserved.
Jacques, Camille; Lamoureux, François; Baud’huin, Marc; Calleja, Lidia Rodriguez; Quillard, Thibaut; Amiaud, Jérôme; Tirode, Franck; Rédini, Françoise; Bradner, James E.; Heymann, Dominique; Ory, Benjamin
2016-01-01
Ewing Sarcoma is a rare bone and soft tissue malignancy affecting children and young adults. Chromosomal translocations in this cancer produce fusion oncogenes as characteristic molecular signatures of the disease. The most common case is the translocation t (11; 22) (q24;q12) which yields the EWS-Fli1 chimeric transcription factor. Finding a way to directly target EWS-Fli1 remains a central therapeutic approach to eradicate this aggressive cancer. Here we demonstrate that treating Ewing Sarcoma cells with JQ1(+), a BET bromodomain inhibitor, represses directly EWS-Fli1 transcription as well as its transcriptional program. Moreover, the Chromatin Immuno Precipitation experiments demonstrate for the first time that these results are a consequence of the depletion of BRD4, one of the BET bromodomains protein from the EWS-Fli1 promoter. In vitro, JQ1(+) treatment reduces the cell viability, impairs the cell clonogenic and the migratory abilities, and induces a G1-phase blockage as well as a time- and a dose-dependent apoptosis. Furthermore, in our in vivo model, we observed a tumor burden delay, an inhibition of the global vascularization and an increase of the mice overall survival. Taken together, our data indicate that inhibiting the BET bromodomains interferes with EWS-FLi1 transcription and could be a promising strategy in the Ewing tumors context. PMID:27006472
Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang
2013-01-07
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.
Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang
2013-01-01
Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought. PMID:23118437
Yu, Guohui; Cheng, Ping; Chen, Yanhong; Li, Yongjian; Yang, Zihong; Chen, Yuanfeng; Tomberlin, Jeffery K
2011-02-01
The growth and development of black soldier fly, Hermetia illucens (L.), larvae fed chicken manure inoculated with bacteria isolated from black soldier fly larvae and associated larval feed was evaluated. Four strains of Bacillus subtilis were evaluated. B. subtilis strains S15, S16, S19, were isolated from the gut of black soldier fly larvae. B. natto strain D1 was isolated from the diet fed to black soldier fly larvae. These bacteria were added individually into nonsterile 200 g fresh hen manure at 10(6) cfu/g and homogenized. Treated manure was then inoculated with 4-d old black soldier fly larvae. Prepupal weight ranged from 0.0606 g in the control to 0.0946 g in manure treated with the S15 strain. Larval survivorship to the prepupal stage in all treatments ranged from 98.00 ± 2.65% to 99.33 ± 1.15%. Prepupal survivorship to the pupal stage ranged from 91.92 ± 1.87% to 97.95 ± 1.03%. Adult emergence from the pupal stage did not significantly (P < 0.05) differ across treatments and ranged from 98.95 ± 1.82% to 100.00 ± 0.00%. Adult body length resulting from the larvae in each of the treatments was significantly greater than those from the control. Longevity of adults did not differ significantly between treatments. Time from hatching to the development of the first pupa did not differ significantly across treatments; however, development time from hatching to 90% reaching the prepupual stage was significantly different between treatments and ranged from 29.00 ± 1.00 d to 34.33 ± 3.51 d. Development time from hatching to 90% reaching the adult stages was significantly different between treatments. Our results demonstrate that inoculating poultry manure with bacteria from black soldier fly larvae influences the growth and development of conspecific larvae feeding on the manure. © 2011 Entomological Society of America
Mishra, Sapna; Kumar, Peeyush; Malik, Anushree
2015-10-01
Entomopathogenic fungi that manifest infections by overcoming insect's immune response could be a successful control agent for the house fly, Musca domestica L. which is a major domestic, medical, and veterinary pest. In this study, the immune response of house fly to Beauveria bassiana infection was investigated to reveal fundamental aspects of house fly hemocyte biology, such as hemocyte numbers and size, which is poorly understood. The total hemocyte counts (THCs) in B. bassiana-infected house fly showed an initial increase (from 6 to 9 h), followed by subsequent decrease (9 to 12 h) with increase in time of infection. The THCs was slightly greater in infected flies than the non-infected ones. Insight into relative hemocyte counts depicted a significant increase in prohemocyte (PR) and decrease in granulocyte (GR) in infected house flies compared to non-infected ones. The relative cell area of hemocyte cells showed a noticeable increase in PR and intermediate cells (ICs), while a considerable reduction was observed for plasmatocyte (PL) and GR. The considerable variation in relative cell number and cell area in the B. bassiana-infected house flies indicated stress development during infection. The present study highlights changes occurring during B. bassiana invasion to house fly leading to establishment of infection along with facilitation in understanding of basic hemocyte biology. The results of the study is expected to help in better understanding of house fly immune response during fungal infection, so as to assist production of more efficient mycoinsecticides for house fly control using B. bassiana.
Dynamics of Dark-Fly Genome Under Environmental Selections.
Izutsu, Minako; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu; Fuse, Naoyuki
2015-12-04
Environmental adaptation is one of the most fundamental features of organisms. Modern genome science has identified some genes associated with adaptive traits of organisms, and has provided insights into environmental adaptation and evolution. However, how genes contribute to adaptive traits and how traits are selected under an environment in the course of evolution remain mostly unclear. To approach these issues, we utilize "Dark-fly", a Drosophila melanogaster line maintained in constant dark conditions for more than 60 years. Our previous analysis identified 220,000 single nucleotide polymorphisms (SNPs) in the Dark-fly genome, but did not clarify which SNPs of Dark-fly are truly adaptive for living in the dark. We found here that Dark-fly dominated over the wild-type fly in a mixed population under dark conditions, and based on this domination we designed an experiment for genome reselection to identify adaptive genes of Dark-fly. For this experiment, large mixed populations of Dark-fly and the wild-type fly were maintained in light conditions or in dark conditions, and the frequencies of Dark-fly SNPs were compared between these populations across the whole genome. We thereby detected condition-dependent selections toward approximately 6% of the genome. In addition, we observed the time-course trajectory of SNP frequency in the mixed populations through generations 0, 22, and 49, which resulted in notable categorization of the selected SNPs into three types with different combinations of positive and negative selections. Our data provided a list of about 100 strong candidate genes associated with the adaptive traits of Dark-fly. Copyright © 2016 Izutsu et al.
Daytime behavior of Pteropus vampyrus in a natural habitat: the driver of viral transmission
HENGJAN, Yupadee; PRAMONO, Didik; TAKEMAE, Hitoshi; KOBAYASHI, Ryosuke; IIDA, Keisuke; ANDO, Takeshi; KASMONO, Supratikno; BASRI, Chaerul; FITRIANA, Yuli Sulistya; ARIFIN, Eko M. Z.; OHMORI, Yasushige; MAEDA, Ken; AGUNGPRIYONO, Srihadi; HONDO, Eiichi
2017-01-01
Flying foxes, the genus Pteropus, are considered viral reservoirs. Their colonial nature and long flight capability enhance their ability to spread viruses quickly. To understand how the viral transmission occurs between flying foxes and other animals, we investigated daytime behavior of the large flying fox (Pteropus vampyrus) in the Leuweung Sancang conservation area, Indonesia, by using instantaneous scan sampling and all-occurrence focal sampling. The data were obtained from 0700 to 1700 hr, during May 11–25, 2016. Almost half of the flying foxes (46.9 ± 10.6% of all recorded bats) were awake and showed various levels of activity during daytime. The potential behaviors driving disease transmission, such as self-grooming, mating/courtship and aggression, peaked in the early morning. Males were more active and spent more time on sexual activities than females. There was no significant difference in time spent for negative social behaviors between sexes. Positive social behaviors, especially maternal cares, were performed only by females. Sexual activities and negative/positive social behaviors enable fluid exchange between bats and thus facilitate intraspecies transmission. Conflicts for living space between the flying foxes and the ebony leaf monkey (Trachypithecus auratus) were observed, and this caused daily roosting shifts of flying foxes. The ecological interactions between bats and other wildlife increase the risk of interspecies infection. This study provides the details of the flying fox’s behavior and its interaction with other wildlife in South-East Asia that may help explain how pathogen spillover occurs in the wild. PMID:28496012
Analysis of the trajectory of Drosophila melanogaster in a circular open field arena.
Valente, Dan; Golani, Ilan; Mitra, Partha P
2007-10-24
Obtaining a complete phenotypic characterization of a freely moving organism is a difficult task, yet such a description is desired in many neuroethological studies. Many metrics currently used in the literature to describe locomotor and exploratory behavior are typically based on average quantities or subjectively chosen spatial and temporal thresholds. All of these measures are relatively coarse-grained in the time domain. It is advantageous, however, to employ metrics based on the entire trajectory that an organism takes while exploring its environment. To characterize the locomotor behavior of Drosophila melanogaster, we used a video tracking system to record the trajectory of a single fly walking in a circular open field arena. The fly was tracked for two hours. Here, we present techniques with which to analyze the motion of the fly in this paradigm, and we discuss the methods of calculation. The measures we introduce are based on spatial and temporal probability distributions and utilize the entire time-series trajectory of the fly, thus emphasizing the dynamic nature of locomotor behavior. Marginal and joint probability distributions of speed, position, segment duration, path curvature, and reorientation angle are examined and related to the observed behavior. The measures discussed in this paper provide a detailed profile of the behavior of a single fly and highlight the interaction of the fly with the environment. Such measures may serve as useful tools in any behavioral study in which the movement of a fly is an important variable and can be incorporated easily into many setups, facilitating high-throughput phenotypic characterization.
Robacker, David C; Thomas, Donald B
2007-08-01
Feral Mexican fruit flies, Anastrepha ludens (Loew) (Diptera: Tephritidae), were trapped in a citrus orchard in Mexico by using two types of synthetic food-odor lures, the AFF lure (Anastrepha fruit fly lure, APTIV, Inc., Portland, OR) and the BioLure (two-component MFF lure, Suterra LLC, Inc., Bend, OR). In Multilure traps (Better World Manufacturing, Inc., Miami, FL) containing water, BioLures captured about the same numbers of flies as AFF lures. In Multilure traps containing antifreeze solution, BioLures captured 2 and 5 times more flies than AFF lures in two experiments. BioLures, and AFF lures did not differ in attractiveness when used on sticky traps (Intercept trap, APTIV, Inc.; and sticky cylinder trap). Multilure traps captured >4 times as many flies as sticky traps with the exception that captures of females did not differ between Multilure and sticky traps baited with AFF lures. The percentage of females captured in Multilure traps was greater when traps were baited with BioLures compared with AFF lures, but the reverse was true for sticky traps. Sticky cylinder traps captured a higher percentage of females than Multilure traps. The most effective trap/lure combination was the Multilure trap baited with BioLure and antifreeze. In comparison with tests of these two lures in Texas, results were similar for Multilure traps, but they differed for sticky cylinder traps in that AFF lures were consistently more attractive than BioLures in Texas, but not in Mexico.
Experimental and numerical analysis of metal leaching from fly ash-amended highway bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetin, Bora; Aydilek, Ahmet H., E-mail: aydilek@umd.edu; Li, Lin
2012-05-15
Highlights: Black-Right-Pointing-Pointer This study is the evaluation of leaching potential of fly ash-lime mixed soils. Black-Right-Pointing-Pointer This objective is met with experimental and numerical analysis. Black-Right-Pointing-Pointer Zn leaching decreases with increase in fly ash content while Ba, B, Cu increases. Black-Right-Pointing-Pointer Decrease in lime content promoted leaching of Ba, B and Cu while Zn increases. Black-Right-Pointing-Pointer Numerical analysis predicted lower field metal concentrations. - Abstract: A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. Thismore » objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.« less
Mullens, Bradley A; Reifenrath, William G; Butler, Sarah M
2009-12-01
Straight-chain, saturated fatty acids (particularly C8, C9 and C10) have some known behavioral effects on insects such as mosquitoes, and were tested in combination for potential repellency/antifeedant activity in bioassays against three significant muscoid flies of medical/veterinary importance: houseflies, horn flies and stable flies. Mixtures of C8, C9 and C10 (1:1:1; 15% total actives in formulation) were highly repellent to houseflies and horn flies at or below 1 mg formulation cm(-2). Repellency time varied from < 1 day for houseflies to usually at least 3 days for horn flies. Individual longer-chain-length fatty acids were tested, and C11 repelled houseflies for up to 5-8 days, while C12 lasted 2 days. Minimum statistically significant repellency levels of the C8, C9 and C10 mixture (3 h after application) against horn flies were 0.06-0.12 mg cm(-2). A liquid formulation of the 15% C8, C9 and C10 mixture in a silicone oil carrier (at 2.8 mg AI cm(-2)) was highly repellent against hungry stable flies in a blood-feeding membrane bioassay for at least 8 h. The low toxicity and reasonable activity and persistence of these carboxylic acids make them good candidates for development as protective materials against pest flies in livestock settings. (c) 2009 Society of Chemical Industry.
Chen, Weihan; Hillyer, Julián F.
2013-01-01
FlyNap (triethylamine) is commonly used to anesthetize Drosophila melanogaster fruit flies. The purpose of this study was to determine whether triethylamine is a suitable anesthetic agent for research into circulatory physiology and immune competence in the mosquito, Anopheles gambiae (Diptera: Culicidae). Recovery experiments showed that mosquitoes awaken from traditional cold anesthesia in less than 7 minutes, but that recovery from FlyNap anesthesia does not begin for several hours. Relative to cold anesthesia, moderate exposures to FlyNap induce an increase in the heart rate, a decrease in the percentage of the time the heart contracts in the anterograde direction, and a decrease in the frequency of heartbeat directional reversals. Experiments employing various combinations of cold and FlyNap anesthesia then showed that cold exposure does not affect basal heart physiology, and that the differences seen between the cold and the FlyNap groups are due to a FlyNap-induced alteration of heart physiology. Furthermore, exposure to FlyNap eliminated the cardioacceleratory effect of crustacean cardioactive peptide (CCAP), and reduced a mosquito’s ability to survive a bacterial infection. Together, these data show that FlyNap is not a suitable substitute to cold anesthesia in experiments assessing mosquito heart function or immune competence. Moreover, these data also illustrate the intricate biology of the insect heart. Specifically, they confirm that the neurohormone CCAP modulates heart rhythms and that it serves as an anterograde pacemaker. PMID:23875027
Development of position measurement unit for flying inertial fusion energy target
NASA Astrophysics Data System (ADS)
Tsuji, R.; Endo, T.; Yoshida, H.; Norimatsu, T.
2016-03-01
We have reported the present status in the development of a position measurement unit (PMU) for a flying inertial fusion energy (IFE) target. The PMU, which uses Arago spot phenomena, is designed to have a measurement accuracy smaller than 1 μm. By employing divergent, pulsed orthogonal laser beam illumination, we can measure the time and the target position at the pulsed illumination. The two-dimensional Arago spot image is compressed into one-dimensional image by a cylindrical lens for real-time processing. The PMU are set along the injection path of the flying target. The local positions of the target in each PMU are transferred to the controller and analysed to calculate the target trajectory. Two methods are presented to calculate the arrival time and the arrival position of the target at the reactor centre.
Can antibodies against flies alter malaria transmission in birds by changing vector behavior?
Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R
2014-10-07
Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.
Investigation of nocturnal oviposition by necrophilous flies in central Texas.
Baldridge, Robert S; Wallace, Susan G; Kirkpatrick, Ryan
2006-01-01
The need to accurately estimate the postmortem interval (PMI) has prompted research into factors affecting fly oviposition (i.e., oviposition and/or larviposition) on a corpse. Research efforts have focused on whether or not diurnally active flies oviposit during nighttime hours. This study reports that nocturnal oviposition (defined as occurring between 2100-0600 h CDST (Central Daylight Savings Time)) did not occur on freshly killed white rats or mice, on beef (fresh or aged up to 48 h), on freshly thawed pigs, nor, usually, on thawed pigs that were aged for up to 48 h. Limited oviposition did occur between 2100 and 2120 h on one bloated pig at a lighted rural site. Necrophilous flies were present and active at lighted and dark sites (urban and rural) before and immediately after sunset, but fly activity on the bait ceased within 50 min postsunset and did not resume until after 0600 h. These observations support other studies reporting that diurnally active flies do not oviposit during the nighttime.
FlyMAD: rapid thermogenetic control of neuronal activity in freely walking Drosophila.
Bath, Daniel E; Stowers, John R; Hörmann, Dorothea; Poehlmann, Andreas; Dickson, Barry J; Straw, Andrew D
2014-07-01
Rapidly and selectively modulating the activity of defined neurons in unrestrained animals is a powerful approach in investigating the circuit mechanisms that shape behavior. In Drosophila melanogaster, temperature-sensitive silencers and activators are widely used to control the activities of genetically defined neuronal cell types. A limitation of these thermogenetic approaches, however, has been their poor temporal resolution. Here we introduce FlyMAD (the fly mind-altering device), which allows thermogenetic silencing or activation within seconds or even fractions of a second. Using computer vision, FlyMAD targets an infrared laser to freely walking flies. As a proof of principle, we demonstrated the rapid silencing and activation of neurons involved in locomotion, vision and courtship. The spatial resolution of the focused beam enabled preferential targeting of neurons in the brain or ventral nerve cord. Moreover, the high temporal resolution of FlyMAD allowed us to discover distinct timing relationships for two neuronal cell types previously linked to courtship song.
Cancino, Jorge; Ruíz, Lía; Viscarret, Mariana; Sivinski, John; Hendrichs, Jorge
2012-01-01
The use of irradiated hosts in mass rearing tephritid parasitoids represents an important technical advance in fruit fly augmentative biological control. Irradiation assures that fly emergence is avoided in non-parasitized hosts, while at the same time it has no appreciable effect on parasitoid quality, i.e., fecundity, longevity and flight capability. Parasitoids of fruit fly eggs, larvae and pupae have all been shown to successfully develop in irradiated hosts, allowing a broad range of species to be shipped and released without post-rearing delays waiting for fly emergence and costly procedures to separate flies and wasps. This facilitates the early, more effective and less damaging shipment of natural enemies within hosts and across quarantined borders. In addition, the survival and dispersal of released parasitoids can be monitored by placing irradiated sentinel-hosts in the field. The optimal radiation dosages for host-sterility and parasitoid-fitness differ among species, and considerable progress has been made in integrating radiation into a variety of rearing procedures. PMID:26466729
Hower, J.C.; Finkelman, R.B.; Rathbone, R.F.; Goodman, J.
2000-01-01
Fly ash was collected from eight mechanical and 10 baghouse hoppers at each of the twin 150-MW wall-fired units in a western Kentucky power station. The fuel burned at that time was a blend of many low-sulfur, high-volatile bituminous Central Appalachian coals. The baghouse ash showed less variation between units than the mechanical hoppers. The mechanical fly ash, coarser than the baghouse ash, showed significant differences in the amount of total carbon and in the ratio of isotropic coke to both total carbon and total coke - the latter excluding inertinite and other unburned, uncoked coal. There was no significant variation in proportions of inorganic fly ash constituents. The inter-unit differences in the amount and forms of mechanical fly ash carbon appear to be related to differences in pulverizer efficiency, leading to greater amounts of coarse coal, therefore unburned carbon, in one of the units. Mercury capture is a function of both the total carbon content and the gas temperature at the point of fly ash separation, mercury content increasing with an increase in carbon for a specific collection system. Mercury adsorption on fly ash carbon increases at lower flue-gas temperatures. Baghouse fly ash, collected at a lower temperature than the higher-carbon mechanically separated fly ash, contains a significantly greater amount of Hg.
Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan.
Shim, Young-Sook; Rhee, Seung-Whee; Lee, Woo-Keun
2005-01-01
The objective of this research was to compare the leaching characteristics of heavy metals such as cadmium, chromium, copper, nickel, lead, etc., in Korean and Japanese municipal solid waste incineration (MSWI) ash. The rate of leaching of heavy metal was measured by KSLT and JTL-13, and the amount of heavy metals leached was compared with the metal content in each waste component. Finally, bio-availability testing was performed to assess the risks associated with heavy metals leached from bottom ash and fly ash. From the results, the value of neutralization ability in Japanese fly ash was four times higher than that in Korean fly ash. The reason was the difference in the content of Ca(OH)(2) in fly ash. The amount of lead leached exceeded the regulatory level in both Japanese and Korean fly ash. The rate of leaching was relatively low in ash with a pH in the range of 6-10. The bio-availability test in fly ash demonstrated that the amount of heavy metals leached was Pb>Cd>Cr, but the order was changed to Pb>Cr>Cd in the bottom ash. The leaching concentration of lead exceeded the Japanese risk level in all fly ashes from the two countries, but the leaching concentration of cadmium exceeded the regulatory level in Korean fly ash only.
A Miniaturized Video System for Monitoring Drosophila Behavior
NASA Technical Reports Server (NTRS)
Bhattacharya, Sharmila; Inan, Omer; Kovacs, Gregory; Etemadi, Mozziyar; Sanchez, Max; Marcu, Oana
2011-01-01
Long-term spaceflight may induce a variety of harmful effects in astronauts, resulting in altered motor and cognitive behavior. The stresses experienced by humans in space - most significantly weightlessness (microgravity) and cosmic radiation - are difficult to accurately simulate on Earth. In fact, prolonged and concomitant exposure to microgravity and cosmic radiation can only be studied in space. Behavioral studies in space have focused on model organisms, including Drosophila melanogaster. Drosophila is often used due to its short life span and generational cycle, small size, and ease of maintenance. Additionally, the well-characterized genetics of Drosophila behavior on Earth can be applied to the analysis of results from spaceflights, provided that the behavior in space is accurately recorded. In 2001, the BioExplorer project introduced a low-cost option for researchers: the small satellite. While this approach enabled multiple inexpensive launches of biological experiments, it also imposed stringent restrictions on the monitoring systems in terms of size, mass, data bandwidth, and power consumption. Suggested parameters for size are on the order of 100 mm3 and 1 kg mass for the entire payload. For Drosophila behavioral studies, these engineering requirements are not met by commercially available systems. One system that does meet many requirements for behavioral studies in space is the actimeter. Actimeters use infrared light gates to track the number of times a fly crosses a boundary within a small container (3x3x40 mm). Unfortunately, the apparatus needed to monitor several flies at once would be larger than the capacity of the small satellite. A system is presented, which expands on the actimeter approach to achieve a highly compact, low-power, ultra-low bandwidth solution for simultaneous monitoring of the behavior of multiple flies in space. This also provides a simple, inexpensive alternative to the current systems for monitoring Drosophila populations in terrestrial experiments, and could be especially useful in field experiments in remote locations. Two practical limitations of the system should be noted: first, only walking flies can be observed - not flying - and second, although it enables population studies, tracking individual flies within the population is not currently possible. The system used video recording and an analog circuit to extract the average light changes as a function of time. Flies were held in a 5-cm diameter Petri dish and illuminated from below by a uniform light source. A miniature, monochrome CMOS (complementary metal-oxide semiconductor) video camera imaged the flies. This camera had automatic gain control, and this did not affect system performance. The camera was positioned 5-7 cm above the Petri dish such that the imaging area was 2.25 sq cm. With this basic setup, still images and continuous video of 15 flies at one time were obtained. To reduce the required data bandwidth by several orders of magnitude, a band-pass filter (0.3-10 Hz) circuit compressed the video signal and extracted changes in image luminance over time. The raw activity signal output of this circuit was recorded on a computer and digitally processed to extract the fly movement "events" from the waveform. These events corresponded to flies entering and leaving the image and were used for extracting activity parameters such as inter-event duration. The efficacy of the system in quantifying locomotor activity was evaluated by varying environmental temperature, then measuring the activity level of the flies.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1997-04-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1998-12-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1997-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1998-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
Asteroid (4179) Toutatis size determination via optical images observed by the Chang'e-2 probe
NASA Astrophysics Data System (ADS)
Liu, P.; Huang, J.; Zhao, W.; Wang, X.; Meng, L.; Tang, X.
2014-07-01
This work is a physical and statistical study of the asteroid (4179) Toutatis using the optical images obtained by a solar panel monitor of the Chang'e-2 probe on Dec. 13, 2012 [1]. In the imaging strategy, the camera is focused at infinity. This is specially designed for the probe with its solar panels monitor's principle axis pointing to the relative velocity direction of the probe and Toutatis. The imaging strategy provides a dedicated way to resolve the size by multi-frame optical images. The inherent features of the data are: (1) almost no rotation was recorded because of the 5.41-7.35 Earth-day rotation period and the small amount of elapsed imaging time, only minutes, make the object stay in the images in a fixed position and orientation; (2) the sharpness of the upper left boundary and the vagueness of lower right boundary resulting from the direction of SAP (Sun-Asteroid-Probe angle) cause a varying accuracy in locating points at different parts of Toutatis. A common view is that direct, accurate measurements of asteroid shapes, sizes, and pole positions are now possible for larger asteroids that can be spatially resolved using the Hubble Space Telescope or large ground-based telescopes equipped with adaptive optics. For a quite complex planetary/asteroid probe study, these measurements certainly need continuous validation via a variety of ways [2]. Based on engineering parameters of the probe during the fly-by, the target spatial resolving and measuring procedures are described in the paper. Results estimated are optical perceptible size on the flyby epoch under the solar phase angles during the imaging. It is found that the perceptible size measured using the optical observations and the size derived from the radar observations by Ostro et al.~in 1995 [3], are close to one another.
Poché, David M; Grant, William E; Wang, Hsiao-Hsuan
2016-08-01
Visceral leishmaniasis (VL) is a disease caused by two known vector-borne parasite species (Leishmania donovani, L. infantum), transmitted to man by phlebotomine sand flies (species: Phlebotomus and Lutzomyia), resulting in ≈50,000 human fatalities annually, ≈67% occurring on the Indian subcontinent. Indoor residual spraying is the current method of sand fly control in India, but alternative means of vector control, such as the treatment of livestock with systemic insecticide-based drugs, are being evaluated. We describe an individual-based, stochastic, life-stage-structured model that represents a sand fly vector population within a village in India and simulates the effects of vector control via fipronil-based drugs orally administered to cattle, which target both blood-feeding adults and larvae that feed on host feces. Simulation results indicated efficacy of fipronil-based control schemes in reducing sand fly abundance depended on timing of drug applications relative to seasonality of the sand fly life cycle. Taking into account cost-effectiveness and logistical feasibility, two of the most efficacious treatment schemes reduced population peaks occurring from April through August by ≈90% (applications 3 times per year at 2-month intervals initiated in March) and >95% (applications 6 times per year at 2-month intervals initiated in January) relative to no control, with the cumulative number of sand fly days occurring April-August reduced by ≈83% and ≈97%, respectively, and more specifically during the summer months of peak human exposure (June-August) by ≈85% and ≈97%, respectively. Our model should prove useful in a priori evaluation of the efficacy of fipronil-based drugs in controlling leishmaniasis on the Indian subcontinent and beyond.
O'Brien, G M; McFarlane, J R; Kearney, P J
2003-01-01
Flying-foxes (genus suborder, Pteropus Megachiroptera) are long-lived tropical mammals. Their seasonal reproduction appears to be regulated by an endogenous, circannual rhythm modified by multiple environmental cues. Luteinizing hormone (LH) content in pituitary extracts was examined to establish the broad time-frame of pituitary stages in the reproductive seasonality of the flying-foxes. A comparison was made between the grey-headed flying-fox P. poliocephalus, which mates and conceives in autumn, and the little red flying-fox P. scapulatus, which mates and conceives in spring. In P. scapulatus, LH was maximum during the spring mating season at 1494 ng mg(-1) in males and 896 ng mg(-1) in females. In P. poliocephalus males, LH increased to 1082 ng mg(-1) in early summer, 4 months before the mating season; LH concentrations in male P. poliocephalus returned to a low of 222 ng mg(-1) by the time of the autumn mating, by which time the female P. poliocephalus expressed elevated LH concentrations (624 ng mg(-1)). Apparently in P. poliocephalus, the peak LH concentrations in females are delayed by 4 months relative to LH concentrations in males. This is associated with 4 months of energetic courtship on the part of male P. poliocephalus, which is not observed in P. scapulatus, the fertility of which is synchronized between the sexes. The heterologous radioimmunoassay developed using monoclonal antibody 518B7 confirmed classic suppression of LH during pregnancy and lactation in flying-foxes and LH elevation in response to gonadectomy. Juveniles generally had pituitary levels similar to non-breeding levels in adults.
Hengjan, Yupadee; Iida, Keisuke; Doysabas, Karla Cristine C; Phichitrasilp, Thanmaporn; Ohmori, Yasushige; Hondo, Eiichi
2017-10-07
Acerodon jubatus (the Golden-Crowned flying fox) is an endemic species in the Philippines, which was suspected to be a host of the Reston strain of the Ebola virus. As nocturnal animals, the flying foxes spend daytime at the roosting site, which they use for self-maintenance and reproduction. To understand the variation in diurnal behavior and time allocation for various activities in the Golden-Crowned flying fox, we investigated their daytime behavior and activity budget using instantaneous scan sampling and all occurrence focal sampling. Data collection was performed from 07:00 to 18:00 hr during January 8-17, 2017. The most frequent activity was sleeping (76.3%). The remaining activities were wing flapping (5.0%), self-grooming (4.2%), hanging relaxation (3.4%), wing spread (2.9%), movement (2.4%), mating/courtship (2.4%), aggression (1.9%), hanging alert (1.2%), excretion (0.1%) and scent marks (0.05%). The frequency of sleeping, wing flapping, self-grooming, hanging relaxation, aggression, mating/courtship and movement behaviors changed with the time of the day. Females allocated more time for resting than males, while males spent more time on the activities that helped enhance their mating opportunities, for example, movement, sexual activity and territorial behavior.
HENGJAN, Yupadee; IIDA, Keisuke; DOYSABAS, Karla Cristine C.; PHICHITRASILP, Thanmaporn; OHMORI, Yasushige; HONDO, Eiichi
2017-01-01
Acerodon jubatus (the Golden-Crowned flying fox) is an endemic species in the Philippines, which was suspected to be a host of the Reston strain of the Ebola virus. As nocturnal animals, the flying foxes spend daytime at the roosting site, which they use for self-maintenance and reproduction. To understand the variation in diurnal behavior and time allocation for various activities in the Golden-Crowned flying fox, we investigated their daytime behavior and activity budget using instantaneous scan sampling and all occurrence focal sampling. Data collection was performed from 07:00 to 18:00 hr during January 8–17, 2017. The most frequent activity was sleeping (76.3%). The remaining activities were wing flapping (5.0%), self-grooming (4.2%), hanging relaxation (3.4%), wing spread (2.9%), movement (2.4%), mating/courtship (2.4%), aggression (1.9%), hanging alert (1.2%), excretion (0.1%) and scent marks (0.05%). The frequency of sleeping, wing flapping, self-grooming, hanging relaxation, aggression, mating/courtship and movement behaviors changed with the time of the day. Females allocated more time for resting than males, while males spent more time on the activities that helped enhance their mating opportunities, for example, movement, sexual activity and territorial behavior. PMID:28804092
Efficient Low-Speed Flight in a Wind Field
NASA Technical Reports Server (NTRS)
Feldman, Michael A.
1996-01-01
A new software tool was needed for flight planning of a high altitude, low speed unmanned aerial vehicle which would be flying in winds close to the actual airspeed of the vehicle. An energy modeled NLP (non-linear programming) formulation was used to obtain results for a variety of missions and wind profiles. The energy constraint derived included terms due to the wind field and the performance index was a weighted combination of the amount of fuel used and the final time. With no emphasis on time and with no winds the vehicle was found to fly at maximum lift to drag velocity, V(sub md). When flying in tail winds the velocity was less than V(sub md), while flying in head winds the velocity was higher than V(sub md). A family of solutions was found with varying times of flight and varying fuel amounts consumed which will aid the operator in choosing a flight plan depending on a desired landing time. At certain parts of the flight, the turning terms in the energy constraint equation were found to be significant. An analysis of a simpler vertical plane cruise optimal control problem was used to explain some of the characteristics of the vertical plane NLP results.
Hansmann, Jan; Michaely, Henrik J; Morelli, John N; Diehl, Steffen J; Meyer, Mathias; Schoenberg, Stefan O; Attenberger, Ulrike I
2013-12-01
The purpose of this article is to evaluate the added diagnostic accuracy of time-resolved MR angiography (MRA) of the calves compared with continuous-table-movement MRA in patients with symptomatic lower extremity peripheral artery disease (PAD) using digital subtraction angiography (DSA) correlation. Eighty-four consecutive patients with symptomatic PAD underwent a low-dose 3-T MRA protocol, consisting of continuous-table-movement MRA, acquired from the diaphragm to the calves, and an additional time-resolved MRA of the calves; 0.1 mmol/kg body weight (bw) of contrast material was used (0.07 mmol/kg bw for continuous-table-movement MRA and 0.03 mmol/kg bw for time-resolved MRA). Two radiologists rated image quality on a 4-point scale and stenosis degree on a 3-point scale. An additional assessment determined the degree of venous contamination and whether time-resolved MRA improved diagnostic confidence. The accuracy of stenosis gradation with continuous-table-movement and time-resolved MRA was compared with that of DSA as a correlation. Overall diagnostic accuracy was calculated for continuous-table-movement and time-resolved MRA. Median image quality was rated as good for 578 vessel segments with continuous-table-movement MRA and as excellent for 565 vessel segments with time-resolved MRA. Interreader agreement was excellent (κ = 0.80-0.84). Venous contamination interfered with diagnosis in more than 60% of continuous-table-movement MRA examinations. The degree of stenosis was assessed for 340 vessel segments. The diagnostic accuracies (continuous-table-movement MRA/time-resolved MRA) combined for the readers were obtained for the tibioperoneal trunk (84%/93%), anterior tibial (69%/87%), posterior tibial (85%/91%), and peroneal (67%/81%) arteries. The addition of time-resolved MRA improved diagnostic confidence in 69% of examinations. The addition of time-resolved MRA at the calf station improves diagnostic accuracy over continuous-table-movement MRA alone in symptomatic patients with PAD.
Khan, Hafiz Azhar Ali; Akram, Waseem; Fatima, Ammara
2017-12-01
House flies are one of the major public health pests in urban settings. People usually use insecticides containing pyrethroids for the management of house flies; however, there is a lack of information on pyrethroid resistance in house flies from urban areas. In the present study, resistance to four pyrethroids (beta-cyfluthrin, deltamethrin, permethrin, transfluthrin) was assessed in house flies collected from urban areas of Punjab, Pakistan. Significant levels of resistance to all the pyrethroids were found in different strains of house flies. The resistance ratios (RRs) at the median lethal dose (LD 50 ) level were in the range of 5.25- to 11.02-fold for beta-cyfluthrin, 7.22- to 19.31-fold for deltamethrin, 5.36- to 16.04-fold for permethrin, and 9.05- to 35.50-fold for transfluthrin. Pairwise comparison of the log LD 50 s revealed a highly significant correlation (p < 0.01) between deltamethrin and permethrin, suggesting the possibility of a cross-resistance mechanism. The results revealed the occurrence of pyrethroid resistance in house flies from urban areas of Punjab. Regular resistance monitoring surveys and integrated approaches for the management of house flies are needed to retain the efficacy of these insecticides for a longer period of time.
Taschner, Christian A; Le Thuc, Vianney; Reyns, Nicolas; Gieseke, Juergen; Gauvrit, Jean-Yves; Pruvo, Jean-Pierre; Leclerc, Xavier
2007-10-01
The aim of this study was to develop an algorithm for the integration of time-resolved contrast-enhanced magnetic resonance (MR) angiography into dosimetry planning for Gamma Knife surgery (GKS) of arteriovenous malformations (AVMs) in the brain. Twelve patients harboring brain AVMs referred for GKS underwent intraarterial digital subtraction (DS) angiography and time-resolved MR angiography while wearing an externally applied cranial stereotactic frame. Time-resolved MR angiography was performed on a 1.5-tesla MR unit (Achieva, Philips Medical Systems) using contrast-enhanced 3D fast field echo sequencing with stochastic central k-space ordering. Postprocessing with interactive data language (Research Systems, Inc.) produced hybrid data sets containing dynamic angiographic information and the MR markers necessary for stereotactic transformation. Image files were sent to the Leksell GammaPlan system (Elekta) for dosimetry planning. Stereotactic transformation of the hybrid data sets containing the time-resolved MR angiography information with automatic detection of the MR markers was possible in all 12 cases. The stereotactic coordinates of vascular structures predefined from time-resolved MR angiography matched with DS angiography data in all cases. In 10 patients dosimetry planning could be performed based on time-resolved MR angiography data. In two patients, time-resolved MR angiography data alone were considered insufficient. The target volumes showed a notable shift of centers between modalities. Integration of time-resolved MR angiography data into the Leksell GammaPlan system for patients with brain AVMs is feasible. The proposed algorithm seems concise and sufficiently robust for clinical application. The quality of the time-resolved MR angiography sequencing needs further improvement.
DISCOVER AQ Research Plane Arrives
2011-06-28
James Crawford, principal investigator and scientist based at NASA’s Langley Research Center in Hampton, Va., talks about the DISCOVER-AQ project on board the P-3B NASA research aircraft at Baltimore/Washington International Thurgood Marshall Airport, Tuesday, June 28, 2011, in Baltimore, Md. The aircraft is part of a month-long field campaign designed to improve satellite measurements of air pollution. The name of the experiment -- Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER -- AQ) -- is a mouthful, but its purpose is simple. Come July, the aircraft will be flying spirals over six ground stations in Maryland. Photo Credit: (NASA/Paul E. Alers)
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.
2010-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.
BETTII: The Balloon Experimental Twin Telescope for Infrared Interferometry
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2011-01-01
Astronomical studies at infrared wavelengths have dramatically improved our understanding the universe. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII),8oeight-meter Michelson interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks io young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers.
Visual responses of corn silk flies (Diptera: Ulidiidae)
USDA-ARS?s Scientific Manuscript database
Corn silk flies are major pests impacting fresh market sweet corn production in Florida and Georgia. Control depends solely on well-times applications of insecticides to protect corn ear development. Surveillance depends on visual inspection of ears with no effective trapping methods currently ava...
Utilization of coal fly ash as a slow-release granular medium for soil improvement.
Yoo, Jeong Gun; Jo, Young Min
2003-01-01
This work proposes a new potential application of waste coal fly ash as a K fertilizer support. Fly ash was reacted with KOH to facilitate the impregnation of K as well as to enhance the bonding force. In particular, the applied process resulted in a significant slow-releasing characteristic of fertilizer elements. To examine the effect of K impregnation, a few detailed leaching tests were carried out in terms of process variables such as reaction time and temperature, sintering time and temperature, and KOH concentration. The current experiment presented an optimum preparation condition that is competitive with conventional commercial fertilizers. The manufactured ash fertilizers inhibited release of the K elements. It was also found through the continuous leaching test with pure water that the ash fertilizer had excellent moisture absorbability. However, the effects of some trace elements in fly ash on soil health and crop productivity as well as environmental considerations need to be established with long-term studies.
Landing flying qualities evaluation criteria for augmented aircraft
NASA Technical Reports Server (NTRS)
Radford, R. C.; Smith, R.; Bailey, R.
1980-01-01
The criteria evaluated were: Calspan Neal-Smith; Onstott (Northrop Time Domain); McDonnell-Douglas Equivalent System Approach; R. H. Smith Criterion. Each criterion was applied to the same set of longitudinal approach and landing flying qualities data. A revised version of the Neal-Smith criterion which is applicable to the landing task was developed and tested against other landing flying qualities data. Results indicated that both the revised Neal-Smith criterion and the Equivalent System Approach are good discriminators of pitch landing flying qualities; Neal-Smith has particular merit as a design guide, while the Equivalent System Approach is well suited for development of appropriate military specification requirements applicable to highly augmented aircraft.
Black soldier fly (Diptera: Stratiomyidae) colonization of pig carrion in south Georgia.
Tomberlin, Jeffery K; Sheppard, D Craig; Joyce, John A
2005-01-01
The black soldier fly, Hermetia illucens (L.), is thought to colonize corpses 20-30 days postmortem. However, recent observations indicate this might not be true for all cases. Therefore, we conducted a study examining colonization by the black soldier fly and other Diptera on pig carrion in a plowed field in southern Georgia from 20 September through 21 February. Our data indicate black soldier flies could colonize a corpse within the first week after death. Knowing this information could prevent a serious mistake in estimating the time at which a corpse is colonized by this species. This study also represents the first record of Chrysomya rufifacies in Georgia.
[Peculiarities of research of flying thinking].
Kovalenko, P A; Chulaevskiĭ, A O
2011-01-01
New approach to the research of flying thinking is offered. This approach is based on principals of stage-by-stage approach (research of the reflection of every parameter of flight, than its aggregate in figured and conceptual framework), on the usage of the methods of registration of inner and external characteristics of activity of the air staff with the priority of research of content area and mechanisms of flying thinking, typology of content area and mechanisms of flying thinking. This approach is also based on the effectiveness of reflection by means of correlation of the detected figured and conceptual framework with time and correctness of decisions of test flight tasks and with different psychophysiological characteristics.
Use Of Fly Iarvae In Space Agriculture
NASA Astrophysics Data System (ADS)
Katayama, Naomi; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko
The concept of space agriculture is full use of biological and ecological components ot drive materials recycle loop. In an ecological system, producers, consumers and decomposers are its member. At limited resources acailable for space agriculture, full use of members' function is required to avoid food shortage and catastrophe.Fly is categrized to a decomposer at its eating excreta and rotten materials. However, is it could be edible, certainly it is eaten in several food culture of the world, it functions as a converter of inedible biomass ot edible substance. This conversion enhances the efficiency of usage of resource that will be attributed to space agriculture. In this context, we examine the value of melon fly, Dacus cucurbitae, as a candidate fly species ofr human food. Nutrients in 100g of melon fly larvae were protein 12g, lipid 4.6g Fe 4.74mg, Ca 275mg, Zn 6.37mg, Mn 4.00mg. Amino acids compositon in 100g of larvae was glutamic acid 1.43g and aspartic acid 1.12g. Because of high contents of these amino acids taste of fly larva might be good. Life time of adult melon fly is one to two month, and lays more than 1,000 eggs in total during the life. Larvae hatch after one to two days, and metamorphose after 8 to 15 days to pupae. Srxual maturity is reached after 22 days the earliest from it egg. Sixteen generations could be succeeded in a year for melon fly at maximum. The rate of proliferation of fly is quite high compared to silkworm that can have 8.7 generations per year. The wide food habit of fly, compared to mulberry leaf for silkworm, is another advantage to choose fly for entomophage. Rearing technology of melon fly is well established, since large scaled production of sterile male fly has been conducted in order ot exterminate melon fly in the field. Feeding substance for melon fly larvae in production line is a mixture of wheat, bran, raw sugar, olara, beer yeast, tissue paper, and additive chemicals. A 1 kg of feed substance can be converted to 140 g of pupa. Fried supae of melon fly is quite tasty. Fly is verified to be a valuable food material at providing animal type lipid, and amino acids.
Sampling errors for a nadir viewing instrument on the International Space Station
NASA Astrophysics Data System (ADS)
Berger, H. I.; Pincus, R.; Evans, F.; Santek, D.; Ackerman, S.; Ackerman, S.
2001-12-01
In an effort to improve the observational charactarization of ice clouds in the earth's atmosphere, we are developing a sub-millimeter wavelength radiometer which we propose to fly on the International Space Station for two years. Our goal is to accurately measure the ice water path and mass-weighted particle size at the finest possible temporal and spatial resolution. The ISS orbit precesses, sampling through the dirunal cycle every 16 days, but technological constraints limit our instrument to a single pixel viewed near nadir. We discuss sampling errors associated with this instrument/platform configuration. We use as "truth" the ISCCP dataset of pixel-level cloud optical retrievals, which acts as a proxy for ice water path; this dataset is sampled according to the orbital characteristics of the space station, and the statistics computed from the sub-sampled population are compared with those from the full dataset. We explore the tradeoffs in average sampling error as a function of the averaging time and spatial scale, and explore the possibility of resolving the dirunal cycle.
Force production of a hovering hummingbird
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Song, Jialei; Hedrick, Tyson
2013-11-01
A three-dimensional numerical study is performed for a hovering Ruby-throated hummingbird (Archilochus colubris) based on an immersed-boundary method. To accurately model the unsteady aerodynamics, realistic 3D wing kinematics is reconstructed from high-speed images of the wing motion filmed at 1000 frames per second, resulting in 25 frames per flapping cycle. A high-resolution grid is employed to resolve the vortices shed from the wing. The results are validated by comparing the spanwise vorticity and circulation with the previous PIV data and also by calculating the average lift. The force production shows significant asymmetry with the downstroke producing lift 2.6 times as high as the upstroke, despite a nearly horizontal stroke plane. The total power consumption is around 55 W/kg, which is twice of previous estimate. In this presentation, we will discuss several mechanisms that lead to the force asymmetry, including the drag-based lift and the leading-edge vortex behavior. We will also address the role of wing-wake interaction, which appears to be different for the hummingbird than some of the insects such as fruit flies. Supported by NSF (No. CBET-0954381).
2017-12-08
Scientist Ewan Crosbie checks real-time data from his innovative cloud sampling tool as the team flies through low altitude clouds. --- The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five year investigation to resolve key processes controlling ocean system function, their influences on atmospheric aerosols and clouds and their implications for climate. Michael Starobin joined the NAAMES field campaign on behalf of Earth Expeditions and NASA Goddard Space Flight Center’s Office of Communications. He presented stories about the important, multi-disciplinary research being conducted by the NAAMES team, with an eye towards future missions on the NASA drawing board. This is a NAAMES photo essay put together by Starobin, a collection of 49 photographs and captions. Photo and Caption Credit: Michael Starobin NASA image use policy NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A persistent homology approach to collective behavior in insect swarms
NASA Astrophysics Data System (ADS)
Sinhuber, Michael; Ouellette, Nicholas T.
Various animals from birds and fish to insects tend to form aggregates, displaying self-organized collective swarming behavior. Due to their frequent occurrence in nature and their implications for engineered, collective systems, these systems have been investigated and modeled thoroughly for decades. Common approaches range from modeling them with coupled differential equations on the individual level up to continuum approaches. We present an alternative, topology-based approach for describing swarming behavior at the macroscale rather than the microscale. We study laboratory swarms of Chironomus riparius, a flying, non-biting midge. To obtain the time-resolved three-dimensional trajectories of individual insects, we use a multi-camera stereoimaging and particle-tracking setup. To investigate the swarming behavior in a topological sense, we employ a persistent homology approach to identify persisting structures and features in the insect swarm that elude a direct, ensemble-averaging approach. We are able to identify features of sub-clusters in the swarm that show behavior distinct from that of the remaining swarm members. The coexistence of sub-swarms with different features resembles some non-biological systems such as active colloids or even thermodynamic systems.
The Influence of Break Timing on the Sleep Quantity and Quality of Fly-in, Fly-out Shiftworkers
PAECH, Gemma M.; FERGUSON, Sally A.; BANKS, Siobhan; DORRIAN, Jillian; ROACH, Gregory D.
2014-01-01
Although shift and break timing is known to affect the sleep of shiftworkers, this has not been demonstrated in Fly-in, Fly-out (FIFO) settings which, compared to residential based settings, may be favourable for sleep. This study investigated the sleep quantity and quality of shiftworkers working a FIFO operation comprising of shifts, and therefore breaks, across the 24-h day. The sleep of 24 males (50.43 ± 8.57 yr) was measured using actigraphy and sleep diaries. Morning breaks were associated with less sleep (09:00–12:00 h; 4.4 ± 1.3 h) and a poorer sleep quality (06:00–09:00 h; 3.1 ± 1.0, “average”) compared to breaks beginning between 00:00 h and 03:00 h (6.8 ± 1.7 h; 2.2 ± 0.9, “good”). Sleep efficiency remained constant regardless of break timing (85.9 ± 5.0% to 89.9 ± 3.5%). Results indicate that even in operations such as FIFO where sleeping conditions are near-optimal and the break duration is held constant, the influence of the endogenous circadian pacemaker on sleep duration is evident. PMID:25224336
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
Hesselberg, Thomas; Lehmann, Fritz-Olaf
2007-12-01
Turning behaviour in the fruit fly Drosophila depends on several factors including not only feedback from sensory organs and muscular control of wing motion, but also the mass moments of inertia and the frictional damping coefficient of the rotating body. In the present study we evaluate the significance of body friction for yaw turning and thus the limits of visually mediated flight control in Drosophila, by scoring tethered flies flying in a flight simulator on their ability to visually compensate a bias on a moving object and a visual background panorama at different simulated frictional dampings. We estimated the fly's natural damping coefficient from a numerical aerodynamic model based on both friction on the body and the flapping wings during saccadic turning. The model predicts a coefficient of 54 x 10(-12) Nm s, which is more than 100-times larger than the value estimated from a previous study on the body alone. Our estimate suggests that friction plays a larger role for yaw turning in Drosophila than moments of inertia. The simulator experiments showed that visual performance of the fruit fly collapses near the physical conditions estimated for freely flying animals, which is consistent with the suggested role of the halteres for flight stabilization. However, kinematic analyses indicate that the measured loss of flight control might be due predominantly to the limited fine control in the fly's steering muscles below a threshold of 1-2 degrees stroke amplitude, rather than resulting from the limits of visual motion detection by the fly's compound eyes. We discuss the impact of these results and suggest that the elevated frictional coefficient permits freely flying fruit flies to passively terminate rotational body movements without producing counter-torque during the second half of the saccadic turning manoeuvre.
Gypsum treated fly ash as a liner for waste disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivapullaiah, Puvvadi V., E-mail: siva@civil.iisc.ernet.in; Baig, M. Arif Ali, E-mail: reach2arif@gmail.com
2011-02-15
Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulicmore » conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner.« less
Behnisch, Peter A; Hosoe, Kazunori; Shiozaki, Ken; Ozaki, Hironori; Nakamura, Kazuo; Sakai, Shin-Ichi
2002-12-01
To investigate the dechlorination of fly ash during low-temperature treatment under oxygen-deficient conditions (thermocatalyic treatment or Hagenmaier process), six fly ash samples from six different incineration plants were treated in a laboratory experiment or in the actual plant, either under ideal (400 degrees C, 120 min) or intermediate (300 degrees C, 30 min) conditions. The aim of the present study was to confirm the decrease in the I-TEQ (international toxicity equivalency) of polychlorinated dibenzo-p-dioxins/-furans (PCDD/Fs) and coplanar polychlorinated biphenyls (co-PXBs) and, also for the first time, the decrease in the sum of dioxin-like toxicity (bioassay- or bio-TEQ) of all kinds of other dioxin-like Ah receptor agonists (such as PXDD/Fs, PXBs, PXN, X = Br, F) measured by two state-of-the-art cell-based Ah receptor-dependent bioassays: H4IIE-Ethoxy-Resorufin-o-Deethylase (EROD) and H4IIE-luc/DR-Chemical Activated Luciferase expression (DR-CALUX). The treatment efficiency was calculated on the basis of the reduction in the I-TEQ and bio-TED values. For these fly ash samples, the treatment efficiency, as measured by chemical analysis, was higher than 99%, and 85%-99%, in the case of the bio-TED values, indicating that these Ah receptor binding toxic compounds were sufficiently decomposed. Bio-TEQ values for untreated fly ash samples (n = 6) were on average 1.2 times (range 0.7-1.9), for the H4IIE-EROD assay, and 2.8 times (1.1-4.9), for the DR-CALUX assay, higher than I-TEQ values measured by chemical analyses (sum of PCDD/Fs and co-PCBs). In the case of these fly ash samples treated under ideal conditions and therefore low in contaminants, the bio-TEQ values were on average 1.4 times (range 0.9-1.8), for the H4IIE-EROD assay, and 5.1 times (range 1.2-12), for the DR-CALUX assay, higher than the I-TEQ values.
Seventh international conference on time-resolved vibrational spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, R.B.; Martinez, M.A.D.; Shreve, A.
1997-04-01
The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities formore » time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.« less
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics
Iwasaki, Nicole A.; Elzinga, Michael J.; Melis, Johan M.; Dickinson, Michael H.
2017-01-01
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage. PMID:28163885
Flies compensate for unilateral wing damage through modular adjustments of wing and body kinematics.
Muijres, Florian T; Iwasaki, Nicole A; Elzinga, Michael J; Melis, Johan M; Dickinson, Michael H
2017-02-06
Using high-speed videography, we investigated how fruit flies compensate for unilateral wing damage, in which loss of area on one wing compromises both weight support and roll torque equilibrium. Our results show that flies control for unilateral damage by rolling their body towards the damaged wing and by adjusting the kinematics of both the intact and damaged wings. To compensate for the reduction in vertical lift force due to damage, flies elevate wingbeat frequency. Because this rise in frequency increases the flapping velocity of both wings, it has the undesired consequence of further increasing roll torque. To compensate for this effect, flies increase the stroke amplitude and advance the timing of pronation and supination of the damaged wing, while making the opposite adjustments on the intact wing. The resulting increase in force on the damaged wing and decrease in force on the intact wing function to maintain zero net roll torque. However, the bilaterally asymmetrical pattern of wing motion generates a finite lateral force, which flies balance by maintaining a constant body roll angle. Based on these results and additional experiments using a dynamically scaled robotic fly, we propose a simple bioinspired control algorithm for asymmetric wing damage.
Schliserman, Pablo; Aluja, Martin; Rull, Juan; Ovruski, Sergio M
2016-10-01
A 4-yr study was done to analyze seasonal patterns underlying host plant-fruit fly-parasitoid interactions in a secondary forest in the Argentinean Yunga and its importance for the implementation of conservation and augmentative biological control. Larval-pupal hymenopteran parasitoids associated with all host plants and fruit fly species were identified and the seasonal occurrence of fruit, infestation levels, parasitism percentage, and relative parasitoid abundance were determined. Three fruit fly species in two genera were found in association with surveyed plants, two of which (Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann)) are of major economic importance. Infestation levels were strongly influenced by environmental factors and peak fruit availability. Five fruit fly parasitoid species were recovered from fly pupae, four braconid species, and one figitid. Time windows for fruit fly population growth were pinpointed. Based on results, the present analysis proposes an effective fruit fly biological control strategy tailored for the northwestern Argentinean citrus-producing area. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz
2016-01-02
The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.
Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz
2016-01-01
The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821
Song, Wei; Li, Wei; Li, Lingyu; Zhang, Shilin; Yan, Xu; Wen, Xue; Zhang, Xiaoying; Tian, Huimin; Li, Ailing; Hu, Ji-Fan; Cui, Jiuwei
2015-09-15
Breast cancer is the most prevalent malignant disease in women worldwide. In patients with breast cancer, metastasis to distant sites directly determines the survival outcome. However, the molecular mechanism underlying metastasis in breast cancer remains to be defined. In this report, we found that Friend leukemia virus integration 1 (FLI1) proto-oncogene was differentially expressed between the aggressive MDA-MB231 and the non-aggressive MCF-7 breast cancer cells. Congruently, immunohistochemical staining of clinical samples revealed that FLI1 was overexpressed in breast cancers as compared with the adjacent tissues. The abundance of FLI1 protein was strongly correlated with the advanced stage, poor differentiation, and lymph node metastasis in breast cancer patients. Knockdown of FLI1 with small interfering RNAs significantly attenuated the potential of migration and invasion in highly metastatic human breast cancer cells. FLI1 oncoprotein activated the Rho GTPase pathway that is known to play a role in tumor metastasis. This study for the first time identifies FLI1 as a clinically and functionally important target gene of metastasis, providing a rationale for developing FLI1 inhibitors in the treatment of breast cancer.
The emulsion chamber technology experiment
NASA Technical Reports Server (NTRS)
Gregory, John C.
1992-01-01
Photographic emulsion has the unique property of recording tracks of ionizing particles with a spatial precision of 1 micron, while also being capable of deployment over detector areas of square meters or 10's of square meters. Detectors are passive, their cost to fly in Space is a fraction of that of instruments of similar collecting. A major problem in their continued use has been the labor intensiveness of data retrieval by traditional microscope methods. Two factors changing the acceptability of emulsion technology in space are the astronomical costs of flying large electronic instruments such as ionization calorimeters in Space, and the power and low cost of computers, a small revolution in the laboratory microscope data-taking. Our group at UAH made measurements of the high energy composition and spectra of cosmic rays. The Marshall group has also specialized in space radiation dosimetry. Ionization calorimeters, using alternating layers of lead and photographic emulsion, to measure particle energies up to 10(exp 15) eV were developed. Ten balloon flights were performed with them. No such calorimeters have ever flown in orbit. In the ECT program, a small emulsion chamber was developed and will be flown on the Shuttle mission OAST-2 to resolve the principal technological questions concerning space exposures. These include assessments of: (1) pre-flight and orbital exposure to background radiation, including both self-shielding and secondary particle generation; the practical limit to exposure time in space can then be determined; (2) dynamics of stack to optimize design for launch and weightlessness; and (3) thermal and vacuum constraints on emulsion performance. All these effects are cumulative and affect our ability to perform scientific measurements but cannot be adequately predicted by available methods.
A study of marine stratocumulus using lidar and other FIRE aircraft observations
NASA Technical Reports Server (NTRS)
Jensen, Jorgen B.; Lenschow, Donald H.
1990-01-01
The National Center for Atmospheric Research (NCAR) airborne infrared lidar system (NAILS) used in the 1987 First ISCCP Regional Experiment (FIRE) off the coast of California is a 10.6 microns wavelength carbon dioxide lidar system constructed by Ron Schwiesow and co-workers at NCAR. The lidar is particularly well suited for detailed observations of cloud shapes; i.e., height of cloud top (when flying above cloud and looking down) and cloud base (when flying below cloud and looking up) along the flight path. A brief summary of the lidar design characteristics is given. The lidar height resolution of plus or minus 3 m allows for the distance between the aircraft and cloud edge to be determined with this accuracy; however, the duration of the emitted pulse is approximately 3 microseconds, which corresponds to a 500 m pulse length. Therefore, variations in backscatter intensities within the clouds can normally not be resolved. Hence the main parameter obtainable from the lidar is distance to cloud; in some cases the cloud depth can also be determined. During FIRE the lidar was operational on 7 of the 10 Electra flights, and data were taken when the distance between cloud and aircraft (minimum range) was at least 500 m. The lidar was usually operated at 8 Hz, which at a flight speed of 100 m s(-1) translates into a horizontal resolution of about 12 m. The backscatter as function of time (equivalent to distance) for each laser pulse is stored in digital form on magnetic tape. Currently, three independent variables are available to the investigators on the FIRE Electra data tapes: lidar range to cloud, strength of return (relative power), and pulse width of return, which is related to penetration depth.
Hessian fly - associated bacteria: transmission, essentiality, and composition
USDA-ARS?s Scientific Manuscript database
Plant-feeding insects have been recently found to use microbes to manipulate host plants. Gall midges are one of the largest groups of insects that manipulate host plants extensively. In this study, we systematically analyzed for the first time bacteria associated with the Hessian fly (HF, Mayetio...
Possibilities of forecasting hypercholesterinemia in pilots
NASA Technical Reports Server (NTRS)
Vivilov, P.
1980-01-01
The dependence of the frequency of hypercholesterinemia on the age, average annual flying time, functional category, qualification class, and flying specialty of 300 pilots was investigated. The risk probability coefficient of hypercholesterinemia was computed. An evaluation table was developed which gives an 84% probability of forcasting risk of hypercholesterinemia.
Douglas, Angela E.
2014-01-01
The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes. PMID:24242251
Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua
2010-08-01
An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.
Dynamics of Dark-Fly Genome Under Environmental Selections
Izutsu, Minako; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu; Fuse, Naoyuki
2015-01-01
Environmental adaptation is one of the most fundamental features of organisms. Modern genome science has identified some genes associated with adaptive traits of organisms, and has provided insights into environmental adaptation and evolution. However, how genes contribute to adaptive traits and how traits are selected under an environment in the course of evolution remain mostly unclear. To approach these issues, we utilize “Dark-fly”, a Drosophila melanogaster line maintained in constant dark conditions for more than 60 years. Our previous analysis identified 220,000 single nucleotide polymorphisms (SNPs) in the Dark-fly genome, but did not clarify which SNPs of Dark-fly are truly adaptive for living in the dark. We found here that Dark-fly dominated over the wild-type fly in a mixed population under dark conditions, and based on this domination we designed an experiment for genome reselection to identify adaptive genes of Dark-fly. For this experiment, large mixed populations of Dark-fly and the wild-type fly were maintained in light conditions or in dark conditions, and the frequencies of Dark-fly SNPs were compared between these populations across the whole genome. We thereby detected condition-dependent selections toward approximately 6% of the genome. In addition, we observed the time-course trajectory of SNP frequency in the mixed populations through generations 0, 22, and 49, which resulted in notable categorization of the selected SNPs into three types with different combinations of positive and negative selections. Our data provided a list of about 100 strong candidate genes associated with the adaptive traits of Dark-fly. PMID:26637434
Grapefruit as a host for the West Indian fruit fly (Diptera: Tephritidae).
Mangan, Robert L; Thomas, Donald B; Moreno, Aleena Tarshis; Robacker, David
2011-02-01
The most common hosts for the West Indian fruit fly, Anastrepha obliqua (Macquart) (Diptera: Tephritidae) are fruit in the family Anacardiaceae (mango [Mangifera L.] and mombin [Spondias L.] species). However, similar to many of the tropical fruit flies of major economic importance, this species attacks several other families of crop fruit, including Annonaceae (cherimoya, Annona cherimola Mill.), Myrtaceae (guava, Psidium L.), Oxalidaceae (carambola, Averrhoa carambola L.), Passifloraceae (granadilla, Passiflora quadrangularis Mill.), and Sapotaceae [mamey sapote, Pouteria sapota (Jacq.) H. E. Moore & Steam]. In the family Rutaceae the economically important genus Citrus has been reported and until recently considered a host for this fruit fly. In this study, we reviewed the taxonomy of A. obliqua, tested specific chemicals that may inhibit oviposition, compared egg-to-adult survival of A. obliqua on preferred hosts and on grapefruit (Citrus X paradisi Macfad.), and measured fruit tissue-specific developmental rates of A. obliqua and the known citrus breeding Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), from egg to pupae. Our literature review shows much confusion concerning the taxonomy of this and related Anastrepha species, including synonymies and confusion with other species. The deterrent effect of the highest concentration of flavonoids for oviposition, although significant, was not absolute. Experiments carried out under laboratory conditions showed 15-40 times greater survival of A. ludens (whose preferred hosts include Rutaceae) on grapefruit compared with A. obliqua for both tree attached and harvested fruit. Experiments of survival of developing stages over time showed that the two species oviposit into different tissues in the fruit, and mortality is much higher for the West Indian fruit fly in the flavedo and albedo of the fruit compared with the Mexican fruit fly.
Mukhopadhyay, Indranil; Saxena, Daya Krishna; Chowdhuri, Debapratim Kar
2003-01-01
Hazardous effects of an effluent from the chrome plating industry were examined by exposing transgenic Drosophila melanogaster (hsp70-lacZ) to various concentrations (0.05, 0.1, 1.0, 10.0, and 100.0 micro L/mL) of the effluent through diet. The emergence pattern of adult flies was affected, along with impaired reproductive performance at the higher dietary concentrations of the effluent. Interestingly, the effect of the effluent was more pronounced in male than in female flies. The effect of the effluent on development of adult flies was concurrent with the expression pattern of the heat shock protein 70 gene (hsp70), both in larval tissues and in the reproductive organs of adult flies. We observed a dose- and time-dependent expression of hsp70 in third instar larvae exposed for different time intervals. Absence of hsp70 expression in larvae exposed to 0.1 micro L/mL of the effluent indicated that this is the highest nontoxic concentration for Drosophila. The stress gene assay in the reproductive organs of adult flies revealed hsp70 expression in the testis of male flies only. However, trypan blue dye exclusion tests in these tissues indicate tissue damage in the male accessory gland of adult flies, which was further confirmed by ultrastructural observations. In the present study we demonstrate the utility of transgenic Drosophila as an alternative animal model for evaluating hazardous effects of the effluent from the chrome plating industry and further reveal the cytoprotective role of hsp70 and its expression as an early marker in environmental risk assessment. PMID:14644668
Albuquerque, Thais A.; Zurek, Ludek
2014-01-01
Stable flies are blood-feeding insects with a great negative impact on animals world wide. Larvae develop primarily in animal manure and bacteria are essential for larval development; however, the principle of this dependence is not understood. We hypothesized that as the microbial community of animal manure changes over time, it plays an important role in stable fly fitness. Two-choice bioassays were conducted using 2 week old horse manure (control) and aging horse manure (fresh to 5 week old) to evaluate the effect of manure age on stable fly oviposition. Our data showed that fresh feces did not stimulate oviposition and that the attractiveness increased as manure aged but started to decline after 3 weeks. Bioassays assessing the effect of manure age at the time of oviposition on larval development demonstrated that 1–3 week old manure supported larval development significantly better than fresh, 4, and 5 week old manure. In addition, adult fitness (body size) was significantly higher in flies from 1 and 2 week old manure comparing to that of all other treatments. Analysis of the bacterial community of aging horse manure by 454-pyrosequencing of 16S rDNA revealed a great reduction in bacterial diversity and richness from fresh to 1–5 week old manure and a major shift from strict anaerobes in fresh manure to facultative anaerobes and strict aerobes in aged manure. Overall, the microbial community of 2 and 3 week old horse manure with its dominant bacterial taxa Rhizobium, Devosia, and Brevundimonas stimulated stable fly oviposition the most and provided a suitable habitat for larval development. These bacteria represent the candidates for studies focused on better understanding of stable fly – microbial interactions. PMID:25426108
Pohjoismäki, Jaakko L O; Karhunen, Pekka J; Goebeler, Sirkka; Saukko, Pekka; Sääksjärvi, Ilari E
2010-06-15
Fly species that are commonly recovered on human corpses concealed in houses or other dwellings are often dependent on human created environments and might have special features in their biology that allow them to colonize indoor cadavers. In this study we describe nine typical cases involving forensically relevant flies on human remains found indoors in southern Finland. Eggs, larvae and puparia were reared to adult stage and determined to species. Of the five species found the most common were Lucilia sericata Meigen, Calliphora vicina Robineau-Desvoidy and Protophormia terraenovae Robineau-Desvoidy. The flesh fly Sarcophaga caerulescens Zetterstedt is reported for the first time to colonize human cadavers inside houses and a COI gene sequence based DNA barcode is provided for it to help facilitate identification in the future. Fly biology, colonization speed and the significance of indoors forensic entomological evidence are discussed. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Revis, Hannah C; Miller, Neil W; Vargas, Roger I
2004-10-01
Attractiveness and toxicity of GF-120 Fruit Fly Bait (Dow AgroScience Indianapolis, IN) to melon flies, Bactrocera cucurbitae Coquillett, were examined to assess the effects of concentration and aging. We tested dilutions of 20, 40, and 80 ppm (AI) (spinosad) against water controls. The 80 and 40 ppm treatments were significantly more attractive than the 20 ppm and control treatments. Attraction was compared between baits aged for 2 and 24 h, fresh bait and water controls. Age had significant effects on both attractiveness and toxicity of GF-120. Baits aged for 2 h were 11 times less attractive to female melon flies than fresh bait. Mortality rates were reduced by 50% when GF-120 was subjected to rain. Our results suggest the need for frequent applications of GF-120 to obtain maximum benefits, particularly in wet tropical climates.
Adsorption of 2,4-Dichlorophenoxyacetic Acid from an Aqueous Solution on Fly Ash.
Kuśmierek, Krzysztof; Świątkowski, Andrzej
2016-03-01
The adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on fly ash was studied. The effects of adsorbent dose, contact time, pH, ionic strength, and temperature on the adsorption were investigated. Adsorption kinetic data were analyzed using pseudo-first and pseudo-second order models, and results showed that adsorption kinetics were better represented by the pseudo-second order model. Adsorption isotherms of 2,4-D on fly ash were analyzed using the Freundlich and Langmuir models. Thermodynamic parameters (ΔG°, ΔH°, and ΔS°) indicated that the adsorption process was spontaneous and endothermic. The negative values of ΔG° and the positive value of ΔH° indicate the spontaneous nature of 2,4-D adsorption on fly ash, and that the adsorption process was endothermic. Results showed that fly ash is an efficient, low-cost adsorbent for removal of 2,4-D from water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... destination, you must use the U.S. flag air carrier service unless such use would extend your travel time... the U.S. by 2 or more; or (2) Extend your travel time by at least 6 hours or more; or (3) Require a... Fly America Act requirements apply when I travel between the United States and another country? 301-10...
Code of Federal Regulations, 2012 CFR
2012-07-01
... destination, you must use the U.S. flag air carrier service unless such use would extend your travel time... the U.S. by 2 or more; or (2) Extend your travel time by at least 6 hours or more; or (3) Require a... Fly America Act requirements apply when I travel between the United States and another country? 301-10...
Code of Federal Regulations, 2013 CFR
2013-07-01
... destination, you must use the U.S. flag air carrier service unless such use would extend your travel time... the U.S. by 2 or more; or (2) Extend your travel time by at least 6 hours or more; or (3) Require a... Fly America Act requirements apply when I travel between the United States and another country? 301-10...
Code of Federal Regulations, 2014 CFR
2014-07-01
... destination, you must use the U.S. flag air carrier service unless such use would extend your travel time... the U.S. by 2 or more; or (2) Extend your travel time by at least 6 hours or more; or (3) Require a... Fly America Act requirements apply when I travel between the United States and another country? 301-10...
Code of Federal Regulations, 2011 CFR
2011-07-01
... destination, you must use the U.S. flag air carrier service unless such use would extend your travel time... the U.S. by 2 or more; or (2) Extend your travel time by at least 6 hours or more; or (3) Require a... Fly America Act requirements apply when I travel between the United States and another country? 301-10...
An inexpensive technique for the time resolved laser induced plasma spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Rizwan, E-mail: rizwan.ahmed@ncp.edu.pk; Ahmed, Nasar; Iqbal, J.
We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450–550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved informationmore » about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.« less
, colloidal quantum dots, and single-walled carbon nanotubes. Laser-based experiments (time-resolved fluorescence spectroscopy; time-resolved resonance Raman spectroscopy; laser-induced fluorescence spectroscopy ; time-resolved evanescent wave-induced fluorescence spectroscopy; picosecond coherent anti-Stokes Raman
Flying-fox roost disturbance and Hendra virus spillover risk.
Edson, Daniel; Field, Hume; McMichael, Lee; Jordan, David; Kung, Nina; Mayer, David; Smith, Craig
2015-01-01
Bats of the genus Pteropus (flying-foxes) are the natural host of Hendra virus (HeV) which periodically causes fatal disease in horses and humans in Australia. The increased urban presence of flying-foxes often provokes negative community sentiments because of reduced social amenity and concerns of HeV exposure risk, and has resulted in calls for the dispersal of urban flying-fox roosts. However, it has been hypothesised that disturbance of urban roosts may result in a stress-mediated increase in HeV infection in flying-foxes, and an increased spillover risk. We sought to examine the impact of roost modification and dispersal on HeV infection dynamics and cortisol concentration dynamics in flying-foxes. The data were analysed in generalised linear mixed models using restricted maximum likelihood (REML). The difference in mean HeV prevalence in samples collected before (4.9%), during (4.7%) and after (3.4%) roost disturbance was small and non-significant (P = 0.440). Similarly, the difference in mean urine specific gravity-corrected urinary cortisol concentrations was small and non-significant (before = 22.71 ng/mL, during = 27.17, after = 18.39) (P= 0.550). We did find an underlying association between cortisol concentration and season, and cortisol concentration and region, suggesting that other (plausibly biological or environmental) variables play a role in cortisol concentration dynamics. The effect of roost disturbance on cortisol concentration approached statistical significance for region, suggesting that the relationship is not fixed, and plausibly reflecting the nature and timing of disturbance. We also found a small positive statistical association between HeV excretion status and urinary cortisol concentration. Finally, we found that the level of flying-fox distress associated with roost disturbance reflected the nature and timing of the activity, highlighting the need for a 'best practice' approach to dispersal or roost modification activities. The findings usefully inform public discussion and policy development in relation to Hendra virus and flying-fox management.
Gruner, S. V.; Slone, D.H.; Capinera, J.L.; Turco, M. P.
2017-01-01
Chrysomya megacephala (Fabricius) is a forensically important fly that is found throughout the tropics and subtropics. We calculated the accumulated development time and transition points for each life stage from eclosion to adult emergence at five constant temperatures: 15, 20, 25, 30, and 35 °C. For each transition, the 10th, 50th, and 90th percentiles were calculated with a logistic linear model. The mean transition times and % survivorship were determined directly from the raw laboratory data. Development times of C. megacephala were compared with that of two other closely related species, Chrysomya rufifacies (Macquart) and Phormia regina (Meigen). Ambient and larval mass temperatures were collected from field studies conducted from 2001–2004. Field study data indicated that adult fly activity was reduced at lower ambient temperatures, but once a larval mass was established, heat generation occurred. These development times and durations can be used for estimation of a postmortem interval (PMI).
Li, Songye; Cai, Zhengxin; Zheng, Ming-Qiang; Holden, Daniel; Naganawa, Mika; Lin, Shu-Fei; Ropchan, Jim; Labaree, David; Kapinos, Michael; Lara-Jaime, Teresa; Navarro, Antonio; Huang, Yiyun
2018-01-01
The κ-opioid receptor (KOR) has been implicated in depression, addictions, and other central nervous system disorders and, thus, is an important target for drug development. We previously developed several 11 C-labeled PET radiotracers for KOR imaging in humans. Here we report the synthesis and evaluation of 18 F-LY2459989 as the first 18 F-labeled KOR antagonist radiotracer in nonhuman primates and its comparison with 11 C-LY2459989. Methods: The novel radioligand 18 F-LY2459989 was synthesized by 18 F displacement of a nitro group or an iodonium ylide. PET scans in rhesus monkeys were obtained on a small-animal scanner to assess the pharmacokinetic and in vivo binding properties of the ligand. Metabolite-corrected arterial activity curves were measured and used as input functions in the analysis of brain time-activity curves and the calculation of binding parameters. Results: With the iodonium ylide precursor, 18 F-LY2459989 was prepared at high radiochemical yield (36% ± 7% [mean ± SD]), radiochemical purity (>99%), and mean molar activity (1,175 GBq/μmol; n = 6). In monkeys, 18 F-LY2459989 was metabolized at a moderate rate, with a parent fraction of approximately 35% at 30 min after injection. Fast and reversible kinetics were observed, with a regional peak uptake time of less than 20 min. Pretreatment with the selective KOR antagonist LY2456302 (0.1 mg/kg) decreased the activity level in regions with high levels of binding to that in the cerebellum, thus demonstrating the binding specificity and selectivity of 18 F-LY2459989 in vivo. Regional time-activity curves were well fitted by the multilinear analysis 1 kinetic model to derive reliable estimates of regional distribution volumes. With the cerebellum as the reference region, regional binding potentials were calculated and ranked as follows: cingulate cortex > insula > caudate/putamen > frontal cortex > temporal cortex > thalamus, consistent with the reported KOR distribution in the monkey brain. Conclusion: The evaluation of 18 F-LY2459989 in nonhuman primates demonstrated many attractive imaging properties: fast tissue kinetics, specific and selective binding to the KOR, and high specific binding signals. A side-by-side comparison of 18 F-LY2459989 and 11 C-LY2459989 indicated similar kinetic and binding profiles for the 2 radiotracers. Taken together, the results indicated that 18 F-LY2459989 appears to be an excellent PET radiotracer for the imaging and quantification of the KOR in vivo. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Haelewaters, Danny; Pfliegler, Walter P; Szentiványi, Tamara; Földvári, Mihály; Sándor, Attila D; Barti, Levente; Camacho, Jasmin J; Gort, Gerrit; Estók, Péter; Hiller, Thomas; Dick, Carl W; Pfister, Donald H
2017-02-21
Bat flies (Streblidae and Nycteribiidae) are among the most specialized families of the order Diptera. Members of these two related families have an obligate ectoparasitic lifestyle on bats, and they are known disease vectors for their hosts. However, bat flies have their own ectoparasites: fungi of the order Laboulbeniales. In Europe, members of the Nycteribiidae are parasitized by four species belonging to the genus Arthrorhynchus. We carried out a systematic survey of the distribution and fungus-bat fly associations of the genus in central Europe (Hungary, Romania). We encountered the bat fly Nycteribia pedicularia and the fungus Arthrorhynchus eucampsipodae as new country records for Hungary. The following bat-bat fly associations are for the first time reported: Nycteribia kolenatii on Miniopterus schreibersii, Myotis blythii, Myotis capaccinii and Rhinolophus ferrumequinum; Penicillidia conspicua on Myotis daubentonii; and Phthiridium biarticulatum on Myotis capaccinii. Laboulbeniales infections were found on 45 of 1,494 screened bat flies (3.0%). We report two fungal species: Arthrorhynchus eucampsipodae on Nycteribia schmidlii, and A. nycteribiae on N. schmidlii, Penicillidia conspicua, and P. dufourii. Penicillidia conspicua was infected with Laboulbeniales most frequently (25%, n = 152), followed by N. schmidlii (3.1%, n = 159) and P. dufourii (2.0%, n = 102). Laboulbeniales seem to prefer female bat fly hosts to males. We think this might be due to a combination of factors: female bat flies have a longer life span, while during pregnancy female bat flies are significantly larger than males and accumulate an excess of fat reserves. Finally, ribosomal DNA sequences for A. nycteribiae are presented. We screened ectoparasitic bat flies from Hungary and Romania for the presence of ectoparasitic Laboulbeniales fungi. Arthrorhynchus eucampsipodae and A. nycteribiae were found on three species of bat flies. This study extends geographical and host ranges of both bat flies and Laboulbeniales fungi. The sequence data generated in this work contribute to molecular phylogenetic studies of the order Laboulbeniales. Our survey shows a complex network of bats, bat flies and Laboulbeniales fungi, of which the hyperparasitic fungi are rare and species-poor. Their host insects, on the other hand, are relatively abundant and diverse.
USDA-ARS?s Scientific Manuscript database
Classical biological control programs rely on mass-production of high quality beneficial insects for subsequent releases into the field. Psyttalia lounsburyi (Silvestri) (Hymenoptera: Braconidae) is a koinobiont larval-pupal endoparasitoid of tephritid flies that is being reared to support a classic...
2015-03-02
ISS042E296377 (03/02/2015) --- Literally flying in microgravity US astronaut Terry Virts a flight engineer of Expedition 42 aboard the International Space Station , Tweeted this message to his followers on Mar, 2, 2015 "Our official “100 Days” patch. 2.5 months to go. Time is flying WAY TOO FAST"!
Volatile chemicals released by Tephritid flies as a tool to understanding species diversity
USDA-ARS?s Scientific Manuscript database
It is clear that the Tephritids are a wonderfully diverse group of flies. However, as is evident from the current Coordinated Research Project many times clear species identifications are next to impossible using common systematic methods. Excellent examples of cryptic species are documented amon...
Taking Stock of the Drosophila Research Ecosystem
Bilder, David; Irvine, Kenneth D.
2017-01-01
With a century-old history of fundamental discoveries, the fruit fly has long been a favored experimental organism for a wide range of scientific inquiries. But Drosophila is not a “legacy” model organism; technical and intellectual innovations continue to revitalize fly research and drive advances in our understanding of conserved mechanisms of animal biology. Here, we provide an overview of this “ecosystem” and discuss how to address emerging challenges to ensure its continued productivity. Drosophila researchers are fortunate to have a sophisticated and ever-growing toolkit for the analysis of gene function. Access to these tools depends upon continued support for both physical and informational resources. Uncertainty regarding stable support for bioinformatic databases is a particular concern, at a time when there is the need to make the vast knowledge of functional biology provided by this model animal accessible to scientists studying other organisms. Communication and advocacy efforts will promote appreciation of the value of the fly in delivering biomedically important insights. Well-tended traditions of large-scale tool development, open sharing of reagents, and community engagement provide a strong basis for coordinated and proactive initiatives to improve the fly research ecosystem. Overall, there has never been a better time to be a fly pusher. PMID:28684603
Wei, Na
2015-01-01
Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China’s regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution. PMID:25961800
Performance of Nitrogen and Phosphorus Removal in Petrochemical Wastewater by Zeolited Fly Ash
NASA Astrophysics Data System (ADS)
Li, Zheng; Gu, Guizhou; Ji, Shenghao
2018-05-01
The zeolitized fly ash was synthesized by alkali melt hydrothermal method. The cation exchange capacity of zeolitized fly ash was far greater than the raw material fly ash. The main component was NaP1 zeolite (Na6Al6Si10O32·12H2O), followed by mullite, and a small amount of heterozygous crystals. The effect of synthetic zeolite dosage, pH value, adsorption time and reaction temperature on the effect of nitrogen and phosphorus removal in petrochemical wastewater were investigated. The results showed that when the zeolitized fly ash dosage was 9 g/L, the petrochemical wastewater pH value was 6∼8, adsorption time was 30 min and the reaction temperature was 30°C, the synthetic zeolite had the best effect on the removal of TN and TP in petrochemical wastewater, and the removal was 65.5%, 91.4% respectively. Besides, the concentrations of TN and TP in the effluent were 11.04 mg/L, 0.31 mg/L respectively. The concentrations met the sewage discharge standard in petrochemical industry of "Liaoning sewage comprehensive discharge standard" (DB21 1627-2008). This study was to realize the comprehensive utilization of solid waste and achieve the purpose of waste and waste.
Wei, Na
2015-05-07
Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.
Beresford, D V; Sutcliffe, J F
2009-04-01
Stable fly (Diptera: Muscidae) populations in south central Ontario, Canada, first occur on dairy farms in late spring, grow exponentially throughout the summer, and are frozen back each autumn. We examined the extent of overwinter persistence on 22 dairy farms in a 55- by 60-km region north of Lake Ontario that spans four climatic zones. Our overwintering sampling of larval habitat identified three farms located in the southern section of the study region as potential overwintering refugia. Using sticky trap catches to identify the timing of first spring appearance at each farm, we then tested two models of how local farm populations are reestablished annually: 1) stable flies disperse from local climatic refuges and colonize neighboring farms (the local source model); and 2) stable flies are carried into the study region by frontal weather systems (the distant source model). The timing of when stable flies first occurred at these farms supported a local source of dispersing colonists from a small proportion of local refuge farms. We discuss our results in terms of how yearly fluctuation in climate would affect refuge farm density in the region and how this, in turn, would shift the recolonization dynamic. Implications for controlling stable flies also are discussed.
Effect of time on dyeing wastewater treatment
NASA Astrophysics Data System (ADS)
Ye, Tingjin; Chen, Xin; Xu, Zizhen; Chen, Xiaogang; Shi, Liang; He, Lingfeng; Zhang, Yongli
2018-03-01
The preparation of carboxymethylchitosan wrapping fly-ash adsorbent using high temperature activated fly ash and sodium carboxymethyl chitosan (CWF), as with the iron-carbon micro-electrolysis process simulation and actual printing and dyeing wastewater. The effects of mixing time and static time on decolorization ratio, COD removing rate and turbidness removing rate were investigated. The experimental results show that the wastewater stirring times on the decolorization rate and COD removal rate and turbidity removal rate influence, with increasing of the stirring time, three showed a downward trend, and reached the peak at 10 min time; wastewater time on the decolorization ratio and COD removing efficiency and turbidness removing rate influence, along with standing time increase, three who declined and reached the maximum in 30min time.
Adaptive Decomposition of Highly Resolved Time Series into Local and Non‐local Components
Highly time-resolved air monitoring data are widely being collected over long time horizons in order to characterizeambient and near-source air quality trends. In many applications, it is desirable to split the time-resolved data into two ormore components (e.g., local and region...
Chaiwong, T; Srivoramas, T; Sueabsamran, P; Sukontason, K; Sanford, M R; Sukontason, K L
2014-06-01
The Oriental latrine fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and the house fly, Musca domestica L., (Diptera: Muscidae) are synanthropic flies which are adapted to live in close association with human habitations, thereby making them likely mechanical vectors of several pathogens to humans. There were two main aims of this study. The first aim was to determine the prevalence of these two fly species from five types of human habitations including: fresh-food markets, garbage piles, restaurants, school cafeterias and paddy fields, in the Muang Ubon Ratchathani and Warinchamrap districts of Ubon Ratchathani province of Northeast Thailand. Flies collection were conducted monthly from September 2010-October 2011 using a reconstructable funnel trap, containing 1 day-tainted beef offal as bait. A total of 7 750 flies (6 401 C. megacephala and 1 349 M.domestica) were collected. The second aim was to examine the potential of these flies to carry pathogenic bacteria. Bacteria were isolated from 994 individual flies collected using a sweep net (555 C. megacephala and 439 M. domestica). A total of 15 bacterial genera were isolated from the external surfaces, comprising ten genera of gram-negative bacteria and five gram-positive bacteria. The most common bacteria isolated from both species were coagulase-negative staphylococci, followed by Streptococcus group D non-enterococci. Human pathogenic enteric bacteria isolated were Salmonella sp., Shigella sp., Escherichia coli O157:H7, Salmonella typhi, Bacillus sp., and Enterococcus sp., of which S. typhi is the first report of isolation from these fly species. Other human pathogens included Staphylococcus aureus and Pseudomonas aeruginosa. Not only were the number of C. megacephala positive for bacteria significantly higher than for M. domestica, but they were also carrying ~11-12 times greater bacterial load than M. domestica. These data suggest that both fly species should be considered potential mechanical vectors of bacterial pathogens associated with human habitations year-round in this region of Northeast Thailand.
Unmixing the Materials and Mechanics Contributions in Non-resolved Object Signatures
2008-09-01
abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier analysis of temporal variation of material abundance provides...factorization technique to extract the temporal variation of material abundances from hyperspectral or multi-spectral time - resolved signatures. A Fourier...approximately one hundred wavelengths in the visible spectrum. The frame rate for the instrument was not large enough to collect time resolved data. However
Checklist of host associations of European bat flies (Diptera: Nycteribiidae, Streblidae).
Szentiványi, Tamara; Estók, Péter; Földvári, Mihály
2016-12-05
Bat flies are obligate blood-sucking ectoparasites of bats. They are divided into two families: Nycteribiidae and Streblidae. Europe has 17 species of bat flies and 45 species of bats (Mammalia: Chiroptera). This checklist is based on both published records and our own field data and provides updated information on all associations between bat flies and their hosts in Europe. The host-parasite association between Basilia italica Theodor and Plecotus auritus (Linnaeus) is reported for the first time. Moreover, our records of B. italica on Myotis alcathoe Helversen & Heller, B. nana Theodor & Moscona on Plecotus auritus, Nycteribia kolenatii Theodor & Moscona on M. bechsteinii (Kuhl) and Penicillidia dufourii (Westwood) on M. daubentonii (Kuhl) represent new host associations for Hungary.
Contreras, María Angélica; Vivero, Rafael José; Bejarano, Eduar Elías; Carrillo, Lina María; Vélez, Iván Darío
2012-06-01
In Colombia, the diversity of phlebotomine sand flies is high, with 162 recorded species, and which include vectors of Leishmania spp. To identify the sand fly species of medically importance in the area of influence from Amoyá River Hydroelectric Project, Colombia. Sand flies were collected with CDC light traps, Shannon traps and sticky traps, from 15 villages in Chaparral County,Tolima. A total of 1,077 adult sand fly specimens were collected. Thirteen species were found in the genus Lutzomyiaand one species in the genus Warileya.Among the Lutzomyia species, three species--Lutzomyia longiflocosa, Lutzomyia columbiana and Lutzomyia nuneztovari--are important for their epidemiological history.Lutzomyia suapiensis was a new record for Colombia, and Warileya rotundipennis was recorded for the first time in Tolima. This study contributed to an increased knowledge of Colombian sand flies in terms of (1) expanding the geographical distribution of members of the subfamily Phlebotominae, (2) gaining estimates of species-richness and species associations in central Colombia, and (3) providing a better understanding of epidemiology of leishmaniasis in the Chaparral area.
A single social defeat reduces aggression in a highly aggressive strain of Drosophila
Penn, Jill K. M.; Zito, Michael F.; Kravitz, Edward A.
2010-01-01
Genes and prior experience both influence the behavior of animals, but the relative contribution of each to fighting behavior in Drosophila remains unclear. To address this issue, we bred hyperaggressive flies by selecting winners of fights over 34–37 generations. Males of this strain initiate fights sooner, retaliate more often, and regularly defeat opponents from the nonselected parent Canton-S strain. After a defeat, however, these highly aggressive flies lose their second fights against socially naïve counterparts. Defeated flies also lunge and retaliate less after experiencing a loss, suggesting that the subsequent losses result from flies becoming less aggressive. Remarkably, flies that were once capable of engaging in high-intensity boxing and tussling patterns of behavior for extended periods of time often do not even engage in mid-intensity lunging after a single defeat. Furthermore, these formerly highly aggressive flies lose all competitive advantage over nonselected Canton-S after experiencing a loss. Lastly, females were more likely to copulate with males from the nonselected parent line than with the hyperaggressive strain. PMID:20616023
Flying fish accelerate at 5 G to leap from the water surface
NASA Astrophysics Data System (ADS)
Yang, Patricia; Phonekeo, Sulisay; Xu, Ke; Chang, Shui-Kai; Hu, David
2013-11-01
Flying fish can both swim underwater and glide in air. Transitioning from swimming to gliding requires penetration of the air-water interface, or breaking the ``surface tension barrier,'' a formidable task for juvenile flying fish measuring 1 to 5 cm in length. In this experimental investigation, we use high-speed videography to characterize the kinematics of juvenile flying fish as they leap from the water surface. During this process, which lasts 0.05 seconds, flying fish achieve body accelerations of 5 times earth's gravity and gliding speeds of 1.3 m/s, an order of magnitude higher than their steady swimming speed. We rationalize this anomalously high speed on the basis of the hydrodynamic and surface tension forces and torques experienced by the fish. Specifically, leaping fish experience skin friction forces only on the submerged part of their body, permitting them to achieve much higher speeds than in steady underwater swimming. We also perform experiments using a towed flying fish mimc to determine optimality of various parameters in this process, including body angle and start position with respect to the water surface.
Feng, Shanglei; Yang, Yingguo; Li, Li; Zhang, Dongsheng; Yang, Xinmei; Xia, Huihao; Yan, Long; Tsang, Derek K L; Huai, Ping; Zhou, Xingtai
2017-09-06
An in-situ real-time synchrotron-based grazing incidence X-ray diffraction was systematically used to investigate the crystal structural evolution of carbon fiber reinforced carbon matrix (C/C) composite impregnated with FLiNaK molten salt during the heat-treatment process. It was found that the crystallographic thermal expansion and contraction rate of interlayer spacing d 002 in C/C composite with FLiNaK salt impregnation is smaller than that in the virgin sample, indicating the suppression on interlayer spacing from FLiNaK salt impregnated. Meanwhile the crystallite size L C002 of C/C composite with FLiNaK salt impregnation is larger than the virgin one after whole heat treatment process, indicating that FLiNaK salt impregnation could facilitate the crystallization of C/C composite after heat treatment process. This improved crystallization in C/C composite with FLiNaK salt impregnation suggests the synthetic action of the salt squeeze effect on crooked carbon layer and the release of internal residual stress after heating-cooling process. Thus, the present study not only contribute to reveal the interaction mechanism between C/C composite and FLiNaK salt in high temperature environment, but also promote the design of safer and more reliable C/C composite materials for the next generation molten salt reactor.
Tomás, Gustavo; Merino, Santiago; Martínez-de la Puente, Josué; Moreno, Juan; Morales, Judith; Lobato, Elisa
2008-05-01
Compared to non-flying nest-dwelling ectoparasites, the biology of most species of flying ectoparasites and its potential impact on avian hosts is poorly known and rarely, if ever, reported. In this study we explore for the first time the factors that may affect biting midge (Diptera: Ceratopogonidae) and black fly (Diptera: Simuliidae) abundances in the nest cavity of a bird, the hole-nesting blue tit Cyanistes caeruleus, and report their effects on adults and nestlings during reproduction. The abundance of biting midges was positively associated with nest mass, parental provisioning effort and abundance of blowflies and black flies, while negatively associated with nestling condition. Furthermore, a medication treatment to reduce blood parasitaemias in adult birds revealed that biting midges were more abundant in nests of females whose blood parasitaemias were experimentally reduced. This finding would be in accordance with these insect vectors attacking preferentially uninfected or less infected hosts to increase their own survival. The abundance of black flies in the population was lower than that of biting midges and increased in nests with later hatching dates. No significant effect of black fly abundance on adult or nestling condition was detected. Blood-sucking flying insects may impose specific, particular selection pressures on their hosts and more research is needed to better understand these host-parasite associations.
Cunningham, Lucas J.; Lingley, Jessica K.; Haines, Lee R.; Ndung’u, Joseph M.; Torr, Stephen J.; Adams, Emily R.
2016-01-01
Background As the reality of eliminating human African trypanosomiasis (HAT) by 2020 draws closer, the need to detect and identify the remaining areas of transmission increases. Here, we have explored the feasibility of using commercially available LAMP kits, designed to detect the Trypanozoon group of trypanosomes, as a xenomonitoring tool to screen tsetse flies for trypanosomes to be used in future epidemiological surveys. Methods and Findings The DNA extraction method was simplified and worked with the LAMP kits to detect a single positive fly when pooled with 19 negative flies, and the absolute lowest limit of detection that the kits were able to work at was the equivalent of 0.1 trypanosome per ml. The DNA from Trypanosoma brucei brucei could be detected six days after the fly had taken a blood meal containing dead trypanosomes, and when confronted with a range of non-target species, from both laboratory-reared flies and wild-caught flies, the kits showed no evidence of cross-reacting. Conclusion We have shown that it is possible to use a simplified DNA extraction method in conjunction with the pooling of tsetse flies to decrease the time it would take to screen large numbers of flies for the presence of Trypanozoon trypanosomes. The use of commercially-available LAMP kits provides a reliable and highly sensitive tool for xenomonitoring and identifying potential sleeping sickness transmission sites. PMID:26890882
Krause, Sue A; Pandit, Aniruddha; Davies, Shireen A
2018-01-01
Abstract FlyAtlas 2 (www.flyatlas2.org) is part successor, part complement to the FlyAtlas database and web application for studying the expression of the genes of Drosophila melanogaster in different tissues of adults and larvae. Although generated in the same lab with the same fly line raised on the same diet as FlyAtlas, the FlyAtlas2 resource employs a completely new set of expression data based on RNA-Seq, rather than microarray analysis, and so it allows the user to obtain information for the expression of different transcripts of a gene. Furthermore, the data for somatic tissues are now available for both male and female adult flies, allowing studies of sexual dimorphism. Gene coverage has been extended by the inclusion of microRNAs and many of the RNA genes included in Release 6 of the Drosophila reference genome. The web interface has been modified to accommodate the extra data, but at the same time has been adapted for viewing on small mobile devices. Users also have access to the RNA-Seq reads displayed alongside the annotated Drosophila genome in the (external) UCSC browser, and are able to link out to the previous FlyAtlas resource to compare the data obtained by RNA-Seq with that obtained using microarrays. PMID:29069479
Llinas, J; Jiménez, M L
1996-04-01
Nine of thirty California quail (Callipepla californica achrustera) captured in autumn of 1992, 17 km west of La Paz, Baja California Sur, México, were parasitized by louse flies. We identified eight Microlynchia pusilla and three Stilbometopa impressa from 30 quails in the ratio of 2.75:1. These are the first records of S. impressa for Cape Region and the first time either fly has been reported from the California quail in Baja California Sur.
Higgins, L J; Koshy, J; Mitchell, S E; Weiss, C R; Carson, K A; Huisman, T A G M; Tekes, A
2016-01-01
To evaluate the relative accuracy of contrast-enhanced time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced magnetic resonance imaging (MRI) following International Society for the Study of Vascular Anomalies updated 2014-based classification of soft-tissue vascular anomalies in the head and neck in children. Time-resolved angiography with interleaved stochastic trajectories versus conventional contrast-enhanced MRI of children with diagnosis of soft-tissue vascular anomalies in the head and neck referred for MRI between 2008 and 2014 were retrospectively reviewed. Forty-seven children (0-18 years) were evaluated. Two paediatric neuroradiologists evaluated time-resolved MRA and conventional MRI in two different sessions (30 days apart). Blood-pool endovascular MRI contrast agent gadofosveset trisodium was used. The present cohort had the following diagnoses: infantile haemangioma (n=6), venous malformation (VM; n=23), lymphatic malformation (LM; n=16), arteriovenous malformation (AVM; n=2). Time-resolved MRA alone accurately classified 38/47 (81%) and conventional MRI 42/47 (89%), respectively. Although time-resolved MRA alone is slightly superior to conventional MRI alone for diagnosis of infantile haemangioma, conventional MRI is slightly better for diagnosis of venous and LMs. Neither time-resolved MRA nor conventional MRI was sufficient for accurate diagnosis of AVM in this cohort. Conventional MRI combined with time-resolved MRA accurately classified 44/47 cases (94%). Time-resolved MRA using gadofosveset trisodium can accurately classify soft-tissue vascular anomalies in the head and neck in children. The addition of time-resolved MRA to existing conventional MRI protocols provides haemodynamic information, assisting the diagnosis of vascular anomalies in the paediatric population at one-third of the dose of other MRI contrast agents. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Flying Real-Time Network to Coordinate Disaster Relief Activities in Urban Areas †
Micheletto, Matias; Orozco, Javier; Mosse, Daniel
2018-01-01
While there have been important advances within wireless communication technology, the provision of communication support during disaster relief activities remains an open issue. The literature in disaster research reports several major restrictions to conducting first response activities in urban areas, given the limitations of telephone networks and radio systems to provide digital communication in the field. In search-and-rescue operations, the communication requirements are increased, since the first responders need to rely on real-time and reliable communication to perform their activities and coordinate their efforts with other teams. Therefore, these limitations open the door to improvisation during disaster relief efforts. In this paper, we argue that flying ad-hoc networks can provide the communication support needed in these scenarios, and propose a new solution towards that goal. The proposal involves the use of flying witness units, implemented using drones, that act as communication gateways between first responders working at different locations of the affected area. The proposal is named the Flying Real-Time Network, and its feasibility to provide communication in a disaster scenario is shown by presenting both a real-time schedulability analysis of message delivery, as well as simulations of the communication support in a physical scenario inspired by a real incident. The obtained results were highly positive and consistent, therefore this proposal represents a step forward towards the solution of this open issue. PMID:29789458
Flying Real-Time Network to Coordinate Disaster Relief Activities in Urban Areas †.
Micheletto, Matias; Petrucci, Vinicius; Santos, Rodrigo; Orozco, Javier; Mosse, Daniel; Ochoa, Sergio F; Meseguer, Roc
2018-05-22
While there have been important advances within wireless communication technology, the provision of communication support during disaster relief activities remains an open issue. The literature in disaster research reports several major restrictions to conducting first response activities in urban areas, given the limitations of telephone networks and radio systems to provide digital communication in the field. In search-and-rescue operations, the communication requirements are increased, since the first responders need to rely on real-time and reliable communication to perform their activities and coordinate their efforts with other teams. Therefore, these limitations open the door to improvisation during disaster relief efforts. In this paper, we argue that flying ad-hoc networks can provide the communication support needed in these scenarios, and propose a new solution towards that goal. The proposal involves the use of flying witness units, implemented using drones, that act as communication gateways between first responders working at different locations of the affected area. The proposal is named the Flying Real-Time Network, and its feasibility to provide communication in a disaster scenario is shown by presenting both a real-time schedulability analysis of message delivery, as well as simulations of the communication support in a physical scenario inspired by a real incident. The obtained results were highly positive and consistent, therefore this proposal represents a step forward towards the solution of this open issue.
A Symmetric Time-Varying Cluster Rate of Descent Model
NASA Technical Reports Server (NTRS)
Ray, Eric S.
2015-01-01
A model of the time-varying rate of descent of the Orion vehicle was developed based on the observed correlation between canopy projected area and drag coefficient. This initial version of the model assumes cluster symmetry and only varies the vertical component of velocity. The cluster fly-out angle is modeled as a series of sine waves based on flight test data. The projected area of each canopy is synchronized with the primary fly-out angle mode. The sudden loss of projected area during canopy collisions is modeled at minimum fly-out angles, leading to brief increases in rate of descent. The cluster geometry is converted to drag coefficient using empirically derived constants. A more complete model is under development, which computes the aerodynamic response of each canopy to its local incidence angle.
Nelson, Leigh A; Cameron, Stephen L; Yeates, David K
2011-10-01
The monogeneric family Fergusoninidae consists of gall-forming flies that, together with Fergusobia (Tylenchida: Neotylenchidae) nematodes, form the only known mutualistic association between insects and nematodes. In this study, the entire 16,000 bp mitochondrial genome of Fergusonina taylori Nelson and Yeates was sequenced. The circular genome contains one encoding region including 27 genes and one non-coding A+T-rich region. The arrangement of the protein-coding, ribosomal RNA (rRNA) and transfer RNA (tRNA) genes was the same as that found in the ancestral insect. Nucleotide composition is highly A+T biased. All of the protein initiation codons are ATN, except for nad1 which begins with TTT. All 22 tRNA anticodons of F. taylori match those observed in Drosophila yakuba, and all form the typical cloverleaf structure except for tRNA-Ser((AGN)) which lacks a dihydrouridine (DHU) arm. Secondary structural features of the rRNA genes of Fergusonina are similar to those proposed for other insects, with minor modifications. The mitochondrial genome of Fergusonina presented here may prove valuable for resolving the sister group to the Fergusoninidae, and expands the available mtDNA data sources for acalyptrates overall.
Mutation predicts 40 million years of fly wing evolution.
Houle, David; Bolstad, Geir H; van der Linde, Kim; Hansen, Thomas F
2017-08-24
Mutation enables evolution, but the idea that adaptation is also shaped by mutational variation is controversial. Simple evolutionary hypotheses predict such a relationship if the supply of mutations constrains evolution, but it is not clear that constraints exist, and, even if they do, they may be overcome by long-term natural selection. Quantification of the relationship between mutation and phenotypic divergence among species will help to resolve these issues. Here we use precise data on over 50,000 Drosophilid fly wings to demonstrate unexpectedly strong positive relationships between variation produced by mutation, standing genetic variation, and the rate of evolution over the last 40 million years. Our results are inconsistent with simple constraint hypotheses because the rate of evolution is very low relative to what both mutational and standing variation could allow. In principle, the constraint hypothesis could be rescued if the vast majority of mutations are so deleterious that they cannot contribute to evolution, but this also requires the implausible assumption that deleterious mutations have the same pattern of effects as potentially advantageous ones. Our evidence for a strong relationship between mutation and divergence in a slowly evolving structure challenges the existing models of mutation in evolution.
Idiopathic Syringomyelia in a Military Helicopter Pilot.
Schiemer, Anthony
2017-10-01
A syrinx is a fluid-filled cavity within the spinal cord. They can lead to a variety of symptoms, including limb weakness and back pain. Incidental finding of syringomyelia provides a challenge for clinicians due to the wide variety of possible symptoms. In military aviation, neurological findings in pilots can result in extensive investigation that can lead to potentially invasive management. Conversely, the potential for chronic progression of a spinal syrinx and subsequent neurological deterioration makes early identification critical. Ultimately, the discovery of a lesion may have implications for flying status and operational capability. A 25-yr-old man working as a navy Seahawk helicopter pilot presented with episodes of right arm paraesthesia and pain between the scapulae. On at least one occasion, these symptoms woke him at night. Upon magnetic resonance imaging, dilatation of the central canal in a syrinx-like pattern in the lower cervical region was noted. Neurology review suggested the finding was persistent and unlikely to be responsible for his symptoms. No surgical input was recommended. His symptoms were attributed to mild cervical spondylosis, which resolved with ongoing physiotherapy, and he was returned to flying status. This case highlights several issues involved with the incidental finding of a syringomyelia. Surgical intervention has been known to worsen symptoms. Conversely, studies have identified minimal radiological progression in cases of idiopathic syringomyelia, with fewer individuals displaying neurological deterioration. For aircrew, potentially unnecessary neurosurgical intervention poses risks to a flying career and overall operational capability.Schiemer A. Idiopathic syringomyelia in a military helicopter pilot. Aerosp Med Hum Perform. 2017; 88(10):962-965.
[Development of spatial orientation during pilot training].
Ivanov, V V; Vorob'ev, O A; Snipkov, Iu Iu
1988-01-01
The problem of spatial orientation of pilots flying high-altitude aircraft is in the focus of present-day aviation medicine because of a growing number of accidents in the air. One of the productive lines of research is to study spatial orientation in terms of active formation and maintenance of its imagery in a complex environment. However investigators usually emphasize the role of visual (instrumental) information in the image construction, almost ignoring the sensorimotor component of spatial orientation. The theoretical analysis of the process of spatial orientation has facilitated the development of the concept assuming that the pattern of space perception changes with growing professional experience. The concept is based on an active approach to the essence, emergence, formation and variation in the pattern of sensory perception of space in man's consciousness. This concept asserts that as pilot's professional expertise increases, the pattern of spatial orientation becomes geocentric because a new system of spatial perception evolves which is a result of the development of a new (instrumental) type of motor activity in space. This finds expression in the fact that perception of spatial position inflight occurs when man has to resolve a new motor task--movement along a complex trajectory in the three-dimensional space onboard a flying vehicle. The meaningful structure of this problem which is to be implemented through controlling movements of the pilot acts as a factor that forms this new system of perception. All this underlies the arrangement of meaningful collection of instrumental data and detection of noninstrumental signals in the comprehensive perception of changes in the spatial position of a flying vehicle.
Boddu, S R; Tong, F C; Dehkharghani, S; Dion, J E; Saindane, A M
2014-01-01
Endovascular reconstruction and flow diversion by using the Pipeline Embolization Device is an effective treatment for complex cerebral aneurysms. Accurate noninvasive alternatives to DSA for follow-up after Pipeline Embolization Device treatment are desirable. This study evaluated the accuracy of contrast-enhanced time-resolved MRA for this purpose, hypothesizing that contrast-enhanced time-resolved MRA will be comparable with DSA and superior to 3D-TOF MRA. During a 24-month period, 37 Pipeline Embolization Device-treated intracranial aneurysms in 26 patients underwent initial follow-up by using 3D-TOF MRA, contrast-enhanced time-resolved MRA, and DSA. MRA was performed on a 1.5T unit by using 3D-TOF and time-resolved imaging of contrast kinetics. All patients underwent DSA a median of 0 days (range, 0-68) after MRA. Studies were evaluated for aneurysm occlusion, quality of visualization of the reconstructed artery, and measurable luminal diameter of the Pipeline Embolization Device, with DSA used as the reference standard. The sensitivity, specificity, and positive and negative predictive values of contrast-enhanced time-resolved MRA relative to DSA for posttreatment aneurysm occlusion were 96%, 85%, 92%, and 92%. Contrast-enhanced time-resolved MRA demonstrated superior quality of visualization (P = .0001) and a higher measurable luminal diameter (P = .0001) of the reconstructed artery compared with 3D-TOF MRA but no significant difference compared with DSA. Contrast-enhanced time-resolved MRA underestimated the luminal diameter of the reconstructed artery by 0.965 ± 0.497 mm (27% ± 13%) relative to DSA. Contrast-enhanced time-resolved MRA is a reliable noninvasive method for monitoring intracranial aneurysms following flow diversion and vessel reconstruction by using the Pipeline Embolization Device. © 2014 by American Journal of Neuroradiology.
A minimally-resolved immersed boundary model for reaction-diffusion problems
NASA Astrophysics Data System (ADS)
Pal Singh Bhalla, Amneet; Griffith, Boyce E.; Patankar, Neelesh A.; Donev, Aleksandar
2013-12-01
We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.
Fledging success is a poor indicator of the effects of bird blow flies on ovenbird survival
Peterson, Sean M.; Streby, Henry M.; Kapfer, Paul M.
2009-01-01
Infestations of bird blow flies (Protocalliphora spp. and Trypocalliphora braueri) have various negative effects on the condition of nestling birds. In the absence of other stressors such as inclement weather, however, infestation alone rarely reduces fledging success. Previous studies have documented effects of blow flies on nestling condition and fledging success. Without information regarding fledgling survival, the full effect of blow-fly infestation remains unclear. To fully investigate the effect of blow-fly infestation on reproductive success of the Ovenbird (Seiurus aurocapilla), we monitored infested and non-infested nests and monitored fledglings from each by using radio telemetry. Blow flies did not affect birds during the nestling period, as brood size, mean nestling mass, fledging success, and time to fledging in infested and non-infested nests were no different. Fledgling survival and minimum distance traveled the first day after fledging, however, were significantly lower for infected fledglings than for those that were not infected. We conclude that the stress of the early fledgling period combined with recent or concurrent blow-fly infection increases mortality in young Oven-birds. Our results demonstrate the importance of including the post-fledging period in investigations of the effects of ectoparasitic infestations on birds.
Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang
2016-01-01
A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
Ristroph, Leif; Bergou, Attila J; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J; Guckenheimer, John; Wang, Z Jane; Cohen, Itai
2010-03-16
Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial "stumble," and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2 degrees in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly's ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances.
Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash.
Kuboňová, L; Langová, Š; Nowak, B; Winter, F
2013-11-01
Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050°C and in a muffle oven at temperatures from 500 to 1200°C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energetics and dynamics through time-resolved measurements in mass spectrometry
NASA Astrophysics Data System (ADS)
Lifshitz, Chava
Results of recent work on time-resolved photoionization and electron ionization mass spectrometry carried out in Jerusalem are reviewed. Time-resolved photoionization mass spectrometry in the vacuum ultraviolet is applied to polycyclic aromatic hydrocarbons, for example naphthalene, pyrene and fluoranthene as well as to some bromo derivatives (bromonaphthalene and bromoanthracene). Time-resolved photoionization efficiency curves are modelled by Rice-Ramsperger-Kassel-Marcus QET rate-energy k ( E ) dependences of the unimolecular dissociative processes and by the rate process infrared radiative relaxation k . Experimental results are augmented by time-resolved photorad dissociation data for the same species, whenever available. Kinetic shifts, conventional and intrinsic (due to competition between dissociative and radiative decay), are evaluated. Activation parameters (activation energies and entropies) are deduced. Thermochemical information is obtained including bond energies and ionic heats of formation. Fullerenes, notably C , are studied by time-resolved electron ionization and a large intrinsic shift, due to competition with black-bodylike radiative decay in the visible is discussed.
Denlinger, David S; Creswell, Joseph A; Anderson, J Laine; Reese, Conor K; Bernhardt, Scott A
2016-04-15
Insecticide resistance to synthetic chemical insecticides is a worldwide concern in phlebotomine sand flies (Diptera: Psychodidae), the vectors of Leishmania spp. parasites. The CDC bottle bioassay assesses resistance by testing populations against verified diagnostic doses and diagnostic times for an insecticide, but the assay has been used limitedly with sand flies. The objective of this study was to determine diagnostic doses and diagnostic times for laboratory Lutzomyia longipalpis (Lutz & Nieva) and Phlebotomus papatasi (Scopoli) to ten insecticides, including pyrethroids, organophosphates, carbamates, and DDT, that are used worldwide to control vectors. Bioassays were conducted in 1,000-ml glass bottles each containing 10-25 sand flies from laboratory colonies of L. longipalpis or P. papatasi. Four pyrethroids, three organophosphates, two carbamates and one organochlorine, were evaluated. A series of concentrations were tested for each insecticide, and four replicates were conducted for each concentration. Diagnostic doses were determined only during the exposure bioassay for the organophosphates and carbamates. For the pyrethroids and DDT, diagnostic doses were determined for both the exposure bioassay and after a 24-hour recovery period. Both species are highly susceptible to the carbamates as their diagnostic doses are under 7.0 μg/ml. Both species are also highly susceptible to DDT during the exposure assay as their diagnostic doses are 7.5 μg/ml, yet their diagnostic doses for the 24-h recovery period are 650.0 μg/ml for Lu. longipalpis and 470.0 μg/ml for P. papatasi. Diagnostic doses and diagnostic times can now be incorporated into vector management programs that use the CDC bottle bioassay to assess insecticide resistance in field populations of Lu. longipalpis and P. papatasi. These findings provide initial starting points for determining diagnostic doses and diagnostic times for other sand fly vector species and wild populations using the CDC bottle bioassay.
Naive Beliefs in Baseball: Systematic Distortion in Perceived Time of Apex for Fly Balls
ERIC Educational Resources Information Center
Shaffer, Dennis M.; McBeath, Michael K.
2005-01-01
When fielders catch fly balls they use geometric properties to optically maintain control over the ball. The strategy provides ongoing guidance without indicating precise positional information concerning where the ball is located in space. Here, the authors show that observers have striking misconceptions about what the motion of projectiles…
USDA-ARS?s Scientific Manuscript database
The presence of the fruit fly Bactrocera (Bactrocera) nigrofemoralis White & Tsuruta was recorded in Bangladesh for the first time. B.nigrofemoralis was captured in traps baited with sweet orange oil and cue-lure at the Atomic Energy Research Establishment campus, Ganak bari, Savar, Dhaka, Banglades...
Age-Related Reduction of Recovery Sleep and Arousal Threshold in Drosophila.
Vienne, Julie; Spann, Ryanne; Guo, Fang; Rosbash, Michael
2016-08-01
Physiological studies show that aging affects both sleep quality and quantity in humans, and sleep complaints increase with age. Along with knowledge about the negative effects of poor sleep on health, understanding the enigmatic relationship between sleep and aging is important. Because human sleep is similar to Drosophila (fruit fly) sleep in many ways, we addressed the effects of aging on sleep in this model organism. Baseline sleep was recorded in five different Drosophila genotypes raised at either 21°C or 25°C. The amount of sleep recovered was then investigated after a nighttime of sleep deprivation (12 h) and after chronic sleep deprivation (3 h every night for multiple nights). Finally, the effects of aging on arousal, namely, sensitivity to neuronal and mechanical stimuli, were studied. We show that fly sleep is affected by age in a manner similar to that of humans and other mammals. Not only do older flies of several genotypes have more fragmented sleep and reduced total sleep time compared to young flies, but older flies also fail to recover as much sleep after sleep deprivation. This suggests either lower sleep homeostasis and/or a failure to properly recover sleep. Older flies also show a decreased arousal threshold, i.e., an increased response to neuronal and mechanical wake-promoting stimuli. The reduced threshold may either reflect or cause the reduced recovery sleep of older flies compared to young flies after sleep deprivation. Further studies are certainly needed, but we suggest that the lower homeostatic sleep drive of older flies causes their decreased arousal threshold. © 2016 Associated Professional Sleep Societies, LLC.
Leaching characteristics of arsenic and selenium from coal fly ash: role of calcium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian Wang; Jianmin Wang; Yulin Tang
2009-05-15
Understanding the leaching behavior of arsenic (As) and selenium (Se) in coal fly ash is important in evaluating the potential environmental impact of coal fly ash. Batch experiments were employed to systematically investigate the leaching behavior of As and Se in two major types of coal fly ashes, bituminous coal ash and sub-bituminous coal ash, and to determine the underlying processes that control As and Se leaching. The effects of pH, solid/liquid (S/L) ratio, calcium addition, and leaching time on the release of As and Se were studied. Overall, bituminous coal ash leached significantly more As and Se than sub-bituminousmore » coal ash, and Se was more readily leachable, in both absolute concentration and relative fraction, than As for both types of fly ashes. Adsorption/desorption played a major role on As and Se leaching from bituminous coal ashes. However, calcium precipitation played the most important role in reducing As and Se leaching from sub-bituminous coal ashes in the entire experimental pH range. The leaching of As and Se from bituminous coal ashes generally increased with increases in the S/L ratio and leaching time. However, for sub-bituminous coal ashes, the leaching of As was not detected under most experimental conditions, while the leaching of Se increased with increases in the S/L ratio and leaching time. As{sup V} and Se{sup IV} were found to be the major species in all ash leachates in this study. 46 refs., 7 figs., 1 tab.« less
Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila.
Le Glou, Eric; Seugnet, Laurent; Shaw, Paul J; Preat, Thomas; Goguel, Valérie
2012-10-01
Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.
ERIC Educational Resources Information Center
Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.
2018-01-01
Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…
Zuha, Raja M; Huong-Wen, See; Disney, R Henry L; Omar, Baharudin
2017-01-01
Scuttle flies (Diptera: Phoridae) are small-sized insects of forensic importance. They are well known for diversified species and habitats, but in the context of forensic entomology, scuttle flies' inhabitance of corpses remains inadequately explored. With recent reports indicating the existence of more scuttle fly species possibly inhabiting these environments, a decomposition study using animal carcasses in enclosed environments was conducted. The aim was to record the occurrence of scuttle flies on rabbit carcasses placed in sealed plastic waste bins for a 40-day period. The study was conducted as two replicates in Bangi, Selangor. Sampling was carried out at different time intervals inside a modified mosquito net as a trap. Inside the trap, adult scuttle flies were aspirated and preserved in 70% ethanol. The fly larvae and pupae were reared until their adult stage to facilitate identification. From this study, six scuttle fly species were collected, i.e., Dahliphora sigmoides (Schmitz) ♂, Gymnoptera simplex (Brues) ♀ , Megaselia scalaris (Loew) ♂♀ , Puliciphora borinquenensis (Wheeler) ♂, Puliciphora obtecta Meijere ♀ and Spiniphora sp. ♀ . Both D. sigmoides and P. obtecta were newly recorded in Malaysia, whilst the Spiniphora sp. was considered an unknown species until it was linked to its male counterpart. The sealed waste bins were found to be accessible for the scuttle flies with delayed arrival (day 4-5). Megaselia scalaris was the primary scuttle fly species attracted to the carcass, and its occurrence could be observed between days 4-7 (replicate 1) and days 5-33 (replicate 2). This study also revealed Sarcophaga spp. (Diptera: Sarcophagidae) as the earliest species to colonize the remains and the longest to inhabit them (days 2-40). The larvae of Hermetia illucens (Linneaus) (Diptera: Stratiomyidae) and Fannia sp . (Diptera: Fanniidae) were found on the carcasses during the mid-advanced decay period. These findings expand the knowledge on the diversity of forensically important scuttle flies and coexisting dipterans in enclosed environments in Malaysia.
Hyperspectral light sheet microscopy
NASA Astrophysics Data System (ADS)
Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O.; Huisken, Jan
2015-09-01
To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.
Hyperspectral light sheet microscopy.
Jahr, Wiebke; Schmid, Benjamin; Schmied, Christopher; Fahrbach, Florian O; Huisken, Jan
2015-09-02
To study the development and interactions of cells and tissues, multiple fluorescent markers need to be imaged efficiently in a single living organism. Instead of acquiring individual colours sequentially with filters, we created a platform based on line-scanning light sheet microscopy to record the entire spectrum for each pixel in a three-dimensional volume. We evaluated data sets with varying spectral sampling and determined the optimal channel width to be around 5 nm. With the help of these data sets, we show that our setup outperforms filter-based approaches with regard to image quality and discrimination of fluorophores. By spectral unmixing we resolved overlapping fluorophores with up to nanometre resolution and removed autofluorescence in zebrafish and fruit fly embryos.
Microscopic observations of self-healing products in calcareous fly ash mortars.
Jóźwiak-Niedźwiedzka, Daria
2015-01-01
The results of microstructural characterization of mortars containing fly ash class C (High Calcium Fly Ash) from combustion of lignite are presented. The evaluation of the microstructure was performed using scanning electron microscope, optical, and confocal microscope. The tested beams were bent till the crack and microcracks opening, which were healed during the different curing time. The results showed that the replacement of cement with fly ash class C influenced the process of crack healing. The addition of HCFA, at both 30% and 60%, speeds up the self-healing process in cracks and particularly in micro-cracks. In the research, the completely filling up of the cracks by new phases has not been observed, only the beginning of such process has been noticed. © 2014 Wiley Periodicals, Inc.
New streams of religion: fly fishing as a lived, religion of nature.
Snyder, Samuel
2007-01-01
Fly fishers around the world frequently use terms such as religious, spiritual, sacred, divine, ritual, meditation, and conversion to describe their personal angling experiences. Further, drawing upon religious terminology, anglers will refer to rivers as their church and to nature as sacred. Often these latter pronouncements drive a concern for the conservation of these sacred spaces as evidenced by participation in both local and national conservation organizations. Informed by theoretical perspectives offered by religious studies, particularly "lived religion" and "religion and nature," I shall trace a few of the historical, material, and everyday elements of fly fishers and their subcultures, demonstrating along the way the insights that come by understanding fly fishing as a religious practice, which can, at times, drive an ethic of environmental conservation.
Weng, Ju-Lin; Young, Samantha L; Gordon, David M; Claborn, David; Petersen, Christine; Ramalho-Ortigao, Marcelo
2012-01-01
Sand flies Lutzomyia (Psathyromyia) shannoni (Dyar) and Lu. (Helcocyrtomyia) vexator (Coquillet) were collected for the first time in southwest Missouri and southeast Kansas, expanding the known range of these species in North America. Altogether, 680 sand flies (356 males and 324 females) were collected during trapping from May through October 2011 and identified using morphological characters. Of the total sand flies collected 315 were identified as Lu. shannoni, with 181 individuals (or 26.6% of all sand flies) trapped in Missouri and 134 individuals (or 19.7%) trapped in Kansas. Whereas 358 Lu. vexator were identified from SW MO, only a single specimen was trapped in SE KS. One male Lu. vexator with asymmetric gonostyli was trapped in Missouri. We also developed a PCR protocol to consistently and accurately distinguish Lu. shannoni from Lu. vexator based on presence or absence of a 416bp fragment from the cytochrome oxidase I gene. PMID:23270176
Weng, Ju-Lin; Young, Samantha L; Gordon, David M; Claborn, David; Petersen, Christine; Ramalho-Ortigao, Marcelo
2012-11-01
Sand flies Lutzomyia (Psathyromyia) shannoni (Dyar) and Lu. (Helcocyrtomyia) vexator (Coquillet) were collected for the first time in southwest Missouri and southeast Kansas, expanding the known range of these species in North America. Altogether, 680 sand flies (356 males and 324 females) were collected during trapping from May through October 2011 and identified using morphological characters. Of the total sand flies collected, 315 were identified as Lu. shannoni, with 181 individuals (or 26.6% of all sand flies) trapped in Missouri and 134 individuals (or 19.7%) trapped in Kansas. Whereas 358 Lu. vexator were identified from southwest Missouri, only a single specimen was trapped in southeast Kansas. One male Lu. vexator with asymmetric gonostyli was trapped in Missouri. We also developed a polymerase chain reaction protocol to consistently and accurately distinguish Lu. shannoni from Lu. vexator based on presence or absence of a 416 bp fragment from the cytochrome oxidase c subunit 1 gene.
NASA Astrophysics Data System (ADS)
Wardhono, Arie; Law, David W.; Sutikno, Dani, Hasan
2017-09-01
This paper presents the effect of slag addition on strength development and workability of fly ash/slag based geopolymer (FASLG) concrete cured at normal temperature. Class C fly ash with high ferrite (Fe) content was used as the primary material. The proportions of fly ash (FA) to slag (SL) are: 1 FA : 0 SL, 0.9 FA : 0.1 SL, 0.7 FA : 0.3 SL, and 0.5 FA : 0.5 SL. The workability and strength properties were determined by slump, vikat, and compressive strength tests. The result shows that the highest compressive strength was achieved by FASLG-3 concrete with 30% slag addition and exhibited a comparable strength to that normal concrete at 28 days. The 30% slag addition also improve the workability and increase the setting time of FASLG concrete specimens. It can be concluded that the slag inclusion on fly ash will improve the performance of geopolymer concrete at normal temperature.
Fungi Isolated From House Flies (Diptera: Muscidae) on Penned Cattle in South Texas
Ysquierdo, Cherity A.; Olafson, Pia U.; Thomas, Donald B.
2017-01-01
Abstract Musca domestica L. were collected from cattle diagnosed with bovine ringworm to evaluate the potential of the house fly to disseminate Trichophyton verrucosum E. Bodin, a fungal dermatophyte that is the causative agent for ringworm in cattle. Fungal isolates were cultured from 45 individual flies on supplemented Sabouraud dextrose agar, and isolates were identified using morphological and microscopic approaches. Each isolate was identified further by PCR amplification of the ribosomal DNA locus with fungal-specific primers and subsequent amplicon sequencing. Trichophyton verrucosum was not identified using these approaches. However, 35 different fungal species representing 17 genera were cultured from collected flies, including several species that are allergenic and pathogenic to humans and animals. Several species within the fungal orders Hypocreales, Microascales, Onygenales, Saccharomycetales, Xylaniales, and Agaricales were observed for the first time on house flies. The most frequent fungus recovered was Cladosporium cladosporoides Fresen, which is known to be a ubiquitous, airborne allergen to humans. PMID:28399217
Wang, Chunfeng; Zhu, Nengmin; Wang, Yanmin; Zhang, Fushen
2012-01-17
The simultaneous detoxification processes of transformer oil-contained PCBs and heavy metals in medical waste incinerator (MWI) fly ash were developed under sub- and supercritical water. The addition of MWI fly ash to transformer oil-contained PCBs was found to increase the destruction efficiency of PCBs, at the same time, it facilitated reducing the leaching concentration of toxic metals from residues (obtained after reaction) for harmless disposal. In this study, we elucidated primarily the catalysis possibility of heavy metals in raw MWI fly ash for PCBs degradation by adopting the sequential extraction procedure. For both MWI fly ashes, more than 90% destruction efficiency of PCBs was achieved at ≥375 °C for 30 min, and trichlorobenzene (TCB) existing in the transformer oil was also completely decomposed. The correlation of catalytic performance to PCBs degradation was discussed based on structural characteristics and dechlorinated products. Likewise, such process rendered residues innocuous through supercritical water treatment for reuse or disposal in landfill.
NASA Astrophysics Data System (ADS)
Krishnaraj, L.; Ravichandran, P. T.; Sagadevan, Suresh
2018-04-01
The aim of the present work is to study the effect of particle size reduction by applying top-down nanotechnology such as ball mill grinding process with the addition of amine-based grinding aids. The particle size reduction in synthesis process and its characterization were investigated for fly ash particles. The Rosin-Rammler-Bennet (RRB) distribution model using mathematical formulations were studied for fly ash ground particles. The hardened properties of grinding aid fly ash composite mortar were studied using compressive strength test. The optimum grinding time was 120 min identified through the particle size distribution analysis. The mean particle size decreased from 92.09 μm to 10.5 μm in which there is 89% reduction in particle size due to the grinding of fly ash particle with grinding aids. The compressive strength results show that substitutions of Ordinary Portland Cement (OPC) mortar by Amine-based Grinding aid Fly Ash (AGFA) 15% gives 12, 23% and at 30% gives 6, 8% of higher strength compare to the substitutions of raw fly ash. The addition of grinding aids in grinding process gives more advantages to reduce the particle size without changing chemical composition. The AGFA sample shows better performance in compressive strength and bond strength behavior of masonry prism. It may suggest that amine based grinding aids play a vital role and feasible to use in fly ash grinding process.
Li, Q F; Li, X; Hunag, J B; Zhang, D M; Yuan, J Z
2015-09-01
Novel and effective baits are needed to manage pest housefly populations and avoid the development of insecticide resistance. In this study, we bioassayed the efficacy of Zyrox®, a novel fly bait containing a novel 0.5 % cyantraniliprole insecticide, to kill adult houseflies under laboratory conditions. We found that Zyrox® killed a significantly greater proportion of flies than the current competing fly bait, QuickBayt®, after a 24-h exposure. The cumulative mortalities of houseflies were up to 96.36 % and 92.57 % for Zyrox® and 78.88 % and 68.76 % for QuickBayt® in no-choice and choice tests, respectively. Our results suggested that there was negligible behavioral resistance to both fly baits but revealed that Zyrox® appeared to work slower than QuickBayt® (at a 3-h exposure, proportionally fewer flies were killed by Zyrox® than by QuickBayt®). Importantly, we found that the efficacy of Zyrox® did not diminish with the age of the bait (up to 90 days old). In actual knockdown time (KDT) feeding bioassay, the results showed that Zyrox® knocked down flies significantly slower (11.97 min for females; 12.30 min for males) than QuickBayt® (1.89 min for females; 2.24 min for males). These results reveal the high efficacy of Zyrox® bait to kill adult flies and suggest that it is a promising slow-action bait for management of houseflies.
A pilot study of mercury liberation and capture from coal-fired power plant fly ash.
Li, Jin; Gao, Xiaobing; Goeckner, Bryna; Kollakowsky, Dave; Ramme, Bruce
2005-03-01
The coal-fired electric utility generation industry has been identified as the largest anthropogenic source of mercury (Hg) emissions in the United States. One of the promising techniques for Hg removal from flue gas is activated carbon injection (ACI). The aim of this project was to liberate Hg bound to fly ash and activated carbon after ACI and provide high-quality coal combustion products for use in construction materials. Both bench- and pilot-scale tests were conducted to liberate Hg using a thermal desorption process. The results indicated that up to 90% of the Hg could be liberated from the fly ash or fly-ash-and-activated-carbon mixture using a pilot-scale apparatus (air slide) at 538 degrees C with a very short retention time (less than 1 min). Scanning electron microscope (SEM) evaluation indicated no significant change in fly ash carbon particle morphology following the thermal treatment. Fly ash particles collected in the baghouse of the pilot-scale apparatus were smaller in size than those collected at the exit of the air slide. A similar trend was observed in carbon particles separated from the fly ash using froth flotation. The results of this study suggest a means for power plants to reduce the level of Hg in coal-combustion products and potentially recycle activated carbon while maintaining the resale value of fly ash. This technology is in the process of being patented.
Kocher, Arthur; Gantier, Jean-Charles; Gaborit, Pascal; Zinger, Lucie; Holota, Helene; Valiere, Sophie; Dusfour, Isabelle; Girod, Romain; Bañuls, Anne-Laure; Murienne, Jerome
2017-03-01
Phlebotomine sand flies are haematophagous dipterans of primary medical importance. They represent the only proven vectors of leishmaniasis worldwide and are involved in the transmission of various other pathogens. Studying the ecology of sand flies is crucial to understand the epidemiology of leishmaniasis and further control this disease. A major limitation in this regard is that traditional morphological-based methods for sand fly species identifications are time-consuming and require taxonomic expertise. DNA metabarcoding holds great promise in overcoming this issue by allowing the identification of multiple species from a single bulk sample. Here, we assessed the reliability of a short insect metabarcode located in the mitochondrial 16S rRNA for the identification of Neotropical sand flies, and constructed a reference database for 40 species found in French Guiana. Then, we conducted a metabarcoding experiment on sand flies mixtures of known content and showed that the method allows an accurate identification of specimens in pools. Finally, we applied metabarcoding to field samples caught in a 1-ha forest plot in French Guiana. Besides providing reliable molecular data for species-level assignations of phlebotomine sand flies, our study proves the efficiency of metabarcoding based on the mitochondrial 16S rRNA for studying sand fly diversity from bulk samples. The application of this high-throughput identification procedure to field samples can provide great opportunities for vector monitoring and eco-epidemiological studies. © 2016 John Wiley & Sons Ltd.
Barr, Norman B; Ledezma, Lisa A; Leblanc, Luc; San Jose, Michael; Rubinoff, Daniel; Geib, Scott M; Fujita, Brian; Bartels, David W; Garza, Daniel; Kerr, Peter; Hauser, Martin; Gaimari, Stephen
2014-10-01
Population genetic diversity of the oriental fruit fly, Bactrocera dorsalis (Hendel), on the Hawaiian islands of Oahu, Maui, Kauai, and Hawaii (the Big Island) was estimated using DNA sequences of the mitochondrial cytochrome c oxidase subunit I gene. In total, 932 flies representing 36 sampled sites across the four islands were sequenced for a 1,500-bp fragment of the gene named the C1500 marker. Genetic variation was low on the Hawaiian Islands with >96% of flies having just two haplotypes: C1500-Haplotype 1 (63.2%) or C1500-Haplotype 2 (33.3%). The other 33 flies (3.5%) had haplotypes similar to the two dominant haplotypes. No population structure was detected among the islands or within islands. The two haplotypes were present at similar frequencies at each sample site, suggesting that flies on the various islands can be considered one population. Comparison of the Hawaiian data set to DNA sequences of 165 flies from outbreaks in California between 2006 and 2012 indicates that a single-source introduction pathway of Hawaiian origin cannot explain many of the flies in California. Hawaii, however, could not be excluded as a maternal source for 69 flies. There was no clear geographic association for Hawaiian or non-Hawaiian haplotypes in the Bay Area or Los Angeles Basin over time. This suggests that California experienced multiple, independent introductions from different sources. © 2014 Entomological Society of America.
Atmospheric aerosol and gas sensing using Scheimpflug lidar
NASA Astrophysics Data System (ADS)
Mei, Liang; Brydegaard, Mikkel
2015-04-01
This work presents a new lidar technique for atmospheric remote sensing based on Scheimpflug principle, which describes the relationship between nonparallel image- and object-planes[1]. When a laser beam is transmitted into the atmosphere, the implication is that the backscattering echo of the entire illuminated probe volume can be in focus simultaneously without diminishing the aperture. The range-resolved backscattering echo can be retrieved by using a tilted line scan or two-dimensional CCD/CMOS camera. Rather than employing nanosecond-pulsed lasers, cascade detectors, and MHz signal sampling, all of high cost and complexity, we have developed a robust and inexpensive atmospheric lidar system based on compact laser diodes and array detectors. We present initial applications of the Scheimpflug lidar for atmospheric aerosol monitoring in bright sunlight, with a 3 W, 808 nm CW laser diode. Kilohertz sampling rates are also achieved with applications for wind speed and entomology [2]. Further, a proof-of-principle demonstration of differential absorption lidar (DIAL) based on the Scheimpflug lidar technique is presented [3]. By utilizing a 30 mW narrow band CW laser diode emitting at around 760 nm, the detailed shape of an oxygen absorption line can be resolved remotely with an integration time of 6 s and measurement cycle of 1 minute during night time. The promising results demonstrated in this work show potential for the Scheimpflug lidar technique for remote atmospheric aerosol and gas sensing, and renews hope for robust and realistic instrumentation for atmospheric lidar sensing. [1] F. Blais, "Review of 20 years of range sensor development," Journal of Electronic Imaging, vol. 13, pp. 231-243, Jan 2004. [2] M. Brydegaard, A. Gebru, and S. Svanberg, "Super resolution laser radar with blinking atmospheric particles - application to interacting flying insects " Progress In Electromagnetics Research, vol. 147, pp. 141-151, 2014. [3] L. Mei and M. Brydegaard, "Contineous-wave differential absorption lidar," Submitted to Laser and Photonics Reviews, 2014.
System matrix computation vs storage on GPU: A comparative study in cone beam CT.
Matenine, Dmitri; Côté, Geoffroi; Mascolo-Fortin, Julia; Goussard, Yves; Després, Philippe
2018-02-01
Iterative reconstruction algorithms in computed tomography (CT) require a fast method for computing the intersection distances between the trajectories of photons and the object, also called ray tracing or system matrix computation. This work focused on the thin-ray model is aimed at comparing different system matrix handling strategies using graphical processing units (GPUs). In this work, the system matrix is modeled by thin rays intersecting a regular grid of box-shaped voxels, known to be an accurate representation of the forward projection operator in CT. However, an uncompressed system matrix exceeds the random access memory (RAM) capacities of typical computers by one order of magnitude or more. Considering the RAM limitations of GPU hardware, several system matrix handling methods were compared: full storage of a compressed system matrix, on-the-fly computation of its coefficients, and partial storage of the system matrix with partial on-the-fly computation. These methods were tested on geometries mimicking a cone beam CT (CBCT) acquisition of a human head. Execution times of three routines of interest were compared: forward projection, backprojection, and ordered-subsets convex (OSC) iteration. A fully stored system matrix yielded the shortest backprojection and OSC iteration times, with a 1.52× acceleration for OSC when compared to the on-the-fly approach. Nevertheless, the maximum problem size was bound by the available GPU RAM and geometrical symmetries. On-the-fly coefficient computation did not require symmetries and was shown to be the fastest for forward projection. It also offered reasonable execution times of about 176.4 ms per view per OSC iteration for a detector of 512 × 448 pixels and a volume of 384 3 voxels, using commodity GPU hardware. Partial system matrix storage has shown a performance similar to the on-the-fly approach, while still relying on symmetries. Partial system matrix storage was shown to yield the lowest relative performance. On-the-fly ray tracing was shown to be the most flexible method, yielding reasonable execution times. A fully stored system matrix allowed for the lowest backprojection and OSC iteration times and may be of interest for certain performance-oriented applications. © 2017 American Association of Physicists in Medicine.
Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da
2017-01-01
The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Gruner, S V; Slone, D H; Capinera, J L; Turco, M P
2017-03-01
Chrysomya megacephala (Fabricius) is a forensically important fly that is found throughout the tropics and subtropics. We calculated the accumulated development time and transition points for each life stage from eclosion to adult emergence at five constant temperatures: 15, 20, 25, 30, and 35 °C. For each transition, the 10th, 50th, and 90th percentiles were calculated with a logistic linear model. The mean transition times and % survivorship were determined directly from the raw laboratory data. Development times of C. megacephala were compared with that of two other closely related species, Chrysomya rufifacies (Macquart) and Phormia regina (Meigen). Ambient and larval mass temperatures were collected from field studies conducted from 2001-2004. Field study data indicated that adult fly activity was reduced at lower ambient temperatures, but once a larval mass was established, heat generation occurred. These development times and durations can be used for estimation of a postmortem interval (PMI). © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Liu, Xiaolin; Li, Lanfei; Sun, Hanxu
2017-12-01
Spherical flying robot can perform various tasks in the complex and varied environment to reduce labor costs. However, it is difficult to guarantee the stability of the spherical flying robot in the case of strong coupling and time-varying disturbance. In this paper, an artificial neural network controller (ANNC) based on MPSO-BFGS hybrid optimization algorithm is proposed. The MPSO algorithm is used to optimize the initial weights of the controller to avoid the local optimal solution. The BFGS algorithm is introduced to improve the convergence ability of the network. We use Lyapunov method to analyze the stability of ANNC. The controller is simulated under the condition of nonlinear coupling disturbance. The experimental results show that the proposed controller can obtain the expected value in shoter time compared with the other considered methods.
On the fly quantum dynamics of electronic and nuclear wave packets
NASA Astrophysics Data System (ADS)
Komarova, Ksenia G.; Remacle, F.; Levine, R. D.
2018-05-01
Multielectronic states quantum dynamics on a grid is described in a manner motivated by on the fly classical trajectory computations. Non stationary electronic states are prepared by a few cycle laser pulse. The nuclei respond and begin moving. We solve the time dependent Schrödinger equation for the electronic and nuclear dynamics for excitation from the ground electronic state. A satisfactory accuracy is possible using a localized description on a discrete grid. This enables computing on the fly for both the nuclear and electronic dynamics including non-adiabatic couplings. Attosecond dynamics in LiH is used as an example.
Echolocation of insects using intermittent frequency-modulated sounds.
Matsuo, Ikuo; Takanashi, Takuma
2015-09-01
Using echolocation influenced by Doppler shift, bats can capture flying insects in real three-dimensional space. On the basis of this principle, a model that estimates object locations using frequency modulated (FM) sound was proposed. However, no investigation was conducted to verify whether the model can localize flying insects from their echoes. This study applied the model to estimate the range and direction of flying insects by extracting temporal changes from the time-frequency pattern and interaural range difference, respectively. The results obtained confirm that a living insect's position can be estimated using this model with echoes measured while emitting intermittent FM sounds.
Difference structures from time-resolved small-angle and wide-angle x-ray scattering
NASA Astrophysics Data System (ADS)
Nepal, Prakash; Saldin, D. K.
2018-05-01
Time-resolved small-angle x-ray scattering/wide-angle x-ray scattering (SAXS/WAXS) is capable of recovering difference structures directly from difference SAXS/WAXS curves. It does so by means of the theory described here because the structural changes in pump-probe detection in a typical time-resolved experiment are generally small enough to be confined to a single residue or group in close proximity which is identified by a method akin to the difference Fourier method of time-resolved crystallography. If it is assumed, as is usual with time-resolved structures, that the moved atoms lie within the residue, the 100-fold reduction in the search space (assuming a typical protein has about 100 residues) allows the exaction of the structure by a simulated annealing algorithm with a huge reduction in computing time and leads to a greater resolution by varying the positions of atoms only within that residue. This reduction in the number of potential moved atoms allows us to identify the actual motions of the individual atoms. In the case of a crystal, time-resolved calculations are normally performed using the difference Fourier method, which is, of course, not directly applicable to SAXS/WAXS. The method developed in this paper may be thought of as a substitute for that method which allows SAXS/WAXS (and hence disordered molecules) to also be used for time-resolved structural work.
Size distribution of rare earth elements in coal ash
Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.
2015-01-01
Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported.
Status and habitat relationships of northern flying squirrels on Mount Desert Island, Maine
O'Connell, A.F.; Servello, F.; Higgins, J.; Halteman, W.
2001-01-01
Northern (Glaucomys sabrinus) and southern (G. volans) flying squirrels occur in Maine, but there is uncertainty about range overlap in southcentral Maine where the southern flying squirrel reaches its geographic range limit. We surveyed flying squirrels on Mount Desert Island (MDI), located along the central Maine coast, to update the current status and distribution of these species. We captured only northern flying squirrels, and populations (> 2 individuals) were located in two conifer stands and one mixed conifer-hardwood stand. All three stands were located in relatively older forests, outside a large area burned in a 1947 fire. Tree diameters were similar between trap stations with and without captures, under-story density was low overall, and there was a trend of higher seedling density at capture locations. Low understory density may allow squirrels more effective gliding movements between trees, which may enhance predator avoidance. Although the southern flying squirrel was reported from MDI numerous times during the 20th century, no voucher specimens exist, and species identification and localities have been poorly documented. Future surveys on MDI should consider collection of voucher specimens to validate subsequent survey efforts and effectively document changes in local biodiversity.
Determination of the elastic modulus of fly ash-based stabilizer applied in the trackbed
NASA Astrophysics Data System (ADS)
Lojda, Vít; Lidmila, Martin; Pýcha, Marek
2017-09-01
This paper describes a unique application of a fly ash-based stabilizer in the trackbed of a railway main line. The key goals of the stabilizer application are to protect the subgrade against the ingress of rain water, to increase the frost resistance and to remediate the natural ground constituted of weathered rock. The stabilizer was designed as a mixture of fly ash, generated as a waste material from coal plants, gypsum, calcium oxide and water. The mixture recipe was developed in a laboratory over several years. In 2005, a trial section of a railway line with subgrade consisting of clay limestone (weathered marlite) was built in the municipality of Smiřice. Since then, periodical measurements including collection of samples for laboratory evaluation of the fly ash-based stabilizer have taken place. Over the time span of the measurements, changes in mineral composition and development of fly ash transforming structures leading to the formation of C-A-S-H gel were detected. This paper describes the experimental laboratory investigation of the influence of dynamic loading on the elastic modulus of fly ash stabilizer samples and the development of permanent deformation of the samples with increasing number of loading cycles.
Differences in trapping mortality rates of northern flying squirrels
D.K. Rosenberg; R.G. Anthony
1993-01-01
We described trapping mortality rates of northern flying squirrel (Glaucomys sabrinus) populations in western Oregon, U.S.A., and evaluated the effects of sex, age, body mass, and number of times an individual was recaptured on these rates. Although the overall trapping mortality rates were relatively low (7%) during 16-21 day trapping sessions, we...
ERIC Educational Resources Information Center
Honda, Jeffrey Y.
2008-01-01
Forensic entomologists utilize insects (particularly flies) to establish the time interval between death and body discovery. This important piece of information may answer questions as to the circumstances of the individual's death and insects are now routinely utilized and recognized as being important forensic indicators. Of extreme importance…
HYDRA: High Speed Simulation Architecture for Precision Spacecraft Formation Flying
NASA Technical Reports Server (NTRS)
Martin, Bryan J.; Sohl, Garett A.
2003-01-01
This viewgraph presentation describes HYDRA, which is architecture to facilitate high-fidelity and real-time simulation of formation flying missions. The contents include: 1) Motivation; 2) Objective; 3) HYDRA-Description and Overview; 4) HYDRA-Hierarchy; 5) Communication in HYDRA; 6) Simulation Specific Concerns in HYDRA; 7) Example application (Formation Acquisition); and 8) Sample Problem Results.
NF-1 Dependent Gene Regulation in Drosophila Melanogaster
2004-04-01
standard cornmeal medium at 25oC in a humidified incubator. Flies were collected and frozen in liquid nitrogen at the same time of day to minimize...melanogaster media, strains and heat-shock conditions Flies were raised at room temperature (22–248C) on standard cornmeal medium. The Nf1 mutants Nf1P1 and
Cavanaugh, Daniel J; Vigderman, Abigail S; Dean, Terry; Garbe, David S; Sehgal, Amita
2016-02-01
Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibire(ts1), an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high. © 2016 Associated Professional Sleep Societies, LLC.
Enhancement of the Musca domestica hytrosavirus infection with orally delivered reducing agents.
Boucias, D; Baniszewski, J; Prompiboon, P; Lietze, V; Geden, C
2015-01-01
House flies (Musca domestica L.) throughout the world are infected with the salivary gland hypertrophy virus MdSGHV (Hytrosaviridae). Although the primary route of infection is thought to be via ingestion, flies that are old enough to feed normally are resistant to infection per os, suggesting that the peritrophic matrix (PM) is a barrier to virus transmission. Histological examination of the peritrophic matrix of healthy flies revealed a multilaminate structure produced by midgut cells located near the proventriculus. SEM revealed the PM to form a confluent sheet surrounding the food bolus with pores/openings less than 10nm in diameter. TEM revealed the PM to be multilayered, varying in width from 350 to 900 nm, and generally thinner in male than in female flies. When flies were fed on the reducing agents dithiothetriol (DTT) or tris (2-caboxyethyl)phosphine hydrochloride (TCEP) for 48 h before per os exposure to the virus, infection rates increased 10- to 20-fold compared with flies that did not receive the reducing agent treatments. PM's from flies treated with DTT and TCEP displayed varying degrees of disruption, particularly in the outer layer, and lacked the electron-dense inner layer facing the ectoperitrophic space. Both drugs were somewhat toxic to the flies, resulting in>40% mortality at doses greater than 10mM (DTT) or 5 mM (TCEP). DTT increased male fly susceptibility (55.1% infected) more than that of females (7.8%), whereas TCEP increased susceptibility of females (42.9%) more than that of males (26.2%). The cause for the sex differences in response to oral exposure the reducing agents is unclear. Exposing flies to food treated with virus and the reducing agents at the same time, rather than pretreating flies with the drugs, had no effect on susceptibility to the virus. Presumably, the reducing agent disrupted the enveloped virus and acted as a viricidal agent. In summary, it is proposed that the reducing agents influence integrity of the PM barrier and increase the susceptibility of flies to infection by MdSGHV. Copyright © 2014 Elsevier Inc. All rights reserved.
Fly ash zeolite catalyst support for Fischer-Tropsch synthesis
NASA Astrophysics Data System (ADS)
Campen, Adam
This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.
Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Peng, Lee Yin; Campos-Arceiz, Ahimsa; McConkey, Kim R; Forget, Pierre-Michel; Gan, Han Ming
2017-01-01
There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox ( Pteropus hypomelanus ) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox's diet appeared to be dominated by figs ( Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets.
Clements, Gopalasamy Reuben; Peng, Lee Yin; Campos-Arceiz, Ahimsa; McConkey, Kim R.; Forget, Pierre-Michel; Gan, Han Ming
2017-01-01
There is an urgent need to identify and understand the ecosystem services of pollination and seed dispersal provided by threatened mammals such as flying foxes. The first step towards this is to obtain comprehensive data on their diet. However, the volant and nocturnal nature of bats presents a particularly challenging situation, and conventional microhistological approaches to studying their diet can be laborious and time-consuming, and provide incomplete information. We used Illumina Next-Generation Sequencing (NGS) as a novel, non-invasive method for analysing the diet of the island flying fox (Pteropus hypomelanus) on Tioman Island, Peninsular Malaysia. Through DNA metabarcoding of plants in flying fox droppings, using primers targeting the rbcL gene, we identified at least 29 Operationally Taxonomic Units (OTUs) comprising the diet of this giant pteropodid. OTU sequences matched at least four genera and 14 plant families from online reference databases based on a conservative Least Common Ancestor approach, and eight species from our site-specific plant reference collection. NGS was just as successful as conventional microhistological analysis in detecting plant taxa from droppings, but also uncovered six additional plant taxa. The island flying fox’s diet appeared to be dominated by figs (Ficus sp.), which was the most abundant plant taxon detected in the droppings every single month. Our study has shown that NGS can add value to the conventional microhistological approach in identifying food plant species from flying fox droppings. At this point in time, more accurate genus- and species-level identification of OTUs not only requires support from databases with more representative sequences of relevant plant DNA, but probably necessitates in situ collection of plant specimens to create a reference collection. Although this method cannot be used to quantify true abundance or proportion of plant species, nor plant parts consumed, it ultimately provides a very important first step towards identifying plant taxa and spatio-temporal patterns in flying fox diets. PMID:28413729
Green, T A; Prokopy, R J; Hosmer, D W
1994-09-01
Mature female apple maggot flies,Rhagoletis pomonella (Walsh), were released individually onto a single potted, fruitless hawthorne tree in the center of an open field. The tree was surrounded by four 1-m(2) plywood host tree models painted green or white, with or without synthetic host fruit odor (butyl hexanoate), and placed at one of several distances from the release tree. Each fly was permitted to forage freely on the release tree for up to 1 hr, or until it left the tree. Flies left the tree significantly sooner when green models with host fruit were present at 0.5, 1.5, or 2.5 m distance from the release tree than when these models were placed at a greater distance (4.5 m) from the release tree or when no models were present. Flies responded detectably to 1-m(2) models without odor up to a maximum distance of 1.5 m. These results suggest that female apple maggot flies did not detect green 1-m(2) models with odor 4.5 m away or models without odor 2.5 m or more away. Flies responded to white models with and without odor to a much lesser extent, both in terms of response distance and flight to and alightment upon models. Increasing model size to 2 m(2) increased the distance to 2.5 m at which flies responded to green models without odor. Decreasing model size to 0.5 m(2) reduced fly responsiveness to green or white models. The presence of host fruit odor alone, without the visual stimulus of a green model, did not influence residence time on the release tree.
Alves, Taila Dos Santos; Lara, Gustavo Henrique Batista; Maluta, Renato Pariz; Ribeiro, Márcio Garcia; Leite, Domingos da Silva
2018-08-15
The life cycle of synanthropic flies and their behavior, allows them to serve as mechanical vectors of several pathogens. Given that flies can carry multidrug-resistant (MDR) bacteria, this study aimed to investigate the spread of genes of antimicrobial resistance in Escherichia coli isolated from flies collected in two dairy farms in Brazil. Besides antimicrobial resistance determinants, the presence of virulence genes related to bovine colibacillosis was also assessed. Of 94 flies collected, Musca domestica was the most frequently found in the two farms. We isolated 198 E. coli strains (farm A=135 and farm B=63), and >30% were MDR E. coli. We found an association between bla TEM and phenotypical resistance to ampicillin, or chloramphenicol, or tetracycline; and bla CTX-M and resistance to cefoperazone. A high frequency (86%) of phylogenetic group B1 among MDR strains and the lack of association between multidrug resistance and virulence factors suggest that antimicrobial resistance possibly is associated with the commensal bacteria. Clonal relatedness of MDR E. coli performed by Pulsed-Field Gel Electrophoresis showed wide genomic diversity. Different flies can carry clones, but with distinct antimicrobial resistance pattern. Sanger sequencing showed that the same class 1 integron arrangement is displayed by apparently unrelated strains, carried by different flies. Our conjugation results indicate class 1 integron transfer associated with tetracycline resistance. We report for the first time, in Brazil, that MDR E. coli is carried by flies in the milking environment. Therefore, flies can act as carriers for MDR strains and contribute to dissemination routes of antimicrobial resistance. Copyright © 2018 Elsevier B.V. All rights reserved.
Robie, Alice A.; Straw, Andrew D.; Dickinson, Michael H.
2010-01-01
Walking fruit flies, Drosophila melanogaster, use visual information to orient towards salient objects in their environment, presumably as a search strategy for finding food, shelter or other resources. Less is known, however, about the role of vision or other sensory modalities such as mechanoreception in the evaluation of objects once they have been reached. To study the role of vision and mechanoreception in exploration behavior, we developed a large arena in which we could track individual fruit flies as they walked through either simple or more topologically complex landscapes. When exploring a simple, flat environment lacking three-dimensional objects, flies used visual cues from the distant background to stabilize their walking trajectories. When exploring an arena containing an array of cones, differing in geometry, flies actively oriented towards, climbed onto, and explored the objects, spending most of their time on the tallest, steepest object. A fly's behavioral response to the geometry of an object depended upon the intrinsic properties of each object and not a relative assessment to other nearby objects. Furthermore, the preference was not due to a greater attraction towards tall, steep objects, but rather a change in locomotor behavior once a fly reached and explored the surface. Specifically, flies are much more likely to stop walking for long periods when they are perched on tall, steep objects. Both the vision system and the antennal chordotonal organs (Johnston's organs) provide sufficient information about the geometry of an object to elicit the observed change in locomotor behavior. Only when both these sensory systems were impaired did flies not show the behavioral preference for the tall, steep objects. PMID:20581279
Solórzano, José-Arturo; Gilles, Jeremie; Bravo, Oscar; Vargas, Cristina; Gomez-Bonilla, Yannery; Bingham, Georgina V; Taylor, David B
2015-01-01
Pineapple production in Costa Rica increased nearly 300-fold during the last 30 yr, and >40,000 hectares of land are currently dedicated to this crop. At the end of the pineapple cropping cycle, plants are chopped and residues incorporated into the soil in preparation for replanting. Associated with increased pineapple production has been a large increase in stable fly, Stomoxys calcitrans (L.), populations. Stable flies are attracted to, and oviposit in, the decomposing, chopped pineapple residues. In conjunction with chemical control of developing larvae, adult trapping is an important control strategy. In this study, four blue-black fabric traps, Nzi, Vavoua, Model H, and Ngu, were compared with a white sticky trap currently used for stable fly control in Costa Rica. Overall, the white sticky trap caught the highest number of stable flies, followed by the Nzi, Vavoua, Model H, and Ngu. Collections on the white sticky trap increased 16 d after residues were chopped; coinciding with the expected emergence of flies developing in the pineapple residues. During this same time period, collections in the blue-black fabric traps decreased. Sex ratio decreased from >7:1 (females:males) 3-7 d after chopping to 1:1 at 24-28 d. White sticky, Nzi and Vavoua traps collected similar numbers of colonizing flies 3-7 d after residues were chopped. However, white sticky traps collected more flies once emergence from the pineapple residues began. Although white sticky traps collected more flies than fabric traps, they remain labor intensive and environmentally unsound because of their disposable and nonbiodegradable nature. Published by Oxford University Press on behalf of the Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Solórzano, José-Arturo; Gilles, Jeremie; Bravo, Oscar; Vargas, Cristina; Gomez-Bonilla, Yannery; Bingham, Georgina V.; Taylor, David B.
2015-01-01
Pineapple production in Costa Rica increased nearly 300-fold during the last 30 yr, and >40,000 hectares of land are currently dedicated to this crop. At the end of the pineapple cropping cycle, plants are chopped and residues incorporated into the soil in preparation for replanting. Associated with increased pineapple production has been a large increase in stable fly, Stomoxys calcitrans (L.), populations. Stable flies are attracted to, and oviposit in, the decomposing, chopped pineapple residues. In conjunction with chemical control of developing larvae, adult trapping is an important control strategy. In this study, four blue-black fabric traps, Nzi, Vavoua, Model H, and Ngu, were compared with a white sticky trap currently used for stable fly control in Costa Rica. Overall, the white sticky trap caught the highest number of stable flies, followed by the Nzi, Vavoua, Model H, and Ngu. Collections on the white sticky trap increased 16 d after residues were chopped; coinciding with the expected emergence of flies developing in the pineapple residues. During this same time period, collections in the blue-black fabric traps decreased. Sex ratio decreased from >7:1 (females:males) 3–7 d after chopping to 1:1 at 24–28 d. White sticky, Nzi and Vavoua traps collected similar numbers of colonizing flies 3–7 d after residues were chopped. However, white sticky traps collected more flies once emergence from the pineapple residues began. Although white sticky traps collected more flies than fabric traps, they remain labor intensive and environmentally unsound because of their disposable and nonbiodegradable nature. PMID:26454479
Jacob, Franck; Melachio, Trésor T.; Njitchouang, Guy R.; Gimonneau, Geoffrey; Njiokou, Flobert; Abate, Luc; Christen, Richard; Reveillaud, Julie; Geiger, Anne
2017-01-01
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status. PMID:28824591
Jacob, Franck; Melachio, Trésor T; Njitchouang, Guy R; Gimonneau, Geoffrey; Njiokou, Flobert; Abate, Luc; Christen, Richard; Reveillaud, Julie; Geiger, Anne
2017-01-01
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene . Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia , and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis . The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia , were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.
Age-Related Reduction of Recovery Sleep and Arousal Threshold in Drosophila
Vienne, Julie; Spann, Ryanne; Guo, Fang; Rosbash, Michael
2016-01-01
Study Objectives: Physiological studies show that aging affects both sleep quality and quantity in humans, and sleep complaints increase with age. Along with knowledge about the negative effects of poor sleep on health, understanding the enigmatic relationship between sleep and aging is important. Because human sleep is similar to Drosophila (fruit fly) sleep in many ways, we addressed the effects of aging on sleep in this model organism. Methods: Baseline sleep was recorded in five different Drosophila genotypes raised at either 21°C or 25°C. The amount of sleep recovered was then investigated after a nighttime of sleep deprivation (12 h) and after chronic sleep deprivation (3 h every night for multiple nights). Finally, the effects of aging on arousal, namely, sensitivity to neuronal and mechanical stimuli, were studied. Results: We show that fly sleep is affected by age in a manner similar to that of humans and other mammals. Not only do older flies of several genotypes have more fragmented sleep and reduced total sleep time compared to young flies, but older flies also fail to recover as much sleep after sleep deprivation. This suggests either lower sleep homeostasis and/or a failure to properly recover sleep. Older flies also show a decreased arousal threshold, i.e., an increased response to neuronal and mechanical wake-promoting stimuli. The reduced threshold may either reflect or cause the reduced recovery sleep of older flies compared to young flies after sleep deprivation. Conclusions: Further studies are certainly needed, but we suggest that the lower homeostatic sleep drive of older flies causes their decreased arousal threshold. Citation: Vienne J, Spann R, Guo F, Rosbash M. Age-related reduction of recovery sleep and arousal threshold in Drosophila. SLEEP 2016;39(8):1613–1624. PMID:27306274
NASA Technical Reports Server (NTRS)
Gerren, Donna S.
1995-01-01
A study has been conducted to determine the capability to control a very large transport airplane with engine thrust. This study consisted of the design of an 800-passenger airplane with a range of 5000 nautical miles design and evaluation of a flight control system, and design and piloted simulation evaluation of a thrust-only backup flight control system. Location of the four wing-mounted engines was varied to optimize the propulsive control capability, and the time constant of the engine response was studied. The goal was to provide level 1 flying qualities. The engine location and engine time constant did not have a large effect on the control capability. The airplane design did meet level 1 flying qualities based on frequencies, damping ratios, and time constants in the longitudinal and lateral-directional modes. Project pilots consistently rated the flying qualities as either level 1 or level 2 based on Cooper-Harper ratings. However, because of the limited control forces and moments, the airplane design fell short of meeting the time required to achieve a 30 deg bank and the time required to respond a control input.
Time-resolved EPR spectroscopy in a Unix environment.
Lacoff, N M; Franke, J E; Warden, J T
1990-02-01
A computer-aided time-resolved electron paramagnetic resonance (EPR) spectrometer implemented under version 2.9 BSD Unix was developed by interfacing a Varian E-9 EPR spectrometer and a Biomation 805 waveform recorder to a PDP-11/23A minicomputer having MINC A/D and D/A capabilities. Special problems with real-time data acquisition in a multiuser, multitasking Unix environment, addressing of computer main memory for the control of hardware devices, and limitation of computer main memory were resolved, and their solutions are presented. The time-resolved EPR system and the data acquisition and analysis programs, written entirely in C, are described. Furthermore, the benefits of utilizing the Unix operating system and the C language are discussed, and system performance is illustrated with time-resolved EPR spectra of the reaction center cation in photosystem 1 of green plant photosynthesis.
Denlinger, David S.; Lozano-Fuentes, Saul; Lawyer, Phillip G.; Black, William C.; Bernhardt, Scott A.
2015-01-01
Chemical insecticides are effective for controlling Lutzomyia and Phlebotomus sand fly (Diptera: Psychodidae) vectors of Leishmania parasites. However, repeated use of certain insecticides has led to tolerance and resistance. The objective of this study was to determine lethal concentrations (LCs) and lethal exposure times (LTs) to assess levels of susceptibility of laboratory Lutzomyia longipalpis (Lutz and Nieva) and Phlebotomus papatasi (Scopoli) to 10 insecticides using a modified version of the World Health Organization (WHO) exposure kit assay and Centers for Disease Control and Prevention (CDC) bottle bioassay. Sand flies were exposed to insecticides coated on the interior of 0.5-gallon and 1,000-ml glass bottles. Following exposure, the flies were allowed to recover for 24 h, after which mortality was recorded. From dose–response survival curves for L. longipalpis and P. papatasi generated with the QCal software, LCs causing 50, 90, and 95% mortality were determined for each insecticide. The LCs and LTs from this study will be useful as baseline reference points for future studies using the CDC bottle bioassays to assess insecticide susceptibility of sand fly populations in the field. There is a need for a larger repository of sand fly insecticide susceptibility data from the CDC bottle bioassays, including a range of LCs and LTs for more sand fly species with more insecticides. Such a repository would be a valuable tool for vector management. PMID:26336231
Development of black soldier fly (Diptera: Stratiomyidae) larvae fed dairy manure.
Myers, Heidi M; Tomberlin, Jeffery K; Lambert, Barry D; Kattes, David
2008-02-01
Black soldier flies, Hermetia illucens L., are a common colonizer of animal wastes. However, all published development data for this species are from studies using artificial diets. This study represents the first examining black soldier fly development on animal wastes. Additionally, this study examined the ability of black soldier fly larvae to reduce dry matter and associated nutrients in manure. Black soldier fly larvae were fed four rates of dairy manure to determine their effects on larval and adult life history traits. Feed rate affected larval and adult development. Those fed less ration daily weighed less than those fed a greater ration. Additionally, larvae provided the least amount of dairy manure took longer to develop to the prepupal stage; however, they needed less time to reach the adult stage. Adults resulting from larvae provided 27 g dairy manure/d lived 3-4 d less than those fed 70 g dairy manure. Percentage survivorship to the prepupal or adult stages did not differ across treatments. Larvae fed 27 g dairy manure daily reduced manure dry matter mass by 58%, whereas those fed 70 g daily reduced dry matter 33%. Black soldier fly larvae were able to reduce available P by 61-70% and N by 30-50% across treatments. Based on results from this study, the black soldier fly could be used to reduce wastes and associated nutrients in confined bovine facilities.
Bak, S H; Roh, H G; Moon, W-J; Choi, J W; An, H S
2017-07-01
The development of nephrogenic systemic fibrosis and neural tissue deposition is gadolinium dose-dependent. The purpose of this study was to determine the appropriate minimal dose of gadobutrol with time-resolved MRA to assess supra-aortic arterial stenosis with contrast-enhanced MRA as a reference standard. Four hundred sixty-two consecutive patients underwent both standard-dose contrast-enhanced MRA and low-dose time-resolved MRA and were classified into 3 groups; group A (a constant dose of 1 mL for time-resolved MRA), group B (2 mL), or group C (3 mL). All studies were independently evaluated by 2 radiologists for image quality by using a 5-point scale (from 0 = failure to 4 = excellent), grading of arterial stenosis (0 = normal, 1 = mild [<30%], 2 = moderate [30%-69%], 3 = severe to occlusion [≥70%]), and signal-to-noise ratio. The image quality of time-resolved MRA was similar to that of contrast-enhanced MRA in groups B and C, but it was inferior to contrast-enhanced MRA in group A. For the grading of arterial stenosis, there was an excellent correlation between contrast-enhanced MRA and time-resolved MRA ( R = 0.957 for group A, R = 0.988 for group B, R = 0.991 for group C). The SNR of time-resolved MRA tended to be lower than that of contrast-enhanced MRA in groups A and B. However, SNR was higher for time-resolved MRA compared with contrast-enhanced MRA in group C. Low-dose time-resolved MRA is feasible in the evaluation of supra-aortic stenosis and could be used as an alternative to contrast-enhanced MRA for a diagnostic technique in high-risk populations. © 2017 by American Journal of Neuroradiology.
NASA Technical Reports Server (NTRS)
Martin, Lynne Hazel; Sharma, Shivanjli; Lozito, Sharon; Kaneshige, John; Hayashi, Miwa; Dulchinos, Victoria
2012-01-01
Multiple studies have investigated the development and use of ground-based (controller) tools to manage and schedule traffic in future terminal airspace. No studies have investigated the impacts that such tools (and concepts) could have on the flight-deck. To begin to redress the balance, an exploratory study investigated the procedures and actions of ten Boeing-747-400 crews as they flew eight continuous descent approaches in the Los Angeles terminal airspace, with the descents being controlled using speed alone. Although the study was exploratory in nature, four variables were manipulated: speed changes, route constraints, clearance phraseology, and winds. Despite flying the same scenarios with the same events and timing, there was at least a 50 second difference in the time it took crews to fly the approaches. This variation is the product of a number of factors but highlights potential difficulties for scheduling tools that would have to accommodate this amount of natural variation in descent times. The primary focus of this paper is the potential impact of ground scheduling tools on the flight crews performance and procedures. Crews reported "moderate to low" workload, on average; however, short periods of intense and high workload were observed. The non-flying pilot often reported a higher level of workload than the flying-pilot, which may be due to their increased interaction with the Flight Management Computer, when using the aircraft automation to assist with managing the descent clearances. It is concluded that ground-side tools and automation may have a larger impact on the current-day flight-deck than was assumed and that studies investigating this impact should continue in parallel with controller support tool development.
Archive data base and handling system for the Orbiter flying qualities experiment program
NASA Technical Reports Server (NTRS)
Myers, T. T.; Dimarco, R.; Magdaleno, R. E.; Aponso, B. L.
1986-01-01
The OFQ archives data base and handling system assembled as part of the Orbiter Flying Qualities (OFQ) research of the Orbiter Experiments Program (EOX) are described. The purpose of the OFQ archives is to preserve and document shuttle flight data relevant to vehicle dynamics, flight control, and flying qualities in a form that permits maximum use for qualified users. In their complete form, the OFQ archives contain descriptive text (general information about the flight, signal descriptions and units) as well as numerical time history data. Since the shuttle program is so complex, the official data base contains thousands of signals and very complex entries are required to obtain data. The OFQ archives are intended to provide flight phase oriented data subsets with relevant signals which are easily identified for flying qualities research.
Illinois basin coal fly ashes. 1. Chemical characterization and solubility
Roy, W.R.; Griffin, R.A.; Dickerson, D.R.; Schuller, R.M.; Martin, S.M.C.
1984-01-01
Twelve precipitator-collected fly ash samples (nine derived from high-sulfur Illinois Basin coals and three from Western U.S. coals) were found to contain a variety of paraffins, aryl esters, phenols, and polynuclear aromatic hydrocarbons including phenanthrene, pyrene, and chrysene but all at very low concentrations. Less than 1% of the organic carbon in the samples was extractable into benzene. Solubility studies with a short-term (24-h) extraction procedure and a long-term (20-week) procedure indicate that the inorganic chemical composition of some types of fly ash effluent is time dependent and may be most toxic to aquatic ecosystems when initially mixed with water and pumped to disposal ponds. Some acidic, high-Cd fly ashes would be classified as hazardous wastes if coal ash was included in this waste category by future RCRA revisions. ?? 1984 American Chemical Society.
Is Multifactorial Sex Determination in the House Fly, Musca domestica (L.), Stable Over Time?
Meisel, Richard P; Davey, Taira; Son, Jae Hak; Gerry, Alec C; Shono, Toshio; Scott, Jeffrey G
2016-01-01
Sex determination pathways evolve rapidly, usually because of turnover of master regulatory genes at the top of the developmental pathway. Polygenic sex determination is expected to be a transient state between ancestral and derived conditions. However, polygenic sex determination has been observed in numerous animal species, including the house fly, Musca domestica House fly males carry a male-determining factor (M) that can be located on any chromosome, and an individual male may have multiple M factors. Females lack M and/or have a dominant allele of the Md-tra gene (Md-tra D ) that acts as a female-determining locus even in the presence of multiple copies of M. We found the frequency and linkage of M in house flies collected in Chino, CA (USA) was relatively unchanged between 1982 and 2014. The frequency of females with Md-tra D in the 2014 collection was 33.6% (n = 140). Analysis of these results, plus previously published data, revealed a strong correlation between the frequencies of Md-tra D and multiple M males, and we find that these populations are expected to have balanced sex ratios. We also find that fitness values that allow for the invasion and maintenance of multiple sex determining loci suggest that sexually antagonistic selection could be responsible for maintaining polygenic sex determination in house fly populations. The stability over time and equilibrium frequencies within populations suggest the house fly polygenic sex determination system is not in transition, and provide guidance for future investigations on the factors responsible for the polymorphism. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
High-speed laser microsurgery of alert fruit flies for fluorescence imaging of neural activity
Sinha, Supriyo; Liang, Liang; Ho, Eric T. W.; Urbanek, Karel E.; Luo, Liqun; Baer, Thomas M.; Schnitzer, Mark J.
2013-01-01
Intravital microscopy is a key means of monitoring cellular function in live organisms, but surgical preparation of a live animal for microscopy often is time-consuming, requires considerable skill, and limits experimental throughput. Here we introduce a spatially precise (<1-µm edge precision), high-speed (<1 s), largely automated, and economical protocol for microsurgical preparation of live animals for optical imaging. Using a 193-nm pulsed excimer laser and the fruit fly as a model, we created observation windows (12- to 350-µm diameters) in the exoskeleton. Through these windows we used two-photon microscopy to image odor-evoked Ca2+ signaling in projection neuron dendrites of the antennal lobe and Kenyon cells of the mushroom body. The impact of a laser-cut window on fly health appears to be substantially less than that of conventional manual dissection, for our imaging durations of up to 18 h were ∼5–20 times longer than prior in vivo microscopy studies of hand-dissected flies. This improvement will facilitate studies of numerous questions in neuroscience, such as those regarding neuronal plasticity or learning and memory. As a control, we used phototaxis as an exemplary complex behavior in flies and found that laser microsurgery is sufficiently gentle to leave it intact. To demonstrate that our techniques are applicable to other species, we created microsurgical openings in nematodes, ants, and the mouse cranium. In conjunction with emerging robotic methods for handling and mounting flies or other small organisms, our rapid, precisely controllable, and highly repeatable microsurgical techniques should enable automated, high-throughput preparation of live animals for optical experimentation. PMID:24167298
Ma, Hong; Quan, Xiaohong; Chen, Xiuhua; Dong, Ying
2016-11-12
To compare the efficacy among the combined treatment of flying needling therapy and clomiphene, the simple application of flying needling therapy and simple clomiphene in the treatment of ovulation failure in polycystic ovary syndrome (PCOS). Ninety patients of PCOS were randomized into a flying needling therapy group, a medication group and a combined treatment group, 30 cases in each one. In the flying needling therapy group, the flying needling therapy was simply applied to Ganshu (BL 18), Shenshu (BL 23), Zhongwan (CV 12), Shuifen (CV 9), Guanyuan (CV 4) and Zhongji (CV 3). The unilateral back- shu points were used alternatively in each treatment. The needles were inserted rapidly with rotation technique and even-needling manipulation. The needles were retained for 30 min. The treatment was given once every two days, 3 times a week. In the medication group, clomiphene was taken orally on the 5th day of menstruation, continuously for 5 days. In the combined treatment group, the flying needling therapy and clomiphene were used in combination. All of the patients were treated for 3 months and followed up for 1 month. The ovulation rates were compared among the three groups. The levels of androgen testosterone were compared before and after treatment. In the combined treatment group, the ovulation rate was 86.2% (100/116), better than 66.7% (80/120) in the flying needling therapy group and 69.6% (78/112) in the medication group (both P <0.05). The efficacy was similar between the fly needling therapy group and the medication group ( P >0.05). After treatment, the level of testosterone was reduced in the three groups (all P <0.05). In the combined treatment group, the improvement in androgen level was better than those in the flying needling therapy group and the medication group (both P <0.05). The efficacy was similar between the flying needling therapy group and the medication group ( P >0.05). The adverse reactions in the combined treatment group and the flying needling therapy group were lower than those in the medication group (both P <0.05). The flying needling therapy effectively improves in the ovulation failure of PCOS and its effect is similar to clomiphene. The allied treatment of them apparently improves the clinical efficacy and alleviates the adverse reactions.
Neutze, Richard
2014-07-17
X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.
NASA Astrophysics Data System (ADS)
Glowacki, David
Recently, we outlined an efficient multi-tiered parallel excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground/excited state energies and gradients of large supramolecular complexes in atomistic detail. In this paper, we apply our ab initioexciton framework to the 27 coupled bacteriocholorophyll-a chromophores which make up the LH2 complex, using it to compute linear absorption spectra and short-time, on-the-fly nonadiabatic surface-hopping (SH) dynamics of electronically excited LH2. Our ab initio exciton model includes two key parameters whose values are determined by fitting to experiment: d, which is added to the diagonal elements, corrects for the error in TDDFT vertical excitation energies on a single chromophore; and e, which occurs on the off-diagonal matrix elements, describes the average dielectric screening of the inter-chromophore transition-dipole coupling. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, best-fit values of both d and e were obtained by fitting to the thermally broadened experimental absorption spectrum within the Frank-Condon approximation, providing a linear absorption spectrum that agrees reasonably well with the experimental observations. We follow the nonadiabatic dynamics using surface hopping to construct time-resolved visualizations of the EET dynamics in the sub-picosecond regime following photoexcitation. This provides some qualitative insight into the excitonic energy transfer (EET) that results from atomically resolved vibrational fluctuations of the chromophores. The dynamical picture that emerges is one of rapidly fluctuating eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the underlying chromophore vibrational dynamics. The eigenstate fluctuations arise from disorder in both the diagonal chromophore site energies and the off-diagonal inter-chromophore couplings. The scalability of our excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.
Inference of quantitative models of bacterial promoters from time-series reporter gene data.
Stefan, Diana; Pinel, Corinne; Pinhal, Stéphane; Cinquemani, Eugenio; Geiselmann, Johannes; de Jong, Hidde
2015-01-01
The inference of regulatory interactions and quantitative models of gene regulation from time-series transcriptomics data has been extensively studied and applied to a range of problems in drug discovery, cancer research, and biotechnology. The application of existing methods is commonly based on implicit assumptions on the biological processes under study. First, the measurements of mRNA abundance obtained in transcriptomics experiments are taken to be representative of protein concentrations. Second, the observed changes in gene expression are assumed to be solely due to transcription factors and other specific regulators, while changes in the activity of the gene expression machinery and other global physiological effects are neglected. While convenient in practice, these assumptions are often not valid and bias the reverse engineering process. Here we systematically investigate, using a combination of models and experiments, the importance of this bias and possible corrections. We measure in real time and in vivo the activity of genes involved in the FliA-FlgM module of the E. coli motility network. From these data, we estimate protein concentrations and global physiological effects by means of kinetic models of gene expression. Our results indicate that correcting for the bias of commonly-made assumptions improves the quality of the models inferred from the data. Moreover, we show by simulation that these improvements are expected to be even stronger for systems in which protein concentrations have longer half-lives and the activity of the gene expression machinery varies more strongly across conditions than in the FliA-FlgM module. The approach proposed in this study is broadly applicable when using time-series transcriptome data to learn about the structure and dynamics of regulatory networks. In the case of the FliA-FlgM module, our results demonstrate the importance of global physiological effects and the active regulation of FliA and FlgM half-lives for the dynamics of FliA-dependent promoters.
A Low-Cost Time-Resolved Spectrometer for the Study of Ruby Emission
ERIC Educational Resources Information Center
McBane, George C.; Cannella, Christian; Schaertel, Stephanie
2018-01-01
A low-cost time-resolved emission spectrometer optimized for ruby emission is presented. The use of a Class II diode laser module as the excitation source reduces costs and hazards. The design presented here can facilitate the inclusion of time-resolved emission spectroscopy with laser excitation sources in the undergraduate laboratory curriculum.…
Forward to the Future: Estimating River Discharge with McFLI
NASA Astrophysics Data System (ADS)
Gleason, C. J.; Durand, M. T.; Garambois, P. A.
2016-12-01
The global surface water budget is still poorly understood, and improving our understanding of freshwater budgets requires coordination between in situ observations, models, and remote sensing. The upcoming launch of the NASA/CNES Surface Water and Ocean Topography (SWOT) satellite has generated considerable excitement as a new tool enabling hydrologists to tackle some of the most pressing questions facing their discipline. One question in particular which SWOT seems well suited to answer is river discharge (flow rate) estimation in ungauged basins: SWOT's anticipated measurements of river surface height and area have ushered in a new technique in hydrology- what we are here calling Mass conserved Flow Law Inversions, or McFLI. McFLI algorithms leverage classic hydraulic flow expressions (e.g. Manning's Equation, hydraulic geometry) within mass conserved river reaches to construct a simplified but still underconstrained system of equations to be solved for an unknown discharge. Most existing McFLI techniques have been designed to take advantage of SWOT's measurements and Manning's Equation: SWOT will observe changes in cross sectional area and river surface slope over time, so the McFLI need only solve for baseflow area and Manning's roughness coefficient. Recently published preliminary results have indicated that McFLI can be a viable tool in a global hydrologist's toolbox (discharge errors less than 30% as compared to gauges are possible in most cases). Therefore, we here outline the progress to date for McFLI techniques, and highlight three key areas for future development: 1) Maximize the accuracy and robustness of McFLI by incorporating ancillary data from satellites, models, and in situ observations. 2) Develop new McFLI techniques using novel or underutilized flow laws. 3) Systematically test McFLI to define different inversion classes of rivers with well-defined error budgets based on geography and available data for use in gauged and ungauged basins alike.
Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS
Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe
2016-01-01
Background Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Methodology/Principal Findings Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M’sila where P. (Phlebotomus) papatasi was the only sand fly species detected. Conclusion The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases. PMID:26771833
Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.
Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe
2016-01-01
Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus) papatasi was the only sand fly species detected. The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases.
Weidner, Lauren M; Monzon, Michael A; Hamilton, George C
2016-11-01
Some insect taxa can be of critical importance for criminal investigations because they can be used to assist with a time since death determination. Blow flies (Diptera: Calliphoridae) often are the initial colonizers of a carcass, usually arriving within minutes to hours after carcass exposure during the day. Other insects, such as coleopterans and hymenopterans, can arrive to a carcass during early colonization and affect blow fly development. However, the extent of these interactions remains unclear. This study analyzed the initial 6 h after a piglet carcass was placed out in two locations (rural and urban) in diurnal and nocturnal conditions with continuous video recording and hourly observations. Four piglets were placed out every 2 weeks over the summer of 2014. Initial blow fly arrivals to the carcasses were only recorded during diurnal conditions, and a checklist of orders associated with each environment (time and location) was created. During diurnal conditions, initial blow fly arrival times in rural environments were significantly faster than those in urban, arriving as quickly as 23 s after exposure. These observations also included a novel interaction with Vespidae, which to the best of our knowledge has not been seen in the literature before. This experiment provides baseline data on early insect colonization in two environments in New Jersey, and lends insight into insect interactions that could affect initial colonization.
Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori
2014-10-01
Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.
Vargas, Roger I; Stark, John D; Banks, John; Leblanc, Luc; Manoukis, Nicholas C; Peck, Steven
2013-10-01
We examined spatial patterns of both sexes of oriental fruit fly, Bactrocera dorsalis (Hendel), and its two most abundant parasitoids, Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) in a commercial guava (Psidium guajava L.) orchard. Oriental fruit fly spatial patterns were initially random, but became highly aggregated with host fruit ripening and the subsequent colonization of, first, F. arisanus (egg-pupal parasitoid) and, second, D. longicaudata (larval-pupal parasitoid). There was a significant positive relationship between populations of oriental fruit fly and F. arisanus during each of the F. arisanus increases, a pattern not exhibited between oriental fruit fly and D. longicaudata. Generally, highest total numbers of males and females (oriental fruit fly, F. arisanus, and D. longicaudata) occurred on or about the same date. There was a significant positive correlation between male and female populations of all three species; we measured a lag of 2-4 wk between increases of female F. arisanus and conspecific males. There was a similar trend in one of the two years for the second most abundant species, D. longicaudata, but no sign of a time lag between the sexes for oriental fruit fly. Spatially, we found a significant positive relationship between numbers of F. arisanus in blocks and the average number in adjoining blocks. We did not find the same effect for oriental fruit fly and D. longicaudata, possibly a result of lower overall numbers of the latter two species or less movement of F. arisanus within the field.
Time-Varying Expression of the Formation Flying along Circular Trajectories
NASA Technical Reports Server (NTRS)
Kawaguchi, Jun'ichiro
2007-01-01
Usually, the formation flying associated with circular orbits is discussed through the well-known Hill s or C-W equations of motion. This paper dares to present and discuss the coordinates that may contain time-varying coefficients. The discussion presents how the controller s performance is affected by the selection of coordinates, and also looks at the special coordinate suitable for designating a target bin to which each spacecraft in the formation has only to be guided. It is revealed that the latter strategy may incorporate the J2 disturbance automatically.
NASA Technical Reports Server (NTRS)
Sammonds, R. I.; Bunnell, J. W.
1981-01-01
A moving base simulator experiment demonstrated that a wings-level-turn control mode improved flying qualities for air to ground weapon delivery compared with those of a conventionally controlled aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well on the basis of equivalent time constant of the initial response. Ranges of this time constant, as well as digital system transport delays and lateral acceleration control authorities that encompassed level 1 through 3 handling qualities, were determined.
Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; ...
2015-03-13
We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. Thus, this approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.
USDA-ARS?s Scientific Manuscript database
The juvenile hormone analog methoprene reduces the amount of time it takes laboratory-reared Anastrepha suspensa (Caribbean fruit fly) males to reach sexual maturity by almost half. Here, we examined if methoprene exerted a similar effect on four other species of Anastrepha (A. ludens, A. obliqua, ...
1999-08-18
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
1999-09-08
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
1999-08-18
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
1999-09-08
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
1999-09-08
The Helios Prototype is an enlarged version of the Centurion flying wing, which flew a series of test flights at Dryden in late 1998. The craft has a wingspan of 247 feet, 41 feet greater than the Centurion, 2 1/2 times that of its solar-powered Pathfinder flying wing, and longer than either the Boeing 747 jetliner or Lockheed C-5 transport aircraft.
USDA-ARS?s Scientific Manuscript database
Impact of biological control agents such as parasitoids can be improved by determining best times for release when predation pressures will be reduced. Large populations of long-legged predatory flies (Diptera: Dolichopodidae) impose heavy predation pressure on inundative releases of the parasitoid ...
NASA Astrophysics Data System (ADS)
Rai, P.; Gautam, N.; Chandra, H.
2018-06-01
This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.
Application of washed MSWI fly ash in cement composites: long-term environmental impacts.
Yang, Zhenzhou; Tian, Sicong; Liu, Lili; Wang, Xidong; Zhang, Zuotai
2018-04-01
In the present study, long-term environmental impacts of compact and ground cement composites, in which 30 wt.% of cement was replaced by washed municipal solid wastes incineration (MSWI) fly ash, were investigated for use in building industry. Consecutive leaching tests over a time span of 180 days were performed in acid water, deionized water, and saline water, respectively, with the accumulative concentration of different elements determined in the leachate. Different leaching behaviors are observed among different potential toxic elements (PTEs). For instance, higher concentrations of V in the leachate were observed from the compact cement composites than those from the ground ones. The concentration of Ba in the leachate increased with the decrease of particle size of the cement composites, and an initial increase in the leaching efficiency of Sn was followed by a clear decline with the leaching time. In addition, kinetic study revealed that the leaching behaviors of potential toxic elements follow a second-order model. The results demonstrated that the addition of washed MSWI fly ash into cement can contribute to the attrition resistance, indicating that the washed MSWI fly ash could be a promising alternative for cement as supplementary building materials.
Kapasi, H.; Kelly, L.; Morgan, J.
2000-01-01
PROBLEM ADDRESSED: First Nations* communities in the North have a high prevalence of coronary artery disease and type 2 diabetes and face an increasing incidence of myocardial infarction (MI). Many conditions delay timely administration of thrombolysis, including long times between when patients first experience symptoms and when they present to community nursing stations, delays in air transfers to treating hospitals, uncertainty about when planes are available, and poor flying conditions. OBJECTIVE OF PROGRAM: To develop a program for administration of thrombolysis on the way to hospital by air ambulance paramedics flying to remote communities to provide more rapid thrombolytic therapy to northern patients experiencing acute MIs. COMPONENTS OF PROGRAM: Critical care flight paramedics fly to northern communities from Sioux Lookout, Ont; assess patients; communicate with base hospital physicians; review an exclusion criteria checklist; and administer thrombolytics according to the Sioux Lookout District Health Centre/Base Hospital Policy and Procedure Manual. Patients are then flown to hospitals in Sioux Lookout; Winnipeg, Man; or Thunder Bay, Ont. CONCLUSION: This thrombolysis program is being pilot tested, and further evaluation and development is anticipated. Images p1316-a p1317-a p1317-b PMID:10907571
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Cohen, Itai
2015-11-01
While the wing kinematics of many flapping insects have been well characterized, understanding the underlying physiological mechanisms that determine these kinematics is still a challenge. Two of the main difficulties arise from the complexity of the interaction between a flapping wing and its own unsteady flow, as well as the intricate mechanics the insect wing-hinge, which is among the most complicated joints in the animal kingdom. These difficulties call for the application of reduced-order approaches. Here, we model the torques exerted by the wing-hinge along the wing-pitch axis of maneuvering fruit flies as a damped torsional spring with elastic and damping coefficients as well as a rest angle. Furthermore, we model the air flows using simplified quasi-static aerodynamics. Our findings suggest that flies take advantage of the passive coupling between aerodynamics and the damped torsional spring to indirectly control their wing-pitch kinematics by modulating the spring damping and elastic coefficients. These results, in conjunction with the previous literature, indicate flies can accurately control their wing-pitch kinematics on a sub-wing-beat time-scale by modulating all three effective spring parameters on longer time-scales.
NASA Astrophysics Data System (ADS)
Rai, P.; Gautam, N.; Chandra, H.
2018-02-01
This work deals with the analysis and modification of operational parameters for meeting the emission standards, set by Central Pollution Control Board (CPCB)/State Pollution Control Board (SPCB) from time to time of electrostatic precipitator (ESP). The analysis is carried out by using standard chemical analysis supplemented by the relevant data collected from Korba East Phase (Ph)-III thermal power plant, under Chhattisgarh State Electricity Board (CSEB) operating at Korba, Chhattisgarh. Chemical analysis is used to predict the emission level for different parameters of ESP. The results reveal that for a constant outlet PM concentration and fly ash percentage, the total collection area decreases with the increase in migration velocity. For constant migration velocity and outlet PM concentration, the total collection area increases with the increase in the fly ash percent. For constant migration velocity and outlet e PM concentration, the total collection area increases with the ash content in the coal. i.e. from minimum ash to maximum ash. As far as the efficiency is concerned, it increases with the fly ash percent, ash content and the inlet dust concentration but decreases with the outlet PM concentration at constant migration velocity, fly ash and ash content.
Fischer, Michael A; Leidner, Bertil; Kartalis, Nikolaos; Svensson, Anders; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B
2014-01-01
To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. • Four-dimensional computed tomography is limited by motion artefacts and poor image quality. • Time-resolved-CT facilitates 4D-CT data visualisation, segmentation and analysis by condensing raw data. • Time-resolved CT demonstrates better image quality than raw data images. • Time-resolved CT improves detection of arterialised liver lesions in cirrhotic patients.
Flight performance in night-flying sweat bees suffers at low light levels.
Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J
2007-11-01
The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.
Prey capture by the crab spider Misumena calycina (Araneae: Thomisidae).
Morse, Douglass H
1979-01-01
Crab spiders Misumena calycina (L.) in pasture rose Rosa carolina flowers regularly attacked bumble bees, smaller bees, and syrphid flies that visited these flowers. Attacks reached a maximum rate of over 20/h during mid morning, but only 1.6% of the most important prey item, bumble bees, were captured. The next most important food source, the most frequently taken item, syrphid flies Toxomerus marginatus (Say), were captured in 39% of the attempts. Since these flies have a biomass only 1/60th that of bumble bees, they comprised a much less important food source than did bumble bees. Spiders would obtain over 7% more food by specializing on bumble bees than by attacking all insect visitors, and as much as 20% more food at certain times of the day. However, they did not show a tendency to specialize at any time.
Barreto, M; Burbano, M E; Barreto, P
2000-01-01
A total of 4,840 phlebotomine sand flies from 54 localities in Putumayo department (=state), in the Colombian Amazon region, were collected in Shannon traps, CDC light traps, resting places and from human baits. At least 42 Lutzomyia species were registered for the first time to the department. Psychodopygus and Nyssomyia were the subgenera with the greatest number of taxa, the most common species being L. (N.) yuilli and L. (N.) pajoti. They were sympatric in a wide zone of Putumayo, indicating that they should be treated as full species (new status). Among the anthropophilic sand flies, L. gomezi and L. yuilli were found in intradomiciliar, peridomestic, urban or forest habitats. L. richardwardi, L. claustrei, L. nocticola and L. micropyga are reported for the first time in the Colombian Amazon basin. L. pajoti, L. sipani and L. yucumensis are new records for Colombia.
NASA Astrophysics Data System (ADS)
Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro
2004-01-01
Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.
Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura
2002-05-01
Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.
NASA Astrophysics Data System (ADS)
Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao
2012-02-01
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.
Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao
2012-02-01
We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.
Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster.
Gonsalvez, Graydon B; Praveen, Kavita; Hicks, Amanda J; Tian, Liping; Matera, A Gregory
2008-05-01
Sm proteins form stable ribonucleoprotein (RNP) complexes with small nuclear (sn)RNAs and are core components of the eukaryotic spliceosome. In vivo, the assembly of Sm proteins onto snRNAs requires the survival motor neurons (SMN) complex. Several reports have shown that SMN protein binds with high affinity to symmetric dimethylarginine (sDMA) residues present on the C-terminal tails of SmB, SmD1, and SmD3. This post-translational modification is thought to play a crucial role in snRNP assembly. In human cells, two distinct protein arginine methyltransferases (PRMT5 and PRMT7) are required for snRNP biogenesis. However, in Drosophila, loss of Dart5 (the fruit fly PRMT5 ortholog) has little effect on snRNP assembly, and homozygous mutants are completely viable. To resolve these apparent differences, we examined this topic in detail and found that Drosophila Sm proteins are also methylated by two methyltransferases, Dart5/PRMT5 and Dart7/PRMT7. Unlike dart5, we found that dart7 is an essential gene. However, the lethality associated with loss of Dart7 protein is apparently unrelated to defects in snRNP assembly. To conclusively test the requirement for sDMA modification of Sm proteins in Drosophila snRNP assembly, we constructed a fly strain that exclusively expresses an isoform of SmD1 that cannot be sDMA modified. Interestingly, these flies were viable, and snRNP assays revealed no defects in comparison to wild type. In contrast, dart5 mutants displayed a strong synthetic lethal phenotype in the presence of a hypomorphic Smn mutation. We therefore conclude that dart5 is required for viability when SMN is limiting.
GVE-Based Dynamics and Control for Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
Breger, Louis; How, Jonathan P.
2004-01-01
Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.
On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses
Ren, Fang; Williams, Travis; Hattrick-Simpers, Jason; ...
2017-08-30
Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. As a result, on-the-fly segmentation would, therefore, result in accelerated scientific productivity.
How birds direct impulse to minimize the energetic cost of foraging flight
NASA Astrophysics Data System (ADS)
Chin, Diana; Lentink, David
2017-11-01
Foraging arboreal birds frequently hop and fly between branches by extending long-jumps with a few wingbeats. Their legs transfer impulse to the branch during takeoff and landing, and their wings transfer impulse to the air to support their bodyweight during flight. To determine the mechanical energy tradeoffs of this bimodal locomotion, we studied how Pacific parrotlets transfer impulse during voluntary perch-to-perch flights. We tested five foraging flight variations by varying the inclination and distance between instrumented perches inside a novel aerodynamic force platform. This setup enables direct, time-resolved in vivo measurements of both leg and wing forces, which we combined with high-speed kinematics to develop a new bimodal long-jump and flight model. The model demonstrates how parrotlets direct their leg impulse to minimize the mechanical energy needed for each flight, and further shows how even a single proto-wingbeat would have significantly lengthened the long-jump of foraging arboreal dinosaurs. By directing jumps and flapping their wings, both extant and ancestral birds could thus improve foraging effectiveness. Similarly, bimodal robots could also employ these locomotion strategies to traverse cluttered environments more effectively.
Wake structure and wing motion in bat flight
NASA Astrophysics Data System (ADS)
Hubel, Tatjana; Breuer, Kenneth; Swartz, Sharon
2008-11-01
We report on experiments concerning the wake structure and kinematics of bat flight, conducted in a low-speed wind tunnel using time-resolved PIV (200Hz) and 4 high-speed cameras to capture wake and wing motion simultaneously. 16 Lesser dog-faced fruit bats (C. brachyotis) were trained to fly in the wind tunnel at 3-6.5m/s. The PIV recordings perpendicular to the flow stream allowed observing the development of the tip vortex and circulation over the wing beat cycle. Each PIV acquisition sequence is correlated with the respective kinematic history. Circulation within wing beat cycles were often quite repeatable, however variations due to maneuvering of the bat are clearly visible. While no distinct vortex structure was observed at the upper reversal point (defined according the vertical motion of the wrist) a tip vortex was observed to develop in the first third of the downstroke, growing in strength, and persisting during much of the upstroke. Correlated to the presence of a strong tip vortex the circulation has almost constant strength over the middle half of the wing beat. At relatively low flight speeds (3.4 m/s), a closed vortex structure behind the bat is postulated.
Musyoka, Nicholas M; Petrik, Leslie F; Gitari, Wilson M; Balfour, Gillian; Hums, Eric
2012-01-01
This study was aimed at optimizing the synthesis conditions for pure phase zeolite Na-P1 from three coal fly ashes obtained from power stations in the Mpumalanga province of South Africa. Synthesis variables evaluated were: hydrothermal treatment time (12-48 hours), temperature (100-160°C) and varying molar quantities of water during the hydrothermal treatment step (H(2)O:SiO(2) molar ratio ranged between 0-0.49). The optimum synthesis conditions for preparing pure phase zeolite Na-P1 were achieved when the molar regime was 1 SiO(2): 0.36 Al(2)O(3): 0.59 NaOH: 0.49 H(2)O and ageing was done at 47°C for 48 hours. The optimum hydrothermal treatment time and temperature was 48 hours and 140°C, respectively. Fly ashes sourced from two coal-fired power plants (A, B) were found to produce nearly same high purity zeolite Na-P1 under identical conditions whereas the third fly ash (C) lead to a low quality zeolite Na-P1 under these conditions. The cation exchange capacity for the high pure phase was found to be 4.11 meq/g. These results highlight the fact that adjustment of reactant composition and presynthesis or synthesis parameters, improved quality of zeolite Na-P1 can be achieved and hence an improved potential for application of zeolites prepared from coal fly ash.
Beutin, Lothar; Delannoy, Sabine; Fach, Patrick
2015-06-15
Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Beutin, Lothar; Delannoy, Sabine
2015-01-01
Enterohemorrhagic Escherichia coli (EHEC) O121:H19 belong to a specific clonal type distinct from other classical EHEC and major enteropathogenic E. coli groups and is regarded as one of the major EHEC serogroups involved in severe infections in humans. Sequencing of the fliC genes associated with the flagellar antigen H19 (fliCH19) revealed the genetic diversity of the fliCH19 gene sequences in E. coli. A cluster analysis of 12 fliCH19 sequences, 4 from O121 and 8 from non-O121 E. coli strains, revealed five different genotypes. All O121:H19 strains fell into one cluster, whereas a second cluster was formed by five non-O121:H19 strains. Cluster 1 and cluster 2 strains differ by 27 single nucleotide exchanges in their fliCH19 genes (98.5% homology). Based on allele discrimination of the fliCH19 genes, a real-time PCR test was designed for specific identification of EHEC O121:H19. The O121 fliCH19 PCR tested negative in 73 E. coli H19 strains that belonged to serogroups other than O121, including 28 different O groups, O-nontypeable H19, and O-rough:H19 strains. The O121 fliCH19 PCR reacted with all 16 tested O121:H19 strains and 1 O-rough:H19 strain which was positive for the O121 wzx gene. A cross-reaction was observed only with E. coli H32 strains which share sequence similarities in the target region of the O121 fliCH19 PCR. The combined use of O-antigen genotyping (O121 wzx) and the detection of O121 fliCH19 allele type contributes to improving the identification and molecular serotyping of EHEC O121:H19 motile and nonmotile strains and variants of these strains lacking stx genes. PMID:25862232
Biomass fly ash incorporation in cement based materials =
NASA Astrophysics Data System (ADS)
Rajamma, Rejini
In recent years, pressures on global environment and energy security have led to an increasing demand on renewable energy sources, and diversification of Europe's energy supply. Among these resources the biomass could exert an important role, since it is considered a renewable and CO2 neutral energy resource once the consumption rate is lower than the growth rate, and can potentially provide energy for heat, power and transports from the same installation. Currently, most of the biomass ash produced in industrial plants is either disposed of in landfill or recycled on agricultural fields or forest, and most times this goes on without any form of control. However, considering that the disposal cost of biomass ashes are raising, and that biomass ash volumes are increasing worldwide, a sustainable ash management has to be established. The main objective of the present study is the effect of biomass fly ashes in cement mortars and concretes in order to be used as a supplementary cementitious material. The wastes analyzed in the study were collected from the fluidized bed boilers and grate boilers available in the thermal power plants and paper pulp plants situated in Portugal. The physical as well as chemical characterisations of the biomass fly ashes were investigated. The cement was replaced by the biomass fly ashes in 10, 20 and 30% (weight %) in order to investigate the fresh properties as well as the hardened properties of biomass fly ash incorporated cement mortar and concrete formulations. Expansion reactions such as alkali silica reaction (ASR), sulphate attack (external and internal) were conducted in order to check the durability of the biomass fly ash incorporated cement mortars and concretes. Alternative applications such as incorporation in lime mortars and alkali activation of the biomass fly ashes were also attempted. The biomass fly ash particles were irregular in shape and fine in nature. The chemical characterization revealed that the biomass fly ashes were similar to a class C fly ash. The mortar results showed a good scope for biomass fly ashes as supplementary cementitious materials in lower dosages (<20%). The poor workability, concerns about the organic content, alkalis, chlorides and sulphates stand as the reasons for preventing the use of biomass fly ash in high content in the cement mortars. The results obtained from the durability tests have shown a clear reduction in expansion for the biomass fly ash mortars/concretes and the binder blend made with biomass fly ash (20%) and metakaolin (10%) inhibited the ASR reaction effectively. The biomass fly ash incorporation in lime mortars did not improve the mortar properties significantly though the carbonation was enhanced in the 15-20% incorporation. The biomass fly ash metakaolin blend worked well in the alkali activated complex binder application also. Portland cement free binders (with 30-40 MPa compressive strength) were obtained on the alkali activation of biomass fly ashes (60-80%) blended with metakaolin (20-40%).
Cabrera, Olga Lucía; Mosquera, Laureano; Santamaría, Erika; Ferro, Cristina
2009-03-01
Although cases of leishmaniasis have been reported in the province of Guaviare, Colombia, no entomological studies were included to identify the Lutzomyia sand fly vector species in that area. Lutzomyia species were identified from four townships of Guaviare. Probable vectors were named based on those species involved in transmission in other areas. Sampling was undertaken with CDC light traps suspended at heights between 1.5 m and 9 m. Additional sand flies were collected with Shannon traps and by aspiration of adult flies from daytime resting sites. Sand flies belonging to 37 different species were collected. 35 of them were recorded for the first time in Guaviare Province. Four species were new records for Colombia: Lutzomyia begonae, L. campbelli, L. sericea and L. nematoducta. The most abundant species were L. hirsuta 24.3% (148/610), L. yuilli 15.2% (93/610), L. davisi 10.3% (63/610), followed by L. fartigi, L. carrerai, L. antunesi, L. flaviscutellata and L. olmeca bicolor. Seven of these species of have been associated previously with endemic or epidemic transmission of leishmaniasis.
NASA Astrophysics Data System (ADS)
Laurenzis, Martin; Hengy, Sebastien; Hommes, Alexander; Kloeppel, Frank; Shoykhetbrod, Alex; Geibig, Thomas; Johannes, Winfried; Naz, Pierre; Christnacher, Frank
2017-05-01
Small unmanned aerial vehicles (UAV) flying at low altitude are becoming more and more a serious threat in civilian and military scenarios. In recent past, numerous incidents have been reported where small UAV were flying in security areas leading to serious danger to public safety or privacy. The detection and tracking of small UAV is a widely discussed topic. Especially, small UAV flying at low altitude in urban environment or near background structures and the detection of multiple UAV at the same time is challenging. Field trials were carried out to investigate the detection and tracking of multiple UAV flying at low altitude with state of the art detection technologies. Here, we present results which were achieved using a heterogeneous sensor network consisting of acoustic antennas, small frequency modulated continuous wave (FMCW) RADAR systems and optical sensors. While acoustics, RADAR and LiDAR were applied to monitor a wide azimuthal area (360°) and to simultaneously track multiple UAV, optical sensors were used for sequential identification with a very narrow field of view.
Mengual, Ximo; Kerr, Peter; Norrbom, Allen L; Barr, Norman B; Lewis, Matthew L; Stapelfeldt, Anna M; Scheffer, Sonja J; Woods, Patrick; Islam, Md-Sajedul; Korytkowski, Cheslavo A; Uramoto, Keiko; Rodriguez, Erick J; Sutton, Bruce D; Nolazco, Norma; Steck, Gary J; Gaimari, Stephen
2017-08-01
Current hypotheses of relationship among the species of the fruit fly genera Anastrepha and Toxotrypana are tested using sequence data from six DNA regions: the mitochondrial regions 16S, CAD, and COI, and the nuclear regions EF1a, PER, and PGD. DNA sequences were obtained from 146 species of Anastrepha, representing 19 of the 21 species groups as well as five of the six clades of the robusta group, and four species of Toxotrypana in addition to species of Hexachaeta, Pseudophorellia, Alujamyia, and 13 other tephritid genera used as outgroups. The results indicate that Hexachaeta is more closely related to the Molynocoelia group than to Toxotrypana and Anastrepha, and it is removed from the tribe Toxotrypanini. The group Anastrepha+Toxotrypana and the genus Toxotrypana are strongly supported as monophyletic, consistent with previous studies, but Toxotrypana arises within Anastrepha, confirming that Anastrepha as currently defined is paraphyletic. The placement of Toxotrypana within Anastrepha is clearly defined for the first time with high support, as the sister group to the cryptostrepha clade of the robusta group of Anastrepha. Within Anastrepha, the daciformis, dentata, leptozona, raveni, and striata species groups are highly supported clades. The serpentina group is recognized with lower support, and the fraterculus and pseudoparallela groups are supported with minor alterations. The robusta group is resolved as polyphyletic, but four of the six species clades within it are recovered monophyletic (one clade is not represented and another is represented by one species). The punctata and panamensis groups are resolved together in a clade. At least some species of the mucronota group are related, however this group requires further study. The benjamini, grandis, and spatulata groups appear to be polyphyletic. Relationships among the species groups are generally poorly resolved, with the following exceptions: (1) the lineage including Toxotrypana, the cryptostrepha clade, and the tripunctata group; (2) the sister group relationship of the daciformis+dentata groups; (3) a clade comprising the punctata and panamensis groups; and (4) the large clade comprising the pseudoparallela+spatulata+ramosa+grandis+serpentina+striata+fraterculus groups. Copyright © 2017 Elsevier Inc. All rights reserved.
Jenkins, David A; Kendra, Paul E; Van Bloem, Skip; Whitmire, Stefanie; Mizell, Russ; Goenaga, Ricardo
2013-04-01
McPhail-type traps baited with ammonium acetate and putrescine were used to monitor populations of Anastrepha obliqua (Macquart) and Anastrepha suspensa (Loew) in two orchards with hosts of these flies (mango, Mangifera indica L., and carambola, Averrhoa carambola L.), as well as in forest fragments bordering these orchards. Contour maps were constructed to measure population distributions in and around orchards. Our results indicate that Anastrepha populations are focused around host fruit in both space and time, that traps do not draw fruit flies away from hosts, even when placed within 15 m of the host, and that lures continue to function for 6 mo in the field. The contour mapping analyses reveal that populations of fruit flies are focused around ovipositional hosts. Although the trapping system does not have a very long effective sampling range, it is ideal, when used in combination with contour analyses, for assessing fine-scale (on the order of meters) population distributions, including identifying resources around which fly populations are focused or, conversely, assessing the effectiveness of management tools. The results are discussed as they pertain to monitoring and detecting Anastrepha spp. with the McPhail-type trap and ammonium acetate and putrescine baiting system and the dispersal of these flies within Puerto Rico.
Detection flying aircraft from Landsat 8 OLI data
NASA Astrophysics Data System (ADS)
Zhao, F.; Xia, L.; Kylling, A.; Li, R. Q.; Shang, H.; Xu, Ming
2018-07-01
Monitoring flying aircraft from satellite data is important for evaluating the climate impact caused by the global aviation industry. However, due to the small size of aircraft and the complex surface types, it is almost impossible to identify aircraft from satellite data with moderate resolution, e.g. 30 m. In this study, the 1.38 μm water vapor absorption channel, often used for cirrus cloud or ash detection, is for the first time used to monitor flying aircraft from Landsat 8 data. The basic theory behind the detection of flying aircraft is that in the 1.38 μm channel most of the background reflectance between the ground and the aircraft is masked due to the strong water vapor absorption, while the signal of the flying aircraft will be attenuated less due to the low water vapor content between the satellite and the aircraft. A new composition of the Laplacian and Sobel operators for segmenting aircraft and other features were used to identify the flying aircraft. The Landsat 8 Operational Land Imager (OLI) 2.1 μm channel was used to make the method succeed under low vapor content. The accuracy assessment based on 65 Landsat 8 images indicated that the percentage of leakage is 3.18% and the percentage of false alarm is 0.532%.
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles
Ristroph, Leif; Bergou, Attila J.; Ristroph, Gunnar; Coumes, Katherine; Berman, Gordon J.; Guckenheimer, John; Wang, Z. Jane; Cohen, Itai
2010-01-01
Just as the Wright brothers implemented controls to achieve stable airplane flight, flying insects have evolved behavioral strategies that ensure recovery from flight disturbances. Pioneering studies performed on tethered and dissected insects demonstrate that the sensory, neurological, and musculoskeletal systems play important roles in flight control. Such studies, however, cannot produce an integrative model of insect flight stability because they do not incorporate the interaction of these systems with free-flight aerodynamics. We directly investigate control and stability through the application of torque impulses to freely flying fruit flies (Drosophila melanogaster) and measurement of their behavioral response. High-speed video and a new motion tracking method capture the aerial “stumble,” and we discover that flies respond to gentle disturbances by accurately returning to their original orientation. These insects take advantage of a stabilizing aerodynamic influence and active torque generation to recover their heading to within 2° in < 60 ms. To explain this recovery behavior, we form a feedback control model that includes the fly’s ability to sense body rotations, process this information, and actuate the wing motions that generate corrective aerodynamic torque. Thus, like early man-made aircraft and modern fighter jets, the fruit fly employs an automatic stabilization scheme that reacts to short time-scale disturbances. PMID:20194789
Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt
NASA Astrophysics Data System (ADS)
Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.
2017-01-01
A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.
NASA Astrophysics Data System (ADS)
Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.
2017-06-01
We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.
Basto, Renata; Lau, Joyce; Vinogradova, Tatiana; Gardiol, Alejandra; Woods, C Geoffrey; Khodjakov, Alexey; Raff, Jordan W
2006-06-30
Centrioles and centrosomes have an important role in animal cell organization, but it is uncertain to what extent they are essential for animal development. The Drosophila protein DSas-4 is related to the human microcephaly protein CenpJ and the C. elegans centriolar protein Sas-4. We show that DSas-4 is essential for centriole replication in flies. DSas-4 mutants start to lose centrioles during embryonic development, and, by third-instar larval stages, no centrioles or centrosomes are detectable. Mitotic spindle assembly is slow in mutant cells, and approximately 30% of the asymmetric divisions of larval neuroblasts are abnormal. Nevertheless, mutant flies develop with near normal timing into morphologically normal adults. These flies, however, have no cilia or flagella and die shortly after birth because their sensory neurons lack cilia. Thus, centrioles are essential for the formation of centrosomes, cilia, and flagella, but, remarkably, they are not essential for most aspects of Drosophila development.
NASA Astrophysics Data System (ADS)
Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.
2016-07-01
The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.
Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle
NASA Astrophysics Data System (ADS)
Ettl, Svenja
2015-04-01
'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.
NASA Astrophysics Data System (ADS)
Jertz, W.
1992-04-01
The deterrence potential of an Air Force, and by that the capability to fulfill their mission in times of war, relies on threat oriented training in peacetime. Low level flying is a major tactical means to help aircrews reduce the anticipated threat imposed to them by enemy air defence systems to an acceptable degree. The demand for this capability applies also to air defence tasks against attacking fighter bombers. Military low level flying requires a high degree of proficiency, which can only be reached and maintained by constant training. A high performance level is then the key to air power. The possibilities for this kind of necessary training are restricted by superior demands concerning, amongst others, flying safety and environmental reasons. Too intensive restrictions might reduce the fighting capability of the wings to such an extent, that mission fulfillment could be seriously endangered.
Studies of fly ash using thermal analysis techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hanxu; Shen, Xiang-Zhong; Sisk, B.
1996-12-31
Improved thermoanalytical methods have been developed that are capable of quantitative identification of various components of fly ash from a laboratory-scale fluidized bed combustion system. The thermogravimetric procedure developed can determine quantities of H{sub 2}O, Ca(OH){sub 2}, CaCO{sub 3}, CaSO{sub 4} and carbonaceous matter in fly ash with accuracy comparable to more time-consuming ASTM methods. This procedure is a modification of the Mikhail-Turcotte methods that can accurately analyze bed ash, with higher accuracy regarding the greater amount of carbonaceous matter in fly ash. In addition, in conjunction with FTIR and SEM/EDS analysis, the reduction mechanism of CaSO{sub 4} as CaSO{submore » 4} + 4H{sub 2} = CaS + 4H{sub 2}O has been confirmed in this study. This mechanism is important in analyzing and evaluating sulfur capture in fluidized-bed combustion systems.« less
NASA Astrophysics Data System (ADS)
Yuren, Wang; Fang, Shao; Weiping, Sun; Xioujuan, Li; Suning, Tian; Hongyan, Li
1989-06-01
When a heavy-calibre gun is fired and a projectite is flying near the gun muzzle, velocity of the projectile is very high and firing process is accompanying with strong muzzle flash. So taking the picture of the attitudes of flying projectile at the gun muzzle is very difficult. "YDS speed Photography System" developed by our group can take the framing pictures of the attitudes of the projectile and prevent them from flash confusing at the muzzle. Since framing depends on sequential pulse of the laser and the width of the putse is very narrow, therefore the exposure time is very short and photos of high-velocity flying body taken are very clear. This paper Introduces configuration and operation principle of "YDS laser High-speed Photography System" and the fuctions of the devices in this system In addition, some experimental results are briefly introduced.
Geurts, Katrien; Mwatawala, Maulid; De Meyer, Marc
2012-01-01
The relative abundance of indigenous and invasive frugivorous fruit flies (Diptera: Tephritidae) was evaluated spatially and temporally along an altitudinal transect between 581–1650 m in the Uluguru Mountains near Morogoro, Tanzania. The polyphagous invasive fruit fly Bactrocera invadens Drew, Tsuruta, and White and the indigenous fruit fly Ceratitis rosa Karsch show a similar temporal pattern, but are largely separated spatially, with B. invadens being abundant at lower elevation and C. rosa predominant at higher elevation. The polyphagous indigenous C. cosyra (Walker) coincides with B. invadens but shows an inverse temporal pattern. The cucurbit feeders B. cucurbitae (Coquillett) and Dacus bivittatus (Bigot) show a similar temporal pattern, but the former is restricted to lower elevations. Host availability and climatic differences seem to be the determining factors to explain the differences in occurrence and abundance in time and space. PMID:22935017
NASA Astrophysics Data System (ADS)
Jenkins, Edward B.; Reale, Michael A.; Zucchino, Paul M.; Sofia, Ulysses J.
1996-09-01
The Interstellar Medium Absorption Profile Spectrograph (IMAPS) is an objectivegrating, echelle spectrograph built to observe the spectra of bright, hot stars over the spectral region 950 1150Å, below the wavelength coverage of HST. This instrument has a high wavelength resolving power, making it especially well suited for studies of interstellar absorption lines. Following a series of sounding rocket flights in the 1980's, IMAPS flew on its first Shuttle-launched orbital mission in September 1993, as a partner in the ORFEUS-SPAS program sponsored by the US and German Space Agencies, NASA and DARA. On ORFEUS-SPAS, IMAPS spent one day of orbital time observing the spectra of 10 O- and early B-type stars. In addition to outlining how IMAPS works, we document some special problems that had an influence on the data, and we explain the specific steps in data reduction that were employed to overcome them. This discussion serves as a basic source of information for people who may use archival data from this flight, as well as those who are interested in some specific properties of the data that will be presented in forthcoming research papers. IMAPS is scheduled to fly once again on ORFEUS-SPAS in late 1996. On this flight, 50% of the observing time available for IMAPS and two other spectrographs on the mission will be available to guest observers.
Hypobaric Hypoxia Exacerbates the Neuroinflammatory Response to Traumatic Brain Injury
Goodman, Michael D.; Makley, Amy T.; Huber, Nathan L.; Clarke, Callisia N.; Friend, Lou Ann W.; Schuster, Rebecca M.; Bailey, Stephanie R.; Barnes, Stephen L.; Dorlac, Warren C.; Johannigman, Jay A.; Lentsch, Alex B.; Pritts, Timothy A.
2015-01-01
Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation. PMID:20850781
Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography
Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.
2015-01-01
Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598
De Meyer, Marc; Delatte, Hélène; Ekesi, Sunday; Jordaens, Kurt; Kalinová, Blanka; Manrakhan, Aruna; Mwatawala, Maulid; Steck, Gary; Van Cann, Joannes; Vaníčková, Lucie; Břízová, Radka; Virgilio, Massimiliano
2015-01-01
Abstract This paper reviews all information gathered from different disciplines and studies to resolve the species status within the Ceratitis FAR (Ceratitis fasciventris, Ceratitis anonae, Ceratitis rosa) complex, a group of polyphagous fruit fly pest species (Diptera, Tephritidae) from Africa. It includes information on larval and adult morphology, wing morphometrics, cuticular hydrocarbons, pheromones, microsatellites, developmental physiology and geographic distribution. The general consensus is that the FAR complex comprises Ceratitis anonae, two species within Ceratitis rosa (so-called R1 and R2) and two putatitve species under Ceratitis fasciventris. The information regarding the latter is, however, too limited to draw final conclusions on specific status. Evidence for this recognition is discussed with reference to publications providing further details. PMID:26798270
NASA Astrophysics Data System (ADS)
Hollmach, Julia; Hoffmann, Nico; Schnabel, Christian; Küchler, Saskia; Sobottka, Stephan; Kirsch, Matthias; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald
2013-03-01
Time-resolved thermography is a novel method to assess thermal variations and heterogeneities in tissue and blood. The recent generation of thermal cameras provides a sensitivity of less than mK. This high sensitivity in conjunction with non-invasive, label-free and radiation-free monitoring makes thermography a promising tool for intrasurgical diagnostics. In brain surgery, time-resolved thermography can be employed to distinguish between normal and anomalous tissue. In this study, we investigated and discussed the potential of time-resolved thermography in neurosurgery for the intraoperative detection and demarcation of tumor borders. Algorithms for segmentation, reduction of movement artifacts and image fusion were developed. The preprocessed image stacks were subjected to discrete wavelet transform to examine individual frequency components. K-means clustering was used for image evaluation to reveal similarities within the image sequence. The image evaluation shows significant differences for both types of tissue. Tumor and normal tissues have different time characteristics in heat production and transfer. Furthermore, tumor could be highlighted. These results demonstrate that time-resolved thermography is able to support the detection of tumors in a contactless manner without any side effects for the tissue. The intraoperative usage of time-resolved thermography improves the accuracy of tumor resections to prevent irreversible brain damage during surgery.
Time-resolved transillumination and optical tomography
NASA Astrophysics Data System (ADS)
de Haller, Emmanuel B.
1996-01-01
In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.
Zhu, Guang-Hui; Yu, Xiao-Jun; Xie, Liang-Xing; Luo, Hao; Wang, Dian; Lv, Jun-Yao; Xu, Xiao-Hu
2013-01-01
Determination of the postmortem interval (PMI) is crucial for investigating homicide. However, there are currently only limited methods available. Especially, once the PMI exceeds the duration of pre-adult development of the flies with the adult emergence, its determination is very approximate. Herein, we report the regular changes in hydrocarbon composition during the weathering process of the puparia in the field in Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae), one of the common species of necrophagous flies. Correlation analysis showed that the relative abundance of nearly all of the branched alkanes and alkenes decreased significantly with the weathering time. Especially, for 9 of the peaks, over 88% of the variance in their abundance was explained by weathering time. Further analysis indicated that the regular changes caused mainly by the different weathering rates of various hydrocarbons. Additionally, the weathering rates were found to depend on the chemical structure and molecular weight of the hydrocarbons. These results indicate strongly that hydrocarbon analysis is a powerful tool for determining the weathering time of the necrophagous fly puparia, and is expected to markedly improve the determination of the late PMI. PMID:24039855
Effect of temperature on the hydration of Portland cement blended with siliceous fly ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deschner, Florian, E-mail: florian.deschner@gmail.com; Lothenbach, Barbara; Winnefeld, Frank
2013-10-15
The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringitemore » and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.« less
Drosophila melanogaster as a model system of aluminum toxicity and aging.
Kijak, Ewelina; Rosato, Ezio; Knapczyk, Katarzyna; Pyza, Elżbieta
2014-04-01
The aim of this study was to investigate the toxic effects of aluminum (Al) on the model organism-Drosophila melanogaster. The study is especially concerned with the effects of aluminum on the fruit fly's development, life span, and circadian rhythm in rest and activity. Flies were exposed to aluminum in concentrations from 40 to 280 mg/kg in rearing media or the flies were raised on control medium. Moreover, the life span of insects exposed to aluminum containing 40, 120, or 240 mg/kg of Al in the medium, only during their larval development, during the whole life cycle and only in their adult life was tested. To check if aluminum and aging cause changes in D. melanogaster behavior, the locomotor activity of flies at different ages was recorded. Results showed that aluminum is toxic in concentrations above 160 mg/kg in the rearing medium. Depending on Al concentration and time of exposure, the life span of the flies was shortened. At intermediate concentrations (120 mg/kg), however, Al had a stimulating effect on males increasing their life span and level of locomotor activity. At higher concentration the aluminum exposure increased or decreased the level of locomotor activity of D. melanogaster depending on age of flies. In addition, in the oldest insects reared on aluminum supplemented media and in mid-aged flies reared on the highest concentration of Al the daily rhythm of activity was disrupted. © 2013 Institute of Zoology, Chinese Academy of Sciences.
Qiu, Shuang; Xiao, Chengfeng
2018-05-01
The Drosophila melanogaster white-eyed w 1118 line serves as a parental stock, allowing genetic recombination of any gene of interest along with a readily recognizable marker. w 1118 flies display behavioral susceptibility to environmental stimulation such as light. It is of great importance to characterize the behavioral performance of w 1118 flies because this would provide a baseline from which the effect of the gene of interest could be differentiated. Little work has been performed to characterize the walking behavior in adult w 1118 flies. Here we show that pulsed light stimulation increased the regularity of walking trajectories of w 1118 flies in circular arenas. We statistically modeled the distribution of distances to center and extracted the walking structures of w 1118 flies. Pulsed light stimulation redistributed the time proportions for individual walking structures. Specifically, pulsed light stimulation reduced the episodes of crossing over the central region of the arena. An addition of four genomic copies of mini-white, a common marker gene for eye color, mimicked the effect of pulsed light stimulation in reducing crossing in a circular arena. The reducing effect of mini-white was copy-number-dependent. These findings highlight the rhythmic light stimulation-evoked modifications of walking behavior in w 1118 flies and an unexpected behavioral consequence of mini-white in transgenic flies carrying w 1118 isogenic background. Copyright © 2018 Elsevier Inc. All rights reserved.
Lin, Shou-Wang; Shiao, Shiuh-Feng
2013-10-10
Knowledge of the developmental time of the immature stages of necrophagous flies has been the main tool for estimating minimum post-mortem intervals (min PMIs) in forensic entomology. Many parasitic insects can alter the development of immature stages of flies and thus affect min PMI estimates. The larvae of most species of Aleochara rove beetles are ectoparasitoids of the pupae of cyclorrhapha flies. Among them, some species that parasitise necrophagous flies may have forensic importance. Two Taiwanese Aleochara species, A. nigra and A. asiatica, which visit carrion sites were studied herein. All five necrophagous (Hemipyrellia ligurriens, Lucilia cuprina, Chrysomya megacephala, C. rufifacies and sarcophagid sp.) and one non-necrophagous fly species (Bactrocera dorsalis) we examined have the potential to be parasitised by these two Aleochara species, but differences among the acceptability and suitability of these hosts to rove beetle species suggested that rove beetles may prefer specific hosts. Each stage of the beetle life history was recorded to estimate developmental durations at six different temperatures. The larval stage together with the pupal stage of both beetle species was longer than the pupal stages of their hosts, implying the possibility of elongating the min PMI estimation. In addition, the host weight and larval duration of these two Aleochara beetles were positively correlated; thus, potential applications can be expected when using parasitised fly pupae in min PMI estimations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Similar post-stress metabolic trajectories in young and old flies.
Colinet, Hervé; Renault, David
2018-02-01
Homeostenosis (i.e. decline in stress resistance and resilience with age) is a fundamental notion of the biogerontology and physiology of aging. Stressful situations typically challenge metabolic homeostasis and the capacity to recover from a stress-induced metabolic disorder might be particularly compromised in senescent individuals. In the present work, we report the effects of aging on low temperature stress tolerance and metabolic profiles in Drosophila melanogaster females of different ages. Adult flies aged 4, 16, 30 and 44days were subjected to acute and chronic cold stress, and data confirmed a strong decline in cold tolerance and resilience of old flies compared to young counterparts. Using quantitative target GC-MS analysis, we found distinct metabolic phenotypes between young (4day-old) and old (44day-old) flies, with glycolytic pathways being differentially affected between the two age groups. We also compared the robustness of metabolic homeostasis in young vs. old flies when exposed to cold stress using time-series metabolic analysis. In both age groups, we found evidence of strong alteration of metabolic profiles when flies were exposed to low temperature stress. Interestingly, the temporal metabolic trajectories during the recovery period were similar in young and old flies, despite strong differences in thermotolerance. In conclusion, metabolic signatures markedly changed with age and homeostenosis was observed in the phenotypic response to cold stress. However, these changes did not reflect in different temporal homeostatic response at metabolic level. Copyright © 2017 Elsevier Inc. All rights reserved.
On-the-fly ab initio semiclassical dynamics: Emission spectra of oligothiophenes
NASA Astrophysics Data System (ADS)
Wehrle, Marius; Sulc, Miroslav; Vanicek, Jiri
2014-03-01
We employ the thawed Gaussian approximation (TGA) [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] within an on-the-fly ab initio (OTF-AI) scheme to calculate the vibrationally resolved emission spectra of oligothiophenes up to five rings. OTF-AI-TGA is efficient enough to treat all vibrational degrees of freedom on an equal footing even in case of 5-oligothiophene (105 vibrational degrees of freedom), thus obviating the need for the crude global harmonic approximation, popular for large system. The experimental emission spectra have been almost perfectly reproduced. In order to provide a deeper insight into the associated physical and chemical processes, we present a systematic approach to assess the importance and to analyze the mutual coupling of individual vibrational degrees of freedom during the dynamics. This allows us to explain the changes in the vibrational line shapes of the oligothiophenes with increasing number of rings. Furthermore, we observe the dynamical interplay between quinoid and aromatic characters of individual rings in the oligothiophene chain during the dynamics and confirm that the quinoid character prevails in the center of the chain. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.
Sitaraman, Divya; Kramer, Elizabeth F.; Kahsai, Lily; Ostrowski, Daniela; Zars, Troy
2017-01-01
Feedback mechanisms in operant learning are critical for animals to increase reward or reduce punishment. However, not all conditions have a behavior that can readily resolve an event. Animals must then try out different behaviors to better their situation through outcome learning. This form of learning allows for novel solutions and with positive experience can lead to unexpected behavioral routines. Learned helplessness, as a type of outcome learning, manifests in part as increases in escape latency in the face of repeated unpredicted shocks. Little is known about the mechanisms of outcome learning. When fruit fly Drosophila melanogaster are exposed to unpredicted high temperatures in a place learning paradigm, flies both increase escape latencies and have a higher memory when given control of a place/temperature contingency. Here we describe discrete serotonin neuronal circuits that mediate aversive reinforcement, escape latencies, and memory levels after place learning in the presence and absence of unexpected aversive events. The results show that two features of learned helplessness depend on the same modulatory system as aversive reinforcement. Moreover, changes in aversive reinforcement and escape latency depend on local neural circuit modulation, while memory enhancement requires larger modulation of multiple behavioral control circuits. PMID:29321732
Phlebotomine Vectors of Human Disease.
1983-12-30
to the phiebotomine sand fly fauna of Ecuador.................... ... .. .. .. ..... II. New records of phiebotomine sand flies from Peru with a...THIS PAGE (When Date Entered) ii SECURITY CLASSIFICATION OF THIS PAGE(Whdn Dat& Batored) collected for the first time in Peru at a site in Madre de...of the former disease in Peru with 3,795 human cases reported in 1982. Collections of phlebotomines in Costa Rica yielded an undescribed Lutzomyia
Inviting Parents in: Expanding Our Community Base to Support Writing
ERIC Educational Resources Information Center
Fleischer, Cathy; Pavlock, Kimberly Coupe
2012-01-01
The Family Literacy Initiative (FLI) is a project that began as a few workshops offered to parents of elementary students who wanted to know what they could do in the summer to keep their kids writing. Since that time the FLI has grown tremendously: in the past five years, the authors have offered 130 workshops, reaching more than 2,750 adults and…
NASA Astrophysics Data System (ADS)
Raharja, Danang S.; Hadiwardoyo, Sigit P.; Rahayu, Wiwik; Zain, Nasuhi
2017-06-01
Geopolymer is binder material that consists of solid material and the activator solution. Geopolymer material has successfully replaced cement in the manufacture of concrete with aluminosilicate bonding system. Geopolymer concrete has properties similar to cement concrete with high compressive strength, low shrinkage value, relatively low creep value, as well as acid-resistant. Based on these, the addition of polymers in peat soils is expected to improve the bearing capacity of peat soils. A study on the influence of geopolymer addition in peat soils was done by comparing before and after the peat soil was mixed with geopolymer using CBR (California Bearing Ratio) test in unsoaked and soaked conditions. 10% mixture content of the peat dry was used, weighted with a variety of curing time 4 hours, 5 days, and 10 days. There were two methods of mixing: first, peat was mixed with fly ash geopolymer activators and mixed solution (waterglass, NaOH, water), and second, peat was mixed with fly ash and mixed geopolymer (waterglass, NaOH, water, fly ash). Changes were observed in specific gravity, dry density, acidity (pH), and the microscopic structure with Scanning Electron Microscope (SEM). Curing time did not significantly affect the CBR value. It even shows a tendency to decline with longer curing time. The first type mixture obtained CBR value of: 5.4% for 4 hours curing, 4.6% for 5 days curing and 3.6% for 10 days curing. The second type mixture obtained CBR value of: 6.1% for 4 hours curing, 5.2% for 5 days curing and 5.2% for 10 days curing. Furthermore, the specific gravity value, dry density, pH near neutral and swelling percentage increased. From both variants, the second type mixture shows better results than the first type mixture. The results of SEM (Scanning Electron Microscopy) show the structure of the peat which became denser with the fly ash particles filling the peat microporous. Also, the reaction of fly ash with geopolymer is indicated by the solid agglomerates that are larger than normal fly ash particle size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Cheng-Gang; Sun, Chang-Jung, E-mail: sun.3409@hotmail.com; Gau, Sue-Huai
2013-04-15
Highlights: ► Milling extracted MSWI fly ash. ► Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ► Increasing heavy metal stability. ► Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA)more » leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calcium–silicate–hydrates (C–S–H) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.« less
Young, Andrew Donovan; Lemmon, Alan R; Skevington, Jeffrey H; Mengual, Ximo; Ståhls, Gunilla; Reemer, Menno; Jordaens, Kurt; Kelso, Scott; Lemmon, Emily Moriarty; Hauser, Martin; De Meyer, Marc; Misof, Bernhard; Wiegmann, Brian M
2016-06-29
Anchored hybrid enrichment is a form of next-generation sequencing that uses oligonucleotide probes to target conserved regions of the genome flanked by less conserved regions in order to acquire data useful for phylogenetic inference from a broad range of taxa. Once a probe kit is developed, anchored hybrid enrichment is superior to traditional PCR-based Sanger sequencing in terms of both the amount of genomic data that can be recovered and effective cost. Due to their incredibly diverse nature, importance as pollinators, and historical instability with regard to subfamilial and tribal classification, Syrphidae (flower flies or hoverflies) are an ideal candidate for anchored hybrid enrichment-based phylogenetics, especially since recent molecular phylogenies of the syrphids using only a few markers have resulted in highly unresolved topologies. Over 6200 syrphids are currently known and uncovering their phylogeny will help us to understand how these species have diversified, providing insight into an array of ecological processes, from the development of adult mimicry, the origin of adult migration, to pollination patterns and the evolution of larval resource utilization. We present the first use of anchored hybrid enrichment in insect phylogenetics on a dataset containing 30 flower fly species from across all four subfamilies and 11 tribes out of 15. To produce a phylogenetic hypothesis, 559 loci were sampled to produce a final dataset containing 217,702 sites. We recovered a well resolved topology with bootstrap support values that were almost universally >95 %. The subfamily Eristalinae is recovered as paraphyletic, with the strongest support for this hypothesis to date. The ant predators in the Microdontinae are sister to all other syrphids. Syrphinae and Pipizinae are monophyletic and sister to each other. Larval predation on soft-bodied hemipterans evolved only once in this family. Anchored hybrid enrichment was successful in producing a robustly supported phylogenetic hypothesis for the syrphids. Subfamilial reconstruction is concordant with recent phylogenetic hypotheses, but with much higher support values. With the newly designed probe kit this analysis could be rapidly expanded with further sampling, opening the door to more comprehensive analyses targeting problem areas in syrphid phylogenetics and ecology.
Pulse pile-up in hard X-ray detector systems. [for solar X-rays
NASA Technical Reports Server (NTRS)
Datlowe, D. W.
1975-01-01
When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.