Sample records for time resolved pl

  1. Time-resolved photoluminescence in Mobil Composition of Matter-48

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Lee, W. Z.; Shen, J. L.; Lee, Y. C.; Cheng, P. W.; Cheng, C. F.

    2004-12-01

    Dynamical properties of Mobil Composition of Matter (MCM)-48 were studied by time-resolved photoluminescence (PL). The PL intensity exhibits a clear nonexponential profile, which can be fitted by a stretched exponential function. In the temperature range from 50to300K, the PL decay lifetime becomes thermally activated by a characteristic energy of 25meV, which is suggested to be an indication of the phonon-assisted nonradiative process. A model is proposed to explain the relaxation behavior of the PL in MCM-48.

  2. Steady state and time resolved optical characterization studies of Zn 2SnO 4 nanowires for solar cell applications

    DOE PAGES

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.; ...

    2016-10-25

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires havemore » a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.« less

  3. Steady state and time resolved optical characterization studies of Zn 2SnO 4 nanowires for solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakami, Baichhabi R.; Poudyal, Uma; Nandyala, Shashank R.

    Nanowires are a promising option for sensitized solar cells, sensors, and display technology. Most of the work thus far has focused on binary oxides for these nanowires, but ternary oxides have advantages in additional control of optical and electronic properties. Here, we report on the diffuse reflectance, Low Temperature and Room Temperature Photoluminescence (PL), PL excitation spectrum, and Time Resolved PL (TRPL) of Zinc Tin Oxide (ZTO) nanowires grown by Chemical Vapor Deposition. The PL from the ZTO nanowires does not exhibit any band gap or near gap emission, and the diffuse reflectance measurement confirms that these ZTO nanowires havemore » a direct forbidden transition. The broad PL spectrum reveals two Gaussian peaks centered at 1.86 eV (red) and 2.81 eV (blue), representing two distinct defect states or complexes. The PL spectra were further studied by the Time Resolved Emission Spectrum and intensity dependent PL and TRPL. The time resolved measurements show complex non-exponential decays at all wavelengths, indicative of defect to defect transitions, and the red emissive states decay much slower than the blue emissive states. The effects of annealing in air and vacuum are studied to investigate the origin of the defect states in the nanowires, showing that the blue states are related to oxygen vacancies. We propose an energy band model for the nanowires containing defect states within the band gap and the associated transitions between these states that are consistent with our measurements.« less

  4. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Hurtado Parra, Sebastian; Straus, Daniel; Iotov, Natasha; Fichera, Bryan; Gebhardt, Julian; Rappe, Andrew; Subotnik, Joseph; Kikkawa, James; Kagan, Cherie

    Quantum and dielectric confinement effects in Ruddlesden-Popper 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling (EPC) in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures <75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly spaced resonances every 40-46 meV, consistent with EPC to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character. These assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond time scale competitive with that for PL. At temperatures >75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous at temperatures <75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences Grant DE-SC0002158 and the National Science Foundation Graduate Research Fellowship Grant DGE-1321851.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  6. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites.

    PubMed

    Straus, Daniel B; Hurtado Parra, Sebastian; Iotov, Natasha; Gebhardt, Julian; Rappe, Andrew M; Subotnik, Joseph E; Kikkawa, James M; Kagan, Cherie R

    2016-10-05

    Quantum and dielectric confinement effects in 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures below 75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly-spaced resonances every 40-46 meV, consistent with electron-phonon coupling to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character, and these assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond timescale competitive with that for PL. At temperatures above 75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous below 75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton.

  7. High-Temperature Photoluminescence of CsPbX 3 (X = Cl, Br, I) Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diroll, Benjamin T.; Nedelcu, Georgian; Kovalenko, Maksym

    2017-03-30

    Recent synthetic developments have generated intense interest in the use of cesium lead halide perovskite nanocrystals for light-emitting applications. This work presents the photoluminescence (PL) of cesium lead halide perovskite nanocrystals with tunable halide composition recorded as function of temperature from 80 to 550 K. CsPbBr 3 nanocrystals show the highest resilience to temperature while chloride-containing samples show relatively poorer preservation of photoluminescence at elevated temperatures. Thermal cycling experiments show that PL loss of CsPbBr 3 is largely reversible at temperatures below 450 K, but shows irreversible degradation at higher temperatures. Time-resolved measurements of CsPbX 3 samples show an increasemore » in the PL lifetime with temperature elevation, consistent with exciton fission to form free carriers, followed by a decrease in the apparent PL lifetime due to trapping. In conclusion, PL persistence measurements and time-resolved spectroscopies implicate thermally assisted trapping, most likely to halogen vacancy traps, as the mechanism of reversible PL loss.« less

  8. Time-resolved photoluminescence investigation of (Mg, Zn) O alloy growth on a non-polar plane

    NASA Astrophysics Data System (ADS)

    Mohammed Ali, Mohammed Jassim; Chauveau, J. M.; Bretagnon, T.

    2018-04-01

    Excitons recombination dynamics in ZnMgO alloy have been studied by time-resolved photoluminescence according to temperature. At low temperature, localisation effects of the exciton are found to play a significant role. The photoluminescence (PL) decays are bi-exponential. The short lifetime has a constant value, whereas the long lifetime shows a dependency with temperature. For temperature higher than 100 K the declines show a mono-exponential decay. The PL declines are dominated by non-radiative process at temperatures above 150 K. The PL lifetime dependancy with temperature is analysed using a model including localisation effects and non-radiative recombinations.

  9. Origin of stretched-exponential photoluminescence relaxation in size-separated silicon nanocrystals

    DOE PAGES

    Brown, Samuel L.; Krishnan, Retheesh; Elbaradei, Ahmed; ...

    2017-05-25

    A detailed understanding of the photoluminescence (PL) from silicon nanocrystals (SiNCs) is convoluted by the complexity of the decay mechanism, including a stretched-exponential relaxation and the presence of both nanosecond and microsecond time scales. In this publication, we analyze the microsecond PL decay of size-resolved SiNC fractions in both full-spectrum (FS) and spectrally resolved (SR) configurations, where the stretching exponent and lifetime are used to deduce a probability distribution function (PDF) of decay rates. For the PL decay measured at peak emission, we find a systematic shift and narrowing of the PDF in comparison to the FS measurements. In amore » similar fashion, we resolve the PL lifetime of the ‘blue’, ‘peak’, and ‘red’ regions of the spectrum and map PL decays of different photon energy onto their corresponding location in the PDF. Furthermore, a general trend is observed where higher and lower photon energies are correlated with shorter and longer lifetimes, respectively, which we relate to the PL line width and electron-phonon coupling.« less

  10. Defects in ZnO nanorods prepared by a hydrothermal method.

    PubMed

    Tam, K H; Cheung, C K; Leung, Y H; Djurisić, A B; Ling, C C; Beling, C D; Fung, S; Kwok, W M; Chan, W K; Phillips, D L; Ding, L; Ge, W K

    2006-10-26

    ZnO nanorod arrays were fabricated using a hydrothermal method. The nanorods were studied by scanning electron microscopy, photoluminescence (PL), time-resolved PL, X-ray photoelectron spectroscopy, and positron annihilation spectroscopy before and after annealing in different environments and at different temperatures. Annealing atmosphere and temperature had significant effects on the PL spectrum, while in all cases the positron diffusion length and PL decay times were increased. We found that, while the defect emission can be significantly reduced by annealing at 200 degrees C, the rods still have large defect concentrations as confirmed by their low positron diffusion length and short PL decay time constants.

  11. Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp

    2016-07-11

    Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less

  12. Spatially resolved surface-related exciton polariton dynamics in a single ZnO tetrapod

    NASA Astrophysics Data System (ADS)

    Sun, Fangfang; Sun, Liaoxin; Zhang, Bo; Wang, Hailong

    2018-02-01

    The band-edge emission lifetime in a single ZnO tetrapod is studied by using the time-resolved confocal micro-photoluminescence (TR- μPL) spectroscopic technique at room temperature. By performing μPL and TR- μPL mapping along the tapered arm of tetrapod, we observe whispering gallery mode (WGM) polaritons and find that the predominant radiative lifetime of exciton polaritons decreases linearly with increasing the surface-to-volume ratio of the sample. This behavior is ascribed to the surface electric field induced enhancement of the radiative decay rate of the exciton-like polaritons coupling with LO phonons.

  13. Strong carrier localization in stacking faults in semipolar (11-22) GaN

    NASA Astrophysics Data System (ADS)

    Okur, Serdal; Monavarian, Morteza; Das, Saikat; Izyumskaya, Natalia; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2015-03-01

    The effects of stacking faults (SFs) on optical processes in epitaxially grown semipolar (1122) GaN on m-sapphire substrate have been investigated in detail using steady-state photoluminescence (PL) and time- and polarization-resolved PL. We demonstrate that the carrier recombination dynamics are substantially influenced due to strong carrier localization in the stacking faults. In addition to nonradiative recombination, carrier trapping/detrapping and carrier transfer between the stacking faults and donors are also found to be among the mechanisms affecting the recombination dynamics at different temperatures. PL decay times of both I1-type BSF and 3.31 eV SF (E-type BSF or prismatic stacking fault) do not show temperature dependence up to 80 K while 3.31 eV SF exhibits longer PL decay times (~3 ns) at low temperatures as compared to I1-type BSF (~1 ns), indicative of lower efficiency for radiative recombination. After 80 K, PL decay times decreased by power of ~-1 and ~-2 for 3.31 eV SF and I1-type BSF, respectively. It is obtained from radiative decay times with respect to temperature that the carrier localization becomes higher in I1-type BSF compared to 3.31 eV SF increasing the temperature. I1-type BSF also shows higher PL intensity, which is attributed to larger density, and therefore, larger contribution to recombination dynamics as compared to other type of stacking faults. Polarization-resolved PL measurements also revealed that the degree of polarization for the I1-type BSF (0.30) was twice that for the 3.31 eV SF.

  14. Optical properties of nearly lattice-matched GaN/(Al,In)N quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liaugaudas, Gediminas; Jacopin, Gwénolé; Carlin, Jean-François

    2016-05-28

    We report a systematic study of the photoluminescence (PL) properties of a series of nearly lattice-matched (LM) GaN/(Al,In)N single quantum well (SQW) samples, with well thickness ranging from 1.5 to 5 nm, grown by metalorganic vapor phase epitaxy. Temperature dependent PL and time-resolved PL measurements reveal similar trends among the studied SQW samples, which also indicate strong localization effects. The observed PL energy behavior, akin to the S-shape, accompanied first by a narrowing and then a broadening of the PL line width with increasing temperature, closely resemble previous observations made on the more established (In,Ga)N/GaN QW system. The similar trends observedmore » in the PL features of those two QW systems imply that the PL properties of LM GaN/(Al,In)N SQW samples are also governed by localized states. The effects of carrier transfer among these localization sites are clearly observed for the 3 nm thick QW, evidenced by an increasing PL intensity in the lower energy spectral window and a concomitant increase in the corresponding PL decay time. Time-resolved data corroborate the picture of strongly localized carriers and also indicate that above a well thickness dependent delocalization temperature carrier distribution across the localized sites reaches thermal equilibrium, as the PL decay times over different spectral regions converge to the same value. Based on the difference between the calculated QW ground state transition energy, obtained using the envelope wave function formalism, and the measured PL energy, a localization energy of at least a few hundreds of meV has been extracted for all of the studied SQW samples. This rather large value also implies that In-related localization effects are more pronounced in the GaN/(Al,In)N system with respect to those in the (In,Ga)N/GaN one for a similar In content.« less

  15. Hybrid optical materials of plasmon-coupled CdSe/ZnS coreshells for photonic applications

    PubMed Central

    Seo, Jaetae; Fudala, Rafal; Kim, Wan-Joong; Rich, Ryan; Tabibi, Bagher; Cho, Hyoyeong; Gryczynski, Zygmunt; Gryczynski, Ignacy; Yu, William

    2013-01-01

    A hybrid optical nanostructure of plasmon-coupled SQDs was developed for photonic applications. The coupling distances between the mono-layers of Au nanoparticles with a surface concentration of ~9.18 × 10−4 nm−2 and CdSe/ZnS SQDs with that of ~3.7 × 10−3 nm−2 were controlled by PMMA plasma etching. Time-resolved spectroscopy of plasmon-coupled SQDs revealed a strong shortening of the longest lifetime and ~9-fold PL enhancement. Polarization-resolved PL spectroscopy displayed linear polarization and depolarization at near- and far-field plasmon-coupling, respectively. The physical origin of PL enhancement could be attributable to both the large local field enhancement and the fast resonant energy transfer. PMID:23457661

  16. Determination of the electron-capture coefficients and the concentration of free electrons in GaN from time-resolved photoluminescence

    PubMed Central

    Reshchikov, M. A.; McNamara, J. D.; Toporkov, M.; Avrutin, V.; Morkoç, H.; Usikov, A.; Helava, H.; Makarov, Yu.

    2016-01-01

    Point defects in high-purity GaN layers grown by hydride vapor phase epitaxy are studied by steady-state and time-resolved photoluminescence (PL). The electron-capture coefficients for defects responsible for the dominant defect-related PL bands in this material are found. The capture coefficients for all the defects, except for the green luminescence (GL1) band, are independent of temperature. The electron-capture coefficient for the GL1 band significantly changes with temperature because the GL1 band is caused by an internal transition in the related defect, involving an excited state acting as a giant trap for electrons. By using the determined electron-capture coefficients, the concentration of free electrons can be found at different temperatures by a contactless method. A new classification system is suggested for defect-related PL bands in undoped GaN. PMID:27901025

  17. Intensity and temperature-dependent photoluminescence of tris (8-hydroxyquinoline) aluminum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajward, A. M.; Wang, X.; Wagner, H. P.

    2013-12-04

    We investigate the recombination of excitons in tris (8-hydroxyquinoline) aluminum films by intensity and temperature dependent time-resolved photoluminescence (PL). At low temperature (15 K) and elevated excitation intensity the radiative emission is quenched by singlet-singlet annihilation processes. With rising temperature the PL quenching is strongly reduced resulting in a PL efficiency maximum at ∼170 K. The reduced exciton annihilation is attributed to thermally activated occupation of non-quenchable trapped exciton states. Above 170 K the PL efficiency decreases due to thermal de-trapping of radiative states and subsequent migration to non-radiative centers.

  18. The emission wavelength dependent photoluminescence lifetime of the N-doped graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xingxia; School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210; University of Chinese Academy of Sciences, Beijing 100049

    2015-12-14

    Aromatic nitrogen doped graphene quantum dots were investigated by steady-state and time-resolved photoluminescence (PL) techniques. The PL lifetime was found to be dependent on the emission wavelength and coincident with the PL spectrum, which is different from most semiconductor quantum dots and fluorescent dyes. This result shows the synergy and competition between the quantum confinement effect and edge functional groups, which may have the potential to guide the synthesis and expand the applications of graphene quantum dots.

  19. Ultrafast Time-Resolved Photoluminescence Studies of Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew Bruce

    This thesis concerns the study of ultrafast phenomena in GaAs using time-resolved photoluminescence (PL). The thesis consists of five chapters. Chapter one is an introduction, which discusses the study of ultrafast phenomena in semiconductors. Chapter two is a description of the colliding-pulse mode-locked (CPM) ring dye laser, which is at the heart of the experimental apparatus used in this thesis. Chapter three presents a detailed experimental and theoretical investigation of photoluminescence excitation correlation spectroscopy (PECS), the novel technique which is used to time-resolve ultrafast PL phenomena. Chapters 4 and 5 discuss two applications of the PECS technique. In Chapter 4 the variation of PL intensity in In-alloyed GaAs substrate material is studied, while Chapter 5 discusses the variation of carrier lifetimes in ion-damaged GaAs used in photo-conductive circuit elements (PCEs). PECS is a pulse-probe technique that measures the cross correlation of photo-excited carrier populations. The theoretical model employed in this thesis is based upon the rate equation for a simple three-level system consisting of valence and conduction bands and a single trap level. In the limit of radiative band-to-band dominated recombination, no PECS signal should be observed; while in the capture -dominated recombination limit, the PECS signal from the band-to-band PL measures the cross correlation of the excited electron and hole populations and thus, the electron and hole lifetimes. PECS is experimentally investigated using a case study of PL in semi-insulating (SI) GaAs and In -alloyed GaAs. At 77 K, the PECS signal is characteristic of a capture-dominated system, yielding an electron-hole lifetime of about 200 ps. However, at 5 K the behavior is more complicated and shows saturation effects due to the C acceptor level, which is un-ionized at 5 K. As a first application, PECS is used to investigate the large band-to-band PL contrast observed near dislocations in In-alloyed GaAs. It is found that the PL intensity contrast between bright and dark areas correlates with the ratio of the lifetimes measured using PECS in these areas. Thus, the PL intensity contrast is due to the difference in the carrier lifetimes in the different regions. The carrier lifetimes in the bright and dark regions have different temperature dependences. (Abstract shortened with permission of author.).

  20. Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.

    PubMed

    Ghosh, Ramesh; Giri, P K; Imakita, Kenji; Fujii, Minoru

    2014-01-31

    Arrays of vertically aligned single crystalline Si nanowires (NWs) decorated with arbitrarily shaped Si nanocrystals (NCs) have been fabricated by a silver assisted wet chemical etching method. Scanning electron microscopy and transmission electron microscopy are performed to measure the dimensions of the Si NWs as well as the Si NCs. A strong broad band and tunable visible (2.2 eV) to near-infrared (1.5 eV) photoluminescence (PL) is observed from these Si NWs at room temperature (RT). Our studies reveal that the Si NCs are primarily responsible for the 1.5-2.2 eV emission depending on the cross-sectional area of the Si NCs, while the large diameter Si/SiOx NWs yield distinct NIR PL consisting of peaks at 1.07, 1.10 and 1.12 eV. The latter NIR peaks are attributed to TO/LO phonon assisted radiative recombination of free carriers condensed in the electron-hole plasma in etched Si NWs observed at RT for the first time. Since the shape of the Si NCs is arbitrary, an analytical model is proposed to correlate the measured PL peak position with the cross-sectional area (A) of the Si NCs, and the bandgap (E(g)) of nanostructured Si varies as E(g) = E(g) (bulk) + 3.58 A(-0.52). Low temperature PL studies reveal the contribution of non-radiative defects in the evolution of PL spectra at different temperatures. The enhancement of PL intensity and red-shift of the PL peak at low temperatures are explained based on the interplay of radiative and non-radiative recombinations at the Si NCs and Si/SiO(x) interface. Time resolved PL studies reveal bi-exponential decay with size correlated lifetimes in the range of a few microseconds. Our results help to resolve a long standing debate on the origin of visible-NIR PL from Si NWs and allow quantitative analysis of PL from arbitrarily shaped Si NCs.

  1. Photoluminescence and time-resolved carrier dynamics in thiol-capped CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng; Chou, Wu-Ching; Susha, Andrei S.; Kershaw, Stephen V.; Rogach, Andrey L.

    2013-03-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NC powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  2. Luminescence lifetime enhanced by exciton-plasmon couple in hybrid CsPbBr3 perovskite/Pt nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Chunxu; Zhang, Jisen; Chen, Yongyi; Jing, Pengtao; Zhang, Ligong; Zhao, Haifeng; Fu, Xihong; Wang, Lijun

    2018-02-01

    Photoluminescence (PL) and time-resolved spectroscopic studies on plasmonically coupled semiconductor nanoparticles (SNPs) have demonstrated the PL quenched and lifetime enhanced of SNPs in the presence of metal nanoparticles (MNPs). The hybrid colloidal CsPbBr3 perovskite SNPs/Pt MNPs (S-M) structures exhibit novel optical properties due to the synergetic interaction between the individual components. In hybrid S-M nanostructures colloidal chemistry incorporates SNP and MNP into a single unit resulting in the formation of plexciton (or excimon) which has now been established in a series of hybrid structures. The experimental results of femtosecond transient absorption (TA) spectroscopy based on the time-resolved pump-probe confirm the transformation from excitons to plexcitons. It was found that the experimental data can’t be well described by the theory based on conventional Fӧster resonance energy transfer (FRET). The differences between theory and experiment may be due to the missing some PbBr2 PL peaks, the reason will be revealed further.

  3. Magneto-optical properties and recombination dynamics of isoelectronic bound excitons in ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S. L.; Chen, W. M.; Buyanova, I. A.

    2014-02-21

    Magneto-optical and time-resolved photoluminescence (PL) spectroscopies are employed to evaluate electronic structure of a bound exciton (BX) responsible for the 3.364 eV line (labeled as I{sub 1}{sup *}) in bulk ZnO. From time-resolved PL spectroscopy, I{sub 1}{sup *} is concluded to originate from the exciton ground state. Based on performed magneto-PL studies, the g-factors of the involved electron and hole are determined as being g{sub e} = 1.98 and g{sub h}{sup ∥}(g{sub h}{sup ⊥}) = 1.2(1.62), respectively. These values are nearly identical to the reported g-factors for the I{sup *} line in ZnO (Phys. Rev. B 86, 235205 (2012)), which proves thatmore » I{sub 1}{sup *} should have a similar origin as I{sup *} and should arise from an exciton bound to an isoelectronic center with a hole-attractive potential.« less

  4. Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor

    NASA Astrophysics Data System (ADS)

    Ratnesh, Ratneshwar Kumar; Singh Mehata, Mohan

    2018-07-01

    We have prepared stable colloidal CdTe and CdTe/ZnS core–shell quantum dots (QDs) using hot injection chemical route. The developed CdTe QDs emit tunable single and dual photoluminescence (PL) bands, originating from the direct band edge and the surface state of QDs, as evident by the steady-state and time-resolved spectroscopy. The developed CdTe and CdTe/ZnS QDs act as optical sensors for the detection of metal ions (e.g., Fe2+ and Pb2+) in the feed water. The PL quenching in the presence of analytes has been examined by both the steady-state and time-resolved PL spectroscopy. The linear Stern–Volmer (S–V) plots obtained for PL intensity and lifetime as a function of metal ion concentration demonstrates the diffusion-mediated collisional quenching as a dominant mechanism together with the possibility of fluorescence resonance energy transfer. Thus, the prepared core and core–shell QDs which cover a broad spectral range of white light with high quantum yield (QY) are highly sensitive to the detection of metal ions in feed water and are also important for biological applications (Ratnesh and Mehata 2017 Spectrochim. Acta A: Mol. Biomol. Spectro. 179 201–10).

  5. Electron injection from graphene quantum dots to poly(amido amine) dendrimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T. N.; Inciong, M. R.; Santiago, S. R.

    2016-04-18

    The steady-state and time-resolved photoluminescence (PL) are used to study the electron injection from graphene quantum dots (GQDs) to poly(amido amine) (PAMAM) dendrimers. The PL is enhanced by depositing GQDs on the surfaces of the PAMAM dendrimers. The maximum enhancement of PL with a factor of 10.9 is achieved at a GQD concentration of 0.9 mg/ml. The dynamics of PL in the GQD/PAMAM composite are analyzed, evidencing the existence of electron injection. On the basis of Kelvin probe measurements, the electron injection from the GQDs to the PAMAM dendrimers is accounted for by the work function difference between them.

  6. Enhanced optical properties of Si nanocrystals in planar microcavity

    NASA Astrophysics Data System (ADS)

    Toshikiyo, Kimiaki; Fujii, Minoru; Hayashi, Shinji

    2003-04-01

    The emission property of Si nanocrystals (nc-Si) in an optical microcavity was studied by photoluminescence (PL) and time resolved PL measurements. The PL from the microcavity was narrowed to the line width of 17 meV, enhanced by a factor of 20 compared to the same film without microcavity. The lifetime for nc-Si became shorter by putting the film in microcavity. This results could be well-explained by the redistribution of the optical modes in the cavity due to the presence of the optical resonator.

  7. Femtosecond laser-induced size reduction and emission quantum yield enhancement of colloidal silicon nanocrystals: Effect of laser ablation time.

    PubMed

    Zhang, Yingxiong; Wu, Wenshun; Hao, Huilian; Shen, Wenzhong

    2018-06-19

    Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm with increasing LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra, we attribute room temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% with prolonging LAT from 30 to 120 min. © 2018 IOP Publishing Ltd.

  8. Photoluminescence study of MBE grown InGaN with intentional indium segregation

    NASA Astrophysics Data System (ADS)

    Cheung, Maurice C.; Namkoong, Gon; Chen, Fei; Furis, Madalina; Pudavar, Haridas E.; Cartwright, Alexander N.; Doolittle, W. Alan

    2005-05-01

    Proper control of MBE growth conditions has yielded an In0.13Ga0.87N thin film sample with emission consistent with In-segregation. The photoluminescence (PL) from this epilayer showed multiple emission components. Moreover, temperature and power dependent studies of the PL demonstrated that two of the components were excitonic in nature and consistent with indium phase separation. At 15 K, time resolved PL showed a non-exponential PL decay that was well fitted with the stretched exponential solution expected for disordered systems. Consistent with the assumed carrier hopping mechanism of this model, the effective lifetime, , and the stretched exponential parameter, , decrease with increasing emission energy. Finally, room temperature micro-PL using a confocal microscope showed spatial clustering of low energy emission.

  9. Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films.

    PubMed

    Ciesielski, Richard; Schäfer, Frank; Hartmann, Nicolai F; Giesbrecht, Nadja; Bein, Thomas; Docampo, Pablo; Hartschuh, Achim

    2018-03-07

    Micro- and nanocrystalline methylammonium lead iodide (MAPI)-based thin-film solar cells today reach power conversion efficiencies of over 20%. We investigate the impact of grain boundaries on charge carrier transport in large crystal MAPI thin films using time-resolved photoluminescence (PL) microscopy and numerical model calculations. Crystal sizes in the range of several tens of micrometers allow for the spatially and time resolved study of boundary effects. Whereas long-ranged diffusive charge carrier transport is observed within single crystals, no detectable diffusive transport occurs across grain boundaries. The observed PL transients are found to crucially depend on the microscopic geometry of the crystal and the point of observation. In particular, spatially restricted diffusion of charge carriers leads to slower PL decay near crystal edges as compared to the crystal center. In contrast to many reports in the literature, our experimental results show no quenching or additional loss channels due to grain boundaries for the studied material, which thus do not negatively affect the performance of the derived thin-film devices.

  10. Time-Resolved Photoluminescence Studies of Si-doped AlGaN alloys

    NASA Astrophysics Data System (ADS)

    Nam, K. B.; Li, J.; Nakarmi, M. L.; Lin, J. Y.; Jiang, H. X.

    2002-03-01

    Si-doped n-type Al x Ga_1-x N alloys with x between 0.3 and 0.5 were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. Time-resolved photoluminescence (PL) emission spectroscopy and variable temperature Hall-effect measurements were employed to study the optical and electrical properties of these epilayers. Our electrical data revealed that the conductivity of Si-doped Al x Ga_1-x N alloys (x > 0.4) increases with an increase of the Si doping concentration (N_Si) for a fixed x value and exhibits a sharp increase around N_Si= 1x10 ^18cm-3, suggesting the existence of a critical Si doping concentration needed to convert insulating Al x Ga_1-x N alloys (x > 0.4) to n-type conductivity. Time-resolved PL studies also showed that PL decay lifetime and activation energy decrease sharply when Si-doping concentration increases from N_Si= 0 to 1x10 ^18cm-3and then followed by gradual decreases as N_Si further increases. Our results thus suggest that Si-doping reduces the effect of carrier localization in Al x Ga_1-x N alloys and a sharp drop in carrier localization energy occurs at N_Si= 1x10 ^18cm-3, which is the critical Si-doping concentration needed to fill up the localized states in Al x Ga_1-x N alloys (x > 0.4). The implications of these results to UV optoelectronic devices are also discussed.

  11. Carrier capture efficiency in InGaN/GaN LEDs: Role of high temperature annealing

    NASA Astrophysics Data System (ADS)

    Vinattieri, A.; Batignani, F.; Bogani, F.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Zhu, D.; Humphreys, C. J.

    2014-02-01

    By means of time integrated (TI), time-resolved (TR) photoluminescence (PL) and PL excitation spectra, we investigate the role of an high temperature post-growth thermal annealing (TA) on a set of InGaN/GaN LED structures with different dislocation densities. We provide evidence of the nature of the radiative recombination from a wide distribution of non-interacting localised states and we show the beneficial effect of thermal annealing in reducing the contribution of non-radiative recombination in the well region.

  12. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Hai-Ming; Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Liang, Baolai, E-mail: bliang@cnsi.ucla.edu

    2015-03-09

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  13. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chih-Yi; Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw; Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated andmore » passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.« less

  14. Influence of Energetic Disorder on Exciton Lifetime and Photoluminescence Efficiency in Conjugated Polymers.

    PubMed

    Rörich, Irina; Mikhnenko, Oleksandr V; Gehrig, Dominik; Blom, Paul W M; Crăciun, N Irina

    2017-02-16

    Using time-resolved photoluminescence (TRPL) spectroscopy the exciton lifetime in a range of conjugated polymers is investigated. For poly(p-phenylenevinylene) (PPV)-based derivatives and a polyspirobifluorene copolymer (PSBF) we find that the exciton lifetime is correlated with the energetic disorder. Better ordered polymers exhibit a single exponential PL decay with exciton lifetimes of a few hundred picoseconds, whereas polymers with a larger degree of disorder show multiexponential PL decays with exciton lifetimes in the nanosecond regime. These observations are consistent with diffusion-limited exciton quenching at nonradiative recombination centers. The measured PL decay time reflects the time that excitons need to diffuse toward these quenching sites. Conjugated polymers with large energetic disorder and thus longer exciton lifetime also exhibit a higher photoluminescence quantum yield due to the slower exciton diffusion toward nonradiative quenching sites.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  16. Strong Photoluminescence Enhancement of Silicon Oxycarbide through Defect Engineering

    PubMed Central

    Ford, Brian; Tabassum, Natasha; Nikas, Vasileios; Gallis, Spyros

    2017-01-01

    The following study focuses on the photoluminescence (PL) enhancement of chemically synthesized silicon oxycarbide (SiCxOy) thin films and nanowires through defect engineering via post-deposition passivation treatments. SiCxOy materials were deposited via thermal chemical vapor deposition (TCVD), and exhibit strong white light emission at room-temperature. Post-deposition passivation treatments were carried out using oxygen, nitrogen, and forming gas (FG, 5% H2, 95% N2) ambients, modifying the observed white light emission. The observed white luminescence was found to be inversely related to the carbonyl (C=O) bond density present in the films. The peak-to-peak PL was enhanced ~18 and ~17 times for, respectively, the two SiCxOy matrices, oxygen-rich and carbon-rich SiCxOy, via post-deposition passivations. Through a combinational and systematic Fourier transform infrared spectroscopy (FTIR) and PL study, it was revealed that proper tailoring of the passivations reduces the carbonyl bond density by a factor of ~2.2, corresponding to a PL enhancement of ~50 times. Furthermore, the temperature-dependent and temperature-dependent time resolved PL (TDPL and TD-TRPL) behaviors of the nitrogen and forming gas passivated SiCxOy thin films were investigated to acquire further insight into the ramifications of the passivation on the carbonyl/dangling bond density and PL yield. PMID:28772802

  17. Single quantum dot emission by nanoscale selective growth of InAs on GaAs: A bottom-up approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patella, F.; Arciprete, F.; Placidi, E.

    2008-12-08

    We report on single dot microphotoluminescence ({mu}PL) emission at low temperature and low power from InAs dots grown by molecular beam epitaxy in nanoscale holes of a SiO{sub 2} mask deposited on GaAs(001). By comparing atomic force microscopy measurements with {mu}PL data, we show that the dot sizes inside the nanoholes are smaller than those of the dots nucleated on the extended GaAs surface. PL of dots spans a wide energy range depending on their size and on the thickness and composition of the InGaAs capping layer. Time-resolved PL experiments demonstrate a negligible loss of radiative recombination efficiency, proving highlymore » effective in the site-controlled dot nucleation.« less

  18. Efficient long wavelength interband photoluminescence from HgCdTe epitaxial films at wavelengths up to 26 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, S. V.; Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Antonov, A. V.

    2014-02-17

    Photoluminescence (PL) and photoconductivity (PC) studies of Hg{sub 1−x}Cd{sub x}Te (0.19 ≤ x ≤ 0.23) epitaxial films are presented. Interband PL is observed at wavelengths from 26 to 6 μm and in the temperature range 18 K–200 K. The PL line full width at half maximum is about 6 meV (4kT) at 18 K and approaches its theoretical limit of 1.8kT at higher temperatures. Carrier recombination process is also investigated by time resolved studies of PL and PC at pulsed excitation. Radiative transitions are shown to be the dominating mechanism of carrier recombination at high excitation levels.

  19. Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite.

    PubMed

    Chen, Sheng; Wen, Xiaoming; Yun, Jae S; Huang, Shujuan; Green, Martin; Jeon, Nam Joong; Yang, Woon Seok; Noh, Jun Hong; Seo, Jangwon; Seok, Sang Il; Ho-Baillie, Anita

    2017-02-22

    We identify nanoscale spatial distribution of PbI 2 on the (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 perovskite thin film and investigate the local passivation effect using confocal based optical microscopy of steady state and time-resolved photoluminescence (PL). Different from a typical scanning electron microscope (SEM) morphology study, confocal based PL spectroscopy and microscopy allow researchers to map the morphologies of both perovskite and PbI 2 grains simultaneously, by selectively detecting their characteristic fluorescent bands using band-pass filters. In this work, we compare the perovskite samples without and with excess PbI 2 incorporation and unambiguously reveal PbI 2 distribution for the PbI 2 -rich sample. In addition, using the nanoscale time-resolved PL technique we show that the PbI 2 -rich regions exhibit longer lifetime due to suppressed defect trapping, compared to the PbI 2 -poor regions. The measurement on the PbI 2 -rich sample indicates that the passivation effect of PbI 2 in perovskite film is effective, especially in localized regions. Hence, this finding is important for further improvement of the solar cells by considering the strategy of excess PbI 2 incorporation.

  20. Evolution of superclusters and delocalized states in GaAs1-xNx

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Alberi, K.; Beaton, D. A.; Crooker, S. A.; Ptak, A. J.; Mascarenhas, A.

    2012-11-01

    The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs1-xNx was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinite supercluster is fully developed by 0.32% N.

  1. Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films

    NASA Astrophysics Data System (ADS)

    Gardelis, S.; Fakis, M.; Droseros, N.; Georgiadou, D.; Travlos, A.; Nassiopoulou, A. G.

    2017-01-01

    We report on the morphology and optical properties of CuInS2/ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS2/ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS2/ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100-200 ns), the origin of which is discussed.

  2. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  3. Synthesis and Study of Optical Characteristics of Ti0.91O2/CdS Hybrid Sphere Structures

    NASA Astrophysics Data System (ADS)

    Kong, Lingbin; Xu, Qinfeng; Zhang, Meng; Wang, Dehua; Liu, Mingliang; Zhang, Lei; Jiao, Mengmeng; Wang, Honggang; Yang, Chuanlu

    2018-03-01

    The optical properties of alternating ultrathin Ti0.91O2 nanosheets and CdS nanoparticle hybrid spherical structures designed by the layer-by-layer (LBL) assembly technique are investigated. From the photoluminescence (PL) spectral measurements on the hybrid spherical structures, a spectrum-shifted fluorescence emission occurs in this novel hybrid material. The time-resolved PL measurements exhibit a remarkably increased PL lifetime of 3.75 ns compared with only Ti0.91O2 spheres or CdS nanoparticles. The novel results were attributed to the enhanced electron-hole separation due to the new type II indirect optical transition mechanism between Ti0.91O2 and CdS in a charge-separated configuration.

  4. Picosecond time-resolved photoluminescence using picosecond excitation correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, M. B.; McGill, T. C.; Hunter, A. T.

    1988-03-01

    We present a study of the temporal decay of photoluminescence (PL) as detected by picosecond excitation correlation spectroscopy (PECS). We analyze the correlation signal that is obtained from two simple models; one where radiative recombination dominates, the other where trapping processes dominate. It is found that radiative recombination alone does not lead to a correlation signal. Parallel trapping type processes are found to be required to see a signal. To illustrate this technique, we examine the temporal decay of the PL signal for In-alloyed, semi-insulating GaAs substrates. We find that the PL signal indicates a carrier lifetime of roughly 100 ps, for excitation densities of 1×1016-5×1017 cm-3. PECS is shown to be an easy technique to measure the ultrafast temporal behavior of PL processes because it requires no ultrafast photon detection. It is particularly well suited to measuring carrier lifetimes.

  5. Nanoscale Spectroscopic Imaging of Organic Semiconductor Films by Plasmon-Polariton Coupling

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Heinemeyer, U.; Stanciu, C.; Sackrow, M.; Braun, K.; Hennemann, L. E.; Wang, X.; Scholz, R.; Schreiber, F.; Meixner, A. J.

    2010-02-01

    Tip-enhanced near-field optical images and correlated topographic images of an organic semiconductor film (diindenoperylene, DIP) on Si have been recorded with high optical contrast and high spatial resolution (17 nm) using a parabolic mirror with a high numerical aperture for tip illumination and signal collection. The DIP molecular domain boundaries being one to four molecular layers (1.5-6 nm) high are resolved topographically by a shear-force scanning tip and optically by simultaneously recording the 6×105 times enhanced photoluminescence (PL). The excitation is 4×104 times enhanced and the intrinsically weak PL-yield of the DIP-film is 15-fold enhanced by the tip. The Raman spectra indicate an upright orientation of the DIP molecules. The enhanced PL contrast results from the local film morphology via stronger coupling between the tip plasmon and the exciton-polariton in the DIP film.

  6. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  7. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Yoshiya; Banal, Ryan G.; Ichikawa, Shuhei

    2015-02-21

    The optical properties of Al-rich AlGaN/AlN quantum wells are assessed by excitation-power-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL) measurements. Two excitation sources, an optical parametric oscillator and the 4th harmonics of a Ti:sapphire laser, realize a wide range of excited carrier densities between 10{sup 12} and 10{sup 21 }cm{sup −3}. The emission mechanisms change from an exciton to an electron-hole plasma as the excitation power increases. Accordingly, the PL decay time is drastically reduced, and the integrated PL intensities increase in the following order: linearly, super-linearly, linearly again, and sub-linearly. The observed results are well accounted for by rate equationsmore » that consider the saturation effect of non-radiative recombination processes. Using both TIPL and TRPL measurements allows the density of non-radiative recombination centers, the internal quantum efficiency, and the radiative recombination coefficient to be reliably extracted.« less

  8. Evolution of superclusters and delocalized states in GaAs 1–xN x

    DOE PAGES

    Fluegel, B.; Alberi, K.; Beaton, D. A.; ...

    2012-11-21

    The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs 1–xN x was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinitemore » supercluster is fully developed by 0.32% N.« less

  9. Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots

    PubMed Central

    Cao, Sheng; Li, Chengming; Wang, Lin; Shang, Minghui; Wei, Guodong; Zheng, Jinju; Yang, Weiyou

    2014-01-01

    CuInS2 (CIS) quantum dots (QDs) have tunable photoluminescence (PL) behaviors in the visible and near infrared spectral range with markedly lower toxicity than the cadmium-based counterparts, making them very promising applications in light emitting and solar harvesting. However, there still remain material- and fabrication- related obstacles in realizing the high-performance CIS-based QDs with well-resolved Mn2+ d-d emission, long emission lifetimes as well as high efficiencies. Here, we demonstrate the growth of high-quality Mn2+-doped CuInS-ZnS (CIS-ZnS) QDs based on a multi-step hot-injection strategy. The resultant QDs exhibit a well-resolved Mn2+ d-d emission with a high PL quantum yield (QY) up to 66% and an extremely long excited state lifetime up to ~3.78 ms, which is nearly two times longer than the longest one of “green” QDs ever reported. It is promising that the synthesized Mn2+-doped CIS-ZnS QDs might open new doors for their practical applications in bioimaging and opto/electronic devices. PMID:25515207

  10. Emission spectroscopy of divalent-cation-doped GaN photocatalysts

    NASA Astrophysics Data System (ADS)

    Hirai, Takeshi; Harada, Takashi; Ikeda, Shigeru; Matsumura, Michio; Saito, Nobuo; Nishiyama, Hiroshi; Inoue, Yasunobu; Harada, Yoshiyuki; Ohno, Nobuhito; Maeda, Kazuhiko; Kubota, Jun; Domen, Kazunari

    2011-12-01

    Photoluminescence (PL) and time-resolved photoluminescence (TRPL) spectra of GaN particles doped with divalent cations (Mg2+, Zn2+, and Be2+), which promote photocatalytic overall water splitting, were investigated. The PL and TRPL spectra were mainly attributed to donor-acceptor pair recombination between the divalent cation dopants and divalent anion impurities (O2- and S2-) unintentionally introduced from raw materials, which form acceptor and donor levels, respectively. These levels are likely to provide holes and electrons required for photocatalytic reactions, contributing to the photocatalytic activity of the GaN-based photocatalysts for overall water splitting.

  11. Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications

    PubMed Central

    Chen, Guanying; Ohulchanskyy, Tymish Y.; Liu, Sha; Law, Wing-Cheung; Wu, Fang; Swihart, Mark T.; Ågren, Hans; Prasad, Paras N.

    2012-01-01

    We have synthesized core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with an average size of 15 nm and exceptionally high photoluminescence (PL) quantum yield. When excited at 740 nm, the nanocrystals manifest spectrally distinguished, near infrared to near infrared (NIR-to-NIR) downconversion PL peaked at ~900, ~1050, and ~1300 nm. The absolute quantum yield of NIR-to-NIR PL reached 40% for core-shell nanoparticles dispersed in hexane. Time-resolved PL measurements revealed that this high quantum yield was achieved through suppression of nonradiative recombination originating from surface states and cross relaxations between dopants. NaGdF4:Nd3+/NaGdF4 nanocrystals, synthesized in organic media, were further converted to be water-dispersible by eliminating the capping ligand of oleic acid. NIR-to-NIR PL bioimaging was demonstrated both in vitro and in vivo through visualization of the NIR-to-NIR PL at ~900 nm under incoherent lamp light excitation. The fact that both excitation and the PL of these nanocrystals are in the biological window of optical transparency, combined with their high quantum efficiency, spectral sharpness and photostability, makes these nanocrystals extremely promising as optical biomaging probes. PMID:22401578

  12. Two-site ionic labeling with pyranine: implications for structural dynamics studies of polymers and polypeptides by time-resolved fluorescence anisotropy.

    PubMed

    Sharma, Jai; Tleugabulova, Dina; Czardybon, Wojciech; Brennan, John D

    2006-04-26

    Time-resolved fluorescence anisotropy (TRFA) is widely used to study dynamic motions of biomolecules in a variety of environments. However, depolarization due to rapid side chain motions often complicates the interpretation of anisotropy decay data and interferes with the accurate observation of segmental motions. Here, we demonstrate a new method for two-point ionic labeling of polymers and biomolecules that have appropriately spaced amino groups using the fluorescent probe 8-hydroxyl-1,3,6-trisulfonated pyrene (pyranine). TRFA analysis shows that such labeling provides a more rigid attachment of the fluorophore to the macromolecule than the covalent or single-point ionic labeling of amino groups, leading to time-resolved anisotropy decays that better reflect the backbone motion of the labeled polymer segment. Optimal coupling of pyranine to biomolecule dynamics is shown to be obtained for appropriately spaced Arg groups, and in such cases the ionic binding is stable up to 150 mM ionic strength. TRFA was used to monitor the behavior of pyranine-labeled poly(allylamine) (PAM) and poly-d-lysine (PL) in sodium silicate derived sol-gel materials and revealed significant restriction of backbone motion upon entrapment for both polymers, an observation that was not readily apparent in a previous study with entrapped fluorescein-labeled PAM and PL. The implications of these findings for fluorescence studies of polymer and biomolecule dynamics are discussed.

  13. The Role of the Substrate on Photophysical Properties of Highly Ordered 15R-SiC Thin Films

    NASA Astrophysics Data System (ADS)

    Mourya, Satyendra; Jaiswal, Jyoti; Malik, Gaurav; Kumar, Brijesh; Chandra, Ramesh

    2018-06-01

    We report on the structural optimization and photophysical properties of in situ RF-sputtered single crystalline 15R-SiC thin films deposited on various substrates (ZrO2, MgO, SiC, and Si). The role of the substrates on the structural, electronic, and photodynamic behavior of the grown films have been demonstrated using x-ray diffraction, photoluminescence (PL) and time-resolved photoluminescence spectroscopy. The appropriate bonding order and the presence of native oxide on the surface of the grown samples are confirmed by x-ray photoelectron spectroscopy measurement. A deep-blue PL emission has been observed corresponding to the Si-centered defects occurring in the native oxide. Deconvolution of the PL spectra manifested two decay mechanisms corresponding to the radiative recombination. The PL intensity and carrier lifetime were found to be substrate- dependent which may be ascribed to the variation in the trap-density of the films grown on different substrates.

  14. Photoluminescence Study of Plasma-Induced Damage of GaInN Single Quantum Well

    NASA Astrophysics Data System (ADS)

    Izumi, Shouichiro; Minami, Masaki; Kamada, Michiru; Tatsumi, Tetsuya; Yamaguchi, Atsushi A.; Ishikawa, Kenji; Hori, Masaru; Tomiya, Shigetaka

    2013-08-01

    Plasma-induced damage (PID) due to Cl2/SiCl4/Ar plasma etching of the GaN capping layer (CAP)/GaInN single quantum well (SQW)/GaN structure was investigated by conventional photoluminescence (PL), transmission electron microscopy (TEM), and time-resolved and temperature-dependent photoluminescence (TRPL). SQW PL intensity remained constant initially, although plasma etching of the CAP layer proceeded, but when the etching thickness reached a certain amount (˜60 nm above the SQW), PL intensity started to decrease sharply. On the other hand, TEM observations show that the physical damage (structural damage) was limited to the topmost surface region. These findings can be explained by the results of TRPL studies, which revealed that there exist two different causes of PID. One is an increase in the number of nonradiative recombination centers, which mainly affects the PL intensity. The other is an increase in the quantum level fluctuation owing mainly to physical damage.

  15. Carrier confinement effects of InxGa1-xN/GaN multi quantum disks with GaN surface barriers grown in GaN nanorods

    NASA Astrophysics Data System (ADS)

    Park, Youngsin; Chan, Christopher C. S.; Taylor, Robert A.; Kim, Nammee; Jo, Yongcheol; Lee, Seung W.; Yang, Woochul; Im, Hyunsik

    2018-04-01

    Structural and optical properties of InxGa1-xN/GaN multi quantum disks (QDisks) grown on GaN nanorods by molecular beam epitaxy have been investigated by transmission electron microscopy and micro-photoluminescence (PL) spectroscopy. Two types of InGaN QDisks were grown: a pseudo-3D confined InGaN pillar-type QDisks embedded in GaN nanorods; and QDisks in flanged cone type GaN nanorods. The PL emission peak and excitation dependent PL behavior of the pillar-type Qdisks differ greatly from those of the flanged cone type QDisks. Time resolved PL was carried out to probe the differences in charge carrier dynamics. The results suggest that by constraining the formation of InGaN QDisks within the centre of the nanorod, carriers are restricted from migrating to the surface, decreasing the surface recombination at high carrier densities.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong Lingmin; Feng Zhechuan; Wu Zhengyun

    Four types of self-assembled InAs/GaAs quantum dots (QDs) were grown by molecular beam epitaxy and studied via temperature-dependent and time-resolved photoluminescence (PL) spectroscopy measurements. A thin InGaAs stain reducing layer (SRL) is adopted which extends the emission wavelength to 1.3 mum and the influence of strain on QDs is investigated. The SRL releases the strain between the wetting layer and QDs, and enlarges the size of QDs, as shown by atomic force microscopy measurements. As the thickness of InAs layer decreases to 1.7 ML, the QDs with the SRL are chained to strings and the density of QDs increases significantly,more » which leads to an abnormal redshift of 1.3 mum PL peak at room temperature. PL peaks of InAs QDs with the SRL show redshift compared with the QDs directly deposited on GaAs matrix. The dependences of PL lifetime on the QD size, density and temperature (T) are systematically studied. It is observed that the PL lifetime of QDs is insensitive to T below 50 K. Beyond 50 K, increases and then drops at higher temperature, with a peak at T{sub C}, which was determined by the SRL and the thickness of InAs. We have also observed an obvious PL spectral redshift of the QDs with 1.7 ML InAs coverage on SRL at low T as the measuring time delays. The PL lifetime of QDs with the SRL is smaller than that of QDs without the SRL. The QDs with different densities have different PL lifetime dependence on the QDs size. These observations can be explained by the competition between the carrier redistribution and thermal emission.« less

  17. Optical Characterizations of VCSEL for Emission at 850 nm with Al Oxide Confinement Layers

    NASA Astrophysics Data System (ADS)

    Mokhtari, Merwan; Pagnod-Rossiaux, Philippe; Laruelle, Francois; Landesman, Jean-Pierre; Moreac, Alain; Levallois, Christophe; Cassidy, Daniel T.

    2018-03-01

    In-plane micro-photoluminescence (μ-PL) and micro-reflectivity measurements have been performed at room temperature by optical excitation perpendicular to the surface of two different structures: a complete vertical surface-emitting laser (VCSEL) structure and a VCSEL without the upper p-type distributed Bragg reflector (P-DBR). The two structures were both laterally oxidized and measurements were made on the top of oxidized and unoxidized regions. We show that, since the photoluminescence (PL) spectra consist of the cumulative effect of InGaAs/AlGaAs multi-quantum wells (MQWs) luminescence and interferences in the DBR, the presence or not of the P-DBR and oxide layers can significantly modify the spectrum. μ-PL mapping performed on full VCSEL structures clearly shows oxidized and unoxidized regions that are not resolved with visible light optical microscopy. Finally, preliminary measurements of the degree of polarization (DOP) of the PL have been made on a complete VCSEL structure before and after an oxidation process. We obtain an image of DOP measured by polarization-resolved μ-PL. These measurements allow us to evaluate the main components of strain.

  18. Temperature-dependent time-resolved photoluminescence measurements of (1-101)-oriented semi-polar AlGaN/GaN MQWs

    NASA Astrophysics Data System (ADS)

    Rosales, Daniel; Gil, Bernard; Monavarian, Morteza; Zhang, Fan; Okur, Serdal; Izyumskaya, Natalia; Avrutin, Vitaliy; Özgür, Ümit; Morkoç, Hadis

    2015-03-01

    We studied the temperature dependence and the recombination dynamics of the photoluminescence of (1-101)-oriented semi-polar Al0.2Ga0.8N/GaN multiple quantum wells (MQW). The polarized low-temperature PL measurements reveal that radiative recombination exhibit an anisotropic behavior. The PL intensity at room temperature is reduced by one order of magnitude with respect to low temperature. The radiative decay time exhibits a mixed behavior: it is roughly constant between 8K to ranging near 140-150K and then rapidly increases with a slope of 10 ps.K-1. This behavior is indicative of coexistence of localized excitons and free excitons which relative proportion are statistically computed.

  19. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites.

    PubMed

    Zarick, Holly F; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Talbert, Eric M; DeBra, Zachary R; Soetan, Naiya; Geohegan, David B; Bardhan, Rizia

    2017-01-26

    In this work, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3 ) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr 3 perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadiz, Fabian, E-mail: cadiz@insa-toulouse.fr; Tricard, Simon; Gay, Maxime

    Developments in optoelectronics and spin-optronics based on transition metal dichalcogenide monolayers (MLs) need materials with efficient optical emission and well-defined transition energies. In as-exfoliated MoS{sub 2} MLs, the photoluminescence (PL) spectra even at low temperature consist typically of broad, overlapping contributions from neutral, charged excitons (trions) and localized states. Here, we show that in superacid treated MoS{sub 2} MLs, the PL intensity increases by up to 60 times at room temperature. The neutral and charged exciton transitions are spectrally well separated in PL and reflectivity at T = 4 K, with linewidth for the neutral exciton of 15 meV, but both transitions have similarmore » intensities compared to the ones in as-exfoliated MLs at the same temperature. Time resolved experiments uncover picoseconds recombination dynamics analyzed separately for charged and neutral exciton emissions. Using the chiral interband selection rules, we demonstrate optically induced valley polarization for both complexes and valley coherence for only the neutral exciton.« less

  1. Workshop on MQW Mixing and its Application to Optoelectronic Devices

    DTIC Science & Technology

    1990-09-01

    21st SEPTEMBER 1990 L Approvsd to; Puiic~ zeleaaeg serc .., 90 ! ;>:.01. . 𔃻 i OR 3ANISING COMMITTEE: . . . . B L Weiss (Chairman) University of...temperature photoluminescence ( PL ) and PL excitation (PLE) spectroscopies were used to monitor exciton energies before and after processing. After RTA...generated near the surface. Spatially resolved PL spectroscopy verified that the lateral diffusion of surface vacancies was less than that of the

  2. Shell Thickness Dependence of Interparticle Energy Transfer in Core-Shell ZnSe/ZnSe Quantum Dots Doping with Europium

    NASA Astrophysics Data System (ADS)

    Liu, Ni; Li, Shuxin; Wang, Caifeng; Li, Jie

    2018-04-01

    Low-toxic core-shell ZnSe:Eu/ZnS quantum dots (QDs) were prepared through two steps in water solution: nucleation doping and epitaxial shell grown. The structural and morphological characteristics of ZnSe/ZnS:Eu QDs with different shell thickness were explored by transmission electron microscopy (TEM) and X-ray diffraction (XRD) results. The characteristic photoluminescence (PL) intensity of Eu ions was enhanced whereas that of band-edge luminescence and defect-related luminescence of ZnSe QDs was decreased with increasing shell thickness. The transformation of PL intensity revealed an efficient energy transfer process between ZnSe and Eu. The PL intensity ratio of Eu ions ( I 613) to ZnSe QDs ( I B ) under different shell thickness was systemically analyzed by PL spectra and time-resolved PL spectra. The obtained results were in agreement with the theory analysis results by the kinetic theory of energy transfer, revealing that energy was transmitted in the form of dipole-electric dipole interaction. This particular method of adjusting luminous via changing the shell thickness can provide valuable insights towards the fundamental understanding and application of QDs in the field of optoelectronics.

  3. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer

    NASA Astrophysics Data System (ADS)

    Kaveh, M.; Gao, Q.; Jagadish, C.; Ge, J.; Duscher, G.; Wagner, H. P.

    2016-12-01

    Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq3) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ˜10 nm thick Au coating but without an Alq3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq3 coated NWs.

  4. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer.

    PubMed

    Kaveh, M; Gao, Q; Jagadish, C; Ge, J; Duscher, G; Wagner, H P

    2016-12-02

    Excitons are the most prominent optical excitations and controlling their emission is an important step towards new optical devices. We have investigated the exciton emission from uncoated and gold/aluminum quinoline (Alq 3 ) coated GaAs-AlGaAs-GaAs core-shell nanowires (NWs) using temperature-, intensity- and polarization dependent photoluminescence (PL). Plasmonic GaAs-AlGaAs-GaAs NWs with a ∼10 nm thick Au coating but without an Alq 3 spacer layer reveal a significant reduction of the PL intensity of the exciton emission compared with the uncoated NW sample. Plasmonic NW samples with the same nominal Au coverage and an additional Alq 3 interlayer of 3 or 6 nm thickness show a clearly stronger PL intensity which increases with rising Alq 3 spacer thickness. Time-resolved (TR) PL measurements reveal an increase of the exciton decay rate by a factor of up to two with decreasing Alq 3 spacer thickness suggesting the presence of Förster energy transfer from NW excitons to plasmon oscillations in the gold film. The weak change of the decay time, however, indicates that Förster energy-transfer is only partially responsible for the PL quenching in the gold coated NWs. The main reason for the reduction of the PL emission is attributed to a gold induced band-bending in the GaAs NW core which causes exciton dissociation. With increasing Alq 3 spacer thickness the band-bending decreases leading to a reduction of the exciton dissociation and PL quenching. Our interpretation is supported by electron energy loss spectroscopy measurements which show a signal reduction and blue shift of defect (possibly EL2) transitions when gold particles are deposited on NWs compared with bare or Alq 3 coated NWs.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowland, Clare E.; Fedin, Igor; Diroll, Benjamin T.

    Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology upmore » to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.« less

  6. Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H+ ions.

    PubMed

    Cannas, Marco; Camarda, Pietro; Vaccaro, Lavinia; Amato, Francesco; Messina, Fabrizio; Fiore, Tiziana; Li Vigni, Maria

    2018-04-18

    The emission of silicon nanocrystals (Si-NCs), synthesized by pulsed laser ablation in water, was investigated on varying the pH of the solution. These samples emit μs decaying orange photoluminescence (PL) associated with radiative recombination of quantum-confined excitons. Time-resolved spectra reveal that both the PL intensity and the lifetime increase by a factor of ∼20 when the pH decreases from 10 to 1 thus indicating that the emission quantum efficiency increases by inhibiting nonradiative decay rates. Infrared (IR) absorption and electron paramagnetic resonance (EPR) experiments allow addressing the origin of defects on which the excitons nonradiatively recombine. The linear correlation between the PL and the growth of SiH groups demonstrates that H+ ions passivate the nonradiative defects that are located in the interlayer between the Si-NC core and the amorphous SiO2 shell.

  7. Exciton localization in (11-22)-oriented semi-polar InGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Monavarian, Morteza; Rosales, Daniel; Gil, Bernard; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Excitonic recombination dynamics in (11-22) -oriented semipolar In0.2Ga0.8N/In0.06Ga0.94N multiquantum wells (MQWs) grown on GaN/m-sapphire templates have been investigated by temperature-dependent time-resolved photoluminescence (TRPL). The radiative and nonradiative recombination contributions to the PL intensity at different temperatures were evaluated by analysing temperature dependences of PL peak intensity and decay times. The obtained data indicate the existence of exciton localization with a localization energy of Eloc(15K) =7meV and delocalization temperature of Tdeloc = 200K in the semipolar InGaN MQWs. Presence of such exciton localization in semipolar (11-22) -oriented structures could lead to improvement of excitonic emission and internal quantum efficiency.

  8. Multi-exciton emission from solitary dopant states of carbon nanotubes.

    PubMed

    Ma, Xuedan; Hartmann, Nicolai F; Velizhanin, Kirill A; Baldwin, Jon K S; Adamska, Lyudmyla; Tretiak, Sergei; Doorn, Stephen K; Htoon, Han

    2017-11-02

    By separating the photons from slow and fast decays of single and multi-exciton states in a time gated 2 nd order photon correlation experiment, we show that solitary oxygen dopant states of single-walled carbon nanotubes (SWCNTs) allow emission of photon pairs with efficiencies as high as 44% of single exciton emission. Our pump dependent time resolved photoluminescence (PL) studies further reveal diffusion-limited exciton-exciton annihilation as the key process that limits the emission of multi-excitons at high pump fluences. We further postulate that creation of additional permanent exciton quenching sites occurring under intense laser irradiation leads to permanent PL quenching. With this work, we bring out multi-excitonic processes of solitary dopant states as a new area to be explored for potential applications in lasing and entangled photon generation.

  9. Emission and Dynamics of Charge Carriers in Uncoated and Organic/Metal Coated Semiconductor Nanowires

    NASA Astrophysics Data System (ADS)

    Kaveh Baghbadorani, Masoud

    In this dissertation, the dynamics of excitons in hybrid metal/organic/nanowire structures possessing nanometer thick deposited molecular and metal films on top of InP and GaAs nanowire (NW) surfaces were investigated. Optical characterizations were carried out as a function of the semiconductor NW material, design, NW size and the type and thickness of the organic material and metal used. Hybrid organic and plasmonic semiconductor nanowire heterostructures were fabricated using organic molecular beam deposition technique. I investigated the photon emission of excitons in 150 nm diameter polytype wurtzite/zincblende InP NWs and the influence of a few ten nanometer thick organic and metal films on the emission using intensity- and temperature-dependent time-integrated and time resolved (TR) photoluminescence (PL). The plasmonic NWs were coated with an Aluminum quinoline (Alq3) interlayer and magnesium-silver (Mg0.9:Ag0.1) top layer. In addition, the nonlinear optical technique of heterodyne four-wave mixing was used (in collaboration with Prof. Wolfgang Langbein, University of Cardiff) to study incoherent and coherent carrier relaxation processes on bare nanowires on a 100 femtosecond time-scale. Alq3 covered NWs reveal a stronger emission and a longer decay time of exciton transitions indicating surface state passivation at the Alq3/NW interface. Alq3/Mg:Ag NWs reveal a strong quenching of the exciton emission which is predominantly attributed to Forster energy-transfer from excitons to plasmon oscillations in the metal cluster film. Changing the Mg:Ag to gold and the organic Alq3 spacer layer to PTCDA leads to a similar behavior, but the PL quenching is strongly increased. The observed behavior is attributed to a more continuous gold deposition leading to an increased Forster energy transfer and to a metal induced band-bending. I also investigated ensembles of bare and gold/Alq3 coated GaAs-AlGaAs-GaAs core shell NWs of 130 nm diameter. Plasmonic NWs with Au coating reveal a significant reduction of the PL intensity compared with the uncoated NWs. Organic-plasmonic NWs with an additional Alq3 interlayer show a noticeably stronger PL intensity which increases with rising Alq3 spacer thickness. Metal induced band bending is mainly attributed to be responsible for the PL quenching. TR PL measurements support our interpretation by showing an increase in the exciton decay times as we increase the spacer thickness. Au coated NWs also reveal a strong polarization dependent absorption which is mainly due to the significant dielectric mismatch between the nanowires and the adjacent vacuum environment. Finally, the amplified spontaneous emission (ASE) and possible plasmonic NW lasing from hybrid plasmonic core-shell GaAs NW heterostructures was investigated. The plasmonic heterostructures are composed of either bare NWs on an Au coated glass substrate or Au coated NWs on a bare glass substrate. Intensity-dependent PL on plasmonic NW samples reveals a super linear increase of the PL intensities which is attributed to an ASE at a threshold energy fluence of 1 GW/cm 2. Measurements above the threshold power reveal few weakly resolved broad bands around the maximum emission of the PL band which suggest plasmonic film induced lasing. This interpretation is supported by the fact that lasing from such 100 nm narrow uncoated GaAs NWs is not possible.

  10. Interfacial Charge-Carrier Trapping in CH3NH3PbI3-Based Heterolayered Structures Revealed by Time-Resolved Photoluminescence Spectroscopy.

    PubMed

    Yamada, Yasuhiro; Yamada, Takumi; Shimazaki, Ai; Wakamiya, Atsushi; Kanemitsu, Yoshihiko

    2016-06-02

    The fast-decaying component of photoluminescence (PL) under very weak pulse photoexcitation is dominated by the rapid relaxation of the photoexcited carriers into a small number of carrier-trapping defect states. Here, we report the subnanosecond decay of the PL under excitation weaker than 1 nJ/cm(2) both in CH3NH3PbI3-based heterostructures and bare thin films. The trap-site density at the interface was evaluated on the basis of the fluence-dependent PL decay profiles. It was found that high-density defects determining the PL decay dynamics are formed near the interface between CH3NH3PbI3 and the hole-transporting Spiro-OMeTAD but not at the CH3NH3PbI3/TiO2 interface and the interior regions of CH3NH3PbI3 films. This finding can aid the fabrication of high-quality heterointerfaces, which are required improving the photoconversion efficiency of perovskite-based solar cells.

  11. Direct Evidence of Exciton-Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies.

    PubMed

    Ma, Ying-Zhong; Lin, Haoran; Du, Mao-Hua; Doughty, Benjamin; Ma, Biwu

    2018-05-03

    Excitons in low-dimensional organic-inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton-phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6 H 13 N 4 ) 3 Pb 2 Br 7 . Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton-exciton annihilation process, a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. We further identify a fast and dominant PL decay component with a lifetime of ∼2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.

  12. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  13. Direct Evidence of Exciton–Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies

    DOE PAGES

    Ma, Ying -Zhong; Lin, Haoran; Du, Mao -Hua; ...

    2018-04-11

    Excitons in low-dimensional organic–inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton–phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton–exciton annihilation process,more » a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. As a result, we further identify a fast and dominant PL decay component with a lifetime of ~2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.« less

  14. Direct Evidence of Exciton–Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ying -Zhong; Lin, Haoran; Du, Mao -Hua

    Excitons in low-dimensional organic–inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton–phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C 6H 13N 4) 3Pb 2Br 7. Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton–exciton annihilation process,more » a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. As a result, we further identify a fast and dominant PL decay component with a lifetime of ~2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.« less

  15. Modified spontaneous emission of silicon nanocrystals embedded in artificial opals

    NASA Astrophysics Data System (ADS)

    Janda, Petr; Valenta, Jan; Rehspringer, Jean-Luc; Mafouana, Rodrigue R.; Linnros, Jan; Elliman, Robert G.

    2007-10-01

    Si nanocrystals (NCs) were embedded in synthetic silica opals by means of Si-ion implantation or opal impregnation with porous-Si suspensions. In both types of sample photoluminescence (PL) is strongly Bragg-reflection attenuated (up to 75%) at the frequency of the opal stop-band in a direction perpendicular to the (1 1 1) face of the perfect hcp opal structure. Time-resolved PL shows a rich distribution of decay rates, which contains both shorter and longer decay components compared with the ordinary stretched exponential decay of Si NCs. This effect reflects changes in the spontaneous emission rate of Si NCs due to variations in the local density of states of real opal containing defects.

  16. Determination of Carrier Lifetimes in Organic-Inorganic Hybrid Solar Cells Based on Sb2S3 by Using the Time-Resolved Photocurrent

    NASA Astrophysics Data System (ADS)

    Jo, Hyun-Jun; Mun, Young Hee; Kim, Jong Su; Kim, Seung Hyun; Lee, Sang-Ju; Sung, Shi-Joon; Kim, Dae-Hwan

    2018-03-01

    This paper presents organic-inorganic hybrid solar cells (SCs) based on ZnO/Sb2S3/P3HT heterojunctions. The ZnO and the Sb2S3 layers were grown using atomic layer deposition (ALD). Although four cells were fabricated on one substrate by using the same process, their open-circuit voltages ( V OC ) and short-circuit current densities ( J SC ) were different. The SC with a high V OC has a low J SC . The causes of the changes in the V OC and the JSC were investigated by using photoluminescence (PL) spectroscopy and optically-biased time-resolved photocurrent (TRPC) measurements. The PL results at 300 K showed that the emission positions of the Sb2S3 layers in all cells were similar at approximately 1.71 eV. The carrier lifetime of the SCs was calculated from the TRPC results. The lifetime of cell 4 with the highest J SC decreased drastically with increasing intensity of the continuous-wave optical bias beam. Therefore, the defect states in the ZnO layer contribute to the J SC , but degrade the V OC .

  17. Dynamics of exciton magnetic polarons in CdMnSe/CdMgSe quantum wells: Effect of self-localization

    NASA Astrophysics Data System (ADS)

    Akimov, I. A.; Godde, T.; Kavokin, K. V.; Yakovlev, D. R.; Reshina, I. I.; Sedova, I. V.; Sorokin, S. V.; Ivanov, S. V.; Kusrayev, Yu. G.; Bayer, M.

    2017-04-01

    We study the exciton magnetic polaron (EMP) formation in (Cd,Mn)Se/(Cd,Mg)Se diluted-magnetic-semiconductor quantum wells by using time-resolved photoluminescence (PL). The magnetic-field and temperature dependencies of this dynamics allow us to separate the nonmagnetic and magnetic contributions to the exciton localization. We deduce the EMP energy of 14 meV, which is in agreement with time-integrated measurements based on selective excitation and the magnetic-field dependence of the PL circular polarization degree. The polaron formation time of 500 ps is significantly longer than the corresponding values reported earlier. We propose that this behavior is related to strong self-localization of the EMP, accompanied with a squeezing of the heavy-hole envelope wave function. This conclusion is also supported by the decrease of the exciton lifetime from 600 ps to 200-400 ps with increasing magnetic field and temperature.

  18. III-nitrate ultraviolet photonic materials: epitaxial growth, optical and electrical properties, and applications

    NASA Astrophysics Data System (ADS)

    Lin, Jingyu; Jiang, Hongxing

    2003-07-01

    This paper summarizes some of the recent advances made by our group on the growth, characterization and applications of AlGaN alloys with high Al contents. Recently, our group has achieved highly conductive n-type AlxGa1-xN for x as high as 0.7 (a resistivity value as low as 0.15 ohm-cm has been achieved). Prior to this, only insulating AlxGa1-xN (x > 0.5) can be obtained. Our success is largely attributed to our unique capability for monitoring the optical qualities of these layers -- the development of the world's first (and presently only) deep UV picosecond time-resolved optical spectroscopy system for probing the optical properties of III-nitrides [photoluminescence (PL), electro-luminescence (EL), etc.] with a time-resolution of a few ps and wavelength down to deep UV (down to 195 nm). Our time- resolved PL results have shown that we must fill in the localization states (caused by alloy fluctuation) by doping before conduction could occur. The density of states of localization states is about 1018/cm3 in this system. It was also shown that AlxGa1-xN alloys could be made n-type for x up to 1 (pure AlN). Time-resolved photoluminescence (PL) studies carried out on these materials have revealed that Si-doping reduces the effect of carrier localization in AlxGa1-xN alloys and a sharp drop in carrier localization energy as well as a sharp increase in conductivity occurs when the Si doping concentration increases to above 1 x 1018 cm-3. For the Mg-doped AlxGa1-xN alloys, p-type conduction was achieved for x up to 0.27. The Mg acceptor activation energy as a function of Al content has been deduced. Mg-δ-doping in GaN and AlGaN epilayers has been investigated. We have demonstrated that δ-doping significantly suppresses the dislocation density, enhances the p-type conduction, and reduces the non-radiative recombination centers in GaN and AlGaN. AlN epilayers with high optical qualities have also been grown on sapphire substrates. Very efficient band-edge PL emission lines have been observed for the first time with above bandgap deep UV laser excitation. We have shown that the thermal quenching of the PL emission intensity is much less severe in AlN than in GaN and the optical quality of AlN can be as good as GaN. From the low temperature (10 K) emission spectra, as well as the temperature dependence of the recombination lifetime and the PL emission intensity, the binding energies of the bound excitons and free excitons in AlN were deduced to be around 16 meV and 80 meV, respectively. From this, the energy bandgap of AlN epilayers grown on sapphire was found to be around 6.11 eV at 10 K. The observed large free exciton binding energy implies that excitons in AlN are extremely robust entities. This together with other well-known physical properties of AlN may considerably expand future prospects for the application of III-nitride materials.

  19. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarick, Holly; Boulesbaa, Abdelaziz; Puretzky, Alexander A

    In this paper, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3more » perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.« less

  20. Carrier and polarization dynamics in monolayer MoS2: temperature and power dependence

    NASA Astrophysics Data System (ADS)

    Urbaszek, Bernhard; Lagarde, D.; Bouet, L.; Amand, T.; Marie, X.; Zhu, C. R.; Liu, B. L.; Tan, P. H.

    2014-03-01

    In monolayer (ML) MoS2 optical transitions across the direct bandgap are governed by chiral selection rules, allowing optical k-valley initialization. Here we present the first time resolved photoluminescence (PL) polarization measurements in MoS2 MLs, providing vital information on the electron valley dynamics. Using quasi-resonant excitation of the A-exciton transitions, we can infer that the PL decays within τ ~= 4ps. The PL polarization of Pc ~ 60 % remains nearly constant in time for experiments from 4K - 300K, a necessary condition for the success of future Valley Hall experiments. τ does not vary significantly over this temperature range. This is surprising when considering the decrease of Pc in continuous wave experiments when going from 4K to 300K reported in the literature. By tuning the laser following the shift of the A-exciton resonance with temperature we are able to recover at 300K ~ 80 % of the polarization observed at 4K. For pulsed laser excitation, we observe a decrease of Pc with increasing laser power at all temperatures.

  1. Ultrafast carrier dynamics in bimetallic nanostructure-enhanced methylammonium lead bromide perovskites

    DOE PAGES

    Zarick, Holly; Boulesbaa, Abdelaziz; Puretzky, Alexander A; ...

    2016-12-14

    In this paper, we examine the impact of hybrid bimetallic Au/Ag core/shell nanostructures on the carrier dynamics of methylammonium lead tribromide (MAPbBr 3) mesoporous perovskite solar cells (PSCs). Plasmon-enhanced PSCs incorporated with Au/Ag nanostructures demonstrated improved light harvesting and increased power conversion efficiency by 26% relative to reference devices. Two complementary spectral techniques, transient absorption spectroscopy (TAS) and time-resolved photoluminescence (trPL), were employed to gain a mechanistic understanding of plasmonic enhancement processes. TAS revealed a decrease in the photobleach formation time, which suggests that the nanostructures improve hot carrier thermalization to an equilibrium distribution, relieving hot phonon bottleneck in MAPbBr3more » perovskites. TAS also showed a decrease in carrier decay lifetimes, indicating that nanostructures enhance photoinduced carrier generation and promote efficient electron injection into TiO 2 prior to bulk recombination. Furthermore, nanostructure-incorporated perovskite films demonstrated quenching in steady-state PL and decreases in trPL carrier lifetimes, providing further evidence of improved carrier injection in plasmon-enhanced mesoporous PSCs.« less

  2. Negative circular polarization dynamics in InP/InGaP quantum dots

    NASA Astrophysics Data System (ADS)

    Nekrasov, S. V.; Kusrayev, Yu G.; Akimov, I. A.; Korenev, V. L.; Langer, L.; Salewski, M.

    2016-08-01

    Photoluminescence (PL) negative circular polarization (NCP) dynamics of InP/InGaP quantum dots (QDs) was studied. Time resolved measurements of PL demonstrated that NCP vanishes, when transverse magnetic field is applied, while oscillations of polarization (that are typical for both low-dimensional and bulk materials) do not occur. Hole g-factor spread in the QD ensemble was supposed to be the most probable reason for such NCP magnetic field behavior. The dependence of NCP dynamics on the repetition period of excitation laser pulses was investigated. In case of fairly small repetition period (T = 13.3 ns) long living NCP (13.3 ns < t < 133 ns) was detected, what was ascribed to resident electron spin orientation, accumulated during many laser pulses. In that regime more than one luminescence polarization decay time exist.

  3. Carrier Decay and Diffusion Dynamics in Single-Crystalline CdTe as seen via Microphotoluminescence

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Alberi, Kirstin; Zhang, Yong-Hang

    2015-03-01

    The ability to spatially resolve the degree to which extended defects impact carrier diffusion lengths and lifetimes is important for determining upper limits for defect densities in semiconductor devices. We show that a new spatially and temporally resolved photoluminescence (PL) imaging technique can be used to accurately extract carrier lifetimes in the immediate vicinity of dark-line defects in CdTe/MgCdTe double heterostructures. A series of PL images captured during the decay process show that extended defects with a density of 1.4x10-5 cm-2 deplete photogenerated charge carriers from the surrounding semiconductor material on a nanosecond time scale. The technique makes it possible to elucidate the interplay between nonradiative carrier recombination and carrier diffusion and reveals that they both combine to degrade the PL intensity over a fractional area that is much larger than the physical size of the defects. Carrier lifetimes are correctly determined from numerical simulations of the decay behavior by taking these two effects into account. Our study demonstrates that it is crucial to measure and account for the influence of local defects in the measurement of carrier lifetime and diffusion, which are key transport parameters for the design and modeling of advanced solar-cell and light-emitting devices. We acknowledge the financial support of the Department of Energy Office of Science under Grant No. DE-AC36-08GO28308.

  4. Nature of exciton transitions in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Cao, X. K.; Lin, J. Y.

    2016-03-21

    In contrast to other III-nitride semiconductors GaN and AlN, the intrinsic (or free) exciton transition in hexagonal boron nitride (h-BN) consists of rather complex fine spectral features (resolved into six sharp emission peaks) and the origin of which is still unclear. Here, the free exciton transition (FX) in h-BN bulk crystals synthesized by a solution method at atmospheric pressure has been probed by deep UV time-resolved photoluminescence (PL) spectroscopy. Based on the separations between the energy peak positions of the FX emission lines, the identical PL decay kinetics among different FX emission lines, and the known phonon modes in h-BN,more » we suggest that there is only one principal emission line corresponding to the direct intrinsic FX transition in h-BN, whereas all other fine features are a result of phonon-assisted transitions. The identified phonon modes are all associated with the center of the Brillouin zone. Our results offer a simple picture for the understanding of the fundamental exciton transitions in h-BN.« less

  5. Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles.

    PubMed

    Cardoso Dos Santos, M; Goetz, J; Bartenlian, H; Wong, K-L; Charbonnière, L J; Hildebrandt, N

    2018-04-18

    Fluorescent nanoparticles (NPs) have become irreplaceable tools for advanced cellular and subcellular imaging. While very bright NPs require excitation with UV or visible light, which can create strong autofluorescence of biological components, NIR-excitable NPs without autofluorescence issues exhibit much lower brightness. Here, we show the application of a new type of surface-photosensitized terbium NPs (Tb-NPs) for autofluorescence-free intracellular imaging in live HeLa cells. The combination of exceptionally high brightness, high photostability, and long photoluminecence (PL) lifetimes for highly efficient suppression of the short-lived autofluorescence allowed for time-gated PL imaging of intracellular vesicles over 72 h without toxicity and at extremely low Tb-NP concentrations down to 12 pM. Detection of highly resolved long-lifetime (ms) PL decay curves from small (∼10 μm 2 ) areas within single cells within a few seconds emphasized the unprecedented photophysical properties of Tb-NPs for live-cell imaging that extend well beyond currently available nanometric imaging agents.

  6. Water-soluble CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng

    2015-02-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  7. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.

    PubMed

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-22

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  8. Spectroscopic analysis of the NIR emission in Tm implanted Al{sub x}Ga{sub 1-x}N layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, J., E-mail: joana.catarina@ua.pt; Esteves, T. C.; Santos, N. F.

    2016-08-28

    Al{sub x}Ga{sub 1-x}N samples, with different AlN molar fractions, x = 0, 0.15, 0.77, and 1, grown by halide vapor phase epitaxy were implanted with Tm ions. Photoluminescence (PL) measurements revealed that after thermal annealing all the samples exhibit intraionic Tm{sup 3+} luminescence. In samples with x > 0, the low temperature emission is dominated by the lines that appear in the near infrared (NIR) spectral region, corresponding to the overlapped {sup 1}G{sub 4} → {sup 3}H{sub 5} and {sup 3}H{sub 4} → {sup 3}H{sub 6} multiplet transitions. A detailed spectroscopic analysis of NIR emission of the thulium implanted and annealed Al{sub x}Ga{sub 1-x}Nmore » layers is presented by using temperature dependent steady-state PL, room temperature PL excitation, and time resolved PL. The results indicate that the excitonic features sensitive to the alloy disorder are involved in the excitation population processes of the Tm{sup 3+} luminescence and the highest thermal stability for the NIR emission occurs for the AlN:Tm sample.« less

  9. Dynamics of a Cr spin in a semiconductor quantum dot: Hole-Cr flip-flops and spin-phonon coupling

    NASA Astrophysics Data System (ADS)

    Lafuente-Sampietro, A.; Utsumi, H.; Sunaga, M.; Makita, K.; Boukari, H.; Kuroda, S.; Besombes, L.

    2018-04-01

    A detailed analysis of the photoluminescence (PL) intensity distribution in singly Cr-doped CdTe/ZnTe quantum dots (QDs) is performed. First of all, we demonstrate that hole-Cr flip-flops induced by an interplay of the hole-Cr exchange interaction and the coupling with acoustic phonons are the main source of spin relaxation within the exciton-Cr complex. This spin flip mechanism appears in the excitation power dependence of the PL of the exciton as well as in the intensity distribution of the resonant PL. The resonant optical pumping of the Cr spin which was recently demonstrated can also be explained by these hole-Cr flip-flops. Despite the fast exciton-Cr spin dynamics, an analysis of the PL intensity under magnetic field shows that the hole-Cr exchange interaction in CdTe/ZnTe QDs is antiferromagnetic. In addition to the Cr spin dynamics induced by the interaction with carriers' spin, we finally demonstrate using time resolved optical pumping measurements that a Cr spin interacts with nonequilibrium acoustic phonons generated during the optical excitation inside or near the QD.

  10. Temperature effects on quasi-isolated conjugated polymers as revealed by temperature-dependent optical spectra of 16-mer oligothiophene diluted in a sold matrix.

    PubMed

    Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio

    2009-06-21

    Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.

  11. Recombination-Enhanced Effect in Green/Yellow Luminescence from BeZnCdSe Quantum Wells Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Akimoto, Ryoichi

    2018-02-01

    The recombination-enhanced defect reaction (REDR) effect in single green/yellow emission BeZnCdSe quantum wells (QWs) has been investigated using photoluminescence (PL) microscopy and time-resolved PL measurements. Even though a lattice hardening effect is expected in BeZnCdSe QWs alloyed with beryllium, PL intensity enhancement due to photoannealing as well as subsequent degradation due to generation of dark spot defects (DSDs) and dark line defects (DLDs) were observed. PL microscopy provided insights into the REDR effect during photoannealing. PL images were spatially inhomogeneous in intensity for the as-grown wafer, with the darker areas having size from submicrometer to 1 μm becoming brighter with the progress of photoannealing, revealing a built-in distribution of point defects incorporated in the structure during crystal growth. In addition, we showed that the PL lifetime increased with the progress of photoannealing; hence, the density of point defects decreased due to the REDR effect. A nonradiative decay channel insensitive to the REDR effect was also found in the area free from DSDs and DLDs, suggesting that another type of defect remained in the structure (note that this is not the defect reported in study of slow-mode degradation in long-lived laser diodes). As the degradation progresses, a nonradiative channel such as photocarrier diffusion and subsequent trapping by a patch of DLDs will emerge before radiative recombination.

  12. Exciton emission from bare and hybrid plasmonic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kunert, Gerd; Hommel, Detlef; Ge, Jingxuan; Duscher, Gerd; Schmitzer, Heidrun; Wagner, Hans Peter

    We study the exciton emission of hybrid gold nanoparticle/Alq3 (aluminiumquinoline)/wurtzite GaN nanorods. GaN nanorods of 1.5 μm length and 250 nm diameter were grown by plasma assisted MBE. Hybrid GaN nanorods were synthesized by organic molecular beam deposition. Temperature and power dependent time integrated (TI) and time resolved (TR) photoluminescence (PL) measurements were performed on bare and hybrid structures. Bare nanorods show donor (D0,X) and acceptor bound (A0,X) exciton emission at 3.473 eV and at 3.463 eV, respectively. TR-PL trace modeling reveal lifetimes of 240 ps and 1.4 ns for the (D0,X) and (A0,X) transition. 10 nm gold coated GaN nanorods show a significant PL quenching and (D0,X) lifetime shortening which is tentatively attributed to impact ionization of (D0,X) due to hot electron injection from the gold nanoparticles. This is supported by electron energy loss spectroscopy that shows a redshift of a midgap state transition indicating a reduction of a preexisting band-bending at the nanorod surface due to positive charging of the gold nanoparticles. Inserting a nominally 5 nm thick Alq3 spacer between the nanorod and the gold reduces the PL quenching and lifetime shortening. Plasmonic nanorods with a 30 nm thick Alq3 spacer reveal lifetimes which are nearly identical to uncoated GaN nanorods.

  13. Study on the Coupling Mechanism of the Orthogonal Dipoles with Surface Plasmon in Green LED by Cathodoluminescence.

    PubMed

    Feng, Yulong; Chen, Zhizhong; Jiang, Shuang; Li, Chengcheng; Chen, Yifan; Zhan, Jinglin; Chen, Yiyong; Nie, Jingxin; Jiao, Fei; Kang, Xiangning; Li, Shunfeng; Yu, Tongjun; Zhang, Guoyi; Shen, Bo

    2018-04-16

    We analyzed the coupling behavior between the localized surface plasmon (LSP) and quantum wells (QWs) using cathodoluminescence (CL) in a green light-emitting diodes (LED) with Ag nanoparticles (NPs) filled in photonic crystal (PhC) holes. Photoluminescence (PL) suppression and CL enhancement were obtained for the same green LED sample with the Ag NP array. Time-resolved PL (TRPL) results indicate strong coupling between the LSP and the QWs. Three-dimensional (3D) finite difference time domain (FDTD) simulation was performed using a three-body model consisting of two orthogonal dipoles and a single Ag NP. The LSP–QWs coupling effect was separated from the electron-beam (e-beam)–LSP–QW system by linear approximation. The energy dissipation was significantly reduced by the z-dipole introduction under the e-beam excitation. In this paper, the coupling mechanism is discussed and a novel emission structure is proposed.

  14. Exciton Emission from Bare and Alq3/Gold Coated GaN Nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemesadat; Kuhnert, Gerd; Hommel, Detlef; Schmitzer, Heidrun; Wagner, Hans-Peter

    We study the excitonic and impurity related emission in bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL). The GaN nanorods were grown by molecular beam epitaxy. Alq3 as well as Alq3/gold covered nanorods were synthesized by organic molecular beam deposition. In the near-band edge region a donor-bound-exciton (D0X) emission is observed at 3.473 eV. Another emission band at 3.275 eV reveals LO-phonon replica and is attributed to a donor-acceptor-pair (DAP) luminescence. TR PL traces at 20 K show a nearly biexponential decay for the D0X with lifetimes of approximately 180 and 800 ps for both bare and Alq3 coated nanorods. In GaN nanorods which were coated with an Alq3 film and subsequently with a 10 nm thick gold layer we observe a PL quenching of D0X and DAP band and the lifetimes of the D0X transition shorten. The quenching behaviour is partially attributed to the energy-transfer from free excitons and donor-bound-excitons to plasmon oscillations in the gold layer.

  15. Photoluminescence Enhancement of CuInS 2 Quantum Dots in Solution Coupled to Plasmonic Gold Nanocup Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peer, Akshit; Hu, Zhongjian; Singh, Ajay

    A strong plasmonic enhancement of photoluminescence (PL) decay rate in quantum dots (QDs) coupled to an array of gold-coated nanocups is demonstrated. CuInS2 QDs that emit at a wavelength that overlaps with the extraordinary optical transmission (EOT) of the gold nanocup array are placed in the cups as solutions. Time-resolved PL reveals that the decay rate of the QDs in the plasmonically coupled system can be enhanced by more than an order of magnitude. Using finite-difference time-domain (FDTD) simulations, it is shown that this enhancement in PL decay rate results from an enhancement factor of ≈100 in electric field intensitymore » provided by the plasmonic mode of the nanocup array, which is also responsible for the EOT. The simulated Purcell factor approaches 86 at the bottom of the nanocup and is ≈3–15 averaged over the nanocup cavity height, agreeing with the experimental enhancement result. In conclusion, this demonstration of solution-based coupling between QDs and gold nanocups opens up new possibilities for applications that would benefit from a solution environment such as biosensing.« less

  16. Photoluminescence Enhancement of CuInS 2 Quantum Dots in Solution Coupled to Plasmonic Gold Nanocup Array

    DOE PAGES

    Peer, Akshit; Hu, Zhongjian; Singh, Ajay; ...

    2017-07-05

    A strong plasmonic enhancement of photoluminescence (PL) decay rate in quantum dots (QDs) coupled to an array of gold-coated nanocups is demonstrated. CuInS2 QDs that emit at a wavelength that overlaps with the extraordinary optical transmission (EOT) of the gold nanocup array are placed in the cups as solutions. Time-resolved PL reveals that the decay rate of the QDs in the plasmonically coupled system can be enhanced by more than an order of magnitude. Using finite-difference time-domain (FDTD) simulations, it is shown that this enhancement in PL decay rate results from an enhancement factor of ≈100 in electric field intensitymore » provided by the plasmonic mode of the nanocup array, which is also responsible for the EOT. The simulated Purcell factor approaches 86 at the bottom of the nanocup and is ≈3–15 averaged over the nanocup cavity height, agreeing with the experimental enhancement result. In conclusion, this demonstration of solution-based coupling between QDs and gold nanocups opens up new possibilities for applications that would benefit from a solution environment such as biosensing.« less

  17. Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Demchenko, D. O.; Usikov, A.; Helava, H.; Makarov, Yu.

    2015-03-01

    We have investigated point defects in GaN grown by HVPE by using steady-state and time-resolved photoluminescence (PL). Among the most common PL bands in this material are the red luminescence band with a maximum at 1.8 eV and a zero-phonon line (ZPL) at 2.36 eV (attributed to an unknown acceptor having an energy level 1.130 eV above the valence band), the blue luminescence band with a maximum at 2.9 eV (attributed to ZnGa), and the ultraviolet luminescence band with the main peak at 3.27 eV (related to an unknown shallow acceptor). In GaN with the highest quality, the dominant defect-related PL band at high excitation intensity is the green luminescence band with a maximum at about 2.4 eV. We attribute this band to transitions of electrons from the conduction band to the 0/+ level of the isolated CN defect. The yellow luminescence (YL) band, related to transitions via the -/0 level of the same defect, has a maximum at 2.1 eV. Another yellow luminescence band, which has similar shape but peaks at about 2.2 eV, is observed in less pure GaN samples and is attributed to the CNON complex. In semi-insulating GaN, the GL2 band with a maximum at 2.35 eV (attributed to VN) and the BL2 band with a maximum at 3.0 eV and the ZPL at 3.33 eV (attributed to a defect complex involving hydrogen) are observed. We also conclude that the gallium vacancy-related defects act as centers of nonradiative recombination.

  18. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.

    2016-08-01

    Heterostructures with CdTe and CdTe1-xSex (x ˜ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ˜ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ˜6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  19. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE PAGES

    Rice, W. D.; Liu, W.; Pinchetti, V.; ...

    2017-04-07

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  20. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.

    Heterostructures with CdTe and CdTe 1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects havemore » a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 um, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 us with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 us.« less

  1. Direct Measurements of Magnetic Polarons in Cd 1–xMn x Se Nanocrystals from Resonant Photoluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, W. D.; Liu, W.; Pinchetti, V.

    In semiconductors, quantum confinement can greatly enhance the interaction between band carriers (electrons and holes) and dopant atoms. One manifestation of this enhancement is the increased stability of exciton magnetic polarons in magnetically doped nanostructures. In the limit of very strong 0D confinement that is realized in colloidal semiconductor nanocrystals, a single exciton can exert an effective exchange field B ex on the embedded magnetic dopants that exceeds several tesla. Here we use the very sensitive method of resonant photoluminescence (PL) to directly measure the presence and properties of exciton magnetic polarons in colloidal Cd 1–xMn xSe nanocrystals. Despite smallmore » Mn 2+ concentrations (x = 0.4–1.6%), large polaron binding energies up to ~26 meV are observed at low temperatures via the substantial Stokes shift between the pump laser and the resonant PL maximum, indicating nearly complete alignment of all Mn 2+ spins by B exex ≈ 10 T in these nanocrystals, in good agreement with theoretical estimates. Further, the emission line widths provide direct insight into the statistical fluctuations of the Mn 2+ spins. In conclusion, these resonant PL studies provide detailed insight into collective magnetic phenomena, especially in lightly doped nanocrystals where conventional techniques such as nonresonant PL or time-resolved PL provide ambiguous results.« less

  2. Enhanced emission of charged-exciton polaritons from colloidal quantum dots on a SiN/SiO2 slab waveguide

    PubMed Central

    Xu, Xingsheng; Li, Xingyun

    2015-01-01

    We investigate the photoluminescence (PL) spectra and the time-resolved PL decay process from colloidal quantum dots on SiN/SiO2 wet etched via BOE (HF:NH4F:H2O). The spectrum displays multi-peak shapes that vary with irradiation time. The evolution of the spectral peaks with irradiation time and collection angle demonstrates that the strong coupling of the charged-exciton emission to the leaky modes of the SiN/SiO2 slab waveguide predominantly produces short-wavelength spectral peaks, resulting in multi-peak spectra. We conclude that BOE etching enhances the charged-exciton emission efficiency and its contribution to the total emission compared with the unetched case. BOE etching smoothes the electron confinement potential, thus decreasing the Auger recombination rate. Therefore, the charged-exciton emission efficiency is high, and the charged-exciton-polariton emission can be further enhanced through strong coupling to the leaky mode of the slab waveguide. PMID:25988709

  3. Optical and electrical measurement of energy transfer between nanocrystalline quantum dots and photosystem I.

    PubMed

    Jung, Hyeson; Gulis, Galina; Gupta, Subhadra; Redding, Kevin; Gosztola, David J; Wiederrecht, Gary P; Stroscio, Michael A; Dutta, Mitra

    2010-11-18

    In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSII). In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range. We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process. Our PL experiments showed that emission from the NQDs is quenched, and the fluorescence from PSI is enhanced. Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI. This nonradiative energy transfer occurs in ∼6 ps. Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse.

  4. Time-resolved optical studies of wide-gap II-VI semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Hong

    ZnSe and ZnSe-based quantum well and superlattice structures are potential candidates for light emitting devices and other optical devices such as switches and modulators working in the blue-green wavelength range. Carrier dynamics studies of these structures are important in evaluating device performance as well as understanding the underlying physical processes. In this thesis, a carrier dynamics investigation is conducted for temperature from 77K to 295K on CdZnSSe/ZnSSe single quantum well structure (SQW) and ZnSe/ZnSTe superlattice fabricated by molecular beam epitaxy (MBE). Two experimental techniques with femtosecond time resolution are used in this work: up-conversion technique for time- resolved photoluminescence (PL) and pump-probe technique for time-resolved differential absorption studies. For both heterostructures, the radiative recombination is dominated by exciton transition due to the large exciton binding energy as a result of quantum confinement effect. The measured decay time of free exciton PL in CdZnSSe/ZnSSe SQW increases linearly with increasing temperature which agrees with the theoretical prediction by considering the conservation of momentum requirement for radiative recombination. However, the recombination of free carriers is also observed in CdZnSSe/ZnSSe SQW for the whole temperature range studied. On the other hand, in ZnSe/ZnSTe superlattice structures, the non- radiative recombination processes are non-negligible even at 77K and become more important in higher temperature range. The relaxation processes such as spectral hole burning, carrier thermalization and hot-carrier cooling are observed in ZnSe/ZnSTe superlattices at room temperature (295K) by the femtosecond pump-probe measurements. A rapid cooling of the thermalized hot- carrier from 763K to 450K within 4ps is deduced. A large optical nonlinearity (i.e., the induced absorption change) around the heavy-hole exciton energy is also obtained.

  5. Time-resolved analysis of the white photoluminescence from chemically synthesized SiC{sub x}O{sub y} thin films and nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabassum, Natasha; Nikas, Vasileios; Ford, Brian

    2016-07-25

    The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiC{sub x}O{sub y≤1.6} (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiC{sub x}O{sub y} films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350–950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiC{sub x}O{sub y} thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy.more » A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiC{sub x}O{sub y}. Furthermore, the PL lifetime behavior of the SiC{sub x}O{sub y} thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.« less

  6. Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency.

    PubMed

    Ezzedini, Maher; Hidouri, Tarek; Alouane, Mohamed Helmi Hadj; Sayari, Amor; Shalaan, Elsayed; Chauvin, Nicolas; Sfaxi, Larbi; Saidi, Faouzi; Al-Ghamdi, Ahmed; Bru-Chevallier, Catherine; Maaref, Hassen

    2017-12-01

    This paper reports on experimental and theoretical investigations of atypical temperature-dependent photoluminescence properties of multi-stacked InAs quantum dots in close proximity to InGaAs strain-relief underlying quantum well. The InAs/InGaAs/GaAs QD heterostructure was grown by solid-source molecular beam epitaxy (SS-MBE) and investigated via photoluminescence (PL), spectroscopic ellipsometry (SE), and picosecond time-resolved photoluminescence. Distinctive double-emission peaks are observed in the PL spectra of the sample. From the excitation power-dependent and temperature-dependent PL measurements, these emission peaks are associated with the ground-state transition from InAs QDs with two different size populations. Luminescence measurements were carried out as function of temperature in the range of 10-300 K by the PL technique. The low temperature PL has shown an abnormal emission which appeared at the low energy side and is attributed to the recombination through the deep levels. The PL peak energy presents an anomalous behavior as a result of the competition process between localized and delocalized carriers. We propose the localized-state ensemble model to explain the usual photoluminescence behaviors. The quantitative study shows that the quantum well continuum states act as a transit channel for the redistribution of thermally activated carriers. We have determined the localization depth and its effect on the application of the investigated heterostructure for photovoltaic cells. The model gives an overview to a possible amelioration of the InAs/InGaAs/GaAs QDs SCs properties based on the theoretical calculations.

  7. Effect of Carrier Thermalization Dynamics on Light Emission and Amplification in Organometal Halide Perovskites.

    PubMed

    Chen, Kai; Barker, Alex J; Morgan, Francis L C; Halpert, Jonathan E; Hodgkiss, Justin M

    2015-01-02

    The remarkable rise of organometal halide perovskites as solar photovoltaic materials has been followed by promising developments in light-emitting devices, including lasers. Here we present unique insights into the processes leading to photon emission in these materials. We employ ultrafast broadband photoluminescence (PL) and transient absorption spectroscopies to directly link density dependent ultrafast charge dynamics to PL. We find that exceptionally strong PL at the band edge is preceded by thermalization of free charge carriers. Short-lived PL above the band gap is clear evidence of nonexcitonic emission from hot carriers, and ultrafast PL depolarization confirms that uncorrelated charge pairs are precursors to photon emission. Carrier thermalization has a profound effect on amplified stimulated emission at high fluence; the delayed onset of optical gain we resolve within the first 10 ps and the unusual oscillatory behavior are both consequences of the kinetic interplay between carrier thermalization and optical gain.

  8. Investigation of carrier dynamics in InAs/GaAsSb quantum dots with different silicon delta-doping levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Keun-Yong; Kim, Yeongho; Kuciauskas, Darius

    2016-11-10

    The optical properties of InAs quantum dots (QDs) embedded in a GaAsSb matrix with different delta (d)-doping levels of 0, 2, 4, and 6 electrons per dot (e-/dot), incorporated to control the occupation of QD electronic states, are studied by photoluminescence (PL) spectroscopy. The time-resolved PL data taken at 10 K reveal that the increase of δ-doping density from 2 to 6 e -/dot decreases the recombination lifetime of carriers at ground states of the QDs from 996 ± 36 to 792 ± 19 ps, respectively. Furthermore, the carrier lifetime of the sample with 4 e -/dot is found tomore » increase at a slower rate than that of the undoped sample as temperature increases above 70 K. An Arrhenius plot of the temperature dependent PL intensity indicates that the thermal activation energy of electrons in the QDs, required for carrier escape from the dot ground state to continuum state, is increased when the d-doping density is high enough (>4 e -/dot). These results are attributed to the enhanced Coulomb interaction of electrons provided by the d-doping, leading to reduced thermal quenching of the PL.« less

  9. Amine-functionalized diatom frustules: a platform for specific and sensitive detection of nitroaromatic explosive derivative.

    PubMed

    Selvaraj, Viji; Thomas, Neethi; Anthuvan, Allen Joseph; Nagamony, Ponpandian; Chinnuswamy, Viswanathan

    2017-12-14

    In the present study, an attempt was made to develop a proof of concept for the detection of nitroaromatic explosive derivatives through the photoluminescence (PL) quenching process using functionalized diatom frustules as a sensing platform. The diatom frustules are composed of nanostructured, highly porous biogenic silica material and emit strong, visible blue PL upon UV excitation. PL-active biosilica was isolated from the marine diatom Nitzschia sp. and was amine-functionalized to develop a sensing platform. Functionalized diatom frustules were further characterized using field emission scanning electron microscope and a series of spectroscopic methods. When nitroaromatic compounds were bound to the functionalized diatom frustules biosilica, the PL intensity from the functionalized biosilica was partially quenched due to the electrophilic nature of the nitro (-NO) groups. The quenching process confirmed the Meisenheimer complex formation and was investigated by using Fourier transform infrared spectroscopy and time-resolved photoluminescence studies. The developed platform was further evaluated for its sensitivity and specificity, and the limit of detection (LOD) of the assay was determined as 1 μM for a series of nitroaromatic explosive compounds. In conclusion, the developed sensing platform will have great utility in the development of on-site detection platforms for sensitive detection of warfare explosive nitroaromatic compounds from the environment.

  10. Origin of blue photoluminescence from colloidal silicon nanocrystals fabricated by femtosecond laser ablation in solution.

    PubMed

    Hao, H L; Wu, W S; Zhang, Y; Wu, L K; Shen, W Z

    2016-08-12

    We present a detailed investigation into the origin of blue emission from colloidal silicon (Si) nanocrystals (NCs) fabricated by femtosecond laser ablation of Si powder in 1-hexene. High resolution transmission electron microscopy and Raman spectroscopy observations confirm that Si NCs with average size 2.7 nm are produced and well dispersed in 1-hexene. Fourier transform infrared spectrum and x-ray photoelectron spectra have been employed to reveal the passivation of Si NCs surfaces with organic molecules. On the basis of the structural characterization, UV-visible absorption, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra investigations, we deduce that room-temperature blue luminescence from colloidal Si NCs originates from the following two processes: (i) under illumination, excitons first form within colloidal Si NCs by direct transition at the X or Γ (Γ25 → Γ'2) point; (ii) and then some trapped excitons migrate to the surfaces of colloidal Si NCs and further recombine via the surface states associated with the Si-C or Si-C-H2 bonds.

  11. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaunbrecher, Katherine N.; National Renewable Energy Laboratory, Golden, Colorado 80401; Kuciauskas, Darius

    Heterostructures with CdTe and CdTe{sub 1-x}Se{sub x} (x ∼ 0.01) absorbers between two wider-band-gap Cd{sub 1-x}Mg{sub x}Te barriers (x ∼ 0.25–0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have amore » zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ∼6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.« less

  12. Interfacial exciplex formation in bilayers of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Nobuyasu, R. S.; Araujo, K. A. S.; Cury, L. A.; Jarrosson, T.; Serein-Spirau, F.; Lère-Porte, J.-P.; Dias, F. B.; Monkman, A. P.

    2013-10-01

    The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.

  13. Delocalization Drives Free Charge Generation in Conjugated Polymer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry

    We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less

  14. Delocalization Drives Free Charge Generation in Conjugated Polymer Films

    DOE PAGES

    Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry

    2018-02-19

    We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less

  15. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography

    PubMed Central

    Wang, Sheng-Wen; Hong, Kuo-Bin; Tsai, Yu-Lin; Teng, Chu-Hsiang; Tzou, An-Jye; Chu, You-Chen; Lee, Po-Tsung; Ku, Pei-Cheng; Lin, Chien-Chung; Kuo, Hao-Chung

    2017-01-01

    In this research, nano-ring light-emitting diodes (NRLEDs) with different wall width (120 nm, 80 nm and 40 nm) were fabricated by specialized nano-sphere lithography technology. Through the thinned wall, the effective bandgaps of nano-ring LEDs can be precisely tuned by reducing the strain inside the active region. Photoluminescence (PL) and time-resolved PL measurements indicated the lattice-mismatch induced strain inside the active region was relaxed when the wall width is reduced. Through the simulation, we can understand the strain distribution of active region inside NRLEDs. The simulation results not only revealed the exact distribution of strain but also predicted the trend of wavelength-shifted behavior of NRLEDs. Finally, the NRLEDs devices with four-color emission on the same wafer were demonstrated. PMID:28256529

  16. Growth and optical characteristics of Tm-doped AlGaN layer grown by organometallic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Takatsu, J.; Fuji, R.; Tatebayashi, J.; Timmerman, D.; Lesage, A.; Gregorkiewicz, T.; Fujiwara, Y.

    2018-04-01

    We report on the growth and optical properties of Tm-doped AlGaN layers by organometallic vapor phase epitaxy (OMVPE). The morphological and optical properties of Tm-doped GaN (GaN:Tm) and Tm-doped AlGaN (AlGaN:Tm) were investigated by Nomarski differential interference contrast microscopy and photoluminescence (PL) characterization. Nomarski images reveal an increase of surface roughness upon doping Tm into both GaN and AlGaN layers. The PL characterization of GaN:Tm shows emission in the near-infrared range originating from intra-4f shell transitions of Tm3+ ions. In contrast, AlGaN:Tm also exhibits blue light emission from Tm3+ ions. In that case, the wider band gap of the AlGaN host allows energy transfer to higher states of the Tm3+ ions. With time-resolved PL measurements, we could distinguish three types of luminescent sites of Tm3+ in the AlGaN:Tm layer, having different decay times. Our results confirm that Tm ions can be doped into GaN and AlGaN by OMVPE, and show potential for the fabrication of novel high-color-purity blue light emitting diodes.

  17. Imaging as characterization techniques for thin-film cadmium telluride photovoltaics

    NASA Astrophysics Data System (ADS)

    Zaunbrecher, Katherine

    The goal of increasing the efficiency of solar cell devices is a universal one. Increased photovoltaic (PV) performance means an increase in competition with other energy technologies. One way to improve PV technologies is to develop rapid, accurate characterization tools for quality control. Imaging techniques developed over the past decade are beginning to fill that role. Electroluminescence (EL), photoluminescence (PL), and lock-in thermography are three types of imaging implemented in this study to provide a multifaceted approach to studying imaging as applied to thin-film CdTe solar cells. Images provide spatial information about cell operation, which in turn can be used to identify defects that limit performance. This study began with developing EL, PL, and dark lock-in thermography (DLIT) for CdTe. Once imaging data were acquired, luminescence and thermography signatures of non-uniformities that disrupt the generation and collection of carriers were identified and cataloged. Additional data acquisition and analysis were used to determine luminescence response to varying operating conditions. This includes acquiring spectral data, varying excitation conditions, and correlating luminescence to device performance. EL measurements show variations in a cell's local voltage, which include inhomogeneities in the transparent-conductive oxide (TCO) front contact, CdS window layer, and CdTe absorber layer. EL signatures include large gradients, local reduction of luminescence, and local increases in luminescence on the interior of the device as well as bright spots located on the cell edges. The voltage bias and spectral response were analyzed to determine the response of these non-uniformities and surrounding areas. PL images of CdTe have not shown the same level of detail and features compared to their EL counterparts. Many of the signatures arise from reflections and severe inhomogeneities, but the technique is limited by the external illumination source used to excite carriers. Measurements on unfinished CdS and CdTe films reveal changes in signal after post-deposition processing treatments. DLIT images contained heat signatures arising from defect-related current crowding. Forward- and reverse-bias measurements revealed hot spots related to shunt and weak-diode defects. Modeling and previous studies done on Cu(In,Ga)Se 2 thin-film solar cells aided in identifying the physical causes of these thermographic and luminescence signatures. Imaging data were also coupled with other characterization techniques to provide a more comprehensive examination of nonuniform features and their origins and effects on device performance. These techniques included light-beam-induced-current (LBIC) measurements, which provide spatial quantum efficiency maps of the cell at varying resolutions, as well as time-resolved photoluminescence and spectral PL mapping. Local drops in quantum efficiency seen in LBIC typically corresponded with reductions in EL signal while minority-carrier lifetime values acquired by time-resolved PL measurements correlate with PL intensity.

  18. Investigation of Excitonic Polaritons in ZnO Microcavities

    DTIC Science & Technology

    2006-07-28

    defects on the nonradiative processes in L-MBE ZnO were studied using time-resolved PL making a connection with the results of positron annihilation...IMPLANTATION DEPTH (nm) S PA R A M E T E R POSITRON ENERGY (keV) 150010005003001000 0 5 10 15 20 25 30 0.42 0.44 0.46 0.48 0.50 ZnO single crystal 0.42...photoluminescence (TRPL) and monoenergetic positron annihilation methods, and elimination of point defects as a fundamental pathway in improving

  19. Specification/Verification of Temporal Properties for Distributed Systems: Issues and Approaches. Volume 1

    DTIC Science & Technology

    1990-02-01

    copies Pl ,...,P. of a multiple module fp resolve nondeterminism (local or global) in an identical manner. 5. The copies PI,...,P, axe physically...recovery block. A recovery block consists of a conventional block (like in ALGOL or PL /I) which is provided with a means of error detection, called an...improved failures model for communicating processes. In Proceeding. NSF- SERC Seminar on Concurrency, volume 197 of Lecture Notes in Computer Science

  20. Stochastic Models in the DORIS Position Time Series: Estimates from the IDS Contribution to the ITRF2014

    NASA Astrophysics Data System (ADS)

    Klos, A.; Bogusz, J.; Moreaux, G.

    2017-12-01

    This research focuses on the investigation of the deterministic and stochastic parts of the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) weekly coordinate time series from the IDS contribution to the ITRF2014A set of 90 stations was divided into three groups depending on when the data was collected at an individual station. To reliably describe the DORIS time series, we employed a mathematical model that included the long-term nonlinear signal, linear trend, seasonal oscillations (these three sum up to produce the Polynomial Trend Model) and a stochastic part, all being resolved with Maximum Likelihood Estimation (MLE). We proved that the values of the parameters delivered for DORIS data are strictly correlated with the time span of the observations, meaning that the most recent data are the most reliable ones. Not only did the seasonal amplitudes decrease over the years, but also, and most importantly, the noise level and its type changed significantly. We examined five different noise models to be applied to the stochastic part of the DORIS time series: a pure white noise (WN), a pure power-law noise (PL), a combination of white and power-law noise (WNPL), an autoregressive process of first order (AR(1)) and a Generalized Gauss Markov model (GGM). From our study it arises that the PL process may be chosen as the preferred one for most of the DORIS data. Moreover, the preferred noise model has changed through the years from AR(1) to pure PL with few stations characterized by a positive spectral index.

  1. Interfacial exciplex formation in bilayers of conjugated polymers.

    PubMed

    Nobuyasu, R S; Araujo, K A S; Cury, L A; Jarrosson, T; Serein-Spirau, F; Lère-Porte, J-P; Dias, F B; Monkman, A P

    2013-10-28

    The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.

  2. Charge Carrier Dynamics and pH Effect on Optical Properties of Anionic and Cationic Porphyrin-Graphene Oxide Composites

    NASA Astrophysics Data System (ADS)

    Bajjou, O.; Bakour, A.; Khenfouch, M.; Baitoul, M.; Mothudi, B.; Maaza, M.; Faulques, E.

    2018-02-01

    Composites of graphene oxide (GO) functionalized with Sn(V) tetrakis (4-pyridyl)porphyrin (SnTPyP2+) and meso-tetrakis(4-phenylsulfonic acid)porphyrin (H4TPPS4 2- ) were prepared at different pH values.Successful synthesis of water-soluble stable suspension of GO-SnTPyP2+ and GO-H4TPPS4 2-was confirmed using various spectroscopic techniques, including scanning electronic microscopy (SEM), Raman spectroscopy, and ultraviolet-visible (UV-Vis) absorption. Variation of the pH was found to strongly influence the optical properties of the GO-SnTPyP2+ and GO-H4TPPS4 2-composites, as demonstrated by the UV-Vis absorption results. Steady-state photoluminescence (PL) and time-resolved PL (TRPL) results for both composites showed PL quenching and decrease in the exciton mean lifetime, suggesting strong excited-state interactions between the different components. Moreover, charge carrier dynamics study revealed that insertion of GO into both porphyrin derivatives led to faster mean lifetime for excitons with a slight advantage in the case of the cationic porphyrin-GO composite, making it a better choice for charge separation applications thanks to the higher efficiency of charge/energy transfer interactions.

  3. Polarity-dependence of the defect formation in c-axis oriented ZnO by the irradiation of an 8 MeV proton beam

    NASA Astrophysics Data System (ADS)

    Koike, Kazuto; Yano, Mitsuaki; Gonda, Shun-ichi; Uedono, Akira; Ishibashi, Shoji; Kojima, Kazunobu; Chichibu, Shigefusa F.

    2018-04-01

    The polarity dependence of the radiation hardness of single-crystalline ZnO bulk crystals is studied by irradiating the Zn-polar and O-polar c-planes with an 8 MeV proton beam up to the fluence of 4.2 × 1016 p/cm2. To analyze the hardness, radiation-induced defects were evaluated using positron annihilation (PA) analysis, and the recovery by post-annealing was examined using continuous-wave photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. It was suggested by the PA and PL analyses that the major defects in both polarities were VZnVO divacancies. While the PA data did not show the clear dependence on the polarity, the PL and TRPL results showed that the Zn-polar c-plane had a little higher radiation tolerance than that of the O-polar c-plane, which was consistent with the result that the increase in the electrical resistance by proton beam irradiation was smaller for the former one. Considering these results in total, the polarity dependence is considered to be not so large, but the Zn-polar c-plane has a little higher tolerance than that of the O-polar one.

  4. Recombination dynamics of excitons with low non-radiative component in semi-polar (10-11)-oriented GaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Rosales, D.; Gil, B.; Bretagnon, T.; Guizal, B.; Izyumskaya, N.; Monavarian, M.; Zhang, F.; Okur, S.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2014-09-01

    Optical properties of GaN/Al0.2Ga0.8N multiple quantum wells grown with semi-polar (10-11) orientation on patterned 7°-off Si (001) substrates have been investigated. Studies performed at 8 K reveal the in-plane anisotropic behavior of the QW photoluminescence (PL) intensity for this semi-polar orientation. The time resolved PL measurements were carried out in the temperature range from 8 to 295 K to deduce the effective recombination decay times, with respective radiative and non-radiative contributions. The non-radiative component remains relatively weak with increasing temperature, indicative of high crystalline quality. The radiative decay time is a consequence of contribution from both localized and free excitons. We report an effective density of interfacial defects of 2.3 × 1012 cm-2 and a radiative recombination time of τloc = 355 ps for the localized excitons. This latter value is significantly larger than those reported for the non-polar structures, which we attribute to the presence of a weak residual electric field in the semi-polar QW layers.

  5. Antimicrobial Activity and Cell Selectivity of Synthetic and Biosynthetic Cationic Polymers

    PubMed Central

    Venkatesh, Mayandi; Barathi, Veluchamy Amutha; Goh, Eunice Tze Leng; Anggara, Raditya; Fazil, Mobashar Hussain Urf Turabe; Ng, Alice Jie Ying; Harini, Sriram; Aung, Thet Tun; Fox, Stephen John; Liu, Shouping; Barkham, Timothy Mark Sebastian; Loh, Xian Jun

    2017-01-01

    ABSTRACT The mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones. Both εPL and linear polyethylenimine (LPEI) exhibit bactericidal properties by depolarizing the cytoplasmic membrane and disrupt preformed biofilms. εPL displays broad-spectrum antimicrobial properties against antibiotic-resistant Gram-negative and Gram-positive strains and fungi. εPL elicits rapid bactericidal activity against both Gram-negative and Gram-positive bacteria, and its biocompatibility index is superior to those of cationic antiseptic agents and LPEI. εPL does not interfere with the wound closure of injured rabbit corneas. In a rabbit model of bacterial keratitis, the topical application of εPL (0.3%, wt/vol) decreases the bacterial burden and severity of infections caused by Pseudomonas aeruginosa and Staphylococcus aureus strains. In vivo imaging studies confirm that εPL-treated corneas appeared transparent and nonedematous compared to untreated infected corneas. Taken together, our results highlight the potential of εPL in resolving topical microbial infections. PMID:28784676

  6. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands.

    PubMed

    Carroll, Gerard M; Limpens, Rens; Neale, Nathan R

    2018-05-09

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups-alkyls, amides, and alkoxides-on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative to alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands-not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals-are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.

  7. Tuning Confinement in Colloidal Silicon Nanocrystals with Saturated Surface Ligands

    DOE PAGES

    Carroll, Gerard M.; Limpens, Rens; Neale, Nathan R.

    2018-04-16

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative tomore » alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. Furthermore, these results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.« less

  8. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods

    NASA Astrophysics Data System (ADS)

    Mohammadi, F.; Schmitzer, H.; Kunert, G.; Hommel, D.; Ge, J.; Duscher, G.; Langbein, W.; Wagner, H. P.

    2017-12-01

    We studied the emission of bare and aluminum quinoline (Alq3)/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ˜1.5 μm length and ˜250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  9. Emission dynamics of hybrid plasmonic gold/organic GaN nanorods.

    PubMed

    Mohammadi, F; Schmitzer, H; Kunert, G; Hommel, D; Ge, J; Duscher, G; Langbein, W; Wagner, H P

    2017-12-15

    We studied the emission of bare and aluminum quinoline (Alq 3 )/gold coated wurtzite GaN nanorods by temperature- and intensity-dependent time-integrated and time-resolved photoluminescence (PL). The GaN nanorods of ∼1.5 μm length and ∼250 nm diameter were grown by plasma-assisted molecular beam epitaxy. Gold/Alq 3 coated GaN nanorods were synthesized by organic molecular beam deposition. The near band-edge and donor-acceptor pair luminescence was investigated in bare GaN nanorods and compared with multilevel model calculations providing the dynamical parameters for electron-hole pairs, excitons, impurity bound excitons, donors and acceptors. Subsequently, the influence of a 10 nm gold coating without and with an Alq 3 spacer layer was studied and the experimental results were analyzed with the multilevel model. Without a spacer layer, a significant PL quenching and lifetime reduction of the near band-edge emission is found. The behavior is attributed to surface band-bending and Förster energy transfer from excitons to surface plasmons in the gold layer. Inserting a 5 nm Alq 3 spacer layer reduces the PL quenching and lifetime reduction which is consistent with a reduced band-bending and Förster energy transfer. Increasing the spacer layer to 30 nm results in lifetimes which are similar to uncoated structures, showing a significantly decreased influence of the gold coating on the excitonic dynamics.

  10. Interactions between photoexcited NIR emitting CdHgTe quantum dots and graphene oxide

    NASA Astrophysics Data System (ADS)

    Jagtap, Amardeep M.; Varade, Vaibhav; Konkena, Bharathi; Ramesh, K. P.; Chatterjee, Abhijit; Banerjee, Arup; Pendyala, Naresh Babu; Koteswara Rao, K. S. R.

    2016-02-01

    Hydrothermally grown mercury cadmium telluride quantum dots (CdHgTe QDs) are decorated on graphene oxide (GO) sheets through physisorption. The structural change of GO through partial reduction of oxygen functional groups is observed with X-ray photoelectron spectroscopy in GO-QDs composites. Raman spectroscopy provides relatively a small change (˜1.1 times) in D/G ratio of band intensity and red shift in G band from 1606 cm-1 to 1594 cm-1 in GO-CdHgTe QDs (2.6 nm) composites, which indicates structural modification of GO network. Steady state and time resolved photoluminescence (PL) spectroscopy shows the electronic interactions between photoexcited near infrared emitting CdHgTe QDs and GO. Another interesting observation is PL quenching in the presence of GO, and it is quite effective in the case of smaller size QDs (2.6 nm) compared to the larger size QDs (4.2 nm). Thus, the observed PL quenching is attributed to the photogenerated electron transfer from QDs to GO. The photoexcited electron transfer rate decreases from 2.2 × 109 to 1.5 × 108 s-1 with increasing particle size from 2.6 to 4.2 nm. Photoconductivity measurements on QDs-GO composite devices show nearly 3 fold increase in the current density under photo-illumination, which is a promising aspect for solar energy conversion and other optoelectronic applications.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neale, Nathan R; Carroll, Gerard; Limpens, Rens

    The optical properties of silicon nanocrystals (Si NCs) are a subject of intense study and continued debate. In particular, Si NC photoluminescence (PL) properties are known to depend strongly on the surface chemistry, resulting in electron-hole recombination pathways derived from the Si NC band-edge, surface-state defects, or combined NC-conjugated ligand hybrid states. In this Letter, we perform a comparison of three different saturated surface functional groups - alkyls, amides, and alkoxides - on nonthermal plasma-synthesized Si NCs. We find a systematic and size-dependent high-energy (blue) shift in the PL spectrum of Si NCs with amide and alkoxy functionalization relative tomore » alkyl. Time-resolved photoluminescence and transient absorption spectroscopies reveal no change in the excited-state dynamics between Si NCs functionalized with alkyl, amide, or alkoxide ligands, showing for the first time that saturated ligands - not only surface-derived charge-transfer states or hybridization between NC and low-lying ligand orbitals - are responsible for tuning the Si NC optical properties. To explain these PL shifts we propose that the atom bound to the Si NC surface strongly interacts with the Si NC electronic wave function and modulates the Si NC quantum confinement. These results reveal a potentially broadly applicable correlation between the optoelectronic properties of Si NCs and related quantum-confined structures based on the interaction between NC surfaces and the ligand binding group.« less

  12. Proton-Coupled Electron Transfer and a Tyrosine-Histidine Pair in a Photosystem II-Inspired β-Hairpin Maquette: Kinetics on the Picosecond Time Scale.

    PubMed

    Pagba, Cynthia V; McCaslin, Tyler G; Chi, San-Hui; Perry, Joseph W; Barry, Bridgette A

    2016-02-25

    Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189. Peptide A is a PSII-inspired β-hairpin, which contains a single tyrosine (Y5) and histidine (H14). Previous electrochemical characterization indicated that Peptide A conducts a net PCET reaction between Y5 and H14, which have a cross-strand π-π interaction. The kinetic impact of H14 has not yet been explored. Here, we address this question through time-resolved absorption spectroscopy and 280-nm photolysis, which generates a neutral tyrosyl radical. The formation and decay of the neutral tyrosyl radical at 410 nm were monitored in Peptide A and its variant, Peptide C, in which H14 is replaced by cyclohexylalanine (Cha14). Significantly, both electron transfer (ET, pL 11, L = lyonium) and PCET (pL 9) were accelerated in Peptide A and C, compared to model tyrosinate or tyrosine at the same pL. Increased electronic coupling, mediated by the peptide backbone, can account for this rate acceleration. Deuterium exchange gave no significant solvent isotope effect in the peptides. At pL 9, but not at pL 11, the reaction rate decreased when H14 was mutated to Cha14. This decrease in rate is attributed to an increase in reorganization energy in the Cha14 mutant. The Y5-H14 mechanism in Peptide A is reminiscent of proton- and electron-transfer events involving YD-H189 in PSII. These results document a mechanism by which proton donors and acceptors can regulate the rate of PCET reactions.

  13. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  14. Energy and charge transfer dynamics between Alq3 and CdSeS nanocrystals.

    PubMed

    Zhang, Shuping; Liu, Yuqiang; Yang, Yanqiang

    2010-03-01

    The photoluminescence properties of the blend films consisting of organic small molecules and nanocrystals (NCs)--Alq3 and CdSeS NCs--were studied by steady-state and time-resolved photoluminescence (PL) spectroscopy with different excited wavelengths. Both the fluorescence intensity and lifetime are intensively dependent on the NC concentration. The detailed analysis of experiment data proves that Forster energy transfer from the Alq3 to the NCs exists simultaneously with the charge transfer and both compete with each other in the blend films.

  15. Genetic and Physiological Studies of Bacillus anthracis Related to Development of An Improved Vaccine

    DTIC Science & Technology

    1989-07-01

    enzyme in a 1.5 ml Eppendorf tube. Appropriate amounts of distilled water and 1OX buffer were added to give a total volume of 100 pl. Reaction...mixtures were incubated in a 370 C water bath for 2 to 15 h. Digests were heated at 650C for 10 minutes to stop reactions and then resolved on agarose gels...430 C water bath with shaking (160 rpm) for 4 hours. The culture was transferred in a similar manner three additional times. Following the fourth

  16. Fabrication and evaluation of plasmonic light-emitting diodes with thin p-type layer and localized Ag particles embedded by ITO

    NASA Astrophysics Data System (ADS)

    Okada, N.; Morishita, N.; Mori, A.; Tsukada, T.; Tateishi, K.; Okamoto, K.; Tadatomo, K.

    2017-04-01

    Light-emitting diodes (LEDs) have been demonstrated with a thin p-type layer using the plasmonic effect. Optimal LED device operation was found when using a 20-nm-thick p+-GaN layer. Ag of different thicknesses was deposited on the thin p-type layer and annealed to form the localized Ag particles. The localized Ag particles were embedded by indium tin oxide to form a p-type electrode in the LED structure. By optimization of the plasmonic LED, the significant electroluminescence enhancement was observed when the thickness of Ag was 9.5 nm. Both upward and downward electroluminescence intensities were improved, and the external quantum efficiency was approximately double that of LEDs without the localized Ag particles. The time-resolved photoluminescence (PL) decay time for the LED with the localized Ag particles was shorter than that without the localized Ag particles. The faster PL decay time should cause the increase in internal quantum efficiency by adopting the localized Ag particles. To validate the localized surface plasmon resonance coupling effect, the absorption of the LEDs was investigated experimentally and using simulations.

  17. Material and device properties of superacid-treated monolayer molybdenum disulfide

    DOE PAGES

    Alharbi, Abdullah; Zahl, Percy; Shahrjerdi, Davood

    2017-01-16

    Here, we study the effects of chemical treatment with bis(trifluoromethane) sulfonimide superacid on material and device properties of monolayer molybdenum disulfide grown by chemical vapor deposition. Our spatially resolved photoluminescence (PL) measurements and device studies reveal two key findings due to the chemical treatment: (1) noticeable transformation of trions to neutral excitons, and (2) over 7-fold reduction in the density of mid-gap trap states. Specifically, a combination of scanning Auger microscopy and PL mapping reveals that the superacid treatment is effective in passivating the sulfur-deficient regions.

  18. Mechanism of hole injection enhancement in light-emitting diodes by inserting multiple hole-reservoir layers in electron blocking layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yukun; Wang, Shuai; Feng, Lungang

    In this study, gallium nitride (GaN) based light-emitting diodes (LEDs) with single and multiple hole-reservoir layers (HRLs) inserted in the electron-blocking layer (EBL) have been investigated numerically and experimentally. According to simulation results, a better electron confinement and a higher hole injection level can be achieved by the multiple HRLs inserted in the EBL region. To further reveal the underlying mechanism of hole injection enhancement experimentally, the active regions were intentionally designed to emit photons with three different wavelengths of 440 nm, 460 nm, and 480 nm, respectively. Based on the experimental results of photoluminescence (PL) and time-resolved PL (TRPL) measurements conducted atmore » 298 K, the remarkable enhancement (148%) of PL intensities and significant increase in the decay times of the quantum wells close to p-GaN can be obtained. Therefore, the mechanism is proposed that carriers are able to reserve in the EBL region with multiple HRLs for a much longer time. Meanwhile, carriers could diffuse into the active region by tunnelling and/or thermo-electronic effect and then recombine efficiently, leading to the better carrier reservoir effect and higher hole injection in LEDs. As a result, by inserting multiple HRLs in the EBL region instead of single HRL, the experimental external quantum efficiency is enhanced by 19.8%, while the serious droop ratio is markedly suppressed from 37.0% to 27.6% at the high current injection of 100 A/cm{sup 2}.« less

  19. Antiphospholipid Antibodies and Recurrent Thrombotic Events: Persistence and Portfolio

    PubMed Central

    Amory, Colum F.; Levine, Steve R.; Brey, Robin L.; Gebregziabher, Mulugeta; Tuhrim, Stanley; Tilley, Barbara C.; Simpson, Ann-Catherin N.; Sacco, Ralph L.; Mohr, J.P.

    2015-01-01

    Background There are very limited prospective data on the significance of persistent of antiphospholipid antibodies (aPL) and recurrent thrombo-occlusive events (TOEs). We investigated the prognostic value of (1) two newer aPL assays, (2) an aPL portfolio, and (3) persistent aPL positivity following stroke. Methods 1,770 subjects from the APASS-WARSS study underwent further aPL testing for antibodies to phosphatidylserine (aPS) and β2-glycoprotein-I (anti-β2GPI) from stored sera. Follow-up aPL status was also tested in a subset of subjects. Primary analysis was based on time to any TOE (ischemic stroke, MI, TIA, DVT, PE, or systemic arterial occlusion)/death at 2 years. Cox proportional hazard analyses assessed whether aPL independently related to outcome. Results Persistent anti-β2GPI decreased the time to TOE/death after adjustment for potential confounders (HR=2.86, CI 1.21-6.76, p=0.017). When persistent anti-β2GPI was combined with another persistently positive aPL, time to TOE/death was also reduced (HR=3.79, CI 1.18-12.14, p=0.025). Neither persistent aCL, persistent aPS alone, nor a single positive anti-β2GPI or aPS was associated with decreased time to TOE/death. No single positive aPL, portfolio of baseline aPL, or any persistent aPL increased the rate of TOE/death. Conclusions Rates of TOE/death were not influenced by aPL results at baseline or follow-up. Persistent anti-β2GPI alone and with persistent second aPL were independently associated with decreased time to TOE/death. Persistent aPL, an aPL portfolio, and newer aPL in ischemic stroke patients are not helpful in predicting an increased rate of recurrent TOEs. PMID:26513489

  20. Optical emission of GaN/AlN quantum-wires - the role of charge transfer from a nanowire template.

    PubMed

    Müßener, Jan; Greif, Ludwig A Th; Kalinowski, Stefan; Callsen, Gordon; Hille, Pascal; Schörmann, Jörg; Wagner, Markus R; Schliwa, Andrei; Martí-Sánchez, Sara; Arbiol, Jordi; Hoffmann, Axel; Eickhoff, Martin

    2018-03-28

    We show that one-dimensional (1d) GaN quantum-wires (QWRs) exhibit intense and spectrally sharp emission lines. These QWRs are realized in an entirely self-assembled growth process by molecular beam epitaxy (MBE) on the side facets of GaN/AlN nanowire (NW) heterostructures. Time-integrated and time-resolved photoluminescence (PL) data in combination with numerical calculations allow the identification and assignment of the manifold emission features to three different spatial recombination centers within the NWs. The recombination processes in the QWRs are driven by efficient charge carrier transfer effects between the different optically active regions, providing high intense QWR luminescence despite their small volume. This is deduced by a fast rise time of the QWR PL, which is similar to the fast decay-time of adjacent carrier reservoirs. Such processes, feeding the ultra-narrow QWRs with carriers from the relatively large NWs, can be the key feature towards the realization of future QWR-based devices. While processing of single quantum structures with diameters in the nm range presents a serious obstacle with respect to their integration into electronic or photonic devices, the QWRs presented here can be analyzed and processed using existing techniques developed for single NWs.

  1. Intense deep blue exciplex electroluminescence from NPB/TPBi:PPh3O-based OLEDs and their intrinsic degradation mechanisms (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shinar, Joseph; Hippola, Chamika; Danilovic, Dusan; Bhattacharjee, Ujjal; Petrich, Jacob W.; Shinar, Ruth

    2016-09-01

    We describe intense and efficient deep blue (430 - 440 nm) exciplex emission from NPB/TPBi:PPh3O OLEDs where the luminous efficiency approaches 4 Cd/A and the maximal brightness exceeds 22,000 Cd/m2. Time resolved PL measurements confirm the exciplex emission from NPB:TPBi, as studied earlier by Monkman and coworkers [Adv. Mater. 25, 1455 (2013)]. However, the inclusion of PPh3O improves the OLED performance significantly. The effect of PPh3O on the EL and PL will be discussed. The NPB/TPBi:PPh3O-based OLEDs were also studied by optically and electrically detected magnetic resonance (ODMR and EDMR, respectively). In particular, the amplitude of the negative (EL- and current-quenching) spin 1/2 resonance, previously attributed to enhanced formation of strongly EL-quenching positive bipolarons, increases as the OLEDs degrade in a dry nitrogen atmosphere. This degradation mechanism is discussed in relation to degradation induced by hot polarons that are energized by exciton annihilation.

  2. Recombination dynamics in In{sub x}Ga{sub 1−x}N quantum wells—Contribution of excited subband recombination to carrier leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, T.; Markurt, T.; Albrecht, M.

    2014-11-03

    The recombination dynamics of In{sub x}Ga{sub 1−x}N single quantum wells are investigated. By comparing the photoluminescence (PL) decay spectra with simulated emission spectra obtained by a Schrödinger-Poisson approach, we give evidence that recombination from higher subbands contributes the emission of the quantum well at high excitation densities. This recombination path appears as a shoulder on the high energy side of the spectrum at high charge carrier densities and exhibits decay in the range of ps. Due to the lower confinement of the excited subband states, a distinct proportion of the probability density function lies outside the quantum well, thus contributingmore » to charge carrier loss. By estimating the current density in our time resolved PL experiments, we show that the onset of this loss mechanism occurs in the droop relevant regime above 20 A/cm{sup 2}.« less

  3. Effect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals.

    PubMed

    Xi, Lifei; Cho, Deok-Yong; Besmehn, Astrid; Duchamp, Martial; Grützmacher, Detlev; Lam, Yeng Ming; Kardynał, Beata E

    2016-09-06

    This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

  4. Direct evaluation of influence of electron damage on the subcell performance in triple-junction solar cells using photoluminescence decays.

    PubMed

    Tex, David M; Nakamura, Tetsuya; Imaizumi, Mitsuru; Ohshima, Takeshi; Kanemitsu, Yoshihiko

    2017-05-16

    Tandem solar cells are suited for space applications due to their high performance, but also have to be designed in such a way to minimize influence of degradation by the high energy particle flux in space. The analysis of the subcell performance is crucial to understand the device physics and achieve optimized designs of tandem solar cells. Here, the radiation-induced damage of inverted grown InGaP/GaAs/InGaAs triple-junction solar cells for various electron fluences are characterized using conventional current-voltage (I-V) measurements and time-resolved photoluminescence (PL). The conversion efficiencies of the entire device before and after damage are measured with I-V curves and compared with the efficiencies predicted from the time-resolved method. Using the time-resolved data the change in the carrier dynamics in the subcells can be discussed. Our optical method allows to predict the absolute electrical conversion efficiency of the device with an accuracy of better than 5%. While both InGaP and GaAs subcells suffered from significant material degradation, the performance loss of the total device can be completely ascribed to the damage in the GaAs subcell. This points out the importance of high internal electric fields at the operating point.

  5. Synthesis and characterization of a new photoluminescent material, tris-[1-10 phenanthroline] aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rahul, E-mail: id-kumarrahul003@gmail.com; Bhargava, Parag; Dvivedi, Avanish

    A new photoluminescent material namely tris-[1-10 Phenanthroline] Aluminium Al(Phen){sub 3} has been synthesized and characterized. This material was characterized by fourier transform infrared spectroscopy (FTIR),nuclear magnetic resonance (NMR),mass spectroscopy, thermal gravimetric analysis (TGA),ultraviolet-visible spectroscopy(UV) and photoluminescence (PL). This material shows thermal stability up to 300°C. This material showed absorption maxima at 352nm which may be attributed to the moderate energy (π–π{sup *}) transition. Photoluminescence spectra for this material showed the most intense peak at 423 nm and the time resolved photoluminescence spectra showed two life time components. The decay times of the first and second component were 1.4ns and 4.8 ns respectively.

  6. Single-photon sources based on InAs/GaAs QDs for solar cell

    NASA Astrophysics Data System (ADS)

    Jia, Wei; Liu, Zhi; Wang, Xunchun

    2013-08-01

    We have grown InAs/GaAs quantum dots (QDs) by droplet epitaxy for application in single photon sources. This growth method enables the formation of QDs without strain, with emission wavelengths of around 1.3μm within the optimal detection range of cost effective silicon detector, and with reduced surface density of several tens to a few QDs per μm2 for easier isolation of single QDs. The optical properties of QDs were envisaged by exciton and biexciton emission peaks identified from power dependent and time-resolved micro-photoluminescence (μ-PL) measurements.

  7. Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching.

    PubMed

    Reynard, Justin M; Van Gorder, Nathan S; Bright, Frank V

    2017-09-01

    We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.

  8. Antiphospholipid Antibodies and Recurrent Thrombotic Events: Persistence and Portfolio.

    PubMed

    Amory, Colum F; Levine, Steven R; Brey, Robin L; Gebregziabher, Mulugeta; Tuhrim, Stanley; Tilley, Barbara C; Simpson, Ann-Catherin C; Sacco, Ralph L; Mohr, Jay P

    2015-01-01

    There are very limited prospective data on the significance of persistent antiphospholipid antibodies (aPL) and recurrent thrombo-occlusive events (TOEs). We investigated the prognostic value of (1) 2 newer aPL assays, (2) an aPL portfolio and (3) persistent aPL positivity following stroke. A total of 1,770 subjects from the APASS-WARSS study underwent further aPL testing for antibodies to phosphatidylserine (aPS) and anti-β2-glycoprotein-I (anti-β2GPI) from stored sera. Follow-up aPL status was also tested in a subset of subjects. Primary analysis was based on time to any TOE (ischemic stroke, myocardial infarction, transient ischemic attack, deep vein thrombosis, pulmonary embolism or systemic arterial occlusion)/death at 2 years. Cox proportional hazard analyses assessed whether aPL independently related to outcome. Persistent anti-β2GPI decreased the time to TOE/death after adjustment for potential confounders (hazards ratio (HR) 2.86, 95% CI 1.21-6.76, p = 0.017). When persistent anti-β2GPI was combined with another persistently positive aPL, time to TOE/death was also reduced (HR 3.79, 95% CI 1.18-12.14, p = 0.025). Neither persistent anticardiolipin antibodies nor persistent aPS alone nor a single positive anti-β2GPI nor aPS was associated with decreased time to TOE/death. No single positive aPL, portfolio of baseline aPL or any persistent aPL increased the rate of TOE/death. Rates of TOE/death were not influenced by aPL results at baseline or follow-up. Persistent anti-β2GPI alone, and with persistent second aPL, was independently associated with decreased time to TOE/death. Persistent aPL, an aPL portfolio and newer aPL in ischemic stroke patients are not helpful in predicting an increased rate of recurrent TOEs. © 2015 S. Karger AG, Basel.

  9. Replacement of Biphenyl by Bipyridine Enabling Powerful Hole Transport Materials for Efficient Perovskite Solar Cells.

    PubMed

    Wu, Fei; Shan, Yahan; Qiao, Jianhui; Zhong, Cheng; Wang, Rui; Song, Qunliang; Zhu, Linna

    2017-10-09

    Here, 2,2'- and 3,3'-bipyridine are introduced for the first time as the core structure to get two new hole transport materials (HTMs), namely F22 and F33. The electron-withdrawing nature of bipyridine lowers the HOMO level of the new compounds and enhances the open-circuit voltage of perovskite solar cells. Especially for F33, the better planarity leads to better conjugation in the whole molecule and the molecular interaction is enhanced. Hole-mobility tests, steady-state photoluminescence (PL) spectra as well as time-resolved PL decay results demonstrate that the new HTMs exhibit good hole extraction and hole-transporting property. Impressive power conversion efficiencies of 17.71 and 18.48 % are achieved in conventional planar perovskite (CH 3 NH 3 PbI 3-x Cl x ) solar cells containing F22 and F33 as HTMs, respectively. As far as we know, this is the first report on bypiridine-based HTMs with leading efficiencies, and the design motif in this work opens a new way for devising HTMs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on (001) silicon

    NASA Astrophysics Data System (ADS)

    Guo, Bing; Qiu, Z. R.; Wong, K. S.

    2003-04-01

    We report room-temperature time-integrated and time-resolved photoluminescence (PL) measurements on a nominally undoped wurtzite ZnO thin film grown on (001) silicon. A linear and sublinear excitation intensity Iex dependence of the PL intensity were observed for the 379.48-nm exciton line and the weak broad green band (˜510 nm), respectively. The green luminescence was found to decay as hyperbolic t-1, and its peak energy was observed to increase nearly logarithmically with increased Iex. These results are in an excellent agreement with the tunnel-assisted donor-deep-acceptor pair (DAP) model so that its large blueshifts of about 25 meV per decade increase in Iex can be accounted for by the screening of the fluctuating impurity potential. Also, the 30-ps fast decay of the exciton emission was attributed to the rapid trapping of carriers at luminescent impurities, while the short lifetime of τ1/e=200 ps for the green luminescence may be due to an alternative trapping by deeper centers in the ZnO. Finally, singly ionized oxygen and zinc vacancies have been tentatively invoked to act as donor-deep-acceptor candidates for the DAP luminescence, respectively.

  11. Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications.

    PubMed

    Gupta, Bipin Kumar; Haranath, D; Saini, Shikha; Singh, V N; Shanker, V

    2010-02-05

    We report a simple method for the synthesis of ultra-fine Eu(3+)-doped yttria (Y(2)O(3)) nanophosphors with an average diameter of approximately 5 nm for development of a transparent colloid that could be used as a luminescent security ink. This has been achieved by suitably substituting Eu(3+) ions at the favorable C(2) symmetry sites of Y(3+) ions and quantum mechanically confining the growth of the nanophosphor using a novel acid-catalyzed sol-gel technique. This is one of the few reports that depict the development of a transparent aqueous-stable Y(2)O(3):Eu(3+) colloidal solution for strategic applications related to security codes. High resolution transmission electron microscopy images showed excellent lattice fringes that in turn support the presence of better crystal quality and enhanced photoluminescence (PL) emission from the Y(1.9)O(3)Eu(0.1)(3+) nanophosphor system. Time resolved emission spectroscopy measurement indicated a PL decay time in the range of a few milliseconds, suitable for making luminescent security ink and other advanced applications in optoelectronic devices and bio-labeling.

  12. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the latter present a fast decay process prior to slower recombination. We show that this PL feature persists with similar decay amplitude and timescale for temperatures down to the phase transition temperature, and that it depends on pump photon energy at room temperature. Together with high-level electronic structure and dynamics calculations, we suggest the fast PL decay relates a characteristic organic-to-inorganic sub-lattice equilibration timescale at optoelectronic-relevant excitation energies.

  13. Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus.

    PubMed

    Zhao, Chuan; Sekhar, M Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong

    2018-06-15

    Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.

  14. Three dimensional characterization of GaN-based light emitting diode grown on patterned sapphire substrate by confocal Raman and photoluminescence spectromicroscopy.

    PubMed

    Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming

    2017-03-30

    We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the In x Ga 1-x N/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E 2 (high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the In x Ga 1-x N/GaN MQWs active layer.

  15. Engineering of InN epilayers by repeated deposition of ultrathin layers in pulsed MOCVD growth

    NASA Astrophysics Data System (ADS)

    Mickevičius, J.; Dobrovolskas, D.; Steponavičius, T.; Malinauskas, T.; Kolenda, M.; Kadys, A.; Tamulaitis, G.

    2018-01-01

    Capabilities of repeated deposition of ultrathin layers by pulsed metalorganic chemical vapor deposition (MOCVD) for improvement of structural and luminescence properties of InN thin films on GaN/sapphire templates were studied by varying the growth temperature and the durations of pulse and pause in the delivery of In precursor. X-ray diffraction, atomic force microscopy, and spatially-resolved photoluminescence (PL) spectroscopy were exploited to characterize the structural quality, surface morphology and luminescence properties. Better structural quality is achieved by using longer trimethylindium pulses. However, it is shown that the luminescence properties of InN epilayers correlate with the pause and pulse ratio rather than with their absolute lengths, and the deposition of 1.5-2 monolayers of InN during one growth cycle is optimal to achieve the highest PL intensity. Moreover, the use of temperature ramping enabled achieving the highest PL intensity and the smallest blue shift of the PL band. The luminescence parameters are linked with the structural properties, and domain-like patterns of InN layers are revealed.

  16. Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Zhao, Chuan; Sekhar, M. Chandra; Lu, Wei; Zhang, Chenglong; Lai, Jiawei; Jia, Shuang; Sun, Dong

    2018-06-01

    Black phosphorus, a two-dimensional material, with high carrier mobility, tunable direct bandgap and anisotropic electronic properties has attracted enormous research interest towards potential application in electronic, optoelectronic and optomechanical devices. The bandgap of BP is thickness dependent, ranging from 0.3 eV for bulk to 1.3 eV for monolayer, while lacking in the visible region, a widely used optical regime for practical optoelectronic applications. In this work, photoluminescence (PL) centered at 605 nm is observed from the thermally annealed BP with thickness ≤20 nm. This higher energy PL is most likely the consequence of the formation of higher bandgap phosphorene oxides and suboxides on the surface BP layers as a result of the enhanced rate of oxidation. Moreover, the polarization-resolved PL measurements show that the emitted light is anisotropic when the excitation polarization is along the armchair direction. However, if excited along zigzag direction, the PL is nearly isotropic. Our findings suggest that the thermal annealing of BP can be used as a convenient route to fill the visible gap of the BP-based optoelectronic and optomechanical devices.

  17. Three dimensional characterization of GaN-based light emitting diode grown on patterned sapphire substrate by confocal Raman and photoluminescence spectromicroscopy

    PubMed Central

    Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming

    2017-01-01

    We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the InxGa1−xN/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E2(high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the InxGa1−xN/GaN MQWs active layer. PMID:28358119

  18. Ultrafast endothermic transfer of non-radiative exciplex state to radiative excitons in polyfluorene random copolymer for blue electroluminescence

    NASA Astrophysics Data System (ADS)

    Moghe, Dhanashree A.; Dey, Amrita; Johnson, Kerr; Lu, L.-P.; Friend, Richard H.; Kabra, Dinesh

    2018-04-01

    We report a blue-emitting random copolymer (termed modified Aryl-F8) consisting of three repeat units of polydioctylfluorene (F8), Aryl-polydioctylfluorene (Aryl-F8), and an aromatic amine comonomer unit, poly(bis-N,Ν'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) chemically linked to get an improved charge carrier balance without compromising on the photoluminescence (PL) quantum yield with respect to the Aryl-F8 homo-polymer. The measured photoluminescence quantum efficiency (˜70%) of the blue-emitting polymer is comparable to or greater than the individual monomer units. The time resolved PL spectra from the modified Aryl-F8 are similar to those of Arylated-poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4 phenylenediamine) (PFB) even at a time scale of 100-250 ps, indicating an ultrafast energy transfer from the (Aryl-F8 or F8):Arylated-PFB interface to Arylated-PFB, i.e., endothermic transfer of non-radiative exciplex to a radiative molecular exciton. Furthermore, the presence of non-radiative exciplex is confirmed by the photoluminescence decay profile and temperature dependent PL spectra. The luminance efficiency achieved for the modified Aryl-F8 polymer light-emitting diodes is ˜11 cd A-1 with an external quantum efficiency (EQE) of ˜4.5%, whereas it is 0.05 cd/A with an EQE of ˜0.025% for Aryl-F8. Almost two orders of higher efficiency is achieved due to the improved charge carrier balance from the random copolymer without compromising on the photoluminescence yield.

  19. Structural simulation of adenosine phosphate via plumbagin and zoledronic acid competitively targets JNK/Erk to synergistically attenuate osteoclastogenesis in a breast cancer model

    PubMed Central

    Qiao, H; Wang, T-y; Yu, Z-f; Han, X-g; Liu, X-q; Wang, Y-g; Fan, Q-m; Qin, A; Tang, T-t

    2016-01-01

    The treatment of breast cancer-induced osteolysis remains a challenge in clinical settings. Here, we explored the effect and mechanism of combined treatment with zoledronic acid (ZA) and plumbagin (PL), a widely investigated component derived from Plumbago zeylanica, against breast cancer-induced osteoclastogenesis. We found that the combined treatment with PL and ZA suppressed cell viability of precursor osteoclasts and synergistically inhibited MDA-MB-231-induced osteoclast formation (combination index=0.28) with the abrogation of recombinant mouse receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of NF-κB/MAPK (nuclear factor-κB/mitogen-activated protein kinase) pathways. Molecular docking suggested a putative binding area within c-Jun N-terminal kinase/extracellular signal-regulated kinase (JNK/Erk) protease active sites through the structural mimicking of adenosine phosphate (ANP) by the spatial combination of PL with ZA. A homogeneous time-resolved fluorescence assay further illustrated the direct competitiveness of the dual drugs against ANP docking to phosphorylated JNK/Erk, contributing to the inhibited downstream expression of c-Jun/c-Fos/NFATc-1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1). Then, in vivo testing demonstrated that the combined administration of PL and ZA attenuated breast cancer growth in the bone microenvironment. Additionally, these molecules prevented the destruction of proximal tibia, with significant reduction of tartrate-resistant acid phosphatase (TRAcP)-positive osteoclast cells and potentiation of apoptotic cancer cells, to a greater extent when combined than when the drugs were applied independently. Altogether, the combination treatment with PL and ZA could significantly and synergistically suppress osteoclastogenesis and inhibit tumorigenesis both in vitro and in vivo by simulating the spatial structure of ANP to inhibit competitively phosphorylation of c-Jun N-terminal kinase/extracellular signal-regulated kinase (JNK/Erk). PMID:26866274

  20. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less

  1. Aspirin-triggered lipoxin prevents antiphospholipid antibody effects on human trophoblast migration and endothelial cell interactions.

    PubMed

    Alvarez, Angela M; Mulla, Melissa J; Chamley, Lawrence W; Cadavid, Angela P; Abrahams, Vikki M

    2015-02-01

    Antiphospholipid antibodies (aPL) interfere with several physiologic functions of human trophoblasts, including reducing their ability to migrate, decreasing their production of angiogenic factors, and inducing an inflammatory response. This may provide the underlying mechanism by which aPL responses lead to recurrent pregnancy loss or preeclampsia in women with obstetric antiphospholipid syndrome (APS). Although treatment with heparin may reduce the rate of recurrent pregnancy loss, the risk of preeclampsia remains high. Therefore, alternative treatments are needed for the management of pregnant patients with APS. Since aspirin-triggered lipoxins (ATLs) have immune and angiogenic modulatory properties, the objective of this study was to determine the effects of the ATL 15-epi-lipoxin A4 on the function of aPL-altered human trophoblasts in the first trimester of pregnancy. A first-trimester human trophoblast cell line (HTR8) was treated with mouse anti-human β2 -glycoprotein I monoclonal antibodies (aPL) in the presence or absence of the ATL 15-epi-lipoxin A4 . Trophoblast migration and interactions with endometrial endothelial cells were measured using Transwell and coculture assays. Trophoblast secretion of cytokines and angiogenic factors was measured by enzyme-linked immunosorbent assay. Treatment of HTR8 cells with ATL reversed the aPL-induced decrease in trophoblast migration, an effect that appeared to be regulated through restoration of interleukin-6 production. Using a model of spiral artery transformation, aPL and sera from APS patients with pregnancy morbidity disrupted trophoblast-endothelial cell interactions, and treatment with ATL restored the stability of the cocultures. In contrast, ATL treatment did not resolve the proinflammatory and antiangiogenic responses of trophoblasts induced by aPL. These findings indicate that ATLs may have some benefits in terms of preventing the effects of aPL on trophoblast function, which raises the possibility of the use of ATLs as an adjuvant therapy in women with aPL. Copyright © 2015 by the American College of Rheumatology.

  2. Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi.

    PubMed

    Ast, Jennifer C; Dunlap, Paul V

    2004-05-01

    The luminous marine bacterium Photobacterium mandapamensis was synonymized several years ago with Photobacterium leiognathi based on a high degree of phenotypic and genetic similarity. To test the possibility that P. leiognathi as now formulated, however, actually contains two distinct bacterial groups reflecting the earlier identification of P. mandapamensis and P. leiognathi as separate species, we compared P. leiognathi strains isolated from light-organ symbiosis with leiognathid fishes (i.e., ATCC 25521(T), ATCC 25587, lequu.1.1 and lleuc.1.1) with strains from seawater originally described as P. mandapamensis and later synonymized as P. leiognathi (i.e., ATCC 27561(T) and ATCC 33981) and certain strains initially identified as P. leiognathi (i.e., PL-721, PL-741, 554). Analysis of the 16S rRNA and gyrB genes did not resolve distinct clades, affirming a close relationship among these strains. However, strains ATCC 27561(T), ATCC 33981, PL-721, PL-741 and 554 were found to bear a luxF gene in the lux operon ( luxABFE), whereas ATCC 25521(T), ATCC 25587, lequu.1.1 and lleuc.1.1 lack this gene ( luxABE). Phylogenetic analysis of the luxAB(F)E region confirmed this distinction. Furthermore, ATCC 27561(T), ATCC 33981, PL-721, PL-741 and 554 all produced a higher level of luminescence on high-salt medium, as previously described for PL-721, whereas ATCC 25521(T), ATCC 25587, lequu.1.1 and lleuc.1.1 all produced a higher level of luminescence on low-salt medium, a characteristic of P. leiognathi from leiognathid fish light organs. These results demonstrate that P. leiognathi contains two evolutionarily and phenotypically distinct clades, P. leiognathi subsp. leiognathi (strains ATCC 25521(T), ATCC 25587, lequu.1.1 and lleuc.1.1), and P. leiognathi subsp. mandapamensis (strains ATCC 27561(T), ATCC 33981, PL-721, PL-741 and 554).

  3. Modulation of porphyrin photoluminescence by nanoscale spacers on silicon substrates

    NASA Astrophysics Data System (ADS)

    Fang, Y. C.; Zhang, Y.; Gao, H. Y.; Chen, L. G.; Gao, B.; He, W. Z.; Meng, Q. S.; Zhang, C.; Dong, Z. C.

    2013-11-01

    We investigate photoluminescence (PL) properties of quasi-monolayered tetraphenyl porphyrin (TPP) molecules on silicon substrates modulated by three different nanoscale spacers: native oxide layer (NOL), hydrogen (H)-passivated layer, and Ag nanoparticle (AgNP) thin film, respectively. In comparison with the PL intensity from the TPP molecules on the NOL-covered silicon, the fluorescence intensity from the molecules on the AgNP-covered surface was greatly enhanced while that for the H-passivated surface was found dramatically suppressed. Time-resolved fluorescence spectra indicated shortened lifetimes for TPP molecules in both cases, but the decay kinetics is believed to be different. The suppressed emission for the H-passivated sample was attributed to the weaker decoupling effect of the monolayer of hydrogen atoms as compared to the NOL, leading to increased nonradiative decay rate; whereas the enhanced fluorescence with shortened lifetime for the AgNP-covered sample is attributed not only to the resonant excitation by local surface plasmons, but also to the increased radiative decay rate originating from the emission enhancement in plasmonic "hot-spots".

  4. Study of recombination characteristics in MOCVD grown GaN epi-layers on Si

    NASA Astrophysics Data System (ADS)

    Gaubas, E.; Ceponis, T.; Dobrovolskas, D.; Malinauskas, T.; Meskauskaite, D.; Miasojedovas, S.; Mickevicius, J.; Pavlov, J.; Rumbauskas, V.; Simoen, E.; Zhao, M.

    2017-12-01

    The radiative and non-radiative recombination carrier decay lifetimes in GaN epi-layers grown by metal-organic chemical vapour deposition technology on Si substrates were measured by contactless techniques of time-resolved photoluminescence and microwave-probed transients of photoconductivity. The lifetime variations were obtained to be dependent on growth regimes. These variations have been related to varied densities of edge dislocations associated with growth temperature. It has been also revealed that the lateral carrier lifetime and photoluminescence intensity distribution is determined by the formation of dislocation clusters dependent on the growth conditions. For low excitation level, the asymptotic component within the excess carrier decay transients is attributed to carrier trapping and anomalous diffusion through random-walk processes within dislocation cluster regions and barriers at dislocation cores. The two-componential decay process at high excitation conditions, where excess carriers may suppress barriers, proceeds through a nonlinear recombination, where band-to-band transitions determine the nonlinearity of the process, while the asymptotic component is ascribed to the impact of D-A pair PL within the long-wavelength wing of the UV-PL band.

  5. Optical study of the band structure of wurtzite GaP nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assali, S., E-mail: simone.assali@polymtl.ca; Greil, J.; Zardo, I.

    2016-07-28

    We investigated the optical properties of wurtzite (WZ) GaP nanowires by performing photoluminescence (PL) and time-resolved PL measurements in the temperature range from 4 K to 300 K, together with atom probe tomography to identify residual impurities in the nanowires. At low temperature, the WZ GaP luminescence shows donor-acceptor pair emission at 2.115 eV and 2.088 eV, and Burstein-Moss band-filling continuum between 2.180 and 2.253 eV, resulting in a direct band gap above 2.170 eV. Sharp exciton α-β-γ lines are observed at 2.140–2.164–2.252 eV, respectively, showing clear differences in lifetime, presence of phonon replicas, and temperature-dependence. The excitonic nature of those peaks is critically discussed, leading tomore » a direct band gap of ∼2.190 eV and to a resonant state associated with the γ-line ∼80 meV above the Γ{sub 8C} conduction band edge.« less

  6. Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes.

    PubMed

    Kamminga, Machteld E; Fang, Hong-Hua; Loi, Maria Antonietta; Ten Brink, Gert H; Blake, Graeme R; Palstra, Thomas T M; Ten Elshof, Johan E

    2018-04-18

    The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((C 6 H 5 CH 2 NH 3 ) 2 PbI 4 ) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.5-1.8. X-ray diffraction reveals a strong preferential orientation of the crystallites along the c-axis in both patterned structures, when compared to nonpatterned, drop-casted thin films. Furthermore, (time-resolved) photoluminescence (PL) measurements reveal that the optical properties of (C 6 H 5 CH 2 NH 3 ) 2 PbI 4 are conserved upon patterning. We find that the larger grain sizes of the patterned films with respect to the nonpatterned film give rise to an enhanced PL lifetime. Thus, our results demonstrate easy and cost-effective ways to manufacture patterns of 2D organic/inorganic hybrid perovskites, while even improving their optical properties. This demonstrates the potential use of color-tunable 2D hybrids in optoelectronic devices.

  7. Influence of heat treatment on hole transfer dynamics in core-shell quantum dot/organic hole conductor hybrid films

    NASA Astrophysics Data System (ADS)

    Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing

    2017-08-01

    The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.

  8. The interface quality of Ge nanoparticles grown in thick silica matrix

    NASA Astrophysics Data System (ADS)

    Dasović, J.; Dubček, P.; Pucić, I.; Bernstorff, S.; Radić, N.; Pivac, B.

    2017-08-01

    Germanium nanoparticles, or Ge quantum dots (QDs), embedded in different transparent dielectric matrix exhibit properties significantly different from the same bulk semiconductor and therefore exhibit a considerable potential for applications in advanced electronic and optoelectronic devices. It is expected that the quantum confinement effect will tune the optical bandgap simply by varying the QDs size. Nevertheless, the question remains whether and how the defects often present in the matrix or at interfaces affect their properties. A thick (SiO2 + Ge) layer was deposited by magnetron sputtering and after suitable thermal treatment spherical Ge QDs were formed in SiO2 matrix with rather narrow size distribution, as confirmed by GIWAXS and GISAXS analysis. It is shown that the formed surface/interface of the QDs with the matrix was rough with fractal nature. Annealing in N2 atmosphere produced photoluminescence (PL) in the visible part of the spectrum which consists of three contributions. All are attributed to structural defects at or close to the Ge/SiOx interface. Time-resolved PL results support the assumption that the three components are dominant in the observed luminescence.

  9. Enhancement of carrier lifetimes in type-II quantum dot/quantum well hybrid structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couto, O. D. D., E-mail: odilon@ifi.unicamp.br; Almeida, P. T. de; Santos, G. E. dos

    We investigate optical transitions and carrier dynamics in hybrid structures containing type-I GaAs/AlGaAs quantum wells (QWs) and type-II GaSb/AlGaAs quantum dots (QDs). We show that the optical recombination of photocreated electrons confined in the QWs with holes in the QDs and wetting layer can be modified according to the QW/QD spatial separation. In particular, for low spacer thicknesses, the QW optical emission can be suppressed due to the transference of holes from the QW to the GaSb layer, favoring the optical recombination of spatially separated carriers, which can be useful for optical memory and solar cell applications. Time-resolved photoluminescence (PL)more » measurements reveal non-exponential recombination dynamics. We demonstrate that the PL transients can only be quantitatively described by considering both linear and quadratic terms of the carrier density in the bimolecular recombination approximation for type-II semiconductor nanostructures. We extract long exciton lifetimes from 700 ns to 5 μs for QDs depending on the spacer layer thickness.« less

  10. High pressure and time resolved studies of optical properties of n-type doped GaN/AlN multi-quantum wells: Experimental and theoretical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminska, A.; Cardinal Stefan Wyszynski University, College of Science, Department of Mathematics and Natural Sciences, Dewajtis 5, 01-815 Warsaw; Jankowski, D.

    High-pressure and time-resolved studies of the optical emission from n-type doped GaN/AlN multi-quantum-wells (MQWs) with various well thicknesses are analysed in comparison with ab initio calculations of the electronic (band structure, density of states) and optical (emission energies and their pressure derivatives, oscillator strength) properties. The optical properties of GaN/AlN MQWs are strongly affected by quantum confinement and polarization-induced electric fields. Thus, the photoluminescence (PL) peak energy decreases by over 1 eV with quantum well (QW) thicknesses increasing from 1 to 6 nm. Furthermore, the respective PL decay times increased from about 1 ns up to 10 μs, due to the strong built-in electricmore » field. It was also shown that the band gap pressure coefficients are significantly reduced in MQWs as compared to bulk AlN and GaN crystals. Such coefficients are strongly dependent on the geometric factors such as the thickness of the wells and barriers. The transition energies, their oscillator strength, and pressure dependence are modeled for tetragonally strained structures of the same geometry using a full tensorial representation of the strain in the MQWs under external pressure. These MQWs were simulated directly using density functional theory calculations, taking into account two different systems: the semi-insulating QWs and the n-doped QWs with the same charge density as in the experimental samples. Such an approach allowed an assessment of the impact of n-type doping on optical properties of GaN/AlN MQWs. We find a good agreement between these two approaches and between theory and experimental results. We can therefore confirm that the nonlinear effects induced by the tetragonal strain related to the lattice mismatch between the substrates and the polar MQWs are responsible for the drastic decrease of the pressure coefficients observed experimentally.« less

  11. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    NASA Astrophysics Data System (ADS)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06222e

  12. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide

    PubMed Central

    Carozo, Victor; Wang, Yuanxi; Fujisawa, Kazunori; Carvalho, Bruno R.; McCreary, Amber; Feng, Simin; Lin, Zhong; Zhou, Chanjing; Perea-López, Néstor; Elías, Ana Laura; Kabius, Bernd; Crespi, Vincent H.; Terrones, Mauricio

    2017-01-01

    Defects play a significant role in tailoring the optical properties of two-dimensional materials. Optical signatures of defect-bound excitons are important tools to probe defective regions and thus interrogate the optical quality of as-grown semiconducting monolayer materials. We have performed a systematic study of defect-bound excitons using photoluminescence (PL) spectroscopy combined with atomically resolved scanning electron microscopy and first-principles calculations. Spatially resolved PL spectroscopy at low temperatures revealed bound excitons that were present only on the edges of monolayer tungsten disulfide and not in the interior. Optical pumping of the bound excitons was sublinear, confirming their bound nature. Atomic-resolution images reveal that the areal density of monosulfur vacancies is much larger near the edges (0.92 ± 0.45 nm−2) than in the interior (0.33 ± 0.11 nm−2). Temperature-dependent PL measurements found a thermal activation energy of ~36 meV; surprisingly, this is much smaller than the bound-exciton binding energy of ~300 meV. We show that this apparent inconsistency is related to a thermal dissociation of the bound exciton that liberates the neutral excitons from negatively charged point defects. First-principles calculations confirm that sulfur monovacancies introduce midgap states that host optical transitions with finite matrix elements, with emission energies ranging from 200 to 400 meV below the neutral-exciton emission line. These results demonstrate that bound-exciton emission induced by monosulfur vacancies is concentrated near the edges of as-grown monolayer tungsten disulfide. PMID:28508048

  13. Voc Degradation in TF-VLS Grown InP Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yubo; Sun, Xingshu; Johnston, Steve

    2016-11-21

    Here we consider two hypotheses to explain the open-circuit voltage (VOC) degradation observed in thin-film vapor-liquid-solid (TF-VLS) grown p-type InP photovoltaic cells: bandgap narrowing and local shunting. First, a bandgap (Eg) narrowing effect is hypothesized, based on the surface inhomogeneity of VLS InP captured by the photoluminescence (PL) image. The PL data was used to estimate a spatially-resolved active VOC across surface of the InP sample. Combining this data with the effective Jsc allowed an assessment of the I-V characteristics of individual unit cells. Next, an H-SPICE diode compact model was utilized to reproduce the I-V characteristics of the wholemore » sample. We find a good fit to the I-V performance of TF-VLS grown InP solar cell. Second, a local shunting effect was also considered as an alternative explanation of the VOC degradation effect. Again, PL image data was used, and small local shunt resistance was added in arbitrary elementary unit cells to represent certain dark spots seen in the PL image and dictate the VOC degradation occurred in the sample.« less

  14. Mid-Gap States and Normal vs Inverted Bonding in Luminescent Cu+- and Ag+-Doped CdSe Nanocrystals.

    PubMed

    Nelson, Heidi D; Hinterding, Stijn O M; Fainblat, Rachel; Creutz, Sidney E; Li, Xiaosong; Gamelin, Daniel R

    2017-05-10

    Mid-gap luminescence in copper (Cu + )-doped semiconductor nanocrystals (NCs) involves recombination of delocalized conduction-band electrons with copper-localized holes. Silver (Ag + )-doped semiconductor NCs show similar mid-gap luminescence at slightly (∼0.3 eV) higher energy, suggesting a similar luminescence mechanism, but this suggestion appears inconsistent with the large difference between Ag + and Cu + ionization energies (∼1.5 eV), which should make hole trapping by Ag + highly unfavorable. Here, Ag + -doped CdSe NCs (Ag + :CdSe) are studied using time-resolved variable-temperature photoluminescence (PL) spectroscopy, magnetic circularly polarized luminescence (MCPL) spectroscopy, and time-dependent density functional theory (TD-DFT) to address this apparent paradox. In addition to confirming that Ag + :CdSe and Cu + :CdSe NCs display similar broad PL with large Stokes shifts, we demonstrate that both also show very similar temperature-dependent PL lifetimes and magneto-luminescence. Electronic-structure calculations further predict that both dopants generate similar localized mid-gap states. Despite these strong similarities, we conclude that these materials possess significantly different electronic structures. Specifically, whereas photogenerated holes in Cu + :CdSe NCs localize primarily in Cu(3d) orbitals, formally oxidizing Cu + to Cu 2+ , in Ag + :CdSe NCs they localize primarily in 4p orbitals of the four neighboring Se 2- ligands, and Ag + is not oxidized. This difference reflects a shift from "normal" to "inverted" bonding going from Cu + to Ag + . The spectroscopic similarities are explained by the fact that, in both materials, photogenerated holes are localized primarily within covalent [MSe 4 ] dopant clusters (M = Ag + , Cu + ). These findings reconcile the similar spectroscopies of Ag + - and Cu + -doped semiconductor NCs with the vastly different ionization potentials of their Ag + and Cu + dopants.

  15. Circular polarization in a non-magnetic resonant tunneling device.

    PubMed

    Dos Santos, Lara F; Gobato, Yara Galvão; Teodoro, Márcio D; Lopez-Richard, Victor; Marques, Gilmar E; Brasil, Maria Jsp; Orlita, Milan; Kunc, Jan; Maude, Duncan K; Henini, Mohamed; Airey, Robert J

    2011-01-25

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects.

  16. Circular polarization in a non-magnetic resonant tunneling device

    PubMed Central

    2011-01-01

    We have investigated the polarization-resolved photoluminescence (PL) in an asymmetric n-type GaAs/AlAs/GaAlAs resonant tunneling diode under magnetic field parallel to the tunnel current. The quantum well (QW) PL presents strong circular polarization (values up to -70% at 19 T). The optical emission from GaAs contact layers shows evidence of highly spin-polarized two-dimensional electron and hole gases which affects the spin polarization of carriers in the QW. However, the circular polarization degree in the QW also depends on various other parameters, including the g-factors of the different layers, the density of carriers along the structure, and the Zeeman and Rashba effects. PMID:21711613

  17. Exciton localization and large Stokes shift in quaternary BeMgZnO grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Toporkov, Mykyta; Ullah, Md. Barkat; Hafiz, Shopan; Nakagawara, Tanner; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit

    2016-02-01

    Owing to wide range bandgap tunability to more than 5 eV, the quaternary (Be,Mg)ZnO solid solutions are attractive for a variety of UV optoelectronic applications, inclusive of solar blind photodetectors, and intersubband transition devices. The mutual compensation effects of Be and Mg on the formation energy and strain allows a wide range of compositions and bandgaps beyond those achievable by MgZnO and BeZnO ternaries. Localization effects are well pronounced in such wide-bandgap semiconductor alloys due to large differences in metal covalent radii and the lattice constants of the binaries, resulting in strain-driven compositional variations within the film and consequently large potential fluctuations, in addition to that possibly caused by defects. However, carrier localization may suppress recombination through nonradiative channels, and thus, facilitate high-efficiency optoelectronic devices. To investigate potential fluctuations and localization in BexMgyZn(1-x-y)O films grown by plasma-assisted molecular beam epitaxy, optical absorption and steady-state and time-resolved photoluminescence (PL) measurements were performed. O-polar BexMgyZn(1-x-y)O samples grown on GaN templates with compositions up to x = 0.04 and y = 0.18 were used for timeresolved studies, and O-polar BexMgyZn(1-x-y)O samples grown on sapphire with compositions up to x = 0.19 and y = 0.52 were used for absorption measurements. From spectrally resolved PL transients, BeMgZnO samples with higher Mg/Be content ratio were found to exhibit smaller localization depth, Δ0=98 meV for Be0.04Mg0.17Zn0.79O and Δ0=173 meV for Be0.10Mg0.25Zn0.65O, compared to samples with smaller Mg/Be ratio, Δ0=268 meV for Be0.11Mg0.15Zn0.74O. Similar correlation is observed in temporal redshift of the PL peak position of 8 meV, 42 meV and 55 meV for Be0.04Mg0.17Zn0.79O, Be0.10Mg0.25Zn0.65O and Be0.11Mg0.15Zn0.74O, respectively, that originates from potential fluctuations and removal of band filling effect in the localized states. PL transients indicate that emission at low temperature is dominated by recombination of localized excitons, which exhibit decay times as long as τ = 0.36 ns at the peak position. The Sshaped behavior of PL peak with change in temperature was observed for the quaternary alloy Be0.04Mg0.17Zn0.79O. The degree of localization σ was determined to be 22 meV. Relatively high potential fluctuations and localization energy lead to a strong Stokes shift, which increased with bandgap reaching ~0.5 eV for O-polar BeMgZnO on sapphire with 4.6 eV absorption edge.

  18. Functional reorganization of visual cortex maps after ischemic lesions is accompanied by changes in expression of cytoskeletal proteins and NMDA and GABA(A) receptor subunits.

    PubMed

    Zepeda, Angelica; Sengpiel, Frank; Guagnelli, Miguel Angel; Vaca, Luis; Arias, Clorinda

    2004-02-25

    Reorganization of cortical representations after focal visual cortex lesions has been documented. It has been suggested that functional reorganization may rely on cellular mechanisms involving modifications in the excitatory/inhibitory neurotransmission balance and on morphological changes of neurons peripheral to the lesion. We explored functional reorganization of cortical retinotopic maps after a focal ischemic lesion in primary visual cortex of kittens using optical imaging of intrinsic signals. After 1, 2, and 5 weeks postlesion (wPL), we addressed whether functional reorganization correlated in time with changes in the expression of MAP-2, GAP-43, GFAP, GABA(A) receptor subunit alpha1 (GABA(A)alpha1), subunit 1 of the NMDA receptor (NMDAR1), and in neurotransmitter levels at the border of the lesion. Our results show that: (1) retinotopic maps reorganize with time after an ischemic lesion; (2) MAP-2 levels increase gradually from 1wPL to 5wPL; (3) MAP-2 upregulation is associated with an increase in dendritic-like structures surrounding the lesion and a decrease in GFAP-positive cells; (4) GAP-43 levels reach the highest point at 2wPL; (5) NMDAR1 and glutamate contents increase in parallel from 1wPL to 5wPL; (6) GABA(A)alpha1 levels increase from 1wPL to 2wPL but do not change after this time point; and (7) GABA contents remain low from 1wPL to 5wPL. This is a comprehensive study showing for the first time that functional reorganization correlates in time with dendritic sprouting and with changes in the excitatory/inhibitory neurotransmission systems previously proposed to participate in cortical remodeling and suggests mechanisms by which plasticity of cortical representations may occur.

  19. Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes.

    PubMed

    Yuan, Xi; Ma, Ruixin; Zhang, Wenjin; Hua, Jie; Meng, Xiangdong; Zhong, Xinhua; Zhang, Jiahua; Zhao, Jialong; Li, Haibo

    2015-04-29

    Novel white light emitting diodes (LEDs) with environmentally friendly dual emissive quantum dots (QDs) as single color-converters are one of the most promising high-quality solid-state lighting sources for meeting the growing global demand for resource sustainability. A facile method was developed for the synthesis of the bright green-red-emitting Mn and Cu codoped Zn-In-S QDs with an absorption bangdgap of 2.56 eV (485 nm), a large Stokes shift of 150 nm, and high emission quantum yield up to 75%, which were suitable for warm white LEDs based on blue GaN chips. The wide photoluminescence (PL) spectra composed of Cu-related green and Mn-related red emissions in the codoped QDs could be controlled by varying the doping concentrations of Mn and Cu ions. The energy transfer processes in Mn and Cu codoped QDs were proposed on the basis of the changes in PL intensity and lifetime measured by means of steady-state and time-resolved PL spectra. By integrating these bicolor QDs with commercial GaN-based blue LEDs, the as-fabricated tricolor white LEDs showed bright natural white light with a color rendering index of 95, luminous efficacy of 73.2 lm/W, and color temperature of 5092 K. These results indicated that (Mn,Cu):Zn-In-S/ZnS QDs could be used as a single color-converting material for the next generation of solid-state lighting.

  20. Study of extending carrier lifetime in ZnTe quantum dots coupled with ZnCdSe quantum well

    NASA Astrophysics Data System (ADS)

    Fan, W. C.; Chou, W. C.; Lee, J. D.; Lee, Ling; Phu, Nguyen Dang; Hoang, Luc Huy

    2018-03-01

    We demonstrated the growth of a self-assembled type-II ZnTe/ZnSe quantum dot (QD) structure coupled with a type-I Zn0.88Cd0.12Se/ZnSe quantum well (QW) on the (001) GaAs substrate by molecular beam epitaxy (MBE). As the spacer thickness is less than 2 nm, the carrier lifetime increasing from 20 ns to nearly 200 ns was successfully achieved. By utilizing the time-resolved photoluminescence (TRPL) and PL with different excitation power, we identify the PL emission from the coupled QDs consisting of two recombination mechanisms. One is the recombination between electrons in ZnSe barrier and holes confined within ZnTe QDs, and the other is between electrons confined in Zn0.88Cd0.12Se QW and holes confined within ZnTe QDs. According to the band diagram and power-dependent PL, both of the two recombinations reveal the type-II transition. In addition, the second recombination mechanism dominates the whole carrier recombination as the spacer thickness is less than 2 nm. A significant extension of carrier lifetime by increasing the electron and hole separation is illustrated in a type-II ZnTe/ZnSe QD structure coupling with a type-I ZnCdSe/ZnSe QW. Current sample structure could be used to increase the quantum efficient of solar cell based on the II-VI compound semiconductors.

  1. Control of Wigner localization and electron cavity effects in near-field emission spectra of In(Ga)P/GaInP quantum-dot structures

    NASA Astrophysics Data System (ADS)

    Mintairov, A. M.; Kapaldo, J.; Merz, J. L.; Rouvimov, S.; Lebedev, D. V.; Kalyuzhnyy, N. A.; Mintairov, S. A.; Belyaev, K. G.; Rakhlin, M. V.; Toropov, A. A.; Brunkov, P. N.; Vlasov, A. S.; Zadiranov, Yu. M.; Blundell, S. A.; Mozharov, A. M.; Mukhin, I.; Yakimov, M.; Oktyabrsky, S.; Shelaev, A. V.; Bykov, V. A.

    2018-05-01

    Structural and emission properties of few-electron In(Ga)P/GaInP quantum dots (QDs) representing natural Wigner molecules (WM) and whispering gallery mode (WGM) electron (e ) cavities have been investigated. QD structures were grown using self-organized metal-organic vapor phase epitaxy and deposition from ˜3 to 7 monolayers of InP at 700 °C. Using atomic force microscopy, transmission electron microscopy, near-field scanning optical microscopy (NSOM), and μ -photoluminescence (μ -PL) spectra we obtained In(Ga)P/GaInP QDs having lateral size 80-180 nm, height 5-30 nm, Ga content 0.0-0.4, density 2 -10 μm-2 , and electron population up to 20 and demonstrated control of their density and size distribution. Using high-spatial-resolution low-temperature PL spectra, NSOM imaging, and calculations of charge density distributions we observed Wigner localization and e -cavity effects for a series of dots having quantum confinement ℏ ω0=0.5 -6 meV . We used these data together with time-resolved PL measurements to clarify the effect of Coulomb interaction and WM formation on emission spectra of few-electron QDs. We present direct observation of 2 e , 6 e , and 9 e WMs; 2 e and 4 e WGMs; and Fabry-Perot e modes and establish conditions of e -WGM-cavity formation in these QDs.

  2. Excited States of the A and B Free Excitons in CuInSe2

    NASA Astrophysics Data System (ADS)

    Yakushev, Michael V.; Luckert, Franziska; Faugeras, Clement; Karotki, Anatoli V.; Mudryi, Alexander V.; Martin, Robert W.

    2011-05-01

    CuInSe2 single crystals, grown by the vertical Bridgman technique were studied using polarisation resolved photoluminescence (PL) at cryogenic temperatures. The emission lines related to the first (n = 2) excited states for the A and B free excitons were observed in the PL spectra at 1.0481 and 1.0516 eV, respectively. The spectral positions of these lines were used to estimate accurate values for the A and B exciton binding energies (8.5 and 8.4 meV, respectively), Bohr radii (7.5 nm), band gaps (EgA = 1.050 eV and EgB = 1.054 eV), and the static dielectric constant (11.3) assuming the hydrogenic model.

  3. Nanoscale characterization of GaN/InGaN multiple quantum wells on GaN nanorods by photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Yang, Jianfeng; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2017-02-01

    GaN/InGaN multiple quantum wells (MQW) and GaN nanorods have been widely studied as a candidate material for high-performance light emitting diodes. In this study, GaN/InGaN MQW on top of GaN nanorods are characterized in nanoscale using confocal microscopy associated with photoluminescence spectroscopy, including steady-state PL, timeresolved PL and fluorescence lifetime imaging (FLIM). Nanorods are fabricated by etching planar GaN/InGaN MQWs on top of a GaN layer on a c-plane sapphire substrate. Photoluminescence efficiency from the GaN/InGaN nanorods is evidently higher than that of the planar structure, indicating the emission improvement. Time-resolved photoluminescence (TRPL) prove that surface defects on GaN nanorod sidewalls have a strong influence on the luminescence property of the GaN/InGaN MWQs. Such surface defects can be eliminated by proper surface passivation. Moreover, densely packed nanorod array and sparsely standing nanorods have been studied for better understanding the individual property and collective effects from adjacent nanorods. The combination of the optical characterization techniques guides optoelectronic materials and device fabrication.

  4. Enhancement of photoluminescence from GaInNAsSb quantum wells upon annealing: improvement of material quality and carrier collection by the quantum well.

    PubMed

    Baranowski, M; Kudrawiec, R; Latkowska, M; Syperek, M; Misiewicz, J; Sarmiento, T; Harris, J S

    2013-02-13

    In this study we apply time resolved photoluminescence and contactless electroreflectance to study the carrier collection efficiency of a GaInNAsSb/GaAs quantum well (QW). We show that the enhancement of photoluminescence from GaInNAsSb quantum wells annealed at different temperatures originates not only from (i) the improvement of the optical quality of the GaInNAsSb material (i.e., removal of point defects, which are the source of nonradiative recombination) but it is also affected by (ii) the improvement of carrier collection by the QW region. The total PL efficiency is the product of these two factors, for which the optimal annealing temperatures are found to be ~700 °C and ~760 °C, respectively, whereas the optimal annealing temperature for the integrated PL intensity is found to be between the two temperatures and equals ~720 °C. We connect the variation of the carrier collection efficiency with the modification of the band bending conditions in the investigated structure due to the Fermi level shift in the GaInNAsSb layer after annealing.

  5. Wavelength tunable single nanowire lasers based on surface plasmon polariton enhanced Burstein-Moss effect.

    PubMed

    Liu, Xinfeng; Zhang, Qing; Yip, Jing Ngei; Xiong, Qihua; Sum, Tze Chien

    2013-01-01

    Wavelength tunable semiconductor nanowire (NW) lasers are promising for multifunctional applications ranging from optical communication to spectroscopy analysis. Here, we present a demonstration of utilizing the surface plasmon polariton (SPP) enhanced Burstein-Moss (BM) effect to tune the lasing wavelength of a single semiconductor NW. The photonic lasing mode of the CdS NW (with length ~10 μm and diameter ~220 nm) significantly blue shifts from 504 to 483 nm at room temperature when the NW is in close proximity to the Au film. Systematic steady state power dependent photoluminescence (PL) and time-resolved PL studies validate that the BM effect in the hybrid CdS NW devices is greatly enhanced as a consequence of the strong coupling between the SPP and CdS excitons. With decreasing dielectric layer thickness h from 100 to 5 nm, the enhancement of the BM effect becomes stronger, leading to a larger blue shift of the lasing wavelength. Measurements of enhanced exciton emission intensities and recombination rates in the presence of Au film further support the strong interaction between SPP and excitons, which is consistent with the simulation results.

  6. Micropatterned 2D Hybrid Perovskite Thin Films with Enhanced Photoluminescence Lifetimes

    PubMed Central

    2018-01-01

    The application of luminescent materials in display screens and devices requires micropatterned structures. In this work, we have successfully printed microstructures of a two-dimensional (2D), orange-colored organic/inorganic hybrid perovskite ((C6H5CH2NH3)2PbI4) using two different soft lithography techniques. Notably, both techniques yield microstructures with very high aspect ratios in the range of 1.5–1.8. X-ray diffraction reveals a strong preferential orientation of the crystallites along the c-axis in both patterned structures, when compared to nonpatterned, drop-casted thin films. Furthermore, (time-resolved) photoluminescence (PL) measurements reveal that the optical properties of (C6H5CH2NH3)2PbI4 are conserved upon patterning. We find that the larger grain sizes of the patterned films with respect to the nonpatterned film give rise to an enhanced PL lifetime. Thus, our results demonstrate easy and cost-effective ways to manufacture patterns of 2D organic/inorganic hybrid perovskites, while even improving their optical properties. This demonstrates the potential use of color-tunable 2D hybrids in optoelectronic devices. PMID:29578335

  7. High-Efficiency InGaN/GaN Quantum Well-Based Vertical Light-Emitting Diodes Fabricated on β-Ga2O3 Substrate.

    PubMed

    Muhammed, Mufasila M; Alwadai, Norah; Lopatin, Sergei; Kuramata, Akito; Roqan, Iman S

    2017-10-04

    We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (β-Ga 2 O 3 ) substrate, obtained using a straightforward growth process that does not require a high-cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multiquantum well (MQW) grown on the masked β-Ga 2 O 3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ∼86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

  8. Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation

    PubMed Central

    Newman, Michael J.; Speller, Emily M.; Barbé, Jérémy; Luke, Joel; Li, Meng; Li, Zhe; Wang, Zhao-Kui; Jain, Sagar M.; Kim, Ji-Seon; Lee, Harrison Ka Hin; Tsoi, Wing Chung

    2018-01-01

    Abstract Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C71 butyric acid methyl ester (BTR:PC71BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV–vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation – rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra. PMID:29511397

  9. Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation.

    PubMed

    Newman, Michael J; Speller, Emily M; Barbé, Jérémy; Luke, Joel; Li, Meng; Li, Zhe; Wang, Zhao-Kui; Jain, Sagar M; Kim, Ji-Seon; Lee, Harrison Ka Hin; Tsoi, Wing Chung

    2018-01-01

    Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C 71 butyric acid methyl ester (BTR:PC 71 BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV-vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation - rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra.

  10. Optical characterization of type-I to type-II band alignment transition in GaAs/Al x Ga1-x As quantum rings grown by droplet epitaxy

    NASA Astrophysics Data System (ADS)

    Su, Linlin; Wang, Ying; Guo, Qinglin; Li, Xiaowei; Wang, Shufang; Fu, Guangsheng; Mazur, Yuriy I.; E Ware, Morgan; Salamo, Gregory J.; Liang, Baolai; Huffaker, Diana L.

    2017-08-01

    Optical properties of GaAs/Al x Ga1-x As quantum rings (QRs) grown on GaAs (1 0 0) by droplet epitaxy have been investigated as a function of the Al-composition in the Al x Ga1-x As barrier. A transition from type-I to type-II band alignment is observed for the QRs via photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. While x  ⩽  0.45, the QR PL spectra show a blue-shift and an increasing intensity with increasing Al-composition, revealing the enhancement of quantum confinement in the QRs with type-I band alignment. While x  ⩾  0.60, the characteristic large blue-shift with excitation intensity and the much longer lifetime indicate the realization of a type-II band alignment. Due to the height fluctuation of QR structures grown by droplet epitaxy mode, it is not the large blue-shift of emission energy, but the long lifetime that becomes the more important feature to identify the type-II band alignment.

  11. Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite

    NASA Astrophysics Data System (ADS)

    Sheng, R.; Wen, X.; Huang, S.; Hao, X.; Chen, S.; Jiang, Y.; Deng, X.; Green, M. A.; Ho-Baillie, A. W. Y.

    2016-01-01

    After unprecedented development of organic-inorganic lead halide perovskite solar cells over the past few years, one of the biggest barriers towards their commercialization is the stability of the perovskite material. It is thus important to understand the interaction between the perovskite material and oxygen and/or humidity and the associated degradation process in order to improve device and encapsulation design for better durability. Here we characterize the dynamic aging process in vapour-assisted deposited (VASP) CH3NH3PbBr3 perovskite thin films using advanced optical techniques, such as time-resolved photoluminescence and fluorescence lifetime imaging microscopy (FLIM). Our investigation reveals that the perovskite grains grow spontaneously and the larger grains are formed at room temperature in the presence of moisture and oxygen. This crystallization process leads to a higher density of defects and a shorter carrier lifetime, specifically in the larger grains. Excitation-intensity-dependent steady-state photoluminescence shows both N2 stored and aged perovskite exhibit a super-linear increase of photoluminescence intensity with increasing excitation intensity; and the larger slope in aged sample suggests a larger density of defects is generated, consistent with time-resolved PL measurements.

  12. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell

    NASA Technical Reports Server (NTRS)

    Alfano, R. R.; Wang, W. B.; Mohaidat, J. M.; Cavicchia, M. A.; Raisky, O. Y.

    1995-01-01

    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique. The temperature dependence of the hot electron relaxation time in the X valley has been measured.

  13. Humidity-Induced Photoluminescence Hysteresis in Variable Cs/Br Ratio Hybrid Perovskites.

    PubMed

    Howard, John M; Tennyson, Elizabeth M; Barik, Sabyasachi; Szostak, Rodrigo; Waks, Edo; Toney, Michael F; Nogueira, Ana F; Neves, Bernardo R A; Leite, Marina S

    2018-06-21

    Hybrid organic-inorganic perovskites containing Cs are a promising new material for light-absorbing and light-emitting optoelectronics. However, the impact of environmental conditions on their optical properties is not fully understood. Here, we elucidate and quantify the influence of distinct humidity levels on the charge carrier recombination in Cs x FA 1- x Pb(I y Br 1- y ) 3 perovskites. Using in situ environmental photoluminescence (PL), we temporally and spectrally resolve light emission within a loop of critical relative humidity (rH) levels. Our measurements show that exposure up to 35% rH increases the PL emission for all Cs (10-17%) and Br (17-38%) concentrations investigated here. Spectrally, samples with larger Br concentrations exhibit PL redshift at higher humidity levels, revealing water-driven halide segregation. The compositions considered present hysteresis in their PL intensity upon returning to a low-moisture environment due to partially reversible hydration of the perovskites. Our findings demonstrate that the Cs/Br ratio strongly influences both the spectral stability and extent of light emission hysteresis. We expect our method to become standard when testing the stability of emerging perovskites, including lead-free options, and to be combined with other parameters known for affecting material degradation, e.g., oxygen and temperature.

  14. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro.

    PubMed

    Griffiths, Sarah; Baraniak, Priya R; Copland, Ian B; Nerem, Robert M; McDevitt, Todd C

    2013-12-01

    Multipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown. MSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to "rescue" the proliferative capacity of MSCs. hPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS. hPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Influence of the heterostructure design on the optical properties of GaN and Al0.1Ga0.9N quantum dots for ultraviolet emission

    NASA Astrophysics Data System (ADS)

    Matta, S.; Brault, J.; Ngo, T. H.; Damilano, B.; Korytov, M.; Vennéguès, P.; Nemoz, M.; Massies, J.; Leroux, M.; Gil, B.

    2017-08-01

    The optical properties of AlyGa1-yN quantum dots (QDs), with y = 0 or y = 0.1, in an AlxGa1-xN matrix are studied. The influence of the QD layer design is investigated pointing out the correlations between the QD structural and optical properties. In a first part, the role of the epitaxial strain in the dot self-assembling process is studied by fabricating GaN QD layers on different AlxGa1-xN layers with 0.5 ≤ x ≤ 0.7. Photoluminescence (PL) measurements show the main influence of the increase of the internal electric field (Fint) on the QD optical response inducing a strong red shift in the emission energy as x increases. Time resolved combined with temperature dependent PL measurements enabled the estimation of the QD internal quantum efficiencies at low temperature showing values around 50%. In addition, a PL integrated intensity ratio up to 74% is shown, between 300 and 9 K. In the second part, the design of Al0.1Ga0.9N QDs was investigated, by varying the Al0.1Ga0.9N amount deposited. An increase of the transition energy (from 3.65 eV up to 3.83 eV) is obtained while decreasing the deposited amount. Calculations of the ground state transition energies as a function of the Al0.1Ga0.9N dot height give a value of Fint around 2.0 ± 0.5 MV/cm. Therefore, the propensity of Al0.1Ga0.9N dots to emit at much higher energies than GaN dots (a PL shift of ˜1 eV using a low excitation power) is seen as the consequence of the reduced Fint together with their smaller sizes.

  16. Growth and Characterisation of GaAs/AlGaAs Core-shell Nanowires for Optoelectronic Device Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Nian

    III-V semiconductor nanowires have been investigated as key components for future electronic and optoelectronic devices and systems due to their direct band gap and high electron mobility. Amongst the III-V semiconductors, the planar GaAs material system has been extensively studied and used in industries. Accordingly, GaAs nanowires are the prime candidates for nano-scale devices. However, the electronic performance of GaAs nanowires has yet to match that of state-of-the-art planar GaAs devices. The present deficiency of GaAs nanowires is typically attributed to the large surface-to- volume ratio and the tendency for non-radiative recombination centres to form at the surface. The favoured solution of this problem is by coating GaAs nanowires with AlGaAs shells, which replaces the GaAs surface with GaAs/AlGaAs interface. This thesis presents a systematic study of GaAs/AlGaAs core-shell nanowires grown by metal organic chemical vapour deposition (MOCVD), including understanding the growth, and characterisation of their structural and optical properties. The structures of the nanowires were mainly studied by scanning electron microscopy and transmis- sion electron microscopy (TEM). A procedure of microtomy was developed to prepare the cross-sectional samples for the TEM studies. The optical properties were charac- terised by photoluminescence (PL) spectroscopy. Carrier lifetimes were measured by time-resolved PL. The growth of AlGaAs shell was optimised to obtain the best optical properties, e.g. the strongest PL emission and the longest minority carrier lifetimes. (Abstract shortened by ProQuest.).

  17. Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-L-lysine.

    PubMed

    Hyon, Suong-Hyu; Nakajima, Naoki; Sugai, Hajime; Matsumura, Kazuaki

    2014-08-01

    A novel adhesive hydrogel consisting of dextran and epsilon-poly(L-lysine) (dextran-PL) with multiple biomedical applications was developed. Periodate oxidation in aqueous media almost stoichiometrically introduces aldehyde groups in dextran molecules, and aldehyde dextran can react with the primary amino groups in epsilon-PL (ɛ-PL) at neutral pH to form a hydrogel. The gelation time of the hydrogel can be easily controlled by the extent of oxidation in dextran and of the acylation in ɛ-PL by anhydrides. The shear adhesion strength of dextran-PL was 10 times higher than that of fibrin glue, when wet collagen sheets were selected as test specimens. The cytotoxicity of aldehyde dextran and ɛ-PL were 1000 times lower than that of glutaraldehyde and poly(allylamine). The considerably low cytotoxicity of aldehyde dextran could be ascribed to its low reactivity with amine species when compared with glutaraldehyde. In contrast, a high reactivity of amino groups in ɛ-PL was observed when compared with glycine, L-lysine, and gelatin, which could be explained by their poor dissociation at neutral pH, thus leading to low cytotoxicity. © 2013 Wiley Periodicals, Inc.

  18. Calcium carbonate nucleation in an alkaline lake surface water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, Michael M.; Hoch, Anthony

    2012-01-01

    Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10-16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation "Rate (Δ mM/Δ min) = -0.0026 Ω + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.

  19. Calcium Carbonate Nucleation in an Alkaline Lake Surface Water, Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.

    2012-01-01

    Calcium concentration and calcite supersaturation (??) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has ?? values of 10-16. Notwithstanding high ??, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean ?? at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water ??. Calcium concentration and ?? regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower ?? than filtered samples. Calcium concentration and ?? at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (??) + B. The best fit rate equation "Rate (?? mM/?? min) = -0.0026 ?? + 0.0175 (r = 0.904, n = 10)" was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, ?? at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors. ?? 2011 U.S. Government.

  20. Telecom wavelength single quantum dots with very small excitonic fine-structure splitting

    NASA Astrophysics Data System (ADS)

    Kors, Andrei; Reithmaier, Johann Peter; Benyoucef, Mohamed

    2018-04-01

    We report on molecular beam epitaxy growth of symmetric InAs/InP quantum dots (QDs) emitting at a telecom C-band (1.55 μm) with an ultra-small excitonic fine-structure splitting of ˜2 μeV. The QDs are grown on a distributed Bragg reflector (DBR) and systematically characterized by micro-photoluminescence (μ-PL) measurements. One order of magnitude of QD PL intensity enhancement is observed in comparison to the samples without DBR. A combination of power-dependent and polarization-resolved measurements reveals background-free exciton, biexciton, and dark exciton emission with a resolution-limited linewidth below 35 μeV and a biexciton binding energy of ˜1 meV. The results are confirmed by statistical measurements of about 20 QDs.

  1. Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata).

    PubMed

    Devi, Chingakham Basanti; Kushwaha, Archana; Kumar, Anil

    2015-10-01

    Cowpea (Vigna unguiculata), is an important arid legume with a good source of energy, protein, vitamins, minerals and dietary fibre. Sprouting of legumes enhances the bioavailability and digestibility of nutrients and therefore plays an important role in human nutrition. Improved varieties of grain cowpea viz. Pant Lobia-1 (PL-1) and Pant Lobia-2 (PL-2) and Pant Lobia-3 (PL-3) were examined for sprouting characteristics and associated changes in nutritional quality. Soaking time, sprouting time and sprouting temperature combinations for desirable sprout length of ¼ to ½ inch for cowpea seed samples were standardized. All the observations were taken in triplicate except soaking time, where six observations were taken in a completely randomized design of three treatments. Results revealed that optimum soaking time of PL-1 and PL-2 seed was 3 h whereas PL-3 required 9 h. Sprouting period of 24 h at 25 °C was found to be desirable for obtaining good sprouts. Significant improvement in nutritional quality was observed after sprouting at 25 °C for 24 h; protein increased by 9-12 %, vitamin C increased by 4-38 times, phytic acid decreased by 4-16 times, trypsin inhibitor activity decreased by 28-55 % along with an increase of 8-20 % in in-vitro protein digestibility.

  2. Did the Pension Protection Act (PPA) of 2006 Resolve the Pension Crisis in Corporate America?

    ERIC Educational Resources Information Center

    Luca, John J.

    2009-01-01

    On August 17, 2006, President George W. Bush signed into law the Pension Protection Act (PL 109-280). The 907-page federal law has been referred to as the most comprehensive reform of the nation's pension law since the enactment of the Employee Retirement Income Security Act (ERISA) of 1974 (Lucas, 2008). This paper will examine the major…

  3. Cloning of ε-poly-L-lysine (ε-PL) synthetase gene from a newly isolated ε-PL-producing Streptomyces albulus NK660 and its heterologous expression in Streptomyces lividans

    PubMed Central

    Geng, Weitao; Yang, Chao; Gu, Yanyan; Liu, Ruihua; Guo, Wenbin; Wang, Xiaomeng; Song, Cunjiang; Wang, Shufang

    2014-01-01

    ε-Poly-L-lysine (ε-PL), showing a wide range of antimicrobial activity, is now industrially produced as a food additive by a fermentation process. A new strain capable of producing ε-PL was isolated from a soil sample collected from Gutian, Fujian Province, China. Based on its morphological and biochemical features and phylogenetic similarity with 16S rRNA gene, the strain was identified as Streptomyces albulus and named NK660. The yield of ε-PL in 30 l fed-batch fermentation with pH control was 4.2 g l−1 when using glycerol as the carbon source. The structure of ε-PL was determined by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization–time of flight mass spectrometry (MALDI-TOF MS). Previous studies have shown that the antimicrobial activity of ε-PL is dependent on its molecular size. In this study, the polymerization degree of the ε-PL produced by strain NK660 ranged from 19 to 33 L-lysine monomers, with the main component consisting of 24–30 L-lysine monomers, which implied that the ε-PL might have higher antimicrobial activity. Furthermore, the ε-PL synthetase gene (pls) was cloned from strain NK660 by genome walking. The pls gene with its native promoter was heterologously expressed in Streptomyces lividans ZX7, and the recombinant strain was capable of synthesizing ε-PL. Here, we demonstrated for the first time heterologous expression of the pls gene in S. lividans. The heterologous expression of pls gene in S. lividans will open new avenues for elucidating the molecular mechanisms of ε-PL synthesis. PMID:24423427

  4. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    PubMed

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  5. Analysis of Phospholipid Mixtures from Biological Tissues by Matrix-Assisted Laser Desorption and Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): A Laboratory Experiment

    ERIC Educational Resources Information Center

    Eibisch, Mandy; Fuchs, Beate; Schiller, Jurgen; Sub, Rosmarie; Teuber, Kristin

    2011-01-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used to investigate the phospholipid (PL) compositions of tissues and body fluids, often without previous separation of the total mixture into the individual PL classes. Therefore, the questions of whether all PL classes are detectable…

  6. Human placental lactogen mRNA and its structural genes during pregnancy: quantitation with a complementary DNA.

    PubMed Central

    McWilliams, D; Callahan, R C; Boime, I

    1977-01-01

    A complementary DNA (cDNA) strand was transcribed from human placental lactogen (hPL) mRNA. Based on alkaline sucrose gradient centrifugation, the size of the cDNA was about 8 S, which would represent at least 80% of the hPL mRNA. Previously we showed that four to five times more hPL was synthesized in cell-free extracts derived from term as compared to first trimester placentas. Hybridization of the cDNA with RNA derived from placental tissue revealed that there was about four times more hPL mRNA sequences in total RNA from term placenta than in a comparable quantity of total first trimester RNA. Only background hybridization was observed when the cDNA was incubated with RNA prepared from human kidney. To test if this differential accumulation of hPL mRNA was the result of an amplification of hPL genes, we hybridized the labeled cDNA with cellular DNA from first trimester and term placentas and with DNA isolated from human brain. In all cases, the amount of hPL sequences was approximately two copies per haploid genome. Thus, the enhanced synthesis of hPL mRNA appears to result from a transcriptional activation rather than an amplification of the hPL gene. The increase likely reflects placental differentiation in which the proportion of syncytial trophoblast increases at term. Images PMID:66681

  7. Enhancement of radiation tolerance in GaAs/AlGaAs core–shell and InP nanowires

    NASA Astrophysics Data System (ADS)

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H+ irradiation with fluences ranging from 1 × 1011 to 5 × 1013 p cm‑2. It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  8. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films.

    PubMed

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E; Malko, Anton V; Chabal, Yves J

    2016-01-21

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (∼10(17) cm(-3)) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.

  9. Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.

    PubMed

    Li, Fajun; Xie, Xiaolong; Gao, Qian; Tan, Liying; Zhou, Yanping; Yang, Qingbo; Ma, Jing; Fu, Lan; Tan, Hark Hoe; Jagadish, Chennupati

    2018-06-01

    Radiation effects on semiconductor nanowires (NWs) have attracted the attention of the research community due to their potential applications in space and atomic fields. The effective implementation of NW devices in a radiation environment is a matter of concern. Here, the photoluminescence (PL) and time-resolved PL (TRPL) measurements were performed on both GaAs and InP NWs at room temperature before and after 1 MeV H + irradiation with fluences ranging from 1 × 10 11 to 5 × 10 13 p cm -2 . It is found that the degradation of lifetime is size-dependent, and typically the minority carrier lifetime damage coefficient is closely correlated with the material and NW diameter. Compared to GaAs and InP bulk material counterparts, the lifetime damage coefficient of NWs decreases by a factor of about one order of magnitude. After irradiation, GaAs NWs with a smaller diameter show a much lower lifetime damage coefficient while InP NWs show an increase in carrier radiative lifetime. The increased size-dependent radiation hardness is mainly attributed to the defect sink effect and/or the improvement of a room temperature dynamic annealing mechanism of the NWs. The InP NWs also showed higher radiation tolerance than GaAs NWs.

  10. Toward a Better Understanding of the GRB Phenomenon: a New Model for GRB Prompt Emission and its Effects on the New LiNT- Epeak,irest,NT Relation

    NASA Astrophysics Data System (ADS)

    Guiriec, S.; Kouveliotou, C.; Daigne, F.; Zhang, B.; Hascoët, R.; Nemmen, R. S.; Thompson, D. J.; Bhat, P. N.; Gehrels, N.; Gonzalez, M. M.; Kaneko, Y.; McEnery, J.; Mochkovitch, R.; Racusin, J. L.; Ryde, F.; Sacahui, J. R.; Ünsal, A. M.

    2015-07-01

    Gamma-ray burst (GRB) prompt emission spectra in the keV-MeV energy range are usually considered to be adequately fitted with the empirical Band function. Recent observations with the Fermi Gamma-ray Space Telescope (Fermi) revealed deviations from the Band function, sometimes in the form of an additional blackbody (BB) component, while on other occasions in the form of an additional power law (PL) component extending to high energies. In this article we investigate the possibility that the three components may be present simultaneously in the prompt emission spectra of two very bright GRBs (080916C and 090926A) observed with Fermi, and how the three components may affect the overall shape of the spectra. While the two GRBs are very different when fitted to a single Band function, they look like “twins” in the three-component scenario. Through fine-time spectroscopy down to the 100 ms timescale, we follow the evolution of the various components. We succeed in reducing the number of free parameters in the three-component model, which results in a new semi-empirical model—but with physical motivations—to be competitive with the Band function in terms of number of degrees of freedom. From this analysis using multiple components, the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with Fermi/Large Area Telescope. Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst, where it may even overpower the other components at low energy. We investigate the effect of the three components on the new time-resolved luminosity-hardness relation in both the observer and rest frames and show that a strong correlation exists between the flux of the non-thermal Band function and its Epeak only when the three components are fitted simultaneously to the data (i.e., {F}i{NT}-{E}{peak,i}{NT} relation). In addition, this result points toward a universal relation between those two quantities when transposed to the central engine rest frame for all GRBs (i.e., {L}i{NT}-{E}{peak,i}{rest,{NT}} relation). We discuss a possible theoretical interpretation of the three spectral components within this new empirical model. We suggest that (i) the BB component may be interpreted as the photosphere emission of a magnetized relativistic outflow, (ii) the Band component has synchrotron radiation in an optically thin region above the photosphere, either from internal shocks or magnetic field dissipation, and (iii) the extra PL component extending to high energies likely has an inverse Compton origin of some sort, even though its extension to a much lower energy remains a mystery.

  11. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    DOE PAGES

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; ...

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the twomore » modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.« less

  12. Inactivation of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice by pulsed light. Influence of initial contamination and required reduction levels.

    PubMed

    Ferrario, Mariana I; Guerrero, Sandra N

    The purpose of this study was to analyze the response of different initial contamination levels of Alicyclobacillus acidoterrestris ATCC 49025 spores in apple juice as affected by pulsed light treatment (PL, batch mode, xenon lamp, 3pulses/s, 0-71.6J/cm 2 ). Biphasic and Weibull frequency distribution models were used to characterize the relationship between inoculum size and treatment time with the reductions achieved after PL exposure. Additionally, a second order polynomial model was computed to relate required PL processing time to inoculum size and requested log reductions. PL treatment caused up to 3.0-3.5 log reductions, depending on the initial inoculum size. Inactivation curves corresponding to PL-treated samples were adequately characterized by both Weibull and biphasic models (R adj 2 94-96%), and revealed that lower initial inoculum sizes were associated with higher inactivation rates. According to the polynomial model, the predicted time for PL treatment increased exponentially with inoculum size. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots.

    PubMed

    Dohnalová, Kateřina; Fučíková, Anna; Umesh, Chinnaswamy P; Humpolíčková, Jana; Paulusse, Jos M J; Valenta, Jan; Zuilhof, Han; Hof, Martin; Gregorkiewicz, Tom

    2012-10-22

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl-terminated Si-QDs of 2-3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano-object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron-hole pairs confined in the Si-QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si-QDs with tunable sizes and bandgaps. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Steering UTC (AOS) and UTC (PL) by TA (PL)

    DTIC Science & Technology

    2007-01-01

    UTC. • A second time-transfer technique ( TWSTFT ) will be introduced at AOS. 38th Annual Precise Time and Time Interval (PTTI) Meeting 387 • AOS will...Deviation TWSTFT – Two-Way Satellite Time and Frequency Transfer UTC – Coordinated Universal Time UTC (i) – Realization of UTC by laboratory i

  15. Luminescence and transient lifetime studies for energy transfer of PbS QD films

    NASA Astrophysics Data System (ADS)

    Wang, Joanna S.; Ullrich, Bruno; Dass, Chandriker K.; Das, Anirban; Wai, Chien M.; Brown, Gail J.; Hendrickson, Joshua R.

    2017-08-01

    Quantum confined semiconductor materials in colloidal form have drawn great attention in scientific communities due to the size-tunability, which controls their optical properties. PbS quantum dots (QDs) are exciting candidates for quantum optics, particularly due to the control of the QD sizes during the synthetic process enabling the realization of precisely tunable emission properties in the near-infrared region. Differently sized pairs of PbS QDs were deposited onto glass substrates to form thin films using supercritical CO2 (sc-CO2) deposition and solvent deposition methods (SDM). The fluorescence and photoluminescence (PL) spectra obtained from these closely packed films prepared by the sc-CO2 method reveal effective Förster resonance energy transfer (FRET) between two different sized dots, while the films composed of three different QD sizes show an even more effective FRET from the smallest to the largest ones. Energy transfer can be observed more directly by temporally resolved PL decay of mixed dots. By means of transient lifetime measurements, a mixed PbS film with 3.1 and 4.7 nm QDs was studied for FRET by time correlated single photon counting. The PL peak of the 3.1 nm QDs is quenched with respect to the emission of the 4.7 nm QDs and decays faster, and the best fit for the lifetime (decay constant)-1 is a biexponential decay mode. The long wavelength decay (4.7 nm QDs) is best fit by a mono-exponential equation. More theoretical and experimental work is required for a thorough understanding of the radiative lifetimes of PbS QDs in mixed QD systems.

  16. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.

    PubMed

    Tong, Yu; Ehrat, Florian; Vanderlinden, Willem; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Polavarapu, Lakshminarayana; Urban, Alexander S

    2016-12-27

    Perovskite nanocrystals (NCs) are an important extension to the fascinating field of hybrid halide perovskites. Showing significantly enhanced photoluminescence (PL) efficiency and emission wavelengths tunable through halide content and size, they hold great promise for light-emitting applications. Despite the rapid advancement in this field, the physical nature and size-dependent excitonic properties have not been well investigated due to the challenges associated with their preparation. Herein we report the spontaneous formation of highly luminescent, quasi-2D organic-inorganic hybrid perovskite nanoplatelets (NPls) upon dilution of a dispersion of bulk-like NCs. The fragmentation of the large NCs is attributed to osmotic swelling induced by the added solvent. An excess of organic ligands in the solvent quickly passivates the newly formed surfaces, stabilizing the NPls in the process. The thickness of the NPls can be controlled both by the dilution level and by the ligand concentration. Such colloidal NPls and their thin films were found to be extremely stable under continuous UV light irradiation. Full tunability of the NPl emission wavelength is achieved by varying the halide ion used (bromide, iodide). Additionally, time-resolved PL measurements reveal an increasing radiative decay rate with decreasing thickness of the NPls, likely due to an increasing exciton binding energy. Similarly, measurements on iodide-containing NPls show a transformation from biexponential to monoexponential PL decay with decreasing thickness, likely due to an increasing fraction of excitonic recombination. This interesting phenomenon of change in fluorescence upon dilution is a result of the intricate nature of the perovskite material itself and is uncommon in inorganic materials. Our findings enable the synthesis of halide perovskite NCs with high quantum efficiency and good stability as well as a tuning of both their optical and morphological properties.

  17. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients

    NASA Astrophysics Data System (ADS)

    Can, Nuri; Okur, Serdal; Monavarian, Morteza; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Teke, Ali; Özgür, Ümit

    2015-03-01

    Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 - 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.

  18. Efficient triplet application in exciplex delayed-fluorescence OLEDs using a reverse intersystem crossing mechanism based on a ΔES-T of around zero.

    PubMed

    Zhang, Tianyou; Chu, Bei; Li, Wenlian; Su, Zisheng; Peng, Qi Ming; Zhao, Bo; Luo, Yongshi; Jin, Fangming; Yan, Xingwu; Gao, Yuan; Wu, Hairuo; Zhang, Feng; Fan, Di; Wang, Junbo

    2014-08-13

    We demonstrate highly efficient exciplex delayed-fluorescence organic light-emitting diodes (OLEDs) in which 4,4',4″-tris[3-methylphenyl(phenyl)aminotriphenylamine (m-MTDATA) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were selected as donor and acceptor components, respectively. Our m-MTDATA:Bphen exciplex electroluminescence (EL) mechanism is based on reverse intersystem crossing (RISC) from the triplet to singlet excited states. As a result, an external quantum efficiency (EQE) of 7.79% at 10 mA/cm(2) was observed, which increases by 3.2 and 1.5 times over that reported in Nat. Photonics 2012, 6, 253 and Appl. Phys. Lett. 2012, 101, 023306, respectively. The high EQE would be attributed to a very easy RISC process because the energy difference between the singlet and triplet excited states is almost around zero. The verdict was proven by photoluminescence (PL) rate analysis at different temperatures and time-resolved spectral analysis. Besides, the study of the transient PL process indicates that the presence of an unbalanced charge in exciplex EL devices is responsible for the low EQE and high-efficiency roll-off. When the exciplex devices were placed in a 100 mT magnetic field, the permanently positive magnetoelectroluminescence and magnetoconductivity were observed. The magnetic properties confirm that the efficient exciplex EL only originates from delayed fluorescence via RISC processes but is not related to the triplet-triplet annihilation process.

  19. Unusual x-ray excited luminescence spectra of NiO suggest self-trapping of the d-d charge-transfer exciton

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Pustovarov, V. A.; Churmanov, V. N.; Ivanov, V. Yu.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.; Moskvin, A. S.

    2012-09-01

    Luminescence spectra of NiO have been investigated under vacuum ultraviolet (VUV) and soft x-ray (XUV) excitation (DESY, Hamburg). Photoluminescence (PL) spectra show broad emission violet and green bands centered at about 3.2 and 2.6 eV, respectively. The PL excitation (PLE) spectral evolution and lifetime measurements reveal that the two mechanisms with short and long decay times, attributed to the d(eg)-d(eg) and p(π)-d charge transfer (CT) transitions in the range 4-6 eV, respectively, are responsible for the observed emissions. The XUV excitation makes it possible to avoid the predominant role of the surface effects in luminescence and reveals a bulk violet luminescence with a puzzling well-isolated doublet of very narrow lines. These lines with close energies near 3.3 eV are attributed to recombination transitions in the self-trapped d-d CT excitons formed by the coupled Jahn-Teller Ni+ and Ni3+ centers. The conclusion is supported by a comparative analysis of the luminescence spectra for NiO and solid solution NixZn1-xO and by a comprehensive cluster model assignment of different p-d and d-d CT transitions and their relaxation channels. Our paper shows that the time-resolved luminescence measurements provide an instructive tool for the elucidation of the p-d and d-d CT excitations and their relaxation in 3d oxides.

  20. Differential uptake of salicylate in serum, cerebrospinal fluid, and perilymph.

    PubMed

    Jastreboff, P J; Hansen, R; Sasaki, P G; Sasaki, C T

    1986-10-01

    After intraperitoneal administration of salicylate in anesthetized rats and guinea pigs, we found that salicylate levels in perilymph (PL) are closely related to both drug levels in cerebrospinal fluid (CSF) and in serum, with higher levels systematically observed in PL than in CSF. Further analysis suggests that salicylate is not passively transported into PL across CSF but, rather, is transported from blood directly to PL. The time course of salicylate uptake in rats reveals maximum levels at 1 1/2 hours (serum) and two to four hours (CSF and PL). On the other hand, salicylate uptake into serum and CSF of guinea pigs exhibits a longer time course, with maximum levels reached at four hours (serum) and five hours (CSF). These data, not previously available, are basic to our understanding of salicylate-related auditory effects.

  1. A direct measurement of g-factors in II-VI and III-V core-shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Fradkin, L.; Langof, L.; Lifshitz, E.; Gaponik, N.; Rogach, A.; Eychmüller, A.; Weller, H.; Micic, O. I.; Nozik, A. J.

    2005-02-01

    This study describes a direct measurement of spectroscopic g-factors of photo-generated carriers in InP/ZnS and HgTe/Hg xCd 1-xTe(S) core-shell nanocrystals. The g-factor of trapped electrons and their spin-lattice versus radiative relaxation ratio ( T1/ τ) were measured by the use of continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The g-factors of excitons and donor-hole pairs were derived by the use of field-induced circular-polarized photoluminescence (CP-PL) spectroscopy. The combined information enabled to determine the g-factors of the individual band-edge electrons and holes. The results suggested an increase of the g-factor of the exciton and conduction electron with a decrease of the nanocrystal size.

  2. The protonation state around TyrD/TyrD• in photosystem II is reflected in its biphasic oxidation kinetics.

    PubMed

    Sjöholm, Johannes; Ho, Felix; Ahmadova, Nigar; Brinkert, Katharina; Hammarström, Leif; Mamedov, Fikret; Styring, Stenbjörn

    2017-02-01

    The tyrosine residue D2-Tyr160 (Tyr D ) in photosystem II (PSII) can be oxidized through charge equilibrium with the oxygen evolving complex in PSII. The kinetics of the electron transfer from Tyr D has been followed using time-resolved EPR spectroscopy after triggering the oxidation of pre-reduced Tyr D by a short laser flash. After its oxidation Tyr D is observed as a neutral radical (Tyr D • ) indicating that the oxidation is coupled to a deprotonation event. The redox state of Tyr D was reported to be determined by the two water positions identified in the crystal structure of PSII [Saito et al. (2013) Proc. Natl. Acad. Sci. USA 110, 7690]. To assess the mechanism of the proton coupled electron transfer of Tyr D the oxidation kinetics has been followed in the presence of deuterated buffers, thereby resolving the kinetic isotope effect (KIE) of Tyr D oxidation at different H/D concentrations. Two kinetic phases of Tyr D oxidation - the fast phase (msec-sec time range) and the slow phase (tens of seconds time range) were resolved as was previously reported [Vass and Styring (1991) Biochemistry 30, 830]. In the presence of deuterated buffers the kinetics was significantly slower compared to normal buffers. Furthermore, although the kinetics were faster at both high pH and pD values the observed KIE was found to be similar (~2.4) over the whole pL range investigated. We assign the fast and slow oxidation phases to two populations of PSII centers with different water positions, proximal and distal respectively, and discuss possible deprotonation events in the vicinity of Tyr D . Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rheology of tissue conditioners.

    PubMed

    Murata, H; Hamada, T; Djulaeha, E; Nikawa, H

    1998-02-01

    Tissue conditioners can be used to condition abused tissues, record functional impressions, make temporary relinings, and for other clinical applications, mainly because of their specific viscoelasticity. However, little information is available on the rheology of the materials, manipulation, and suitability for various clinical applications. This study evaluated the gelation times, the viscoelastic properties after gelation of tissue conditioners, and the influence of the powder/liquid (P/L) ratio. Ten tissue conditioners were used and gelation times were obtained with an oscillating rheometer. A series of stress relaxation tests were also conducted to evaluate the viscoelastic properties after gelation and the changes with the passage of time by means of Maxwell model analogies. Significant differences were found in the gelation times and flow properties after gelation among the materials mixed with the P/L ratios recommended by the manufacturers. The flow properties tended to increase with time of storage. Large differences in the limits of the clinically acceptable P/L ratios and the adjustable limits of elasticity and viscosity by altering P/L ratios were found among the materials. The results suggested that each material should be selected according to each clinical purpose because of the wide ranges of viscoelastic properties and changes in viscoelasticity with time among the materials. Furthermore, gelation times and the viscoelastic properties after gelation can be controlled to improve handling and suit various applications by altering the P/L ratios within the acceptable limits.

  4. Er 3+ Doping conditions of planar porous silicon waveguides

    NASA Astrophysics Data System (ADS)

    Najar, A.; Lorrain, N.; Ajlani, H.; Charrier, J.; Oueslati, M.; Haji, L.

    2009-11-01

    EDX and infrared photoluminescence (IR PL) analyses performed on erbium-doped porous silicon waveguides (PSWG) were studied using different doping conditions. Both parameters of the cathodisation electrochemical method used for Er incorporation and parameters of thermal treatments required for Er optical activation were taken into consideration. Firstly, by varying the current density and the time of cathodisation, we have shown that a current density of 0.1 mA/cm 2 for 10 min allows homogeneous Er doping to be achieved throughout the depth of the guiding layer. Then, the PL intensity at 1.53 μm was studied as a function of the oxidation time at 900 °C and Er diffusion temperature for 60 min. Increasing the oxidation time up to 1 h allows PL to be enhanced due to active Si-O-Er complex formation whereas an oxidation time of 2 h induces a decrease in PL because of Er segregation. Moreover, an increase in the diffusion temperature induces an optimal distribution of optically active Si-Er-O complexes inside the crystallites. When the temperature is too high, a PSWG densification and Er segregation occurs inducing a decrease in PL due to energy transfer phenomena.

  5. A kinetic model for estimating net photosynthetic rates of cos lettuce leaves under pulsed light.

    PubMed

    Jishi, Tomohiro; Matsuda, Ryo; Fujiwara, Kazuhiro

    2015-04-01

    Time-averaged net photosynthetic rate (P n) under pulsed light (PL) is known to be affected by the PL frequency and duty ratio, even though the time-averaged photosynthetic photon flux density (PPFD) is unchanged. This phenomenon can be explained by considering that photosynthetic intermediates (PIs) are pooled during light periods and then consumed by partial photosynthetic reactions during dark periods. In this study, we developed a kinetic model to estimate P n of cos lettuce (Lactuca sativa L. var. longifolia) leaves under PL based on the dynamics of the amount of pooled PIs. The model inputs are average PPFD, duty ratio, and frequency; the output is P n. The rates of both PI accumulation and consumption at a given moment are assumed to be dependent on the amount of pooled PIs at that point. Required model parameters and three explanatory variables (average PPFD, frequency, and duty ratio) were determined for the simulation using P n values under PL based on several combinations of the three variables. The model simulation for various PL levels with a wide range of time-averaged PPFDs, frequencies, and duty ratios further demonstrated that P n under PL with high frequencies and duty ratios was comparable to, but did not exceed, P n under continuous light, and also showed that P n under PL decreased as either frequency or duty ratio was decreased. The developed model can be used to estimate P n under various light environments where PPFD changes cyclically.

  6. Nanoscale investigation of the interaction of colistin with model phospholipid membranes by Langmuir technique, and combined infrared and force spectroscopies.

    PubMed

    Freudenthal, Oona; Quilès, Fabienne; Francius, Grégory; Wojszko, Kamila; Gorczyca, Marcelina; Korchowiec, Beata; Rogalska, Ewa

    2016-11-01

    Colistin (Polymyxin E), an antimicrobial peptide, is increasingly put forward as salvage for severe multidrug-resistant infections. Unfortunately, colistin is potentially toxic to mammalian cells. A better understanding of the interaction with specific components of the cell membranes may be helpful in controlling the factors that may enhance toxicity. Here, we report a physico-chemical study of model phospholipid (PL) mono- and bilayers exposed to colistin at different concentrations by Langmuir technique, atomic force microscopy (AFM) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The effect of colistin on chosen PL monolayers was examined. Insights into the topographical and elastic changes in the PL bilayers within time after peptide injection are presented via AFM imaging and force spectra. Finally, changes in the PL bilayers' ATR-FTIR spectra as a function of time within three bilayer compositions, and the influence of colistin on their spectral fingerprint are examined together with the time-evolution of the Amide II and νCO band integrated intensity ratios. Our study reveals a great importance in the role of the PL composition as well as the peptide concentration on the action of colistin on PL model membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Tungsten-doped TiO2/reduced Graphene Oxide nano-composite photocatalyst for degradation of phenol: A system to reduce surface and bulk electron-hole recombination.

    PubMed

    Yadav, Manisha; Yadav, Asha; Fernandes, Rohan; Popat, Yaksh; Orlandi, Michele; Dashora, Alpa; Kothari, D C; Miotello, Antonio; Ahuja, B L; Patel, Nainesh

    2017-12-01

    Recombination of photogenerated charges is the main factor affecting the photocatalytic activity of TiO 2 . Here, we report a combined strategy of suppressing both the bulk as well as the surface recombination processes by doping TiO 2 with tungsten and forming a nanocomposite with reduced graphene oxide (rGO), respectively. Sol-gel method was used to dope and optimize the concentration of W in TiO 2 powder. UV-Vis, XPS, PL and time resolved PL spectra along with DFT calculations indicate that W 6+ in TiO 2 lattice creates an impurity level just below the conduction band of TiO 2 to act as a trapping site of electrons, which causes to improve the lifetime of the photo-generated charges. Maximum reduction in the PL intensity and the improvement in charge carrier lifetime was observed for TiO 2 doped with 1 at.% W (1W-TiO 2 ), which also displayed the highest photo-activity for the degradation of p-nitro phenol pollutant in water. Tuning of rGO/TiO 2 ratio (weight) disclosed that the highest activity can be achieved with the composite formed by taking equal amounts of TiO 2 and rGO (1:1), in which the strong interaction between TiO 2 and rGO causes an effective charge transfer via bonds formed near the interface as indicated by XPS. Both these optimized concentrations were utilized to form the composite rGO/1W-TiO 2 , which showed the highest activity in photo-degradation of p-nitro phenol (87%) as compared to rGO/TiO 2 (42%), 1W-TiO 2 (62%) and pure TiO 2 (29%) in 180 min. XPS and PL results revealed that in the present nanocomposite, tungsten species traps the excited electron to reduce the interband recombination in the bulk, while the interaction between TiO 2 and rGO creates a channel for fast transfer of excited electrons towards the latter before being recombined on the surface defect sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    PubMed

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells.

  9. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer

    PubMed Central

    2017-01-01

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a POx layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since POx is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al2O3 capping layer to form a POx/Al2O3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm–2), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as nanolasers and solar cells. PMID:28885032

  10. [Intra-uterine growth restriction impact on maternal serum concentration of PlGF (placental growth factor): A case control study].

    PubMed

    Margossian, A; Boisson-Gaudin, C; Subtil, F; Rudigoz, R-C; Dubernard, G; Allias, F; Huissoud, C

    2016-01-01

    Placental growth factor (PlGF) is a pro-angiogenic factor mainly assessed in preeclampsia in which its blood concentration is decreased. The aim of this study was to dose the blood concentration of PlGF in women with fetal intra-uterine growth restriction (IUGR) without associated preeclampsia at the time of diagnosis. Case/control study: IUGR was defined by a fetal biometry with abnormal uterine and/or umbilical doppler (n=23). This group was compared to a control group of fetuses (n=25) matched for gestational age at blood sampling for the dosage of maternal seric PlGF. Women with preeclampsia were not included. The plasma PlGF concentration was 11pg/mL (IQR [11-42,8]) in the IUGR group vs 287pg/mL [135-439] in the control group (P<0.001) and this difference was available after adjustment for gestational age at the time of blood sampling (P<0.001). PlGF sensitivity and specificity for discrimination were respectively 87% (CI 95% [66-97]) and 88% (CI 95% [69-97]). Maternal serum PlGF concentrations were very low in IUGR group compared with those of the control group. Copyright © 2015. Published by Elsevier SAS.

  11. Human platelet lysate supplementation of mesenchymal stromal cell delivery: issues of xenogenicity and species variability.

    PubMed

    Allen, Ashley B; Butts, Emily B; Copland, Ian B; Stevens, Hazel Y; Guldberg, Robert E

    2017-10-01

    Immunogenicity of fetal bovine serum (FBS) poses a problem for its use in the propagation of autologous mesenchymal stromal cells (MSCs) for cell therapy. Human platelet lysate (hPL), an enriched growth factor solution containing mitogenic and angiogenic cues, has potential utility in replacing FBS for human MSC (hMSC) delivery strategies. Despite its potentiation of hMSC number in vitro, little is known concerning its capacity to supplement implanted hMSC-seeded constructs and promote tissue regeneration in vivo. In this study, we tested the effects of incorporating hPL in cell-seeded constructs implanted subcutaneously into immunocompromised rats, investigated in vitro interactions between hPL and rat MSCs (rMSCs) and determined interspecies variability in the PL product [hPL vs rat PL (rPL)] and its effect on cultured MSCs (hPL/hMSCs vs rPL/rMSCs). The overarching aim was to determine the utility of hPL to foster MSC survival in preclinical rodent models. Exposure to hPL-supplemented media resulted in rMSC death, by a process attributable to heat-labile proteins, but not membrane attack complex formation. In the in vitro syngeneic model, the rodent product proved fundamentally distinct from the human product, with rPL having substantially lower growth factor content than hPL. Moreover, contrary to the positive effects of hPL on hMSC expansion, rPL did not reduce rMSC doubling time for the serum concentrations examined. When tested in vivo, hPL did not improve cell survival within hydrogel constructs through 2 weeks postimplantation. In summary, this study highlights the many facets of xenogenicity and interspecies variability that must be considered in the preclinical evaluation of hPL. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Effect of thermal annealing on carrier localization and efficiency of spin detection in GaAsSb epilayers grown on InP

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Chen, Cheng; Han, Junbo; Jin, Chuan; Chen, Jianxin; Wang, Xingjun

    2018-04-01

    The effect of the thermal annealing on the optical and spin properties in GaAs0.44Sb0.56 epilayers grown on InP was investigated via photoreflectance, power-dependent and time-resolved photoluminescence spectroscopy as well as optical orientation measurement. The carrier's localization and the optical spin detection efficiency increase with an increase of annealing temperature up to 600 °C. The enhancement of the spin detection efficiency is attributed to both the shortening of the electron lifetime and the prolonging of the spin lifetime as a result of the enhanced carriers' localization induced by the annealing process. Our results provided an approach to enhance spin detection efficiency of GaAsSb with its PL emission in the 1.55 μm region.

  13. Toward a better understanding of the GRB phenomenon: a new model for GRB prompt emission and its effects on the new L i NT$-$E peak,i rest,NT relation

    DOE PAGES

    Guiriec, S.; Kouveliotou, C.; Daigne, F.; ...

    2015-07-09

    Gamma-ray burst (GRB) prompt emission spectra in the keV–MeV energy range are usually considered to be adequately fitted with the empirical Band function. Recent observations with the Fermi Gamma-ray Space Telescope (Fermi) revealed deviations from the Band function, sometimes in the form of an additional blackbody (BB) component, while on other occasions in the form of an additional power law (PL) component extending to high energies. Here in this article we investigate the possibility that the three components may be present simultaneously in the prompt emission spectra of two very bright GRBs (080916C and 090926A) observed with Fermi, and how the three components may affect the overall shape of the spectra. While the two GRBs are very different when fitted to a single Band function, they look like "twins" in the three-component scenario. Through fine-time spectroscopy down to the 100 ms timescale, we follow the evolution of the various components. We succeed in reducing the number of free parameters in the three-component model, which results in a new semi-empirical model—but with physical motivations—to be competitive with the Band function in terms of number of degrees of freedom. From this analysis using multiple components, the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with Fermi/Large Area Telescope. Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst, where it may even overpower the other components at low energy. We investigate the effect of the three components on the new time-resolved luminosity–hardness relation in both the observer and rest frames and show that a strong correlation exists between the flux of the non-thermal Band function and its E peak only when the three components are fitted simultaneously to the data (i.e.,more » $${F}_{i}^{\\mathrm{NT}}$$–$${E}_{\\mathrm{peak},i}^{\\mathrm{NT}}$$ relation). In addition, this result points toward a universal relation between those two quantities when transposed to the central engine rest frame for all GRBs (i.e., $${L}_{i}^{\\mathrm{NT}}$$–$${E}_{\\mathrm{peak},i}^{\\mathrm{rest},\\mathrm{NT}}$$ relation). We discuss a possible theoretical interpretation of the three spectral components within this new empirical model. Lastly, we suggest that (i) the BB component may be interpreted as the photosphere emission of a magnetized relativistic outflow, (ii) the Band component has synchrotron radiation in an optically thin region above the photosphere, either from internal shocks or magnetic field dissipation, and (iii) the extra PL component extending to high energies likely has an inverse Compton origin of some sort, even though its extension to a much lower energy remains a mystery.« less

  14. Quasi-continuum photoluminescence: Unusual broad spectral and temporal characteristics found in defective surfaces of silica and other materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence, Ted A., E-mail: laurence2@llnl.gov; Bude, Jeff D.; Shen, Nan

    2014-02-28

    We previously reported a novel photoluminescence (PL) with a distribution of fast decay times in fused silica surface flaws that is correlated with damage propensity by high fluence lasers. The source of the PL was not attributable to any known silica point defect. Due to its broad spectral and temporal features, we here give this PL the name quasi-continuum PL (QC-PL) and describe the features of QC-PL in more detail. The primary features of QC-PL include broad excitation and emission spectra, a broad distribution of PL lifetimes from 20 ps to 5 ns, continuous shifts in PL lifetime distributions with respectmore » to emission wavelength, and a propensity to photo-bleach and photo-brighten. We found similar PL characteristics in surface flaws of other optical materials, including CaF{sub 2}, DKDP, and quartz. Based on the commonality of the features in different optical materials and the proximity of QC-PL to surfaces, we suggest that these properties arise from interactions associated with high densities of defects, rather than a distribution over a large number of types of defects and is likely found in a wide variety of structures from nano-scale composites to bulk structures as well as in both broad and narrow band materials from dielectrics to semiconductors.« less

  15. Evaluating the assumption of power-law late time scaling of breakthrough curves in highly heterogeneous media

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele

    2017-04-01

    Power-law (PL) distributions are widely adopted to define the late-time scaling of solute breakthrough curves (BTCs) during transport experiments in highly heterogeneous media. However, from a statistical perspective, distinguishing between a PL distribution and another tailed distribution is difficult, particularly when a qualitative assessment based on visual analysis of double-logarithmic plotting is used. This presentation aims to discuss the results from a recent analysis where a suite of statistical tools was applied to evaluate rigorously the scaling of BTCs from experiments that generate tailed distributions typically described as PL at late time. To this end, a set of BTCs from numerical simulations in highly heterogeneous media were generated using a transition probability approach (T-PROGS) coupled to a finite different numerical solver of the flow equation (MODFLOW) and a random walk particle tracking approach for Lagrangian transport (RW3D). The T-PROGS fields assumed randomly distributed hydraulic heterogeneities with long correlation scales creating solute channeling and anomalous transport. For simplicity, transport was simulated as purely advective. This combination of tools generates strongly non-symmetric BTCs visually resembling PL distributions at late time when plotted in double log scales. Unlike other combination of modeling parameters and boundary conditions (e.g. matrix diffusion in fractures), at late time no direct link exists between the mathematical functions describing scaling of these curves and physical parameters controlling transport. The results suggest that the statistical tests fail to describe the majority of curves as PL distributed. Moreover, they suggest that PL or lognormal distributions have the same likelihood to represent parametrically the shape of the tails. It is noticeable that forcing a model to reproduce the tail as PL functions results in a distribution of PL slopes comprised between 1.2 and 4, which are the typical values observed during field experiments. We conclude that care must be taken when defining a BTC late time distribution as a power law function. Even though the estimated scaling factors are found to fall in traditional ranges, the actual distribution controlling the scaling of concentration may different from a power-law function, with direct consequences for instance for the selection of effective parameters in upscaling modeling solutions.

  16. [Migraine in SLE: role of antiphospholipid antibodies and Raynaud's phenomenon].

    PubMed

    Annese, Virginia; Tomietto, Paola; Venturini, Paolo; D'Agostini, Serena; Ferraccioli, Gianfranco

    2006-01-01

    To determine the role of antiphospholipid antibodies (aPL) and of Raynaud's phenomenon (RP) in the development of migraine in patients with systemic lupus erythematosus (SLE). 50 unselected SLE patients and 20 rheumatoid arthritis (RA) controls underwent an interview to define the presence of migraine according to the guidelines of the International Headache Society (1988). Serological tests for aPL were performed in all patients. SLE patients were divided according to positivity for RP and/or aPL into 4 subsets: R-/aPL-, R-/aPL+, R+/aPL- and R+/aPL+. Data were analysed using Fisher's exact test, Chi-square test and U Mann-Whitney test. SLE and RA patients were similar for demographic and clinical features; aPL positivity was found in a greater proportion of SLE patients versus RA controls (68% vs 25%, p=0.0036). 31 of the 50 lupic patients (62%) and 7 of the 20 RA controls (35%) suffered from migraine (OR=3, CI:1-8.9). Among SLE and RA patients, migraine was associated with aPL positivity (p=0.027 and p=0.019). Analysing the combined effect of aPL and RP on migraine, in R+/aPL+ patients we detected an higher frequency of migraine (85.7%) with respect to the patients negative for these two features (27%, p=0.0051, OR=16, CI:2.2-118) and to the patients positive only for aPL (65%, p=0.0031, OR=6.2, CI:1.2-32). Migraine in SLE and RA associates with aPL positivity. The simultaneous presence of RP increases by 2,5 times the probability of having migraine, suggesting that cerebral vasospasm might be more common in patients with peripheral vasospasm, given the presence of aPL.

  17. Optically detected magnetic resonance studies on pi-conjugated polymers and novel carbon allotropes

    NASA Astrophysics Data System (ADS)

    Partee, Jonathan Farel

    1997-12-01

    The photophysics of poly(p-phenylene)-type ladder polymers (m-LPPP) and 2,5-dibutoxy poly(p-phenylene ethynylene) (DBO-PPE) films and solutions were studied by X-band photoluminescence detected magnetic resonance (PLDMR). Frequency resolved PLDMR measurements on LPPP, DBO-PPE, poly(3-hexylthiophene) (P3HT), poly(p-phenylene-vinylene) (PPV), and Csb{70} are also reported and discussed. All the polymer samples exhibit three distinct features when excited at wavelengths lambda≥ 458nm: (i) A narrow PL-enhancing spin-1/2 polaron resonance, (ii) broad full- and (iii) half-field spin-1 triplet exciton powder patterns due to the Deltamsbs = 1 and Deltamsbs = 2 transitions among the triplet sublevels, respectively. The full-width at half maximum (FWHM) of the spin-1/2 resonance in LPPP decreased from film to solution. However, the FWHM of that resonance in PPE was identical at all concentrations. This spin-1/2 resonance is assigned to the magnetic resonance enhancement of the recombination of both interchain and intrachain-intersegment polaron pairs which quench singlet exciton recombination. In solid m-LPPP samples, the aggregate PL gives rise to a proportionally higher magnetic resonance effect than other parts of the PL spectrum. In DBO-PPE and m-LPPP solutions, the triplet resonance decreased with decreasing concentration. This suggests that the triplet state is an intrinsic long-lived (˜30mus) trapped state localized on a phenylene ring and stabilized by coupling to a unit of an adjacent chain. Frequency resolved measurements of the lifetime of the species affected by the resonance conditions for all the polymers are described and discussed. The lifetimes appeared to include: (i) fast (9mus ≤ tausb1 ≤ 40mus) and (ii) slow (575mus\\ ≤ tausb2≤ 1868mus) components. The lifetimes increased with increasing concentration of the polymers in toluene solutions. These results can be interpreted to provide support for the interchain/intersegment polaron model or a distribution of lifetimes model.

  18. PlGF gene knockdown in human retinal pigment epithelial cells.

    PubMed

    Akrami, Hassan; Soheili, Zahra-Soheila; Sadeghizadeh, Majid; Ahmadieh, Hamid; Rezaeikanavi, Mozhgan; Samiei, Shahram; Khalooghi, Keynoush

    2011-04-01

    To evaluate the knockdown of placental growth factor (PlGF) gene expression in human retinal pigment epithelium (RPE) cells and its effect on cell proliferation, apoptosis and angiogenic potential of RPE cells. Human RPE cells were isolated by dispase I solution and cultured in DMEM/F12 supplemented with 10% fetal calf serum (FCS). A small interfering RNA (siRNA) corresponding to PlGF mRNA and a scrambled siRNA (scRNA) were introduced into the cells. Cell proliferation and cell death were examined by ELISA. PlGF mRNA and protein were quantified by real-time polymerase chain reaction (PCR) and western blot. The levels of gene expression for human retinal pigment epithelium-specific protein 65 kDa (RPE65), cellular retinaldehyde-binding protein (CRALBP) and tyrosinase were examined by real-time PCR. The angiogenic activity of RPE cell-derived conditioned media was assayed by a tube formation assay using human umbilical vein endothelial cells (HUVECs). At a final siRNA concentration of 20 pmol/ml, the transfection efficiency was about 80%. The amount of PlGF transcripts was reduced to 10% after 36 h of incubation, and the amount of PlGF protein in culture supernatant was significantly decreased. Suppression of PlGF gene had no effect on RPE cell proliferation and survival, and there were no notable changes in the transcript levels of RPE65, CRALBP or tyrosinase for the cultures treated by siRNA cognate to PlGF. Vascular tube formation was efficiently reduced in HUVECs. Our findings present PlGF as a key modulator of angiogenic potential in RPE cells of the human retina.

  19. Electrical Stress Influences the Efficiency of CH3 NH3 PbI3 Perovskite Light Emitting Devices.

    PubMed

    Zhao, Lianfeng; Gao, Jia; Lin, YunHui L; Yeh, Yao-Wen; Lee, Kyung Min; Yao, Nan; Loo, Yueh-Lin; Rand, Barry P

    2017-06-01

    Organic-inorganic hybrid perovskite materials are emerging as semiconductors with potential application in optoelectronic devices. In particular, perovskites are very promising for light-emitting devices (LEDs) due to their high color purity, low nonradiative recombination rates, and tunable bandgap. Here, using pure CH 3 NH 3 PbI 3 perovskite LEDs with an external quantum efficiency (EQE) of 5.9% as a platform, it is shown that electrical stress can influence device performance significantly, increasing the EQE from an initial 5.9% to as high as 7.4%. Consistent with the enhanced device performance, both the steady-state photoluminescence (PL) intensity and the time-resolved PL decay lifetime increase after electrical stress, indicating a reduction in nonradiative recombination in the perovskite film. By investigating the temperature-dependent characteristics of the perovskite LEDs and the cross-sectional elemental depth profile, it is proposed that trap reduction and resulting device-performance enhancement is due to local ionic motion of excess ions, likely excess mobile iodide, in the perovskite film that fills vacancies and reduces interstitial defects. On the other hand, it is found that overstressed LEDs show irreversibly degraded device performance, possibly because ions initially on the perovskite lattice are displaced during extended electrical stress and create defects such as vacancies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bringing the Brain to Bear on Context and Policy in Primary Languages Practice in England

    ERIC Educational Resources Information Center

    Phillips, Magdalen

    2017-01-01

    The learning of modern languages in primary school (PL) was recently promoted to statutory status in the curriculum of England and Wales, but practice remains patchy. Low PL capacity amongst primary school teachers and constraints on curricular time persist. Viewed through the lenses of policy, learning theory and context, current PL practice can…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu; Han, Sangwoo; Kamberos, Natalie L.

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL onmore » the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.« less

  2. Association between antiphospholipid antibodies and all-cause mortality among end-stage renal disease patients with and without SLE: a retrospective cohort study

    PubMed Central

    Mowrey, Wenzhu B.; Kim, Mimi; Murakhovskaya, Irina; Billett, Henny; Neugarten, Joel; Costenbader, Karen H.; Putterman, Chaim

    2016-01-01

    Objective. To investigate the association between the presence of aPL and/or LA and all-cause mortality among end-stage renal disease (ESRD) patients with and without SLE. Methods. We included ESRD patients >18 years old followed at an urban tertiary care centre between 1 January 2006 and 31 January 2014 who had aPL measured at least once after initiating haemodialysis. All SLE patients met ACR/SLICC criteria. APL/LA+ was defined as aCL IgG or IgM >40 IU, anti-β2glycoprotein1 IgG or IgM >40 IU or LA+. Deaths as at 31 January 2014 were captured in the linked National Death Index data. Time to death was defined from the first aPL measurement. Results. We included 34 SLE ESRD and 64 non-SLE ESRD patients; 30 patients died during the study period. SLE ESRD patients were younger [40.4 (12.5) vs 51.9 (18.1) years, P = 0.001] and more were women (88.2% vs 54.7%, P < 0.001) vs non-SLE ESRD patients. The frequency of aPL/LA+ was 24% in SLE and 13% in non-SLE ESRD (P = 0.16). Median (inter-quartile range) follow-up time was 1.6 (0.3–3.5) years in SLE and 1.4 (0.4–3.2) years in non-SLE, P = 0.74. The adjusted hazard ratio (HR) for all-cause mortality for SLE patients who were aPL/LA+ vs aPL/LA− was 9.93 (95% CI 1.33, 74.19); the adjusted HR for non-SLE aPL/LA+ vs aPL/LA− was 0.77 (95% CI 0.14, 4.29). Conclusion. SLE ESRD patients with aPL/LA+ had higher all-cause mortality risk than SLE ESRD patients without these antibodies, while the effects of aPL/LA on mortality were comparable among non-SLE ESRD patients. PMID:26705328

  3. Thermal Quenching of Photoluminescence in ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Albarakati, Nahla Mubarak

    Investigation of the thermal quenching of photoluminescence (PL) in semiconductors provides valuable information on identity and characteristics of point defects in these materials, which helps to better understand and improve the properties of semiconductor materials and devices. Abrupt and tunable thermal quenching (ATQ) of PL is a relatively new phenomenon with an unusual behavior of PL. This mechanism was able to explain what a traditional model failed to explain. Usually, in traditional model used to explain "normal" quenching, the slope of PL quenching in the Arrhenius plot determines the ionization energy of the defect causing the PL band. However, in abrupt quenching when the intensity of PL decreases by several orders of magnitude within a small range of temperature, the slope in the Arrhenius plot has no relation to the ionization energy of any defect. It is not known a priori if the thermal quenching of a particular PL band is normal or abrupt and tunable. Studying new cases of unusual thermal quenching, classifying and explaining them helps to predict new cases and understand deeper the ATQ mechanism of PL thermal quenching. Very few examples of abrupt and tunable quenching of PL in semiconductors can be found in literature. The abrupt and tunable thermal quenching, reported here for the first time for high-resistivity ZnO, provides an evidence to settle the dispute concerning the energy position of the Li Zn acceptor. In high-resistivity GaN samples, the common PL bands related to defects are the yellow luminescence (YL) band and a broad band in the blue spectral region (BL2). In this work, we report for the first time the observation of abrupt and tunable thermal quenching of the YL band in GaN. The activation energies for the YL and BL2 bands calculated through the new mechanism show agreement with the reported values. From this study we predict that the ATQ phenomenon is quite common for high-resistivity semiconductors.

  4. [Purification, characterization and application of ε-poly-L. lysine- degrading enzyme from Streptomyces sp. M-Z18 ].

    PubMed

    Liu, Qingrui; Chen, Xusheng; Zeng, Xin; Han, Dai; Mao, Zhonggui

    2014-09-04

    [OBJECTIVE] The ε-poly-L-lysine-degrading enzyme (Pld) derived from Streptomyces sp. M-Z18 was purified and characterized. Furthermore, Pld was used to produce the low polymerization of ε-poly-L-lysine (ε-PL). [METHODS] Pld was purified to electrophoretical homogeneity through HiTrapTM Butyl HP hydrophobic chromatography after pretreated by ultrasonic and NaSCN dissolving. Subsequently, enzymatic characteristics, kinetic parameters and the time profile of ε-PL degradation by the purified Pld were studied. Meanwhile, we examined the effect of ε-PL with different degrees of polymerization on the minimal inhibitory concentration of bacteria and fungi. [RESULTS] Pld was purified to homogeneity with a final fold of 80.4 and an overall yield of 59.3%. The optimal temperature and pH for the purified Pld were 370C and 7. 0, respectively. Moreover, the Km with L-lysyl-p-nitroanilide as substrate was calculated to be 0. 621 mmol/L, and the Vmax was 701. 16 nmol/min.mg. Pld was stable in the range of pH 7. 0 - 10. 0, and temperature up to 500 C, respectively. Time profile of ε-PL degradation by the purified Pld indicated that Pld catalyzed endo-type degradation of ε- PL. The experiments of minimal inhibitory showed that ε-PL with high degree of polymerization (30 - 35) had a superior antibacterial effect on bacteria and the low degree of polymerization ε-PL (8 -20) had a better antibacterial effect on yeasts. However, ε-PL with various degrees of polymerization had a poor antibacterial effect on mould. [ CONCLUSION] The present result showed that an endo-type Pld from ε-PL-producing strain was purified. Meanwhile, it is proved that ε-PL with different degrees of polymerization have exhibited significant different antibacterial effects on microorganism.

  5. Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Bernardi, Martina; Albiero, Elena; Alghisi, Alberta; Chieregato, Katia; Lievore, Chiara; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2013-08-01

    A medium supplemented with fetal bovine serum (FBS) is of common use for the expansion of human mesenchymal stromal cells (MSCs). However, its use is discouraged by regulatory authorities because of the risk of zoonoses and immune reactions. Human platelet lysate (PL) obtained by freezing/thawing disruption of platelets has been proposed as a possible substitute of FBS. The process is time-consuming and not well standardized. A new method for obtaining PL that is based on the use of ultrasound is proposed. Platelet sonication was performed by submerging platelet-containing plastic bags in an ultrasonic bath. To evaluate platelet lysis we measured platelet-derived growth factor-AB release. PL efficiency was tested by expanding bone marrow (BM)-MSCs, measuring population doubling time, differentiation capacity and immunogenic properties. Safety was evaluated by karyotyping expanded cells. After 30 minutes of sonication, 74% of platelet derived growth factor-AB was released. PL enhanced BM-MSC proliferation rate compared with FBS. The mean cumulative population doubling (cPD) of cells growth in PL at 10%, 7.5% and 5% was better compared with cPD obtained with 10% FBS. PD time (hours) of MSCs with PL obtained by sonication was shorter than for cPD with PL obtained by freezing/thawing (18.9 versus 17.4, P < 0.01). BM mononucleated cells expressed MSC markers and were able to differentiate into adipogenic, osteogenic and chondrogenic lineages. When BM-MSCs and T cells were co-cultured in close contact, immunosuppressive activity of BM-MSCs was maintained. Cell karyotype showed no genetic alterations. The proposed method for the production of PL by sonication could be a safe, efficient and fast substitute of FBS, without the potential risks of FBS. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Soil burial method for plastic degradation performed by Pseudomonas PL-01, Bacillus PL-01, and indigenous bacteria

    NASA Astrophysics Data System (ADS)

    Shovitri, Maya; Nafi'ah, Risyatun; Antika, Titi Rindi; Alami, Nur Hidayatul; Kuswytasari, N. D.; Zulaikha, Enny

    2017-06-01

    Lately, plastic bag is becoming the most important pollutant for environment since it is difficult to be naturally degraded due to it consists of long hydrocarbon polymer chains. Our previous study indicated that our pure isolate Pseudomonas PL-01 and Bacillus PL-01 could degrade about 10% plastic bag. This present study was aimed to find out whether Pseudomonas PL01 and Bacillus PL01 put a positive effect to indigenous bacteria from marginal area in doing plastic degradation with a soil burial method. Beach sand was used as a representative marginal area, and mangrove sediment was used as a comparison. Plastics were submerged into unsterile beach sand with 10% of Pseudomonas PL-01 or Bacillus PL-01 containing liquid minimal salt medium (MSM) separately, while other plastics were submerged into unsterile mangrove sediments. After 4, 8, 12 and 16 weeks, their biofilm formation on their plastic surfaces and plastic degradation were measured. Results indicated that those 2 isolates put positive influent on biofilm formation and plastic degradation for indigenous beach sand bacteria. Bacillus PL-01 put higher influent than Pseudomonas PL-01. Plastic transparent was preferable degraded than black and white plastic bag `kresek'. But anyhow, indigenous mangrove soil bacteria showed the best performance in biofilm formation and plastic degradation, even without Pseudomonas PL-01 or Bacillus PL-01 addition. Fourier Transform Infrared (FTIR) analysis complemented the results; there were attenuated peaks with decreasing peaks transmittances. This FTIR peaks indicated chemical functional group changes happened among the plastic compounds after 16 weeks incubation time.

  7. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    NASA Astrophysics Data System (ADS)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge applications of graphene-ZnO based 2D-1D hybrid nanostructures.

  8. Mobilization and Defense Management Technical Reports Series. Achievement of Industrial Mobilization Objectives in an Economically Interdependent World.

    DTIC Science & Technology

    1983-05-01

    maintenance of the essential industrial base and to put in place the framework and processes---’ DD I O 1473 £O,TION OF I NOV65 IS OBSOLETE{ SECjBITY...the essential indu,, ......... -: -, :.It .n pl3ce the framework and processes necessary to resolve the conflict between liberal trade and national...domestic capabilities of selected industries essential to national security. Major Recommendations 1. Modify U.S. trade policy to allow for goverr ent

  9. Floral adaptation and diversification under pollen limitation

    PubMed Central

    Harder, Lawrence D.; Aizen, Marcelo A.

    2010-01-01

    Pollen limitation (PL) of seed production creates unique conditions for reproductive adaptation by angiosperms, in part because, unlike under ovule or resource limitation, floral interactions with pollen vectors can contribute to variation in female success. Although the ecological and conservation consequences of PL have received considerable attention in recent times, its evolutionary implications are poorly appreciated. To identify general influences of PL on reproductive adaptation compared with those under other seed-production limits and their implications for evolution in altered environments, we derive a model that incorporates pollination and post-pollination aspects of PL. Because PL always favours increased ovule fertilization, even when population dynamics are not seed limited, it should pervasively influence selection on reproductive traits. Significantly, under PL the intensity of inbreeding does not determine whether outcrossing or autonomous selfing can evolve, although it can affect which response is most likely. Because the causes of PL are multifaceted in both natural and anthropogenically altered environments, the possible outcrossing solutions are diverse and context dependent, which may contribute to the extensive variety of angiosperm reproductive characteristics. Finally, the increased adaptive options available under PL may be responsible for positive global associations between it and angiosperm diversity. PMID:20047878

  10. Improvement in wettability of porous Si by carboxylate termination

    NASA Astrophysics Data System (ADS)

    Sakakibara, Masanori; Matsumoto, Kimihisa; Kamiya, Kazuhide; Kawabata, Shigeki; Inada, Mitsuru; Suzuki, Shinya

    2018-02-01

    The effects of the surface terminations of carboxylic acid and carboxylate on the hydrophilicity of porous Si were studied to observe the changes in the photoluminescence (PL) intensity of water-dispersed porous Si powder over time. Porous Si terminated by carboxylate was produced from carboxylic acid-terminated porous Si by a neutralization reaction with an alkali metal. After the neutralization of porous Si terminated by carboxylic acid, the formation of carboxylate-terminated porous Si was confirmed by observing the absorption peaks corresponding to Si-C and COO- from Fourier transform infrared (FT-IR) spectra. On the basis of changes in the PL intensity of porous Si over time, the hydrophilicity of porous Si terminated by carboxylate was determined to be higher than that of porous Si terminated by carboxylic acid. On the other hand, nonradiative recombination centers on the surface of carboxylate-terminated porous Si were formed during the neutralization process, which reduced the PL intensity. The PL from porous Si terminated by carboxylic acid and carboxylate was caused by the quantum size effect regardless of the termination molecules, which was confirmed by the wavelength dependence of the PL lifetime. Porous Si terminated by undecylenate is an effective material for applications such as bio-labels owing to its hydrophilicity and high PL stability.

  11. Effect of harvest time and physical form of alfalfa silage on chewing time and particle size distribution in boli, rumen content and faeces.

    PubMed

    Kornfelt, L F; Weisbjerg, M R; Nørgaard, P

    2013-02-01

    The study examined the effects of physical form and harvest time of alfalfa silage on eating and ruminating activity and particle size distribution in feed boli, rumen content and faeces in dry cows. The alfalfa crop was harvested at two stages of growth (early: NDF 37%, late: NDF 44% in dry matter (DM)), and from each harvest, a chopped (theoretical cutting length: 19 mm) and an unchopped crop was ensiled in bales. The silages were fed restrictively to four rumen cannulated non-lactating Jersey cows (391 ± 26 kg) in a 4 × 4 Latin square design. The cows were fed restrictively 80% of their ad libitum intake twice daily. Chewing activity was recorded for 96 h continuously. Swallowed boli, rumen content, rumen fluid and faeces samples were collected, washed in nylon bags (0.01 mm pore size) and freeze-dried before dry sieving through 4.750, 2.360, 1.000, 0.500 and 0.212 mm pore sizes into six fractions. The length (PL) and width (PW) of particles within each fraction was measured by the use of image analysis. The eating activity (min/kg dry matter intake (P < 0.01) and min/kg NDF (P < 0.05)) was affected by harvest time. The mean ruminating time (min/kg DM) was affected by harvest time (P < 0.01), physical form (P < 0.05) and NDF intake per kg BW (P < 0.01). The proportion of washed particle DM of total DM in boli, rumen content, rumen fluid and faeces was affected by harvest time (P < 0.01) and highest by feeding late-harvested alfalfa silage. Two peaks on the probability density distribution function (PDF) of PW and PL values of boli, rumen content and faeces were identified. Chopping of the silage decreased the mean PL and PW, the most frequent PL (mode) and 95% percentile PL and PW values in boli. In the rumen content, chopping increased the mean PW (P < 0.05). The dimension sizes of faeces particles were not significantly affected by chopping. The mode PW value was lower in rumen content and faeces than in boli (P < 0.001), and the mode PL value was higher in boli and lower in faeces compared with rumen contents (P < 0.001). In conclusion, the mean total chewing activity per kg NDF decreased due to chopping and early harvest time. The mean PL and PW in boli decreased due to chopping and late harvest. The two peak values on the PDF (PL) and PDF (PW) of boli, rumen content and faeces particles are most likely related to the leaf and the stem residues.

  12. Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte superoxide dismutase activities in copper-depleted and repleted rats.

    PubMed

    Panemangalore, M; Bebe, F N

    1996-01-01

    The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; < 1 mg Cu/kg), marginal (MAR; 2 mg Cu/kg), or control (CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON; p < or = 0.05) in the DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0-3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p < or = .05) in the DEF group, increased to control activity after 1 d of CuS and declined slightly after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p < or = 0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.

  13. Immobilization of recombinant pectate lyase from Clostridium thermocellum ATCC-27405 on magnetic nanoparticles for bioscouring of cotton fabric.

    PubMed

    Chakraborty, Soumyadeep; Jagan Mohan Rao, Tingirikari; Goyal, Arun

    2017-01-01

    Recombinant pectate lyase from family 1 polysaccharide lyase (PL1B) was immobilized on synthesized magnetic nanoparticles (MNPs) after 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride activation. At 70 mg/mL MNPs 100% binding of 1 mg/mL PL1B was achieved. The immobilized PL1B-MNP displayed activity of 20.3 and 18.2 U/mg against polygalacturonic acid and citrus pectin, respectively, which was higher than the activity of free PL1B, on the same substrates of 17.8 and 16.2 U/mg. The immobilized PL1B-MNP showed 32 fold and 14 fold enhanced thermal stability at 80°C and 90°C, respectively as compared with free PL1B at same temperatures. At high temperature the immobilized PL1B-MNP retained its activity for a longer duration than free PL1B. The immobilized PL1B-MNP could be reused till five cycles and after that it retained 70% of initial activity. It could be easily recovered from the reaction mixture with the help of a magnet. Bioscouring of cotton fabric was carried out with immobilized PL1B-MNP which showed efficient removal of pectin from the fabric surface. The enhanced wettability of fabric resulted in the decrease of the water absorbing time period from 3 min taken by the free PL1B treated fabric to 15 s taken by the immobilized PL1B-MNP treated fabric. As per our knowledge this is the first attempt of bioscouring of coarse cotton fabric by pectinase immobilized on magnetic nanoparticles. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:231-244, 2017. © 2016 American Institute of Chemical Engineers.

  14. A comprehensive analysis of transfection-assisted delivery of iron oxide nanoparticles to dendritic cells.

    PubMed

    Toki, Shinji; Omary, Reed A; Wilson, Kevin; Gore, John C; Peebles, R Stokes; Pham, Wellington

    2013-11-01

    Polylysine (PL) has been used to facilitate dendritic cell (DC) uptake of super paramagnetic iron oxide (SPIO) nanoparticles for use in magnetic resonance imaging (MRI). In this work, we examined the effect of PL on cell toxicity and induction of cell maturation as manifested by the up-regulation of surface molecules. We found that PL became toxic to bone marrow-derived DCs (BMDCs) at the 10 μg/ml threshold. Incubation of BMDCs with 20 μg/ml of PL for 1h resulted in approximately 90% cell death. However, addition of SPIO nanoparticles rescued DCs from PL-induced death as the combination of SPIO with PL did not cause cytotoxicity until the PL concentration was 1000 μg/ml. Prolonged exposure to PL induced BMDC maturation as noted by the expression of surface molecules such as MHC class II, CD40, CCR7 and CD86. However, the combination of SPIO and PL did not induce BMDC maturation at 1h. However prolonged exposure to SPIO nanoparticles induced CD40 expression and protein expression of TNFα and KC. The data suggest that the use of PL to enhance the labeling of DCs with SPIO nanoparticles is a dedicated work. Appropriate calibration of the incubation time and concentrations of PL and SPIO nanoparticles is crucial to the development of MRI technology for noninvasive imaging of DCs in vivo. The authors of this study present detailed data on toxicity and efficiency of polylysine-facilitated uptake of USPIO-s by dendritic cells for cell-specific MR imaging. Copyright © 2013. Published by Elsevier Inc.

  15. Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayagaki, Takeshi, E-mail: tayagaki-t@aist.go.jp; Sugaya, Takeyoshi

    2016-04-11

    We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔE{sub c} ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carriermore » capture in QDs via Auger relaxation.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, Jason M.; Kindvall, Anna; Williams, Desiree

    Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxidemore » materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.« less

  17. Exploring ultrafast dynamics of excitons and multiexcitons in "giant" nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Sampat, Siddharth

    In this work, we have performed extensive time resolved photoluminescence (PL) studies to further the understanding of charge dynamics in semiconductor nanocrystal quantum dots (QDs). Recent developments in QD synthesis have introduced a new set of QD known as "giant" quantum dots (gQDs) that consist of a CdSe core coated with up to 19 monolayers of a CdS shell. The thick shell layer is grown using a SILAR method resulting in a defect free, alloyed CdSe/CdS interface. This has been attributed to gQDs exhibiting excellent optical properties such as high excitonic quantum yield (QY), prolonged photostability and inhibition of flourescence intermittency ("blinking"), which is regularly observed in conventional QDs. In gQDs, however, owing to unique fabrication methods and material selection, the Auger process is strongly suppressed resulting in efficient radiative recombination of photogenerated excitons as well as high PL QY of charged excitonic and multiexcitonic species. We perform extensive single gQDs studies that establish the role played by gQD shell thickness and core size in governing their optical properties. It is found that both the core and shell dimensions can be tuned in order to achieve the smallest gQDs with the highest vii Auger suppression resulting in photostable dots with high QYs. Next, we perform a study of multiexcitonic species in gQDs that are encapsulated in an insulating SiO2shell. These silica-coated gQDs exhibit strong PL from charged excitons, biexcitons as well as triexcitons. This observation has led to an accurate description of excitonic and multiexcitonic behavior which is modeled using a statistical scaling approach. As a demonstration of the practical applicability of gQDs, energy transfer of excitons as well as multiexcitons to different substrates is studied. Finally, a back gated silicon nanomembrane FET device is discussed that exhibits a large photocurrent increase when sensitized with QDs.

  18. Enhanced PL and EL properties of Alq3/nano-TiO2 with the modification of 8-vinyl POSS

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xie, Bing; Xia, Kai; Zhao, Chunmao; Li, Yingchun; Hu, Shengliang

    2018-04-01

    In this study, tris (8-hydroxyquinoline) aluminum/nano-titanium dioxide (Alq3/nano-TiO2) composites were synthesized using a simply in-situ process with 8-vinyl polyhedral oligomeric silsesquioxane (POSS) as a modifier. The as-prepared Alq3/nano-TiO2 composites were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet visible (UV-vis) absorption spectra. The effect of modification on luminescence properties for the samples was studied by photoluminescence (PL) spectra, electroluminescence (EL) spectra and time-resolved luminescence decay curves. Organic light emitting diodes (OLEDs) with the corresponded emitting layer structure were investigated. The results show that the amphiphilicity of the 8-vinyl POSS leads to well-dispersion state of the nano-TiO2 in the Alq3. Adding a proper weight percentage of 8-vinyl POSS is beneficial for the PL and EL properties enhancement of the composites. OLED using the Alq3/nano-TiO2 with 1 wt% 8-vinyl POSS emitting layer has the low turn-on voltage (4.7 V at 1 cd/m2), high maximum luminance (7463 cd/m2 at 8.75 V), and high luminous efficiency (1.13 cd/A at 100 mA/cm2). Adding 1 wt% 8-vinyl POSS in Alq3/nano-TiO2 can increase the EL intensity by a factor of 37.1 at 8 V. These values are better than those for OLEDs using the Alq3 emitting layer. The increase in luminance and current efficiency stability can be attributed to the energy transfer process between the Alq3 and the nano-TiO2, and the suppression of the self-quenching by caged 8-vinyl POSS molecules.

  19. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate.

    PubMed

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes.

  20. Tuning of structural, light emission and wetting properties of nanostructured copper oxide-porous silicon matrix formed on electrochemically etched copper-coated silicon substrates

    NASA Astrophysics Data System (ADS)

    Naddaf, M.

    2017-01-01

    Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.

  1. Physics based Prediction of Unexploded Ordnance Penetration in Granular Materials

    DTIC Science & Technology

    2017-05-01

    0.08 0.10 0.12 0.14 0.16 0.18 D is pl ac em en t ( m m ) Time (s) Simulation Centrifuge test 91 cylindrical DSE assembly, and the shape of the stress...0.18 D is pl ac em en t ( m m ) Time (s) Simulation Centrifuge test 96 a) b) c) d) Figure 5.21 Projectile penetration simulation vertical...penetration (Fig. 5.25c and Fig. 5.26c). -4000 -3500 -3000 -2500 -2000 -1500 -1000 -500 0 0.00 0.02 0.04 0.06 0.08 0.10 D is pl ac em en t ( m m

  2. Faster Electron Injection and More Active Sites for Efficient Photocatalytic H2 Evolution in g-C3 N4 /MoS2 Hybrid.

    PubMed

    Shi, Xiaowei; Fujitsuka, Mamoru; Kim, Sooyeon; Majima, Tetsuro

    2018-03-01

    Herein, the structural effect of MoS 2 as a cocatalyst of photocatalytic H 2 generation activity of g-C 3 N 4 under visible light irradiation is studied. By using single-particle photoluminescence (PL) and femtosecond time-resolved transient absorption spectroscopies, charge transfer kinetics between g-C 3 N 4 and two kinds of nanostructured MoS 2 (nanodot and monolayer) are systematically investigated. Single-particle PL results show the emission of g-C 3 N 4 is quenched by MoS 2 nanodots more effectively than MoS 2 monolayers. Electron injection rate and efficiency of g-C 3 N 4 /MoS 2 -nanodot hybrid are calculated to be 5.96 × 10 9 s -1 and 73.3%, respectively, from transient absorption spectral measurement, which are 4.8 times faster and 2.0 times higher than those of g-C 3 N 4 /MoS 2 -monolayer hybrid. Stronger intimate junction between MoS 2 nanodots and g-C 3 N 4 is suggested to be responsible for faster and more efficient electron injection. In addition, more unsaturated terminal sulfur atoms can serve as the active site in MoS 2 nanodot compared with MoS 2 monolayer. Therefore, g-C 3 N 4 /MoS 2 nanodot exhibits a 7.9 times higher photocatalytic activity for H 2 evolution (660 µmol g- 1 h -1 ) than g-C 3 N 4 /MoS 2 monolayer (83.8 µmol g -1 h -1 ). This work provides deep insight into charge transfer between g-C 3 N 4 and nanostructured MoS 2 cocatalysts, which can open a new avenue for more rationally designing MoS 2 -based catalysts for H 2 evolution. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Formation of highly luminescent Zn1-xCdxSe nanocrystals using CdSe and ZnSe seeds

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Yang, Ping

    2013-05-01

    High-quality colloidal Zn1-xCdxSe nanocrystals (NCs) with tunable photoluminescence (PL) from blue to orange were synthesized using oleic acid as a capping agent. The Zn1-xCdxSe NCs were prepared through two approaches: using CdSe or ZnSe seeds. In the case of CdSe NCs as seeds, Zn1-xCdxSe NCs were fabricated by the reaction of Zn, Cd, and Se precursors in the coordinating solvent system at high temperature. The Zn1-xCdxSe NCs revealed orange emitting. A significant blue-shift of absorption and PL spectra were observed with time, indicating the formation of ternary NCs. In contrast, Zn1-xCdxSe NCs revealed blue to green PL for ZnSe NCs as seeds. This is ascribed to an embryonic nuclei-induced alloying process. With increasing time, the Zn1-xCdxSe NCs exhibited a red-shift both in their absorption and PL spectra. This is attributed to the engineering in band gap energy via the control of NC composition. The PL properties of as-prepared alloyed NCs are comparable or even better than those for the parent binary systems. The PL peak wavelength of the Zn1-xCdxSe NCs depended strongly on reaction time and the molar ratio of Cd/Zn. The Zn1-xCdxSe NCs revealed a spherical morphology and exhibited a wurtzite structure according to transmission electron microscopy observation and an X-ray diffraction analysis.

  4. Electric field dynamics in nitride structures containing quaternary alloy (Al, In, Ga)N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borysiuk, J., E-mail: jolanta.borysiuk@ifpan.edu.pl; Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw; Sakowski, K.

    2016-07-07

    Molecular beam epitaxy growth and basic physical properties of quaternary AlInGaN layers, sufficiently thick for construction of electron blocking layers (EBL), embedded in ternary InGaN layers are presented. Transmission electron microscopy (TEM) measurement revealed good crystallographic structure and compositional uniformity of the quaternary layers contained in other nitride layers, which are typical for construction of nitride based devices. The AlInGaN layer was epitaxially compatible to InGaN matrix, strained, and no strain related dislocation creation was observed. The strain penetrated for limited depth, below 3 nm, even for relatively high content of indium (7%). For lower indium content (0.6%), the strain wasmore » below the detection limit by TEM strain analysis. The structures containing quaternary AlInGaN layers were studied by time dependent photoluminescence (PL) at different temperatures and excitation powers. It was shown that PL spectra contain three peaks: high energy donor bound exciton peak from the bulk GaN (DX GaN) and the two peaks (A and B) from InGaN layers. No emission from quaternary AlInGaN layers was observed. An accumulation of electrons on the EBL interface in high-In sample and formation of 2D electron gas (2DEG) was detected. The dynamics of 2DEG was studied by time resolved luminescence revealing strong dependence of emission energy on the 2DEG concentration. Theoretical calculations as well as power-dependence and temperature-dependence analysis showed the importance of electric field inside the structure. At the interface, the field was screened by carriers and could be changed by illumination. From these measurements, the dynamics of electric field was described as the discharge of carriers accumulated on the EBL.« less

  5. Platelet lysate enhances synovial fluid multipotential stromal cells functions: Implications for therapeutic use.

    PubMed

    Altaie, Ala; Baboolal, Thomas G; Wall, Owen; Jones, Elena; McGonagle, Dennis

    2018-03-01

    Although intra-articular injection of platelet products is increasingly used for joint regenerative approaches, there are few data on their biological effects on joint-resident multipotential stromal cells (MSCs), which are directly exposed to the effects of these therapeutic strategies. Therefore, this study investigated the effect of platelet lysate (PL) on synovial fluid-derived MSCs (SF-MSCs), which in vivo have direct access to sites of cartilage injury. SF-MSCs were obtained during knee arthroscopic procedures (N = 7). Colony forming unit-fibroblast (CFU-F), flow-cytometric phenotyping, carboxyfluorescein succinimidyl ester-based immunomodulation for T-cell and trilineage differentiation assays were performed using PL and compared with standard conditions. PL-enhanced SF-MSC (PL-MSC) proliferation as CFU-F colonies was 1.4-fold larger, and growing cultures had shorter population-doubling times. PL-MSCs and fetal calf serum (FCS)-MSCs had the same immunophenotype and similar immunomodulation activities. In chondrogenic and osteogenic differentiation assays, PL-MSCs produced 10% more sulfated-glycosaminoglycan (sGAG) and 45% less Ca ++ compared with FCS-MSCs, respectively. Replacing chondrogenic medium transforming growth factor-β3 with 20% or 50% PL further increased sGAG production of PL-MSCs by 69% and 95%, respectively, compared with complete chondrogenic medium. Also, Dulbecco's Modified Eagle's Medium high glucose (HG-DMEM) plus 50% PL induced more chondrogenesis compared with HG-DMEM plus 10% FCS and was comparable to complete chondrogenic medium. This is the first study to assess SF-MSC responses to PL and provides biological support to the hypothesis that PL may be capable of modulating multiple functional aspects of joint resident MSCs with direct access to injured cartilage. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. A clinical evaluation of placental growth factor in routine practice in high-risk women presenting with suspected pre-eclampsia and/or fetal growth restriction.

    PubMed

    Ormesher, L; Johnstone, E D; Shawkat, E; Dempsey, A; Chmiel, C; Ingram, E; Higgins, L E; Myers, J E

    2018-03-13

    To evaluate the use of plasma Placental Growth Factor (PlGF), recommended by the recent NICE guidance, in women with suspected pre-eclampsia (PE) and/or fetal growth restriction (FGR). Non-randomised prospective clinical evaluation study in high-risk antenatal clinics in a tertiary maternity unit. PlGF testing was performed in addition to routine clinical assessment in 260 women >20 weeks' gestation with chronic disease (hypertension, renal disease ± diabetes) with a change in maternal condition or in women with suspected FGR to determine the impact on clinical management. Results were revealed and standardised care pathways followed. Outcome of pregnancies with a low PlGF (<12 pg/ml and 13-100 pg/ml), impact on clinical service and the diagnostic accuracy of alternative PlGF cut-offs. 206/260 (79.2%) women had an adverse outcome (PE/birthweight < 10th centile/preterm birth). In our cohort, a low PlGF (<12 pg/ml) was associated with a shorter test-birth interval and universally (100% PPV) with an adverse pregnancy outcome, although 29/61 (47.5%) of women with PlGF < 12 pg/ml continued their pregnancy >14 days. The PlGF result altered clinical management (surveillance or timing of birth) in 196/260 (75.4%) cases. Alternative PlGF thresholds did not significantly improve diagnostic performance. Our evaluation confirms the value of PlGF as a diagnostic tool for placental dysfunction. However, low PlGF in isolation should not trigger iatrogenic delivery. Further research linking placental pathology, maternal disease and maternal PlGF levels is urgently needed before this test can be implemented in routine clinical practice. Copyright © 2018. Published by Elsevier B.V.

  7. Photoluminescent enhancement of CdSe/Cd(1-x) Zn(x)S quantum dots by hexadecylamine at room temperature.

    PubMed

    Yang, Jie; Yang, Ping

    2012-09-01

    CdSe/Cd(1-x) Zn(x)S core/shell quantum dots (QDs) were fabricated in 1-octadecene via a two step synthesis. CdSe cores were first prepared using CdO, trioctylphosphine (TOP) selenium, and stearic acid. Subsquently, a Cd(1-x) Zn(x)S shell coating was carried out using zinc acetate dihydrate, cadmium acetate dihydrate, TOPS, and hexadecylamine (HDA) starting materials in the friendly organic system under relatively low temperature. The absorption and photoluminescence (PL) spectra have a significant red shift after the coverage of Cd(1-x)Zn(x)S shell on CdSe cores. The X-ray diffraction analysis of samples confirmed the formation of core/shell structure. The PL quantum yields (QYs) of CdSe/Cd(1-x)Zn(x)S QDs were improved gradually with time at room temperature. This is ascribed to the surface passivation of HDA to the QDs during store. This phenomenon was confirmed by the Fourier transform infrared spectrum of samples. Namely, HDA does not capped on the surface of as-prepared QDs, in which a low PL QYs was observed (less than 10%). Being storing for certain time, HDA attached to the surface of the QDs, in which the PL QYs increased (up to 31%) and the full width at half maximum of PL spectra decreased. Moreover, the fluorescence decay curve of the core/shell QDs is closer to a biexponential decay profile and has a longer average PL lifetime. The variation of average PL lifetime also indicated the influence of HDA during store.

  8. Plumbagin, a vitamin K3 analogue ameliorate malaria pathogenesis by inhibiting oxidative stress and inflammation.

    PubMed

    Gupta, Amit Chand; Mohanty, Shilpa; Saxena, Archana; Maurya, Anil Kumar; Bawankule, Dnyaneshwar U

    2018-03-22

    Plumbagin, a vitamin K3 analogue is the major active constituent in several plants including root of Plumbago indica Linn. This compound has been shown to exhibit a wide spectrum of pharmacological activities. The present investigation was to evaluate the ameliorative effects of plumbagin (PL) against severe malaria pathogenesis due to involvement of oxidative stress and inflammatory response in Plasmodium berghei infected malaria in mice. Malaria pathogenesis was induced by intra-peritoneal injection of P. berghei infected red blood cells into the Swiss albino mice. PL was administered orally at doses of 3, 10 and 30 mg/kg/day following Peter's 4 day suppression test. Oral administration of PL showed significant reduction of parasitaemia and increase in mean survival time. PL treatment is also attributed to significant increase in the blood glucose and haemoglobin level when compared with vehicle-treated infected mice. Significant inhibition in level of oxidative stress and pro-inflammation related markers were observed in PL treated group. The trend of inhibition in oxidative stress markers level after oral treatment of PL was MPO > LPO > ROS in organ injury in P. berghei infected mice. This study showed that plumbagin is able to ameliorate malaria pathogenesis by augmenting anti-oxidative and anti-inflammatory mechanism apart from its effect on reducing parasitaemia and increasing mean survival time of malaria-induced mice.

  9. Unique photoluminescence degradation/recovery phenomena in trivalent ion-activated phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Kenji; Adachi, Sadao, E-mail: adachi@el.gunma-u.ac.jp

    Photo-induced luminescence intensity degradation in red-emitting Tb{sub 3}Ga{sub 5}O{sub 12}:Eu{sup 3+} (TGG:Eu{sup 3+}) phosphor is observed and studied using x-ray diffraction measurement, photoluminescence (PL) analysis, PL excitation spectroscopy, and PL decay analysis. The red-emitting TGG:Eu{sup 3+} phosphor exhibits remarkable degradation in the PL intensity under weak UV light (λ < 350 nm) exposure in the seconds time scale. The PL degradation characteristics can be well expressed by the exponential formulation with respect to exposure time. Interestingly, the PL intensity recovers after a few minutes when the phosphor is stored in a dark room or exposed to the long-wavelength (λ > 350 nm) light. The luminescence decaymore » dynamics measured by excitation at λ{sub ex} = 355 and 266 nm suggest that the present degradation/recovery processes are caused by the electron traps formed in the TGG:Eu{sup 3+} phosphor. The Tb{sup 3+} emission in TGG shows the essentially same degradation characteristics as those observed in the TGG:Eu{sup 3+} phosphor. The present luminescence degradation/recovery phenomena of the trivalent ions (4f → 4f transitions) may universally occur in various oxide phosphors such as TGG (Tb{sup 3+} emission) and CaTiO{sub 3}:Eu{sup 3+}.« less

  10. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer.

    PubMed

    Liang, Tie-Jun; Zhou, Zhong-Mei; Cao, Ying-Qing; Ma, Ming-Ze; Wang, Xiao-Jun; Jing, Kai

    2016-11-20

    In this study, we have demonstrated gemcitabine (GEM)-conjugated amphiphilic biodegradable polymeric drug carriers. Our aim was to increase the chemotherapeutic potential of GEM in colon cancer by forming a unique polymer-drug conjugates. The polymer-drug conjugate micelles were nanosized with a typical spherical shape. The GEM-conjugated methoxy poly(ethylene glycol)-poly(lactic acid) (GEM-PL) exhibited a controlled release of drug in both the pH conditions. The developed GEM-PL efficiently killed the HT29 cancers cells in a typical time dependent manner. The clonogenic assay further confirmed the superior anticancer effect of GEM-PL which showed least number of colonies. GEM-PL formulation exhibited a significantly higher apoptosis of cancer cells (∼25%) when stained using Annexin-V/PI kit. Conjugation of GEM to the mPEG-PLA significantly enhanced the blood circulation potential in animal model compared to that of free GEM. GEM-PL could prevent quick elimination of the drug and can provide sufficient time for the greater accumulation of GEM at the tumor sites. GEM-PL showed a remarkable tumor regression effect as evident from the lowest tumor volume in HT-29 containing tumor model. Overall, mPEG-PLA/GEM conjugates showed the potential of polymer-based drug targeting and might hold significant clinical potential in the treatment of colon cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar

    NASA Astrophysics Data System (ADS)

    Li, Min; Huang, Hongwei; Yu, Shixin; Tian, Na; Dong, Fan; Du, Xin; Zhang, Yihe

    2016-11-01

    Exploration of novel and efficient composite photocatalysts is of great significance for advancing the practical application of photocatalysis. BiOX (X = Cl, Br) is a kind of promising photocatalysts, but the charge separation efficiency and photoabsorption need to be ameliorated. In this work, we first employ a low-cost and easily accessable carbon material biochar to modify BiOX (X = Cl, Br) and develop biochar/BiOX (X = Cl, Br) composite photocatalysts via a facile in-situ deposition method. The as-prepared composites are detailedly characterized by SEM, SEM-mapping, TEM, XRD and XPS, and DRS result demonstrates that the visible-light absorption of BiOX (X = Cl, Br) catalysts can be exceedingly enhanced by biochar. The biochar/BiOX (X = Cl, Br) composites are found to unfold remarkably enhanced visible-light-driven photocatalytic activity toward degradation of MO and photocurrent generation. The strengthened photocatalytic performance mainly stems from the profoundly improved charge separation and delivery efficiency, as evidenced by the electrochemical impedance spectra (EIS), photoluminescence (PL), and time-resolved PL decay spectra. Additionally, the biochar exerts importance in enhancing the two different types of photochemical reactions of BiOBr and BiOCl, in which the photocatalytic mechanisms are found to be photocatalysis and photosensitization process, respectively. The present work may open up a new avenue for framing economic and efficient photocatalytic materials and new composite materials for photoelectric application.

  12. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    NASA Astrophysics Data System (ADS)

    Yang, Y.-B.; Seewald, L.; Mohanty, Dibyajyoti; Wang, Y.; Zhang, L. H.; Kisslinger, K.; Xie, Weiyu; Shi, J.; Bhat, I.; Zhang, Shengbai; Lu, T.-M.; Wang, G.-C.

    2017-08-01

    Single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (∼21-55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [1 bar2 1 bar]CdTe//[ 1 bar100]CdS//[010]mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. The use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.

  13. Structure-based engineering of a pectate lyase with improved specific activity for ramie degumming.

    PubMed

    Zhou, Zhanping; Liu, Yang; Chang, Zhenying; Wang, Huilin; Leier, André; Marquez-Lago, Tatiana T; Ma, Yanhe; Li, Jian; Song, Jiangning

    2017-04-01

    Biotechnological applications of microbial pectate lyases (Pels) in plant fiber processing are promising, eco-friendly substitutes for conventional chemical degumming processes. However, to potentiate the enzymes' use for industrial applications, resolving the molecular structure to elucidate catalytic mechanisms becomes necessary. In this manuscript, we report the high resolution (1.45 Å) crystal structure of pectate lyase (pelN) from Paenibacillus sp. 0602 in apo form. Through sequence alignment and structural superposition with other members of the polysaccharide lyase (PL) family 1 (PL1), we determined that pelN shares the characteristic right-handed β-helix and is structurally similar to other members of the PL1 family, while exhibiting key differences in terms of catalytic and substrate binding residues. Then, based on information from structure alignments with other PLs, we engineered a novel pelN. Our rational design yielded a pelN mutant with a temperature for enzymatic activity optimally shifted from 67.5 to 60 °C. Most importantly, this pelN mutant displayed both higher specific activity and ramie fiber degumming ability when compared with the wild-type enzyme. Altogether, our rational design method shows great potential for industrial applications. Moreover, we expect the reported high-resolution crystal structure to provide a solid foundation for future rational, structure-based engineering of genetically enhanced pelNs.

  14. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate

    PubMed Central

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. Materials and Methods: To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. Results: The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. Conclusion: The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes. PMID:27047647

  15. Novel Injectable Calcium Phosphate Bone Cement from Wet Chemical Precipitation Method

    NASA Astrophysics Data System (ADS)

    Hablee, S.; Sopyan, I.; Mel, M.; Salleh, H. M.; Rahman, M. M.; Singh, R.

    2017-06-01

    Calcium phosphate cement has been prepared via chemical precipitation method for injectable bone filling materials. Calcium hydroxide, Ca(OH)2, and diammonium hydrogen phosphate, (NH4)2HPO4, were used as calcium and phosphorus precursors respectively. The synthesized powder was mixed with water at different powder-to-liquid (P/L) ratios, which was adjusted at 0.8, 0.9, 1.0, 1.1 and 1.2. The influence of P/L ratio on the injectability, setting time and mechanical strength of calcium phosphate cement paste has been evaluated. The synthesized powder appeared as purely hydroxyapatite with nanosized and agglomerated spherical particles. All cement pastes show excellent injectability except for the paste with P/L ratio 1.2. Calcium phosphate cement with P/L ratio 1.1 shows the ideal cement for bone filler application with good injectability, the initial and final setting times of 30 min and 160 min, and the compression strength of 2.47 MPa. The result indicated that the newly developed calcium phosphate cement is physically suitable for bone filler application. This paper presents our investigation on the effect of P/L ratio on the handling and mechanical properties of calcium phosphate cement prepared via wet chemical precipitation method.

  16. Training shortens search times in children with visual impairment accompanied by nystagmus.

    PubMed

    Huurneman, Bianca; Boonstra, F Nienke

    2014-01-01

    Perceptual learning (PL) can improve near visual acuity (NVA) in 4-9 year old children with visual impairment (VI). However, the mechanisms underlying improved NVA are unknown. The present study compares feature search and oculomotor measures in 4-9 year old children with VI accompanied by nystagmus (VI+nys [n = 33]) and children with normal vision (NV [n = 29]). Children in the VI+nys group were divided into three training groups: an experimental PL group, a control PL group, and a magnifier group. They were seen before (baseline) and after 6 weeks of training. Children with NV were only seen at baseline. The feature search task entailed finding a target E among distractor E's (pointing right) with element spacing varied in four steps: 0.04°, 0.5°, 1°, and 2°. At baseline, children with VI+nys showed longer search times, shorter fixation durations, and larger saccade amplitudes than children with NV. After training, all training groups showed shorter search times. Only the experimental PL group showed prolonged fixation duration after training at 0.5° and 2° spacing, p's respectively 0.033 and 0.021. Prolonged fixation duration was associated with reduced crowding and improved crowded NVA. One of the mechanisms underlying improved crowded NVA after PL in children with VI+nys seems to be prolonged fixation duration.

  17. Metabolic analyses of the improved ε-poly-L-lysine productivity using a glucose-glycerol mixed carbon source in chemostat cultures.

    PubMed

    Zhang, Jian-Hua; Zeng, Xin; Chen, Xu-Sheng; Mao, Zhong-Gui

    2018-04-21

    The glucose-glycerol mixed carbon source remarkably reduced the batch fermentation time of ε-poly-L-lysine (ε-PL) production, leading to higher productivity of both biomass and ε-PL, which was of great significance in industrial microbial fermentation. Our previous study confirmed the positive influence of fast cell growth on the ε-PL biosynthesis, while the direct influence of mixed carbon source on ε-PL production was still unknown. In this work, chemostat culture was employed to study the capacity of ε-PL biosynthesis in different carbon sources at a same dilution rate of 0.05 h -1 . The results indicated that the mixed carbon source could enhance the ε-PL productivity besides the rapid cell growth. Analysis of key enzymes demonstrated that the activities of phosphoenolpyruvate carboxylase, citrate synthase, aspartokinase and ε-PL synthetase were all increased in chemostat culture with the mixed carbon source. In addition, the carbon fluxes were also improved in the mixed carbon source in terms of tricarboxylic acid cycle, anaplerotic and diaminopimelate pathway. Moreover, the mixed carbon source also accelerated the energy metabolism, leading to higher levels of energy charge and NADH/NAD + ratio. The overall improvements of primary metabolism in chemostat culture with glucose-glycerol combination provided sufficient carbon skeletons and ATP for ε-PL biosynthesis. Therefore, the significantly higher ε-PL productivity in the mixed carbon source was a combined effect of both superior substrate group and rapid cell growth.

  18. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    NASA Astrophysics Data System (ADS)

    Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo

    2016-06-01

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  19. Photoluminescence Mapping and Angle-Resolved Photoluminescence of MBE-Grown InGaAs/GaAs RC LED and VCSEL Structures

    DTIC Science & Technology

    2002-06-03

    resonant-cavity light-emitting diodes (RC LEDs) and vertical-cavity surface-emitting lasers ( VCSELs )] fabricated from molecular beam epitaxy (MBE)-grown...grown 8470-631. by molecular beam epitaxy (MBE) using a Riber 32P E-mail address: muszal@ite.waw.pl (0. Muszalski). reactor. Details of the growth can be... molecular beams hit the center of a rotating sion features of RC LED and VCSEL structures, as well sample. However, due to the transversal distribution of as

  20. The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots.

    PubMed

    Lu, Yue; Zhang, Ling; Lin, Hengwei

    2014-04-07

    A microreactor is applied and reported, for the first time, in the field of research of carbon dots (CDs), including rapid screening of the reaction conditions and investigation of the photoluminescence (PL) mechanism. Various carbonaceous precursors and solvents were selected and hundreds of reaction conditions were screened (ca. 15 min on average per condition). Through analyzing the screened conditions, tunable PL emission maxima, from about 330 to 550 nm with respectable PL quantum yields, were achieved. Moreover, the relationship between different developmental stages of the CDs and the PL properties was explored by using the microreactor. The PL emission was observed to be independent of the composition, carbonization extent, and morphology/size of the CDs. This study unambiguously presents that a microreactor could serve as a promising tool for the research of CDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Correlation Between Activation of the Prelimbic Cortex, Basolateral Amygdala, and Agranular Insular Cortex During Taste Memory Formation.

    PubMed

    Uematsu, Akira; Kitamura, Akihiko; Iwatsuki, Ken; Uneyama, Hisayuki; Tsurugizawa, Tomokazu

    2015-09-01

    Conditioned taste aversion (CTA) is a well-established learning paradigm, whereby animals associate tastes with subsequent visceral illness. The prelimbic cortex (PL) has been shown to be involved in the association of events separated by time. However, the nature of PL activity and its functional network in the whole brain during CTA learning remain unknown. Here, using awake functional magnetic resonance imaging and fiber tracking, we analyzed functional brain connectivity during the association of tastes and visceral illness. The blood oxygen level-dependent (BOLD) signal significantly increased in the PL after tastant and lithium chloride (LiCl) infusions. The BOLD signal in the PL significantly correlated with those in the amygdala and agranular insular cortex (IC), which we found were also structurally connected to the PL by fiber tracking. To precisely examine these data, we then performed double immunofluorescence with a neuronal activity marker (c-Fos) and an inhibitory neuron marker (GAD67) combined with a fluorescent retrograde tracer in the PL. During CTA learning, we found an increase in the activity of excitatory neurons in the basolateral amygdala (BLA) or agranular IC that project to the PL. Taken together, these findings clearly identify a role of synchronized PL, agranular IC, and BLA activity in CTA learning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Fabrication of Si nanopowder and application to hydrogen generation and photoluminescent material

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru

    2017-12-01

    Si nanopowder is fabricated using the simple beads milling method. Fabricated Si nanopowder reacts with water in the neutral pH region between 7 and 9 to generate hydrogen. The hydrogen generation rate greatly increases with pH, while pH does not change after the hydrogen generation reaction. In the case of the reactions of Si nanopowder with strong alkaline solutions (eg pH13.9), 1600 mL hydrogen is generated from 1 g Si nanopowder in a short time (eg 15 min). When Si nanopowder is etched with HF solutions and immersed in ethanol, green photoluminescence (PL) is observed, and it is attributed to band-to-band transition of Si nanopowder. The Si nanopowder without HF etching in hexane shows blue PL. The PL spectra possess peaked structure, and it is attributed to vibronic bands of 9,10-dimethylantracene (DMA) in hexane solutions. The PL intensity is increased by more than 3,000 times by adsorption of DMA on Si nanopowder.

  3. Analysis of phospholipids in bio-oils and fats by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Viidanoja, Jyrki

    2015-09-15

    A new, sensitive and selective liquid chromatography-electrospray ionization-tandem mass spectrometric (LC-ESI-MS/MS) method was developed for the analysis of Phospholipids (PLs) in bio-oils and fats. This analysis employs hydrophilic interaction liquid chromatography-scheduled multiple reaction monitoring (HILIC-sMRM) with a ZIC-cHILIC column. Eight PL class selective internal standards (homologs) were used for the semi-quantification of 14 PL classes for the first time. More than 400 scheduled MRMs were used for the measurement of PLs with a run time of 34min. The method's performance was evaluated for vegetable oil, animal fat and algae oil. The averaged within-run precision and between-run precision were ≤10% for all of the PL classes that had a direct homologue as an internal standard. The method accuracy was generally within 80-120% for the tested PL analytes in all three sample matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Platelet lysate as a novel serum-free media supplement for the culture of equine bone marrow-derived mesenchymal stem cells.

    PubMed

    Naskou, Maria C; Sumner, Scarlett M; Chocallo, Anna; Kemelmakher, Hannah; Thoresen, Merrilee; Copland, Ian; Galipeau, Jacques; Peroni, John F

    2018-03-22

    Mesenchymal stem cells (MSCs) produced for clinical purposes rely on culture media containing fetal bovine serum (FBS) which is xenogeneic and has the potential to significantly alter the MSC phenotype, rendering these cells immunogenic. As a result of bovine-derived exogenous proteins expressed on the cell surface, MSCs may be recognized by the host immune system as non-self and be rejected. Platelet lysate (PL) may obviate some of these concerns and shows promising results in human medicine as a possible alternative to FBS. Our goal was to evaluate the use of equine platelet lysate (ePL) pooled from donor horses in place of FBS to culture equine MSCs. We hypothesized that ePL, produced following apheresis, will function as the sole media supplement to accelerate the expansion of equine bone marrow-derived MSCs without altering their phenotype and their immunomodulatory capacity. Platelet concentrate was obtained via plateletpheresis and ePL were produced via freeze-thaw and centrifugation cycles. Population doublings (PD) and doubling time (DT) of bone marrow-derived MSCs (n = 3) cultured with FBS or ePL media were calculated. Cell viability, immunophenotypic analysis, and trilineage differentiation capacity of MSCs were assessed accordingly. To assess the ability of MSCs to modulate inflammatory responses, E. coli lipopolysaccharide (LPS)-stimulated monocytes were cocultured with MSCs cultured in the two different media formulations, and cell culture supernatants were assayed for the production of tumor necrosis factor (TNF)-α. Our results showed that MSCs cultured in ePL media exhibited similar proliferation rates (PD and DT) compared with those cultured in FBS at individual time points. MSCs cultured in ePL showed a statistically significant increased viability following a single washing step, expressed similar levels of MSC markers compared to FBS, and were able to differentiate towards the three lineages. Finally, MSCs cultured in ePL efficiently suppressed the release of TNF-α when exposed to LPS-stimulated monocytes similar to those cultured in FBS. ePL has the potential to be used for the expansion of MSCs before clinical application, avoiding the concerns associated with the use of FBS.

  5. Phosphorus release behaviors of poultry litter biochar as a soil amendment.

    PubMed

    Wang, Yue; Lin, Yingxin; Chiu, Pei C; Imhoff, Paul T; Guo, Mingxin

    2015-04-15

    Phosphorus (P) may be immobilized and consequently the runoff loss risks be reduced if poultry litter (PL) is converted into biochar prior to land application. Laboratory studies were conducted to examine the water extractability of P in PL biochar and its release kinetics in amended soils. Raw PL and its biochar produced through 400°C pyrolysis were extracted with deionized water under various programs and measured for water extractable P species and contents. The materials were further incubated with a sandy loam at 20 g kg(-1) soil and intermittently leached with water for 30 days. The P release kinetics were determined from the P recovery patterns in the water phase. Pyrolysis elevated the total P content from 13.7 g kg(-1) in raw PL to 27.1 g kg(-1) in PL biochar while reduced the water-soluble P level from 2.95 g kg(-1) in the former to 0.17 g kg(-1) in the latter. The thermal treatment transformed labile P in raw PL to putatively Mg/Ca phosphate minerals in biochar that were water-unextractable yet proton-releasable. Orthophosphate was the predominant form of water-soluble P in PL biochar, with condensed phosphate (e.g., pyrophosphate) as a minor form and organic phosphate in null. Release of P from PL biochar in both water and neutral soils was at a slower and steadier rate over a longer time period than from raw PL. Nevertheless, release of P from biochar was acid-driven and could be greatly promoted by the media acidity. Land application of PL biochar at soil pH-incorporated rates and frequency will potentially reduce P losses to runoffs and minimize the adverse impact of waste application on aquatic environments. Copyright © 2015. Published by Elsevier B.V.

  6. Study on spin and optical polarization in a coupled InGaN/GaN quantum well and quantum dots structure.

    PubMed

    Yu, Jiadong; Wang, Lai; Di Yang; Zheng, Jiyuan; Xing, Yuchen; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-10-19

    The spin and optical polarization based on a coupled InGaN/GaN quantum well (QW) and quantum dots (QDs) structure is investigated. In this structure, spin-electrons can be temporarily stored in QW, and spin injection from the QW into QDs via spin-conserved tunneling is enabled. Spin relaxation can be suppressed owing to the small energy difference between the initial state in the QW and the final states in the QDs. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements are carried out on optical spin-injection and -detection. Owing to the coupled structure, spin-conserved tunneling mechanism plays a significant role in preventing spin relaxation process. As a result, a higher circular polarization degree (CPD) (~49.1%) is achieved compared with conventional single layer of QDs structure. Moreover, spin relaxation time is also extended to about 2.43 ns due to the weaker state-filling effect. This coupled structure is believed an appropriate candidate for realization of spin-polarized light source.

  7. Assessing the neurotoxic effects of palytoxin and ouabain, both Na⁺/K⁺-ATPase inhibitors, on the myelinated sciatic nerve fibres of the mouse: an ex vivo electrophysiological study.

    PubMed

    Kagiava, Alexia; Aligizaki, Katerina; Katikou, Panagiota; Nikolaidis, Georgios; Theophilidis, George

    2012-03-01

    Palytoxin (PlTX) is a marine toxin originally isolated from the zoantharians of the genus Palythoa. It is considered to be one of the most lethal marine toxins that block the Na⁺/K⁺-ATPase. This study was designed to investigate the acute effects of PlTX and ouabain, also an Na⁺/K⁺-ATPase blocker, on the mammalian peripheral nervous system using an ex vivo electrophysiological preparation: the isolated mouse sciatic nerve. Amplitude of the evoked nerve compound action potential (nCAP) was used to measure the proper functioning of the sciatic nerve fibres. The half-vitality time of the nerve fibres (the time required to inhibit the nCAP to 50% of its initial value: IT₅₀) incubated in normal saline was 24.5 ± 0.40 h (n = 5). Nerves incubated continuously in 50.0, 10.0, 1.0, 0.5, 0.250 and 0.125 nM of PlTX had an IT₅₀ of 0.06 ± 0.00, 0.51 ± 0.00, 2.1 ± 0.10, 8.9 ± 0.30, 15.1 ± 0.30 h, and 19.5 ± 0.20 h, respectively (n = 5, 3, 4, 4, 10). PlTX was extremely toxic to the sciatic nerve fibres, with a minimum effective concentration (mEC) of 0.125 nM (n = 5) and inhibitory concentration to 50% (IC₅₀) of 0.32 ± 0.08 nM (incubation time 24 h). Ouabain was far less toxic, with a mEC of 250.0 μM (n = 5) and IC₅₀ of 370.0 ± 18.00 μM (incubation 24.5 h). Finally, when the two compounds were combined--e.g. pre-incubation of the nerve fibre in 250.0 μM ouabain for 1 h and then exposure to 1.0 nM PlTX--ouabain offered minor a neuroprotection of 9.1-17.6% against PlTX-induced neurotoxicity. Higher concentrations of ouabain (500.0 μM) offered no protection. The mouse sciatic nerve preparation is a simple and low-cost bioassay that can be used to assess and quantify the neurotoxic effects of standard PlTX or PlTX-like compounds, since it appears to have the same sensitivity as the haemolysis of erythrocytes assay--the standard ex vivo test for PlTX toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. In vitro effects of triiodothyronine on gene expression in mouse trophoblast cells.

    PubMed

    Silva, J F; Ocarino, N M; Serakides, R

    2015-01-01

    The objective of the present study was to evaluate the effects of different doses of T3 (10(-4) M, 10(-7) M, 10(-9) M) on the in vitro gene expression of Tpbp, Prl3b1, VEGF, PGF, PL-1, and INFy in mouse trophoblast cells by real-time RT-PCR. Doses of 10(-7) and 10(-9) M T3 increased the mRNA levels of Tpbp, Pl3b1, VEGF, PGF, INFy and PL-1. In contrast, the dose of 10(-4) M reduced the gene expression of PL-1 and VEGF. T3 affected the gene expression of differentiation, hormonal, immune and angiogenic factors in mouse trophoblast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Platelet Lysate: The Better Choice for Jaw Periosteal Cell Mineralization.

    PubMed

    Wanner, Yvonne; Umrath, Felix; Waidmann, Marc; Reinert, Siegmar; Alexander, Dorothea

    2017-01-01

    Previously, we demonstrated a high quality of minerals formed by serum-free cultured jaw periosteal cells (JPCs) by Raman spectroscopy but the mineralization extent was not satisfactory. In the present study, we analyzed the proliferation and mineralization potential of human platelet lysate- (hPL-) cultured JPCs in comparison to that of FCS-cultured JPCs. By cell impedance measurements, we detected significantly higher population doubling times of PL-cultured JPCs in comparison to FCS-cultured JPCs. However, this result was not based on lower proliferation activities but on diminished cell sizes which JPCs develop under PL cultivation. The measurements of the metabolic activities clearly showed significantly higher cell proliferation rates under PL culturing. Equivalent levels of the mesenchymal cell markers CD29, CD45, CD73, CD90, and CD105 were detected, but there were significantly increased MSCA-1 levels under PL cultivation. While JPCs only occasionally mineralize under FCS culture conditions, the mineralization potential was significantly stronger under PL cultivation. Moreover, in 4 of 5 analyzed patient cells, the addition of dexamethasone was proved no longer necessary for strong mineralization of PL-cultured JPCs. We conclude that in vitro cultivation of JPCs with platelet lysate is a suitable alternative to FCS culture conditions and a powerful tool for the development of high-quality TE constructs using jaw periosteal cells.

  10. Precision Landing and Hazard Avoidance Doman

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.; Carson, John M., III

    2016-01-01

    The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.

  11. Synergistic suppression of human breast cancer cells by combination of plumbagin and zoledronic acid In vitro.

    PubMed

    Qiao, Han; Wang, Ting-yu; Yan, Wei; Qin, An; Fan, Qi-ming; Han, Xiu-guo; Wang, Yu-gang; Tang, Ting-ting

    2015-09-01

    Zoledronic acid (ZA), a bisphosphonate, is currently used in combination with chemotherapeutic agents to suppress breast cancer cell proliferation or breast cancer-induced osteolysis. The aim of this study was to investigate the effects of ZA combined with a natural anticancer compound plumbagin (PL) against human breast cancer cells in vitro. Human breast cancer MDA-MB-231SArfp cells were treated with ZA, PL or a combination of ZA and PL. The cell growth, apoptosis and migration were evaluated using CCK-8 assay, flow cytometry and transwell assay, respectively. The expression of apoptosis-related proteins was measured using real-time PCR and Western blotting. Synergism was evaluated using Compusyn software, and the combination index (CI) and drug reduction index (DRI) values were determined. PL or ZA alone caused mild cytotoxicity (the IC50 value at 24 h was 12.18 and above 100 μmol/L, respectively). However, the combination of ZA and PL caused a synergistic cytotoxicity (CI=0.26). The DRI values also showed a synergistic effect between PL and ZA, with actual values of 5.52 and 3.59, respectively. Furthermore, PL and ZA synergistically induced apoptosis and inhibited migration of the breast cancer cells. Moreover, the combination of ZA and PL decreased the expression of Notch-1, cleaved PARP, Bcl-2 and Bcl-xl, and increased the expression of cleaved caspase-3, CDKN1A and ID1. When the breast cancer cells were transfected with specific siRNA against Notch-1, the combination of ZA and PL markedly increased the expression of Bcl-2. Combination of ZA and PL synergistically suppresses human breast cancer MDA-MB-231SArfp cells in vitro. PL can inhibit ZA-induced activation of the Notch-1 signaling pathway and subsequently reduce the expression of Bcl-2, thus potentiating cancer cell apoptosis.

  12. Antibacterial activity and mechanism of action of ε-poly-L-lysine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Ruosong; Xu, Hengyi; Wan, Cuixiang

    Highlights: •Antibacterial activity and mechanism of ε-PL against E. coli O157:H7 was investigated. •Critical inhibitory factors toward the growth of E. coli O157:H7 by ε-PL was analyzed. •Cell membrane integrity and cell morphology of E. coli O157:H7 was affected by ε-PL. •A positive correlation between reactive oxygen species levels and ε-PL concentration in E. coli O157:H7 cells. •ε-PL induced the expression of different genes related to oxidative/redox stress, SOS response, virulence. -- Abstract: ε-Poly-L-lysine (ε-PL) is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level hasmore » not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of oxidative stress, SOS response, and changes in virulence.« less

  13. Sustained conditioned responses in prelimbic prefrontal neurons are correlated with fear expression and extinction failure.

    PubMed

    Burgos-Robles, Anthony; Vidal-Gonzalez, Ivan; Quirk, Gregory J

    2009-07-01

    During auditory fear conditioning, it is well established that lateral amygdala (LA) neurons potentiate their response to the tone conditioned stimulus, and that this potentiation is required for conditioned fear behavior. Conditioned tone responses in LA, however, last only a few hundred milliseconds and cannot be responsible for sustained fear responses to a tone lasting tens of seconds. Recent evidence from inactivation and stimulation studies suggests that the prelimbic (PL) prefrontal cortex is necessary for expression of learned fears, but the timing of PL tone responses and correlations with fear behavior have not been studied. Using multichannel unit recording techniques in behaving rats, we observed sustained conditioned tone responses in PL that were correlated with freezing behavior on a second-to-second basis during the presentation of a 30 s tone. PL tone responses were also correlated with conditioned freezing across different experimental phases (habituation, conditioning, extinction). Moreover, the persistence of PL responses after extinction training was associated with failure to express extinction memory. Together with previous inactivation findings, the present results suggest that PL transforms transient amygdala inputs to a sustained output that drives conditioned fear responses and gates the expression of extinction. Given the relatively long latency of conditioned responses we observed in PL (approximately 100 ms after tone onset), we propose that PL integrates inputs from the amygdala, hippocampus, and other cortical sources to regulate the expression of fear memories.

  14. Follicular fluid placental growth factor is increased in polycystic ovarian syndrome: correlation with ovarian stimulation.

    PubMed

    Tal, Reshef; Seifer, David B; Grazi, Richard V; Malter, Henry E

    2014-08-20

    Polycystic ovarian syndrome (PCOS) is characterized by increased ovarian angiogenesis and vascularity. Accumulating evidence indicates that vascular endothelial growth factor (VEGF) is increased in PCOS and may play an important role in these vascular changes and the pathogenesis of this disease. Placental growth factor (PlGF), a VEGF family member, has not been previously characterized in PCOS women. We investigated levels and temporal expression patterns of PlGF and its soluble receptor sFlt-1 (soluble Fms-like tyrosine kinase) in serum and follicular fluid (FF) of women with PCOS during controlled ovarian stimulation. This was a prospective cohort study of 14 PCOS women (Rotterdam criteria) and 14 matched controls undergoing controlled ovarian stimulation. Serum was collected on day 3, day of hCG and day of oocyte retrieval. FF was collected on retrieval day. PlGF, sFlt-1 and anti-mullerian hormone (AMH) protein concentrations were measured using ELISA. Since sFlt-1 binds free PlGF, preventing its signal transduction, we calculated PlGF bioavailability as PlGF/sFlt-1 ratio. Serum PlGF and sFlt-1 levels were constant throughout controlled ovarian stimulation, and no significant differences were observed in either factor in PCOS women compared with non-PCOS controls at all three measured time points. However, FF PlGF levels were increased 1.5-fold in PCOS women compared with controls (p < 0.01). Moreover, FF PlGF correlated positively with number of oocytes retrieved and the ovarian reserve marker anti-mullerian hormone (AMH) and negatively with age. In addition, FF sFlt-1 levels were decreased 1.4-fold in PCOS women compared to controls (p = 0.04). PlGF bioavailability in FF was significantly greater (2-fold) in PCOS women compared with non-PCOS controls (p < 0.01). These data provide evidence that FF PlGF correlates with ovarian stimulation and that its bioavailability is increased in women with PCOS undergoing controlled ovarian stimulation. This suggests that PlGF may play a role in PCOS pathogenesis and its angiogenic dysregulation.

  15. Bacterial growth kinetics in ACD-A apheresis platelets: comparison of plasma and PAS III storage.

    PubMed

    Dumont, Larry J; Wood, Tammara A; Housman, Molly; Herschel, Louise; Brantigan, Barbara; Heber, Cheryl; Houghton, Jaime

    2011-05-01

    Our objective was to determine the growth kinetics of bacteria in leukoreduced apheresis platelets (LR-AP) in a platelet (PLT) additive solution (PAS; InterSol, Fenwal, Inc.) compared to LR-AP stored in plasma. Hyperconcentrated, double-dose LR-AP were collected from healthy donors with a separator (AMICUS, Fenwal, Inc.). LR-AP were evenly divided, InterSol was added to half (65% InterSol:35% plasma [PAS]), and PLTs in autologous plasma were used for a paired control (PL). Bacteria were inoculated into each LR-AP PAS/PL pair (0.5-1.6 colony-forming units [CFUs]/mL), and bacterial growth was followed for up to 7 days. Time to the end of the lag phase, doubling times, maximum concentration (conc-max), and time to maximum concentration (time-max) were estimated. Streptococcus viridans did not grow to detectable levels in either PAS or PL units. The other bacteria had no significant overall difference in the conc-max (p = 0.47) or time-max (p = 0.7) between PL and PAS LR-AP; PL had a 0.14 hours faster doubling rate (p = 0.023); and PAS had a 4.7 hours shorter lag time (p = 0.016). We observed that five index organisms will grow in LR-AP stored in a 35%:65% ratio of plasma to InterSol where initial bacterial concentrations are 0.5 to 1.6 CFUs/mL. The more rapid initiation of log-phase growth for bacteria within a PAS storage environment resulted in a bacterial concentration up to 4 logs higher in the PAS units compared to the plasma units at 24 hours, but with no difference in the conc-max. This may present an early bacterial detection advantage for PAS-stored PLTs. © 2010 American Association of Blood Banks.

  16. Photoluminescence characteristics of polariton condensation in a CuBr microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Masaaki, E-mail: nakayama@a-phys.eng.osaka-cu.ac.jp; Murakami, Katsuya; Furukawa, Yoshiaki

    2014-07-14

    We have investigated the photoluminescence (PL) properties of a CuBr microcavity at 10 K, including the temporal profiles, from the viewpoint of cavity-polariton condensation. The excitation energy density dependence of the PL intensity (band width) of the lower polariton branch at an in-plane wave vector of k{sub //} = 0 exhibits a threshold-like increase (decrease). A large blueshift in the PL energy of ∼10 meV caused by the cavity-polariton renormalization is correlated with the excitation energy density dependence of the PL intensity. The estimated density of photogenerated electron-hole pairs at the threshold is two orders lower than the Mott transition density. These results consistentlymore » demonstrate the occurrence of cavity-polariton condensation. In addition, we found that the PL rise and decay times are shortened dramatically by the cavity-polariton condensation, which reflects the bosonic final state stimulation in the relaxation process and the intrinsic cavity-polariton lifetime in the decay process.« less

  17. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less

  18. Antibacterial activity and mechanism of action of ε-poly-L-lysine.

    PubMed

    Ye, Ruosong; Xu, Hengyi; Wan, Cuixiang; Peng, Shanshan; Wang, Lijun; Xu, Hong; Aguilar, Zoraida P; Xiong, Yonghua; Zeng, Zheling; Wei, Hua

    2013-09-13

    ε-Poly-L-lysine (ε-PL)(2) is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS)(3) levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR)(4) indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response)(5) regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of oxidative stress, SOS response, and changes in virulence. Copyright © 2013. Published by Elsevier Inc.

  19. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads.

    PubMed

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-10-21

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.

  20. Femtosecond transient photoluminescence of the substituted poly(diphenylacetulene)s.

    NASA Astrophysics Data System (ADS)

    Piskun, N. V.; Wang, D. K.; Lim, H.; Epstein, A. J.; Vanwoerkom, L. D.; Gustafson, T. L.

    2000-03-01

    We present the results of a femtosecond transient photoluminescence (PL) study of solutions of two derivatives of substituted poly(diphenylacetylene) using an up-conversion technique. n-Butyl (nBu) and p-carbazole (Cz) substituted poly(diphenylacetylene), PDPA-nBu and PDPA-Cz respectively, have band gaps determined by maxima in the slope of absorption vs. energy of 2.75 eV and 2.63 eV. The steady state emission peaks are at 2.4 eV for PDPA-nBu and at 2.3 eV for PDPA-Cz respectively. The PL peak for PDPA-Cz is red shifted in comparison to the PL peak for PDPA-nBu. Roles of phenyl groups, electron donating effect of the carbazole side units and planarity of the backbone are discussed. Exciting at 3.1 eV, the fs PL shows a faster decay for PDPA-Cz than that for PDPA-nBu, in accord with the decrease of PL quantum efficiency of PDPA-Cz. The 200 fs - 80 ps PL(t) agrees with ~1 ns lifetime. The PDPA-Cz has larger red shift in the 0.2-20 ps time frame. The origin of that shift will be discussed. This work is supported in part by ONR.

  1. Computational methods for prediction of RNA interactions with metal ions and small organic ligands.

    PubMed

    Philips, Anna; Łach, Grzegorz; Bujnicki, Janusz M

    2015-01-01

    In the recent years, it has become clear that a wide range of regulatory functions in bacteria are performed by riboswitches--regions of mRNA that change their structure upon external stimuli. Riboswitches are therefore attractive targets for drug design, molecular engineering, and fundamental research on regulatory circuitry of living cells. Several mechanisms are known for riboswitches controlling gene expression, but most of them perform their roles by ligand binding. As with other macromolecules, knowledge of the 3D structure of riboswitches is crucial for the understanding of their function. The development of experimental methods allowed for investigation of RNA structure and its complexes with ligands (which are either riboswitches' substrates or inhibitors) and metal cations (which stabilize the structure and are also known to be riboswitches' inhibitors). The experimental probing of different states of riboswitches is however time consuming, costly, and difficult to resolve without theoretical support. The natural consequence is the use of computational methods at least for initial research, such as the prediction of putative binding sites of ligands or metal ions. Here, we present a review on such methods, with a special focus on knowledge-based methods developed in our laboratory: LigandRNA--a scoring function for the prediction of RNA-small molecule interactions and MetalionRNA--a predictor of metal ions-binding sites in RNA structures. Both programs are available free of charge as a Web servers, LigandRNA at http://ligandrna.genesilico.pl and MetalionRNA at http://metalionrna.genesilico.pl/. © 2015 Elsevier Inc. All rights reserved.

  2. Comprehensive study of interaction between biocompatible PEG-InP/ZnS QDs and bovine serum albumin.

    PubMed

    Sannaikar, M S; Inamdar, Laxmi S; Pujar, G H; Wari, M N; Balasinor, Nafisa H; Inamdar, S R

    2018-05-01

    Polyethylene glycol (PEG) surface modified biocompatible InP/ZnS quantum dots (QDs) act as a potential alternative for conventional carcinogenic cadmium-based quantum dots for in vivo and in vitro studies. Comprehensively, we studied the interaction between a model protein bovine serum albumin (BSA) and PEGylated toxic free InP/ZnS QDs using various spectroscopic tools such as absorption, fluorescence quenching, time resolved and synchronous fluorescence spectroscopic measurements. These studies principally show that tryptophan (Trp) residues of BSA have preferable binding affinity towards PEG-InP/ZnS QDs surface and a blue shift in Trp fluorescence emission is a signature of conformational changes in its hydrophobic microenvironment. Photoluminescence (PL) intensity of Trp is quenched by ground state complex formation (static quenching) at room temperature. However, InP/ZnS@BSA conjugates become unstable with increasing temperature and PL intensity of Trp is quenched via dynamic quenching by PEG-InP/ZnS QDs. Experimentally determined thermodynamic parameters for these conjugates have shown spontaneity, entropy driven and exothermic nature of bio-conjugation. The calculated binding affinity (n ≅ 1, Hill coefficient) suggest that the affinity of InP/ZnS QDs for a BSA protein is not dependent on whether or not other BSA proteins are already bound to the QD surface. Energy transfer efficiency (E), Trp residue to InP/ZnS QDs distances and energy transfer rate (k T ) were all obtained from FÖrster resonance energy. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Time-Resolved Stark Spectroscopy in CdSe Nanoplatelets: Exciton Binding Energy, Polarizability, and Field-Dependent Radiative Rates.

    PubMed

    Scott, Riccardo; Achtstein, Alexander W; Prudnikau, Anatol V; Antanovich, Artsiom; Siebbeles, Laurens D A; Artemyev, Mikhail; Woggon, Ulrike

    2016-10-12

    We present a study of the application potential of CdSe nanoplatelets (NPLs), a model system for colloidal 2D materials, as field-controlled emitters. We demonstrate that their emission can be changed by 28% upon application of electrical fields up to 175 kV/cm, a very high modulation depth for field-controlled nanoemitters. From our experimental results we estimate the exciton binding energy in 5.5 monolayer CdSe nanoplatelets to be E B = 170 meV; hence CdSe NPLs exhibit highly robust excitons which are stable even at room temperature. This opens up the possibility to tune the emission and recombination dynamics efficiently by external fields. Our analysis further allows a quantitative discrimination of spectral changes of the emission energy and changes in PL intensity related to broadening of the emission line width as well as changes in the intrinsic radiative rates which are directly connected to the measured changes in the PL decay dynamics. With the developed field-dependent population model treating all occurring field-dependent effects in a global analysis, we are able to quantify, e.g., the ground state exciton transition dipole moment (3.0 × 10 -29 Cm) and its polarizability, which determine the radiative rate, as well as the (static) exciton polarizability (8.6 × 10 -8 eV cm 2 /kV 2 ), all in good agreement with theory. Our results show that an efficient field control over the exciton recombination dynamics, emission line width, and emission energy in these nanoparticles is feasible and opens up application potential as field-controlled emitters.

  4. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    DOE PAGES

    Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti; ...

    2017-03-31

    We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less

  5. Surface and interface of epitaxial CdTe film on CdS buffered van der Waals mica substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. -B.; Seewald, L.; Mohanty, Dibyajyoti

    We report single crystal CdTe films are desirable for optoelectronic device applications. An important strategy of creating films with high crystallinity is through epitaxial growth on a proper single crystal substrate. We report the metalorganic chemical vapor deposition of epitaxial CdTe films on the CdS/mica substrate. The epitaxial CdS film was grown on a mica surface by thermal evaporation. Due to the weak van der Waals forces, epitaxy is achieved despite the very large interface lattice mismatch between CdS and mica (~21–55%). The surface morphology of mica, CdS and CdTe were quantified by atomic force microscopy. The near surface structures, orientations and texture of CdTe and CdS films were characterized by the unique reflection high-energy electron diffraction surface pole figure technique. The interfaces of CdTe and CdS films and mica were characterized by X-ray pole figure technique and transmission electron microscopy. The out-of-plane and in-plane epitaxy of the heteroepitaxial films stack are determined to be CdTe(111)//CdS(0001)//mica(001) and [more » $$\\overline{1}2\\overline{1}$$] CdTe//[$$\\overline{1}100$$] CdS//[010] mica, respectively. The measured photoluminescence (PL), time resolved PL, photoresponse, and Hall mobility of the CdTe/CdS/mica indicate quality films. Finally, the use of van der Waals surface to grow epitaxial CdTe/CdS films offers an alternative strategy towards infrared imaging and solar cell applications.« less

  6. Resolving the chemical heterogeneity of natural organic matter: new insights from comprehensive two-dimensional liquid chromatography.

    PubMed

    Duarte, Regina M B O; Barros, Ana C; Duarte, Armando C

    2012-08-03

    For the purpose of resolving the chemical heterogeneity of natural organic matter (NOM), comprehensive two-dimensional liquid chromatography (LC×LC) was employed for the first time to map the hydrophobicity versus molecular weight (MW) distribution of two well-known complex organic mixtures: Suwannee River Fulvic Acids (SR-FA) and Pony Lake Fulvic Acids (PL-FA). Two methods have been developed using either a conventional reversed-phase (RP) silica column or a mixed-mode hydrophilic interaction column operating under aqueous RP mode in the first dimension, and a size-exclusion column in the second dimension. The LC×LC fractions were screened on-line by UV at 254 nm, molecular fluorescence at excitation/emission wavelengths (λ(Exc)/λ(Em)) of 240/450 nm, and by evaporative light scattering. The MW distributions of these two NOM samples were further characterized by number (Mn) and weight (Mw) average MW, and by polydispersity (Mw/Mn). Findings suggest that the combination of two independent separation mechanisms is promising in extend the range of NOM separation. For the cases where NOM separation was accomplished, smaller Mw group fractions seem to be related to a more hydrophobic nature. Regardless of the detection method, the complete range of MW distribution provided by both comprehensive LC×LC methods was found to be lower than those reported in the literature. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  8. Sputter-Deposited Oxides for Interface Passivation of CdTe Photovoltaics

    DOE PAGES

    Kephart, Jason M.; Kindvall, Anna; Williams, Desiree; ...

    2018-01-18

    Commercial CdTe PV modules have polycrystalline thin films deposited on glass, and devices made in this format have exceeded 22% efficiency. Devices made by the authors with a magnesium zinc oxide window layer and tellurium back contact have achieved efficiency over 18%, but these cells still suffer from an open-circuit voltage far below ideal values. Oxide passivation layers made by sputter deposition have the potential to increase voltage by reducing interface recombination. CdTe devices with these passivation layers were studied with photoluminescence (PL) emission spectroscopy and time-resolved photoluminescence (TRPL) to detect an increase in minority carrier lifetime. Because these oxidemore » materials exhibit barriers to carrier collection, micropatterning was used to expose small point contacts while still allowing interface passivation. TRPL decay lifetimes have been greatly enhanced for thin polycrystalline absorber films with interface passivation. Device performance was measured and current collection was mapped spatially by light-beam-induced current.« less

  9. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    PubMed

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  10. Optical properties of m-plane GaN grown on patterned Si(112) substrates by MOCVD using a two-step approach

    NASA Astrophysics Data System (ADS)

    Izyumskaya, N.; Okur, S.; Zhang, F.; Monavarian, M.; Avrutin, V.; Özgür, Ü.; Metzner, S.; Karbaum, C.; Bertram, F.; Christen, J.; Morkoç, H.

    2014-03-01

    Nonpolar m-plane GaN layers were grown on patterned Si (112) substrates by metal-organic chemical vapor deposition (MOCVD). A two-step growth procedure involving a low-pressure (30 Torr) first step to ensure formation of the m-plane facet and a high-pressure step (200 Torr) for improvement of optical quality was employed. The layers grown in two steps show improvement of the optical quality: the near-bandedge photoluminescence (PL) intensity is about 3 times higher than that for the layers grown at low pressure, and deep emission is considerably weaker. However, emission intensity from m-GaN is still lower than that of polar and semipolar (1 100 ) reference samples grown under the same conditions. To shed light on this problem, spatial distribution of optical emission over the c+ and c- wings of the nonpolar GaN/Si was studied by spatially resolved cathodoluminescence and near-field scanning optical microscopy.

  11. Optical and electrical properties of GaN-based light emitting diodes grown on micro- and nano-scale patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May

    2011-10-01

    We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.

  12. Platelet Lysate: The Better Choice for Jaw Periosteal Cell Mineralization

    PubMed Central

    Wanner, Yvonne; Umrath, Felix; Waidmann, Marc; Reinert, Siegmar

    2017-01-01

    Previously, we demonstrated a high quality of minerals formed by serum-free cultured jaw periosteal cells (JPCs) by Raman spectroscopy but the mineralization extent was not satisfactory. In the present study, we analyzed the proliferation and mineralization potential of human platelet lysate- (hPL-) cultured JPCs in comparison to that of FCS-cultured JPCs. By cell impedance measurements, we detected significantly higher population doubling times of PL-cultured JPCs in comparison to FCS-cultured JPCs. However, this result was not based on lower proliferation activities but on diminished cell sizes which JPCs develop under PL cultivation. The measurements of the metabolic activities clearly showed significantly higher cell proliferation rates under PL culturing. Equivalent levels of the mesenchymal cell markers CD29, CD45, CD73, CD90, and CD105 were detected, but there were significantly increased MSCA-1 levels under PL cultivation. While JPCs only occasionally mineralize under FCS culture conditions, the mineralization potential was significantly stronger under PL cultivation. Moreover, in 4 of 5 analyzed patient cells, the addition of dexamethasone was proved no longer necessary for strong mineralization of PL-cultured JPCs. We conclude that in vitro cultivation of JPCs with platelet lysate is a suitable alternative to FCS culture conditions and a powerful tool for the development of high-quality TE constructs using jaw periosteal cells. PMID:29391870

  13. Comparison of osteo/odontogenic differentiation of human adult dental pulp stem cells and stem cells from apical papilla in the presence of platelet lysate.

    PubMed

    Abuarqoub, Duaa; Awidi, Abdalla; Abuharfeil, Nizar

    2015-10-01

    Human dental pulp cells (DPSCs) and stem cells from apical papilla have been used for the repair of damaged tooth tissues. Human platelet lysate (PL) has been suggested as a substitute for fetal bovine serum (FBS) for large scale expansion of dental stem cells. However, biological effects and optimal concentrations of PL for proliferation and differentiation of human dental stem cells remain to be elucidated. DPSCs and SCAP cells were isolated from impacted third molars of young healthy donors, at the stage of root development and identified by markers using flow cytometry. For comparison the cells were cultured in media containing PL (1%, 5% and 10%) and FBS, with subsequent induction for osteogenic/odontogenic differentiation. The cultures were analyzed for; morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers using ELISA and real time -polymerase chain reaction (qPCR). The proliferation rates of DPSCs and SCAP significantly increased when cells were treated with 5% PL (7X doubling time) as compared to FBS. 5% PL also enhanced mineralized differentiation of DPSCs and SCAP, as indicated by the measurement of alkaline phosphatase activity, osteocalcin and osteopontin, calcium deposition and q-PCR. Our findings suggest that using 5% platelet lysate, proliferation and osteo/odontogenesis of DPSCs and SCAP for a short period of time (15 days), was significantly improved. This may imply its use as an optimum concentration for expansion of dental stem cells in bone regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effective professional intraoral tooth brushing instruction using the modified plaque score: a randomized clinical trial

    PubMed Central

    2018-01-01

    Purpose The purpose of this study was to evaluate the efficacy of the modified plaque score (MPS) for assessing the oral hygiene status of periodontitis patients. Methods A total of 116 patients were included in this study. After evaluation of the Löe and Silness gingival index (GI), Silness and Löe plaque index (PlI), O'Leary plaque control record (PCR), and MPS, patients were randomly assigned to either a conventional tooth brushing instruction (C-TBI) group (n=56) or a professional intraoral tooth brushing instruction (P-TBI) group (n=60). The MPS and clinical parameters were re-evaluated after scaling and a series of root planing. The convergent validity of MPS with the PlI and PCR was assessed. The measurement time for MPS and PCR was compared according to the proficiency of the examiner. Results After root planing, the GI, PlI, PCR, and MPS improved from their respective baseline values in both groups. Three different plaque indices including the MPS, showed significant differences between the C-TBI group and the P-TBI group after root planing. The MPS showed significant concurrence with the PCR and PlI. The mean time for PCR measurement was 2.76±0.71 times longer than that for MPS measurement after 2 weeks of training. Conclusions MPS seems to be a practical plaque scoring system compared with the PlI and PCR. These findings suggest that repetitive plaque control combined with an easily applicable plaque index (MPS) may facilitate more effective oral hygiene education and improved periodontal health. PMID:29535888

  15. Photoluminescence in the characterization and early detection of biomimetic bone-like apatite formation on the surface of alkaline-treated titanium implant: state of the art.

    PubMed

    Sepahvandi, Azadeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Ghaffari, Maryam; Raee, Nahid

    2011-09-01

    Photoluminescence (PL) property is particularly important in the characterization of materials that contain significant proportions of noncrystalline components, multiple phases, or low concentrations of mineral phases. In this research, the ability of biomimetic bone-like apatite deposition on the surface of titanium alloy (Ti6Al4V) substrates in simulated body fluid (SBF) right after alkaline-treatment and subsequent heat-treatment was studied by the inherent luminescence properties of apatite. For this purpose, the metallic substrates were treated in 5 M NaOH solution at 60 °C. Subsequently, the substrates were heat-treated at 600 °C for 1 h for consolidation of the sodium titanate hydrogel layer. Then, they were soaked in SBF for different periods of time. Finally, the possibility to use of PL monitoring as an effective method and early detection tool is discussed. According to the obtained results, it was concluded that the PL emission peak did not have any significant shift to the shorter or higher wavelengths, and the PL intensity increased as the exposure time increased. This research proved that the observed inherent PL of the newly formed apatite coatings might be of specific interest for histological probing and bone remodelling monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Human Platelet Lysate as a Xeno Free Alternative of Fetal Bovine Serum for the In Vitro Expansion of Human Mesenchymal Stromal Cells.

    PubMed

    Mohammadi, Saeed; Nikbakht, Mohsen; Malek Mohammadi, Ashraf; Zahed Panah, Mahdi; Ostadali, Mohammad Reza; Nasiri, Hajar; Ghavamzadeh, Ardeshir

    2016-07-01

    Mesenchymal stromal cells (MSCs) are employed in various different clinical settings in order to modulate immune response. Human autologous and allogeneic supplements including platelet derivatives such as platelet lysate (PL), platelet-released factors (PRF) and serum are assessed in clinical studies to replace fetal bovine serum (FBS). The immunosuppressive activity and multi-potential characteristic of MSCs appear to be maintained when the cells are expanded in platelet derivatives. Platelet-rich plasma was collected from umbrical cord blood (UCB). Platelet-derived growth factors obtained by freeze and thaw methods. CD62P expression was determined by flow cytometry. The concentration of PDGF-BB and PDGF-AB was detemined by ELISA. We tested the ability of a different concentration of PL-supplemented medium to support the ex vivo expansion of Wharton's jelly derived MSCs. We also investigated the biological/functional properties of expanded MSCs in presence of different concentration of PL. The conventional karyotyping was performed in order to study the chromosomal stability. The gene expression of Collagen I and II aggrecan and SOX-9 in the presence of different concentrations of PL was evaluated by Real-time PCR. We observed 5% and 10% PL, causing greater effects on proliferation of MSCs .These cells exhibited typical morphology, immunophenotype and differentiation capacity. The genetic stability of these derivative cells from Wharton's jelly was demonstrated by a normal karyotype. Furthermore, the results of Real-time PCR analysis showed that the expression of chondrocyte specific genes was higher in MSCs in the presence of 5% and 10% PL, compared with FBS supplement. We demonstrated that PL could be used as an alternative safe source of growth factors for expansion of MSCs and also maintained similar growing potential and phenotype without any effect on chromosomal stability.

  17. Human Platelet Lysate as a Xeno Free Alternative of Fetal Bovine Serum for the In Vitro Expansion of Human Mesenchymal Stromal Cells

    PubMed Central

    Mohammadi, Saeed; Nikbakht, Mohsen; Malek Mohammadi, Ashraf; Zahed Panah, Mahdi; Ostadali, Mohammad Reza; Nasiri, Hajar; Ghavamzadeh, Ardeshir

    2016-01-01

    Background: Mesenchymal stromal cells (MSCs) are employed in various different clinical settings in order to modulate immune response. Human autologous and allogeneic supplements including platelet derivatives such as platelet lysate (PL), platelet-released factors (PRF) and serum are assessed in clinical studies to replace fetal bovine serum (FBS). The immunosuppressive activity and multi-potential characteristic of MSCs appear to be maintained when the cells are expanded in platelet derivatives. Materials and Methods: Platelet-rich plasma was collected from umbrical cord blood (UCB). Platelet-derived growth factors obtained by freeze and thaw methods. CD62P expression was determined by flow cytometry. The concentration of PDGF-BB and PDGF-AB was detemined by ELISA. We tested the ability of a different concentration of PL-supplemented medium to support the ex vivo expansion of Wharton's jelly derived MSCs. We also investigated the biological/functional properties of expanded MSCs in presence of different concentration of PL. The conventional karyotyping was performed in order to study the chromosomal stability. The gene expression of Collagen I and II aggrecan and SOX-9 in the presence of different concentrations of PL was evaluated by Real-time PCR. Results: We observed 5% and 10% PL, causing greater effects on proliferation of MSCs .These cells exhibited typical morphology, immunophenotype and differentiation capacity. The genetic stability of these derivative cells from Wharton's jelly was demonstrated by a normal karyotype. Furthermore, the results of Real-time PCR analysis showed that the expression of chondrocyte specific genes was higher in MSCs in the presence of 5% and 10% PL, compared with FBS supplement. Conclusions: We demonstrated that PL could be used as an alternative safe source of growth factors for expansion of MSCs and also maintained similar growing potential and phenotype without any effect on chromosomal stability. PMID:27489592

  18. Outcomes after use of covered stents to treat coronary artery perforations. Comparison of old and new-generation covered stents.

    PubMed

    Hernández-Enríquez, Marco; Lairez, Olivier; Campelo-Parada, Francisco; Lhermusier, Thibault; Bouisset, Frédéric; Roncalli, Jérôme; Elbaz, Meyer; Carrié, Didier; Boudou, Nicolas

    2018-05-28

    To compare outcomes in patients receiving polytetrafluoroethylene (PTFE) and polyurethane (PL) covered stents (CS) after coronary artery perforation (CAP). The prognosis of CAP has improved with the advent of CSs. Information is scarce about the outcomes of new-generation CSs. Sixty-one patients were treated with CSs in a 5-years period (age = 77 ± 8.75% males). Procedural and clinical data were retrospectively collected. The primary endpoint was procedural success. Secondary endpoints included death and major adverse cardiac events (MACE) defined as a composite of death, myocardial infarction, target vessel, and lesion revascularization and need for surgical repair). Twenty-two (36%) received PL-CSs and 39 (65%) PTFE-CSs. There were no differences in procedural success (86% vs 69%, P = 0.216). Time to deliver was shorter with PL-CS despite larger length of stents (8[11] vs 15[16] min, P = 0.001; 20[5] vs 16[3] mm, P < 0.001). This group had lower rate of pericardial effusion and cardiac arrest (41% vs 72%, P = 0.028; 5% vs 26%, P = 0.045). At 1-year follow-up, MACE rates were similar (58% vs 56%, P = 1.000) with atrend toward TVR in the PL-CS arm (21% vs 5%, P = 0.083). No differences were found in mortality (26% vs 41%, P = 0.385). Each group had 1 stent thrombosis and in-stent restenosis trended higher in the PL-CS group (12% vs 3%, P = 0.223). Time to deliver was shorter with the PL-CS and resulted in lower rate of pericardial effusion and cardiac arrest. However, there were no significant differences in procedural success and 1-year follow-up MACE in patients treated with PL-CS or PTFE-CS. © 2018, Wiley Periodicals, Inc.

  19. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  20. Experimental Investigation of a High Head Model Francis Turbine During Steady-State Operation at Off-Design Conditions

    NASA Astrophysics Data System (ADS)

    Bergan, Carl; Goyal, Rahul; Cervantes, Michel J.; Dahlhaug, Ole G.

    2016-11-01

    Francis-99 is a set of workshops aiming to determine the state of the art of high head Francis turbine simulations (flow and structure) under steady and transient operating conditions as well as promote their development and knowledge dissemination openly. The first workshop (Trondheim, 2014) focused on steady state conditions. Some concerns were raised regarding uncertainty in the measurements, mainly that there was no clear vortex rope at the Part Load (PL) condition, and that the flow exhibited relatively large asymmetry. The present paper addresses these concerns in order to ensure the quality of the data presented in further workshops. To answer some of these questions, a new set of measurements were performed on the Francis- 99 model at Waterpower Laboratory at the Norwegian University of Science and Technology (NTNU). In addition to PL, two other operating conditions were considered, for further use in transient measurements, Best Efficiency (BEP) and High Load (HL). The experiments were carried out at a head of 12 m, with a runner rotational speed of 333 revolutions per minute (rpm). The guide vane opening angle were 6.72°, 9.84° and 12.43° for PL, BEP and HL, respectively. The part load condition has been changed from the first workshop, to ensure a fully developed Rotating Vortex Rope (RVR). The velocity and pressure measurements were carried out in the draft tube cone using 2D PIV and six pressure sensors, respectively. The new PL condition shows a fully developed rotating vortex rope (RVR) in both the frequency analysis and in the phase resolved data. In addition, the measurements confirm an asymmetric flow leaving the runner, as was a concern in the first Francis-99 workshop. This asymmetry was detected at both design and off-design conditions, with a stronger effect during off design.

  1. Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices

    NASA Astrophysics Data System (ADS)

    Guichard, Alex Richard

    Silicon (Si) is the dominant semiconductor material in both the microelectronic and photovoltaic industries. Despite its poor optical properties, Si is simply too abundant and useful to be completely abandoned in either industry. Since the initial discovery of efficient room temperature photoluminescence (PL) from porous Si and the following discoveries of PL and time-resolved optical gain from Si nanocrystals (Si-nc) in SiO2, many groups have studied the feasibility of making Si-based, CMOS-compatible electroluminescent devices and electrically pumped lasers. These studies have shown that for Si-ne sizes below about 10 nm, PL can be attributed to radiative recombination of confined excitons and quantum efficiencies can reach 90%. PL peak energies are blue-shifted from the bulk Si band edge of 1.1 eV due to the quantum confinement effect and PL decay lifetimes are on mus timescales. However, many unanswered questions still exist about both the ease of carrier injection and various non-radiative and loss mechanisms that are present. A potential alternative material system to porous Si and Si-nc is Si nanowires (SiNWs). In this thesis, I examine the optical properties of SiNWs with diameters in the range of 3-30 nm fabricated by a number of compound metal oxide semiconductor (CMOS) compatible fabrication techniques including Chemical Vapor Deposition on metal nanoparticle coated substrates, catalytic wet etching of bulk Si and top-down electron-beam lithographic patterning. Using thermal oxidation and etching, we can increase the degree of confinement in the SiNWs. I demonstrate PL peaked in the visible and near-infrared (NIR) wavelength ranges that is tunable by controlling the crystalline SiNW core diameter, which is measured with dark field and high-resolution transmission electron microscopy. PL decay lifetimes of the SiNWs are on the order of 50 mus after proper surface passivation, which suggest that the PL is indeed from confined carriers in the SiNW cores. Investigation of the non-radiative Auger recombination (AR) process suggests that for high carrier densities in excess of 1019 cm-3, the AR lifetime is about 80 ns and decreases with increasing carrier density. This SiNW AR lifetime is slower than the AR process in Si nanocrystals at similar carrier densities, but faster than the radiative process. I also study the light emission and absorption properties of single SiNWs patterned on Silicon-on-insulator (SOI) substrates and find that a large fraction of NWs is optically dead. Moreover, the active, light-emitting nanostructures exhibit PL blinking, a mechanism often seen for individual nanostructure light emitters. These results are essential to evaluating Si nanostructures as a feasible gain or lasing medium. A second potential application for SiNWs is as a building block for low-cost, Si-based photovoltaics (PV). The market for thin-film PV, particularly organic thin-film PV, exists because it offers potential lower cost solutions for solar power versus bulk Si-based PV. However, many thin film technologies, while possessing superior optical absorption properties compared to Si, suffer from poor electronic transport properties. Here, I present a new Si-based PV design that combines the desirable optical properties of highly absorptive organic molecules and the high-mobility electronic properties of crystalline Si. This synergy is achieved by exploiting efficient Forster energy transfer from the light absorbing organic to SiNWs that enable current extraction. The energy transfer radius of a particular dye and bulk Si is found to be roughly 4 nm. Spectroscopic photocurrent experiments were performed on unpatterned SOI wafers as well as SiNWs patterned in SOI substrates and a significant photocurrent increase was seen in samples coated with organics versus uncoated samples. The photocurrent increase is seen in the wavelength range of the dye's absorption band, suggesting absorption of the dye and subsequent energy transfer to the Si plays a role. These results could pave the way for new low-cost, Si-based solar cell designs that leverage the strengths of the Si PV and microelectronics industries.

  2. Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steve; Albin, David; Hacke, Peter

    Photoluminescence (PL), electroluminescence (EL), and dark lock-in thermography are collected during stressing of a CdTe module under one-Sun light at an elevated temperature of 100 degrees C. The PL imaging system is simple and economical. The PL images show differing degrees of degradation across the module and are less sensitive to effects of shunting and resistance that appear on the EL images. Regions of varying degradation are chosen based on avoiding pre-existing shunt defects. These regions are evaluated using time-of-flight secondary ion-mass spectrometry and Kelvin probe force microscopy. Reduced PL intensity correlates to increased Cu concentration at the front interface.more » Numerical modeling and measurements agree that the increased Cu concentration at the junction also correlates to a reduced space charge region.« less

  3. Excitation power dependence of photoluminescence spectra of GaSb type-II quantum dots in GaAs grown by droplet epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y.

    2016-04-15

    We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences ofmore » the PL characteristics are explained by the effects of the WL.« less

  4. Imaging, microscopic analysis, and modeling of a CdTe module degraded by heat and light

    DOE PAGES

    Johnston, Steve; Albin, David; Hacke, Peter; ...

    2018-01-12

    Photoluminescence (PL), electroluminescence (EL), and dark lock-in thermography are collected during stressing of a CdTe module under one-Sun light at an elevated temperature of 100 degrees C. The PL imaging system is simple and economical. The PL images show differing degrees of degradation across the module and are less sensitive to effects of shunting and resistance that appear on the EL images. Regions of varying degradation are chosen based on avoiding pre-existing shunt defects. These regions are evaluated using time-of-flight secondary ion-mass spectrometry and Kelvin probe force microscopy. Reduced PL intensity correlates to increased Cu concentration at the front interface.more » Numerical modeling and measurements agree that the increased Cu concentration at the junction also correlates to a reduced space charge region.« less

  5. Colloidal InP/ZnS core shell nanocrystals studied by linearly and circularly polarized photoluminescence

    NASA Astrophysics Data System (ADS)

    Langof, L.; Fradkin, L.; Ehrenfreund, E.; Lifshitz, E.; Micic, O. I.; Nozik, A. J.

    2004-02-01

    The magneto-optical properties of InP/ZnS core-shell nanocrystals (NCs) were investigated by measuring the degree of linear and circular polarization of photoluminescence (PL) spectra, in the presence of an external magnetic field under resonant or non-resonant excitation. The linearly polarized PL data strongly indicate that InP/ZnS NCs have a prolongated shape. The resonant-excited circularly polarized PL decay curves indicate that the spin relaxation time of the studied samples is shorter than the radiative lifetime of their exciton. Furthermore, the magnetic field-induced circularly polarized PL process reveals an exciton g factor ( gex) of 0.55. Thus, such studies may serve as a tool to directly estimate the NC's shape anisotropy and to determine the g-factor of charge carriers and excitons in those NCs.

  6. Temperature dependence of exciton and charge carrier dynamics in organic thin films

    NASA Astrophysics Data System (ADS)

    Platt, A. D.; Kendrick, M. J.; Loth, M.; Anthony, J. E.; Ostroverkhova, O.

    2011-12-01

    We report on physical mechanisms behind the temperature-dependent optical absorption, photoluminescence (PL), and photoconductivity in spin-coated films of a functionalized anthradithiophene (ADT) derivative, ADT-triethylsilylethynyl (TES)-F, and its composites with C60 and another ADT derivative, ADT-TIPS-CN. Measurements of absorption and PL spectra, PL lifetimes, and transient photocurrent were performed at temperatures between 98 and 300 K as a function of applied electric field. In pristine ADT-TES-F films, absorptive and emissive species were identified to be disordered H aggregates whose properties are affected by static and dynamic disorder. The exciton bandwidths were ≤0.06 and ˜0.115 eV for absorptive and emissive aggregates, respectively, indicative of higher disorder in the emissive species. The exciton in the latter was found to be delocalized over approximately four to five molecules. The PL properties were significantly modified upon adding a guest molecule to the ADT-TES-F host. In ADT-TES-F/C60 composites, the PL was considerably quenched due to photoinduced electron transfer from ADT-TES-F to C60, while in ADT-TES-F/ADT-TIPS-CN blends, the PL was dominated by emission from an exciplex formed between ADT-TES-F and ADT-TIPS-CN molecules. In all materials, the PL quantum yield dramatically decreased as the temperature increased due to thermally activated nonradiative recombination. Considerable electric-field-induced PL quenching was observed at low temperatures at electric fields above ˜105 V/cm due to tunneling into dark states. No significant contribution of ADT-TES-F emissive exciton dissociation to transient photocurrent was observed. In all materials, charge carriers were photogenerated at sub-500-ps time scales, limited by the laser pulse width, with temperature- and electric-field-independent photogeneration efficiency. In ADT-TES-F/C60 (2%) composites, the photogeneration efficiency was a factor of 2-3 higher than that in pristine ADT-TES-F films. In ADT-TES-F/ADT-TIPS-CN (2%) blends, an additional charge carrier photogeneration component was observed at room temperature at time scales of ˜20 ns due to exciplex dissociation. At ˜0.5-5 ns after photoexcitation, the carriers propagated via thermally and electric-field-activated hopping with an activation energy of ˜0.025 eV. At time scales longer than ˜5 ns, charge transport of carriers that are not frozen in traps proceeded through tunneling via isoenergetic sites.

  7. Detecting Protein-Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs.

    PubMed

    Li, Jun; Han, Ling; Li, Jianing; Kitova, Elena N; Xiong, Zi Jian; Privé, Gilbert G; Klassen, John S

    2018-04-13

    Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs ( PL PDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB 5 ). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PL PDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PL PDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB 5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB 5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB 5 measured for pre-loaded PDs and PL PDs prepared from glycolipids extracted from pig and mouse brain revealed that the PL PDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PL PDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS. Graphical Abstract ᅟ.

  8. Polarization-resolved micro-photoluminescence investigation of InGaN/GaN core-shell microrods

    NASA Astrophysics Data System (ADS)

    Mounir, Christian; Schimpke, Tilman; Rossbach, Georg; Avramescu, Adrian; Strassburg, Martin; Schwarz, Ulrich T.

    2017-01-01

    We investigate the optical emission properties of the active InGaN shell of high aspect-ratio InGaN/GaN core-shell microrods (μRods) by confocal quasi-resonant polarization-resolved and excitation density dependent micro-photoluminescence (μPL). The active shell, multiple thin InGaN/GaN quantum wells (MQWs), was deposited on GaN μRods selectively grown by metal organic vapor phase epitaxy on patterned SiO2/n-GaN/sapphire template. High spatial resolution mappings reveal a very homogeneous emission intensity along the whole μRods including the tip despite a red-shift of 30 nm from the base to the tip along the 8.6 μm-long m-plane sidewalls. Looking at the Fabry-Perot interference fringes superimposed on the μPL spectra, we get structural information on the μRods. A high degree of linear polarization (DLP) of 0.6-0.66 is measured on the lower half of the m-plane side facets with a slight decrease toward the tip. We observe the typical drop of the DLP with an excitation density caused by degenerate filling of valence bands (Fermi regime). Local internal quantum efficiencies (IQEs) of 55 ±11 % up to 73 ±7 % are estimated on the m-plane facet from measurements at low temperature. Finally, simultaneously fitting the DLP and IQE as a function of the excitation density, we determine the carrier density inside the active region and the recombination rate coefficients of the m-plane MQWs. We show that phase-space filling and the background carrier density have to be included in the recombination rate model.

  9. Comparison of allogeneic platelet lysate and fetal bovine serum for in vitro expansion of equine bone marrow-derived mesenchymal stem cells.

    PubMed

    Seo, Jong-pil; Tsuzuki, Nao; Haneda, Shingo; Yamada, Kazutaka; Furuoka, Hidefumi; Tabata, Yasuhiko; Sasaki, Naoki

    2013-10-01

    Mesenchymal stem cells (MSCs) are promising candidates for cell-based therapy and tissue engineering approaches. Fetal bovine serum (FBS) is commonly used for in vitro MSC expansion; however, the use of FBS may be associated with ethical, scientific, and safety issues. This study aimed to compare the ability of allogeneic platelet lysate (PL) and FBS to cause equine bone marrow-derived MSC expansion. MSCs were isolated from bone marrow aspirate in media supplemented with either PL or FBS, and cell proliferation properties and characteristics were examined. There were no significant differences in MSC yield, colony-forming unit-fibroblast (CFU-F) assay, and population doubling time between PL and FBS cultures. In addition, both PL-MSCs and FBS-MSCs showed similar results in term of ALP staining, osteogenic differentiation, and RT-PCR, although there were subtle differences in morphology, growth pattern, and adhesive properties. These results suggest that PL is a suitable alternative to FBS for use in equine MSC expansion, without the problems related to FBS use. Published by Elsevier India Pvt Ltd.

  10. Photoluminescence and capacitance voltage characterization of GaAs surface passivated by an ultrathin GaN interface control layer

    NASA Astrophysics Data System (ADS)

    Anantathanasarn, Sanguan; Hasegawa, Hideki

    2002-05-01

    A novel surface passivation technique for GaAs using an ultrathin GaN interface control layer (GaN ICL) formed by surface nitridation was characterized by ultrahigh vacuum (UHV) photoluminescence (PL) and capacitance-voltage ( C- V) measurements. The PL quantum efficiency was dramatically enhanced after being passivated by the GaN ICL structure, reaching as high as 30 times of the initial clean GaAs surface. Further analysis of PL data was done by the PL surface state spectroscopy (PLS 3) simulation technique. PL and C- V results are in good agreement indicating that ultrathin GaN ICL reduces the gap states and unpins the Fermi level, realizing a wide movement of Fermi level within the midgap region and reduction of the effective surface recombination velocity by a factor of 1/60. GaN layer also introduced a large negative surface fixed charge of about 10 12 cm -2. A further improvement took place by depositing a Si 3N 4 layer on GaN ICL/GaAs structure.

  11. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium.

    PubMed

    Bernardi, Martina; Adami, Valentina; Albiero, Elena; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2014-03-01

    Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Antibacterial activity and mode of action of ε-polylysine against Escherichia coli O157:H7.

    PubMed

    Zhang, Xiaowei; Shi, Ce; Liu, Zuojia; Pan, Fengguang; Meng, Rizeng; Bu, Xiujuan; Xing, Heqin; Deng, Yanhong; Guo, Na; Yu, Lu

    2018-04-10

    Gram-negative Escherichia coli O157:H7 were chosen as model bacteria to evaluate the antimicrobial mechanism of ε-polylysine (ε-PL). The antibacterial activity of ε-PL was detected by measuring the minimum inhibitory concentration values as well as the time-kill curve. The membrane integrity was determined by ultraviolet (UV) absorption, membrane potential (MP) assay and flow cytometry (FCM) experiments. The permeability of the inner membrane was detected by β-galactosidase activity assay. Furthermore, electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] was utilized to observe bacterial morphology. These results demonstrated that ε-PL showed its antibacterial activity by changing the integrity and permeability of cell membranes, leading to rapid cell death. The electron microscopy analysis (SEM and TEM) results indicated that the bacterial cell morphology, membrane integrity and permeability were spoiled when the E. coli O157:H7 cells were exposed to minimum inhibitory concentrations of ε-PL (16 µg ml -1 ). In addition, the bacterial membrane was damaged more severely when the concentration of ε-PL was increased. The present study investigated the antimicrobial mechanism of ε-PL by measuring the content of cytoplasmic β-galactosidase, proteins and DNA. In addition, SEM and TEM were carried out to assess the mechanism. These results show that ε-PL has the ability to decrease the content of large molecules, cellular soluble proteins and nucleic acids associated with increasing the content of cytoplasmic β-galactosidase in supernatant by causing damage to the cell membranes. Consequently, the use of ε-PL as a natural antimicrobial agent should eventually become an appealing method in the field of food preservation.

  13. [Anti-synthetase syndrome: anti-PL-7, anti-PL-12 and anti-EJ].

    PubMed

    Souza, Fernando Henrique Carlos de; Cruellas, Marcela Gran Pina; Levy-Neto, Mauricio; Shinjo, Samuel Katsuyuki

    2013-08-01

    Due to the scarcity of studies in the literature, we conducted an analysis of a series of patients with the anti-PL-7, PL-12 and EJ types of antisynthetase syndrome (ASS). We conducted a retrospective cohort study of 20 patients with ASS (8 with anti-PL-7, 6 with PL-12, 6 with EJ) monitored in our department between 1982 and 2012. The mean patient age at disease onset was 38.5 ± 12.9 years, and the disease duration was 4.5 ± 6.4 years. Of all the patients, 70% were white and 85% were female. Constitutional symptoms occurred in 90% of cases. All patients presented objective muscle weakness in the limbs; in addition, 30% were bedridden and 65% demonstrated high dysphagia at diagnosis. Joint and pulmonary involvement and Raynaud's phenomenon occurred in 50%, 40% and 65% of cases, respectively, with more than half of the patients presenting incipient pneumopathy, ground-glass opacity and/or pulmonary fibrosis. There were no cases of neurological and/or cardiac involvement. All patients received prednisone or other immunosuppressants depending on tolerance, side effects and/or disease refractoriness. Importantly, patients with the anti-EJ type of ASS demonstrated higher rates of recurrence. Two patients died during follow-up, and 1 patient had breast cancer at the time of diagnosis. ASS (anti-PL-7, PL-12 and EJ) was found to predominantly affect white women. Although the autoantibodies described in the present study are more related to pulmonary than joint involvement, our patients showed a significant percentage of both types of involvement and a high percentage of myopathy. We also observed a low mortality rate.

  14. Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects

    DOE PAGES

    He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.; ...

    2017-09-28

    Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less

  15. Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.

    Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less

  16. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xuedan; Diroll, Benjamin T.; Cho, Wooje

    Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g( 2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicatingmore » the importance of surface passivation on NPL emission quality. Second-order photon correlation (g( 2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. In conclusion, these findings reveal that by careful growth control and core–shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.« less

  17. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets

    DOE PAGES

    Ma, Xuedan; Diroll, Benjamin T.; Cho, Wooje; ...

    2017-08-08

    Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g( 2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicatingmore » the importance of surface passivation on NPL emission quality. Second-order photon correlation (g( 2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. In conclusion, these findings reveal that by careful growth control and core–shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.« less

  18. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  19. The effects of platelet lysate patches on the activity of tendon-derived cells.

    PubMed

    Costa-Almeida, Raquel; Franco, Albina R; Pesqueira, Tamagno; Oliveira, Mariana B; Babo, Pedro S; Leonor, Isabel B; Mano, João F; Reis, Rui L; Gomes, Manuela E

    2018-03-01

    Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Isolation, purification, characterization and bioactivities of a glucan from the root of Pueraria lobata.

    PubMed

    Xu, Can; Qin, Ningbo; Yan, Chunyan; Wang, Shumei

    2018-05-23

    The root of Pueraria lobata is considered to be a medicinal and edible herb for the treatment of diabetes, and it has a long history of application in China. To explore the constituents responsible for the anti-hyperglycemic activities of P. lobata, a water-soluble polysaccharide (PL70-1-1) was isolated and purified by using a DEAE-Cellulose 52 anion exchange column and a Sephacryl S-100 gel filtration column. Its molecular weight (2584 Da) was determined by high performance gel permeation chromatography (HPGPC). Its structure was deduced by Fourier transform-infrared spectroscopy (FT-IR), monosaccharide composition analysis, gas chromatography coupled with mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). It was deduced that PL70-1-1 was a glucan, and its main chain consisted of (1→)-linked β-d-glucose, (1→4)-linked α-d-glucose, (1→4, 6)-linked β-d-glucose, and (1→3)-linked α-d-glucose, and the branch chain consisted of (1→)-linked β-d-glucose. The results of scanning electron microscopy showed that PL70-1-1 had a needle-like shape, and the surface had a scaly texture. The Congo red experiment showed that PL70-1-1 did not have a triple-helix structure. In addition, PL70 and PL70-1 displayed selective inhibitory effects on α-amylase and α-glucosidase in vitro. PL70 had remarkable α-glucosidase inhibitory activity. However, PL70-1-1 exhibited outstanding α-amylase inhibitory activity, with an IC50 of 3.945 μM in vitro. This indicated that its activity was 417 times higher than the positive control acarbose. PL70-1-1 may be beneficial as an α-amylase inhibitor, reducing the postprandial blood glucose level and treating type 2 diabetes.

  1. Active control of nanolitre droplet contents with convective concentration gradients across permeable walls.

    PubMed

    Zeitoun, Ramsey I; Goudie, Marcus J; Zwier, Jacob; Mahawilli, David; Burns, Mark A

    2011-12-07

    Nanolitre droplets in microfluidic devices can be used to perform thousands of independent chemical and biological experiments while minimizing reagents, cost and time. However, the absence of simple and versatile methods capable of controlling the contents of these nanolitre chemical systems limits their scientific potential. To address this, we have developed a method that is simple to fabricate and can continuously control nanolitre chemical systems by integrating a time-resolved convective flow signal across a permeable membrane wall. With this method, we can independently control the volume and concentration of nanolitre-sized drops without ever directly contacting the fluid. Transport occurring in these systems was also analyzed and thoroughly characterized. We achieved volumetric fluid introduction and removal rates ranging from 0.23 to 4.0 pL s(-1). Furthermore, we expanded this method to perform chemical processes. We precipitated silver chloride using a flow signal of sodium chloride and silver nitrate droplets. From there, we were able to separate sodium chloride reactants with a water flow signal, and dissolve silver chloride solids with an ammonia hydroxide flow signal. Finally, we demonstrate the potential to deliver large molecules and perform physical processes like crystallization and particle packing.

  2. 0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-C3N4 Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics.

    PubMed

    Wang, Kai; Zhang, Gaoke; Li, Jun; Li, Yuan; Wu, Xiaoyong

    2017-12-20

    Constructing 0D/2D Z-scheme photocatalysts is a great promising path to improve photocatalytic activity by  efficiently enhancing charge separation. Herein, we fabricated a visible-light-responsive Bi 3 TaO 7 quantum dots (QDs)/g-C 3 N 4 nanosheets (NSs) 0D/2D Z-scheme composite via a facile ultrasound method, and Bi 3 TaO 7 QDs could be interspersed on the surface of g-C 3 N 4 NSs uniformly. Furthermore, the strong interaction between Bi 3 TaO 7 QDs and g-C 3 N 4 NSs disturbed the CN heterocycles by forming C═O bonds between C atoms of the N-(C) 3 group and O atoms of the Ta-O bond. The optimum composite with 20 wt % g-C 3 N 4 NSs showed the superior photocatalytic activity for degradation of ciprofloxacin (CIP) over the composites prepared by mechanical mixing and solid-state methods, the photocatalytic efficiency of which were 4 and 12.2 times higher than those of bare Bi 3 TaO 7 and g-C 3 N 4 . Photoluminescence (PL), time-resolved transient PL decay spectra, and photocurrent together verify that the photogenerated hole-electron pairs in this 0D/2D Z-scheme composite have been effectively separated. The enhanced photocatalytic activity of as-synthesized photocatalysts could be attributed to the synergistic effect of efficient Z-scheme charge separation, highly dispersed 0D Bi 3 TaO 7 nanocrystals, coordinating sites of 2D g-C 3 N 4 NSs and the strong coupling between them. This study might pave the way toward designing novel visible-light-induced 0D/2D photocatalyst systems for highly efficient degradation of antibiotics.

  3. Dependence of the electrical and optical properties on growth interruption in AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes

    PubMed Central

    2011-01-01

    The dependence of interface roughness of pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes [RTDs] grown by molecular beam epitaxy on interruption time was studied by current-voltage [I-V] characteristics, photoluminescence [PL] spectroscopy, and transmission electron microscopy [TEM]. We have observed that a splitting in the quantum-well PL due to island formation in the quantum well is sensitive to growth interruption at the AlAs/In0.53Ga0.47As interfaces. TEM images also show flatter interfaces with a few islands which only occur by applying an optimum value of interruption time. The symmetry of I-V characteristics of RTDs with PL and TEM results is consistent because tunneling current is highly dependent on barrier thickness and interface roughness. PMID:22112249

  4. Dependence of the electrical and optical properties on growth interruption in AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes.

    PubMed

    Zhang, Yang; Guan, Min; Liu, Xingfang; Zeng, Yiping

    2011-11-23

    The dependence of interface roughness of pseudomorphic AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes [RTDs] grown by molecular beam epitaxy on interruption time was studied by current-voltage [I-V] characteristics, photoluminescence [PL] spectroscopy, and transmission electron microscopy [TEM]. We have observed that a splitting in the quantum-well PL due to island formation in the quantum well is sensitive to growth interruption at the AlAs/In0.53Ga0.47As interfaces. TEM images also show flatter interfaces with a few islands which only occur by applying an optimum value of interruption time. The symmetry of I-V characteristics of RTDs with PL and TEM results is consistent because tunneling current is highly dependent on barrier thickness and interface roughness.

  5. Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Richter, K.; Price, T. J.; Jones, J.; Faust, C.; Hickman, A. P.; Huennekens, J.; Malenda, R. F.; Ross, A. J.; Harker, H.; Crozet, P.; Forrey, R. C.

    2015-05-01

    Rotationally inelastic collisions of NaK A1Σ+ molecules with He and Ar are studied. At Lehigh, we use pump-probe polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. At Lyon, Fourier transform (FT)-resolved LIF spectra are recorded. In both cases, the pump laser excites a particular ro-vibrational level A1Σ+ (v , J). We observe strong direct lines corresponding to transitions from the (v , J) level pumped, and weak satellite lines corresponding to transitions from collisionally-populated levels (v ,J' = J + ΔJ). The ratios of satellite to direct line intensities in LIF and PL yield population and orientation transfer information. A strong propensity for ΔJ = even transitions is observed for both He and Ar perturbers. In the FT fluorescence experiment we also observe v-changing collisions. Ab initio potential surface and scattering calculations are underway for collisions in the A1Σ+ and X1Σ+ states. For He-NaK we have calculated potential surfaces using GAMESS and carried out coupled channel scattering calculations of transfer of population, orientation, and alignment. Calculations of v-changing collision cross sections are also in progress. Work supported by NSF, XSEDE and CNRS (PICS).

  6. Estimation of free carrier concentrations in high-quality heavily doped GaN:Si micro-rods by photoluminescence and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohajerani, M. S.; Khachadorian, S.; Nenstiel, C.; Schimpke, T.; Avramescu, A.; Strassburg, M.; Hoffmann, A.; Waag, A.

    2016-03-01

    The controlled growth of highly n-doped GaN micro rods is one of the major challenges in the fabrication of recently developed three-dimensional (3D) core-shell light emitting diodes (LEDs). In such structures with a large active area, higher electrical conductivity is needed to achieve higher current density. In this contribution, we introduce high quality heavily-doped GaN:Si micro-rods which are key elements of the newly developed 3D core-shell LEDs. These structures were grown by metal-organic vapor phase epitaxy (MOVPE) using selective area growth (SAG). We employed spatially resolved micro-Raman and micro-photoluminescence (PL) in order to directly determine a free-carrier concentration profile in individual GaN micro-rods. By Raman spectroscopy, we analyze the low-frequency branch of the longitudinal optical (LO)-phonon-plasmon coupled modes and estimate free carrier concentrations from ≍ 2.4 × 1019 cm-3 up to ≍ 1.5 × 1020 cm-3. Furthermore, free carrier concentrations are determined by estimating Fermi energy level from the near band edge emission measured by low-temperature PL. The results from both methods reveal a good consistency.

  7. LuAG:Pr3+-porphyrin based nanohybrid system for singlet oxygen production: Toward the next generation of PDTX drugs.

    PubMed

    Popovich, Kseniya; Tomanová, Kateřina; Čuba, Václav; Procházková, Lenka; Pelikánová, Iveta Terezie; Jakubec, Ivo; Mihóková, Eva; Nikl, Martin

    2018-02-01

    A highly prospective drug for the X-ray induced photodynamic therapy (PDTX), LuAG:Pr 3+ @SiO 2 -PpIX nanocomposite, was successfully prepared by a three step process: photo-induced precipitation of the Lu 3 Al 5 O 12 :Pr 3+ (LuAG:Pr 3+ ) core, sol-gel technique for amorphous silica coating, and a biofunctionalization by attaching the protoporphyrin IX (PpIX) molecules. The synthesis procedure provides three-layer nanocomposite with uniform shells covering an intensely luminescent core. Room temperature radioluminescence (RT RL) spectra as well as photoluminescence (RT PL) steady-state and time resolved spectra of the material confirm the non-radiative energy transfer from the core Pr 3+ ions to the PpIX outer layer. First, excitation of Pr 3+ ions results in the red luminescence of PpIX. Second, the decay measurements exhibit clear evidence of mentioned non-radiative energy transfer (ET). The singlet oxygen generation in the system was demonstrated by the 3'-(p-aminophenyl) fluorescein (APF) chemical probe sensitive to the singlet oxygen presence. The RT PL spectra of an X-ray irradiated material with the APF probe manifest the formation of singlet oxygen due to which enhanced luminescence around 530 nm is observed. Quenching studies, using NaN 3 as an 1 O 2 inhibitor, also confirm the presence of 1 O 2 in the system and rule out the parasitic reaction with OH radicals. To summarize, presented features of LuAG:Pr 3+ @SiO 2 -PpIX nanocomposite indicate its considerable potential for PDTX application. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Spectroscopic studies of Sm3+ ions activated lithium lead alumino borate glasses for visible luminescent device applications

    NASA Astrophysics Data System (ADS)

    Deopa, Nisha; Rao, A. S.

    2017-10-01

    Photoluminescence (PL) characterization of Lithium Lead Alumino Borate (LiPbAlB) glasses doped with Sm3+ ions at varying concentrations have been studied by using absorption, excitation, emission, time resolved and confocal image measurements. From the absorption spectra, Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ion doped LiPbAlB glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2, for which the emission cross-sections and branching ratios were evaluated to know the potentialities of these materials as visible luminescent devices. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition level were used to estimate quantum efficiency of the as-prepared glasses. The non-exponential decay curves observed for higher Sm3+ ion concentrations were well fitted to Inokuti-Hirayama model to understand the predominant energy transfer mechanism involved in the as-prepared glasses. CIE chromaticity coordinates and correlated color temperatures (CCT) were evaluated to understand the utility of the titled glasses in cool white light generation. The confocal images captured under 405 nm CW laser excitation show intense reddish-orange color. From the evaluated radiative parameters, emission cross-sections, quantum efficiency, CIE co-ordinates, CCT temperatures and confocal images, it was observed that LiPbAlB glass with 0.5 mol% Sm3+ ions are more suitable for w-LEDs and reddish-orange luminescent device applications.

  9. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.).

    PubMed

    Zhao, Daqiu; Jiang, Yao; Ning, Chuanlong; Meng, Jiasong; Lin, Shasha; Ding, Wen; Tao, Jun

    2014-08-19

    Herbaceous peony (Paeonia lactiflora Pall.) is a traditional flower in China and a wedding attractive flower in worldwide. In its flower colour, yellow is the rarest which is ten times the price of the other colours. However, the breeding of new yellow P. lactiflora varieties using genetic engineering is severely limited due to the little-known biochemical and molecular mechanisms underlying its characteristic formation. In this study, two cDNA libraries generated from P. lactiflora chimaera with red outer-petal and yellow inner-petal were sequenced using an Illumina HiSeq™ 2000 platform. 66,179,398 and 65,481,444 total raw reads from red outer-petal and yellow inner-petal cDNA libraries were generated, which were assembled into 61,431 and 70,359 Unigenes with an average length of 628 and 617 nt, respectively. Moreover, 61,408 non-redundant All-unigenes were obtained, with 37,511 All-unigenes (61.08%) annotated in public databases. In addition, 6,345 All-unigenes were differentially expressed between the red outer-petal and yellow inner-petal, with 3,899 up-regulated and 2,446 down-regulated All-unigenes, and the flavonoid metabolic pathway related to colour development was identified using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of 10 candidate differentially expressed genes (DEGs) involved in the flavonoid metabolic pathway were examined, and flavonoids were qualitatively and quantitatively analysed. Numerous anthoxanthins (flavone and flavonol) and a few anthocyanins were detected in the yellow inner-petal, which were all lower than those in the red outer-petal due to the low expression levels of the phenylalanine ammonialyase gene (PlPAL), flavonol synthase gene (PlFLS), dihydroflavonol 4-reductase gene (PlDFR), anthocyanidin synthase gene (PlANS), anthocyanidin 3-O-glucosyltransferase gene (Pl3GT) and anthocyanidin 5-O-glucosyltransferase gene (Pl5GT). Transcriptome sequencing (RNA-Seq) analysis based on the high throughput sequencing technology was an efficient approach to identify critical genes in P. lactiflora and other non-model plants. The flavonoid metabolic pathway and glucide metabolic pathway were identified as relatived yellow formation in P. lactiflora, PlPAL, PlFLS, PlDFR, PlANS, Pl3GT and Pl5GT were selected as potential candidates involved in flavonoid metabolic pathway, which inducing inhibition of anthocyanin biosynthesis mediated yellow formation in P. lactiflora. This study could lay a theoretical foundation for breeding new yellow P. lactiflora varieties.

  10. Polythiophene-fullerene based photodetectors: tuning of spectral response and application in photoluminescence based (bio)chemical sensors.

    PubMed

    Nalwa, Kanwar S; Cai, Yuankun; Thoeming, Aaron L; Shinar, Joseph; Shinar, Ruth; Chaudhary, Sumit

    2010-10-01

    A photoluminescence (PL)-based oxygen and glucose sensor utilizing inorganic or organic light emitting diode as the light source, and polythiophene: fullerene type bulk-heterojunction devices as photodetectors, for both intensity and decay-time based monitoring of the sensing element's PL. The sensing element is based on the oxygen-sensitive dye Pt-octaethylporphyrin embedded in a polystyrene matrix.

  11. Physiological mechanism of the overproduction of ε-poly-L-lysine by acidic pH shock in fed-batch fermentation.

    PubMed

    Ren, Xi-Dong; Chen, Xu-Sheng; Tang, Lei; Zeng, Xin; Wang, Liang; Mao, Zhong-Gui

    2015-11-01

    The introduction of an environmental stress of acidic pH shock had successfully solved the common deficiency existed in ε-PL production, viz. the distinct decline of ε-PL productivity in the feeding phase of the fed-batch fermentation. To unravel the underlying mechanism, we comparatively studied the physiological changes of Streptomyces sp. M-Z18 during fed-batch fermentations with the pH shock strategy (PS) and pH non-shock strategy (PNS). Morphology investigation showed that pellet-shape change was negligible throughout both fermentations. In addition, the distribution of pellet size rarely changed in the PS, whereas pellet size and number decreased substantially with time in the PNS. This was consistent with the performances of ε-PL productivity in both strategies, demonstrating that morphology could be used as a predictor of ε-PL productivity during fed-batch fermentation. Furthermore, a second growth phase happened in the PS after pH shock, followed by the re-appearance of live mycelia in the dead core of the pellets. Meanwhile, mycelia respiration and key enzymes in the central metabolic and ε-PL biosynthetic pathways were overall strengthened until the end of the fed-batch fermentation. As a result, the physiological changes induced by the acidic pH shock have synergistically and permanently contributed to the stimulation of ε-PL productivity. However, this second growth phase and re-appearance of live mycelia were absent in the PNS. These results indicated that the introduction of a short-term suppression on mycelia physiological metabolism would guarantee the long-term high ε-PL productivity.

  12. Radiative lifetimes of zincblende CdSe/CdS quantum dots

    DOE PAGES

    Gong, Ke; Martin, James E.; Shea-Rohwer, Lauren E.; ...

    2015-01-02

    Recent synthetic advances have made available very monodisperse zincblende CdSe/CdS quantum dots having near-unity photoluminescence quantum yields. Because of the absence of nonradiative decay pathways, accurate values of the radiative lifetimes can be obtained from time-resolved PL measurements. Radiative lifetimes can also be obtained from the Einstein relations, using the static absorption spectra and the relative thermal populations in the angular momentum sublevels. We found that one of the inputs into these calculations is the shell thickness, and it is useful to be able to determine shell thickness from spectroscopic measurements. We use an empirically corrected effective mass model tomore » produce a “map” of exciton wavelength as a function of core size and shell thickness. These calculations use an elastic continuum model and the known lattice and elastic constants to include the effect of lattice strain on the band gap energy. The map is in agreement with the known CdSe sizing curve and with the shell thicknesses of zincblende core/shell particles obtained from TEM images. Furthermore, if selenium–sulfur diffusion is included and lattice strain is omitted from the calculation then the resulting map is appropriate for wurtzite CdSe/CdS quantum dots synthesized at high temperatures, and this map is very similar to one previously reported (J. Am. Chem. Soc. 2009, 131, 14299). Radiative lifetimes determined from time-resolved measurements are compared to values obtained from the Einstein relations, and found to be in excellent agreement. For a specific core size (2.64 nm diameter, in the present case), radiative lifetimes are found to decrease with increasing shell thickness. Thus, this is similar to the size dependence of one-component CdSe quantum dots and in contrast to the size dependence in type-II quantum dots.« less

  13. Antiobesity effects of Undaria lipid capsules prepared with scallop phospholipids.

    PubMed

    Okada, Tomoko; Mizuno, Yasuyuki; Sibayama, Shinichi; Hosokawa, Masashi; Miyashita, Kazuo

    2011-01-01

    Based on previous research findings, a capsule was developed containing n-3 polyunsaturated fatty acid rich scallop phospholipids (PLs) with an incorporation of brown seaweed (Undaria pinnatifida) lipids (ULs) containing fucoxanthin. The antiobesity effects of the capsules were evaluated with an animal model using 3-wk-old male KK-A(y) mice. Each group received different combinations of lipid (UL, PL, UL + PL, or UL + PL capsule) either incorporated into the diet or into drinking water. Animals were sacrificed after a 4-wk experimental feeding period, and adipose tissues and organs were dissected and weighed. Blood samples were obtained to determine plasma lipid profiles. Uncoupling protein 1 (UCP1) mRNA expression levels were determined by real-time polymerase chain reaction analysis, and UCP1 expression was determined by western blotting analysis. Treatment with either UL alone or UL + PL (capsule) through drinking water resulted in a significant reduction in body weight, compared to the control group. The total white adipose tissue weight of mice fed the UL + PL capsule in drinking water was significantly reduced. Both UCP1 and UCP1 mRNA expression in epididymal fat from mice fed the capsule were significantly higher than in the control group. These results suggest that incorporation of UL into scallop-derived PL by means of capsulation may lead to an additive increase in the antiobesity properties of these bioactive lipids.

  14. The Potential of GMP-Compliant Platelet Lysate to Induce a Permissive State for Cardiovascular Transdifferentiation in Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells

    PubMed Central

    Bordin, Antonella; Ponti, Donatella; Iudicone, Paola; Rendina, Erino Angelo; Calogero, Antonella; Pierelli, Luca; Ibrahim, Mohsen; De Falco, Elena

    2015-01-01

    Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs. PMID:26495284

  15. Fernblock (Polypodium leucotomos Extract): Molecular Mechanisms and Pleiotropic Effects in Light-Related Skin Conditions, Photoaging and Skin Cancers, a Review

    PubMed Central

    Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador

    2016-01-01

    Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock®, IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging. PMID:27367679

  16. The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells.

    PubMed

    Siciliano, Camilla; Chimenti, Isotta; Bordin, Antonella; Ponti, Donatella; Iudicone, Paola; Peruzzi, Mariangela; Rendina, Erino Angelo; Calogero, Antonella; Pierelli, Luca; Ibrahim, Mohsen; De Falco, Elena

    2015-01-01

    Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.

  17. Fernblock (Polypodium leucotomos Extract): Molecular Mechanisms and Pleiotropic Effects in Light-Related Skin Conditions, Photoaging and Skin Cancers, a Review.

    PubMed

    Parrado, Concepcion; Mascaraque, Marta; Gilaberte, Yolanda; Juarranz, Angeles; Gonzalez, Salvador

    2016-06-29

    Healthier life styles include increased outdoors time practicing sports and walking. This means increased exposure to the sun, leading to higher risk of sunburn, photoaging and skin cancer. In addition to topical barrier products, oral supplementations of various botanicals endowed with antioxidant activity are emerging as novel method of photoprotection. Polypodium leucotomos extract (PL, commercial name Fernblock(®), IFC Group, Spain) is a powerful antioxidant due to its high content of phenolic compounds. PL is administered orally, with proven safety, and it can also be used topically. Its mechanisms include inhibition of the generation and release of reactive oxygen species (ROS) by ultraviolet (UV) light. It also prevents UV- and ROS-induced DNA damage with inhibition of AP1 and NF-κB and protection of natural antioxidant enzyme systems. At the cellular level, PL decreases cellular apoptosis and necrosis mediated UV and inhibits abnormal extracellular matrix remodeling. PL reduces inflammation, prevents immunosuppression, activates tumor suppressor p53 and inhibits UV-induced cyclooxygenase-2 (COX-2) enzyme expression. In agreement with increased p53 activity, PL decreased UV radiation-induced cell proliferation. PL also prevents common deletions mitochondrial DNA damage induced by UVA, and MMP-1 expression induced Visible Light and Infrared Radiation. These cellular and molecular effects are reflected in inhibitions of carcinogenesis and photoaging.

  18. Real-Time Observation of Iodide Ion Migration in Methylammonium Lead Halide Perovskites.

    PubMed

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Gräser, Anna; Luna, Carlos Andres Melo; Köhler, Jürgen; Bisquert, Juan; Hildner, Richard; Huettner, Sven

    2017-11-01

    Organic-inorganic metal halide perovskites (e.g., CH 3 NH 3 PbI 3- x Cl x ) emerge as a promising optoelectronic material. However, the Shockley-Queisser limit for the power conversion efficiency (PCE) of perovskite-based photovoltaic devices is still not reached. Nonradiative recombination pathways may play a significant role and appear as photoluminescence (PL) inactive (or dark) areas on perovskite films. Although these observations are related to the presence of ions/defects, the underlying fundamental physics and detailed microscopic processes, concerning trap/defect status, ion migration, etc., still remain poorly understood. Here correlated wide-field PL microscopy and impedance spectroscopy are utilized on perovskite films to in situ investigate both the spatial and the temporal evolution of these PL inactive areas under external electric fields. The formation of PL inactive domains is attributed to the migration and accumulation of iodide ions under external fields. Hence, we are able to characterize the kinetic processes and determine the drift velocities of these ions. In addition, it is shown that I 2 vapor directly affects the PL quenching of a perovskite film, which provides evidence that the migration/segregation of iodide ions plays an important role in the PL quenching and consequently limits the PCE of organometal halide-based perovskite photovoltaic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance.

    PubMed

    Thompson, Christopher; Vanhatalo, Anni; Jell, Harry; Fulford, Jonathan; Carter, James; Nyman, Lara; Bailey, Stephen J; Jones, Andrew M

    2016-12-30

    The influence of dietary nitrate (NO 3 - ) supplementation on indices of maximal sprint and intermittent exercise performance is unclear. To investigate the effects of NO 3 - supplementation on sprint running performance, and cognitive function and exercise performance during the sport-specific Yo-Yo Intermittent Recovery level 1 test (IR1). In a double-blind, randomized, crossover study, 36 male team-sport players received NO 3 - -rich (BR; 70 mL·day -1 ; 6.4 mmol of NO 3 - ), and NO 3 - -depleted (PL; 70 mL·day -1 ; 0.04 mmol NO 3 - ) beetroot juice for 5 days. On day 5 of supplementation, subjects completed a series of maximal 20-m sprints followed by the Yo-Yo IR1. Cognitive tasks were completed prior to, during and immediately following the Yo-Yo IR1. BR improved sprint split times relative to PL at 20 m (1.2%; BR 3.98 ± 0.18 vs. PL 4.03 ± 0.19 s; P < 0.05), 10 m (1.6%; BR 2.53 ± 0.12 vs. PL 2.57 ± 0.19 s; P < 0.05) and 5 m (2.3%; BR 1.73 ± 0.09 vs. PL 1.77 ± 0.09 s; P < 0.05). The distance covered in the Yo-Yo IR1 test improved by 3.9% (BR 1422 ± 502 vs. PL 1369 ± 505 m; P < 0.05). The reaction time to the cognitive tasks was shorter in BR (615 ± 98 ms) than PL (645 ± 120 ms; P < 0.05) at rest but not during the Yo-Yo IR1. There was no difference in response accuracy. Dietary NO 3 - supplementation enhances maximal sprint and high-intensity intermittent running performance in competitive team sport players. Our findings suggest that NO 3 - supplementation has the potential to improve performance in single-sprint or multiple-sprint (team) sports. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment.

    PubMed

    Gutknecht, Norbert; Franzen, Rene; Meister, Jörg; Vanweersch, Leon; Mir, Maziar

    2005-09-01

    The thermal rise threshold of an 810-nm semi-conductor diode laser on the root surface when used in root canals in vitro for laser assisted root canal treatment is investigated in this study. A total of 50 human single-rooted extracted teeth were included. For this study, the canals were enlarged up to an apical size of ISO#50 file. Laser irradiation was performed with six different settings. Specimens were irradiated at 0.6-1 W output power at the distal end of the fiber and about 1-1.5 W output power in the continuous mode (CW) as two groups. In the third group, 0.6-1 W output power, 10 ms pulse length (PL) and 10 ms interval duration (ID) were selected. In three other groups 1-1.5 W output power were used with different PL and ID as following: PL 10 and ID 10 ms, PL 10 and ID 20 ms and PL 20 and ID 20 ms. The total irradiation time was from 5 to 20 s per canal with a 200 mum in diameter and 25 mm long tip. After laser treatment, the temperature changes at the outer root surface were registered by means of NiCr-Ni measuring sensors and a T 202 thermometer. The safe temperature threshold for applying this diode laser in root canal is considered as 7 degrees C increase. To avoid increasing the temperature changes at the outer root surface related to this threshold, following total irradiation times were found: 0.6-1 W output power (10 ms PL/10 ms ID): 20 s (s), 1-1.5 W output power (10 ms/10 ms and 20 ms/20 ms): 15 s, 0.6-1 W output power CW and 1-1.5 W output power (20 ms PL/10 ms ID): 10 s and 1-1.5 W output power CW: 5 s. In the first three groups, 5 s irradiation and 5 s rest period avoided a temperature increase above the threshold of 7 degrees C).

  1. The safest parameters for FUS-induced blood-brain barrier opening without effects on the opening volume

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Olumolade, Yemi; Wang, Shutao; Wu, Shih-Ying; Konofagou, Elisa E.

    2012-11-01

    Acoustic cavitation has been identified as the main physical mechanism for the focused ultrasound (FUS) induced blood-brain barrier (BBB) opening. In this paper, the mechanism of stable cavitation (SC) and inertial cavitation (IC) responsible for BBB opening was investigated. Thirty-three (n=33) mice were intravenously injected with bubbles of 4-5 μm in diameter. The right hippocampus was then sonicated using focused 1.5-MHz ultrasound and three different studies were carried out. First, pulse lengths (PLs) of 0.1, 0.5, 2, and 5 ms at 0.18- MPa peak rarefactional pressure with 5-Hz pulse repetition frequency (PRF) and 5-minute duration were used to identify the threshold of PL using SC. Second, the effects of the duty cycle and exposure time were investigated. Third, the BBB opening size was compared between the SC and the IC. In the case of IC-induced BBB opening, a burst sequence (3-cycles PL; 5-Hz burst repetition frequency (BRF); 30 s duration) at 0.45 MPa was applied. Passive cavitation detection was performed with each sonication to detect whether a broadband response was obtained, i.e., if IC occurred, during BBB opening. The properties of BBB opening were measured through MRI. The threshold of PL for BBB opening was identified between 0.1 and 0.5 ms using SC, but the BBB can be opened in few cycles using IC. The BBB opening volume and normalized intensity increased with the PL, but reached saturation when the PL was above 2 ms. Once the PL threshold was reached, the same exposure time induced a similar BBB opening volume, but longer sonication duration induced higher MR intensity. The duty cycle was found not to play an important role on the BBB opening. Comparable BBB opening volume (20-25 mm3) could be reached between long PL (7500 cycles, i.e., 5 ms) at 0.18 MPa and 3 cycles at 0.45 MPa. 3-kDa fluorescently tagged dextran may be able to diffuse to the parenchyma after IC-induced BBB opening at 0.45 MPa but not after SC-induced BBB opening at 0.18 MPa.

  2. WE-G-18A-01: JUNIOR INVESTIGATOR WINNER - Low-Dose C-Arm Cone-Beam CT with Model-Based Image Reconstruction for High-Quality Guidance of Neurosurgical Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Stayman, J; Otake, Y

    Purpose: To address the challenges of image quality, radiation dose, and reconstruction speed in intraoperative cone-beam CT (CBCT) for neurosurgery by combining model-based image reconstruction (MBIR) with accelerated algorithmic and computational methods. Methods: Preclinical studies involved a mobile C-arm for CBCT imaging of two anthropomorphic head phantoms that included simulated imaging targets (ventricles, soft-tissue structures/bleeds) and neurosurgical procedures (deep brain stimulation (DBS) electrode insertion) for assessment of image quality. The penalized likelihood (PL) framework was used for MBIR, incorporating a statistical model with image regularization via an edgepreserving penalty. To accelerate PL reconstruction, the ordered-subset, separable quadratic surrogates (OS-SQS) algorithmmore » was modified to incorporate Nesterov's method and implemented on a multi-GPU system. A fair comparison of image quality between PL and conventional filtered backprojection (FBP) was performed by selecting reconstruction parameters that provided matched low-contrast spatial resolution. Results: CBCT images of the head phantoms demonstrated that PL reconstruction improved image quality (∼28% higher CNR) even at half the radiation dose (3.3 mGy) compared to FBP. A combination of Nesterov's method and fast projectors yielded a PL reconstruction run-time of 251 sec (cf., 5729 sec for OS-SQS, 13 sec for FBP). Insertion of a DBS electrode resulted in severe metal artifact streaks in FBP reconstructions, whereas PL was intrinsically robust against metal artifact. The combination of noise and artifact was reduced from 32.2 HU in FBP to 9.5 HU in PL, thereby providing better assessment of device placement and potential complications. Conclusion: The methods can be applied to intraoperative CBCT for guidance and verification of neurosurgical procedures (DBS electrode insertion, biopsy, tumor resection) and detection of complications (intracranial hemorrhage). Significant improvement in image quality, dose reduction, and reconstruction time of ∼4 min will enable practical deployment of low-dose C-arm CBCT within the operating room. AAPM Research Seed Funding (2013-2014); NIH Fellowship F32EB017571; Siemens Healthcare (XP Division)« less

  3. Investigation of germanium quantum-well light sources.

    PubMed

    Fei, Edward T; Chen, Xiaochi; Zang, Kai; Huo, Yijie; Shambat, Gary; Miller, Gerald; Liu, Xi; Dutt, Raj; Kamins, Theodore I; Vuckovic, Jelena; Harris, James S

    2015-08-24

    In this paper, we report a broad investigation of the optical properties of germanium (Ge) quantum-well devices. Our simulations show a significant increase of carrier density in the Ge quantum wells. Photoluminescence (PL) measurements show the enhanced direct-bandgap radiative recombination rates due to the carrier density increase in the Ge quantum wells. Electroluminescence (EL) measurements show the temperature-dependent properties of our Ge quantum-well devices, which are in good agreement with our theoretical models. We also demonstrate the PL measurements of Ge quantum-well microdisks using tapered-fiber collection method and quantify the optical loss of the Ge quantum-well structure from the measured PL spectra for the first time.

  4. Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications.

    PubMed

    Fontana, Flavia; Mori, Michela; Riva, Federica; Mäkilä, Ermei; Liu, Dongfei; Salonen, Jarno; Nicoletti, Giovanni; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2016-01-13

    The new frontier in the treatment of chronic nonhealing wounds is the use of micro- and nanoparticles to deliver drugs or growth factors into the wound. Here, we used platelet lysate (PL), a hemoderivative of platelets, consisting of a multifactorial cocktail of growth factors, to modify porous silicon (PSi) microparticles and assessed both in vitro and ex vivo the properties of the developed microsystem. PL-modified PSi was assessed for its potential to induce proliferation of fibroblasts. The wound closure-promoting properties of the microsystem were then assessed in an in vitro wound healing assay. Finally, the PL-modified PSi microparticles were evaluated in an ex vivo experiment over human skin. It was shown that PL-modified PSi microparticles were cytocompatible and enhanced the cell proliferation in different experimental settings. In addition, this microsystem promoted the closure of the gap between the fibroblast cells in the wound healing assay, in periods of time comparable with the positive control, and induced a proliferation and regeneration process onto the human skin in an ex vivo experiment. Overall, our results show that PL-modified PSi microparticles are suitable microsystems for further development toward applications in the treatment of chronic nonhealing wounds.

  5. Dynamic Evolution of 2D Layers Within Perovskite Nanocrystals via Salt Pair Extraction and Reinsertion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M; Anderson, Nicholas C; Bliss, Taylor

    Metal halide perovskite (MHP) semiconductors exhibit unprecedented optoelectronic properties coupled with low formation energies that enable scalable, cost-efficient solution processing. The low formation energies additionally facilitate dynamic transformation of the chemical composition and crystal structure of the MHP material. In this work, we show that CsBr salt is selectively extracted from CsPbBr3 nanocrystals (NCs) to yield PbBr2 NCs. The PbBr2 NCs are then exposed to different glacial acetic acid ABr salt solutions to generate a variety of emissive compounds with the generic structure A'2An-1PbnBr3n-1X'2, where A = cesium (Cs+), methylammonium (MA+), formamidinium (FA+); A' = A or H+; X' =more » Br- or acetate (CH3COO-); and n is the number of lead halide layers, where n = 1, 2, 3, ...8. We systematically vary the ratios of PbBr2/ABr/CH3COOH and show that certain ratios result in isolable single-phase APbBr3 NCs - an effective A-site cation exchange from the parent CsPbBr3 NCs. Importantly, time-resolved photoluminescence (PL) spectroscopy shows the dynamic evolution of many additional species as evidenced by blue-shifted emission peaks from 2.85-2.49 eV for MA+-based structures. We assign these species to n = 1, 2, 3, 4, and 5 quasi-two-dimensional network (2DN) sheets, in which CH3COO- anions and Br- anions compete for the c-axis X' sites separating haloplumbate(II) layers within the A'2An-1PbnBr3n-1X'2 NCs. Finally, we demonstrate the degree of CH3COO- incorporation, and thus the 2DN layer thickness and PL energy, is controlled in the early reaction times by kinetic factors. After a longer time (3 h), thermodynamic forces dictated by Le Chatelier's principle tune the structure in A'2An-1PbnBr3n-1X'2 NCs from exclusively n = 1 to n = 8 depending on the PbBr2/ABr/CH3COOH ratio.« less

  6. Epidermal growth factor stimulates mouse placental lactogen I but inhibits mouse placental lactogen II secretion in vitro.

    PubMed Central

    Yamaguchi, M; Ogren, L; Endo, H; Thordarson, G; Kensinger, R; Talamantes, F

    1992-01-01

    This study was undertaken to determine whether epidermal growth factor (EGF) regulates the secretion of mouse placental lactogen (mPL)-I and mPL-II. Primary cell cultures were prepared from placentas from days 7, 9, and 11 of pregnancy and cultured for up to 5 days. Addition of EGF (20 ng/ml) to the medium resulted in significant stimulation of mPL-I secretion by the second day of culture in cells from days 7 and 9 of pregnancy and significant inhibition of mPL-II secretion by the third or fourth day of culture in cells from days 7, 9, and 11. Dose-response studies carried out with cells from day 7 of pregnancy demonstrated that the minimum concentration of EGF that stimulated mPL-I secretion and inhibited mPL-II secretion was 1.0 ng/ml. EGF did not affect the DNA content of the cells or cell viability, assessed by trypan blue exclusion, nor did it have a general effect on protein synthesis. There are three types of PL-containing giant cells in mouse placental cell cultures: cells that contain either mPL-I or mPL-II and cells that contain both hormones. Immunocytochemical analysis and the reverse hemolytic plaque assay indicated that EGF treatment was accompanied by a significant increase in the number of cells that produce mPL-I, but among the PL cells that contained mPL-I, there was no change in the fraction of cells that contained only mPL-I or the fraction that contained both mPL-I and mPL-II. In contrast, EGF treatment did affect the distribution of mPL-II among PL cells. In control cultures, about 75% of the cells that contained mPL-II also contained mPL-I, but in EGF-treated cultures, all of the cells that contained mPL-II also contained mPL-I. These data suggest that EGF regulates mPL-I and mPL-II secretion at least partly by regulating PL cell differentiation. PMID:1454826

  7. Silicon-Induced UV Transparency in Phosphate Glasses and Its Application to the Enhancement of the UV Type B Emission of Gd3.

    PubMed

    Jiménez, José A

    2017-05-10

    The silicon route to improve the ultraviolet (UV) transparency in phosphate glasses is investigated and further exploited to enhance the UV type B (280-320 nm) emission of gadolinium(III) relevant for biomedical applications. The glasses were synthesized with a barium phosphate composition by melt-quenching in ambient atmosphere and the optical properties investigated by optical absorption and photoluminescence (PL) spectroscopy including emission decay kinetics. An improvement in the UV transparency was gradually developed for the glasses melted merely with increasing amounts of Si powder. A particular PL in the visible was also exhibited for such glasses under excitation at 275 nm, consistent with the presence of Si-induced defects. For Si-Gd codoped glasses, the UV transparency was likewise manifested, while the UV emission from Gd 3+ around 312 nm was enhanced with the increase in Si concentration (up to ∼6.7 times). Moreover, along with the Gd 3+ PL intensity enhancement, a linear correlation was revealed between the increase in decay times for the Gd 3+6 P 7/2 -emitting state and the amount of silicon. It is then suggested that the improved PL properties of gadolinium(III) originate from the increased UV transparency of the host and the consequent precluding of a nonradiative energy transfer from Gd 3+ to the matrix. Accordingly, a role of Si as PL quenching inhibitor is supported. The demonstrated efficacy of the Si-Gd codoping concept realized by a facile glass synthesis procedure may appeal to the application of the UV-emitting glasses for phototherapy lamps.

  8. Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

  9. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  10. Plantago lanceolata L. leaves prevent obesity in C57BL/6 J mice fed a high-fat diet.

    PubMed

    Yoshida, Taiji; Rikimaru, Kazuhiro; Sakai, Miho; Nishibe, Sansei; Fujikawa, Takahiko; Tamura, Yoshifumi

    2013-01-01

    The highly abundant and widely dispersed plant Plantago lanceolata L. (narrow leaf or English plantain) has been used for culinary and medicinal purposes since ancient times. Here, we investigated the anti-obesity effects of P. lanceolata leaf powder (shortly PL) when fed to male C57BL/6 J mice. Addition of PL to a high-fat diet did not affect food intake but significantly reduced food efficiency, suppressed body weight gain and visceral fat accumulation, and reduced serum free-fatty acid and glucose levels. PL-fed mice exhibited marked increases in HSL, Adrd3 and Cpt2 mRNA levels, and significant decreases in Fas transcripts in epididymal white adipose tissue (WAT). These findings suggest that dietary PL exerts anti-obesity effects by stimulating metabolism throughout visceral fat tissue by activating lipolysis, accelerating fatty acid β-oxidation and suppressing fatty acid synthase in WAT. To our knowledge, this is the first demonstration of anti-obesity substances derived from a Plantago species.

  11. Formation of size controlled Ge nanocrystals in Er-doped ZnO matrix and their enhancement effect in 1.54 μm photoluminescence

    NASA Astrophysics Data System (ADS)

    Fan, Ranran; Lu, Fei; Li, Kaikai; Liu, Kaijing

    2018-06-01

    This paper investigated the controllable growth of Ge nanocrystal (nc-Ge) in (Ge, Er) co-doped ZnO film, and the relationship between the size of nc-Ge and the enhancement of Er3+ related 1.54 μm photoluminescence (PL). It was found that nc-Ge with size of ∼5 nm was formed by annealing treatment at 600 °C. The intensity of 1.54 μm was significantly enhanced due to the existence of nc-Ge and showed an obvious dependence on nanocrystal size. The size of nc-Ge increased with the increase of the annealing temperature, and the nanocrystal with size of ∼5 nm made the most obvious contribution to PL enhancement. Prolonging annealing time could improve the crystalline structure of ZnO matrix but had no effect on PL intensity. The experimental results showed that the PL enhancement was mainly achieved by transferring the energy to Er through the resonance absorption of nc-Ge.

  12. Mineralization by mesenchymal stromal cells is variously modulated depending on commercial platelet lysate preparations.

    PubMed

    Boraldi, Federica; Burns, Jorge S; Bartolomeo, Angelica; Dominici, Massimo; Quaglino, Daniela

    2018-03-01

    Numerous cellular models have been developed to investigate calcification for regenerative medicine applications and for the identification of therapeutic targets in various complications associated with age-related diseases. However, results have often been contradictory due to specific culture conditions, cell type ontogeny and aging status. Human platelet lysate (hPL) has been recently investigated as valuable alternative to fetal bovine serum (FBS) in cell culture and bone regeneration. A parallel comparison of how all these multiple factors may converge to influence mineralization has yet to be reported. To compare mineralization of human mesenchymal cell types known to differ in extracellular matrix calcification potency, bone marrow-derived mesenchymal stromal cells and dermal fibroblasts from neonatal and adult donors, at both low and high passages, were investigated in an ex vivo experimental model by supplementing the osteogenic induction medium with FBS or with hPL. Four commercial hPL preparations were profiled by liquid chromatography/electrospray ionization quadrupole time-of-flight spectrometry, and mineralization was visualized by von Kossa staining and quantified by morphometric evaluations after 9, 14 and 21 days of culture. Data demonstrate that (i) commercial hPL preparations differ according to mass spectra profiles, (ii) hPL variously influences mineral deposition depending on cell line and possibly on platelet product preparation methods, (iii) donor age modifies mineral deposition in the presence of the same hPL and (iv) reduced in vitro proliferative capacity affects osteogenic induction and response to hPL. Despite the standardized procedures applied to obtain commercial hPL, this study highlights the divergent effects of different preparations and emphasizes the importance of cellular ontology, donor age and cell proliferative capacity to optimize the osteogenic induction capabilities of mesenchymal stromal cells and design more effective cell-based therapeutic protocols. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Efficient production of ε-poly-L-lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding.

    PubMed

    Liu, Sheng-Rong; Wu, Qing-Ping; Zhang, Ju-Mei; Mo, Shu-Ping

    2015-03-01

    ε-Poly-L-lysine (ε-PL) is a homopolymer of L-lysine molecules connected between the ε amino and alpha carboxyl groups. This polymer is currently used as a natural preservative in food. Insufficient biomass is a major problem in ε-PL fermentation. Here, to improve cell growth and ε-PL productivity, various nitrogen-rich nutrients were supplemented into flask cultures after 16 h cultivation, marking the onset of ε-PL biosynthesis. Yeast extract, soybean powder, corn powder, and beef extract significantly improved cell growth. In terms of ε-PL productivity, yeast extract at 0.5% (w/v) gave the maximum yield (2.24 g/l), 115.4% higher than the control (1.04 g/l), followed by soybean powder (1.86 g/l) at 1% (w/v) and corn powder (1.72 g/l) at 1% (w/v). However, supplementation with beef extract inhibited ε-PL production. The optimal time for supplementation for all nutrients examined was at 16 h cultivation. The kinetics of yeast-extract-supplemented cultures showed enhanced cell growth and production duration. Thus, the most commonly used two-stage pH control fed-batch fermentation method was modified by omitting the pH 5.0-controlled period, and coupling the procedure with nutrient feeding in the pH 3.9-controlled phase. Using this process, by continuously feeding 0.5 g/h of yeast extract, soybean powder, or corn powder into cultures in a 30 L fermenter, the final ε-PL titer reached 28.2 g/l, 23.7 g/l, and 21.4 g/l, respectively, 91.8%, 61.2%, and 45.6% higher than that of the control (14.7 g/l). This describes a promising option for the mass production of ε-PL.

  14. Diet-Independent Remodeling of Cellular Membranes Precedes Seasonally Changing Body Temperature in a Hibernator

    PubMed Central

    Arnold, Walter; Ruf, Thomas; Frey-Roos, Fredy

    2011-01-01

    Polyunsaturated fatty acids (PUFA) have a multitude of health effects. Their incorporation into membrane phospholipids (PL) is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (Tb), whereas long chain (>C18) n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low Tb. Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of Tb and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic organisms. PMID:21533242

  15. Diet-independent remodeling of cellular membranes precedes seasonally changing body temperature in a hibernator.

    PubMed

    Arnold, Walter; Ruf, Thomas; Frey-Roos, Fredy; Bruns, Ute

    2011-04-13

    Polyunsaturated fatty acids (PUFA) have a multitude of health effects. Their incorporation into membrane phospholipids (PL) is generally believed to depend directly on dietary influx. PL influence transmembrane protein activity and thus can compensate temperature effects; e.g. PL n-6 PUFA are thought to stabilize heart function at low body temperature (T(b)), whereas long chain (>C18) n-3 PUFA may boost oxidative capacity. We found substantial remodeling of membranes in free-living alpine marmots which was largely independent of direct dietary supply. Organ PL n-6 PUFA and n-6 to n-3 ratios were highest at onset and end of hibernation after rapid increases during a brief transitional period prior to hibernation. In contrast, longer chain PL n-3 PUFA content was low at end of summer but maximal at end of hibernation. After termination of hibernation in spring, these changes in PL composition were rapidly reversed. Our results demonstrate selective trafficking of PUFA within the body, probably governed by a circannual endogenous rhythm, as hibernating marmots were in winter burrows isolated for seven months from food and external cues signaling the approaching spring. High concentrations of PL n-6 PUFA throughout hibernation are in line with their hypothesized function of boosting SERCA 2a activity at low T(b). Furthermore, we found increasing rate of rewarming from torpor during winter indicating increasing oxidative capacity that could be explained by the accumulation of long-chain PL n-3 PUFA. It may serve to minimize the time necessary for rewarming despite the increasing temperature range to be covered, because rewarming is a period of highest metabolic rate and hence production of reactive oxygen species. Considering the importance of PUFA for health our results may have important biomedical implications, as seasonal changes of T(b) and associated remodeling of membranes are not restricted to hibernators but presumably common among endothermic organisms.

  16. Ovarian factors inhibit and fetal factors stimulate the secretion of rat placental lactogen.

    PubMed

    Robertson, M C; Owens, R E; McCoshen, J A; Friesen, H G

    1984-01-01

    Removal of fetuses at day 14 of gestation (Ftx14) in the pregnant rat leads to a marked suppression of serum levels of rat placental lactogen (rPL-II). One might attribute this to compromised placental growth in the absence of a fetus. However, if ovariectomy and fetectomy (Ftx14 Ovx14) are carried out at the same time, a great increase in serum rPL-II levels is seen. This occurs despite a significant decrease in placental weight. When Ftx14 was performed on day 14 and Ovx was delayed 1, 2, or 3 days, the expected large increase in serum rPL-II was progressively attenuated compared to that seen when Ftx and Ovx were carried out simultaneously. Daily administration of 17 beta-estradiol (4 micrograms/rat X day) to Ftx14 Ovx14 pregnant rats resulted in a significant suppression of rPL-II and elevation of rPRL levels, a reversal of what is seen for these hormones in untreated Ftx14 Ovx14 animals. To test whether 17 beta-estradiol was acting through rat PRL (rPRL), serum levels of rPRL were elevated in Ftx13 Ovx13 animals with pimozide (0.6 mg/kg), a dopamine receptor blocker. There was no effect of this treatment on rPL-II levels. In late pregnancy (day 17) serum rPL-II levels remained high after removal of half the fetuses (1/2 Ftx), compared to the rapid fall in pregnant rats in which all fetuses were removed (Ftx17). Serum levels were also elevated in 1/2 Ftx animals compared to those in which half of the fetuses and placentas were removed by hemi-hysterectomy, suggesting that the increase in rPL-II levels in 1/2 Ftx animals was due to a stimulatory effect of the remaining fetuses on all of the placentas. These results indicate that the presence of the fetus is necessary for the normally observed increase in rPL-II levels in late pregnancy. In conclusion, fetal stimulators and ovarian inhibitors influence rPL-II secretion.

  17. Comparison of long-term outcome between anti-Jo1- and anti-PL7/PL12 positive patients with antisynthetase syndrome.

    PubMed

    Marie, I; Josse, S; Decaux, O; Dominique, S; Diot, E; Landron, C; Roblot, P; Jouneau, S; Hatron, P Y; Tiev, K P; Vittecoq, O; Noel, D; Mouthon, L; Menard, J-F; Jouen, F

    2012-08-01

    The aims of the present study were to: compare the characteristics between antisynthetase syndrome (ASS) patients with anti-Jo1 antibody and those with anti-PL7/PL12 antibody. The medical records of 95 consecutive patients with ASS were reviewed. Seventy-five of these patients had anti-Jo1 antibody; the other patients had anti-PL7 (n=15) or anti-PL12 (n=5) antibody. At ASS diagnosis, the prevalence of myalgia (p=0.007) and muscle weakness (p=0.02) was significantly lower in the group of anti-PL7/PL12-positive patients than in those with anti-Jo1 antibody; median value of CK (p=0.00003) was also lower in anti-PL7/PL12 patients. Anti-Jo1 positive patients developed more rarely myositis resolution (21.3% vs. 46.2%); in addition, the overall recurrence rate of myositis was higher in anti-Jo1 positive patients than in patients with anti-PL7/PL12 antibody (65.9% vs. 19.4%). Anti-Jo1-positive patients, compared with those with anti-PL7/PL12 antibody, more often experienced: joint involvement (63.3%vs. 40%) and cancer (13.3% vs. 5%). By contrast, anti-PL7/PL12 positive patients, compared with those with anti-Jo1 antibody, more commonly exhibited: ILD (90% vs. 68%); in anti-PL7/PL12 positive patients, ILD was more often symptomatic at diagnosis, and led more rarely to resolution of lung manifestations (5.6% vs. 29.4%). Finally, the group of anti-PL7/PL12 positive patients more commonly experienced gastrointestinal manifestations related to ASS (p=0.02). Taken together, although anti-Jo1 positive patients with ASS share some features with those with anti-PL7/PL12 antibody, they exhibit many differences regarding clinical phenotype and long-term outcome. Our study underscores that the presence of anti-Jo1 antibody results in more severe myositis, joint impairment and increased risk of cancer. On the other hand, the presence of anti-PL7/PL12 antibody is markedly associated with: early and severe ILD, and gastrointestinal complications. Thus, our study interestingly indicates that the finding for anti-Jo1 and anti-PL7/PL12 antibodies impacts both the long-term outcome and prognosis of patients with ASS. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Teaching of anterior cruciate ligament function in osteopathic medical education.

    PubMed

    Surek, Christopher Chase; Lorimer, Shannon D; Dougherty, John J; Stephens, Robert E

    2011-04-01

    The anterior cruciate ligament (ACL) of the knee and the function of its anteromedial (AM) and posterolateral (PL) bundles are a focus of orthopedic research. Because of the probability that third-year and fourth-year osteopathic medical students will encounter ACL injuries during clinical rotations, it is of paramount importance that students fully understand the functions of the AM and PL bundles as 2 distinct functional components of the ACL. The authors assess the degree to which the AM and PL bundles are discussed within basic science curricula at colleges of osteopathic medicine (COMs). In September 2008, a 6-question survey addressing various aspects of ACL education was mailed to instructors of lower-extremity anatomy at all 28 COMs that existed at that time. Nine of the 21 responding institutions (42.9%) indicated that both the AM and PL bundles of the ACL are discussed within their basic science curricula. Four of these 9 COMs indicated that their instruction mentions that the bundles are parallel in extension and crossed in flexion. Nine of the 21 responding COMs (42.9%) indicated that they instruct students that the AM bundle is a major anterior-posterior restrictor, and 12 (57.1%) indicated that they instruct students that the PL bundle is the major rotational stabilizer of the ACL. In 7 of the 21 responding COMs (33.3%), the AM and PL bundles are identified via direct visualization during anatomic dissection of the ACL. The authors conclude that their findings suggest the need for enhanced presentation of the AM and PL bundles within the basic science curricula at COMs to provide osteopathic medical students with a more comprehensive education in anatomy.

  19. Molecular Cloning and Functional Characterization of a Novel (Iso)flavone 4′,7-O-diglucoside Glucosyltransferase from Pueraria lobata

    PubMed Central

    Wang, Xin; Fan, Rongyan; Li, Jia; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Pueraria lobata roots accumulate a rich source of isoflavonoid glycosides, including 7-O- and 4′-O-mono-glucosides, and 4′,7-O-diglucosides, which have numerous human health benefits. Although, isoflavonoid 7-O-glucosyltranferases (7-O-UGTs) have been well-characterized at molecular levels in legume plants, genes, or enzymes that are required for isoflavonoid 4′-O- and 4′,7-O-glucosylation have not been identified in P. lobata to date. Especially for the 4′,7-O-di-glucosylations, the genetic control for this tailing process has never been elucidated from any plant species. Through transcriptome mining, we describe here the identification and characterization of a novel UGT (designated PlUGT2) governing the isoflavonoid 4′,7-O-di-glucosylations in P. lobata. Biochemical roles of PlUGT2 were assessed by in vitro assays with PlUGT2 protein produced in Escherichia coli and analyzed for its qualitative substrate specificity. PlUGT2 was active with various (iso)flavonoid acceptors, catalyzing consecutive glucosylation activities at their O-4′ and O-7 positions. PlUGT2 was most active with genistein, a general isoflavone in legume plants. Real-time PCR analysis showed that PlUGT2 is preferentially transcribed in roots relative to other organs of P. lobata, which is coincident with the accumulation pattern of 4′-O-glucosides and 4′,7-O-diglucosides in P. lobata. The identification of PlUGT2 would help to decipher the P. lobata isoflavonoid glucosylations in vivo and may provide a useful enzyme catalyst for an efficient biotransformation of isoflavones or other natural products for food or pharmacological purposes. PMID:27066037

  20. Periodic assessment of plasma sFlt-1 and PlGF concentrations and its association with placental morphometry in gestational hypertension (GH) - a prospective follow-up study.

    PubMed

    Jeevaratnam, Kamalan; Nadarajah, Vishna Devi; Judson, John Paul; Nalliah, Sivalingam; Abdullah, Mohd Farouk

    2010-09-28

    Hypertensive disorders in pregnancy contributes to about 12% of maternal deaths in Malaysia and similarly worldwide. Early detection and adequate management are preventable strategies. Biochemical markers of abnormal angiogenesis would be more specific in early detection than routine blood pressure and proteinuria measurements. The aim of this study was to estimate maternal plasma PlGF and sFlt-1 levels in pregnant women with gestational hypertension at three intervals of pregnancy and correlate these biomarker levels with placental morphometry. Venous blood samples (antepartum, intrapartum and post partum periods) were drawn to estimate for sFlt-1 and PlGF levels while placental tissue samples were examined for placental morphometry. PlGF levels were lower in gestational hypertension (GH) compared to normotensive during antepartum and intrapartum period, whereas sFlt-1 levels were elevated in GH at antepartum, intrapartum and postpartum intervals during pregnancy. An inverse relationship between these two biomarkers was observed through correlation analysis. PlGF levels were inversely correlated with total villous surface area of the placental periphery (TCsa-C) and villous capillarization (VC-C) of the placental periphery. We established periodic values of for sFlt-1 and PlGF levels for the first time in an ethnically diverse Malaysian setting. We suggest the development of GH in women is related to defective capillarization. In demonstrating periodic changes, this study suggest the possibility of developing GH and other long term health complications as a result of prolonged exposure to sFlt-1. The correlation between PlGF levels and morphometric findings also support possible capillarization defect.

  1. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Zhang, Minghua; Fu, Jiyong; Dias, A. C.; Qu, Fanyao

    2018-07-01

    We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe2, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (Xb), intravalley biexciton (XXk,k) and intervalley biexciton (XX) in particular for the XXk,k PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e. increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of Xb shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XXk,k VP is found almost independent of temperature. In contrast to both Xb and XXk,k, the intervalley XX VP identically vanishes, because of equal populations of excitons in the K and valleys bounded to form intervalley biexcitons. Notably, it is found that the Xb VP much more strongly depends on bright–dark scattering than that of XXk,k, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for Xb at strong bright–dark scatterings, but not for XXk,k. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the dependence of time evolution of PL and VP on temperature and excitation fluence is discussed.

  2. Characterization of atomic-layer MoS2 synthesized using a hot filament chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ying-Zi, Peng; Yang, Song; Xiao-Qiang, Xie; Yuan, Li; Zheng-Hong, Qian; Ru, Bai

    2016-05-01

    Atomic-layer MoS2 ultrathin films are synthesized using a hot filament chemical vapor deposition method. A combination of atomic force microscopy (AFM), x-ray diffraction (XRD), high-resolution transition electron microscopy (HRTEM), photoluminescence (PL), and x-ray photoelectron spectroscopy (XPS) characterization methods is applied to investigate the crystal structures, valence states, and compositions of the ultrathin film areas. The nucleation particles show irregular morphology, while for a larger size somewhere, the films are granular and the grains have a triangle shape. The films grow in a preferred orientation (002). The HRTEM images present the graphene-like structure of stacked layers with low density of stacking fault, and the interlayer distance of plane is measured to be about 0.63 nm. It shows a clear quasi-honeycomb-like structure and 6-fold coordination symmetry. Room-temperature PL spectra for the atomic layer MoS2 under the condition of right and left circular light show that for both cases, the A1 and B1 direct excitonic transitions can be observed. In the meantime, valley polarization resolved PL spectra are obtained. XPS measurements provide high-purity samples aside from some contaminations from the air, and confirm the presence of pure MoS2. The stoichiometric mole ratio of S/Mo is about 2.0-2.1, suggesting that sulfur is abundant rather than deficient in the atomic layer MoS2 under our experimental conditions. Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY16F040003 and LY16A040007) and the National Natural Science Foundation of China (Grant Nos. 51401069 and 11574067).

  3. Distal tibial tuberosity translation using TTA implants for the treatment of patella alta in large breed dogs. Surgical technique and clinical outcome.

    PubMed

    Pugliese, L C; Pike, F S; Aiken, S W

    2015-01-01

    Medial patellar luxation frequently occurs in dogs resulting in lameness with increasing incidence in large breed dogs. Patella alta has been defined as a patellar ligament length to patellar length ratio that is greater than two and may predispose to patellar luxation. To describe the surgical technique for stabilization of the distal translation of the tibial tuberosity using tibial tuberosity advancement plates and the clinical outcomes with follow-up for clinical cases of dogs. Dogs that were presented with the complaint of patellar luxation and that were concurrently diagnosed with patella alta and were greater than 20 kg in body weight underwent surgery using a tibial tuberosity advancement plate to stabilize the osteotomy. Radiographic assessment of A:PL distance (the ratio of the proximal aspect of the patella to the femoral condyle [A] to the patellar length [PL]), L:P ratio (ratio of the length of the patellar ligament to the diagonal length of the patella), and owner assessment were obtained. Eleven stifles in nine dogs underwent surgical correction with a mean preoperative L:P ratio of 2.47. There were no complications and the lameness resolved clinically. The mean A:PL ratios preoperatively (2.6 ± 0.22) and postoperatively (2.1 ± 0.25) were significantly different (p = 0.0003). All owners were satisfied with the outcome and all dogs had a resolution of lameness with no recurrence of patellar luxation. Stabilization of distal translation of the tibial tuberosity using tibial tuberosity advancement implants to correct patella alta in large breed dogs was feasible and resulted in good clinical outcome.

  4. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Fulleropyrrolidinium Iodide As an Efficient Electron Transport Layer for Air-Stable Planar Perovskite Solar Cells.

    PubMed

    Huang, Jiabin; Yu, Xuegong; Xie, Jiangsheng; Li, Chang-Zhi; Zhang, Yunhai; Xu, Dikai; Tang, Zeguo; Cui, Can; Yang, Deren

    2016-12-21

    Organic-inorganic halide perovskite solar cells have attracted great attention in recent years. But there are still a lot of unresolved issues related to the perovskite solar cells such as the phenomenon of anomalous hysteresis characteristics and long-term stability of the devices. Here, we developed a simple three-layered efficient perovskite device by replacing the commonly employed PCBM electrical transport layer with an ultrathin fulleropyrrolidinium iodide (C 60 -bis) in an inverted p-i-n architecture. The devices with an ultrathin C 60 -bis electronic transport layer yield an average power conversion efficiency of 13.5% and a maximum efficiency of 15.15%. Steady-state photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements show that the high performance is attributed to the efficient blocking of holes and high extraction efficiency of electrons by C 60 -bis, due to a favorable energy level alignment between the CH 3 NH 3 PbI 3 and the Ag electrodes. The hysteresis effect and stability of our perovskite solar cells with C 60 -bis become better under indoor humidity conditions.

  6. Identification of the spatial location of deep trap states in AlGaN/GaN heterostructures by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.

    2017-12-01

    Spatial and spectral origin of deep level defects in molecular beam epitaxy grown AlGaN/GaN heterostructures are investigated by using surface photovoltage spectroscopy (SPS) and pump-probe SPS techniques. A deep trap center ∼1 eV above the valence band is observed in SPS measurements which is correlated with the yellow luminescence feature in GaN. Capture of electrons and holes is resolved by performing temperature dependent SPS and pump-probe SPS measurements. It is found that the deep trap states are distributed throughout the sample while their dominance in SPS spectra depends on the density, occupation probability of deep trap states and the background electron density of GaN channel layer. Dynamics of deep trap states associated with GaN channel layer is investigated by performing frequency dependent photoluminescence (PL) and SPS measurements. A time constant of few millisecond is estimated for the deep defects which might limit the dynamic performance of AlGaN/GaN based devices.

  7. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging

    DOE PAGES

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...

    2017-07-04

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3NH 3PbI 3–xCl x) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmissionmore » microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less

  8. Wide emission-tunable CdTeSe/ZnSe/ZnS core–shell quantum dots and their conjugation with E. coli O-157

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Haifeng; Zhou, Guangjun, E-mail: gjzhou@sdu.edu.cn; Zhou, Juan

    2015-05-15

    Highlights: • QDs with variety morphology were obtained via an injection controlled process. • 3-D PL spectra of core–shell QDs show different excitation wavelength dependence. • The PL intensity of QDs with ZnSe transition layer increases dramatically. • Core–shell QDs were processed into aqueous phase and conjugated with E. coli O-157. - Abstract: Wide emission-tunable and different morphological alloyed CdTeSe quantum dots (QDs), CdTeSe/ZnS and CdTeSe/ZnSe/ZnS core–shell QDs were successfully synthesized via an injection controlled process. The effect of injection procedure and reaction temperature were systematically discussed and the growth mechanism was proposed. Most efficient PL wavelength was correlated withmore » reaction time and temperature. The 3-D PL spectra of spherical bare CdTeSe and core–shell QDs with different passivation showed different excitation wavelength dependency. The PL intensity of CdTeSe/ZnSe/ZnS core–shell QDs increased greatly in comparison with that of CdTeSe and CdTeSe/ZnSe QDs. ZnSe transition layer played an important role in improving the PL intensity by providing a smoothened interface and gradient band offsets. The core–shell QDs were transferred into aqueous phase and successfully conjugated with Escherichia coli O-157. The proposed phase-transfer and bio-labeling strategy may be applicable to various QDs with different compositions.« less

  9. Comparison of the Incorporation of DHA in Circulatory and Neural Tissue When Provided as Triacylglycerol (TAG), Monoacylglycerol (MAG) or Phospholipids (PL) Provides New Insight into Fatty Acid Bioavailability.

    PubMed

    Destaillats, Frédéric; Oliveira, Manuel; Bastic Schmid, Viktoria; Masserey-Elmelegy, Isabelle; Giuffrida, Francesca; Thakkar, Sagar K; Dupuis, Lénaïck; Gosoniu, Maria Laura; Cruz-Hernandez, Cristina

    2018-05-15

    Phospholipids (PL) or partial acylglycerols such as sn -1(3)-monoacylglycerol (MAG) are potent dietary carriers of long-chain polyunsaturated fatty acids (LC-PUFA) and have been reported to provide superior bioavailability when compared to conventional triacylglycerol (TAG). The main objective of the present study was to compare the incorporation of docosahexaenoic acid (DHA) in plasma, erythrocytes, retina and brain tissues in adult rats when provided as PL (PL-DHA) and MAG (MAG-DHA). Conventional dietary DHA oil containing TAG (TAG-DHA) as well as control chow diet were used to evaluate the potency of the two alternative DHA carriers over a 60-day feeding period. Fatty acid profiles were determined in erythrocytes and plasma lipids at time 0, 7, 14, 28, 35 and 49 days of the experimental period and in retina, cortex, hypothalamus, and hippocampus at 60 days. The assessment of the longitudinal evolution of DHA in erythrocyte and plasma lipids suggest that PL-DHA and MAG-DHA are efficient carriers of dietary DHA when compared to conventional DHA oil (TAG-DHA). Under these experimental conditions, both PL-DHA and MAG-DHA led to higher incorporations of DHA erythrocytes lipids compared to TAG-DHA group. After 60 days of supplementation, statistically significant increase in DHA level incorporated in neural tissues analyzed were observed in the DHA groups compared with the control. The mechanism explaining hypothetically the difference observed in circulatory lipids is discussed.

  10. Comparison of pneumatic and laser lithotripsy in the treatment of pediatric ureteral stones.

    PubMed

    Atar, Murat; Bodakci, Mehmet Nuri; Sancaktutar, Ahmet Ali; Penbegul, Necmettin; Soylemez, Haluk; Bozkurt, Yasar; Hatipoglu, Namik Kemal; Cakmakci, Suleyman

    2013-06-01

    To compare the effectiveness and safety of pneumatic and holmium:YAG laser lithotripters in the treatment of pediatric ureterolithiasis. Medical records of patients treated using pneumatic (PL) (n = 29) or laser (LL) (n = 35) lithotripter between 2009 and 2011 were retrospectively analysed. The patients were evaluated with respect to age, gender, stone size, complications, and stone-free rates 1 month after the operation. For the PL and LL groups, mean ages (8.8 ± 3.4 and 8.3 ± 3.5 years), male/female ratios (19:10 and 22:13) and stone locations were similar (p > 0.05). Mean stone sizes were 55.6 mm2 and 47.6 mm2 in the PL and LL group, respectively, with no statistically significant difference (p = 0.850). Mean operative times were 20.5 min in the PL group and 25.2 min in the LL group, with a statistically significant difference (p = 0.020). Stone-free rates 1 month after intervention were 79% in the PL group and 97% in the LL group (p = 0.022). Stone migration was detected in the PL group (n = 6) and in the LL group (n = 1). No major complication was found in either group. In the ureteroscopic treatment of pediatric ureterolithiasis, both pneumatic and laser lithotripters are effective and successful. However, laser lithotripsy has a higher stone-free rate and lower complication rate. Copyright © 2012 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  11. Addition of N-terminal pro-B natriuretic peptide to soluble fms-like tyrosine kinase-1/placental growth factor ratio > 38 improves prediction of pre-eclampsia requiring delivery within 1 week: a longitudinal cohort study.

    PubMed

    Sabriá, E; Lequerica-Fernández, P; Lafuente-Ganuza, P; Eguia-Ángeles, E; Escudero, A I; Martínez-Morillo, E; Barceló, C; Álvarez, F V

    2018-06-01

    Short-term prediction of pre-eclampsia (PE) using the soluble fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) ratio is characterized by frequent false-positive results. As such, no treatment can be recommended to test-positive patients and multiple measurements are often required. The aim of this study was to evaluate the effectiveness of N-terminal pro-B natriuretic peptide (NT-proBNP), uric acid and the sFlt-1/PlGF ratio for prediction of delivery with PE within 1 week in singleton pregnancies with suspected PE and sFlt-1/PlGF ratio > 38. This was a longitudinal prospective cohort study of singleton pregnancies presenting at 24 + 0 to 36 + 6 weeks of gestation with clinically suspected PE and sFlt-1/PlGF ratio > 38, enrolled between January 2015 and June 2017. Multiple samples per patient were allowed but were restricted to one sample per gestational week. From 495 enrolled patients, 270 blood samples from 134 patients were ultimately analyzed. By using generalized estimating equations (GEE), the best-fit model was selected for prediction of delivery with PE within 1 week. The predictive value of this model was then assessed using area under the paired-ROC curve (AUC) analysis. The best-fit model included the sFlt-1/PlGF ratio, NT-proBNP and the gestational week at the time of the measurement. This combined model was compared with the GEE model based on the sFlt-1/PlGF ratio and the gestational week at the time of the measurement (reduced model). The AUC for the combined model was 0.845 (95% CI, 0.787-0.896), which was significantly greater (P = 0.011) than that of the reduced model (0.786 (95% CI, 0.722-0.844)). The addition of NT-proBNP assessment improves the short-term prediction of delivery as a result of PE compared with sFlt-1/PlGF ratio alone, when the sFlt-1/PlGF ratio is > 38. This finding should be considered in future research on the assessment of short-term risk of delivery as a result of PE. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2018 ISUOG. Published by John Wiley & Sons Ltd.

  12. Effects of post-annealing treatment on the structure and photoluminescence properties of CdS/PS nanocomposites prepared by sol-gel method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-yan

    2016-03-01

    CdS nanocrystals have been successfully grown on porous silicon (PS) by sol-gel method. The plan-view field emission scanning electron microscopy (FESEM) shows that the pore size of PS is smaller than 5 μm in diameter and the agglomerates of CdS are broadly distributed on the surface of PS substrate. With the increase of annealing time, the CdS nanoparticles grow in both length and diameter along the preferred orientation. The cross-sectional FESEM images of ZnO/PS show that CdS nanocrystals are uniformly penetrated into all PS layers and adhere to them very well. photoluminescence (PL) spectra demonstrate that the intensity of PL peak located at about 425 nm has almost no change after the annealing time increases. The range of emission wavelength of CdS/PS is from 425 nm to 455 nm and the PL intensity is decreasing with the annealing temperature increasing from 100 °C to 200 °C.

  13. Phonon Confinement Effect in TiO2 Nanoparticles as Thermosensor Materials

    DTIC Science & Technology

    2018-01-24

    TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman spectra or photoluminescence (PL) spectra due to the phonon...spectrometers were used to establish the particle size versus the Raman/PL peak position master curves. Systematic isothermal and temperature- dependent heat...Thermosensor Materials", Workshop on Time- Dependent Temperature Measurements in Energy Release Processes, Chicago, IL, 2012. 11 3) Ashish Kumar Mishra

  14. Precise Point Positioning technique for short and long baselines time transfer

    NASA Astrophysics Data System (ADS)

    Lejba, Pawel; Nawrocki, Jerzy; Lemanski, Dariusz; Foks-Ryznar, Anna; Nogas, Pawel; Dunst, Piotr

    2013-04-01

    In this work the clock parameters determination of several timing receivers TTS-4 (AOS), ASHTECH Z-XII3T (OP, ORB, PTB, USNO) and SEPTENTRIO POLARX4TR (ORB, since February 11, 2012) by use of the Precise Point Positioning (PPP) technique were presented. The clock parameters were determined for several time links based on the data delivered by time and frequency laboratories mentioned above. The computations cover the period from January 1 to December 31, 2012 and were performed in two modes with 7-day and one-month solution for all links. All RINEX data files which include phase and code GPS data were recorded in 30-second intervals. All calculations were performed by means of Natural Resource Canada's GPS Precise Point Positioning (GPS-PPP) software based on high-quality precise satellite coordinates and satellite clock delivered by IGS as the final products. The used independent PPP technique is a very powerful and simple method which allows for better control of antenna positions in AOS and a verification of other time transfer techniques like GPS CV, GLONASS CV and TWSTFT. The PPP technique is also a very good alternative for calibration of a glass fiber link PL-AOS realized at present by AOS. Currently PPP technique is one of the main time transfer methods used at AOS what considerably improve and strengthen the quality of the Polish time scales UTC(AOS), UTC(PL), and TA(PL). KEY-WORDS: Precise Point Positioning, time transfer, IGS products, GNSS, time scales.

  15. Structural and Biochemical Analyses Reveal the Mechanism of Glutathione S-Transferase Pi 1 Inhibition by the Anti-cancer Compound Piperlongumine.

    PubMed

    Harshbarger, Wayne; Gondi, Sudershan; Ficarro, Scott B; Hunter, John; Udayakumar, Durga; Gurbani, Deepak; Singer, William D; Liu, Yan; Li, Lianbo; Marto, Jarrod A; Westover, Kenneth D

    2017-01-06

    Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Structural and Biochemical Analyses Reveal the Mechanism of Glutathione S-Transferase Pi 1 Inhibition by the Anti-cancer Compound Piperlongumine*

    PubMed Central

    Harshbarger, Wayne; Gondi, Sudershan; Ficarro, Scott B.; Hunter, John; Udayakumar, Durga; Gurbani, Deepak; Singer, William D.; Liu, Yan; Li, Lianbo; Marto, Jarrod A.; Westover, Kenneth D.

    2017-01-01

    Glutathione S-transferase pi 1 (GSTP1) is frequently overexpressed in cancerous tumors and is a putative target of the plant compound piperlongumine (PL), which contains two reactive olefins and inhibits proliferation in cancer cells but not normal cells. PL exposure of cancer cells results in increased reactive oxygen species and decreased GSH. These data in tandem with other information led to the conclusion that PL inhibits GSTP1, which forms covalent bonds between GSH and various electrophilic compounds, through covalent adduct formation at the C7-C8 olefin of PL, whereas the C2-C3 olefin of PL was postulated to react with GSH. However, direct evidence for this mechanism has been lacking. To investigate, we solved the X-ray crystal structure of GSTP1 bound to PL and GSH at 1.1 Å resolution to rationalize previously reported structure activity relationship studies. Surprisingly, the structure showed that a hydrolysis product of PL (hPL) was conjugated to glutathione at the C7-C8 olefin, and this complex was bound to the active site of GSTP1; no covalent bond formation between hPL and GSTP1 was observed. Mass spectrometry (MS) analysis of the reactions between PL and GSTP1 confirmed that PL does not label GSTP1. Moreover, MS data also indicated that nucleophilic attack on PL at the C2-C3 olefin led to PL hydrolysis. Although hPL inhibits GSTP1 enzymatic activity in vitro, treatment of cells susceptible to PL with hPL did not have significant anti-proliferative effects, suggesting that hPL is not membrane-permeable. Altogether, our data suggest a model wherein PL is a prodrug whose intracellular hydrolysis initiates the formation of the hPL-GSH conjugate, which blocks the active site of and inhibits GSTP1 and thereby cancer cell proliferation. PMID:27872191

  17. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    NASA Astrophysics Data System (ADS)

    Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  18. Increased Levels of Cell-Free Human Placental Lactogen mRNA at 28-32 Gestational Weeks in Plasma of Pregnant Women With Placenta Previa and Invasive Placenta

    PubMed Central

    Sekizawa, Akihiko; Ventura, Walter; Koide, Keiko; Hori, Kyouko; Okai, Takashi; Masashi, Yoshida; Furuya, Kenichi; Mizumoto, Yoshifumi

    2014-01-01

    We compared the levels of cell-free human placental lactogen (hPL) messenger RNA (mRNA) in maternal plasma at 28 to 32 weeks of gestation between women with diagnosis of placenta previa or invasive placenta and women with an uneventful pregnancy. Sensitivity and specificity of hPL mRNA for the prediction of invasive placenta were further explored. Plasma hPL mRNA were quantified by real-time reverse-transcriptase polymerase chain reaction in women with placenta previa (n = 13), invasive placenta (n = 5), and normal pregnancies (n = 92). Median (range) hPL mRNA was significantly higher in women with placenta previa, 782 (10-2301) copies/mL of plasma, and in those with invasive placenta, 615 (522-2102) copies/mL of plasma, when compared to normal pregnancies, 90 (4-4407) copies/mL of plasma, P < .01 and P < .05, respectively. We found a sensitivity of 100% and a specificity of 61.5% for the prediction of invasive placenta among women with placenta previa. In conclusion, expression of hPL mRNA is increased in plasma of women with placenta previa and invasive placenta at 28 to 32 weeks of gestation. PMID:23744883

  19. Increased levels of cell-free human placental lactogen mRNA at 28-32 gestational weeks in plasma of pregnant women with placenta previa and invasive placenta.

    PubMed

    Kawashima, Akihiro; Sekizawa, Akihiko; Ventura, Walter; Koide, Keiko; Hori, Kyouko; Okai, Takashi; Masashi, Yoshida; Furuya, Kenichi; Mizumoto, Yoshifumi

    2014-02-01

    We compared the levels of cell-free human placental lactogen (hPL) messenger RNA (mRNA) in maternal plasma at 28 to 32 weeks of gestation between women with diagnosis of placenta previa or invasive placenta and women with an uneventful pregnancy. Sensitivity and specificity of hPL mRNA for the prediction of invasive placenta were further explored. Plasma hPL mRNA were quantified by real-time reverse-transcriptase polymerase chain reaction in women with placenta previa (n = 13), invasive placenta (n = 5), and normal pregnancies (n = 92). Median (range) hPL mRNA was significantly higher in women with placenta previa, 782 (10-2301) copies/mL of plasma, and in those with invasive placenta, 615 (522-2102) copies/mL of plasma, when compared to normal pregnancies, 90 (4-4407) copies/mL of plasma, P < .01 and P < .05, respectively. We found a sensitivity of 100% and a specificity of 61.5% for the prediction of invasive placenta among women with placenta previa. In conclusion, expression of hPL mRNA is increased in plasma of women with placenta previa and invasive placenta at 28 to 32 weeks of gestation.

  20. Treatment with platelet lysate induces endothelial differentation of bone marrow mesenchymal stem cells under fluid shear stress

    PubMed Central

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Moradi, Alireza; Nadri, Hamid; Barzegar, Kazem; Eslami, Gilda

    2014-01-01

    By considering stem cell-based therapies as a new hope for the treatment of some tragic diseases, marrow stromal cells or marrow mesenchymal stem cells (MSCs) were considered as a suitable and safe multipotential cell source for this new therapeutic approach. For this purpose, many investigations have been performed on differentiation of MSCs toward specific cell lines to overcome the demand for providing the organ specific cells for cell therapy or preparation of engineered tissues. In the present study, differentiation of MSCs to endothelial cells (ECs) by mechanical and chemical stimulation was evaluated. Fluid shear stress (FSS) was used as mechanical inducer, while platelet lysate (PL) and estradiol (E) were used as chemical induction factors. MSCs were placed under FSS with different forces (2, 5 and 10dyn/cm2) for different periods (6, 12 and 24 hours). In some groups, PL and E were added to the culture media to evaluate their effect on expression of EC specific markers. This investigation revealed that FSS with low tension (2.5-5 dyn/cm2) for a long time (24 hours) or high tension (10 dyn/cm2) in short time (6 hours) in the presence of PL could differentiate MSCs toward ECs. The presence of PL was necessary for initiation of endothelial differentiation, and in the absence of PL, there was not any expression of CD34 and Cadherin5 (Cdh5) among cells. Adding E to the culture medium did not change the rate of endothelial differentiation under FSS. Generated endothelial progenitors could produce von Willebrand factor (vWF) after two weeks culture and also they formed tubular structures after culture on matrigel. PMID:26417289

  1. Treatment with platelet lysate induces endothelial differentation of bone marrow mesenchymal stem cells under fluid shear stress.

    PubMed

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Moradi, Alireza; Nadri, Hamid; Barzegar, Kazem; Eslami, Gilda

    2014-01-01

    By considering stem cell-based therapies as a new hope for the treatment of some tragic diseases, marrow stromal cells or marrow mesenchymal stem cells (MSCs) were considered as a suitable and safe multipotential cell source for this new therapeutic approach. For this purpose, many investigations have been performed on differentiation of MSCs toward specific cell lines to overcome the demand for providing the organ specific cells for cell therapy or preparation of engineered tissues. In the present study, differentiation of MSCs to endothelial cells (ECs) by mechanical and chemical stimulation was evaluated. Fluid shear stress (FSS) was used as mechanical inducer, while platelet lysate (PL) and estradiol (E) were used as chemical induction factors. MSCs were placed under FSS with different forces (2, 5 and 10dyn/cm(2)) for different periods (6, 12 and 24 hours). In some groups, PL and E were added to the culture media to evaluate their effect on expression of EC specific markers. This investigation revealed that FSS with low tension (2.5-5 dyn/cm(2)) for a long time (24 hours) or high tension (10 dyn/cm(2)) in short time (6 hours) in the presence of PL could differentiate MSCs toward ECs. The presence of PL was necessary for initiation of endothelial differentiation, and in the absence of PL, there was not any expression of CD34 and Cadherin5 (Cdh5) among cells. Adding E to the culture medium did not change the rate of endothelial differentiation under FSS. Generated endothelial progenitors could produce von Willebrand factor (vWF) after two weeks culture and also they formed tubular structures after culture on matrigel.

  2. Reversible Parkinson-Like Symptoms in Patient with Bilateral Chronic Subdural Hematomas and Cervical Spinal Stenosis.

    PubMed

    Guppy, Kern H; Khandhar, Suketu M; Ochi, Calvin

    2018-01-01

    Gait abnormalities have been seen in patients with Parkinson disease or Parkinson-like (P-L) disorders and cervical spinal stenosis. Acute presentation of P-L symptoms has been reported in 24 cases caused by chronic subdural hematomas with 11 cases due to bilateral chronic subdural hematomas. When a patient also presents with cervical spinal stenosis, the correct therapeutic decision between P-L disorders and myelopathy is challenging. An 80-year-old male presented with a 2-week history of weakness in his left leg. A few days before presentation, his gait had deteriorated quite dramatically. Neurologic examination showed mild leg weakness, hyperreflexia, and a gait that was slow and wide based, at times festinating but with relatively spared arm movement. He also had masked facial features with increased tone in his extremities. Magnetic resonance imaging of the cervical spine showed cervical stenosis at C5-6, and computed tomography of the head showed large bilateral subdural hematomas. The subdural hematomas were drained. Immediate improvement in his symptoms was observed with complete resolution by his third month of follow-up. The patient never had a history of Parkinson disease. This paper reports for the first time a patient who presented with acute P-L symptoms and cervical myelopathy with findings of both bilateral chronic subdural hematomas and cervical spinal stenosis. The decision to drain the subdural hematoma in our case resulted in full recovery of the patient's gait and other extrapyramidal symptoms. This paper reviews the literature on reversible P-L symptoms caused by bilateral chronic subdural hematomas. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effect of Preexercise Ingestion of Modified Amylomaize Starch on Glycemic Response While Cycling.

    PubMed

    Parks, Rachel B; Angus, Hector F; King, Douglas S; Sharp, Rick L

    2018-01-01

    Amylomaize-7 is classified as a resistant corn starch and is 68% digestible. When modified by partial hydrolysis in ethanol and hydrochloric acid its digestibility is 92%, yet retains its low glycemic and insulinemic properties. The purpose of this study was to characterize the metabolic response when modified amylomaize-7 or dextrose is consumed in the hour before exercise, and to compare the effect on performance of a brief high-intensity cycling trial. Ten male, trained cyclists were given 1 g/kg body mass of dextrose (DEX) or modified amylomaize-7 (AMY-7) or a flavored water placebo (PL) 45 min prior to exercise on a cycle ergometer. A 15-min ride at 60% W max was immediately followed by a self-paced time trial (TT) equivalent to 15 min at 80% W max . When cyclists consumed DEX, mean serum glucose concentration increased by 3.3 ± 2.1 mmol/L before exercise, compared to stable serum glucose observed for AMY-7 or PL. Glucose concentrations returned to baseline by pre-TT in all treatments. However, the mean post-TT glucose concentration of the DEX group was significantly lower than baseline, AMY-7, or PL. Serum insulin concentration increased nine-fold from baseline to preexercise in the DEX trial, whereas PL or AMY-7 remained unchanged. Time required to complete the performance trial was not significantly different between DEX, AMY-7 or PL. Preexercise ingestion of modified amylomaize-7 compared to dextrose resulted in a more stable serum glucose concentration, but did not offer a performance advantage in this high-intensity cycling trial.

  4. Umbilical Cord Blood Platelet Lysate as Serum Substitute in Expansion of Human Mesenchymal Stem Cells.

    PubMed

    Shirzad, Negin; Bordbar, Sima; Goodarzi, Alireza; Mohammad, Monire; Khosravani, Pardis; Sayahpour, Froughazam; Baghaban Eslaminejad, Mohamadreza; Ebrahimi, Marzieh

    2017-10-01

    The diverse clinical applications for human mesenchymal stem cells (hMSCs) in cellular therapy and regenerative medicine warrant increased focus on developing adequate culture supplements devoid of animal-derived products. In the present study, we have investigated the feasibility of umbilical cord blood-platelet lysate (UCB-PL) as a standard substitute for fetal bovine serum (FBS) and human peripheral blood-PL (PB-PL). In this experimental study, platelet concentrates (PC) from UCB and human PB donors were frozen, melted, and sterilized to obtain PL. Quality control included platelet cell counts, sterility testing (viral and microbial), total protein concentrations, growth factor levels, and PL stability. The effects of UCB-PL and PB-PL on hMSCs proliferation and differentiation into osteocytes, chondrocytes, and adipocytes were studied and the results compared with FBS. UCB-PL contained high levels of protein content, platelet-derived growth factor- AB (PDGF-AB), and transforming growth factor (TGF) compared to PB-PL. All growth factors were stable for at least nine months post-storage at -70˚C. hMSCs proliferation enhanced following treatment with UCB-PL. With all three supplements, hMSCs could differentiate into all three lineages. PB-PL and UCB-PL both were potent in hMSCs proliferation. However, PB promoted osteoblastic differentiation and UCB-PL induced chondrogenic differentiation. Because of availability, ease of use and feasible standardization of UCB-PL, we have suggested that UCB-PL be used as an alternative to FBS and PB-PL for the cultivation and expansion of hMSCs in cellular therapy. Copyright© by Royan Institute. All rights reserved.

  5. Non-invasive identification of stable rotors and focal sources for human atrial fibrillation: mechanistic classification of atrial fibrillation from the electrocardiogram.

    PubMed

    Jones, Aled R; Krummen, David E; Narayan, Sanjiv M

    2013-09-01

    To develop electrocardiogram (ECG) tools to quantify the number of sources for atrial fibrillation (AF), i.e. spatially stable rotors and focal impulses, and whether they lie in right or left atrium. Intracardiac mapping has recently shown that paroxysmal and persistent AF is sustained by rotors or focal sources that are stable in location and thus targets for limited ablation [focal impulse and rotor modulation (FIRM)] to eliminate AF. Importantly, the numbers and locations of concurrent sources determine both the complexity of AF and the approach for ablation. In 36 AF patients (n = 29 persistent, 63 ± 9 years) in the CONventional ablation with or without Focal Impulse and Rotor Modulation (CONFIRM) trial, we developed phase lock (PL) to quantify spatial repeatability of ECG 'F-waves' between leads over time. Phase lock spectrally quantifies the angle θ between F-wave voltages in planes formed by ECG leads I, aVF, and V1 at successive points in time. We compared PL with ECG spectral dominant frequency (DF) and organizational index (OI) to characterize stable rotors and focal sources validated by intracardiac FIRM mapping. Focal impulse and rotor modulation ablation alone at ≤3 sources acutely terminated and rendered AF non-inducible or substantially slowed AF in 31 of 36 patients. Receiver operating characteristics of PL for this endpoint had area under the curve (AUC) = 0.72, and the optimum cut-point (PL = 0.09) had 74% sensitivity, 92% positive predictive value (PPV). Receiver operating characteristics areas for OI and DF were 0.50 and 0.58, respectively. Left (n = 28) or right (n = 3) atrial sources were localized by PL with AUC = 0.85, sensitivity 100%, PPV 30%, and negative predictive value 100%. Spectral DF provided AUC = 0.79. Notably, PL did not comigrate with diagnosis of paroxysmal or persistent AF (P = NS), unlike ECG DF. The novel metric of ECG PL identifies patients with fewer (≤3) or greater numbers of stable rotors/focal sources for AF, validated by intracardiac FIRM mapping, and localized them to right or left atria. These data open the possibility of using 12-lead ECG analyses to classify AF mechanistically and plan procedures for right- or left-sided FIRM ablation.

  6. Multiple approaches for enhancing all-organic electronics photoluminescent sensors: simultaneous oxygen and pH monitoring.

    PubMed

    Liu, Rui; Xiao, Teng; Cui, Weipan; Shinar, Joseph; Shinar, Ruth

    2013-05-17

    Key issues in using organic light emitting diodes (OLEDs) as excitation sources in structurally integrated photoluminescence (PL)-based sensors are the low forward light outcoupling, the OLEDs' broad electroluminescence (EL) bands, and the long-lived remnant EL that follows an EL pulse. The outcoupling issue limits the detection sensitivity (S) as only ~20% of the light generated within standard OLEDs can be forward outcoupled and used for sensor probe excitation. The EL broad band interferes with the analyte-sensitive PL, leading to a background that reduces S and dynamic range. In particular, these issues hinder designing compact sensors, potentially miniaturizable, that are devoid of optical filters and couplers. We address these shortcomings by introducing easy-to-employ multiple approaches for outcoupling improvement, PL enhancement, and background EL reduction leading to novel, compact all-organic device architectures demonstrated for simultaneous monitoring of oxygen and pH. The sensor comprises simply-fabricated, directionally-emitting, narrower-band, multicolor microcavity OLED excitation and small molecule- and polymer-based organic photodetectors (OPDs) with a more selective spectral response. Additionally, S and PL intensity for oxygen are enhanced by using polystyrene (PS):polyethylene glycol (PEG) blends as the sensing film matrix. By utilizing higher molecular weight PS, the ratio τ0/τ100 (PL decay time τ at 0% O2/τ at 100% O2) that is often used to express S increases ×1.9 to 20.7 relative to the lower molecular weight PS, where this ratio is 11.0. This increase reduces to ×1.7 when the PEG is added (τ0/τ100=18.2), but the latter results in an increase ×2.7 in the PL intensity. The sensor's response time is <10s in all cases. The microporous structure of these blended films, with PEG decorating PS pores, serves a dual purpose. It results in light scattering that reduces the EL that is waveguided in the substrate of the OLEDs and consequently enhances light outcoupling from the OLEDs by ~60%, and it increases the PL directed toward the OPD. The multiple functional structures of multicolor microcavity OLED pixels/microporous scattering films/OPDs enable generation of enhanced individually addressable sensor arrays, devoid of interfering issues, for O2 and pH as well as for other analytes and biochemical parameters. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Synchronization of Combat Power at the Task Force Level: Defining a Planning Methodology

    DTIC Science & Technology

    1989-01-01

    tachments) LOCATION SCT ARTY CAS AH SMOKE MORTAR FASCAM TI ME EST ACTUAL. Current Future LD PL 1 X Atk Porn PL 2 PL3 OBJ X PL 1 LD PL 2 FL3 OBJ PL 2 PL 1...learned in medical school to 138 identify the aorta only to arrive at St. Elsewhere, where they call it "the big blue boy .* Right now the US Army has a

  8. Evaluation of agreement of placental growth factor (PlGF) tests and the soluble FMS-like tyrosine kinase 1 (sFlt-1)/PlGF ratio, comparison of predictive accuracy for pre-eclampsia, and relation to uterine artery Doppler and response to aspirin.

    PubMed

    Navaratnam, Kate; Abreu, Patricia; Clarke, Helen; Jorgensen, Andrea; Alfirevic, Ana; Alfirevic, Zarko

    2017-09-11

    The objective of this study is to evaluate agreement between PlGF and sFlt-1/PlGF ratio tests and compare their predictive accuracy for pre-eclampsia in high-risk women. Also, to examine for associations of abnormal PlGF or sFlt-1/PlGF ratio with abnormal uterine artery Doppler and platelet response to aspirin. Prospective cohort study, 150 pregnant women at high risk of pre-eclampsia prescribed 75 mg aspirin daily. Uterine artery Dopplers were assessed at 20 +0 -23 +6 weeks. At 33 +0 -35 +6 weeks platelet function aspirin metabolites, PlGF and the sFlt-1/PlGF ratio were measured. Measures were all pre-eclampsia and pre-eclampsia requiring delivery prior to 37 weeks. Overall percent agreement was 89.3% for PlGF tests but 74.7-78% for PlGF tests and the sFlt-1/PlGF ratio. AUCs were 0.70-0.75 for prediction of any pre-eclampsia and 0.92-0.99 for preterm pre-eclampsia. We found a significant association between abnormal PlGF or sFlt-1/PlGF ratio and abnormal uterine artery Doppler (χ 2 5.47, p = .019), but no association with platelet response to aspirin (χ 2 0.12, p = .913). There were no associations between suboptimal aspirin adherence and either abnormal angiogenic markers or uterine artery Dopplers (χ 2 0.144, 0.038, p = .704, .846, respectively). There was good agreement between PlGF tests and limited agreement between PlGF tests and the sFlt-1/PlGF ratio. All tests have heightened predictive accuracy for preterm pre-eclampsia. Abnormal PlGF or sFlt-1/PlGF ratio relates to abnormal uterine artery Doppler but not platelet response to aspirin.

  9. In-to-Out Body Antenna-Independent Path Loss Model for Multilayered Tissues and Heterogeneous Medium

    PubMed Central

    Kurup, Divya; Vermeeren, Günter; Tanghe, Emmeric; Joseph, Wout; Martens, Luc

    2015-01-01

    In this paper, we investigate multilayered lossy and heterogeneous media for wireless body area networks (WBAN) to develop a simple, fast and efficient analytical in-to-out body path loss (PL) model at 2.45 GHz and, thus, avoid time-consuming simulations. The PL model is an antenna-independent model and is validated with simulations in layered medium, as well as in a 3D human model using electromagnetic solvers. PMID:25551483

  10. Singlet Oxygen Generation Mediated By Silicon Nanocrystal Assemblies

    DTIC Science & Technology

    2011-01-01

    Lattice fringes in Fig.3 d correspond to the (111) atomic planes of Si nanocrystals. Length scales are indicated. Downscaling of the stain etched PSi...intensity of 1W/cm2 in a time scale of a few hours a monolayer of oxygen is formed on the surface of Si nanocrystals. Fig. 8. Infrared absorption...solution. Fig. 10. PL intensity as a function of continuously prolonged etching of Si powder. Inset: PL suppression level (can be scaled as singlet

  11. Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes

    DOE PAGES

    Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.; ...

    2016-08-16

    Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less

  12. Photoluminescence Dynamics of Aryl sp 3 Defect States in Single-Walled Carbon Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartmann, Nicolai F.; Velizhanin, Kirill A.; Haroz, Erik H.

    Photoluminescent defect states introduced by sp 3 functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp 3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find the PL decays of these sp 3 defect states are biexponential,more » with both components relaxing on timescales of ~ 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to > 600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E 11 exciton. Shortening of the E 11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites.« less

  13. A Double-Blind, Randomized Pilot Trial of Chromium Picolinate for Overweight Individuals with Binge-Eating Disorder: Effects on Glucose Regulation.

    PubMed

    Sala, Margarita; Breithaupt, Lauren; Bulik, Cynthia M; Hamer, Robert M; La Via, Maria C; Brownley, Kimberly A

    2017-03-04

    Chromium treatment has been shown to improve glucose regulation in some populations. The purpose of this study was to evaluate whether chromium picolinate (CrPic) supplementation improves glucose regulation in overweight individuals with binge-eating disorder (BED). In this double-blinded randomized pilot trial, participants (N = 24) were randomized to high (HIGH, 1000 mcg/day, n = 8) or moderate (MOD, 600 mcg/day, n = 9) dose of CrPic or placebo (PL, n = 7) for 6 months. Participants completed an oral glucose tolerance test (OGTT) at baseline, 3 months, and 6 months. Fixed effects models were used to estimate mean change in glucose area under the curve (AUC), insulin AUC , and insulin sensitivity index (ISI). Results revealed a significant group and time interaction (p < 0.04) for glucose AUC , with glucose AUC increasing significantly in the PL group (p < 0.02) but decreasing significantly in the MOD group (p < 0.03) at 6 months. Insulin AUC increased significantly over time (main effect, p < 0.02), whereas ISI decreased significantly over time (main effect, p < 0.03). As anticipated, a moderate dose of CrPic was associated with improved glycemic control, whereas PL was associated with decreased glycemic control. It was unexpected that the improved glycemic control seen in the MOD dose group was not seen in the HIGH dose group. However, although participants randomized to the HIGH dose group did not have improved glycemic control, they had better glycemic control than participants randomized to the PL group. These findings support the need for larger trials.

  14. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less

  15. Linear effects models of signaling pathways from combinatorial perturbation data

    PubMed Central

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-01-01

    Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Results: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Availability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem. Contact: szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307630

  16. Linear effects models of signaling pathways from combinatorial perturbation data.

    PubMed

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-06-15

    Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiaeAvailability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  17. Improved photoluminescence efficiency in UV nanopillar light emitting diode structures by recovery of dry etching damage.

    PubMed

    Jeon, Dae-Woo; Jang, Lee-Woon; Jeon, Ju-Won; Park, Jae-Woo; Song, Young Ho; Jeon, Seong-Ran; Ju, Jin-Woo; Baek, Jong Hyeob; Lee, In-Hwan

    2013-05-01

    In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.

  18. Ultrafast strong broadband light source generated in nanoscale plasmonic Au-AAO-Al structures

    NASA Astrophysics Data System (ADS)

    Han, Junbo; Yao, Linhua; Ma, Zongwei

    we demonstrate an ultrafast strong broadband photoluminescence (PL) from Au-AAO-Al composite under low excitation power intensity of 3.8 34.5 GW /cm2. The emission wavelength is in the range of 450-1050 nm and the lifetime is under sub-nanosecond. Comparative studies of PL in Au-AAO-Al with different Au rod length and Au-AAO without Al coupling layer, together with the finite difference time domain (FDTD) calculations, present that the fast PL originates from the surface plasmon enhanced supercontinuum generation (SCG) in AAO membrane. The observations indicate that strong SCG could be realized in nanoscale plasmonic structures, which have promise applications in the minimization and integration of ultrafast lighting sources in photonic devices. National Natural Scientific Foundation of China (11404124).

  19. Serum-converted platelet lysate can substitute for fetal bovine serum in human mesenchymal stromal cell cultures.

    PubMed

    Mojica-Henshaw, Mariluz P; Jacobson, Pam; Morris, Julie; Kelley, Linda; Pierce, Jan; Boyer, Michael; Reems, Jo-Anna

    2013-12-01

    Fetal bovine serum (FBS) is commonly used as a serum supplement for culturing human mesenchymal stromal cells (hMSCs). However, human cells grown in FBS, especially for extended periods, risk potential exposure to bovine immunogenic proteins and infectious agents. To address this issue, we investigated the ability of a novel human platelet serum supplement to substitute for FBS in hMSC cultures. Platelet lysate-serum (PL-serum) was converted from platelet lysate-plasma (PL-plasma) that was manufactured from pooled platelet-rich plasma (PRP) apheresis units. Growth factor levels and the number of residual intact platelets in PL-serum and PL-plasma were compared with enzyme-linked immunosorbent assays and flow cytometry, respectively. Proliferation responses of hMSCs cultured in PL-serum, PL-plasma, or FBS were assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the immunophenotype of harvested hMSCs was evaluated by flow cytometry and tri-lineage differentiation potential was evaluated by assessing adipogenic, osteogenic and chondrogenic development. Selected growth factor levels in PL-serum were not significantly different from PL-plasma (P > 0.05). hMSC cultures supplemented with PL-serum had comparable growth kinetics to PL-plasma, and hMSC yields were consistently greater than with FBS. hMSCs harvested from cultures supplemented with PL-serum, PL-plasma or FBS had similar cell surface phenotypes and maintained tri-lineage differentiation potential. PL-serum, similar to PL-plasma, can substitute for FBS in hMSC cultures. Use of PL-serum, in contrast to PL-plasma, has an added advantage of not requiring addition of a xenogeneic source of heparin, providing a completely xeno-free culture medium. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibres.

    PubMed

    Rannou, F; Droguet, M; Giroux-Metges, M A; Pennec, Y; Gioux, M; Pennec, J P

    2009-11-01

    The myosin heavy chain (MHC) isoform determines the characteristics and shortening velocity of muscle fibres. The functional properties of the muscle fibre are also conditioned by its membrane excitability through the electrophysiological properties of sodium voltage-gated channels. Macropatch-clamp is used to study sodium channels in fibres from peroneus longus (PL) and soleus (Sol) muscles (Wistar rats, n = 8). After patch-clamp recordings, single fibres are identified by SDS-PAGE electrophoresis according to their myosin heavy chain isoform (slow type I and the three fast types IIa, IIx, IIb). Characteristics of sodium currents are compared (Student's t test) between fibres exhibiting only one MHC isoform. Four MHC isoforms are identified in PL and only type I in Sol single fibres. In PL, maximal sodium current (I(max)), maximal sodium conductance (g(Na,max)) and time constants of activation and inactivation ((m) and (h)) increase according to the scheme I-->IIa-->IIx-->IIb (P < 0.05). (m) values related to sodium channel type and/or function, are similar in Sol I and PL IIb fibres (P = 0.97) despite different contractile properties. The voltage dependence of activation (V(a,1/2)) shows a shift towards positive potentials from Sol type I to IIa, IIx and finally IIb fibres from PL (P < 0.05). These data are consistent with the earlier recruitment of slow fibres in a fast-mixed muscle like PL, while slow fibres of postural muscle such as soleus could be recruited in the same ways as IIb fibres in a fast muscle.

  1. Comparison of the Incorporation of DHA in Circulatory and Neural Tissue When Provided as Triacylglycerol (TAG), Monoacylglycerol (MAG) or Phospholipids (PL) Provides New Insight into Fatty Acid Bioavailability

    PubMed Central

    Destaillats, Frédéric; Oliveira, Manuel; Bastic Schmid, Viktoria; Masserey-Elmelegy, Isabelle; Giuffrida, Francesca; Thakkar, Sagar K.; Dupuis, Lénaïck; Gosoniu, Maria Laura; Cruz-Hernandez, Cristina

    2018-01-01

    Phospholipids (PL) or partial acylglycerols such as sn-1(3)-monoacylglycerol (MAG) are potent dietary carriers of long-chain polyunsaturated fatty acids (LC-PUFA) and have been reported to provide superior bioavailability when compared to conventional triacylglycerol (TAG). The main objective of the present study was to compare the incorporation of docosahexaenoic acid (DHA) in plasma, erythrocytes, retina and brain tissues in adult rats when provided as PL (PL-DHA) and MAG (MAG-DHA). Conventional dietary DHA oil containing TAG (TAG-DHA) as well as control chow diet were used to evaluate the potency of the two alternative DHA carriers over a 60-day feeding period. Fatty acid profiles were determined in erythrocytes and plasma lipids at time 0, 7, 14, 28, 35 and 49 days of the experimental period and in retina, cortex, hypothalamus, and hippocampus at 60 days. The assessment of the longitudinal evolution of DHA in erythrocyte and plasma lipids suggest that PL-DHA and MAG-DHA are efficient carriers of dietary DHA when compared to conventional DHA oil (TAG-DHA). Under these experimental conditions, both PL-DHA and MAG-DHA led to higher incorporations of DHA erythrocytes lipids compared to TAG-DHA group. After 60 days of supplementation, statistically significant increase in DHA level incorporated in neural tissues analyzed were observed in the DHA groups compared with the control. The mechanism explaining hypothetically the difference observed in circulatory lipids is discussed. PMID:29762503

  2. Molecular Interactions between (−)-Epigallocatechin Gallate Analogs and Pancreatic Lipase

    PubMed Central

    Wang, Shihui; Sun, Zeya; Dong, Shengzhao; Liu, Yang; Liu, Yun

    2014-01-01

    The molecular interactions between pancreatic lipase (PL) and four tea polyphenols (EGCG analogs), like (−)-epigallocatechin gallate (EGCG), (−)-gallocatechin gallate (GCG), (−)-epicatechin gallate (ECG), and (−)-epigallocatechin (EC), were studied from PL activity, conformation, kinetics and thermodynamics. It was observed that EGCG analogs inhibited PL activity, and their inhibitory rates decreased by the order of EGCG>GCG>ECG>EC. PL activity at first decreased rapidly and then slowly with the increase of EGCG analogs concentrations. α-Helix content of PL secondary structure decreased dependent on EGCG analogs concentration by the order of EGCG>GCG>ECG>EC. EGCG, ECG, and EC could quench PL fluorescence both dynamically and statically, while GCG only quenched statically. EGCG analogs would induce PL self-assembly into complexes and the hydrodynamic radii of the complexes possessed a close relationship with the inhibitory rates. Kinetics analysis showed that EGCG analogs non-competitively inhibited PL activity and did not bind to PL catalytic site. DSC measurement revealed that EGCG analogs decreased the transition midpoint temperature of PL enzyme, suggesting that these compounds reduced PL enzyme thermostability. In vitro renaturation through urea solution indicated that interactions between PL and EGCG analogs were weak and non-covalent. PMID:25365042

  3. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials.

    PubMed

    Orlando, U S; Baes, A U; Nishijima, W; Okada, M

    2002-07-01

    Two lignocellulosic agricultural waste materials (LCM), sugarcane bagasse (BG) and rice hull (RH), were converted into weak-base anion exchanger and evaluated for their exchanger capacity for nitrate. Pure cellulose (PC) and pure alkaline lignin (PL) were also used as reference materials to elucidate possible reactivity in LCM. Epoxy and amino groups were introduced into BG, RH, PC and PL substrates after the reaction with epichlorohydrin and dimethylamine in the presence of pyridine and an organic solvent N,N-dimethylformamide (DMF). Amino group incorporation into cellulose decreased with the presence of water in the reaction mixture and increased with the reaction time and presence of a catalyst (pyridine). The highest maximum nitrate exchange capacity (Qmax) and yields of the prepared exchangers was obtained from PL (1.8 mmol g(-1) and 412.5%), followed by BG (1.41 mmol g(-1) and 300%), PC (1.34 mmol g(-1) and 166%) and RH (1.32 mmol g(-1) and 180%). The proposed synthetic procedure was effective in modifying PL, PC and LCM chemically resulting in a higher yield and nitrate removal capacity.

  4. Component of Caramel Food Coloring, THI, Causes Lymphopenia Indirectly via a Key Metabolic Intermediate.

    PubMed

    Ohtoyo, Mamoru; Machinaga, Nobuo; Inoue, Ryotaku; Hagihara, Katsunobu; Yuita, Hiroshi; Tamura, Masakazu; Hashimoto, Ryuji; Chiba, Jun; Muro, Fumihito; Watanabe, Jun; Kobayashi, Yoshimasa; Abe, Koji; Kita, Yasuo; Nagasaki, Miyuki; Shimozato, Takaichi

    2016-05-19

    Caramel color is widely used in the food industry, and its many variations are generally considered to be safe. It has been known for a long time that THI (2-acetyl-4-(tetrahydroxybutyl)imidazole), a component of caramel color III, causes lymphopenia in animals through sphingosine 1-phosphate (S1P) lyase (S1PL) inhibition. However, this mechanism of action has not been fully validated because THI does not inhibit S1PL in vitro. To reconcile this situation, we examined molecular details of THI mechanism of action using "smaller" THI derivatives. We identified a bioactive derivative, A6770, which has the same lymphopenic effect as THI via S1PL inhibition. In the case of A6770 we observe this effect both in vitro and in vivo, and demonstrate that A6770 is phosphorylated and inhibits S1PL in the same way as 4-deoxypyridoxine. In addition, A6770 was detected in rat plasma following oral administration of THI, suggesting that A6770 is a key metabolic intermediate of THI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Comparison of Olympic vs. traditional power lifting training programs in football players.

    PubMed

    Hoffman, Jay R; Cooper, Joshua; Wendell, Michael; Kang, Jie

    2004-02-01

    Twenty members of an National Collegiate Athletic Association Division III collegiate football team were assigned to either an Olympic lifting (OL) group or power lifting (PL) group. Each group was matched by position and trained 4-days.wk(-1) for 15 weeks. Testing consisted of field tests to evaluate strength (1RM squat and bench press), 40-yard sprint, agility, vertical jump height (VJ), and vertical jump power (VJP). No significant pre- to posttraining differences were observed in 1RM bench press, 40-yard sprint, agility, VJ or in VJP in either group. Significant improvements were seen in 1RM squat in both the OL and PL groups. After log10-transformation, OL were observed to have a significantly greater improvement in Delta VJ than PL. Despite an 18% greater improvement in 1RM squat (p > 0.05), and a twofold greater improvement (p > 0.05) in 40-yard sprint time by OL, no further significant group differences were seen. Results suggest that OL can provide a significant advantage over PL in vertical jump performance changes.

  6. Impact of charge carrier injection on single-chain photophysics of conjugated polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix J.; Vogelsang, Jan, E-mail: jan.vogelsang@physik.uni-regensburg.de; Lupton, John M.

    Charges in conjugated polymer materials have a strong impact on the photophysics and their interaction with the primary excited state species has to be taken into account in understanding device properties. Here, we employ single-molecule spectroscopy to unravel the influence of charges on several photoluminescence (PL) observables. The charges are injected either stochastically by a photochemical process or deterministically in a hole-injection sandwich device configuration. We find that upon charge injection, besides a blue-shift of the PL emission and a shortening of the PL lifetime due to quenching and blocking of the lowest-energy chromophores, the non-classical photon arrival time distributionmore » of the multichromophoric chain is modified towards a more classical distribution. Surprisingly, the fidelity of photon antibunching deteriorates upon charging, whereas one would actually expect the opposite: the number of chromophores to be reduced. A qualitative model is presented to explain the observed PL changes. The results are of interest to developing a microscopic understanding of the intrinsic charge-exciton quenching interaction in devices.« less

  7. Impact of roasting on the flavan-3-ol composition, sensory-related chemistry, and in vitro pancreatic lipase inhibitory activity of cocoa beans.

    PubMed

    Stanley, Todd H; Van Buiten, Charlene B; Baker, Scott A; Elias, Ryan J; Anantheswaran, Ramaswamy C; Lambert, Joshua D

    2018-07-30

    Roasting is an important cocoa processing step, but has been reported to reduce the polyphenol content in the beans. We investigated the impact of whole-bean roasting on the polyphenol content, aroma-related chemistry, and in vitro pancreatic lipase (PL) inhibitory activity of cocoa under a range of roasting conditions. Total phenolics, (-)-epicatechin, and proanthocyanidin (PAC) dimer - pentamer content was reduced by roasting. By contrast, roasting at 150 °C or greater increased the levels of catechin and PAC hexamers and heptamers. These compounds have greater PL inhibitory potency. Consistent with these changes in PAC composition and this previous data, we found that roasting at 170 °C time-dependently increased PL inhibitory activity. Cocoa aroma-related compounds increased with roasting above 100 °C, whereas deleterious sensory-related compounds formed at more severe temperatures. Our results indicate that cocoa roasting can be optimized to increase the content of larger PACs and anti-PL activity, while maintaining a favorable aroma profile. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Size-controlled soft-template synthesis of carbon nanodots toward versatile photoactive materials.

    PubMed

    Kwon, Woosung; Lee, Gyeongjin; Do, Sungan; Joo, Taiha; Rhee, Shi-Woo

    2014-02-12

    Size-controlled soft-template synthesis of carbon nanodots (CNDs) as novel photoactive materials is reported. The size of the CNDs can be controlled by regulating the amount of an emulsifier. As the size increases, the CNDs exhibit blue-shifted photoluminescence (PL) or so-called an inverse PL shift. Using time-correlated single photon counting, ultraviolet photoelectron spectroscopy, and low-temperature PL measurements, it is revealed that the CNDs are composed of sp² clusters with certain energy gaps and their oleylamine ligands act as auxochromes to reduce the energy gaps. This insight can provide a plausible explanation on the origin of the inverse PL shift which has been debatable over a past decade. To explore the potential of the CNDs as photoactive materials, several prototypes of CND-based optoelectronic devices, including multicolored light-emitting diodes and air-stable organic solar cells, are demonstrated. This study could shed light on future applications of the CNDs and further expedite the development of other related fields. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Decontamination of Escherichia coli O157:H7 on green onions using pulsed light (PL) and PL-surfactant-sanitizer combinations.

    PubMed

    Xu, Wenqing; Chen, Haiqiang; Huang, Yaoxin; Wu, Changqing

    2013-08-16

    Imported green onion has been associated with three large outbreaks in the USA. Contamination has been found on both domestic and imported green onions. The objective of our study was to investigate Escherichia coli O157:H7 inactivation efficacy of pulsed light (PL) as well as its combination with surfactant and/or sanitizers on green onions. Green onions were cut into two segments, stems and leaves, to represent two different matrixes. Stems were more difficult to be decontaminated. Spot and dip inoculation methods were compared and dipped inoculated green onions were found to be more difficult to be decontaminated. Results showed that 5s dry PL (samples were not immersed in water during PL treatment) and 60s wet PL (samples were immersed in water and stirred during PL treatment) treatments provided promising inactivation efficacy (>4log10CFU/g) for spot inoculated stems and leaves. For dip inoculated green onions, 60s wet PL treatment was comparable with 100ppm chlorine washing, demonstrating that PL could be used as an alternative to chlorine. To further increase the degree of microbial inactivation, combined treatments were applied. PL combined with surfactant (SDS) was found to be more effective than single treatments of PL, SDS, chlorine, citric acid, thymol, and hydrogen peroxide, and binary combined treatments of PL with one of those chemicals. Addition of chlorine or hydrogen peroxide to the PL-SDS combination did not further enhanced its microbial inactivation efficacy. The combination of PL and 1000ppm of SDS reduced the E. coli O157:H7 populations dip inoculated on the stems and leaves of green onions by 1.4 and 3.1log10CFU/g, respectively. Our findings suggest that PL could potentially be used for decontamination of E. coli O157:H7 on green onions, with wet PL added with SDS being the most effective PL treatment. © 2013.

  10. Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides.

    PubMed

    Gharavi, E E; Chaimovich, H; Cucurull, E; Celli, C M; Tang, H; Wilson, W A; Gharavi, A E

    1999-01-01

    We previously induced pathogenic antibodies against anionic phospholipids (PL) in experimental animals by immunization with lipid-free purified human beta2glycoprotein I (beta2GPI). We hypothesized that antiphospholipid antibodies (aPL) are induced by in vivo binding of foreign beta2GPI to self-PL, thus forming an immunogenic complex against which aPL antibodies are produced. If this hypothesis is true, other PL-binding proteins that are products of ubiquitous viral/bacterial agents may also induce aPL. To test this hypothesis, groups of NIH/Swiss mice were immunized with synthetic peptides of viral and bacterial origin that share structural similarity with the putative PL-binding region of beta2GPI. Compared with the control groups, animals immunized with the peptides produced significantly higher levels of aPL and anti-beta2GPI antibodies. These findings demonstrate that some PL-binding viral and bacterial proteins function like beta2GPI in inducing aPL and anti-beta2GPI production, and are consistent with a role for such viral and bacterial proteins in inducing aPL antibody production in humans.

  11. Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination.

    PubMed

    Shi, Ce; Zhao, Xingchen; Liu, Zonghui; Meng, Rizeng; Chen, Xiangrong; Guo, Na

    2016-01-01

    Food safety is an important worldwide public health concern, and microbial contamination in foods not only leads to food deterioration and shelf life reduction but also results in economic losses and disease. The main aim of the present study was to evaluate the effect of epsilon-poly-L-lysine (ε-PL) and citral combination against Escherichia coli O157:H7 (E. coli O157:H7) strains. The preliminary antioxidant and antitumor activities were also studied. Synergism is a positive interaction created when two compounds combine and exert an inhibitory effect that is greater than the sum of their individual effects. The synergistic antimicrobial effect of ε-PL and citral was studied using the checkerboard method against E. coli O157:H7. The minimal inhibitory concentration, time-kill, and scanning electron microscope assays were used to determine the antimicrobial activity of ε-PL and citral alone or in combination; 2,2-diphenyl-1-picrylhydrazyl-scavenging assay and western blotting were used in antioxidant activity assays; cell viability assay was carried out to finish preliminary antitumor test. Minimal inhibitory concentrations of ε-PL and citral resisted to the five E. coli O157:H7 strains were 2-4 µg/mL and 0.5-1 µg/mL, and the fractional inhibitory concentration indices were 0.25-0.375. The results of time-kill assay revealed that a stronger bactericidal effect in a laboratory medium might be exerted in the combination against E. coli O157:H7 than that in a food model. The compounds alone or in combination exhibited a potential 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, and the expression of superoxide dismutase 1 and glutathione peroxidase 1 protein increased. The preliminary antitumor activity effect of the combination was better than ε-PL or citral alone. These findings indicated that the combination of ε-PL and citral could not only be used as a promising naturally sourced food preservative but also be used in the pharmaceutical industry.

  12. Enteric Coating and Aspirin Nonresponsiveness in Patients With Type 2 Diabetes Mellitus.

    PubMed

    Bhatt, Deepak L; Grosser, Tilo; Dong, Jing-Fei; Logan, Douglas; Jeske, Walter; Angiolillo, Dominick J; Frelinger, Andrew L; Lei, Lanyu; Liang, Juan; Moore, Jason E; Cryer, Byron; Marathi, Upendra

    2017-02-14

    A limitation of aspirin is that some patients, particularly those with diabetes, may not have an optimal antiplatelet effect. The goal of this study was to determine if oral bioavailability mediates nonresponsiveness. The rate and extent of serum thromboxane generation and aspirin pharmacokinetics were measured in 40 patients with diabetes in a randomized, single-blind, triple-crossover study. Patients were exposed to three 325-mg aspirin formulations: plain aspirin, PL2200 (a modified-release lipid-based aspirin), and a delayed-release enteric-coated (EC) aspirin. Onset of antiplatelet activity was determined by the rate and extent of inhibition of serum thromboxane B 2 (TXB 2 ) generation. Aspirin nonresponsiveness was defined as a level of residual serum TXB 2 associated with elevated thrombotic risk (<99.0% inhibition or TXB 2 >3.1 ng/ml) within 72 h after 3 daily aspirin doses. The rate of aspirin nonresponsiveness was 15.8%, 8.1%, and 52.8% for plain aspirin, PL2200, and EC aspirin, respectively (p < 0.001 for both comparisons vs. EC aspirin; p = 0.30 for comparison between plain aspirin and PL2200). Similarly, 56% of EC aspirin-treated subjects had serum TXB 2 levels >3.1 ng/ml, compared with 18% and 11% of subjects after administration of plain aspirin and PL2200 (p < 0.0001). Compared with findings for plain aspirin and PL2200, this high rate of nonresponsiveness with EC aspirin was associated with lower exposure to acetylsalicylic acid (63% and 70% lower geometric mean maximum plasma concentration [C max ] and 77% and 82% lower AUC 0-t [area under the curve from time 0 to the last time measured]) and 66% and 72% lower maximum decrease of TXB 2 , with marked interindividual variability. A high proportion of patients treated with EC aspirin failed to achieve complete inhibition of TXB 2 generation due to incomplete absorption. Reduced bioavailability may contribute to "aspirin resistance" in patients with diabetes. (Pharmacodynamic Evaluation of PL2200 Versus Enteric-Coated and Immediate Release Aspirin in Diabetic Patients; NCT01515657). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  13. Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    NASA Technical Reports Server (NTRS)

    Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.

    1997-01-01

    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time.

  14. Effects of dietary phospholipid level in cobia (Rachycentron canadum) larvae: growth, survival, plasma lipids and enzymes of lipid metabolism.

    PubMed

    Niu, J; Liu, Y J; Tian, L X; Mai, K S; Yang, H J; Ye, C X; Zhu, Y

    2008-03-01

    A study was conducted to determine the effects of dietary phospholipid (PL) levels in cobia (Rachycentron canadum) larvae with regard to growth, survival, plasma lipids and enzymes of lipid metabolism. Fish with an average weight of 0.4 g were fed diets containing four levels of PL (0, 20, 40 and 80 g kg(-1)dry matter: purity 97%) for 42 days. Final body weight (FBW), weight gain (WG) and survival ratio were highest in the 8% PL diet group and mortality was highest in PL-free diet group. We examined the activities of lipoprotein lipase (LPL) and hepatic lipase (HL) in liver, lecithin-cholesterolacyltransferase (LCAT) in plasma as well as plasma lipids and lipoprotein. LCAT activity showed a decrease of more than two-fold in PL-supplemented diet groups compared with the PL-free diet group. HL activity was highest in the 8% PL diet group and the other three groups showed no difference. LPL activity was significantly higher in the PL-supplemented diet groups than in the PL-free diet group. The dietary intervention significantly increased plasma phospholipids and total cholesterol (TC) levels, and the higher free cholesterol (FC) level contributed to the TC level. However, the fish fed PL exhibited a significantly decreased plasma triglyceride (TG) level. The lipoprotein fractions were also affected significantly by the PL. The PL-supplemented diet groups had significantly higher high-density lipoprotein (HDL) compared with the PL-free diet group, but showed a marked decrease in very low-density lipoprotein (VLDL). The results suggested that PL could modify plasma lipoprotein metabolism and lipid profile, and that the optimal dietary PL level may well exceed 80 g kg(-1) for cobia larvae according to growth and survival.

  15. Opposite beta2-glycoprotein I requirement for the binding of infectious and autoimmune antiphospholipid antibodies to cardiolipin liposomes is associated with antibody avidity.

    PubMed

    Celli, C M; Gharavi, A E; Chaimovich, H

    1999-01-12

    The aim of this study was to investigate the interaction of antiphospholipid antibodies (aPL) from two different populations (patients with autoimmune or infectious disorders) with cardiolipin (CL) arranged in a defined bilayer. beta2-Glycoprotein I (beta2GPI), an apolipoprotein that plays a critical role in the aPL binding to phospholipids, was quantified by dot blot in purified IgG-aPL samples, further classified according to apparent avidity to CL. In solid-phase assays, beta2GPI increased, preferentially, the binding of low-avidity autoimmune aPL to CL but inhibited the binding of low-avidity syphilitic aPL. In the absence of beta2GPI, both autoimmune and infectious aPL induced the leakage of the entrapped fluorescent probe, carboxyfluorescein (CF), from small unilamellar vesicles containing CL. aPL-induced probe leakage was protein concentration-dependent and characterized by a lag-phase onset of 100-120 min. beta2GPI increased the leakage rate induced by low-avidity autoimmune aPL only and inhibited the leakage induced by all syphilitic aPL. The following conclusions were provided: (1) in the absence of beta2GPI, autoimmune and infectious aPL bind to CL in a bilayer, inducing liposome leakage; (2) the leakage mechanism induced by aPL is suggested to be intravesicular; (3) beta2GPI requirement for phospholipid binding in both solid and fluid phase is associated to aPL avidity; (4) CL alone or the CL-beta2GPI complex are the most likely epitopes for autoimmune aPL; (5) aPL from syphilis patients can only form the CL-aPL complex, supporting that beta2GPI is not (part of) the target epitope.

  16. Immunogenicity, reactogenicity and safety of the human rotavirus vaccine RIX4414 (Rotarix™) oral suspension (liquid formulation) when co-administered with expanded program on immunization (EPI) vaccines in Vietnam and the Philippines in 2006-2007.

    PubMed

    Anh, D D; Carlos, C C; Thiem, D V; Hutagalung, Y; Gatchalian, S; Bock, H L; Smolenov, I; Suryakiran, P V; Han, H H

    2011-03-03

    Evaluation of immunogenicity and safety of a 2-dose liquid formulation of human rotavirus vaccine, RIX4414 following WHO's Expanded Program on Immunization (EPI) schedule (0, 1, and 2 months; Month 0 indicates day of enrollment) in Vietnam and the Philippines. Infants aged 6-10 (mean=8.7 ± 1.07 weeks Vietnam) and 5-10 weeks (mean=6.6 ± 1.03 weeks Philippines) received two doses of RIX4414 vaccine (V) and one dose of placebo (PL) or three placebo doses concomitantly with commercially available diphtheria-tetanus-whole-cell pertussis, hepatitis B and oral poliovirus vaccines. The vaccination schedules were: V-V-PL, V-PL-V and PL-PL-PL (Vietnam); PL-V-V, V-PL-V and PL-PL-PL (Philippines). Anti-rotavirus seroconversion rate was assessed pre-vaccination and post-vaccination (ELISA cut-off=20 U/ml). 375 infants were enrolled in each country. Seroconversion rates at one month post-Dose 2 of RIX4414 were Vietnam 63.3% (95% CI: 54.3-71.6) in V-V-PL group and 81.5% (95% CI: 73.4-88) in V-PL-V group; Philippines 70% (95% CI: 61-78) in PL-V-V group and 59.2% (95% CI: 49.8-68) in V-PL-V group. Frequencies of solicited (8-day post-each dose) and unsolicited symptoms (31-day post-each dose) were similar. Two-doses of rotavirus vaccine administered within the WHO EPI offer flexibility in existing schedule, though both schedules provides good immune responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Deconvolution of mixtures with high plagioclase content for the remote interpretation of lunar plagioclase-rich regions

    NASA Astrophysics Data System (ADS)

    Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria

    2016-07-01

    Anorthositic rocks are widespread on the lunar surface and have probably been formed by flotation of PL over a magma ocean. A large portion of pristine rocks are characterized by a low Mg/(Mg+Fe) ratio, and have been classified as ferroan anorthosite, and recently, after observation from SELENE Spectral Profiler,pure anorthosites regions with more than 98% PL have been recognized. In this paper, we analyze a set of mixtures with PL content similar to the ferroan anorthosites and to the pure anorthosite regions, using the Origin Software and the Modified Gaussian Model. We consider three plagioclases with varying FeOwt% contents (PL1, PL2 and PL3)andthree mafic end-members (1) 100% orthopyroxene, (2) 56% orthopyroxene and 44% clinopyroxene, and (3) 100% olivine (OL). The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). Here we have shown that in pyroxene (PX)-bearing mixtures, the PX is distinguishable even in mixtures with only 1% PX and that PX band at ca. 900 nm is always deeper than PL1 band while PL2 and PL3 are deeperthan OPX 900 nm band from 95, 96% PL. In OL-bearing mixtures, OL detection limit is 2% when mixed with PL1, and 3% and 4% if mixed with PL2 and PL3. We also demonstrated how spectral parameters vary with PL%, and, generally, increasing the PL content: (1) 1250 nm band depth decreases when mixed with OL, while it deepens in mixtures with PX; (2) 1250 nm band centers generally move towards longer wavelength for PL1-bearing mixtures, while do not show significant variations considering PL2/PL3-mixtures; (3) 1250 nm band width of PL1 in E1 and E5-mixtures substantially widens while in other mixtures it only slightly varies. Here we also proposed an application to a real case, from Proclus crater, revealing how studying terrestrial analogues is fundamental to infer hypothesis on the mineralogical composition of a planetary surface, but also how the spectral convergence of spectra characterized by different compositions can led to misleading interpretations.

  18. The use of lumbar epidural injection of platelet lysate for treatment of radicular pain.

    PubMed

    Centeno, Christopher; Markle, Jason; Dodson, Ehren; Stemper, Ian; Hyzy, Matthew; Williams, Christopher; Freeman, Michael

    2017-11-25

    Epidural steroid injections (ESI) are the most common pain management procedure performed in the US, however evidence of efficacy is limited. In addition, there is early evidence that the high dose of corticosteroids used can have systemic side effects. We describe the results of a case series evaluating the use of platelet lysate (PL) epidural injections for the treatment of lumbar radicular pain as an alternative to corticosteroids. Registry data was obtained for patients (N = 470) treated with PL epidural injections presenting with symptoms of lumbar radicular pain and MRI findings that were consistent with symptoms. Collected outcomes included numeric pain score (NPS), functional rating index (FRI), and a modified single assessment numeric evaluation (SANE) rating. Patients treated with PL epidurals reported significantly lower (p < .0001) NPS and FRI change scores at all time points compared to baseline. Post-treatment FRI change score means exceeded the minimal clinically important difference beyond 1 month. Average modified SANE ratings showed 49.7% improvement at 24 months post-treatment. Twenty-nine (6.3%) patients reported mild adverse events related to treatment. Patients treated with PL epidurals reported significant improvements in pain, exceeded the minimal clinically important difference (MCID) for FRI, and reported subjective improvement through 2-year follow-up. PL may be a promising substitute for corticosteroid.

  19. Acute hematological and mood perception effects of bitter orange extract (p-synephrine) consumed alone and in combination with caffeine: A placebo-controlled, double-blind study.

    PubMed

    Bush, Jill A; Ratamess, Nicholas A; Stohs, Sidney J; Ellis, Nicole L; Vought, Ira T; O'Grady, Elizabeth A; Kuper, Jeremy D; Kang, Jie; Faigenbaum, Avery D

    2018-04-19

    The purpose of this study was to examine acute hematological and mood perception responses to supplementation with p-synephrine alone and in combination with caffeine during quiet sitting. Sixteen subjects visited the laboratory on 6 occasions and were given (in randomized double-blind manner) 103-mg p-synephrine (S), 233-mg caffeine + 104-mg p-synephrine, 240-mg caffeine, 337-mg caffeine + 46-mg p-synephrine, 325-mg caffeine, or a placebo (PL). The subjects sat quietly for 3 hr while completing mood state questionnaires every 30 min. Venous blood samples were collected at baseline (pre) and 3 hr (post) to determine immune, lipid, and chemistry panels. Compared with PL, no significant supplement differences were observed during the S trial with the exception of differential time effects seen in hematocrit (decrease in PL, no change in S), triglycerides and very low-density lipoproteins (no changes in PL, significant decreases in S), and iron (no change in PL, significant elevation in S). Supplements containing caffeine showed increased feelings of attention, excitement, energy, and vigor. These data indicate that consumption of 103-mg p-synephrine does not negatively impact acute blood parameters, does not augment the effects of caffeine, or produce stimulant-like perceptual mood effects. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Synthesis and properties of Rb2GeF6:Mn4+ red-emitting phosphors

    NASA Astrophysics Data System (ADS)

    Sakurai, Shono; Nakamura, Toshihiro; Adachi, Sadao

    2018-02-01

    Rb2GeF6:Mn4+ red-emitting phosphors were synthesized by coprecipitation and their structural and optical properties were investigated by laser microscopy observation, X-ray diffraction (XRD) analysis, photoluminescence (PL) analysis, PL excitation (PLE) spectroscopy, and PL decay measurement. Single-crystalline ingots in the form of a hexagonal pyramid were prepared with a basal plane diameter of ˜2 mm. The XRD analysis suggested that Rb2GeF6 crystallizes in the hexagonal structure (C6v4 = P63mc) with a = 0.5955 nm and c = 0.9672 nm. The phosphor exhibited the strong Mn4+-related zero-phonon line (ZPL) emission peak typically observed in host crystals with piezoelectrically active lattices such as a hexagonal lattice. The quantum efficiencies of the bulk ingot and powdered samples were 87 and 74%, respectively, with nearly the same luminescence decay time of ˜6 ms. The exact ZPL energies and related crystal-field and Racah parameters were obtained from the PL and PLE spectra by Franck-Condon analysis. Temperature-dependent PL intensities were analyzed from T = 20 to 500 K using a thermal quenching model by considering Bose-Einstein phonon statistics. A comparative discussion on the phosphor properties of Rb2GeF6:Mn4+ and Rb2MF6:Mn4+ with M = Si and Ti was also given.

  1. Facile synthesis and luminescence characteristics of high-quality CdS: Eu/ZnS core/shell nanocrystals with biocompatibility.

    PubMed

    Zhang, Kexin; Zhang, Rui; Yu, Yaxin; Sun, Shuqing

    2012-04-01

    In this paper, we report a facile method to synthesize high quality CdS: Eu nanocrystals (NCs) and CdS: Eu/ZnS NCs with strong photoluminescence (PL). The influence of various experimental variables including the concentration of Eu3+ ions, the reaction time and the reaction temperature were investigated systematically. In addition, the PL properties of CdS: Eu NCs exhibited pH sensitive. Under the acid condition, pH value of the CdS: Eu NCs solution played an important role in determining PL emission intensity. However, under the alkaline condition, the obtained CdS: Eu NCs exhibited a tunable PL emission wavelength (from 490 nm to 610 nm) when pH value was adjusted from pH 7 to 10. After coating with ZnS shell, the CdS: Eu/ZnS NCs showed enhanced PL intensity compare with one of the CdS: Eu NCs. The CdS: Eu NCs and CdS: Eu/ZnS NCs were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). In addition, the biocompatibility of these NCs was measured by hemolytic test, which indicated that CdS: Eu/ZnS NCs were more biocompatible than CdS: Eu NCs at the same conditions. It can be expected that CdS: Eu/ZnS NCs are promising biolabeling materials.

  2. Diagnosis of preeclampsia with soluble Fms-like tyrosine kinase 1/placental growth factor ratio: an inter-assay comparison.

    PubMed

    Andersen, Louise Bjørkholt; Frederiksen-Møller, Britta; Work Havelund, Kathrine; Dechend, Ralf; Jørgensen, Jan Stener; Jensen, Boye L; Nielsen, Jan; Lykkedegn, Sine; Barington, Torben; Christesen, Henrik Thybo

    2015-02-01

    The angiogenic factor ratio soluble Fms-kinase 1 (sFlt-1)/placental growth factor (PlGF) is a novel diagnostic tool for preeclampsia. We compared the efficacy of the KRYPTOR (BRAHMS) automated assays for sFlt-1 and PlGF with the Elecsys (Roche) assays in a routine clinical setting. Preeclamptic women (n = 39) were included shortly after the time of diagnosis. Normotensive control pregnancies were matched by gestational age (n = 76). The KRYPTOR assays performed comparably or superior to Elecsys (sFlt-1/PlGF area under the curve 0.746 versus 0.735; P = .09; for non-obese 0.820 versus 0.805, P = .047). For early-onset preeclampsia, KRYPTOR area under the curve increased to 0.929 with a 100% specificity for preeclampsia at cut-off 85 and an 88.9% sensitivity for preeclampsia at cut-off 33. For women with preeclampsia and preterm delivery or Hemolysis, Elevated Liver enzymes, Low Platelet count (HELLP) syndrome, the KRYPTOR sFlt-1/PlGF ratio was manifold increased (P < .01). The sFlt-1/PlGF ratio proved especially useful in early-onset preeclampsia, preeclampsia with preterm delivery or HELLP, and among non-obese women. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  3. Probing cellular uptake and tracking of differently shaped gelatin-coated gold nanoparticles inside of ovarian cancer cells by two-photon excited photoluminescence analyzed by fluorescence lifetime imaging (FLIM).

    PubMed

    Suarasan, Sorina; Licarete, Emilia; Astilean, Simion; Craciun, Ana-Maria

    2018-06-01

    Nowadays, the non-linear optical effect of two-photon excited (TPE) fluorescence has recently grown in interest in recent years over other optical imaging method, due to improved 3D spatial resolution, deep penetrability and less photodamage of living organism owing to the excitation in near-infrared region (NIR). In parallel, gold nanoparticles (AuNPs) have gain considerable attention for NIR TPE bio-imaging applications due to their appealing ability to generate strong intrinsic photoluminescence (PL). Here, we demonstrate the capability of differently shaped gelatin-coated AuNPs to perform as reliable label-free contrast agents for the non-invasive NIR imaging of NIH:OVCAR-3 ovary cancer cells via TPE Fluorescence Lifetime Imaging Microscopy (FLIM). Examination of the spectroscopic profile of the intrinsic signals exhibited by AuNPs inside cells confirm the plasmonic nature of the emitted PL, while the evaluation of time-dependent profile of the TPE PL signal under continuous irradiation indicates the photo-stability of the signal revealing simultaneously a photo-blinking behavior. Finally, we assess the dependence of the TPE PL signal on laser excitation power and wavelength in view of contributing to a better understanding of plasmonic TPE PL in biological media towards the improvement of TPE FLIM imaging applications based on AuNPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Hughes syndrome and epilepsy: when to test for antiphospholipid antibodies?

    PubMed

    Noureldine, M H A; Harifi, G; Berjawi, A; Haydar, A A; Nader, M; Elnawar, R; Sweid, A; Al Saleh, J; Khamashta, M A; Uthman, I

    2016-11-01

    Epilepsy and seizures are reported among the neurological manifestations of antiphospholipid syndrome (APS) at a prevalence rate of approximately 8%, which is nearly 10 times the prevalence of epilepsy in the general population. The association of seizures with antiphospholipid antibodies (aPL) is even more significant in the presence of systemic lupus erythematosus (SLE). In this review, we discuss the epidemiological, pathophysiological, laboratory, clinical, and radiological aspects of this association, and derive suggestions on when to consider testing for aPL in epileptic patients and how to manage seizures secondary to APS based on literature data. Epilepsy due to APS should be considered in young patients presenting with seizures of unknown origin. Temporal lobe epilepsy seems to be particularly prevalent in APS patients. The pathogenesis is complex and may not only involve micro-thrombosis, but also a possible immune-mediated neuronal damage. Patients with seizures and positive aPL tend to develop thrombocytopenia and livedo racemosa more frequently compared with those without aPL. Magnetic resonance imaging (MRI) remains the imaging modality of choice in these patients. The presence of SLE and the presence of neurological symptoms significantly correlate with the presence of white matter changes on MRI. In contrast, the correlation between aPL positivity and the presence of white matter changes is very weak. Furthermore, MRI can be normal in more than 30-40% of neuropsychiatric lupus patients with or without aPL. aPL testing is recommended in young patients presenting with atypical seizures and multiple hyper-intensity lesions on brain MRI in the absence of other possible conditions. New MRI techniques can better understand the pathology of brain damage in neuro-APS. The therapeutic management of epileptic APS patients relies on anti-epileptic treatment and anticoagulant agents when there is evidence of a thrombotic event. In the absence of consensual recommendations, the decision of lifelong anticoagulation is discussed on a case-by-case basis. The anti-thrombotic benefit of hydroxychloroquine and statins is supported by several studies.

  5. Plasma-Lyte 148 vs. Hartmann's solution for cardiopulmonary bypass pump prime: a prospective double-blind randomized trial.

    PubMed

    Weinberg, Laurence; Chiam, Elizabeth; Hooper, James; Liskaser, Frank; Hawkins, Angela Kim; Massie, Denise; Ellis, Andrew; Tan, Chong O; Story, David; Bellomo, Rinaldo

    2018-05-01

    The mechanisms of acid-base changes during cardiopulmonary bypass (CPB) remain unclear. We tested the hypothesis that, when used as CPB pump prime solutions, Plasma-Lyte 148 (PL) and Hartmann's solution (HS) have differential mechanisms of action in their contribution to acid-base changes. We performed a prospective, double-blind, randomized trial in adult patients undergoing elective cardiac surgery with CPB. Participants received a CPB prime solution of 2000 mL, with either PL or HS. The primary endpoint was the standard base excess (SBE) value measured at 60 minutes after full CPB flows (SBE60min). Secondary outcomes included changes in SBE, pH, chloride, sodium, lactate, gluconate, acetate, strong ion difference and strong ion gap at two (T2min), five (T5min), ten (T10min), thirty (T30min) and sixty (T60min) minutes on CPB. The primary outcome was measured using a two-tailed Welch's t-test. Repeated measures ANOVA was used to test for differences between time points. Twenty-five participants were randomized to PL and 25 to HS. Baseline characteristics, EURO and APACHE scores, biochemistry, hematology and volumes of cardioplegia were similar. Mean (SD) SBE at T60min was -1.3 (1.4) in the PL group and -0.1 (2.7) in the HS group; p=0.55. No significant differences in SBE between the groups was observed during the first 60 minutes (p=0.48). During CPB, there was hyperacetatemia and hypergluconatemia in the PL group and hyperlactatemia and hyperchloremia in the HS group. No significant difference between the groups in plasma bicarbonate levels and total weak acid levels were found. Complications and intensive care unit and hospital length of stays were similar. During CPB, PL and HS did not cause a significant metabolic acidosis. There was hyperacetatemia and hypergluconatemia with PL and hyperchloremia and hyperlactatemia with HS. These physiochemical effects appear clinically innocuous.

  6. Concurrent Validity of Wearable Activity Trackers Under Free-Living Conditions.

    PubMed

    Brooke, Skyler M; An, Hyun-Sung; Kang, Seoung-Ki; Noble, John M; Berg, Kris E; Lee, Jung-Min

    2017-04-01

    Brooke, SM, An, H-S, Kang, S-K, Noble, JM, Berg, KE, and Lee, J-M. Concurrent validity of wearable activity trackers under free-living conditions. J Strength Cond Res 31(4): 1097-1106, 2017-The purpose of this study is to evaluate the concurrent validity of wearable activity trackers in energy expenditure (EE) and sleep period time (SPT) under free-living conditions. Ninety-five (28.5 ± 9.8 years) healthy men (n = 34) and women (n = 61) participated in this study. The total EE and SPT were measured using 8 monitors: Nike+ FuelBand SE (NFB), Garmin VivoFit (VF), Misfit Shine (MF), Fitbit Flex (FF), Jawbone UP (JU), Polar Loop (PL), Fitbit Charge HR (FC), and SenseWear Armband Mini (SWA) (criterion measures: SWA for EE and a sleep log for SPT). The mean absolute percent error (MAPE) for EE was 13.0, 15.2, 15.5, 16.1, 16.2, 22.8, and 24.5% for PL, MF, FF, NFB, FC, JU, and VF, respectively. Mean absolute percent errors were calculated for SPT to be 4.0, 8.8, 10.2, 11.5, 12.9, 13.6, 17.5, and 21.61% for VF, FF, JU, FC, MF, SWA laying down, PL, and SWA, respectively. Concurrent validity was examined using equivalence testing on EE (equivalence zone: 2,889.7-3,531.9 kcal); 2 trackers fell short of falling in the zone: PL (2,714.4-3,164.8 kcal) and FC (2,473.8-3,066.5 kcal). For SPT (equivalence zone: 420.6-514.0 minutes), several monitors fell in the zone: PL (448.3-485.6 minutes), MS (442.8-492.2 minutes), and FF (427.7-486.7 minutes). This study suggests that the PL and FC provide a reasonable estimate of EE under free-living conditions. The PL, FC, and MF were the most valid monitors used for measuring SPT.

  7. Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe2.

    PubMed

    Zhang, Minghua; Fu, Jiyong; Dias, A C; Qu, Fanyao

    2018-05-18

    We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe$_2$, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (X$_{\\rm b}$), intravalley biexciton (XX$_{\\rm k,k}$) and intervalley biexciton (XX$_{\\rm k,k^\\prime}$) in particular for the {XX$_{\\rm k,k}$} PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e., increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of X$_{\\rm b}$ shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XX$_{\\rm k,k}$ VP is found almost independent of temperature. In contrast to both X$_{\\rm b}$ and XX$_{\\rm k,k}$, the intervalley XX$_{\\rm k,k^\\prime}$ VP identically vanishes, because of equal populations of excitons in the $K$ and $K^\\prime$ valleys bounded to form intervalley biexcitons. Notably, it is found that the X$_{\\rm b}$ VP much more strongly depends on bright-dark scattering than that of {XX$_{\\rm k,k}$}, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for X$_{\\rm b}$ at strong bright-dark scatterings, but not for XX$_{\\rm k,k}$. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the time evolution of PL and VP, depending on temperature and excitation fluence, is discussed. © 2018 IOP Publishing Ltd.

  8. Size tunability and optical properties of CdSe quantum dots for various growth conditions

    NASA Astrophysics Data System (ADS)

    Ko, Eun Yee; Lee, Joo In; Jeon, Ju-Won; Lee, In Hwan; Shin, Yong Hyeon; Han, Il Ki

    2013-01-01

    We report the optical properties of CdSe quantum dots (QDs) synthesized under various growth conditions, such as growth temperature, growth time, ligand ratio, and Cd:Se ratio of the precursors. As the growth temperature and time was increased, the peaks of the photoluminescence (PL) spectra were a red shifted, indicating that the size of QDs increased. Different ligand ratios and Cd:Se ratios of the precursors played important roles in determining the QDs size. From the PL spectra and the transmission electron microscopy image, the size distribution, as well as the size of CdSe QDs, could be controlled by using the growth conditions. The temperature-dependent PL of CdSe QDs dropped and dried on Si substrates was measured at temperatures from 15 K to 290 K. With increasing temperature, the red shift of the QDs was about 35 meV, which is noticeably smaller than that of bulk CdSe (˜100 meV). The influence of the temperature on the optical properties of colloidal CdSe QDs is important for an application to various devices.

  9. Adaptive and perceptual learning technologies in medical education and training.

    PubMed

    Kellman, Philip J

    2013-10-01

    Recent advances in the learning sciences offer remarkable potential to improve medical education and maximize the benefits of emerging medical technologies. This article describes 2 major innovation areas in the learning sciences that apply to simulation and other aspects of medical learning: Perceptual learning (PL) and adaptive learning technologies. PL technology offers, for the first time, systematic, computer-based methods for teaching pattern recognition, structural intuition, transfer, and fluency. Synergistic with PL are new adaptive learning technologies that optimize learning for each individual, embed objective assessment, and implement mastery criteria. The author describes the Adaptive Response-Time-based Sequencing (ARTS) system, which uses each learner's accuracy and speed in interactive learning to guide spacing, sequencing, and mastery. In recent efforts, these new technologies have been applied in medical learning contexts, including adaptive learning modules for initial medical diagnosis and perceptual/adaptive learning modules (PALMs) in dermatology, histology, and radiology. Results of all these efforts indicate the remarkable potential of perceptual and adaptive learning technologies, individually and in combination, to improve learning in a variety of medical domains. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  10. Screening and optimization of pectin lyase and polygalacturonase activity from ginseng pathogen Cylindrocarpon Destructans

    PubMed Central

    Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Ho-Bin; Subramaniyam, Sathiyamoorthy; Lee, Ok Ran; Kim, Yeon-Ju; Yang, Deok Chun

    2011-01-01

    Cylindrocarpon destructans isolated from ginseng field was found to produce pectinolytic enzymes. A Taguchi’s orthogonal array experimental design was applied to optimize the preliminary production of polygalacturonase (PG) and pectin lyase (PL) using submerged culture condition. This method was applied to evaluate the significant parameters for the production of enzymes. The process variables were pH, pectin concentration, incubation time and temperature. Optimization of process parameters resulted in high levels of enzyme (PG and PL) production after ten days of incubation at a pH of 5.0 at 25°C in the presence of 1.5% pectin. Among different nitrogen sources, urea and peptone showed high production of PG and PL, respectively. The enzyme production and mycelial growth seems to have direct influence on the culture conditions; therefore, at stationary state high enzyme production and mycelial growth were obtained than agitation state. Along with this, optimization of enzyme activity was also determined using various physiological parameters like, temperature, incubation time and pH. Taguchi’s data was also analyzed using one step ANOVA statistical method. PMID:24031695

  11. Performance evaluation of Platform Data ManagementSystem under various degrees of protocol implementation

    NASA Technical Reports Server (NTRS)

    Arozullah, Mohammed

    1991-01-01

    The Platform Data Management System (DMS) collects Housekeeping (H/K), Payload (P/L) Engineering, and Payload Science data from various subsystems and payloads on the platform for transmission to the ground through the downlink via TDRSS. The DMS also distributes command data received from the ground to various subsystems and payloads. In addition, DMS distributes timing and safemode data. The function of collection and distribution of various types of data is performed by the Command and Data Handling (C&DH) subsystem of DMS. The C&DH subsystem uses for this purpose a number of data buses namely, Housekeeping, Payload Engineering, Payload Science, and Time and Safemode buses. Out of these buses, the H/K, P/L Engineering, and P/L Science buses are planned to be implemented by using MIL-STD 1553 bus. Most of the period covered was spent in developing a queue theoretic model of the 1553 Bus as used in the DMS. The aim is to use this model to test the performance and suitability of the 1553 Bus to the DMS under a number of alternative design scenarios.

  12. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn

    Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGFmore » in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. • Exogenous rhPlGF-1 treatment significantly induced HIMECs migration and tube formation. • Knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced cell angiogenesis activities. • PlGF induced PI3K/Akt phosphorylation in HIMECs which is required for PIGF-induced cell migration and tube formation.« less

  13. Placental lactogen secretion during prolonged-pregnancy in the rat: the ovary plays a pivotal role in the control of placental function.

    PubMed

    Shiota, K; Furuyama, N; Takahashi, M

    1991-10-01

    The serum of rats at mid-pregnancy contains at least 2 distinct placental lactogen (PL)-like substances tentatively termed placental lactogen-alpha (PL-alpha) and placental lactogen-beta (PL-beta) (Endocrinol Japon 38: 533-540, 1991). We have investigated the secretory patterns of three placental lactogens (PL-alpha, PL-beta and placental lactogen-II) during normal pregnancy and in two prolonged-pregnancy models. Pregnancy was prolonged by the introduction of new corpora lutea by inducing ovulation on day 15 of pregnancy by successive treatments with PMSG (30 IU/rat, sc on day 12) and hCG (10 IU/rat, iv on day 14), and in the second model by progesterone implants on day 15 of pregnancy. During normal pregnancy, each of the 3 PLs exhibited only one secretory peak in the serum; PL-alpha and PL-beta on day 12 and placental lactogen II (PL-II) on day 20. Interestingly, in the rats with new sets of corpora lutea, serum PL-alpha and PL-beta levels began to increase again on day 18 and showed peaks on day 20 for PL-alpha and on day 22 for PL-beta. In this model, the initiation of PL-II secretion was not affected, but high levels were maintained until day 26, when parturition occurred. In rats receiving either PMSG or hCG, the secretory patterns of the PLs were similar to as those during normal pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Evaluation of pulsed light treatments on inactivation of Salmonella on blueberries and its impact on shelf-life and quality attributes.

    PubMed

    Cao, Xinang; Huang, Runze; Chen, Haiqiang

    2017-11-02

    Blueberry have a short shelf life when fully ripe and susceptible to contamination of various pathogens. Our study investigated the effect of pulsed light (PL) on inactivation of Salmonella on blueberries and its impact on shelf-life, quality attributes and health-benefit compounds of blueberries. Dry PL (6J/cm 2 ) and water-assisted PL (samples were agitated in water during PL treatment; 9J/cm 2 ) along with two controls, dry control (untreated) and water-assisted control (water washing without PL), were applied to blueberries with subsequent storages at room temperature (3days) or 5°C (7days). For Salmonella inactivation, dry PL treatment achieved 0.9 and 0.6 log reduction of Salmonella for spot and dip inoculation, respectively; while the water-assisted PL treatment reduced Salmonella by 4.4 log and 0.8 log for spot and dip inoculation, respectively. The water-assisted PL treatment resulted in Salmonella populations significantly lower than the dry control after storage regardless of the storage temperature and inoculation method. Neither dry nor water-assisted PL treatments improved the shelf life of blueberries even though direct inactivation of natural yeasts and molds were achieved. Surface lightness was instantly reduced after both dry and water-assisted PL treatments. Compared with the dry control, the two PL treatments did not reduce the firmness of blueberries. Weight loss was increased for the dry PL treated samples, but not for the water-assisted PL treatment for both storage conditions. Delayed anthocyanins accumulation and reduced total antioxidant activity were induced by both PL treatments at the end of storage at room temperature, while slight enhancement in total phenolics content was achieved by water-assisted PL treatment. In conclusion, the water-assisted PL treatment could effectively decontaminate Salmonella on blueberries while showed minimal or no impact on the shelf-life, quality attributes and health-benefit compounds of blueberries. PL processing parameters need to be further evaluated and optimized before possible application in the blueberry industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Enhanced explosive sensing based on bis(methyltetraphenyl)silole nanoaggregate

    NASA Astrophysics Data System (ADS)

    Shin, Bomina; Sohn, Honglae

    2018-01-01

    New photoluminescent bis(methyltetraphenyl)silole nanoaggregates for the detection of trinitrotoluene (TNT) were developed by using aggregation-induced emission property. Bis(methyltetraphenyl)silole nanoaggregates exhibited that photoluminescence (PL) intensity was increased when the water fraction was increased to 90% by volume. Relative PL efficiency of bis(methyltetraphenyl)silole nanoaggregates was exponentially increased to the percent of water fraction and particle diameter was dependent on solvent composition. Particle size of bis(methyltetraphenyl)silole nanoaggregates was tuned by controlling the water fraction by volume. Absolute quantum yield of bis(methyltetraphenyl)silole nanoaggregates in 90% water volume fraction were 32.4%, which increases by about 40 times. Detection of TNT was achieved from the quenching PL measurement of bis(methyltetraphenyl)silole nanoaggregates by adding the TNT. A linear Stern-Volmer relationship was observed for the detection of TNT.

  16. Optimization of sintering conditions for cerium-doped yttrium aluminum garnet

    NASA Astrophysics Data System (ADS)

    Cranston, Robert Wesley McEachern

    YAG:Ce phosphors have become widely used as blue/yellow light converters in camera projectors, white light emitting diodes (WLEDs) and general lighting applications. Many studies have been published on the production, characterization, and analysis of this optical ceramic but few have been done on determining optimal synthesis conditions. In this work, YAG:Ce phosphors were synthesized through solid state mixing and sintering. The synthesized powders and the highest quality commercially available powders were pressed and sintered to high densities and their photoluminescence (PL) intensity measured. The optimization process involved the sintering temperature, sintering time, annealing temperature and the level of Ce concentration. In addition to the PL intensity, samples were also characterized using particle size analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PL data was compared with data produced from a YAG:Ce phosphor sample provided by Christie Digital. The peak intensities of the samples were converted to a relative percentage of this industry product. The highest value for the intensity of the commercial powder was measured for a Ce concentration of 0.3 mole% with a sintering temperature of 1540°C and a sintering dwell time of 7 hours. The optimal processing parameters for the in-house synthesized powder were slightly different from those of commercial powders. The optimal Ce concentration was 0.4 mole% Ce, sintering temperature was 1560°C and sintering dwell time was 10 hours. These optimal conditions produced a relative intensity of 94.20% and 95.28% for the in-house and commercial powders respectively. Polishing of these samples resulted in an increase of 5% in the PL intensity.

  17. Involvement of the prelimbic cortex in contextual fear conditioning with temporal and spatial discontinuity.

    PubMed

    Santos, Thays Brenner; Kramer-Soares, Juliana Carlota; Favaro, Vanessa Manchim; Oliveira, Maria Gabriela Menezes

    2017-10-01

    Time plays an important role in conditioning, it is not only possible to associate stimuli with events that overlap, as in delay fear conditioning, but it is also possible to associate stimuli that are discontinuous in time, as shown in trace conditioning for a discrete stimuli. The environment itself can be a powerful conditioned stimulus (CS) and be associated to unconditioned stimulus (US). Thus, the aim of the present study was to determine the parameters in which contextual fear conditioning occurs by the maintenance of a contextual representation over short and long time intervals. The results showed that a contextual representation can be maintained and associated after 5s, even in the absence of a 15s re-exposure to the training context before US delivery. The same effect was not observed with a 24h interval of discontinuity. Furthermore, optimal conditioned response with a 5s interval is produced only when the contexts (of pre-exposure and shock) match. As the pre-limbic cortex (PL) is necessary for the maintenance of a continuous representation of a stimulus, the involvement of the PL in this temporal and contextual processing was investigated. The reversible inactivation of the PL by muscimol infusion impaired the acquisition of contextual fear conditioning with a 5s interval, but not with a 24h interval, and did not impair delay fear conditioning. The data provided evidence that short and long intervals of discontinuity have different mechanisms, thus contributing to a better understanding of PL involvement in contextual fear conditioning and providing a model that considers both temporal and contextual factors in fear conditioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Spatially indirect excitons in coupled quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunitiesmore » for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer) 2 were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.« less

  19. Human platelet lysate is a successful alternative serum supplement for propagation of monocyte-derived dendritic cells.

    PubMed

    Švajger, Urban

    2017-04-01

    Clinical protocols for dendritic cell (DC) generation from monocytes require the use of animal serum-free supplements. Serum-free media can also require up to 1% of serum supplementation. In addition, recommendations based on the 3Rs (Refinement, Reduction, Replacement) principle also recommend the use of non-animal sera in in vitro studies. The aim of this study was to explore the potential use of platelet lysate (PL) for generation of optimally differentiated DCs from monocytes. Cells were isolated from buffy coats from healthy volunteers using immunomagnetic selection. DCs were differentiated in RPMI1640 supplemented with either 10% fetal bovine serum (FBS), 10% AB serum or 10% PL with the addition of granulocyte monocyte colony stimulating factor and interleukin-4. Generated DCs were assessed for their morphology, viability, endocytotic capacity, surface phenotype (immature, mature and tolerogenic DCs) and activation of important signaling pathways. DC function was evaluated on the basis of their allostimulatory capacity, cytokine profile and ability to induce different T-helper subsets. DCs generated with PL displayed normal viability, morphology and endocytotic capacity. Their differentiation and maturation phenotype was comparable to FBS-cultured DCs. They showed functional plasticity and up-regulated tolerogenic markers in response to their environment. PL-cultured mature DCs displayed unhindered allostimulatory potential and the capacity to induce Th1 responses. The use of PL allowed for activation of crucial signaling proteins associated with DC differentiation and maturation. This study demonstrates for the first time that human PL represents a successful alternative to FBS in differentiation of DCs from monocytes. DCs display the major phenotypic and functional characteristics compared with existing culture protocols. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Effects of ovarian steroids and prolactin on the sequential development of nesting behaviour in female budgerigars.

    PubMed

    Hutchison, R E

    1975-10-01

    As intact, breeding female budgerigars approach egg-laying, they spend an increasing amount of time in the nestbox and nest hollow. The brood patch area begins to defeather and becomes vascular and the oviduct increases in weight. Precursory albumen forms in the tubular glands of the oviduct. Oestradiol (OB) treatment in combination with prolactin (OB+PL) induced ovariectomized budgerigars to display nesting behaviour which did not differ from that shown by intact females in the 3 days immediately preceding egg-laying. In contrast, OB induced only the initial phase of the nesting sequence and the effects of OB in combination with progesterone (OB+PR) were intermediate between treatments with OB alone and OB+PL. Incubation of artificial eggs occurred only in the OB+PL group and the latency to display of the incubation posture was shorter in the OB+PL group than in the OB+PR group. No incubation posture was displayed by the OB-treated group. Oviduct development was not influenced by prolactin, but progesterone induced precocious development of tubular glands in the magnum region of the oviduct. Treatment with OB+PR induced uniform development of precursor albumen in the tubular glands. Development of the brood patch occurred with both OB+PL and OB+PR treatment. However, OB+PR resulted in defeathering which was advanced in relation to vascularity when compared with intact breeding females, whereas defeathering and vascularity of the OB+PL group did not differ from that of intact females at egg-laying. These results indicate that prolactin in combination with oestradiol was more effective than progesterone not only in inducing the later phases of nesting behaviour but also in initiating incubation behaviour and defeathering of the brood patch area.

  1. Presence of the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease.

    PubMed

    Clark-Feoktistova, Y; Ruenes-Domech, C; García-Bacallao, E F; Roblejo-Balbuena, H; Feoktistova, L; Clark-Feoktistova, I; Jay-Herrera, O; Collazo-Mesa, T

    2018-06-10

    Wilson's disease is characterized by the accumulation of copper in different organs, mainly affecting the liver, brain, and cornea, and is caused by mutations in the ATP7B gene. More than 120 polymorphisms in the ATP7B gene have been reported in the medical literature. The aim of the present study was to identify the conformational changes in the exon 3 region of the ATP7B gene and detect the p.L456V polymorphism in Cuban patients clinically diagnosed with Wilson's disease. A descriptive study was conducted at the Centro Nacional de Genética Médica and the Instituto Nacional de Gastroenterología within the time frame of 2007-2012 and included 105 patients with a clinical diagnosis of Wilson's disease. DNA extraction was performed through the salting-out method and the fragment of interest was amplified using the polymerase chain reaction technique. The conformational shift changes in the exon 3 region and the presence of the p.L456V polymorphism were identified through the Single-Strand Conformation Polymorphism analysis. The so-called b and c conformational shift changes, corresponding to the p.L456V polymorphism in the heterozygous and homozygous states, respectively, were identified. The allelic frequency of the p.L456V polymorphism in the 105 Cuban patients that had a clinical diagnosis of Wilson's disease was 41% and liver-related symptoms were the most frequent in the patients with that polymorphism. The p.L456V polymorphism was identified in 64 Cuban patients clinically diagnosed with Wilson's disease, making future molecular study through indirect methods possible. Copyright © 2018 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  2. Arsenic speciation and reactivity in poultry litter

    USGS Publications Warehouse

    Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

    2003-01-01

    Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.

  3. Synopsis of Precision Landing and Hazard Avoidance (PL&HA) Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Robertson, Edward A.

    2017-01-01

    Until recently, robotic exploration missions to the Moon, Mars, and other solar system bodies relied upon controlled blind landings. Because terrestrial techniques for terrain relative navigation (TRN) had not yet been evolved to support space exploration, landing dispersions were driven by the capabilities of inertial navigation systems combined with surface relative altimetry and velocimetry. Lacking tight control over the actual landing location, mission success depended on the statistical vetting of candidate landing areas within the predicted landing dispersion ellipse based on orbital reconnaissance data, combined with the ability of the spacecraft to execute a controlled landing in terms of touchdown attitude, attitude rates, and velocity. In addition, the sensors, algorithms, and processing technologies required to perform autonomous hazard detection and avoidance in real time during the landing sequence were not yet available. Over the past decade, NASA has invested substantial resources on the development, integration, and testing of autonomous precision landing and hazard avoidance (PL&HA) capabilities. In addition to substantially improving landing accuracy and safety, these autonomous PL&HA functions also offer access to targets of interest located within more rugged and hazardous terrain. Optical TRN systems are baselined on upcoming robotic landing missions to the Moon and Mars, and NASA JPL is investigating the development of a comprehensive PL&HA system for a Europa lander. These robotic missions will demonstrate and mature PL&HA technologies that are considered essential for future human exploration missions. PL&HA technologies also have applications to rendezvous and docking/berthing with other spacecraft, as well as proximity navigation, contact, and retrieval missions to smaller bodies with microgravity environments, such as asteroids.

  4. High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios.

    PubMed

    Wang, Junqing; Zhang, Pengfei; Huang, Chao; Liu, Gang; Leung, Ken Cham-Fai; Wáng, Yì Xiáng J

    2015-07-28

    Photoluminescent carbon dots (CDs) have received ever-increasing attention in the application of optical bioimaging because of their low toxicity, tunable fluorescent properties, and ultracompact size. We report for the first time on enhanced photoluminescence (PL) performance influenced by structure effects among the various types of nitrogen doped (N-doped) PL CDs. These CDs were facilely synthesized from condensation carbonization of linear polyethylenic amine (PEA) analogues and citric acid (CA) of different ratios. Detailed structural and property studies demonstrated that either the structures or the molar ratio of PEAs altered the PL properties of the CDs. The content of conjugated π-domains with C═N in the carbon backbone was correlated with their PL Quantum Yield (QY) (up to 69%). The hybridization between the surface/molecule state and the carbon backbone synergistically affected the chemical/physical properties. Also, long-chain polyethylenic amine (PEA) molecule-doped CDs exhibit increasing photostability, but at the expense of PL efficiency, proving that the PL emission of high QY CDs arise not only from the sp(2)/sp(3) carbon core and surface passivation of CDs, but also from the molecular fluorophores integrated in the CDs. In vitro and in vivo bioimaging of these N-doped CDs showed strong photoluminescence signals. Good biocompatibility demonstrates their potential feasibility for bioimaging applications. In addition, the overall size profile of the as-prepared CDs is comparable to the average size of capillary pores in normal living tissues (∼5 nm). Our study provides valuable insights into the effects of the PEA doping ratios on photoluminescence efficiency, biocompatibility, cellular uptake, and optical bioimaging of CDs.

  5. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.).

    PubMed

    Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E

    2017-06-01

    Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.

  6. Increased expression of placental growth factor in high-grade endometrial carcinoma

    PubMed Central

    COENEGRACHTS, LIEVE; SCHRAUWEN, STEFANIE; VAN BREE, RITA; DESPIERRE, EVELYN; LUYTEN, CATHERINE; JONCKX, BART; STASSEN, JEAN MARIE; VERGOTE, IGNACE; AMANT, FRÉDÉRIC

    2013-01-01

    Placental growth factor (PlGF), a homolog of vascular endothelial growth factor (VEGF), exerts pleiotropic functions in cancer by affecting tumor cells as well as endothelial and inflammatory cells. Moreover, PlGF expression correlates with tumor stage, recurrence, metastasis and patient outcome in different types of cancer. Recently, administration of anti-PlGF therapy reduced tumor growth and metastasis in preclinical tumor models. In the present study, we evaluated the diagnostic and prognostic value of systemic and local expression of PlGF in primary endometrial carcinomas. PlGF levels in tumor lysates (n=128) and serum (n=88) of patients with primary endometrial cancer were determined using ELISA. PlGF mRNA expression in endometrial carcinoma tissues was quantified by quantitative qRT-PCR. Results were compared to endometrial cancer stage and grade. Systemic PlGF levels were not altered in patients with endometrial cancer (FIGO stage I-II-III) as compared to healthy controls. Only in FIGO stage IV patients, serum PlGF levels were slightly increased. Local PlGF mRNA and protein expression in endometrial tumors progressively increased with tumor grade. In endometrioid carcinomas, PlGF mRNA expression was significantly increased in endometrioid grade 3 tumors as compared to normal endometrial tissue. PlGF protein expression was significantly increased in endometrioid grade 2 and 3 carcinomas and in serous carcinomas as compared to normal endometrial tissue. Our study showed that systemic/serum PlGF levels cannot be used as a diagnostic or prognostic marker in endometrial cancer. However, the increased local expression of PlGF, primarily in high-grade carcinomas, underscores the possibility for preclinical assessment of anti-PlGF therapy in endometrial cancer. PMID:23232836

  7. Increased expression of placental growth factor in high-grade endometrial carcinoma.

    PubMed

    Coenegrachts, Lieve; Schrauwen, Stefanie; Van Bree, Rita; Despierre, Evelyn; Luyten, Catherine; Jonckx, Bart; Stassen, Jean Marie; Vergote, Ignace; Amant, Frédéric

    2013-02-01

    Placental growth factor (PlGF), a homolog of vascular endothelial growth factor (VEGF), exerts pleiotropic functions in cancer by affecting tumor cells as well as endothelial and inflammatory cells. Moreover, PlGF expression correlates with tumor stage, recurrence, metastasis and patient outcome in different types of cancer. Recently, administration of anti-PlGF therapy reduced tumor growth and metastasis in preclinical tumor models. In the present study, we evaluated the diagnostic and prognostic value of systemic and local expression of PlGF in primary endometrial carcinomas. PlGF levels in tumor lysates (n=128) and serum (n=88) of patients with primary endometrial cancer were determined using ELISA. PlGF mRNA expression in endometrial carcinoma tissues was quantified by quantitative qRT-PCR. Results were compared to endometrial cancer stage and grade. Systemic PlGF levels were not altered in patients with endometrial cancer (FIGO stage I-II-III) as compared to healthy controls. Only in FIGO stage IV patients, serum PlGF levels were slightly increased. Local PlGF mRNA and protein expression in endometrial tumors progressively increased with tumor grade. In endometrioid carcinomas, PlGF mRNA expression was significantly increased in endometrioid grade 3 tumors as compared to normal endometrial tissue. PlGF protein expression was significantly increased in endometrioid grade 2 and 3 carcinomas and in serous carcinomas as compared to normal endometrial tissue. Our study showed that systemic/serum PlGF levels cannot be used as a diagnostic or prognostic marker in endometrial cancer. However, the increased local expression of PlGF, primarily in high-grade carcinomas, underscores the possibility for preclinical assessment of anti-PlGF therapy in endometrial cancer.

  8. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasai, Ryo, E-mail: rsasai@riko.shimane-u.ac.jp; Shinomura, Hisashi

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr{sub 4}{sup 2-} layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization.more » Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: Black-Right-Pointing-Pointer PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. Black-Right-Pointing-Pointer Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. Black-Right-Pointing-Pointer PL property of the present hybrid could also be varied by photoisomerization.« less

  9. The contribution of antiphospholipid antibodies to organ damage in systemic lupus erythematosus.

    PubMed

    Taraborelli, M; Leuenberger, L; Lazzaroni, M G; Martinazzi, N; Zhang, W; Franceschini, F; Salmon, J; Tincani, A; Erkan, D

    2016-10-01

    The objective of this study was to assess the contribution of clinically significant antiphospholipid antibodies (aPL) to organ damage in systemic lupus erythematosus (SLE). Patients with disease duration of less than 10 years and at least 5 years of follow-up were identified from two SLE registries. A clinically significant antiphospholipid antibody (aPL) profile was defined as: positive lupus anticoagulant, anticardiolipin IgG/M ≥ 40 G phospholipid units (GPL)/M phospholipid units (MPL), and/or anti-β2-glycoprotein-I IgG/M ≥ 99th percentile on two or more occasions, at least 12 weeks apart. Organ damage was assessed by the Systemic Lupus International Collaborating Clinics Damage Index (SDI). Univariate and multivariate analysis compared SLE patients with and without SDI increase during a 15-year follow-up. Among 262 SLE patients, 33% had a clinically significant aPL profile, which was associated with an increased risk of organ damage accrual during a 5-year follow-up in univariate analysis, and during a 15-year follow-up in the multivariate analysis adjusting for age, gender, race, disease duration at registry entry, and time. In the multivariate analysis, older age at diagnosis and male gender were also associated with SDI increase at each time point. A clinically significant aPL profile is associated with an increased risk of organ damage accrual during a 15-year follow-up in SLE patients. © The Author(s) 2016.

  10. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  11. The location of the peroneus longus tendon in the cuboid groove: sonographic study in various positions of the ankle-foot in asymptomatic volunteers.

    PubMed

    Choo, Hye Jung; Lee, Sun Joo; Huang, Brady K; Resnick, Donald L

    2018-04-10

    To evaluate the normal location of the peroneus longus tendon (PL) in the cuboid groove in various ankle-foot positions by ultrasonography in asymptomatic volunteers. Ultrasonographic assessment of the PL in the cuboid groove was performed in 20 feet of ten healthy volunteers. Each PL was examined in five ankle-foot positions (i.e., neutral, dorsiflexion, plantar-flexion, supination, and pronation). The PL location was qualitatively categorized as "inside" when the PL was entirely within the cuboid groove, as "overlying" when some part of the PL was perched on the cuboid tuberosity, and as "outside" when the PL was entirely on the cuboid tuberosity. For quantitative evaluation of the PL location, the distance between the PL and the cuboid groove was measured. The width of the cuboid groove was measured in the neutral position. The PL location did not significantly change with changes in the ankle-foot position. Qualitatively, an "overlying" PL was the most common type, regardless of the ankle-foot position. "Inside" PLs were found in only 35, 20, 30, 25, and 35% of feet in neutral, dorsiflexion, plantar-flexion, supination, and pronation positions, respectively. The quantitative PL location was also not significantly different among all ankle-foot positions and it was significantly negatively correlated with the cuboid groove width. In healthy volunteers, 65% or more of the PLs were partially or completely located outside of the cuboid groove, regardless of the ankle-foot position. The PL location relative to the cuboid groove was related to the cuboid groove width.

  12. Construction of a Genetic System for Streptomyces albulus PD-1 and Improving Poly(ε-L-lysine) Production Through Expression of Vitreoscilla Hemoglobin.

    PubMed

    Xu, Zhaoxian; Cao, Changhong; Sun, Zhuzhen; Li, Sha; Xu, Zheng; Feng, Xiaohai; Xu, Hong

    2015-11-01

    Poly(ε-L-lysine) (ε-PL) is a novel bioactive polymer secreted by filamentous bacteria. Owing to lack of a genetic system for most ε-PL-producing strains, very little research on enhancing ε-PL biosynthesis by genetic manipulation has been reported. In this study, an effective genetic system was established via intergeneric conjugal transfer for Streptomyces albulus PD-1, a famous ε-PL-producing strain. Using the established genetic system, the Vitreoscilla hemoglobin (VHb) gene was integrated into the chromosome of S. albulus PD-1 to alleviate oxygen limitation and to enhance the biosynthesis of ε-PL in submerged fermentation. Ultimately, the production of ε-PL increased from 22.7 g/l to 34.2 g/l after fed-batch culture in a 5 L bioreactor. Determination of the oxygen uptake rate, transcriptional level of ε-PL synthetase gene, and ATP level unveiled that the expression of VHb in S. albulus PD-1 enhanced ε-PL biosynthesis by improving respiration and ATP supply. To the best of our knowledge, this is the first report on enhancing ε-PL production by chromosomal integration of the VHb gene in an ε-PL-producing strain, and it will open a new avenue for ε-PL production.

  13. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.

    PubMed

    Iudicone, Paola; Fioravanti, Daniela; Bonanno, Giuseppina; Miceli, Michelina; Lavorino, Claudio; Totta, Pierangela; Frati, Luigi; Nuti, Marianna; Pierelli, Luca

    2014-01-27

    Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures.

  14. Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells

    PubMed Central

    2014-01-01

    Background Supplements to support clinical-grade cultures of mesenchymal stem cells (MSC) are required to promote growth and expansion of these cells. Platelet lysate (PL) is a human blood component which may replace animal serum in MSC cultures being rich in various growth factors. Here, we describe a plasma poor pathogen-free platelet lysate obtained by pooling 12 platelet (PLT) units, to produce a standardized and safe supplement for clinical-grade expansion of MSC. Methods PL lots were obtained by combining 2 6-unit PLT pools in additive solution (AS) following a transfusional-based procedure including pathogen inactivation (PI) by Intercept technology and 3 cycles of freezing/thawing, followed by membrane removal. Three PI-PL and 3 control PL lots were produced to compare their ability to sustain bone marrow derived MSC selection and expansion. Moreover, two further PL, subjected to PI or not, were also produced starting from the same initial PLT pools to evaluate the impact of PI on growth factor concentration and capacity to sustain cell growth. Additional PI-PL lots were used for comparison with fetal bovine serum (FBS) on MSC expansion. Immunoregulatory properties of PI-PL-generated MSC were documented in vitro by mixed lymphocyte culture (MLC) and peripheral blood mononuclear cells (PBMC) mitogen induced proliferation. Results PI-PL and PL control lots had similar concentrations of 4 well-described growth factors endowed with MSC stimulating ability. Initial growth and MSC expansion by PI-PL and PL controls were comparable either using different MSC populations or in head to head experiments. Moreover, PI-PL and PL control sustained similar MSC growth of frozen/thawed MSC. Multilineage differentiation of PI-derived and PI-PL-derived MSC were maintained in any MSC cultures as well as their immunoregulatory properties. Finally, no direct impact of PI on growth factor concentration and MSC growth support was observed, whereas the capacity of FBS to sustain MSC expansion in basic medium was irrelevant as compared to PL and PI-PL. Conclusion The replacement of animal additives with human supplements is a basic issue in MSC ex vivo production. PI-PL represents a standardized, plasma-poor, human preparation which appears as a safe and good candidate to stimulate MSC growth in clinical-scale cultures. PMID:24467837

  15. 3D Architecture and evolution of the Po Plain-Northern Adriatic Foreland basin during Plio-Pleistocene time

    NASA Astrophysics Data System (ADS)

    Amadori, Chiara; Toscani, Giovanni; Ghielmi, Manlio; Maesano, Francesco Emanuele; D'Ambrogi, Chiara; Lombardi, Stefano; Milanesi, Riccardo; Panara, Yuri; Di Giulio, Andrea

    2017-04-01

    The Pliocene-Pleistocene tectonic and sedimentary evolution of the eastern Po Plain and northern Adriatic Foreland Basin (PPAF) (extended ca. 35,000 km2) was the consequence of severe Northern Apennine compressional activity and climate-driven eustatic changes. According with the 2D seismic interpretation, facies analysis and sequence stratigraphy approach by Ghielmi et al. (2013 and references therein), these tectono-eustatic phases generated six basin-scale unconformities referred as Base Pliocene (PL1), Intra-Zanclean (PL2), Intra-Piacenzian (PL3), Gelasian (PL4), Base Calabrian (PS1) and Late Calabrian (PS2). We present a basin-wide detailed 3D model of the PPAF region, derived from the interpretation of these unconformities in a dense network of seismic lines (ca. 6,000 km) correlated with more than 200 well stratigraphies (courtesy of ENI E&P). The initial 3D time-model has been time-to-depth converted using the 3D velocity model created with Vel-IO 3D, a tool for 3D depth conversions and then validated and integrated with depth domain dataset from bibliography and well log. Resultant isobath and isopach maps are produced to inspect step-by-step the basin paleogeographic evolution; it occurred through alternating stages of simple and fragmented foredeeps. Changes in the basin geometry through time, from the inner sector located in the Emilia-Romagna Apennines to the outermost region (Veneto and northern Adriatic Sea), were marked by repeated phases of outward migration of two large deep depocenters located in front of Emilia arcs on the west, and in front of Ferrara-Romagna thrusts on the east. During late Pliocene-early Pleistocene, the inner side of the Emilia-Romagna arcs evolved into an elongated deep thrust-top basin due to a strong foredeep fragmentation then, an overall tectono-stratigraphic analysis shows also a decreasing trend of tectonic intensity of the Northern Apennine since Pleistocene until present.

  16. Particulate systems based on pectin/chitosan association for the delivery of manuka honey components and platelet lysate in chronic skin ulcers.

    PubMed

    Tenci, Marika; Rossi, Silvia; Bonferoni, Maria Cristina; Sandri, Giuseppina; Boselli, Cinzia; Di Lorenzo, Arianna; Daglia, Maria; Icaro Cornaglia, Antonia; Gioglio, Luciana; Perotti, Cesare; Caramella, Carla; Ferrari, Franca

    2016-07-25

    The aim of the present work was the development of a powder formulation for the delivery of manuka honey (MH) bioactive components and platelet lysate (PL) in chronic skin ulcers. In particular pectin (PEC)/chitosan (CS) particles were prepared by ionotropic gelation in the presence of calcium chloride and subsequently characterized for particle size, hydration properties and mechanical resistance. Different experimental conditions (calcium chloride and CS concentrations; rest time in the cationic solution) were considered in order to obtain particles characterized by optimal size, hydration properties and mechanical resistance. Two different fractions of MH were examined: one (Fr1), rich in methylglyoxal and the other (Fr2), rich in polyphenols. Particles were loaded with Fr1, fraction able to enhance in vitro proliferation of human fibroblasts, and with PL. The presence of CS in Fr1-loaded particles produced an improvement in cell proliferation. Moreover, PL loading into particles did not affect the biological activity of the hemoderivative. In vivo efficacy of PL- and Fr1-loaded particles was evaluated on a rat wound model. Both treatments markedly increased wound healing to the same extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Growth differences and competition between Listeria monocytogenes strains determine their predominance on ham slices and lead to bias during selective enrichment with the ISO protocol.

    PubMed

    Zilelidou, Evangelia; Manthou, Evanthia; Skandamis, Panagiotis

    2016-10-17

    Listeria monocytogenes strains are widespread in the environment where they live well mixed, often resulting in multiple strains contaminating a single food sample. The occurrence of different strains in the same food might trigger strain competition, contributing to uneven growth of strains in food and to bias during selective procedures. We tested the growth of seven L. monocytogenes strains (C5, 6179, ScottA, PL24, PL25, PL26, PL27) on ham slices and on nutrient-rich agar at 10°C, singly and in combinations. Strains were made resistant to different antibiotics for their selective enumeration. In addition, growth of single strains (axenic culture) and competition between strains in xenic cultures of two strains was evaluated in enrichment broth and on selective agar. According to ISO 11290-1:1996/Amd 1:2004 standard protocol for detection of L. monocytogenes, two enrichment steps both followed by streaking on ALOA were performed. Strain cultures were directly added in the enrichment broth or used to inoculate minced beef and sliced hams which were then mixed with enrichment broth. 180-360 colonies were used to determine the relative percentage of each strain recovered on plates per enrichment step. The data showed a significant impact of co-cultivation on the growth of six out of seven strains on ham and a bias towards certain strains during selective enrichment. Competition was manifested by: (i) cessation of growth for the outcompeted strain when the dominant strain reached stationary phase, (ii) reduction of growth rates or (iii) total suppression of growth (both on ham and in enrichment broth or ALOA). Outgrowth of strains by their competitors on ALOA resulted in limited to no recovery, with the outcompeting strain accounting for up to 100% of the total recovered colonies. The observed bias was associated with the enrichment conditions (i.e. food type added to the enrichment broth) and the strain-combination. The outcome of growth competition on food or nonselective agar surface did not necessarily coincide with the results of competition during enrichment. The results show that certain strains present in foods may be missed during classical detection due to strain competition and such likelihood should be taken into consideration when resolving a listeriosis outbreak. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enhanced Materials Based on Submonolayer Type-II Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamargo, Maria C; Kuskovsky, Igor L.; Meriles, Carlos

    2017-04-15

    We have investigated a nanostructured material known as sub-monolayer type-II QDs, made from wide bandgap II-VI semiconductors. Our goal is to understand and exploit their tunable optical and electrical properties by taking advantage of the type-II band alignment and quantum confinement effects. Type-II ZnTe quantum dots (QDs) in a ZnSe host are particularly interesting because of their relatively large valence band and conduction band offsets. In the current award we have developed new materials based on sub-monolayer type-II QDs that may be advantageous for photovoltaic and spintronics applications. We have also expanded the structural characterization of these materials by refiningmore » the X-ray diffraction methodologies needed to investigate them. In particular, we have 1) demonstrated ZnCdTe/ZnCdSe type-II QDs materials that have ideal properties for the development of novel high efficiency “intermediate band solar cells”, 2) we developed a comprehensive approach to describe and model the growth of these ultra-small type-II QDs, 3) analysis of the evolution of the photoluminescence (PL) emission, combined with other characterization probes allowed us to predict the size and density of the QDs as a function of the growth conditions, 4) we developed and implemented novel sophisticated X-ray diffraction techniques from which accurate size and shape of the buried type-II QDs could be extracted, 5) a correlation of the shape anisotropy with polarization dependent PL was observed, confirming the QDs detailed shape and providing insight about the effects of this shape anisotropy on the physical properties of the type-II QD systems, and 6) a detailed “time-resolved Kerr rotation” investigation has led to the demonstration of enhanced electron spin lifetimes for the samples with large densities of type-II QDs and an understanding of the interplay between the QDs and Te-isoelectroic centers, a defect that forms in the spacer layers that separate the QDs.« less

  19. Compositional dependence of red luminescence from Eu3+ ions doped single and mixed alkali fluoro tungsten tellurite glasses

    NASA Astrophysics Data System (ADS)

    Annapurna Devi, C. h. B.; Mahamuda, Sk.; Swapna, K.; Venkateswarlu, M.; Srinivasa Rao, A.; Vijaya Prakash, G.

    2017-11-01

    Trivalent europium ions doped single and mixed alkali fluoro tungsten tellurite glasses have been prepared via melt quenching method and characterized by using Raman, optical absorption, excitation, emission and time resolved spectral measurements to understand their utility in visible red emission. Raman spectrum is used to identify different functional groups present in the as prepared glasses. The optical absorption spectra recorded for all the glasses show six bands corresponding to the transitions 7F0→6D2, 7F0→6D1, 7F1→6D1, 7F0→6D0, 7F0→7F6, and 7F1→7F6. An excitation spectrum is used to measure the electron-phonon coupling strength 'g' and phonon energy of the glass host 'hω'. The photoluminescence (PL) spectra measured under 464 nm excitation show eight luminescence peaks related to the transitions 5D1→7F0 (509 nm), 5D1→7F1 (537 nm), 5D1→7F2 (556 nm), 5D0→7F0 (580 nm), 5D0→7F1 (592 nm), 5D0→7F2 (614 nm), 5D0→7F3 (652 nm) and 5D0→7F4 (701 nm) in all the glasses under investigation. Utilizing the Judd-Ofelt (J-O) parameters evaluated from the PL spectra, various radiative properties have been evaluated. From the decay spectra, experimental lifetimes were measured which are in turn used to evaluate the quantum efficiencies and non-radiatve decay rates in the as prepared glasses. The branching ratios, stimulated emission cross-section, quantum efficiency, colour co-ordinates and confocal images captured to confirm the suitability of these glasses for visible red luminescent devices.

  20. Influence of Internal Electric Field on the Recombination Dynamics of Localized Excitons in an InGaN Double-Quantum-Well Laser Diode Wafer Operated at 450 nm

    NASA Astrophysics Data System (ADS)

    Onuma, Takeyoshi; Chichibu, Shigefusa F.; Aoyama, Toyomi; Nakajima, Kiyomi; Ahmet, Parhat; Azuhata, Takashi; Chikyow, Toyohiro; Sota, Takayuki; Nagahama, Shin-ichi; Mukai, Takashi

    2003-12-01

    Optical and structural properties of an InGaN double-quantum-well (DQW) laser diode (LD) wafer that lased at 450 nm were investigated to discuss an enormous impact of a polarization-induced electric field on the recombination dynamics in InGaN quantum structures. The quantum-well (QW) structure was shown to have the well thickness as thin as approximately 1 nm and InN molar fraction x of approximately 14%. The gross effective electric field in the QW (FQW) was estimated to be 490 kV/cm from the Franz-Keldysh oscillation (FKO) period in the electroreflectance (ER) spectrum, implying that an internal piezoelectric field (Fpiz) of approximately 1.4 MV/cm was cancelled by the pn junction built-in field (Fbi) and Coulomb screening due to carriers in the DQW. The magnitude of FQW can be further weakened by applying reverse bias (VR) on the junction; the decrease in the photoluminescence (PL) lifetime at low temperature measured under VR was explained to be due to a recovery of electron-hole wavefunction overlap for small VR (|VR|<4 V), and due mainly to the tunneling escape of carriers through the barriers for larger VR. By applying an appropriate VR smaller than 4 V, electron-hole wavefunction overlap, which had been separated vertically along the c-axis due to quantum-confined Stark effect, could be partially recovered, and then the time-resolved PL signals exhibited a less-pronounced stretched exponential decay, giving a scaling parameter (β) of 0.85 and effective in-plane localization depth (E0) of 40-50 meV for the spontaneous emission. These values were closer to those of much homogeneous QWs compared to those reported previously for InGaN QWs having similar InN molar fractions. The use of very thin QWs is considered to bring easier Coulomb screening of FQW and population inversion under high excitation conditions.

  1. Er3+ -doped anatase TiO2 nanocrystals: crystal-field levels, excited-state dynamics, upconversion, and defect luminescence.

    PubMed

    Luo, Wenqin; Fu, Chengyu; Li, Renfu; Liu, Yongsheng; Zhu, Haomiao; Chen, Xueyuan

    2011-11-04

    A comprehensive survey of electronic structure and optical properties of rare-earth ions embedded in semiconductor nanocrystals (NCs) is of vital importance for their potential applications in areas as diverse as luminescent bioprobes, lighting, and displays. Er3+ -doped anatase TiO2 NCs, synthesized via a facile sol-gel solvothermal method, exhibit intense and well-resolved intra-4f emissions of Er3+ . Crystal-field (CF) spectra of Er3+ in TiO2 NCs are systematically studied by means of high-resolution emission and excitation spectra at 10-300 K. The CF analysis of Er3+ assuming a site symmetry of C(2v) yields a small root-mean-square deviation of 25.1 cm(-1) and reveals the relatively large CF strength (549 cm(-1) ) of Er3+, thus verifying the rationality of the C(2v) symmetry assignment of Er3+ in anatase TiO2 NCs. Based on a simplified thermalization model for the temperature-dependent photoluminescence (PL) dynamics from (4) S(3/2) , the intrinsic radiative luminescence lifetimes of (4) S(3/2) and (2) H(11/2) are experimentally determined to be 3.70 and 1.73 μs, respectively. Green and red upconversion (UC) luminescence of Er3+ can be achieved upon laser excitation at 974.5 nm. The UC intensity of Er3+ in Yb/Er-codoped NCs is found to be about five times higher than that of Er-singly-doped counterparts as a result of efficient Yb3+ sensitization and energy transfer upconversion (ETU) evidenced by its distinct UC luminescence dynamics. Furthermore, the origin of defect luminescence is revealed based on the temperature-dependent PL spectra upon excitation above the TiO2 bandgap at 325 nm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simultaneous NuSTAR/Chandra Observations of the Bursting Pulsar GRO J1744-28 During its Third Reactivation

    NASA Technical Reports Server (NTRS)

    Younes, G.; Kouveliotou, C.; Grefenstette, B. W.; Tomsick, J. A.; Tennant, A.; Finger, M. H.; Furst, F.; Pottschmidt, K.; Bhalerao, V.; Boggs, S. E.; hide

    2015-01-01

    We report on a 10 ks simultaneous Chandra/High Energy Transmission Grating (HETG)-Nuclear Spectroscopic Telescope Array (NuSTAR) observation of the Bursting Pulsar, GRO J1744-28, during its third detected outburst since discovery and after nearly 18 yr of quiescence. The source is detected up to 60 keV with an Eddington persistent flux level. Seven bursts, followed by dips, are seen with Chandra, three of which are also detected with NuSTAR. Timing analysis reveals a slight increase in the persistent emission pulsed fraction with energy (from 10% to 15%) up to 10 keV, above which it remains constant. The 0.5-70 keV spectra of the persistent and dip emission are the same within errors and well described by a blackbody (BB), a power-law (PL) with an exponential rolloff, a 10 keV feature, and a 6.7 keV emission feature, all modified by neutral absorption. Assuming that the BB emission originates in an accretion disk, we estimate its inner (magnetospheric) radius to be about 4 x 10(exp 7) cm, which translates to a surface dipole field B approximately 9 x 10(exp 10) G. The Chandra/HETG spectrum resolves the 6.7 keV feature into (quasi-)neutral and highly ionized Fe XXV and Fe XXVI emission lines. XSTAR modeling shows these lines to also emanate from a truncated accretion disk. The burst spectra, with a peak flux more than an order of magnitude higher than Eddington, are well fit with a PL with an exponential rolloff and a 10 keV feature, with similar fit values compared to the persistent and dip spectra. The burst spectra lack a thermal component and any Fe features. Anisotropic (beamed) burst emission would explain both the lack of the BB and any Fe components.

  3. Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes.

    PubMed

    Sun, Mingye; Zhu, Dehua; Ji, Wenyu; Jing, Pengtao; Wang, Xiuying; Xiang, Weidong; Zhao, Jialong

    2013-12-11

    Photoinduced electron transfer (ET) processes from CuInS2/CdS core/shell quantum dots (QDs) with different core sizes and shell thicknesses to TiO2 electrodes were investigated by time-resolved photoluminescence (PL) spectroscopy. The ET rates and efficiencies from CuInS2/CdS QDs to TiO2 were superior to those of CuInS2/ZnS QDs. An enhanced ET efficiency was surprisingly observed for 2.0 nm CuInS2 core QDs after growth of the CdS shell. On the basis of the experimental and theoretical analysis, the improved performances of CuInS2/CdS QDs were attributed to the passivation of nonradiative traps by overcoating shell and enhanced delocalization of electron wave function from core to CdS shell due to lower conduction band offset. These results indicated that the electron distribution regulated by the band alignment between core and shell of QDs and the passivation of surface defect states could improve ET performance between donor and acceptor.

  4. A Novel Water-Soluble Fluorescence Probe with Wash-Free Cellular Imaging Capacity Based on AIE Characteristics.

    PubMed

    Qian, Yunxia; Liu, Hongmei; Tan, Haijian; Yang, Qingmin; Zhang, Shuchen; Han, Lingui; Yi, Xuegang; Huo, Li; Zhao, Hongchi; Wu, Yonggang; Bai, Libin; Ba, Xinwu

    2017-05-01

    A potential real-time imaging water-soluble fluorescent polymer (P3) is facilely prepared via one-pot method. For P3, tetraphenylethene unit serves as the fluorescent unit, poly(acryloyl ethylene diamine) (a kind of polyelectrolyte) with specific degree of polymerization acts as water-soluble part. 1 H-NMR, gel permeation chromatography (GPC), UV-vis spectroscopy, photoluminescence (PL), and confocal laser scanning microscopy are undertaken to characterize the structure and property of P3. The results of wash-free cellular imaging show that the signal-to-noise ratio is high as the concentration of P3 is 50 μg mL -1 . In addition, the pH-responsive and Cd 2+ -responsive are also investigated in this paper. The results coming from pH-responsive show that P3 solution displays significant fluorescence under near neutral. And the result from the cellular imaging shows that intracellular fluorescence intensity enhances with the augment of concentration of Cd 2+ , which reveals that P3 can give a hint to resolve the dilemma of traditional fluorescent dyes used as living cellular fluorescent probe. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improving the photovoltaic performance of perovskite solar cells with acetate

    PubMed Central

    Zhao, Qian; Li, G. R.; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X. P.

    2016-01-01

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells. PMID:27934924

  6. Improving the photovoltaic performance of perovskite solar cells with acetate.

    PubMed

    Zhao, Qian; Li, G R; Song, Jian; Zhao, Yulong; Qiang, Yinghuai; Gao, X P

    2016-12-09

    In an all-solid-state perovskite solar cell, methylammonium lead halide film is in charge of generating photo-excited electrons, thus its quality can directly influence the final photovoltaic performance of the solar cell. This paper accentuates a very simple chemical approach to improving the quality of a perovskite film with a suitable amount of acetic acid. With introduction of acetate ions, a homogeneous, continual and hole-free perovskite film comprised of high-crystallinity grains is obtained. UV-visible spectra, steady-state and time-resolved photoluminescence (PL) spectra reveal that the obtained perovskite film under the optimized conditions shows a higher light absorption, more efficient electron transport, and faster electron extraction to the adjoining electron transport layer. The features result in the optimized perovskite film can provide an improved short-circuit current. The corresponding solar cells with a planar configuration achieves an improved power conversion efficiency of 13.80%, and the highest power conversion efficiency in the photovoltaic measurements is up to 14.71%. The results not only provide a simple approach to optimizing perovskite films but also present a novel angle of view on fabricating high-performance perovskite solar cells.

  7. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-06-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.

  8. Effect of location of glass fiber-reinforced composite reinforcement on the flexural properties of a maxillary complete denture in vitro.

    PubMed

    Takahashi, Yutaka; Yoshida, Kaneyoshi; Shimizu, Hiroshi

    2011-07-01

    Objective. To evaluate the effect of the location of glass fiber-reinforced composite (FRC) reinforcement on the flexural load at the proportional limit (FL-PL) and the flexural deflection of a maxillary acrylic resin complete denture. Material and methods. Maxillary acrylic resin complete dentures strengthened with and without FRC reinforcement were tested. The polymerized FRC was embedded in the denture base resin in the doughy state and placed (1) under the ridge lap region, (2) in the anterior region, (3) in the middle region or (4) in the anterior and posterior regions. The FL-PL and flexural deflection value at the 100-N loading point of the reinforced maxillary denture specimens were tested. Results. All of the reinforced dentures had a higher FL-PL than the denture without reinforcement but the FL-PL values of all the dentures were not significantly different from each other. The efficiency of the FRC reinforcement compared to the unreinforced denture was 1.54-1.75 times greater. All of the reinforced dentures showed significantly lower deflection compared to the unreinforced denture, but the flexural deflections of all the dentures were not significantly different from each other. Conclusions. The location of the FRC reinforcement did not affect the fracture resistance of the maxillary acrylic resin complete denture. All of the reinforced dentures had higher FL-PL and lower flexural deflection than the denture without reinforcement.

  9. Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: poly-L-lysine on polystyrene sulfate microspheres.

    PubMed

    Eckenrode, Heather M; Dai, Hai-Lung

    2004-10-12

    A nonlinear optical technique--second harmonic generation (SHG)--has been applied to characterize the adsorption of poly-L-lysine on micrometer size polystyrene particles, whose surface is covered with negatively charged sulfonate groups, in aqueous solutions. Adsorption behavior of the biopolymer with two chain lengths (14 and 75 amino acid units; PL14 and PL75) has been examined. Centrifugation experiments were also performed to support the adsorption measurements made using SHG. The adsorption free energies of the two polymers PL75 and PL14 are determined as -16.57 and -14.40 kcal/mol, respectively. The small difference in the adsorption free energies of the two chain lengths, however, leads to dramatic difference in the concentration needed for saturated surface coverage: nearly 50 times higher concentration is needed for the smaller polymer. Under acidic colloidal conditions, polylysine is found to adsorb in a relatively flat conformation on the surface. The surface area that each polylysine molecule occupies is nearly 1 order of magnitude larger than the size of the molecule in its extended form. The low adsorption density is likely a result from Coulombic repulsion between the positive charges on the amino acid units of PL. The measurements demonstrate the utility of SHG as an efficient and sensitive experimental approach for measuring adsorption characteristics of bio/macromolecules on colloidal particles and define surface and colloidal conditions for achieving maximum surface coverage of a widely used biopolymer. Copyright 2004 American Chemical Society

  10. Development of the pulmonary surfactant system in two oviparous vertebrates.

    PubMed

    Johnston, S D; Orgeig, S; Lopatko, O V; Daniels, C B

    2000-02-01

    In birds and oviparous reptiles, hatching is often a lengthy and exhausting process, which commences with pipping followed by lung clearance and pulmonary ventilation. We examined the composition of pulmonary surfactant in the developing lungs of the chicken, Gallus gallus, and of the bearded dragon, Pogona vitticeps. Lung tissue was collected from chicken embryos at days 14, 16, 18 (prepipped), and 20 (postpipped) of incubation and from 1 day and 3 wk posthatch and adult animals. In chickens, surfactant protein A mRNA was detected using Northern blot analysis in lung tissue at all stages sampled, appearing relatively earlier in development compared with placental mammals. Chickens were lavaged at days 16, 18, and 20 of incubation and 1 day posthatch, whereas bearded dragons were lavaged at day 55, days 57-60 (postpipped), and days 58-61 (posthatched). In both species, total phospholipid (PL) from the lavage increased throughout incubation. Disaturated PL (DSP) was not measurable before 16 days of incubation in the chick embryo nor before 55 days in bearded dragons. However, the percentage of DSP/PL increased markedly throughout late development in both species. Because cholesterol (Chol) remained unchanged, the Chol/PL and Chol/DSP ratios decreased in both species. Thus the Chol and PL components are differentially regulated. The lizard surfactant system develops and matures over a relatively shorter time than that of birds and mammals. This probably reflects the highly precocial nature of hatchling reptiles.

  11. In vitro evaluation of antibiotic diffusion from antibiotic-impregnated biodegradable beads and polymethylmethacrylate beads.

    PubMed Central

    Mader, J T; Calhoun, J; Cobos, J

    1997-01-01

    Antibiotic-impregnated beads are used in the dead bone space following debridement surgery to deliver local, high concentrations of antibiotics. Polymethylmethacrylate (PMMA), 2,000-molecular-weight (MW) polylactic acid (PLA), Poly(DL-lactide)-coglycolide (PL:CG; 90:10, 80:20, and 70:30), and the combination 2,000-MW PLA-70:20 PL:CG were individually mixed with clindamycin, tobramycin, or vancomycin. Beads were placed in 1 ml of phosphate-buffered saline (PBS) and incubated at 37 degrees C. The PBS was changed daily, and the removed PBS samples were stored at -70 degrees C until the antibiotic in each sample was determined by microbiological disk diffusion assay. Nondissolving PMMA beads with tobramycin and clindamycin had concentrations well above breakpoint sensitivity concentrations (i.e., the antibiotic concentrations at the transition point between bacterial killing and resistance to the antibiotic) for more than 90 days, but vancomycin concentrations dropped by day 12. ALl PLA, PL:CG, and the 2,000-MW PLA-70:30 PL:CG biodegradable beads release high concentrations of all the antibiotics in vitro for the period of time needed to treat bone infections (i.e., 4 to 8 weeks). Antibiotic-loaded PLA and PL:CG beads have the advantage of better antibiotic elution and the ability to biodegradable (thereby averting the need for secondary surgery for bead removal) compared to the PMMA beads presently used in the clinical setting. PMID:9021200

  12. Valley dynamics of intravalley and intervalley multiexcitonic states in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Fu, Jiyong; Bezerra, Andre; Qu, Fanyao

    2018-03-01

    We present a comprehensive model comprising of a complete set of rate equations, which account for charge transfer among multiexcitonic channels including excitons, trions, and biexcitons, to investigate valley (locked with spin) dynamics in monolayer WS2. The steady-state photoluminescence (PL) spectra, underlying the laser power dependence of excitonic populations, are also determined. Our computed PL for all excitonic states agrees with the experimental data of Paradisanos et al. [Appl. Phys. Lett. 110, 193102 (2017), 10.1063/1.4983285]. We find that the relative weight of PL, stemmed from different excitonic channels, strongly depends on the laser power even under dynamical conditions. Remarkably, the biexciton channel, having the weakest PL intensity at low laser powers, tends to prevail in PL over other excitonic states as the power strengthens. In addition, by accounting for intervalley scatterings, which enable transfer of excitonic states from one valley to the other, we determine the valley polarization, which strongly depends on intervalley scatterings and the exciton generation rates in the two valleys. On the other hand, the valley polarization for all excitonic channels is found almost independent of the laser power, consistent with experimental measurements as well. Finally, the valley dynamics involving both intra- and intervalley trions is discussed. Our model and numerical outcome should be beneficial to experiments especially featuring the interplay of multiexcitonic channels in, e.g., elucidating experimental data, estimating central excitonic quantities including recombination times and transition rates, and in widening possible new experimental scopes.

  13. Management of Munitions Constituents in Soil Using Alkaline Hydrolysis: A Guide for Practitioners

    DTIC Science & Technology

    2011-10-01

    Jan -05 Feb-05 Mar-05 Apr-05 R D X (m g) Control Treated distance in meters distance...soil RDX concentration by bay during the field demonstration (PL = post-lime). 0 2 4 6 8 10 12 Dec Dec (PL) Jan Mar Apr Apr (PL) Jul Oct (PL) Jan ... Jan (PL) Mar Jun Jun (PL) 2005 2006 2007 R D X C on ce nt ra tio n (m g/ kg ) Bay 2 (control) Bay 4 (limed) Study Date R D X C on ce nt ra tio

  14. Title VI in '76: Review of Projects Funded Under P.L. 91-230 Title VI-B, Education of the Handicapped Act, as Amended by P.L. 93-380 and P.L. 94-142. Fiscal Year 1976.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee.

    Summarized are 89 projects which served exceptional students in all 67 Florida school districts and were funded during the 1975-76 school year under P.L. 91-230 Title VI B (Education of the Handicapped Act) as ammended by P.L. 93-380 and P.L. 94-142. Projects are divided into the following major areas; Florida Learning Resources System,…

  15. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    NASA Astrophysics Data System (ADS)

    Sasai, Ryo; Shinomura, Hisashi

    2013-02-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr42- layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation.

  16. Photoinduced fluorescence intensity oscillation in a reaction-diffusion cell containing a colloidal quantum dot dispersion

    NASA Astrophysics Data System (ADS)

    Komoto, Atsushi; Maenosono, Shinya

    2006-09-01

    The nonlinear spontaneous oscillation of photoluminescence (PL) intensity in an ensemble of semiconductor quantum dots (QDs), which differs from the fluorescence intermittency of a single QD, is investigated. The PL intensity in a QD dispersion slowly oscillates with time under continuous illumination. The oscillatory behavior is found to vary with changing QD concentration, solvent viscosity, volume fraction of irradiated region, and irradiation intensity. On the basis of the Gray-Scott model [Chemical Oscillation and Instabilities: Non-linear Chemical Kinetics (Clarendon, Oxford, 1994); J. Phys. Chem. 89, 22 (1985); Chem. Eng. Sci. 42, 307 (1987)], and its comparison with the experimental results, it is revealed that the following processes are important for PL oscillation: (1) mass transfer of QDs between the illuminated and dark regions, (2) autocatalytic formation of vacant sites on QD surfaces via photodesorption of ligand molecules, and (3) passivation of vacant sites via photoadsorption of water molecules.

  17. Photoinduced fluorescence intensity oscillation in a reaction-diffusion cell containing a colloidal quantum dot dispersion.

    PubMed

    Komoto, Atsushi; Maenosono, Shinya

    2006-09-21

    The nonlinear spontaneous oscillation of photoluminescence (PL) intensity in an ensemble of semiconductor quantum dots (QDs), which differs from the fluorescence intermittency of a single QD, is investigated. The PL intensity in a QD dispersion slowly oscillates with time under continuous illumination. The oscillatory behavior is found to vary with changing QD concentration, solvent viscosity, volume fraction of irradiated region, and irradiation intensity. On the basis of the Gray-Scott model [Chemical Oscillation and Instabilities: Non-linear Chemical Kinetics (Clarendon, Oxford, 1994); J. Phys. Chem. 89, 22 (1985); Chem. Eng. Sci. 42, 307 (1987)], and its comparison with the experimental results, it is revealed that the following processes are important for PL oscillation: (1) mass transfer of QDs between the illuminated and dark regions, (2) autocatalytic formation of vacant sites on QD surfaces via photodesorption of ligand molecules, and (3) passivation of vacant sites via photoadsorption of water molecules.

  18. Comparative study of the oxidation of propranolol enantiomers in hepatic and small intestinal microsomes from cynomolgus and marmoset monkeys.

    PubMed

    Shimizudani, Takeshi; Nagaoka, Kenjiro; Hanioka, Nobumitsu; Yamano, Shigeru; Narimatsu, Shizuo

    2010-01-05

    Oxidative metabolism of propranolol (PL) enantiomers (R-PL and S-PL) to 4-hydroxypropranolol (4-OH-PL), 5-OH-PL and N-deisopropylpropranolol (NDP) was examined in hepatic microsomes from cynomolgus and marmoset monkeys and in small intestinal microsomes from monkeys and humans. In hepatic microsomes, levels of oxidation activities were similar between the two monkey species, and substrate enantioselectivity (R-PLS-PL) was seen in the formation of NDP in cynomolgus monkeys and humans and in the formation of 5-OH-PL in marmosets. The formation of the three metabolites in cynomolgus monkeys and the formation of NDP in marmosets were biphasic, while the formation of 4-OH-PL in humans was monophasic. From the inhibition experiments using CYP antibodies, CYP2C9 and 2C19 were thought to be involved as N-deisopropylases and CYP2D6 and 3A4 as 4-hydroxylases in human small intestine. Furthermore, CYP1A, 2C and 3A enzymes could be involved in cynomolgus monkeys and CYP2C and 3A enzymes in marmosets. These results indicate that the oxidative profile of PL in hepatic and small intestinal microsomes differ considerably among cynomolgus monkeys, marmosets and humans.

  19. Baseline placental growth factor levels for the prediction of benefit from early aspirin prophylaxis for preeclampsia prevention.

    PubMed

    Moore, Gaea S; Allshouse, Amanda A; Winn, Virginia D; Galan, Henry L; Heyborne, Kent D

    2015-10-01

    Placental growth factor (PlGF) levels early in pregnancy are lower in women who ultimately develop preeclampsia. Early initiation of low-dose aspirin reduces preeclampsia risk in some high risk women. We hypothesized that low PlGF levels may identify women at increased risk for preeclampsia who would benefit from aspirin. Secondary analysis of the MFMU High-Risk Aspirin study including singleton pregnancies randomized to aspirin 60mg/d (n=102) or placebo (n=72), with PlGF collected at 13w 0d-16w 6d. Within the placebo group, we estimated the probability of preeclampsia by PlGF level using logistic regression analysis, then determined a potential PlGF threshold for preeclampsia prediction using ROC analysis. We performed logistic regression modeling for potential confounders. ROC analysis indicated 87.71pg/ml as the threshold between high and low PlGF for preeclampsia-prediction. Within the placebo group high PlGF weakly predicted preeclampsia (AUC 0.653, sensitivity/specificity 63%/66%). We noted a 2.6-fold reduction in preeclampsia with aspirin in the high-PlGF group (12.15% aspirin vs 32.14% placebo, p=0.057), but no significant differences in preeclampsia in the low PlGF group (21.74% vs 15.91%, p=0.445). Unlike other studies, we found that high rather than low PlGF levels were associated with an increased preeclampsia risk. Low PlGF neither identified women at increased risk of preeclampsia nor women who benefitted from aspirin. Further research is needed to determine whether aspirin is beneficial in women with high PlGF, and whether the paradigm linking low PlGF and preeclampsia needs to be reevaluated. High-risk women with low baseline PlGF, a risk factor for preeclampsia, did not benefit from early initiation of low-dose aspirin. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  20. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    PubMed Central

    Muraglia, Anita; Nguyen, Van Thi; Nardini, Marta; Mogni, Massimo; Coviello, Domenico; Dozin, Beatrice; Strada, Paolo; Baldelli, Ilaria; Formica, Matteo; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2017-01-01

    Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i) an heparin-free human platelet lysate (PL) devoid of serum or plasma components (v-PL) and (ii) an heparin-free human serum derived from plasma devoid of PL components (Pl-s) and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC) primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment), but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79) regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype. PMID:29209609

Top