Time dependence of the pH of rain
John A. Kadlecek; Volkar A. Mohnen
1976-01-01
Standard procedures for determining the pH of rain samples usually involve substantial delays from the time of rainfall to the time of analysis. This assumes that no change in pH occurs during the storage period. We have found that this is not always true. We have determined that individual rain water samples possess a time dependent pH which can be correlated with the...
Factors associated with ruminal pH at herd level.
Geishauser, T; Linhart, N; Neidl, A; Reimann, A
2012-08-01
The objective of this study was to evaluate factors associated with ruminal pH at herd level. Four hundred and thirty-two cows of a Thuringian dairy herd were sampled before claw trimming using a rumen fluid scoop. Volume and pH of the rumen sample were measured, and lactation number, percentage of concentrates in the ration, days in milk (DIM), time of day, and daily milk yield were recorded. Rumen sampling was successful in 99.8% of the cows. The average sample volume was 25 mL. Rumen sample pH decreased with increasing percentage of concentrates in the ration. Ruminal pH decreased from calving to 77 DIM, and grew subsequently to 330 DIM. During the day, rumen pH followed a sinus curve, with maxima in the morning (0915 h) and afternoon (1533 h), and a minimum around noon (1227 h). Ruminal pH decreased with increasing daily milk yield. Lactation number interacted with daily milk yield on rumen pH. The percentage of concentrates in the ration, DIM, time of day, and daily milk yield were significant factors affecting ruminal pH at the herd level. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Injection moulded microneedle sensor for real-time wireless pH monitoring.
Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer
2017-07-01
This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.
Koopmans, M.P.; Rijpstra, W.I.C.; Klapwijk, M.M.; De Leeuw, J. W.; Lewan, M.D.; Sinninghe, Damste J.S.
1999-01-01
A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.A thermal and chemical degradation approach was followed to determine the precursors of pristane (Pr) and phytane (Ph) in samples from the Gessoso-solfifera, Ghareb and Green River Formations. Hydrous pyrolysis of these samples yields large amounts of Pr and Ph carbon skeletons, indicating that their precursors are predominantly sequestered in high-molecular-weight fractions. However, chemical degradation of the polar fraction and the kerogen of the unheated samples generally does not release large amounts of Pr and Ph. Additional information on the precursors of Pr and Ph is obtained from flash pyrolysis analyses of kerogens and residues after hydrous pyrolysis and after chemical degradation. Multiple precursors for Pr and Ph are recognised in these three samples. The main increase of the Pr/Ph ratio with increasing maturation temperature, which is associated with strongly increasing amounts of Pr and Ph, is probably due to the higher amount of precursors of Pr compared to Ph, and not to the different timing of generation of Pr and Ph.
Latysh, N.; Gordon, J.
2004-01-01
A study was undertaken to investigate differences between laboratory and field pH measurements for precipitation samples collected from 135 weekly precipitation-monitoring sites in the National Trends Network from 12/30/1986 to 12/28/1999. Differences in pH between field and laboratory measurements occurred for 96% of samples collected during this time period. Differences between the two measurements were evaluated for precipitation samples collected before and after January 1994, when modifications to sample-handling protocol and elimination of the contaminating bucket o-ring used in sample shipment occurred. Median hydrogen-ion and pH differences between field and laboratory measurements declined from 3.9 ??eq L-1 or 0.10 pH units before the 1994 protocol change to 1.4 ??eq L-1 or 0.04 pH units after the 1994 protocol change. Hydrogen-ion differences between field and laboratory measurements had a high correlation with the sample pH determined in the field. The largest pH differences between the two measurements occurred for high-pH samples (>5.6), typical of precipitation collected in Western United States; however low- pH samples (<5.0) displayed the highest variability in hydrogen-ion differences between field and laboratory analyses. Properly screened field pH measurements are a useful alternative to laboratory pH values for trend analysis, particularly before 1994 when laboratory pH values were influenced by sample-collection equipment.
Group-V atoms exchange due to exposure of InP surface to AsH3(+PH3) revealed by x-ray CTR scattering
NASA Astrophysics Data System (ADS)
Tabuchi, M.; Yamada, N.; Fujibayashi, K.; Takeda, Y.; Kamei, H.
1996-05-01
We conducted x-ray crystal truncation rod (CTR) measurements using synchro-tron radiation to analyze the As atom distribution in InP to the order of 1 ML. The InP samples which were only exposed to AsH3(+PH3) and capped by InP were investigated to study the effect of the purge sequence. The purge sequence is unavoidable to grow heteroepitaxial layers by OMVPE and is considered to affect largely the structure of the interface. From the results of the measurement and the computer simulation, the distribution of P and As atoms of the order of 1 ML was discussed as functions of the exposing time. It was shown that the number of As atoms contained in the samples saturated when the AsH3-exposure time is longer than 10 s. Comparing the profiles of AsH3-exposed samples with that of (AsH3 + PH3)-exposed samples, it was found that the As distribution in the buffer layer was suppressed in (AsH3 + PH3)-exposed samples. In order to obtain the sharp interfaces, the AsH3-exposure time must be shorter than 0.5 s.
Chemical induced demineralization study in cortical bone
NASA Astrophysics Data System (ADS)
Sales, E.; da Silva, C. E. R.; Letichevsky, S.; dos Santos, R.; Leitao, R.; dos Santos, C. T.; de Oliveira, L. F.; de Avillez, R.; Monteiro, M.; Costa-Felix, R.; Paciornik, S.; dos Anjos, M.
2018-05-01
In this work we present a study of demineralization in bovine cortical bone. We selected 9 fresh cortical bone samples from 2 diaphyseal femurs for analysis. Samples were demineralized for 24 h, 48 h, 72 h and 96 h using two concentrations of EDTA with different pH: EDTA 0.1 M (pH 10, alkaline) and EDTA 0.5 M (pH 7.4, neutral). We have employed μ-X-ray fluorescence (μ-XRF) and X-ray diffraction (XRD) to assess the degree of demineralization. EDTA solutions were analyzed for Calcium (Ca) and Phosphorous (P) extractions by Atomic Absorption Spectrophotometry (AAS) and Ion Chromatography (IC), respectively. Results from AAS and IC showed that EDTA 0.5 M (pH 7.4) removed two times more Ca and 3 times more P than EDTA 0.1 M (pH 10) in the first 24 hours. μ-XRF results presented that EDTA has a high capacity to bind Calcium and Phosphorus. On the other hand, despite the differences in concentration and pH, EDTA did not bind Zn and Sr. Results from XRD showed that EDTA with high concentration had a greater impact to the samples' crystallinity causing a severe damage.
Albasan, Hasan; Lulich, Jody P; Osborne, Carl A; Lekcharoensuk, Chalermpol; Ulrich, Lisa K; Carpenter, Kathleen A
2003-01-15
To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats. Randomized complete block design. 31 dogs and 8 cats. Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6 degrees C [68 vs 43 degrees F]) for 6 or 24 hours. Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity. Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine.
Skopp, Gisela; Pötsch, Lucia
2004-01-01
Preanalytical stability of a drug and its major metabolites is an important consideration in pharmacokinetic studies or whenever the analyte pattern is used to estimate drug habits. Firstly, the stability of free and glucuronidated 11-nor-delta9-tetrahydrocannabinol-9-carboxylic acid (THCCOOH, THCCOOglu) in authentic urine samples was investigated. Random urine samples of cannabis users (n = 38) were stored at -20, 4, and 20 degrees C up to 15 days and up to 5 days at 40 degrees C, and alterations of the analyte pattern during storage were followed by liquid chromatography-tandem mass spectrometry. Secondly, the influence of pH (range 5.0-8.0) on the stability of the analytes was studied using spiked urine to elucidate the results obtained from authentic samples. In authentic urine samples, the initial pH ranged from 5.1 to 8.8. The glucuronide was found to be highly labile at a storage temperature of 4 degrees C and above. Initially, 18 urine samples tested positive for THCCOOH. After 2 days storage at 20 degrees C, THCCOOH was detectable in a further 4 samples, and 7 more samples tested positive for THCCOOH (5-81 ng/mL) after 15 days. Depending on time and temperature, the glucuronide concentration decreased, resulting in an increase of THCCOOH concentration. However, a loss in mean total THCCOOH concentration was found, which was significantly higher in deteriorated samples than in samples without signs of deterioration after 15 days of storage at 20 degrees C. In the drug-free urine sample separately spiked with THCCOOglu or THCCOOH, the investigations on the stability of the target analytes at various pH values revealed that THCCOOH was stable at pH 5.0. At higher pH values, its concentration slightly decreased with time, and about 69% of the initial THCCOOH concentration was still present at pH 8.0 on day 5. THCCOOglu concentrations rapidly decreased with increasing pH value. For example, only 72% of the initial THCCOOglu concentration could be detected at pH 5.0 on day 1. Degradation of the glucuronide resulted in formation of THCCOOH, which was observed even at pH 5.0. In light of the present findings, advanced forensic interpretations based on the presence of THCCOOH or the pattern of THCCOOH and THCCOOglu in stored urine samples seems questionable.
Sodium bicarbonate ingestion and individual variability in time-to-peak pH.
Sparks, Andy; Williams, Emily; Robinson, Amy; Miller, Peter; Bentley, David J; Bridge, Craig; Mc Naughton, Lars R
2017-01-01
This study determined variability in time-to-peak pH after consumption of 300 mg kg - 1 of sodium bicarbonate. Seventeen participants (mean ± SD: age 21.38 ± 1.5 years; mass 75.8 ± 5.8 kg; height 176.8 ± 7.6 cm) reported to the laboratory where a resting capillary sample was taken. Then, 300 mg kg -1 of NaHCO 3 in 450 ml of flavoured water was ingested. Participants rested for 90 min and repeated blood samples were procured at 10 min intervals for 60 min and then every 5 min until 90 min. Blood pH concentrations were measured. Results suggested that time-to-peak pH (64.41 ± 18.78 min) was variable with a range of 10-85 min and a coefficient of variation of 29.16%. A bimodal distribution occurred, at 65 and 75 min. In conclusion, athletes, when using NaHCO 3 as an ergogenic aid, should determine their time-to-peak pH to best utilize the added buffering capacity this substance allows.
Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.
Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan
2013-06-26
We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.
Stratton-Phelps, Meri; House, John K
2004-10-01
To determine whether feeding a commercial anionic dietary supplement as a urinary acidifier to male goats may be useful for management of urolithiasis. 8 adult sexually intact male Toggenburg, Saanen, and Nubian goats. Goats were randomly assigned by age-, breed-, and weight-matched pairs to an oat or grass hay diet that was fed for 12 days. On days 13 to 14 (early sample collection time before supplementation), measurements were made of blood and urine sodium, potassium, calcium, magnesium, chloride, phosphorus, and sulfur concentrations; blood and urine pH; urine production; and water consumption. During the next 28 days, the anionic dietary supplement was added to the oat and grass hay diets to achieve a dietary cation-anion difference of 0 mEq/100g of dry matter. Blood and urine samples were analyzed during dietary supplementation on days 12 to 13 (middle sample collection time) and 27 to 28 (late sample collection time). Blood bicarbonate, pH, and urine pH of goats fed grass hay and goats fed oat hay were significantly decreased during the middle and late sample collection times, compared with the early sample collection time. Water consumption and urine production in all goats increased significantly during the late sample collection time, compared with the early sample collection time. The anionic dietary supplement used in our study increases urine volume, alters urine ion concentrations, and is an efficacious urinary acidifier in goats. Goats treated with prolonged anionic dietary supplementation should be monitored for secondary osteoporosis from chronic urinary calcium loss.
Field Performance of ISFET based Deep Ocean pH Sensors
NASA Astrophysics Data System (ADS)
Branham, C. W.; Murphy, D. J.
2017-12-01
Historically, ocean pH time series data was acquired from infrequent shipboard grab samples and measured using labor intensive spectrophotometry methods. However, with the introduction of robust and stable ISFET pH sensors for use in ocean applications a paradigm shift in the methods used to acquire long-term pH time series data has occurred. Sea-Bird Scientific played a critical role in the adoption this new technology by commercializing the SeaFET pH sensor and float pH Sensor developed by the MBARI chemical sensor group. Sea-Bird Scientific continues to advance this technology through a concerted effort to improve pH sensor accuracy and reliability by characterizing their performance in the laboratory and field. This presentation will focus on calibration of the ISFET pH sensor, evaluate its analytical performance, and validate performance using recent field data.
Nilsson, Gunnel H; Kugelberg, Fredrik C; Ahlner, Johan; Kronstrand, Robert
2014-01-01
A simple liquid chromatography-tandem mass spectrometry method was validated to allow determination of zopiclone (ZOP), N-desmethylzopiclone (NDZOP), zopiclone N-oxide (ZOPNO) and 2-amino-5-chloropyridine (ACP) in urine at concentrations up to 3,000 ng/mL within 3.5 min. This method was used for quantitative analysis of the analytes in authentic urine samples obtained 10 h after oral administration of zopiclone (Imovane(®)) and in aliquots of the same urine samples after different storage conditions. In addition, pH of each studied urine sample was measured over time. The results showed that formation of ACP occurred at elevated pH and/or temperature by degradation of ZOP, NDZOP and ZOPNO. This method was also applied to samples obtained from two female victims of drug-facilitated assault. One sample had been exposed to long-term storage conditions at different temperatures and at pH >8.2, which resulted in high concentrations of ACP. The other sample, which was exposed to pH <6.5, showed no formation of ACP. ACP is formed both from ZOP and from its metabolites NDZOP and ZOPNO depending on the pH of the urine, time of storage and/or the temperature conditions. For correct interpretation in forensic cases, ZOP, its major metabolites and ACP should be analyzed. When ACP is identified in urine, the concentrations of ZOP, NDZOP and ZOPNO should be interpreted with great caution. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Kretschmer, X. C.; Meitzner, G.; Gardea-Torresdey, J. L.; Webb, R.
2004-01-01
Whole cells and peptidoglycan isolated from cell walls of the cyanobacterium Anabaena flos-aquae were lyophilized and used at pH 2 and pH 5 in Cu(II) binding studies. X-ray absorption spectra measured at the Cu K-edge were used to determine the oxidation states and chemical environments of Cu species in the whole-cell and peptidoglycan samples. In the whole-cell samples, most of the Cu retained at both pH values was coordinated by phosphate ligands. The whole-cell fractions contained significant concentrations of Cu(I) as well as Cu(II). An X-ray absorption near-edge spectrum analysis suggested that Cu(I) was coordinated by amine and thiol ligands. An analysis of the peptidoglycan fractions found that more Cu was adsorbed by the peptidoglycan fraction prepared at pH 5, due to increased chelation by amine and carboxyl ligands. The peptidoglycan fractions, also referred to as the cell wall fractions, contained little or no Cu(I). The Cu loading level was 30 times higher in the cell wall sample prepared at pH 5 than in the sample prepared at pH 2. Amine and bidentate carboxyl ligands had similar relative levels of importance in cell wall peptidoglycan samples prepared at both pH values, but phosphate coordination was insignificant. PMID:14766554
NASA Astrophysics Data System (ADS)
Kahouadji, B.; Guerbous, L.; Boukerika, A.; Dolić, Slobodan D.; Jovanović, Dragana J.; Dramićanin, Miroslav D.
2017-08-01
Pr3+ -doped YPO4 nanophosphors prepared by simple sol gel method with different pH values (2, 4, 7 and 11) were obtained. The nanopowders samples were characterized by X-ray diffraction (XRD), room temperature steady and time resolved photoluminescence spectroscopy. The thorough study of pH influence on particle's structure and luminescence of YPO4: 1 at. Pr3+ is presented. It was found that the grain size of samples increases with increases in pH value and obtained particles crystallize in a tetragonal phase with xenotime structure. Under 4f5d excitation (230 nm), all emission spectra show the inter-configurational 4f2→4f5d and under 3P2 excitation (449 nm), only the intra-configurational 1D2→3H4 red emission transition between 580 nm and 620 nm are observed. The highest luminescent intensity was obtained for samples prepared at pH = 4. Furthermore, it was found that the pH of solution has no effect of 1D2 lifetime.
Evaluation of salivary surface tension in a cohort of young healthy adults.
Foglio-Bonda, P L; Laguini, E; Davoli, C; Pattarino, F; Foglio-Bonda, A
2018-03-01
To determine salivary pH, flow rate (FR) and surface tension (γs) in a cohort of 30 healthy young adults. To acquire cohort biological independent variables (age, gender, weight, height, medications, smoking, pathologies, and allergies) and to correlate them with pH, FR and γs obtained values. Evaluate the possible variation of the γs values during the time after the withdrawal and the influence of the operational abilities of the experimenting operators. Evaluate the relationship between γs, pH and FR and the dependence between pH and FR. Non-stimulated saliva samples were taken in four different time span, for three days, with a drooling method for 15 minutes. The saliva sample was analyzed, in terms of γs, by two different operators (OP1 and OP2), twice consecutive (γs-1 and γs-2) for a total of 360 measurements. The γs was calculated using the du Noüy method. The FR was evaluated by weighing technique and pH by pH indicator papers. The measurements of γs performed by two different operators (OP1, OP2) showed respectively average values of 46.46 mN/m and 43.45 mN/m, while the mean FR was 0.29 ± 0.13 mL/min and the average pH was 7.1 ± 0.43. There were no significant correlations between γs and the biological variables analyzed. We can consider as reference values, in a sample of young adults, γs 45.56 ± 6.51 mN/m.
A microplate assay for DNA damage determination (fast micromethod).
Batel, R; Jaksić, Z; Bihari, N; Hamer, B; Fafandel, M; Chauvin, C; Schröder, H C; Müller, W E; Zahn, R K
1999-06-01
A rapid and convenient procedure for DNA damage determination in cell suspensions and solid tissues on single microplates was developed. The procedure is based on the ability of commercially available fluorochromes to interact preferentially with dsDNA in the presence of ssDNA, RNA, and proteins at high pH (>12.0), thus allowing direct measurements of DNA denaturation without sample handling or stepwise DNA separations. The method includes a simple and rapid 40-min sample lysis in the presence of EDTA, SDS, and high urea concentration at pH 10, followed by time-dependent DNA denaturation at pH 12.4 after NaOH addition. The time course and the extent of DNA denaturation is followed in a microplate fluorescence reader at room temperature for less than 1 h. The method requires only 30 ng DNA per single well and could conveniently be used whenever fast analysis of DNA integrity in small samples has to be done, e.g., in patients' lymphocytes after irradiation or chemotherapy (about 3000 cells per sample), in solid tissues or biopsies after homogenization (about 25 microg tissue per well), or in environmental samples for genotoxicity assessment. Copyright 1999 Academic Press.
Effect of pH on Cleavage of Glycogen by Vaginal Enzymes
Spear, Greg T.; McKenna, Mary; Landay, Alan L.; Makinde, Hadijat; Hamaker, Bruce; French, Audrey L.; Lee, Byung-Hoo
2015-01-01
Glycogen expressed by the lower genital tract epithelium is believed to support Lactobacillus growth in vivo, although most genital isolates of Lactobacillus are not able to use glycogen as an energy source in vitro. We recently reported that α-amylase is present in the genital fluid of women and that it breaks down glycogen into small carbohydrates that support growth of lactobacilli. Since the pH of the lower genital tract can be very low, we determined how low pH affects glycogen processing by α-amylase. α-amylase in saliva degraded glycogen similarly at pH 6 and 7, but activity was reduced by 52% at pH 4. The glycogen degrading activity in nine genital samples from seven women showed a similar profile with an average reduction of more than 50% at pH 4. However, two samples collected from one woman at different times had a strikingly different pH profile with increased glycogen degradation at pH 4, 5 and 6 compared to pH 7. This second pH profile did not correlate with levels of human α-acid glucosidase or human intestinal maltase glucoamylase. High-performance anion-exchange chromatography showed that mostly maltose was produced from glycogen by samples with the second pH profile in contrast to genital α-amylase that yielded maltose, maltotriose and maltotetraose. These studies show that at low pH, α-amylase activity is reduced to low but detectable levels, which we speculate helps maintain Lactobacillus growth at a limited but sustained rate. Additionally, some women have a genital enzyme distinct from α-amylase with higher activity at low pH. Further studies are needed to determine the identity and distribution of this second enzyme, and whether its presence influences the makeup of genital microbiota. PMID:26171967
Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie
2017-08-01
Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very-low-power (femtowatt) detection of the pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stream Water Quality Modeling in the Great Smoky Mountains National Park
NASA Astrophysics Data System (ADS)
Barnett, T. W.; Robinson, R. B.
2003-12-01
The purpose of this study was to examine water quality in the acid-impacted Great Smoky Mountains National Park (GRSM). Water samples have been collected roughly quarterly at ninety sampling sites throughout the Park from October, 1993 to November, 2002.. These samples were analyzed for pH, acid neutralizing capacity (ANC), conductivity, major cations, and major anions. The trout fisheries of the GRSM are considered some of the best in the eastern United States. However, fisheries biologists at the GRSM believe that some of the streams that once supported trout populations twenty or thirty years ago, no longer do. This study outlines and quantifies surface water quality conditions that might be harmful to trout populations through a literature review. This study identifies 71 sites (79 percent of total sampling sites) that currently have a median pH of greater than 6.0, above which, is unlikely to be harmful to trout species unless a high runoff of acid, Al-rich water creates a mixing zone where Al(OH)3 precipitates. The precipitate can accumulate on the gills and impede normal diffusion of O2, CO2, and nutrients. There are 17 sites (18 percent) that have median pH values in the 5.0 to 6.0 range. This range of pH values is likely to be harmful to trout species when aluminum concentrations exceed about 0.2 mg/l. The lower end of this range is probably harmful to the eggs and fry of trout and also to non-acclimated trout especially when calcium, sodium, and chloride concentrations are low. Only two sampling sites have median pH values in the 4.5 to 5.0 range. This pH range is likely harmful to eggs, fry and adult trout, particularly in the soft water conditions prevalent in the GRSM. The mechanisms adversely affecting trout in these ranges are ionoregulatory dysfunction, respiratory stress, and circulatory stress. Currently, there are no sampling sites with median pH values less than 4.5, although pH values could be lowered by more than one pH unit during high-flow episodic events depending on the ANC in the stream. Stepwise multiple linear regression was used to model pH, ANC, nitrate and sulfate. This study incorporates basin characteristics, time, acid deposition data, USGS stream flow data as surrogate hydrologic data, and precipitation data, e.g., inches of rain on preceding days, to determine whether these variables are associated with water quality. Acid deposition data came from biweekly wet only and throughfall monitoring at the Noland Divide, which is a high elevation acid deposition monitoring site within the Park. Precipitation data is collected at five National Weather Service monitoring sites within the Park. Each of the above variables were found to be statistically significant (p<0.05) influencing factors to water quality, particularly pH. Water quality conditions were adversely (decreasing pH and ANC and increasing sulfate and nitrate) affected by increased stream flows, acid deposition and precipitation. Models for pH and ANC produced R-square values around 0.71 and 0.86, respectively. Nitrate and sulfate modeling produced R-square values around 0.30. This study also analyzes temporal trends in pH. Modeling reveals statistically significant decreasing trends in pH with time. If conditions remain the same and past trends continue, models suggest that 30.0 percent of the sampling sites will reach pH values less than 6.0 in less than 10 years, 63.3 percent of the sites will reach pH values less than 6.0 in less than 25 years, and 96.7 percent of the sites will reach pH values less than 6.0 in less than 50 years. The models used to predict future pH values explain around 70 percent of the variability in the data.
Comparison of functional aspects of the coagulation cascade in human and sea turtle plasmas.
Soslau, Gerald; Wallace, Bryan; Vicente, Catherine; Goldenberg, Seth J; Tupis, Todd; Spotila, James; George, Robert; Paladino, Frank; Whitaker, Brent; Violetta, Gary; Piedra, Rotney
2004-08-01
Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 degrees C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 degrees C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased, to varying extents, in a linear fashion relative to reduced pH with the rate of change greatest in leatherbacks>green>loggerhead turtles. All studies were conducted with reagents developed for human samples which would impact on the quantitative results with the turtle samples, but are not likely to alter the qualitative results. These comparative studies of the coagulation pathway in sea turtles and humans could enhance our knowledge of structure/function relationships and evolution of coagulation factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prusa, P.; Cechak, T.; Mares, J. A.
2008-01-28
Liquid phase epitaxy grown Lu{sub 3}Al{sub 5}O{sub 12}:Ce (LuAG:Ce) 20 {mu}m thick films and plate cut from the bulk Czochralski-grown LuAG:Ce crystal were prepared for comparison of photoelectron yield (PhY) and PhY dependence on shaping time (0.5-10 {mu}s). {sup 241}Am ({alpha} particles) was used for excitation. At the 0.5 {mu}s shaping time, the best film shows comparable PhY with the bulk sample. PhY of bulk material increases noticeably more with shaping time than that of the films. Energy resolution of films is better. Influence of Pb{sup 2+} contamination in the films (from the flux) and antisite Lu{sub Al} defect inmore » bulk material is discussed.« less
Barac, Radomir; Gasic, Jovanka; Trutic, Natasa; Sunaric, Slavica; Popovic, Jelena; Djekic, Petar; Radenkovic, Goran; Mitic, Aleksandar
2015-01-01
Objective To assess the erosive potential of various soft drinks by measuring initial pH and titratable acidity (TA) and to evaluate enamel surface roughness using different exposure times. Materials and Methods The initial pH of the soft drinks (group 1: Coca-Cola; group 2: orange juice; group 3: Cedevita; group 4: Guarana, and group 5: strawberry yoghurt) was measured using a pH meter, and TA was measured by titration with NaOH. Enamel samples (n = 96), cut from unerupted human third molars, were randomly assigned to 6 groups: experimental (groups 1–5) and control (filtered saliva). The samples were exposed to 50 ml of soft drinks for 15, 30 and 60 min, 3 times daily, during 10 days. Between immersions, the samples were kept in filtered saliva. Enamel surface roughness was measured by diamond stylus profilometer using the following roughness parameters: Ra, Rq, Rz, and Ry. Data were analyzed by one-way ANOVA, Tukey's post hoc and Student-Newman-Keuls post hoc tests. Results The pH values of the soft drinks ranged from 2.52 (Guarana) to 4.21 (strawberry yoghurt). Orange juice had the highest TA, requiring 5.70 ml of NaOH to reach pH 7.0, whereas Coca-Cola required only 1.87 ml. Roughness parameters indicated that Coca-Cola had the strongest erosion potential during the 15 min of exposure, while Coca-Cola and orange juice were similar during 30- and 60-min exposures. There were no significant differences related to all exposure times between Guarana and Cedevita. Strawberry yoghurt did not erode the enamel surface regardless of the exposure time. Conclusion All of the tested soft drinks except yoghurt were erosive. Erosion of the enamel surfaces exposed to Coca-Cola, orange juice, Cedevita, and Guarana was directly proportional to the exposure time. PMID:26111496
Barac, Radomir; Gasic, Jovanka; Trutic, Natasa; Sunaric, Slavica; Popovic, Jelena; Djekic, Petar; Radenkovic, Goran; Mitic, Aleksandar
2015-01-01
To assess the erosive potential of various soft drinks by measuring initial pH and titratable acidity (TA) and to evaluate enamel surface roughness using different exposure times. The initial pH of the soft drinks (group 1: Coca-Cola; group 2: orange juice; group 3: Cedevita; group 4: Guarana, and group 5: strawberry yoghurt) was measured using a pH meter, and TA was measured by titration with NaOH. Enamel samples (n = 96), cut from unerupted human third molars, were randomly assigned to 6 groups: experimental (groups 1-5) and control (filtered saliva). The samples were exposed to 50 ml of soft drinks for 15, 30 and 60 min, 3 times daily, during 10 days. Between immersions, the samples were kept in filtered saliva. Enamel surface roughness was measured by diamond stylus profilometer using the following roughness parameters: Ra, Rq, Rz, and Ry. Data were analyzed by one-way ANOVA, Tukey's post hoc and Student-Newman-Keuls post hoc tests. The pH values of the soft drinks ranged from 2.52 (Guarana) to 4.21 (strawberry yoghurt). Orange juice had the highest TA, requiring 5.70 ml of NaOH to reach pH 7.0, whereas Coca-Cola required only 1.87 ml. Roughness parameters indicated that Coca-Cola had the strongest erosion potential during the 15 min of exposure, while Coca-Cola and orange juice were similar during 30- and 60-min exposures. There were no significant differences related to all exposure times between Guarana and Cedevita. Strawberry yoghurt did not erode the enamel surface regardless of the exposure time. All of the tested soft drinks except yoghurt were erosive. Erosion of the enamel surfaces exposed to Coca-Cola, orange juice, Cedevita, and Guarana was directly proportional to the exposure time. © 2015 S. Karger AG, Basel.
Visentin, G; McDermott, A; McParland, S; Berry, D P; Kenny, O A; Brodkorb, A; Fenelon, M A; De Marchi, M
2015-09-01
Rapid, cost-effective monitoring of milk technological traits is a significant challenge for dairy industries specialized in cheese manufacturing. The objective of the present study was to investigate the ability of mid-infrared spectroscopy to predict rennet coagulation time, curd-firming time, curd firmness at 30 and 60min after rennet addition, heat coagulation time, casein micelle size, and pH in cow milk samples, and to quantify associations between these milk technological traits and conventional milk quality traits. Samples (n=713) were collected from 605 cows from multiple herds; the samples represented multiple breeds, stages of lactation, parities, and milking times. Reference analyses were undertaken in accordance with standardized methods, and mid-infrared spectra in the range of 900 to 5,000cm(-1) were available for all samples. Prediction models were developed using partial least squares regression, and prediction accuracy was based on both cross and external validation. The proportion of variance explained by the prediction models in external validation was greatest for pH (71%), followed by rennet coagulation time (55%) and milk heat coagulation time (46%). Models to predict curd firmness 60min from rennet addition and casein micelle size, however, were poor, explaining only 25 and 13%, respectively, of the total variance in each trait within external validation. On average, all prediction models tended to be unbiased. The linear regression coefficient of the reference value on the predicted value varied from 0.17 (casein micelle size regression model) to 0.83 (pH regression model) but all differed from 1. The ratio performance deviation of 1.07 (casein micelle size prediction model) to 1.79 (pH prediction model) for all prediction models in the external validation was <2, suggesting that none of the prediction models could be used for analytical purposes. With the exception of casein micelle size and curd firmness at 60min after rennet addition, the developed prediction models may be useful as a screening method, because the concordance correlation coefficient ranged from 0.63 (heat coagulation time prediction model) to 0.84 (pH prediction model) in the external validation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Straub, D.
2016-12-01
The chemical composition of radiation fog has been studied at a rural site in central Pennsylvania over an eight year period extending through 2015. Bulk fog samples were collected with an automated Caltech Heated Rod Cloud Collector (CHRCC) and analyzed for pH, inorganic ions, organic acids, total organic carbon (TOC), and total nitrogen (TN). Over the duration of the project, 146 samples were collected and used to document chemical composition, evaluate changes over time, and to investigate partitioning between the gas and aqueous phases. Ammonium, sulfate, calcium, and nitrate were the most abundant inorganic ions while acetate and formate were the dominant organic acids. Organic acids contributed about 15% to TOC. Inorganic nitrogen accounted for the majority of TN, with only 18% of TN attributed to organic nitrogen. Overall, organic matter contributed 52% to the total mass loading of the fog samples, a value that is higher than reported for other radiation fog studies. Statistically significant decreasing trends were observed for sulfate, ammonium, chloride, nitrate, and pH. These trends coincide with reductions in emissions from fossil fuel combustion that have been documented over this time period. Seasonal trends were also detected for nitrate, ammonium, potassium, phosphate, acetate and formate which appear to be related to the agricultural growing season. Based on simultaneous measurements of gas phase ammonia and ammonium in the fog samples, significant deviations from equilibrium were found. In low pH samples, ammonium concentrations were much lower than equilibrium predicts, while the opposite occurred in high pH samples. Modeling suggested that mass transfer limitations contributed to the departure from equilibrium. Similarly, predictions of bicarbonate concentrations based on equilibrium with gas phase carbon dioxide appears to underestimate the actual amount of bicarbonate present in samples collected during this study.
McFearin, Cathryn L.; Sankaranarayanan, Jagadis; Almutairi, Adah
2011-01-01
Real Time Characterization of Protein Delivery Systems A fiber optic coupled ATR-FTIR spectroscopy technique was applied to the study of two different therapeutic delivery systems, acid degradable hydrogels and nanoparticles. Real time exponential release of a model protein, human serum albumin (HSA), was observed from two different polymeric hydrogels formulated with a pH sensitive crosslinker. Spectroscopic examination of nanoparticles formulated with an acid degradable polymer shell and encapsulated HSA exhibited vibrational signatures characteristic of both particle and payload when exposed to lowered pH conditions demonstrating the ability of this methodology to simultaneously measure phenomena arising from a system with a mixture of components. In addition, thorough characterization of these pH sensitive delivery vehicles without encapsulated protein was also accomplished in order to separate the effects of the payload during degradation. By providing in situ, real time detection in combination with the ability to specifically identify different components in a mixture without involved sample preparation and minimal sample disturbance, the versatility and suitability of this type of experiment for research in the pharmaceutical field is demonstrated. PMID:21476582
Code of Federal Regulations, 2011 CFR
2011-04-01
... plasma used for resuspension of the platelets shall be determined by the maintenance of a pH of not less than 6.2 during the storage period. The pH shall be measured on a sample of platelets which has been... an adverse effect upon the safety, purity, potency, or efficacy of the product. At the time of...
Code of Federal Regulations, 2013 CFR
2013-04-01
... plasma used for resuspension of the platelets shall be determined by the maintenance of a pH of not less than 6.2 during the storage period. The pH shall be measured on a sample of platelets which has been... an adverse effect upon the safety, purity, potency, or efficacy of the product. At the time of...
CZE determination of submicromolar level of phenol in seawater using improved dynamic pH junction.
Yasuno, Koki; Fukushi, Keiichi
2016-10-01
Using an improved dynamic pH junction as an on-line concentration procedure, we developed CZE for determining submicromolar phenol in seawater for chloride to phenol concentration ratios of 1 000 000. To enhance the effect of conventional dynamic pH junction, a saturated fatty acid solution was injected into the capillary after sample injection. We named the procedure an improved dynamic pH junction. The method requires no sample pretreatment. The following optimum conditions were established: BGE, 40 mM sodium tetraborate decahydrate adjusted to pH 9.8 containing 0.001% m/v hexadimethrine bromide; 190 nm detection wavelength; 18 s (370 nL) vacuum injection period of sample; a saturated fatty acid solution, 30 mM sodium n-hexanoate; 20 s (420 nL) vacuum injection period of the sodium n-hexanoate; and 15 kV applied voltage with the sample inlet side as the cathode. The LOD for phenol was 5.9 μg/L at S/N of 3. The respective values of the RSD (intraday) of the peak area, peak height, and migration time for phenol were 1.9, 2.9, and 0.46%. The recoveries of phenol (25-100 μg/L) spiked into the natural seawater sample obtained using the peak areas were 92-110%. The proposed method was applied to simple biodegradation experiments using natural seawater samples containing phenol. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of marinating on heterocyclic amine carcinogen formation in grilled chicken.
Salmon, C P; Knize, M G; Felton, J S
1997-05-01
This study compared heterocyclic aromatic amines in marinated and unmarinated chicken breast meat flame-broiled on a propane grill. Chicken was marinated prior to grilling and the levels of several heterocyclic amines formed during cooking were determined by solid-phase extraction and HPLC. Compared with unmarinated controls, a 92-99% decrease in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was observed in whole chicken breast marinated with a mixture of brown sugar, olive oil, cider vinegar, garlic, mustard, lemon juice and salt, then grilled for 10, 20, 30 or 40 min. Conversely, 2-amino-3, 8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) increased over 10-fold with marinating, but only at the 30 and 40 min cooking times. Marinating reduced the total detectable heterocyclic amines from 56 to 1.7 ng/g, from 158 to 10 ng/g and from 330 to 44 ng/g for grilling times of 20, 30 and 40 min, respectively. The mutagenic activity of the sample extracts was also measured, using the Ames/Salmonella assay. Mutagenic activity was lower in marinated samples cooked for 10, 20 and 30 min, but higher in the marinated samples cooked for 40 min, compared with unmarinated controls. Although a change in free amino acids, which are heterocyclic amine precursors, might explain the decrease in PhIP and increase in MeIQx, no such change was detected. Marinating chicken in one ingredient at a time showed that sugar was involved in the increased MeIQx, but the reason for the decrease in PhIP was unclear. PhIP decreased in grilled chicken after marinating with several individual ingredients. This work shows that marinating is one method that can significantly reduce PhIP concentration in grilled chicken.
Vuletic, Lea; Peros, Kristina; Spalj, Stjepan; Rogic, Dunja; Alajbeg, Ivan
2014-01-01
To quantify changes in pH, buffering capacity and hydrogen carbonate, phosphate, protein and urea concentrations of stimulated saliva which occur during a 30-min measurement delay after saliva collection. The correlation between time-related chemical changes and changes of salivary pH and buffering capacity was assessed in order to explain the observed changes in salivary pH and buffering capacity. Stimulated saliva samples were collected from 30 volunteers after inducing salivation by chewing a piece of parafilm. Measurements of salivary variables were made immediately after saliva collection and again 30 min later, during which time the specimens were exposed to the atmosphere in collection cups at room temperature. Postponement of measurements resulted in a significant increase in pH and a significant decrease of buffering capacity, phosphate and urea concentration. The results suggest that the time-related pH increase could primarily be attributed to loss of dissolved carbon dioxide from saliva, and confirm the importance of hydrogen carbonate in the neutralisation of hydrogen ions, but they do not support the principle of catalysed phase-buffering for the hydrogen carbonate buffer system in saliva. A decrease in phosphate and urea concentration affects salivary buffering capacity. This study emphasises the importance of the standardisation of measurement time when measuring salivary pH, buffering capacity, phosphate and urea concentrations following the collection of saliva in order to obtain comparable results. It also provides a partial explanation of the mechanisms underlying the observed changes of pH and buffering capacity over time.
Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; El Sheikha, Aly Farag; Khairil Mokhtar, Nur Fadhilah; Ismail, Amin; Ali, Md Eaqub
2016-05-01
Poor quality and quantity of DNA extracted from gelatin and gelatin capsules often causes failure in the determination of animal species using PCR. Gelatin, which is mainly derived from porcine and bovine, has been a matter of concern among customers in order to fulfill religious obligation and safety precaution against several transmissible infectious diseases associated with bovine species. Thus, optimised DNA extraction from gelatin is very important for successful real-time PCR detection of gelatin species. In this work, the DNA extraction method was optimised in terms of lysis incubation period and inclusion of pre-treatment pH modification of samples. The yield of DNA extracted from porcine gelatin was significantly increased when the pH of the samples was adjusted to pH 8.5 prior to DNA precipitation with isopropanol. The optimal pH for DNA precipitation from bovine gelatin solution was then determined at the original pH range of solution: pH 7.6 to 8. A DNA fragment of approximately 300 base pairs was available for PCR amplification. DNA extracted from gelatin and commercially available capsules has been successfully utilised for species detection using real-time PCR assay. However, significant adulterations of porcine and bovine in pure gelatin and capsules have been detected, which require further analytical techniques for validation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Wang, Zhaohui Aleck; Sonnichsen, Frederick N; Bradley, Albert M; Hoering, Katherine A; Lanagan, Thomas M; Chu, Sophie N; Hammar, Terence R; Camilli, Richard
2015-04-07
A new, in situ sensing system, Channelized Optical System (CHANOS), was recently developed to make high-resolution, simultaneous measurements of total dissolved inorganic carbon (DIC) and pH in seawater. Measurements made by this single, compact sensor can fully characterize the marine carbonate system. The system has a modular design to accommodate two independent, but similar measurement channels for DIC and pH. Both are based on spectrophotometric detection of hydrogen ion concentrations. The pH channel uses a flow-through, sample-indicator mixing design to achieve near instantaneous measurements. The DIC channel adapts a recently developed spectrophotometric method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time of only ∼ 90 s. During laboratory and in situ testing, CHANOS achieved a precision of ±0.0010 and ± 2.5 μmol kg(-1) for pH and DIC, respectively. In situ comparison tests indicated that the accuracies of the pH and DIC channels over a three-week time-series deployment were ± 0.0024 and ± 4.1 μmol kg(-1), respectively. This study demonstrates that CHANOS can make in situ, climatology-quality measurements by measuring two desirable CO2 parameters, and is capable of resolving the CO2 system in dynamic marine environments.
Stability of Hydrocortisone Preservative-Free Oral Solutions.
Chappe, Julie; Osman, Névine; Cisternino, Salvatore; Fontan, Jean-Eudes; Schlatter, Joël
2015-01-01
The physical and chemical stability of a preservative-free oral solution of hydrocortisone succinate was studied at different pH values and storage temperatures. Oral solutions of hydrocortisone 1 mg/mL were prepared by dissolving hydrocortisone succinate powder in citrate buffers at pH 4.0, 5.5, and 6.5, or with sterile water (pH 7.4) stored in amber glass vials. Three identical samples of the formulations were prepared and stored under refrigeration (3-7°C), ambient temperature (20-22°C) and high temperature (29-31°C). A 200-μL sample was withdrawn from each of the 3 samples immediately after preparation and at 1, 7, 14, 21, and 35 days. Samples were assayed in duplicate using stability-indicating liquid chromatography. Stability was determined by evaluating the percentage of the initial concentration remaining at each time point; stability was defined as the retention of at least 90% of the initial concentration of hydrocortisone succinate. At least 92% of the initial hydrocortisone succinate concentration in solutions pH 5.5, 6.5, and 7.4 remained throughout the 14-day study period under refrigeration. There were no detectable changes in color, odor, or pH and no visible microbial growth in these samples. In other storage conditions, hydrocortisone succinate was rapidly degraded. The hydrocortisone succinate preservative-free oral solutions at pH 5.5, 6.5, or 7.4 are chemically stable when stored under refrigeration for at least 14 days. They provide flexible and convenient dosage forms without any preservatives for pediatric patients.
Fadıloğlu, Eylem Ezgi; Serdaroğlu, Meltem
2018-01-01
Abstract This study was conducted to evaluate the effects of pre and post-rigor marinade injections on some quality parameters of Longissimus dorsi (LD) muscles. Three marinade formulations were prepared with 2% NaCl, 2% NaCl+0.5 M lactic acid and 2% NaCl+0.5 M sodium lactate. In this study marinade uptake, pH, free water, cooking loss, drip loss and color properties were analyzed. Injection time had significant effect on marinade uptake levels of samples. Regardless of marinate formulation, marinade uptake of pre-rigor samples injected with marinade solutions were higher than post rigor samples. Injection of sodium lactate increased pH values of samples whereas lactic acid injection decreased pH. Marinade treatment and storage period had significant effect on cooking loss. At each evaluation period interaction between marinade treatment and injection time showed different effect on free water content. Storage period and marinade application had significant effect on drip loss values. Drip loss in all samples increased during the storage. During all storage days, lowest CIE L* value was found in pre-rigor samples injected with sodium lactate. Lactic acid injection caused color fade in pre-rigor and post-rigor samples. Interaction between marinade treatment and storage period was found statistically significant (p<0.05). At day 0 and 3, the lowest CIE b* values obtained pre-rigor samples injected with sodium lactate and there were no differences were found in other samples. At day 6, no significant differences were found in CIE b* values of all samples. PMID:29805282
Fadıloğlu, Eylem Ezgi; Serdaroğlu, Meltem
2018-04-01
This study was conducted to evaluate the effects of pre and post-rigor marinade injections on some quality parameters of Longissimus dorsi (LD) muscles. Three marinade formulations were prepared with 2% NaCl, 2% NaCl+0.5 M lactic acid and 2% NaCl+0.5 M sodium lactate. In this study marinade uptake, pH, free water, cooking loss, drip loss and color properties were analyzed. Injection time had significant effect on marinade uptake levels of samples. Regardless of marinate formulation, marinade uptake of pre-rigor samples injected with marinade solutions were higher than post rigor samples. Injection of sodium lactate increased pH values of samples whereas lactic acid injection decreased pH. Marinade treatment and storage period had significant effect on cooking loss. At each evaluation period interaction between marinade treatment and injection time showed different effect on free water content. Storage period and marinade application had significant effect on drip loss values. Drip loss in all samples increased during the storage. During all storage days, lowest CIE L* value was found in pre-rigor samples injected with sodium lactate. Lactic acid injection caused color fade in pre-rigor and post-rigor samples. Interaction between marinade treatment and storage period was found statistically significant ( p <0.05). At day 0 and 3, the lowest CIE b* values obtained pre-rigor samples injected with sodium lactate and there were no differences were found in other samples. At day 6, no significant differences were found in CIE b* values of all samples.
Phadnis, Milind A; Wetmore, James B; Mayo, Matthew S
2017-11-20
Traditional methods of sample size and power calculations in clinical trials with a time-to-event end point are based on the logrank test (and its variations), Cox proportional hazards (PH) assumption, or comparison of means of 2 exponential distributions. Of these, sample size calculation based on PH assumption is likely the most common and allows adjusting for the effect of one or more covariates. However, when designing a trial, there are situations when the assumption of PH may not be appropriate. Additionally, when it is known that there is a rapid decline in the survival curve for a control group, such as from previously conducted observational studies, a design based on the PH assumption may confer only a minor statistical improvement for the treatment group that is neither clinically nor practically meaningful. For such scenarios, a clinical trial design that focuses on improvement in patient longevity is proposed, based on the concept of proportional time using the generalized gamma ratio distribution. Simulations are conducted to evaluate the performance of the proportional time method and to identify the situations in which such a design will be beneficial as compared to the standard design using a PH assumption, piecewise exponential hazards assumption, and specific cases of a cure rate model. A practical example in which hemorrhagic stroke patients are randomized to 1 of 2 arms in a putative clinical trial demonstrates the usefulness of this approach by drastically reducing the number of patients needed for study enrollment. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Menke, H. P.; Bijeljic, B.; Blunt, M. J.
2017-05-01
We study the impact of brine acidity and initial pore structure on the dynamics of fluid/solid reaction at high Péclet numbers and low Damköhler numbers. A laboratory μ-CT scanner was used to image the dissolution of Ketton, Estaillades, and Portland limestones in the presence of CO2-acidified brine at reservoir conditions (10 MPa and 50 °C) at two injected acid strengths for a period of 4 h. Each sample was scanned between 6 and 10 times at ∼4 μm resolution and multiple effluent samples were extracted. The images were used as inputs into flow simulations, and analysed for dynamic changes in porosity, permeability, and reaction rate. Additionally, the effluent samples were used to verify the image-measured porosity changes. We find that initial brine acidity and pore structure determine the type of dissolution. Dissolution is either uniform where the porosity increases evenly both spatially and temporally, or occurs as channelling where the porosity increase is concentrated in preferential flow paths. Ketton, which has a relatively homogeneous pore structure, dissolved uniformly at pH = 3.6 but showed more channelized flow at pH = 3.1. In Estaillades and Portland, increasingly complex carbonates, channelized flow was observed at both acidities with the channel forming faster at lower pH. It was found that the effluent pH, which is higher than that injected, is a reasonably good indicator of effective reaction rate during uniform dissolution, but a poor indicator during channelling. The overall effective reaction rate was up to 18 times lower than the batch reaction rate measured on a flat surface at the effluent pH, with the lowest reaction rates in the samples with the most channelized flow, confirming that transport limitations are the dominant mechanism in determining reaction dynamics at the fluid/solid boundary.
Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.
Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E
2015-12-01
A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.
Xue, Lu; Lin, Lin; Zhou, Wenbin; Chen, Wendong; Tang, Jun; Sun, Xiujie; Huang, Peiwu; Tian, Ruijun
2018-06-09
Plasma proteome profiling by LC-MS based proteomics has drawn great attention recently for biomarker discovery from blood liquid biopsy. Due to standard multi-step sample preparation could potentially cause plasma protein degradation and analysis variation, integrated proteomics sample preparation technologies became promising solution towards this end. Here, we developed a fully integrated proteomics sample preparation technology for both fast and deep plasma proteome profiling under its native pH. All the sample preparation steps, including protein digestion and two-dimensional fractionation by both mixed-mode ion exchange and high-pH reversed phase mechanism were integrated into one spintip device for the first time. The mixed-mode ion exchange beads design achieved the sample loading at neutral pH and protein digestion within 30 min. Potential sample loss and protein degradation by pH changing could be voided. 1 μL of plasma sample with depletion of high abundant proteins was processed by the developed technology with 12 equally distributed fractions and analyzed with 12 h of LC-MS gradient time, resulting in the identification of 862 proteins. The combination of the Mixed-mode-SISPROT and data-independent MS method achieved fast plasma proteome profiling in 2 h with high identification overlap and quantification precision for a proof-of-concept study of plasma samples from 5 healthy donors. We expect that the Mixed-mode-SISPROT become a generally applicable sample preparation technology for clinical oriented plasma proteome profiling. Copyright © 2018 Elsevier B.V. All rights reserved.
Apaoblaza, A; Galaz, A; Strobel, P; Ramírez-Reveco, A; Jeréz-Timaure, N; Gallo, C
2015-03-01
Muscle glycogen concentration (MGC) and lactate (LA), activity of glycogen debranching enzyme (GDE), glycogen phosphorylase (GP) and adenosine monophosphate kinase (AMPK) were determined at 0.5h (T0) and 24h (T24) post-mortem in Longissimus dorsi samples from 38 steers that produced high pH (>5.9) and normal pH (<5.8) carcasses at 24h postmortem. MGC, LA and glycolytic potential were higher (P<0.05) in normal pH carcasses. GDE activity was similar (P>0.05) in both pH categories. GP activity increased between T0 and T24 only in normal pH carcasses. AMPK activity was four times higher in normal pH v/s high pH carcasses, without changing its activity over time. Results reinforce the idea that differences in postmortem glycogenolytic/glycolytic flow in L. dorsi of steers showing normal v/s high muscle pH at 24h, could be explained not only by the higher initial MGC in normal pH carcasses, but also by a high and sustained activity of AMPK and an increased GP activity at 24h postmortem. Copyright © 2014 Elsevier Ltd. All rights reserved.
Minimizing target interference in PK immunoassays: new approaches for low-pH-sample treatment.
Partridge, Michael A; Pham, John; Dziadiv, Olena; Luong, Onson; Rafique, Ashique; Sumner, Giane; Torri, Albert
2013-08-01
Quantitating total levels of monoclonal antibody (mAb) biotherapeutics in serum using ELISA may be hindered by soluble targets. We developed two low-pH-sample-pretreatment techniques to minimize target interference. The first procedure involves sample pretreatment at pH <3.0 before neutralization and analysis in a target capture ELISA. Careful monitoring of acidification time is required to minimize potential impact on mAb detection. The second approach involves sample dilution into mild acid (pH ∼4.5) before transferring to an anti-human capture-antibody-coated plate without neutralization. Analysis of target-drug and drug-capture antibody interactions at pH 4.5 indicated that the capture antibody binds to the drug, while the drug and the target were dissociated. Using these procedures, total biotherapeutic levels were accurately measured when soluble target was >30-fold molar excess. These techniques provide alternatives for quantitating mAb biotherapeutics in the presence of a target when standard acid-dissociation procedures are ineffective.
An evaluation of the effects of acid rain on low conductivity headwater streams in Pennsylvania
Ritter, John R.; Brown, Ann E.
1981-01-01
Analyses of water collected at 32 sites on headwater streams in Pennsylvania during low-flow conditions in 1970-80 were compared to pre-1971 data to evaluate whether acid rain had changed the chemistry of the streams in the previous decade. Most pH, alkalinity, and sulfate values of the samples collected in 1970-80 fell within the ranges of values for samples collected before 1971. The limited data indicate, however, that pH may have increased and alkalinity and sulfate may have decreased with time.
Rizwan Khan, Mohammad; Naushad, Mu; Abdullah Alothman, Zeid
2017-05-10
Heterocyclic amines (HCAs) are formed by cooking protein-rich foods, for instance, meat and fish, and are listed as possible human carcinogens. In the present study, the presence of five potential HCAs (IQ, MeIQ, MeIQx, 4,8-DiMeIQx, and PhIP) in cooked camel meat burgers was analyzed for the first time. The analysis was performed in home-cooked and fast-food burger samples containing food additives. The applied cooking technique for the home-cooked samples was pan frying for a controlled cooking time and temperature. In the control cooked meat samples (samples that contained no food additives), the concentrations of MeIQx, 4,8-DiMeIQx, and PhIP ranged from 2.47 ng/g to 4.89 ng/g, whereas IQ and MeIQ were found to be below the limit of quantification. The concentrations contents of MeIQx, 4,8-DiMeIQx, and PhIP in the home-cooked and fast-food samples ranged from 1.52 ng/g to 2.13 ng/g and 1.85 ng/g to 3.46 ng/g, respectively. IQ and MeIQ were not detected in either type of sample. In comparison to the control samples, the home-cooked and fast-food samples produced lower levels of HCAs. Such observations could result from the existence of antioxidants in incorporated food additives, which induce pro-oxidative effects with the successive formation and/or scavenging of free radicals.
Folates in Asian noodles: II. A comparison of commercial samples and the impact of cooking.
Bui, Lan T T; Small, Darryl M
2007-06-01
The folate contents of 26 commercial noodle samples were investigated. The impact of ingredients, pH, and cooking on folate content was studied for the 3 predominant styles of noodles: white salted, yellow alkaline, and instant. Some variability was found in the proportion of folate present in the free form and the noodles generally had low total folate contents. The pH values of the samples covered a wide range, varying from 3.7 to 10.3; however, the results did not provide strong evidence for a relationship between pH and folate content for any of the noodle styles studied. Higher folate levels were typically found in yellow alkaline samples compared to white salted and instant noodles. The storage of noodles in dry or moist forms did not appear to influence total folate contents, and subsequent losses during cooking depended upon the time of exposure to elevated temperatures. The enzymatic treatment of samples was particularly important for cooked noodles, indicating that folates were bound or entrapped during this process.
Influence of pH on wetting kinetics of a pine forest soil
NASA Astrophysics Data System (ADS)
Amer, Ahmad; Schaumann, Gabriele; Diehl, Dörte
2014-05-01
Water repellent properties of organic matter significantly alter soil water dynamics. Various environmental factors control appearance and breakup of repellency in soil. Beside water content and temperature also pH exerts an influence on soil water repellency although investigations achieved partly ambiguous results; some found increasing repellency with increasing pH (Terashima et al. 2004; Duval et al. 2005), other with decreasing pH (Karnok et al. 1993; Roper 2005) and some found repellency maxima at intermediate pH and an increase with decreasing and with increasing pH (Bayer and Schaumann 2007; Diehl et al. 2010). The breakup of repellency may be observed via the time dependent sessile drop contact angle (TISED). With water contact time, soil-water contact angle decreases until complete wetting is reached. Diehl and Schaumann (2007) calculated the activation energy of the wetting process from the rate of sessile drop wetting obtained at different temperatures and draw conclusions on chemical or physical nature of repellency. The present study aims at the influence of pH on the wetting kinetics of soil. Therefore, TISED of soil was determined as a function of pH and temperature. We used upper soil samples (0 - 10 cm) from a pine forest in the southwest of Germany (Rheinland-Pfalz). Samples were air-dried, sieved < 1.0 mm and pH was modified by NH3 and HCl gas (Diehl et al. 2010) and measured electrometrically in 0.01 M CaCl2 solution. TISED measurements (2007)were conducted at 10, 20 and 30 oC using OCA 15 Contact Angle Meter (Dataphysics, Germany) on three replications for each soil sample. Apparent work of adhesion was calculated, plotted vs. time and mathematically fitted using double exponential function. Rate constants of wetting were used to determine the activation energy by Arrhenius equation. First results indicated that despite comparable initial contact angles, pH alteration strongly changed the wetting rate suggesting maximum wetting resistance at the natural pH of 4.3 and decreasing wetting resistance at lower and at higher pH. The poster will present further current results of the ongoing study and discuss the activation energy of the wetting process in dependence of artificially altered soil pH. References: Bayer, J. V. and G. E. Schaumann (2007). Hydrol. Processes 21(17): 2266 - 2275. Diehl, D., J. V. Bayer, et al. (2010). Geoderma 158(3-4): 375-384. Diehl, D. and G. E. Schaumann (2007). Hydrol. Processes 21(17): 2255 - 2265. Duval, J. F. L., K. J. Wilkinson, et al. (2005). Environ Sci Technol 39(17): 6435-6445. Karnok, K. A., E. J. Rowland, et al. (1993). Agron J 85(5): 983-986. Roper, M. M. (2005). Aust J Soil Res 43: 803-810. Terashima, M., M. Fukushima, et al. (2004). Colloids and Surfaces, A: Physicochemical and Engineering Aspects 247(1-3): 77-83.
Sun, Jian-Nan; Chen, Juan; Shi, Yan-Ping
2014-07-01
A new mode of ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) is developed. In this work, [C6MIm][PF6] was chosen as the extraction solvent, and two kinds of hydrophilic ionic liquids, [EMIm][BF4] and [BSO3HMIm][OTf], functioned as the dispersive solvent. So in the whole extraction procedure, no organic solvent was used. With the aid of SO3H group, the acidic compound was extracted from the sample solution without pH adjustment. Two phenolic compounds, namely, 2-naphthol and 4-nitrophenol were chosen as the target analytes. Important parameters affecting the extraction efficiency, such as the type of hydrophilic ionic liquids, the volume ratio of [EMIm][BF4] to [BSO3HMIm][OTf], type and volume of extraction solvent, pH value of sample solution, sonication time, extraction time and centrifugation time were investigated and optimized. Under the optimized extraction conditions, the method exhibited good sensitivity with the limits of detection (LODs) at 5.5 μg L(-1)and 10.0 μg L(-1) for 4-nitrophenol and 2-naphthol, respectively. Good linearity over the concentration ranges of 24-384 μg L(-1) for 4-nitrophenol and 28-336 μg L(-1) for 2-naphthol was obtained with correlation coefficients of 0.9998 and 0.9961, respectively. The proposed method can directly extract acidic compound from environmental sample or even more complex sample matrix without any pH adjustment procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Monteiro, Márcia; Carvalho, Márcia; Henrique, Rui; Jerónimo, Carmen; Moreira, Nathalie; de Lourdes Bastos, Maria; de Pinho, Paula Guedes
2014-07-01
A new and simple analytical approach consisting of headspace-solid phase microextraction (HS-SPME) sampling coupled with gas chromatography-ion trap/mass spectrometry (GC-IT/MS) was developed to study the volatile human urinary metabolome. A central composite design (CCD) was used in the optimisation of extraction conditions. Fibre selection and evaluation of pH influence were performed using an univariate mode and the influence of other parameters, such as the time and temperature of extraction, time of incubation and salt addition, that affect the efficiency of the SPME sampling, was carried out using a CCD. With a sample volume of 2 mL, the optimal conditions in terms of total response values and reproducibility were achieved by performing analyses with a divinylbenzene/polydimethylsiloxane (DVB/PDMS) fibre, in an acidic pH (pH 2) with the addition of 0.59 g of NaCl, allowing the sample to equilibrate for 9 min and extracting at 68 °C for 24 min. The applicability of the optimised method was then tested in a pilot non-target analysis of urine samples obtained from patients with renal cell carcinoma (RCC) and healthy individuals. Chemometric unsupervised analyses performed on the volatile pattern acquired for these samples clearly showed the potential of volatile urinary metabolome to discriminate between RCC and control patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Total morphine stability in urine specimens stored under various conditions.
Chang, B L; Huang, M K; Tsai, Y Y
2000-09-01
The stability of total morphine in urine stored under various conditions was studied using control and experimental specimens. Samples in the control group were prepared using drug-free urine spiked with morphine at three concentration levels (300, 1000, and 2500 ng/mL), each with the pH adjusted to 5.5, 6.5, and 7.5. Samples in the experimental group came from 20 alleged heroin addicts (provided by Taipei Municipal Psychiatric Hospital). Samples in both groups were divided into two categories--one with and one without the precipitate (formed at 0 degrees C) removed. Samples in each of these two categories were further divided into two sub-groups--one with and one without sodium azide (0.05%) added. Total morphine contents in these samples were first determined by gas chromatography-mass spectrometry prior to storage and at 6, 12, 18, and 24 months following storage at -20, 4, 25, and 35 degrees C. Effects of sample treatment (azide addition and precipitate removal), pH, and storage temperature and length were evaluated by examining the percentage of total morphine remaining at the four time intervals following the initial determination. Major findings were as follows: (1) total morphine decomposition was minimal when stored for 12 months at -20 degrees C, which is a common current practice; (2) samples with lower initial sample pH had slower total morphine decomposition rates; and (3) azide addition appeared to have no detectable effect, whereas precipitate removal appeared to marginally reduce the decomposition rate, especially for samples with lower pH.
Evaluation of non-extracted genital swabs for real-time HSV PCR.
Miari, Victoria F; Wall, Gavin R; Clark, Duncan A
2015-01-01
Nucleic acid extraction of clinical samples is accepted as a key requirement in molecular diagnostics. At Barts Health NHS Trust, swabs taken from patients with clinical suspicion of HSV infection were routinely extracted on the Qiagen MDx BioRobot prior to testing with a real-time triplex PCR for HSV1, HSV2, and VZV. The aim of this study was to adapt an existing HSV1/HSV2/VZV real-time PCR by replacing VZV with phocine herpesvirus 1 (PhHV) as an internal control (IC) and evaluate whether this adapted assay required the nucleic acid extraction step for predominantly genital swabs. First 313 non-extracted and extracted swabs were tested in parallel with the existing triplex HSV1/HSV2/VZV real-time PCR. The second stage involved testing 176 non-extracted swabs using a triplex real-time PCR for HSV1, HSV2, and PhHV and comparing the results with the samples extracted and tested by the original triplex assay. The results correlated well when the existing assay was used, with only three non-extracted samples that would have been reported as negative compared to the extracted sample result (Cq s 33, 39, 35-two samples HSV1, one sample HSV2). In the evaluation using the adapted assay containing the IC, two of 176 samples were discordant, where a HSV negative non-extracted sample result would have been reported differently to the extracted sample result (Cq s 32, 33-both HSV1). This study demonstrated that it is feasible to test non-extracted swabs for HSV in a real-time PCR that includes an IC. J. Med. Virol. 87: 125-129, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Bee, Giuseppe; Anderson, Abbey L; Lonergan, Steven M; Huff-Lonergan, Elisabeth
2007-06-01
The objective of this study was to determine the extent to which early postmortem (PM) pH decline influences proteolysis of the intermediate filament protein desmin, the costameric proteins vinculin and talin and autolysis of μ-calpain in the longissimus muscle (LM) of pigs from two genetic lines. Based on the LM 3h pH (H=3h pH of LM>6.0; L=3h pH of LM pH<5.7) PM, 10 carcasses per line and pH group were selected. The average 3h pH within pH group was 6.23 (H) and 5.44 (L). The LM samples were collected 24, 48, 72, and 120h PM and percent drip loss was measured after 1, 2, and 4d of storage. Samples collected at 24, 48, 72, and 120h PM were used to monitor desmin, vinculin, and talin degradation and samples collected at 24h PM were used to determine the extent of μ-calpain autolysis by immunoblotting. Higher (P<0.01) pH values at 45min, 6h, and 24h PM and lower (P<0.01) drip losses after 1, 2, and 4d of storage were recorded in the H-compared to the L-group. Abundance of the 76kDa μ-calpain autolysis product was greater (P<0.01), proteolysis of talin at all measured time points and proteolysis of desmin after 24 and 48h PM was greater (P⩽0.03) in the H-group than in the L-group. The current findings indicate activation rate of μ-calpain may be associated with proteolysis of desmin and talin and could play a role in the development of drip loss. The rate of early PM pH decline can partly explain the variation of desmin and talin degradation by affecting the activation of μ-calpain.
A novel "modularized" optical sensor for pH monitoring in biological matrixes.
Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua
2018-06-30
A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
In vivo optical detection of pH in microscopic tissue samples of Arabidopsis thaliana.
Kašík, Ivan; Podrazký, Ondřej; Mrázek, Jan; Martan, Tomáš; Matějec, Vlastimil; Hoyerová, Klára; Kamínek, Miroslav
2013-12-01
Minimally invasive in vivo measurement of pH in microscopic biological samples of μm or μl size, e.g. plant cells, tissues and saps, may help to explain complex biological processes. Consequently, techniques to achieve such measurements are a focus of interest for botanists. This paper describes a technique for the in vivo measurement of pH in the range pH5.0 to pH7.8 in microscopic plant tissue samples of Arabidopsis thaliana based on a ratiometric fluorescence method using low-loss robust tapered fiber probes. For this purpose tapered fiber probes were prepared and coated with a detection layer containing ion-paired fluorescent pH-transducer 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (c-HPTS). A fluorescence ratiometric approach was employed based on excitation at 415 nm and 450 nm and on the comparison of the fluorescence response at 515 nm. The suitability of tapered fiber probes for local detection of pH between 5.0 and 7.8 was demonstrated. A pH sensitivity of 0.15 pH units was achieved within the pH ranges 5.0-5.9 and 7.1-7.8, and this was improved to 0.04 pH units within the pH range 5.9-7.1. Spatial resolution of the probes was better than 20 μm and a time response within 15-20s was achieved. Despite the minute dimensions of the tapered fiber probes the setup developed was relatively robust and compact in construction and performed reliably. It has been successfully employed for the in vivo local determination of pH of mechanically resistant plant tissues of A. thaliana of microscopic scale. The detection of momentary pH gradients across the intact plant seems to be a good tool for the determination of changes in pH in response to experimental treatments affecting for example enzyme activities, availability of mineral nutrients, hormonal control of plant development and plant responses to environmental cues. © 2013.
Nollo, Giandomenico; Ferrari, Paolo; Graffigna, Angelo C
2011-01-01
The effect on acid-base balance efficacy of intermittent warm and cold blood cardioplegia (IWBC, ICBC) was assessed in 44 patients who underwent cardiac surgery with prolonged aortic cross clamping. With this purpose a customized multi sensor probe was inserted in the coronary sinus, and pH, PO(2), PCO(2) and temperature were continuously measured at 1 Hz sampling rate. The mean cross-clamping time was of 76 ± 26 min on 19 IWBC cases and of 80 ± 24 min on 14 ICBC cases. With IWBC perfusion, at the end of every ischemic period, the lowest pH and PO(2) progressively decreased and the maximal PCO(2) increased. During ICBC the minimum of pH and PO(2) and maximum of PCO2 at the end of different ischemic period during time were constant, also during long cross-clamping time. With IWBC, myocardial ischemia seemed not completely reversed by standardized reperfusions, as reflected by steady deterioration of PCO(2) and pH after each reperfusion.
da Mata, A D S P; da Silva Marques, D N; Silveira, J M L; Marques, J R O F; de Melo Campos Felino, E T; Guilherme, N F R P M
2009-04-01
To compare salivary pH changes and stimulation efficacy of two different gustatory stimulants of salivary secretion (GSSS). Portuguese Dental Faculty Clinic. Double blind randomized controlled trial. One hundred and twenty volunteers were randomized to two intervention groups. Sample sized was calculated using an alpha error of 0.05 and a beta of 0.20. Participants were randomly assigned to receive a new gustatory stimulant of secretory secretion containing a weaker malic acid, fluoride and xylitol or a traditionally citric acid-based one. Saliva collection was obtained by established methods at different times. The salivary pH of the samples was determined with a pH meter and a microelectrode. Salivary pH variations and counts of subjects with pH below 5.5 for over 1 min and stimulated salivary flow were the main outcome measures. Both GSSS significantly stimulated salivary output without significant differences between the two groups. The new gustatory stimulant of salivary secretion presented a risk reduction of 80 +/- 10.6% (95% CI) when compared with the traditional one. Gustatory stimulants of salivary secretion with fluoride, xylitol and lower acid content maintain similar salivary stimulation capacity while reducing significantly the dental erosion predictive potential.
ERIC Educational Resources Information Center
Nyasulu, Frazier; Moehring, Michael; Arthasery, Phyllis; Barlag, Rebecca
2011-01-01
The acid ionization constant, K[subscript a], of acetic acid and the base ionization constant, K[subscript b], of ammonia are determined easily and rapidly using a datalogger, a pH sensor, and a conductivity sensor. To decrease sample preparation time and to minimize waste, sequential aliquots of a concentrated standard are added to a known volume…
Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach
NASA Astrophysics Data System (ADS)
Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar
2013-12-01
Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.
Peschka, Manuela; Roberts, Paul H; Knepper, Thomas P
2007-10-01
The analysis and presence of clotrimazole, an antifungal agent with logK(OW) > 4, was thoroughly studied in the aquatic environment. For that reason analytical methods based on gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry were developed and validated to quantify clotrimazole with limits of quantification down to 5 and 1 ng/L, respectively. Both methods were compared in an intercalibration exercise. The complete mass-spectrometric fragmentation pattern could be elucidated with the aid of quadrupole time of flight mass spectrometry. Since clotrimazole tends to adsorb to laboratory glassware, studies on its adsorption behaviour were made to ensure the appropriate handling of water samples, e.g. pH, storage time, pretreatment of sampling vessels or material of the vials used for final extracts. The phenomena of adsorption to suspended matter were investigated while analysing different waste-water samples. Application of the methods in various investigated wastewater and surface water samples demonstrated that clotrimazole could only be detected in the low nanogram per litre range of anthropogenic influenced unfiltered water samples after acidification to pH 2.
Arnold, Ray; Kong, Deyuan; Douglas, Gregory; Hardenstine, Jeffery; Rouhani, Shahrokh; Gala, William
2018-01-01
An experiment was designed to address the validity of the prescribed maximum allowable holding-time limit of 14 days when acidified at < 2 pH and maintained at 4°C to prevent significant loss of benzene, toluene, ethyl benzene, and xylenes (BTEX) in preserved water samples. Preservation methods prescribed by the United State Environmental Protection Agency were used as well as adaptions of that procedure to determine stability between 3 and 21 days. Water samples preserved at 4°C and pH of < 2 with hydrochloric acid did not result in unacceptable (> 15%) BTEX losses during the study as defined by procedures and statistical methods described by the American Society for Testing and Materials International. In addition, water samples preserved only with acid (pH < 2) at ambient temperatures (20-27°C) also provided acceptable results during the 21-day study. These results have demonstrated the acceptability of BTEX data derived from water samples exceeding the standard holding-time and/or temperature limits.
González-García, Estefanía; Maly, Marek; de la Mata, Francisco Javier; Gómez, Rafael; Marina, María Luisa; García, María Concepción
2016-11-01
Protein sample preparation is a critical and an unsustainable step since it involves the use of tedious methods that usually require high amount of solvents. The development of new materials offers additional opportunities in protein sample preparation. This work explores, for the first time, the potential application of carboxylate-terminated carbosilane dendrimers to the purification/enrichment of proteins. Studies on dendrimer binding to proteins, based on protein fluorescence intensity and emission wavelengths measurements, demonstrated the interaction between carboxylate-terminated carbosilane dendrimers and proteins at all tested pH levels. Interactions were greatly affected by the protein itself, pH, and dendrimer concentration and generation. Especially interesting was the interaction at acidic pH since it resulted in a significant protein precipitation. Dendrimer-protein interactions were modeled observing stable complexes for all proteins. Carboxylate-terminated carbosilane dendrimers at acidic pH were successfully used in the purification/enrichment of proteins extracted from a complex sample. Graphical Abstract Images showing the growing turbidity of solutions containing a mixture of proteins (lysozyme, myoglobin, and BSA) at different protein:dendrimer ratios (1:0, 1:1, 1:8, and 1:20) at acidic pH and SDS-PAGE profiles of the corresponsing supernatants. Comparison of SDS-PAGE profiles for the pellets obtained during the purification of proteins present in a complex sample using a conventional "no-clean" method based on acetone precipitation and the proposed "greener" method using carboxylate-terminated carbosilane dendrimer at a 1:20 protein:dendrimer ratio.
Lin, Meng-Hsien; Anderson, Jonathan; Pinnaratip, Rattapol; Meng, Hao; Konst, Shari; DeRouin, Andrew J.; Rajachar, Rupak
2015-01-01
The degradation behavior of a tissue adhesive is critical to its ability to repair a wound while minimizing prolonged inflammatory response. Traditional degradation tests can be expensive to perform, as they require large numbers of samples. The potential for using magnetoelastic resonant sensors to track bioadhesive degradation behavior was investigated. Specifically, biomimetic poly(ethylene glycol)- (PEG-) based adhesive was coated onto magnetoelastic (ME) sensor strips. Adhesive-coated samples were submerged in solutions buffered at multiple pH levels (5.7, 7.4 and 10.0) at body temperature (37°C) and the degradation behavior of the adhesive was tracked wirelessly by monitoring the changes in the resonant amplitude of the sensors for over 80 days. Adhesive incubated at pH 7.4 degraded over 75 days, which matched previously published data for bulk degradation behavior of the adhesive while utilizing significantly less material (~103 times lower). Adhesive incubated at pH 10.0 degraded within 25 days while samples incubated at pH 5.7 did not completely degrade even after 80 days of incubation. As expected, the rate of degradation increased with increasing pH as the rate of ester bond hydrolysis is higher under basic conditions. As a result of requiring a significantly lower amount of samples compared to traditional methods, the ME sensing technology is highly attractive for fully characterizing the degradation behavior of tissue adhesives in a wide range of physiological conditions. PMID:26087077
Tabani, Hadi; Khodaei, Kamal; Bide, Yasamin; Zare, Farzaneh Dorabadi; Mirzaei, Saeed; Fakhari, Ali Reza
2015-08-14
Introducing new sorbents is an interesting and debatable issue in the field of sample preparation. In this study, for the first time, a pH-sensitive magnetic nanoparticles microgel, Fe3O4-SiO2-oly(4-vinylpyridine), was introduced as a new sorbent. The operating mechanism of this sorbent is based on changing the pH value of the sample and consequently the structure of this pH-sensitive microgel is changed. So that, at pH 6.0 the microgel was ready to accept and load the analytes (partial swelling), and when the pH was increased to 8.0, the microgel was closed and analytes were trapped inside the sorbent (deswelling). At pH 2.0 the microgel was opened and the analytes were released from the microgel (swelling). As the adsorption and desorption mechanism is based on changing the pH and only aqueous medium is used as the effluent solvent, this method is introduced as a green extraction method. The use of this microgel resulted in excellent figures of merit. The limits of quantitation and detection for herbicides were obtained within the range of 10-30 and 3-10 ng mL(-1), respectively. Finally, the proposed method was successfully applied to determine the concentration of phenoxy acid herbicides as hazardous materials in water samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Sedehi, Samira; Tabani, Hadi; Nojavan, Saeed
2018-03-01
In this work, polypropylene hollow fiber was replaced by agarose gel in conventional electro membrane extraction (EME) to develop a novel approach. The proposed EME method was then employed to extract two amino acids (tyrosine and phenylalanine) as model polar analytes, followed by HPLC-UV. The method showed acceptable results under optimized conditions. This green methodology outperformed conventional EME, and required neither organic solvents nor carriers. The effective parameters such as the pH values of the acceptor and the donor solutions, the thickness and pH of the gel, the extraction voltage, the stirring rate, and the extraction time were optimized. Under the optimized conditions (acceptor solution pH: 1.5; donor solution pH: 2.5; agarose gel thickness: 7mm; agarose gel pH: 1.5; stirring rate of the sample solution: 1000rpm; extraction potential: 40V; and extraction time: 15min), the limits of detection and quantification were 7.5ngmL -1 and 25ngmL -1 , respectively. The extraction recoveries were between 56.6% and 85.0%, and the calibration curves were linear with correlation coefficients above 0.996 over a concentration range of 25.0-1000.0ngmL -1 for both amino acids. The intra- and inter-day precisions were in the range of 5.5-12.5%, and relative errors were smaller than 12.0%. Finally, the optimized method was successfully applied to preconcentrate, clean up, and quantify amino acids in watermelon and grapefruit juices as well as a plasma sample, and acceptable relative recoveries in the range of 53.9-84.0% were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing
NASA Astrophysics Data System (ADS)
Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.
2010-11-01
We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH=1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three phases, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe is solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these fundamental controlling factors need to be included.
Iron dissolution kinetics of mineral dust at low pH during simulated atmospheric processing
NASA Astrophysics Data System (ADS)
Shi, Z.; Bonneville, S.; Krom, M. D.; Carslaw, K. S.; Jickells, T. D.; Baker, A. R.; Benning, L. G.
2011-02-01
We investigated the iron (Fe) dissolution kinetics of African (Tibesti) and Asian (Beijing) dust samples at acidic pH with the aim of reproducing the low pH conditions in atmospheric aerosols. The Beijing dust and three size fractions of the Tibesti dust (<20 μm: PM20; <10 μm: PM10; and <2.5 μm: PM2.5) were dissolved at pH 1, 2 and/or 3 for up to 1000 h. In the first 10 min, all dust samples underwent an extremely fast Fe solubilisation. Subsequently, the Fe dissolution proceeded at a much slower rate before reaching a stable dissolution plateau. The time-dependant Fe dissolution datasets were best described by a model comprising three acid-extractable Fe pools each dissolving according to first-order kinetics. The dissolution rate constant k (h-1) of each pool was independent of the source (Saharan or Asian) and the size (PM20, PM10 or PM2.5) of the dust but highly dependent on pH. The "fast" Fe pool had a k (25 h-1 at pH = 1) of a similar magnitude to "dry" ferrihydrite nanoparticles and/or poorly crystalline Fe(III) oxyhydroxide, while the "intermediate" and "slow" Fe pools had k values respectively 50-60 times and 3000-4000 times smaller than the "fast" pool. The "slow" Fe pool was likely to consist of both crystalline Fe oxide phases (i.e., goethite and/or hematite) and Fe contained in the clay minerals. The initial mass of the "fast", "intermediate" and "slow" Fe pools represented respectively about 0.5-2%, 1-3% and 15-40% of the total Fe in the dust samples. Furthermore, we showed that in systems with low dust/liquid ratios, Fe can be dissolved from all three pools, whereas at high dust/liquid ratios (e.g., in aerosols), sufficient Fe may be solubilised from the "fast" phase to dominate the Fe dissolved and to suppress the dissolution of Fe from the other Fe pools. These data demonstrated that dust/liquid ratio and pH are fundamental parameters controlling Fe dissolution kinetics in the dust. In order to reduce errors in atmospheric and climate models, these fundamental controlling factors need to be included.
Kuhn, Ryan C.; Rock, Channah M.; Oshima, Kevin H.
2002-01-01
In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted. PMID:11916735
Investigation Into Shelf Life of Fresh Dates and Pistachios in a Package Modified With Nano-Silver.
Mousavi, Fateme Peyro; Pour, Hasan Hashemi; Nasab, Amir Heidari; Rajabalipour, Ali A; Barouni, Mohsen
2015-09-18
The aim of this study was to apply polymer films containing silver nanoparticles as a new method for increasing the shelf life and preserving the quality of export/commercial products of Kerman Province and determine the ideal temperature for preserving these products. After preparing nano-composite films containing silver nanoparticles (3% and 5% by weight), Mazafati dates were packed in them and stored with their control samples under four temperatures. In the second series, the films were filled with fresh pistachios and stored at four temperatures. In date samples, after 2, 7, 21 and 53 days of storing the samples were examined under the certified test of Iran Institute of Industrial Standard for Dates, which includes pH, TSS, acidity and reducing sugars tests. In pistachio samples the color values and market-friendly quality were evaluated after 1, 2, 3, 6, 7 and 8 days of storage. In date samples, the pH value decreased with increasing acidity in 3 and 5 wt% of nano-silver and their control samples. In addition, in 5 wt% samples the acidity was higher than that in 3% samples, with pH being lower in the controls at almost all the intervals. Furthermore, pH values in 5% samples were higher in comparison with 3 wt% samples and controls. The amount of reducing sugars in the control samples was lower than those in 3 and 5 wt% samples. In relation to pistachio samples, the damage over time was greater in sample stored under higher temperatures. The maximum shelf life of the dates packaged in 5 wt% of silver nano-powder was 53 days and the best temperature to store samples was determined at 4°C. Packages containing nano-silver increased shelf life of fresh pistachios, with the best temperatures being 25°C and 0°C.
Investigation Into Shelf Life of Fresh Dates and Pistachios in a Package Modified With Nano-Silver
Mousavi, Fateme Peyro; Pour, Hasan Hashemi; Nasab, Amir Heidari; Rajabalipour, Ali A.; Barouni, Mohsen
2016-01-01
Aims: The aim of this study was to apply polymer films containing silver nanoparticles as a new method for increasing the shelf life and preserving the quality of export/commercial products of Kerman Province and determine the ideal temperature for preserving these products. Methods: After preparing nano-composite films containing silver nanoparticles (3% and 5% by weight), Mazafati dates were packed in them and stored with their control samples under four temperatures. In the second series, the films were filled with fresh pistachios and stored at four temperatures. In date samples, after 2, 7, 21 and 53 days of storing the samples were examined under the certified test of Iran Institute of Industrial Standard for Dates, which includes pH, TSS, acidity and reducing sugars tests. In pistachio samples the color values and market-friendly quality were evaluated after 1, 2, 3, 6, 7 and 8 days of storage. Results: In date samples, the pH value decreased with increasing acidity in 3 and 5 wt% of nano-silver and their control samples. In addition, in 5 wt% samples the acidity was higher than that in 3% samples, with pH being lower in the controls at almost all the intervals. Furthermore, pH values in 5% samples were higher in comparison with 3 wt% samples and controls. The amount of reducing sugars in the control samples was lower than those in 3 and 5 wt% samples. In relation to pistachio samples, the damage over time was greater in sample stored under higher temperatures. Conclusion: The maximum shelf life of the dates packaged in 5 wt% of silver nano-powder was 53 days and the best temperature to store samples was determined at 4°C. Packages containing nano-silver increased shelf life of fresh pistachios, with the best temperatures being 25°C and 0°C. PMID:26652097
Ammonium Sulfate Evaporites Associated With Uranium Mill Tailings Disposal Cells
NASA Astrophysics Data System (ADS)
Wendlandt, R. F.; Harrison, W. J.
2006-12-01
The waste products of uranium mill operations are complex and dependent on the ore mineralogy, milling process (e.g., low pH vs. high pH), and operational status of the mill among other things. The White Mesa Mill, Utah, was visited during both quiescent (July 2004) and operational phases (August 2005) to collect liquid and solid samples from the active evaporation and storage ponds environments (Cells 1 and 3). Cell 4, which was unused and being excavated at the times of both samplings, yielded solids accumulated through the history of that cell's use. Raffinate samples are concentrated Na-Mg-Al-Fe-SO4-NO3(-NH4) brines characterized by extreme enrichments in REE and transition elements. Ionic strengths, calculated using the Pitzer activity coefficient model varied from 25M (pH = 1 at 25°C) in Cell 1 and 12M (pH = 2.7) in Cell 3 during July 2004, to 5M (pH = 1.5) in Cell 1 and 1.2M (pH = 2.9) in Cell 3 during August 2005. At the first sampling, the dominant anion was sulfate in Cell 1 and nitrate in Cell 3. At the time of the second sampling, both cells were dominated by sulfate. During July 2004, there was significant evaporative drawdown in the ponds, resulting in 3 variably colored zones (~7m) of mineralogically complex evaporites at the cell margins. During August 2005, the operational nature of the mill and the addition of fresh water had produced high water levels in Cells 1 and 3. Evaporation crusts were recognized around the margins of the cells but they were <2m in extent. XRD analyses document the presence of boussingaultite, (NH4)2Mg(SO4)2.6H2O, which was actively precipitating from Cell 1 during 2004, tschermigite, (NH4)Al(SO4)2.12H2O, gypsum, and polymorphs of Na2SO4 including thenardite. ESEM imaging and EDS analyses of crusts reveal complex parageneses involving the above-mentioned phases and NH4-bearing metavoltine, K2Na6Fe^{+2}Fe6^{+3}(SO4)12O2.18H2O, among others. Ksp calculations and field relations are consistent with a precipitation sequence of tschermigite followed by boussingaultite and metavoltine.
Wallace, Sarah H; Shaw, Samuel; Morris, Katherine; Small, Joe S; Burke, Ian T
2013-04-16
Results are presented from 1 year batch experiments where K-rich hyperalkaline pH 13.5 young cement water (YCW) was reacted with sediments to investigate the effect of high pH, mineral alteration, and secondary mineral precipitation on (90)Sr sorption. After reaction with YCW, Sr sorption was found to be greater than 75% in all samples up to 365 days and 98% in a sample reacted for 365 days at 70 °C. Scanning electron microscopy analysis of sediment samples reacted at room temperature showed surface alteration and precipitation of a secondary phase, likely a K-rich aluminosilicate gel. The presence of Sr-Si(Al) bond distances in Sr K-edge extended X-ray absorption fine structure (EXAFS) analysis suggested that the Sr was present as an inner-sphere adsorption complex. However, sequential extractions found the majority of this Sr was still exchangeable with Mg(2+) at pH 7. For the sample reacted for 1 year at 70 °C, EXAFS analysis revealed clear evidence for ∼6 Sr-Si(Al) backscatters at 3.45 Å, consistent with Sr incorporation into the neoformed K-chabazite phase that was detected by X-ray diffraction and electron microscopy. Once incorporated into chabazite, (90)Sr was not exchangeable with Mg(2+), and chemical leaching with pH 1.5 HNO3 was required to remobilize 60% of the (90)Sr. These results indicate that, in high pH cementitious leachate, there is significantly enhanced Sr retention in sediments due to changes in the adsorption mechanism and incorporation into secondary silicate minerals. This suggests that Sr retention may be enhanced in this high pH zone and that the incorporation process may lead to irreversible exchange of the contaminant over extended time periods.
NASA Technical Reports Server (NTRS)
Everett, M. E.; Lee, S. M. C.; Stroud, L.; Scott, P.; Hagan, R. D.; Soller, B. R.
2009-01-01
In exercising muscles force production and muscular endurance are impaired by a decrease in intramuscular pH. The effects of aerobic training (AT) on preventing acidosis and prolonging exercise time in muscles not specifically targeted by the training are unknown. Purpose: To compare interstitial pH, measured non-invasively with near infrared spectroscopy (NIRS), in the flexor digitorum profundus (FDP) during rhythmic handgrip exercise in sedentary subjects and those who participate in AT activities that target the lower body. Methods: Maximal isometric force (MIF) was measured on three separate days in AT (n=5) and sedentary (n=8) subjects using a handgrip dynamometer (HGD). Isometric muscular endurance (IME) was measured during five trials, each separated by at least 48 hrs. For each IME trial subjects rhythmically squeezed (4 sec at 40% of MVC) and relaxed (2 sec) to fatigue or failure to reach the target force in three consecutive contractions or four non-consecutive contractions. Interstitial pH was derived from spectra collected using a NIRS sensor adhered to the skin over the FDP. The first four IME trials served to familiarize subjects with the protocol; the fifth trial was used for analysis. NIRS-derived pH was averaged in 30 sec increments. Between group differences in MIF and exercise time were tested using paired t-tests. A repeated measures ANOVA was used to analyze effects of AT and exercise time on pH. Results: MIF was not different between groups (mean SD; aerobic=415.6 95.4 N vs. sedentary =505.1 107.4 N). Time to fatigue was greater in the AT than in the sedentary group (mean SD: 611 173 sec vs. 377 162 sec, p<0.05). pH was not different between groups at any time point. Average pH decreased (p<0.05) in both groups from rest (pH=7.4) through 90 sec of exercise (pH=6.9), but did not decrease further throughout the remainder of exercise. Conclusion: Although between group differences in pH were not detected, differences during the onset of exercise may exist with a more frequent sampling. AT individuals appear to better tolerate decreased interstitial pH and are able to continue submaximal muscular work, possibly due to psychological familiarization to muscular fatigue and/or systemic physiological benefits.
NASA Astrophysics Data System (ADS)
Stanić, Vojislav; Dimitrijević, Suzana; Antonović, Dušan G.; Jokić, Bojan M.; Zec, Slavica P.; Tanasković, Sladjana T.; Raičević, Slavica
2014-01-01
Synthetic biomaterials based on fluorine substituted hydroxyapatite are potentially attractive for orthopedic and dental implant applications. The new synthesis of fluorine substituted hydroxyapatite samples were done by neutralization, which consists of adding the solution of HF and H3PO4 in suspension of Ca(OH)2. Characterization studies from XRD, SEM and FTIR spectra showed that crystals are obtained with apatite structure and those particles of all samples are nano size, with an average length of 80 nm and about 15-25 nm in diameter. The central composite design was used in order to determine the optimal conditions for the antimicrobial activity of the synthesized samples. In order to evaluate the influence of operating parameters on the percent of viable cell reduction of Streptococcus mutans, three independent variables were chosen: exposure time, pH of saline and floride concentration in apatite samples. The experimental and predicted antimicrobial activities were in close agreement. Antimicrobial activity of the samples increases with the increase of fluoride concentration and the decreased pH of saline. The maximum antimicrobial activity was achieved at the initial pH of 4.
Farhoud, Murtada H; Wessels, Hans J C T; Wevers, Ron A; van Engelen, Baziel G; van den Heuvel, Lambert P; Smeitink, Jan A
2005-01-01
In 2D-based comparative proteomics of scarce samples, such as limited patient material, established methods for prefractionation and subsequent use of different narrow range IPG strips to increase overall resolution are difficult to apply. Also, a high number of samples, a prerequisite for drawing meaningful conclusions when pathological and control samples are considered, will increase the associated amount of work almost exponentially. Here, we introduce a novel, effective, and economic method designed to obtain maximum 2D resolution while maintaining the high throughput necessary to perform large-scale comparative proteomics studies. The method is based on connecting different IPG strips serially head-to-tail so that a complete line of different IPG strips with sequential pH regions can be focused in the same experiment. We show that when 3 IPG strips (covering together the pH range of 3-11) are connected head-to-tail an optimal resolution is achieved along the whole pH range. Sample consumption, time required, and associated costs are reduced by almost 70%, and the workload is reduced significantly.
TiF(4) and NaF at pH 1.2 but not at pH 3.5 are able to reduce dentin erosion.
Wiegand, Annette; Magalhães, Ana Carolina; Sener, Beatrice; Waldheim, Elena; Attin, Thomas
2009-08-01
This study aimed to analyse and compare the protective effect of buffered (pH 3.5) and native (pH 1.2) TiF(4) in comparison to NaF solutions of same pH on dentin erosion. Bovine samples were pretreated with 1.50% TiF(4) or 2.02% NaF (both 0.48M F) solutions, each with a pH of 1.2 and 3.5. The control group received no fluoride pretreatment. Ten samples in each group were eroded with HCl (pH 2.6) for 10x60s. Erosion was analysed by determination of calcium release into the acid. Additionally, the surface and the elemental surface composition were examined by scanning electron microscopy (two samples in each group) and X-ray energy-dispersive spectroscopy in fluoridated but not eroded samples (six samples in each group). Cumulative calcium release (nmol/mm(2)) was statistically analysed by repeated measures ANOVA and one-way ANOVA at t=10min. TiF(4) and NaF at pH 1.2 decreased calcium release significantly, while TiF(4) and NaF at pH 3.5 were not effective. Samples treated with TiF(4) at pH 1.2 showed a significant increase of Ti, while NaF pretreatment increased F concentration significantly. TiF(4) at pH 1.2 led to the formation of globular precipitates occluding dentinal tubules, which could not be observed on samples treated with TiF(4) at pH 3.5. NaF at pH 1.2 but not at pH 3.5 induced the formation of surface precipitates covering dentinal tubules. Dentin erosion can be significantly reduced by TiF(4) and NaF at pH 1.2, but not at pH 3.5.
Gilbertson, Heather Ruth; Rogers, Elizabeth Jessie; Ukoumunne, Obioha Chukwunyere
2011-07-01
Enteral feeding is a common method of nutrition support when oral intake is inadequate. Confirmation of correct nasogastric (NG) tube placement is essential. Risks of morbidity/mortality associated with misplacement in the lung are well documented. Studies indicate that pH ≤ 4 confirms gastric aspirate, but in pediatrics, a pH of gastric aspirate is often >4. The goal of this study was to determine a reliable and practical pH value to confirm NG tube placement, without increasing the risk of not identifying a misplaced NG tube. Pediatric inpatients older than 4 weeks receiving enteral nutrition (nasogastric or gastrostomy) were recruited over 9 months. Aspirate samples were pH tested at NG tube placement and before feedings. If pH >4, NG tube position was confirmed by chest radiograph or further investigations. In addition, intensive care unit (ICU) patients who required endotracheal suctioning were recruited, and endotracheal aspirate samples were pH tested. A total of 4,330 gastric aspirate samples (96% nasogastric) were collected from 645 patients with a median (interquartile range [IQR]) age of 1.0 years (0.3-5.2 years). The mean (standard deviation [SD]) pH of these gastric samples was 3.6 (1.4) (range, 0-9). pH was >4 in 1,339 (30.9%) gastric aspirate samples, and of these, 244 were radiographed, which identified 10 misplaced tubes (1 with pH 5.5). A total of 65 endotracheal aspirate samples were collected from 19 ICU patients with a median (IQR) age of 0.6 years (0.4-5.2 years). The mean (SD) pH of these samples was 8.4 (0.8) (range, 6-9.5). Given that the lowest pH value of endotracheal aspirate sample was 6, and a misplaced NG tube was identified with pH 5.5, it is proposed that a gastric aspirate pH ≤ 5 is a safer, reliable, and practical cutoff in this population.
Ocular pharmacokinetics of 0.45% ketorolac tromethamine
Attar, Mayssa; Schiffman, Rhett; Borbridge, Lisa; Farnes, Quinn; Welty, Devin
2010-01-01
Purpose A new carboxymethylcellulose (CMC)-containing ophthalmic formulation of 0.45% ketorolac, pH 6.8 (Acuvail®) was recently developed for treatment of inflammation and pain after cataract surgery. This study compared pharmacokinetics of the new formulation with that of a prior formulation, 0.4% ketorolac, pH 7.4 (Acular LS®). Methods Ketorolac formulations were administered bilaterally (35 μL) to female New Zealand White rabbits. Samples from aqueous humor and iris-ciliary body were collected at multiple time points, and ketorolac was quantified using liquid chromatography-tandem mass spectrometry. Results In aqueous humor, the peak concentration (Cmax) and area under the concentration-time curve (AUC0–τ) of ketorolac were, respectively, 389 ng/mL and 939 ng·h/mL following administration of the CMC-containing 0.45% ketorolac, pH 6.8, and 211 ng/mL and 465 ng·hr/mL following administration of the 0.4% ketorolac, pH 7.4. In iris-ciliary body, Cmax and AUC0–τ of ketorolac were, respectively 450 ng/g and 2040 ng·h/g after administration of the CMC-containing 0.45% ketorolac, pH 6.8, and 216 ng/g and 699 ng·h/g after administration of the 0.4% ketorolac, pH 7.4. PK simulations predicted an AUC0–τ of 2910 ng·h/g for twice daily, CMC-containing 0.45% ketorolac, pH 6.8, compared to 725 ng·h/g for 4 times daily, 0.4% ketorolac, pH 7.4. Conclusions The CMC-containing formulation of 0.45% ketorolac, pH 6.8, increased ketorolac bioavailability by 2-fold in aqueous humor and by 3-fold in iris-ciliary body in comparison to the 0.4% ketorolac, pH 7.4, allowing a reduced dosing schedule from 4 times daily to twice daily. PMID:21179226
Ocular pharmacokinetics of 0.45% ketorolac tromethamine.
Attar, Mayssa; Schiffman, Rhett; Borbridge, Lisa; Farnes, Quinn; Welty, Devin
2010-12-01
A new carboxymethylcellulose (CMC)-containing ophthalmic formulation of 0.45% ketorolac, pH 6.8 (Acuvail(®)) was recently developed for treatment of inflammation and pain after cataract surgery. This study compared pharmacokinetics of the new formulation with that of a prior formulation, 0.4% ketorolac, pH 7.4 (Acular LS(®)). Ketorolac formulations were administered bilaterally (35 μL) to female New Zealand White rabbits. Samples from aqueous humor and iris-ciliary body were collected at multiple time points, and ketorolac was quantified using liquid chromatography-tandem mass spectrometry. In aqueous humor, the peak concentration (C(max)) and area under the concentration-time curve (AUC(0-τ)) of ketorolac were, respectively, 389 ng/mL and 939 ng·h/mL following administration of the CMC-containing 0.45% ketorolac, pH 6.8, and 211 ng/mL and 465 ng·hr/mL following administration of the 0.4% ketorolac, pH 7.4. In iris-ciliary body, C(max) and AUC(0-τ) of ketorolac were, respectively 450 ng/g and 2040 ng·h/g after administration of the CMC-containing 0.45% ketorolac, pH 6.8, and 216 ng/g and 699 ng·h/g after administration of the 0.4% ketorolac, pH 7.4. PK simulations predicted an AUC(0-τ) of 2910 ng·h/g for twice daily, CMC-containing 0.45% ketorolac, pH 6.8, compared to 725 ng·h/g for 4 times daily, 0.4% ketorolac, pH 7.4. The CMC-containing formulation of 0.45% ketorolac, pH 6.8, increased ketorolac bioavailability by 2-fold in aqueous humor and by 3-fold in iris-ciliary body in comparison to the 0.4% ketorolac, pH 7.4, allowing a reduced dosing schedule from 4 times daily to twice daily.
Determination Of Ph Including Hemoglobin Correction
Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.
2005-09-13
Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.
Characterizing the variation in pH measurements with apheresis platelets.
Moroff, Gary; Seetharaman, Shalini; Kurtz, James; Wagner, Stephen J
2011-11-01
pH measurements of platelet (PLT) components remain a key parameter when assessing how storage and shipping conditions influence the retention of PLT properties. Studies were conducted to characterize variations in pH measured with two pH meters and a blood gas analyzer. Samples were obtained from apheresis PLT units that were stored with or without continuous agitation to measure a range of pH values. pH values were determined with pH meters at room temperature (20-24°C) upon placing of samples in 5-mL sterile polypropylene tubes and with the blood gas analyzer at 37°C upon injection of identical samples, with conversion to 22°C. The calculated coefficient of variation (%CV) of pH measurements using pH meters (n = 10) was 0.43% or less. The %CV values were comparable with different samples having pH values ranging from 6.0 to 7.4. The %CV levels with the blood gas analyzer were comparable to those observed with the pH meters. The difference in the mean pH values for the two pH meters was no greater than 0.10 units, with 9 of 10 samples having differences in values of 0.05 or less; however, greater differences of values (0.1 to 0.2) were observed between pH measured using the blood gas analyzer and pH meters. Our data show good precision and comparability of pH measurements with two pH meters. Differences in pH values were greater on comparison of the blood gas analyzer with the pH meters. © 2011 American Association of Blood Banks.
Alves, Claudete; Fernandes, Christian; Dos Santos Neto, Alvaro José; Rodrigues, José Carlos; Costa Queiroz, Maria Eugênia; Lanças, Fernando Mauro
2006-07-01
Solid-phase microextraction (SPME)-liquid chromatography (LC) is used to analyze tricyclic antidepressant drugs desipramine, imipramine, nortriptyline, amitriptyline, and clomipramine (internal standard) in plasma samples. Extraction conditions are optimized using a 2(3) factorial design plus a central point to evaluate the influence of the time, temperature, and matrix pH. A Polydimethylsiloxane-divinylbenzene (60-mum film thickness) fiber is selected after the assessment of different types of coating. The chromatographic separation is realized using a C(18) column (150 x 4.6 mm, 5-microm particles), ammonium acetate buffer (0.05 mol/L, pH 5.50)-acetonitrile (55:45 v/v) with 0.1% of triethylamine as mobile phase and UV-vis detection at 214 nm. Among the factorial design conditions evaluated, the best results are obtained at a pH 11.0, temperature of 30 degrees C, and extraction time of 45 min. The proposed method, using a lab-made SPME-LC interface, allowed the determination of tricyclic antidepressants in in plasma at therapeutic concentration levels.
A pH-based biosensor for detection of arsenic in drinking water.
de Mora, K; Joshi, N; Balint, B L; Ward, F B; Elfick, A; French, C E
2011-05-01
Arsenic contaminated groundwater is estimated to affect over 100 million people worldwide, with Bangladesh and West Bengal being among the worst affected regions. A simple, cheap, accurate and disposable device is required for arsenic field testing. We have previously described a novel biosensor for arsenic in which the output is a change in pH, which can be detected visually as a colour change by the use of a pH indicator. Here, we present an improved formulation allowing sensitive and accurate detection of less than 10 ppb arsenate with static overnight incubation. Furthermore, we describe a cheap and simple high-throughput system for simultaneous monitoring of pH in multiple assays over time. Up to 50 samples can be monitored continuously over the desired time period. Cells can be stored and distributed in either air-dried or freeze-dried form. This system was successfully tested on arsenic-contaminated groundwater samples from the South East region of Hungary. We hope to continue to develop this sensor to produce a device suitable for field trials.
A comparison of three electrodes for the measurement of pH in small volumes.
Smit, A; Pollard, M; Cleaton-Jones, P; Preston, A
1997-01-01
An ion-sensitive field effect transistor (ISFET, Sentron, Sentron, Inc.) electrode was compared with a glass combination micro-electrode (MI-410, Micro-electrodes, Inc.) and a solid-state metal wire oxide pH sensor (Beetrode, World Precision Instruments, Inc.) with a liquid junction reference electrode (MERE1, World Precision Instruments, Inc.). The electrodes were assessed for linearity, reproducibility, accuracy, drift from the initial calibration between pH 4 and pH 7 and the time taken to record a stable reading. The ISFET was used to determine the pH in dental plaque samples (1 mg suspended in 20 microliters). The pH values correlated with the hydrogen ion concentration for all the electrodes (r = 0.98). The MI-410 fractured before this evaluation was completed. Coefficients of variation were 0.65% (pH 4) and 0.08% (pH 7) for the ISFET and 4.69% (pH 4) and 3.46% (pH 7) for the Beetrode. Both electrodes gave readings that differed significantly from the initial calibration, but the drift was greater for the Beetrode (F = 7.93; p = 0.0005) than the ISFET (F = 1.89; p = 0.1519). However, this drift was smaller than the change in pH as measured in dental plaque samples. The Beetrode gave a stable reading after 3.39 +/- 0.83 s and the ISFET after 2.2 +/- 0.76 s, while the MI-410 required at least 20 s. The ISFET type electrode is suitable for use in small volumes such as plaque suspensions, is easier to operate and yields results closer to the initial calibration than the Beetrode and is more robust than the MI-410 and the Beetrode.
Soil quality evolution after land use change from paddy soil to vegetable land.
Cao, Z H; Huang, J F; Zhang, C S; Li, A F
2004-01-01
A survey was done in 15 typical villages, 150 soil and 86 vegetable plant samples were taken in Jiaxin prefecture of the Taihu Lake region, northern Zhejian province. Results indicate that after 15-20 years land use changed from the paddy rice-wheat (or oilseed rape) double cropping system, to a continuous vegetable land has caused soil quality dramatic change. (1) Acidification: average soil pH was 5.4; about 61% of total samples were pH < 5.5. It was 0.9 units lower than 10 years ago with same upland vegetable cultivation and was 1.2 units lower than soil pH of paddy rice-wheat (or oilseed rape) rotation. (2) Fertilizer salt accumulation: the average salt content was 0.28%, among these about 36.2% of the total samples contained more than 0.3%. (3) Nitrate N and available phosphorus (P) over accumulation: on average it was 279 mg NO3-N/kg, and 45-115 mg P/kg. Nitrate N four times higher and available P 4-10 times more than it is in present paddy rice-wheat rotation soils respectively. This has caused wide concern because of possible groundwater and well drinking water pollution by leached nitrate N and the P losses to water by runoff from vegetable lands induce surface water eutrophication.
Das, B Kumar; Kim, Ji Gang; Choi, Ji Weon
2011-10-01
The role of different washing solutions and contact times was investigated to determine their use as potential sanitizers for maintaining the microbial quality and food safety of fresh-cut paprika. Samples were cut into small pieces, washed for both 90 and 180 s by different washing solutions: tap water, chlorinated water (100 mg/L and pH 6.5-7), electrolyzed water (pH 7.2) and ozonized water (4 mg/L). Then, samples were packaged in 50 µm polypropylene bags and stored at 5 °C for 12 days, followed by an evaluation of the antimicrobial efficacy of the treatments. Various quality and safety parameters, such as gas composition, color, off-odor, electrical conductivity and microbial numbers, were evaluated during storage. Results revealed insignificant differences in gas composition, and no off-odor was observed in any of the samples during the storage period. However, longer contact time resulted in slightly lower hue angle value than a short one for all washing solutions. Moreover, samples washed with ozone washings showed lower electrolyte leakage than other washing solutions. Samples washed for longer contact time except those washed in ozonized water showed increased microbial numbers during storage. Hence, it has been concluded that longer contact time with ozone has positive effects, whereas the other washing solutions adversely affect the microbial quality and safety aspects of fresh-cut paprika.
Pazzola, Michele; Cipolat-Gotet, Claudio; Bittante, Giovanni; Cecchinato, Alessio; Dettori, Maria L; Vacca, Giuseppe M
2018-04-01
The present study investigated the effect of somatic cell count, lactose, and pH on sheep milk composition, coagulation properties (MCP), and curd firming (CF) parameters. Individual milk samples were collected from 1,114 Sarda ewes reared in 23 farms. Milk composition, somatic cell count, single point MCP (rennet coagulation time, RCT; curd firming time, k 20 ; and curd firmness, a 30 , a 45 , and a 60 ), and CF model parameters were achieved. Phenotypic traits were statistically analyzed using a mixed model to estimate the effects of the different levels of milk somatic cell score (SCS), lactose, and pH, respectively. Additive genetic, herd, and residual correlations among these 3 traits, and with milk composition, MCP and CF parameters, were inferred using a Bayesian approach. From a phenotypic point of view, higher SCS levels caused a delayed gelification of milk. Lactose concentration and pH were significant for many milk quality traits, with a very intense effect on both coagulation times and curd firming. These traits (RCT, RCT estimated using the curd firming over time equation, and k 20 ) showed an unfavorable increase of about 20% from the highest to the lowest level of lactose. Milk samples with pH values lower than 6.56 versus higher than 6.78 were characterized by an increase of RCT (from 6.00 to 14.3 min) and k 20 (from 1.65 to 2.65 min) and a decrease of all the 3 curd firmness traits. From a genetic point of view, the marginal posterior distribution of heritability estimates evidenced a large and exploitable variability for all 3 phenotypes. The mean intra-farm heritability estimates were 0.173 for SCS, 0.418 for lactose content, and 0.206 for pH. Lactose (favorably), and SCS and pH (unfavorably), at phenotypic and genetic levels, were correlated mainly with RCT and RCT estimated using the curd firming over time equation and scarcely with the other curd firming traits. The SCS, lactose, and pH were significantly correlated with each other's. In conclusion, results reported in the present study suggest that SCS, pH, and lactose affect, contemporarily and independently, milk quality and MCP. These phenotypes, easily available during milk recording schemes measured by infrared spectra prediction, could be used as potential indicators traits for improving cheese-making ability of ovine milk. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Temperature and pH sensors based on graphenic materials.
Salvo, P; Calisi, N; Melai, B; Cortigiani, B; Mannini, M; Caneschi, A; Lorenzetti, G; Paoletti, C; Lomonaco, T; Paolicchi, A; Scataglini, I; Dini, V; Romanelli, M; Fuoco, R; Di Francesco, F
2017-05-15
Point-of-care applications and patients' real-time monitoring outside a clinical setting would require disposable and durable sensors to provide better therapies and quality of life for patients. This paper describes the fabrication and performances of a temperature and a pH sensor on a biocompatible and wearable board for healthcare applications. The temperature sensor was based on a reduced graphene oxide (rGO) layer that changed its electrical resistivity with the temperature. When tested in a human serum sample between 25 and 43°C, the sensor had a sensitivity of 110±10Ω/°C and an error of 0.4±0.1°C compared with the reference value set in a thermostatic bath. The pH sensor, based on a graphene oxide (GO) sensitive layer, had a sensitivity of 40±4mV/pH in the pH range between 4 and 10. Five sensor prototypes were tested in a human serum sample over one week and the maximum deviation of the average response from reference values obtained by a glass electrode was 0.2pH units. For biological applications, the temperature and pH sensors were successfully tested for in vitro cytotoxicity with human fibroblast cells (MRC-5) over 24h. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Wei; Shen, Jana K
2014-10-15
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.
Chen, Wei; Shen, Jana K.
2014-01-01
Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416
Ordered cubic nanoporous silica support MCM-48 for delivery of poorly soluble drug indomethacin
NASA Astrophysics Data System (ADS)
Zeleňák, Vladimír; Halamová, Dáša; Almáši, Miroslav; Žid, Lukáš; Zeleňáková, Adriána; Kapusta, Ondrej
2018-06-01
Ordered MCM-48 nanoporous silica (SBET = 923(3) m2·g-1, VP = 0.63(2) cm3·g-1) with cubic Ia3d symmetry was used as a support for drug delivery of anti-inflammatory poorly soluble drug indomethacin. The delivery from parent, unmodified MCM-48, and 3-aminopropyl modified silica carrier was studied into the simulated body fluids with the pH = 2 and pH = 7.4. The studied samples were characterized by thermal analysis (TG/DTG-DTA), N2 adsorption/desorption, infrared spectroscopy (FT-IR), powder XRD, SEM, HRTEM methods, measurements of zeta potential (ζ) and dynamic light scattering (DLS). The determined content of indomethacin in pure MCM-48 was 21 wt.% and in the amine-modified silica MCM-48A-I the content was 45 wt.%. The release profile of the drug, in the time period up to 72 h, was monitored by TLC chromatographic method. It as shown, that by the modification of the surface, the drug release can be controlled. The slower release of indomethacin was observed from amino modified sample MCM-48A-I in the both types of studied simulated body fluids (slightly alkaline intravenous solution with pH = 7.4 and acidic gastric fluid with pH = 2), which was supported and explained by zeta potential and DLS measurements. The amount of the released indomethacin into the fluids with various pH was different. The maximum released amount of the drug was 97% for sample containing unmodified silica, MCM-48-I at pH = 7.4 and lowest released amount, 57%, for amine modified sample MCM-48A-I at pH = 2. To compare the indomethacin release profile four kinetic models were tested. Results showed, that that the drug release based on diffusion Higuchi model, mainly governs the release.
Aqueous photolysis of niclosamide
Graebing, P.W.; Chib, J.S.; Hubert, T.D.; Gingerich, W.H.
2004-01-01
The photodegradation of [14C]niclosamide was studied in sterile, pH 5, 7, and 9 buffered aqueous solutions under artificial sunlight at 25.0 A? 1.0 A?C. Photolysis in pH 5 buffer is 4.3 times faster than in pH 9 buffer and 1.5 times faster than in pH 7 buffer. In the dark controls, niclosamide degraded only in the pH 5 buffer. After 360 h of continuous irradiation in pH 9 buffer, the chromatographic pattern of the degradates was the same regardless of which ring contained the radiolabel. An HPLC method was developed that confirmed these degradates to be carbon dioxide and two- and four-carbon aliphatic acids formed by cleavage of both aromatic rings. Carbon dioxide was the major degradate, comprising 40% of the initial radioactivity in the 360 h samples from both labels. The other degradates formed were oxalic acid, maleic acid, glyoxylic acid, and glyoxal. In addition, in the chloronitroaniline-labeled irradiated test solution, 2-chloro-4-nitroaniline was observed and identified after 48 h of irradiation but was not detected thereafter. No other aromatic compounds were isolated or observed in either labeled test system.
NASA Astrophysics Data System (ADS)
Nowakowski, Pawel; Dallas, Jean-Pierre; Villain, Sylvie; Kopia, Agnieszka; Gavarri, Jean-Raymond
2008-05-01
Nanostructured powders of ruthenium dioxide RuO 2 were synthesized via a sol gel route involving acidic solutions with pH varying between 0.4 and 4.5. The RuO 2 nanopowders were characterized by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM). Rietveld refinement of mean crystal structure was performed on RuO 2 nanopowders and crystallized standard RuO 2 sample. Crystallite sizes measured from X-ray diffraction profiles and TEM analysis varied in the range of 4-10 nm, with a minimum of crystallite dimension for pH=1.5. A good agreement between crystallite sizes calculated from Williamson Hall approach of X-ray data and from direct TEM observations was obtained. The tetragonal crystal cell parameter (a) and cell volumes of nanostructured samples were characterized by values greater than the values of standard RuO 2 sample. In addition, the [Ru-O 6] oxygen octahedrons of rutile structure also depended on crystal size. Catalytic conversion of methane by these RuO 2 nanostructured catalysts was studied as a function of pH, catalytic interaction time, air methane composition, and catalysis temperature, by the way of Fourier transform infrared (FTIR) spectroscopy coupled to homemade catalytic cell. The catalytic efficiency defined as FTIR absorption band intensities I(CO 2) was maximum for sample prepared at pH=1.5, and mainly correlated to crystallite dimensions. No significant catalytic effect was observed from sintered RuO 2 samples.
NASA Astrophysics Data System (ADS)
Deng, Shijie; McAuliffe, Michael A. P.; Salaj-Kosla, Urszula; Wolfe, Raymond; Lewis, Liam; Huyet, Guillaume
2017-02-01
In this work, a low cost optical pH sensing system that allows for small volume sample measurements was developed. The system operates without the requirement of laboratory instruments (e.g. laser source, spectrometer and CCD camera), this lowers the cost and enhances the portability. In the system, an optical arrangement employing a dichroic filter was used which allows the excitation and emission light to be transmitted using a single fibre thus improving the collection efficiency of the fluorescence signal and also the ability of inserting measurement. The pH sensor in the system uses bromocresol purple as the indicator which is immobilised by sol-gel technology through a dip-coating process. The sensor material was coated on the tip of a 1 mm diameter optical fibre which makes it possible for inserting into very small volume samples to measure the pH. In the system, a LED with a peak emission wavelength of 465 nm is used as the light source and a silicon photo-detector is used to detect the uorescence signal. Optical filters are applied after the LED and in front of the photo-detector to separate the excitation and emission light. The fluorescence signal collected is transferred to a PC through a DAQ and processed by a Labview-based graphic-user-interface (GUI). Experimental results show that the system is capable of sensing pH values from 5.3 to 8.7 with a linear response of R2=0.969. Results also show that the response times for a pH changes from 5.3 to 8.7 is approximately 150 s and for a 0.5 pH changes is approximately 50 s.
Natural variance in pH as a complication in detecting acidification of lakes
Turk, J.T.
1988-01-01
Natural variance in the pH of three dilute lakes in the Flat Tops Wilderness Area, Colorado, complicates the detection of acidification. Variations in pH during July-September of 1983 were: 0.95 (Ned Wilson Lake), 1.36 (Upper Island Lake), and 1.53 (Oyster Lake). Mean diurnal variations in pH during 1983 were: 0.37 (Ned Wilson Lake), 0.54 (Upper Island Lake), and 0.39 (Oyster Lake). Replicate pH measurements indicate that pH can be measured with a mean variance due to measurement error of ?? 0.005. Regression analysis indicates that samples collected on the same day of different years may differ because of time of day and percentage of cloud cover. Differences in wind duration and intensity and primary productivity also may cause the pH to differ between years. Such differences can be either random or systematic. Comparisons of pH among 3 yr of data from Ned Wilson Lake indicate that natural variations in pH are much larger than variations in Colorado Lakes previously attributed to acidification by precipitation.
Acidity and Alkalinity in mine drainage: Practical considerations
Cravotta, III, Charles A.; Kirby, Carl S.
2004-01-01
In this paper, we emphasize that the Standard Method hot peroxide treatment procedure for acidity determination (hot acidity) directly measures net acidity or net alkalinity, but that more than one water-quality measure can be useful as a measure of the severity of acid mine drainage. We demonstrate that the hot acidity is related to the pH, alkalinity, and dissolved concentrations of Fe, Mn, and Al in fresh mine drainage. We show that the hot acidity accurately indicates the potential for pH to decrease to acidic values after complete oxidation of Fe and Mn, and it indicates the excess alkalinity or that required for neutralization of the sample. We show that the hot acidity method gives consistent, interpretable results on fresh or aged samples. Regional data for mine-drainage quality in Pennsylvania indicated the pH of fresh samples was predominantly acidic (pH 2.5 to 4) or near neutral (pH 6 to 7); approximately 25 percent of the samples had intermediate pH values. This bimodal frequency distribution of pH was distinctive for fully oxidized samples; oxidized samples had acidic or near-neutral pH, only. Samples that had nearneutral pH after oxidation had negative hot acidity; samples that had acidic pH after oxidation had positive hot acidity. Samples with comparable pH values had variable hot acidities owing to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. The hot acidity was comparable to net acidity computed on the basis of initial pH and concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity computed from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was comparable to that computed on the basis of aqueous species and FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the hot acidities were comparable for fresh and aged samples. Thus, meaningful “net” acidity can be determined from a measured hot acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. Together, these water-quality data can be useful for evaluating the potential for toxicity, corrosion, or encrustation and can be helpful for determining the appropriate remediation. By demonstrating the measurements on fresh and aged samples, we hope to encourage (1) consistent use of the hot peroxide treatment procedure for acidity determination and (2) consistent reporting of negative acidity values.
O'Connor, T M; Barry, P J; Jahangir, A; Finn, C; Buckley, B M; El-Gammal, A
2011-01-01
Arterial blood gases (ABGs) are often sampled incorrectly, leading to a 'mixed' or venous sample. Delays in analysis and air contamination are common. We measured the effects of these errors in patients with chronic obstructive pulmonary disease (COPD) exacerbations and controls. Arterial and venous samples were analyzed from 30 patients with COPD exacerbation and 30 controls. Venous samples were analysed immediately and arterial samples separated into non-air-contaminated and air-contaminated specimens and analysed at 0, 30, 60, 90 and 180 min. Mean venous pH was 7.371 and arterial pH was 7.407 (p < 0.0001). There was a correlation between venous and arterial pH (r = 0.5347, p < 0.0001). The regression equation to predict arterial pH was: arterial pH = 4.2289 + 0.43113 · venous pH. There were no clinically significant differences in arterial PO₂ associated with analysis delay. A statistically significant decline in pH was detected at 30 min in patients with COPD exacerbation (p = 0.0042) and 90 min in controls (p < 0.0001). A clinically significant decline in pH emerged at 73 min in patients with COPD exacerbation and 87 min in controls. Air contamination was associated with a clinically significant increase in PO₂ in all samples, including those that were immediately analyzed. Arterial and venous pH differ significantly. Venous pH cannot accurately replace arterial pH. Temporal delays in ABG analysis result in a significant decline in measured pH. ABGs should be analysed within 30 min. Air contamination leads to an immediate increase in measured PO₂, indicating that air-contaminated ABGs should be discarded. Copyright © 2010 S. Karger AG, Basel.
Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.
Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali
2016-04-01
A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. Copyright © 2015 Elsevier B.V. All rights reserved.
Sato, Shigeru; Mizuguchi, Hitoshi; Ito, Kazunori; Ikuta, Kentaro; Kimura, Atushi; Okada, Keiji
2012-03-01
An indwelling ruminal pH system has been used for the continuous recording of ruminal pH to evaluate subacute ruminal acidosis (SARA) in dairy cows. However this system does not allow the field application. The objective of this study was to develop a new radio transmission pH measurement system, and to assess its performance and usefulness in a continuous evaluation of ruminal pH for use on commercial dairy farms. The radio transmission pH measurement system consists of a wireless pH sensor, a data measurement receiver, a relay unit, and a personal computer installed special software. The pH sensor is housed in a bullet shaped bolus, which also encloses a pH amplifier circuit, a central processing unit (CPU) circuit, a radio frequency (RF) circuit, and a battery. The mean variations of the measurements by the glass pH electrode were +0.20 (n=10) after 2 months of continuous recording, compared to the values confirmed by standard pH solutions for pH 4 and pH 7 at the start of the recording. The mean lifetime of the internal battery was 2.5 months (n=10) when measurements were continuously transmitted every 10 min. Ruminal pH recorded by our new system was compared to that of the spot sampling of ruminal fluid. The mean pH for spot sampling was 6.36 ± 0.55 (n=96), and the mean pH of continuous recording was 6.22 ± 0.54 (n=96). There was a good correlation between continuous recording and spot sampling (r=0.986, P<0.01). We also examined whether our new pH system was able to detect experimentally induced ruminal acidosis in cows and to record long-term changes in ruminal pH. In the cows fed acidosis-inducing diets, the ruminal pH dropped markedly during the first 2h following the morning feeding, and decreased moreover following the evening feeding, with many pulse-like pH changes. The pH of the cows showed the lowest values of 5.3-5.2 in the midnight time period and it recovered to the normal value by the next morning feeding. In one healthy periparturient cow, the circadian changes in ruminal pH were observed as a constant pattern in the pre-parturient period, however that pattern became variable in the post-partum period. The frequency of the ruminal pH lower than 5.5 increased markedly 3 and 4 days after parturition. We demonstrated the possible application of a radio transmission pH measurement system for the assessment and monitoring of the ruminal pH of cows. Our new system might contribute to accurate assessment and prevention of SARA. Copyright © 2011 Elsevier B.V. All rights reserved.
Net alkalinity and net acidity 2: Practical considerations
Kirby, C.S.; Cravotta, C.A.
2005-01-01
The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the initial alkalinity. Acidity calculated from the pH and dissolved metals concentrations, assuming equivalents of 2 per mole of Fe and Mn and 3 per mole of Al, was equivalent to that calculated based on complete aqueous speciation of FeII/FeIII. Despite changes in the pH, alkalinity, and metals concentrations, the Hot Acidities were comparable for fresh and most aged samples. A meaningful "net" acidity can be determined from a measured Hot Acidity or by calculation from the pH, alkalinity, and dissolved metals concentrations. The use of net alkalinity = (Alkalinitymeasured - Hot Aciditymeasured) to design mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions. ?? 2005 Elsevier Ltd. All rights reserved.
Berah, Razieh; Ghorbani, Mohsen; Moghadamnia, Ali Akbar
2017-06-01
To create facile external controlled drug delivery system, a magnetic porous carrier based on Tin oxide nanoparticles was synthesized by an inexpensive and versatile hydrothermal strategy and used for in-vitro process. Magnetic nanocomposites were qualified by Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Vibrational Sample Magnetometer (VSM) and Transmission Electron Microscopy (TEM). Results showed that nanoparticles were synthesized successfully with good dispersion of magnetic nanoparticles in cavity, uniform particle size distribution with average size of 65nm and high magnetization of 33.75 emu/mg. Furthermore, the nano-porosity and magnetism allowed high efficiency and remote controlled drug release. In this study, anti-migraine Sumatriptan was used as drug sample and the effect of drug concentration, Fe/Sn ratio and loading time on drug absorption were investigated. The best result was checked for stability at body temperature and different body pH. The sample with drug concentration of 0.25(mg/ml), Fe/Sn=0.22 and loading time of 1.5h had the highest drug efficiency (70%). Finally, in order to simulate the in vivo process for in-vitro step, Amnion was used and drug diffusion rate was measured in different intervals and different pH values. The result illustrated that after 25h, diffusion reached 65% at pH=2 and 56% at pH=7, and then became constant. Based on the above mentioned results, the carrier has an acceptable in vitro yield and therefore could be chosen for future in vivo researches. Copyright © 2017 Elsevier B.V. All rights reserved.
Becker, Carol J.
2013-01-01
From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.
Dipstick Spot urine pH does not accurately represent 24 hour urine PH measured by an electrode.
Omar, Mohamed; Sarkissian, Carl; Jianbo, Li; Calle, Juan; Monga, Manoj
2016-01-01
To determine whether spot urine pH measured by dipstick is an accurate representation of 24 hours urine pH measured by an electrode. We retrospectively reviewed urine pH results of patients who presented to the urology stone clinic. For each patient we recorded the most recente pH result measured by dipstick from a spot urine sample that preceded the result of a 24-hour urine pH measured by the use of a pH electrode. Patients were excluded if there was a change in medications or dietary recommendations or if the two samples were more than 4 months apart. A difference of more than 0.5 pH was considered na inaccurate result. A total 600 patients were retrospectively reviewed for the pH results. The mean difference in pH between spot urine value and the 24 hours collection values was 0.52±0.45 pH. Higher pH was associated with lower accuracy (p<0.001). The accuracy of spot urine samples to predict 24-hour pH values of <5.5 was 68.9%, 68.2% for 5.5 to 6.5 and 35% for >6.5. Samples taken more than 75 days apart had only 49% the accuracy of more recent samples (p<0.002). The overall accuracy is lower than 80% (p<0.001). Influence of diurnal variation was not significant (p=0.588). Spot urine pH by dipstick is not an accurate method for evaluation of the patients with urolithiasis. Patients with alkaline urine are more prone to error with reliance on spot urine pH.
Saliva pH as a biomarker of exam stress and a predictor of exam performance.
Cohen, Miri; Khalaila, Rabia
2014-11-01
Salivary pH is regulated by the sympathetic and parasympathetic nervous system; therefore, it may serve as a biomarker of stress. To assess the associations between the cognitive and emotional dimensions of exam stress and pH levels, and the predictability of salivary pH in relation to test performance. A prospective study. Eighty-three nursing students answered a questionnaire on stress appraisals, experienced stress, test anxiety (including worry and emotionality subscales) and health behaviors, and gave a saliva sample for measuring pH on the morning of their first term exam and three months later. Their performance on the test (grades) was also recorded. Levels of pH in saliva were higher (levels of acidity were lower) in the post exam compared to the exam period, in parallel to lower threat appraisal, experienced stress, and test anxiety levels post exam. Controlling for smoking, physical activity and working hours per week, pH levels at both time points were predicted by appraised threat regarding the exam situation, experienced stress, and the emotionality dimension of test anxiety. pH at Time 1 predicted performance on the exams and mediated the associations of experienced stress and emotionality subscale with test performance. the present study indicates that pH levels may serve as a reliable, accessible and inexpensive means by which to assess the degree of physiological reactions to exams and other naturalistic stressors. Copyright © 2014 Elsevier Inc. All rights reserved.
Quirino, J P; Terabe, S
2000-01-01
A simple and effective way to improve detection sensitivity of positively chargeable analytes in capillary zone electrophoresis more than 100-fold is described. Cationic species were made to migrate toward the cathode even under reversed electroosmotic flow caused by a cationic surfactant by using a low pH run buffer. For the first time, with such a configuration, large volume sample stacking of cationic analytes is achieved without a polarity-switching step and loss of efficiency. Samples are prepared in water or aqueous acetonitrile. Aromatic amines and a variety of drugs were concentrated using background solutions containing phosphoric acid and cetyltrimethylammonium bromide. Qualitative and quantitative aspects are also investigated.
HDP for the Neutralized pH Value Control in the Clarifying Process of Sugar Cane Juice
NASA Astrophysics Data System (ADS)
Lin, Xiaofeng; Yang, Jiaran
2009-05-01
Neutralizing pH value of sugar cane juice is the important craft in the control process in the clarifying process of sugar cane juice, which is the important factor to influence output and the quality of white sugar. On the one hand, it is an important content to control the neutralized pH value within a required range, which has the vital significance for acquiring high quality purified juice, reducing energy consumption and raising sucrose recovery. On the other hand, it is a complicated physical-chemistry process, which has the characteristics of strong non-linearity, time-varying, large time-delay, and multi-input. Therefore, there has not been a very good solution to control the neutralized pH value. Firstly, in this chapter, a neural network model for the clarifying process of sugar juice is established based on gathering 1200 groups of real-time sample data in a sugar factory. Then, the HDP (Heuristic Dynamic Programming) method is used to optimize and control the neutralized pH value in the clarifying process of sugar juice. Simulation results indicate that this method has good control effect. This will build a good foundation for stabilizing the clarifying process and enhancing the quality of the purified juice and lastly enhancing the quality of white sugar.
Intestine pH measurements using fluorescence imaging: an in-vivo preliminary study
NASA Astrophysics Data System (ADS)
Marechal, Xavier-Marie; Mordon, Serge R.; Devoisselle, Jean-Marie; Begu, Sylvie; Mathieu, D.; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Neviere, Remi; Chopin, Claude
1999-02-01
Measurement of gastrointestinal intramucosal pH has been recognized as an important factor in the detection of hypoxia-induced dysfunctions. However, current pH measurement techniques are limited in terms of time and spatial resolution. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-4,5- carboxyfluorescein (BCECF). This study aimed to demonstrate the feasibility of fluorescence imaging technique to measure in vivo the pH of intestine. The intestine was inserted in an optical chamber placed under a microscope. Animals were injected i.v. with the pH-sensitive fluorescent dye BCECF. Fluorescence was visualized by illuminating the intestine alternately at 490 and 470 nm. The emitted fluorescence was directed to an intensified camera. The ratio of emitted fluorescence at excitation wavelengths of 490 and 470 nm was measured, corrected and converted to pH by constructing a calibration curve. The pH controls were performed with a pH microelectrode correlated with venous blood gas sampling. We concluded that accurate pH measurements of rat intestine can be obtained by fluorescence imaging using BCECF. This technology could be easily adapted for endoscopic pH measurement.
NASA Astrophysics Data System (ADS)
Mendoud, A.; Guerbous, L.; Boukerika, A.; Boudine, B.; Benrekaa, N.
2018-01-01
Tb3+-doped Lu2O3 nanophosphors were prepared via simple sol-gel method, at different pH value of solution (2, 5, 8 and 11), using diethanolamine (DEA) as polymerization agent. The nanopowder samples were characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, room temperature steady and time resolved photoluminescence spectroscopy. The structural analysis reveals that all samples mainely crystallized in the cubic bixbyite structure with Ia3 space group. Also, it was found that the pH value of solution strongly influences the crystallite size, the vibrational frequency modes and the surface morphology of Lu2O3:Tb3+ nanocrystals. All samples show blue-greenish emissions, corresponding to 5D4 → 7FJ (J = 3, 4, 5 and 6) intraconfigurationnelles transitions. The intense green emission peak situated at 542 nm is assigned to 5D4 → 7F5 transition. The 4f8 → 4f75d1 spin-allowed and forbidden transitions, the charge transfer band (CTB) O2- → Tb3+ and the host absorption bands were observed and their dependence on pH value is discussed.
Donders, Gilbert G. G.; Marconi, Camila; Bellen, Gert
2010-01-01
Accessing vaginal pH is fundamental during gynaecological visit for the detection of abnormal vaginal flora (AVF), but use of pH strips may be time-consuming and difficult to interpret. The aim of this study was to evaluate the VS-SENSE test (Common Sense Ltd, Caesarea, Israel) as a tool for the diagnosis of AVF and its correlation with abnormal pH and bacterial vaginosis (BV). The study population consisted of 45 women with vaginal pH ≥ 4.5 and 45 women with normal pH. Vaginal samples were evaluated by VS-SENSE test, microscopy and microbiologic cultures. Comparing with pH strips results, VS-SENSE test specificity was 97.8% and sensitivity of 91%. All severe cases of BV and aerobic vaginitis (AV) were detected by the test. Only one case with normal pH had an unclear result. Concluding, VS-SENSE test is easy to perform, and it correlates with increased pH, AVF, and the severe cases of BV and AV. PMID:20953405
Donders, Gilbert G G; Marconi, Camila; Bellen, Gert
2010-01-01
Accessing vaginal pH is fundamental during gynaecological visit for the detection of abnormal vaginal flora (AVF), but use of pH strips may be time-consuming and difficult to interpret. The aim of this study was to evaluate the VS-SENSE test (Common Sense Ltd, Caesarea, Israel) as a tool for the diagnosis of AVF and its correlation with abnormal pH and bacterial vaginosis (BV). The study population consisted of 45 women with vaginal pH ≥ 4.5 and 45 women with normal pH. Vaginal samples were evaluated by VS-SENSE test, microscopy and microbiologic cultures. Comparing with pH strips results, VS-SENSE test specificity was 97.8% and sensitivity of 91%. All severe cases of BV and aerobic vaginitis (AV) were detected by the test. Only one case with normal pH had an unclear result. Concluding, VS-SENSE test is easy to perform, and it correlates with increased pH, AVF, and the severe cases of BV and AV.
A national audit of retail lamb loin quality in Australia.
Safari, E; Channon, H A; Hopkins, D L; Hall, D G; van de Ven, R
2002-07-01
A retail audit of lamb loin tenderness was conducted over a 12-month period to determine the variation in tenderness of Australian lamb. Tenderness was objectively measured using Warner-Bratzler (WB) shear force. Muscle pH and cooking loss were determined on all samples and colour was measured on a sub-sample of loins. A total of 909 midloins from retail butcher shops and supermarkets located in four Australian capital cities (Sydney, Canberra, Melbourne, and Perth) were evaluated at four sampling times (December 1997 and March, June, and October 1998). Overall, 20.3% of all midloins purchased had a WB shear force value above the threshold level of 5 kg. Generic samples from Melbourne butcher shops were similar for WB shear force on average to the generic samples from Canberra and Sydney, whereas those from Melbourne supermarkets had significantly (P<0.001) higher WB shear force and were in line with generic samples from Perth. In both Canberra and Perth, alliance (branded) lamb had a greater WB shear force (P<0.05) than generic lamb. No relationship was found between price per kg and shear force (r=0.02) for loins purchased in Sydney (n=220). Price per kg differed between months (P<0.001) and suburbs (P<0.001), but not between retail butcher shops and supermarkets. Of the midloins tested, 10.3% had a pH above the critical point of 5.8. Midloins from the December 1997 sampling had a lower pH (P<0.01) than those sampled at other months. Those sampled in Melbourne and Perth had a similar mean pH, which were lower (P<0.001) than Canberra and Sydney samples. The findings from this quality audit suggest that there is room to improve the tenderness of Australian lamb sold in the domestic market. A lamb eating quality assurance system, based on set protocols, is one approach that is currently being investigated in Australia to ensure the supply of consistently high eating quality lamb to consumers.
Wang, Yu; Mu, Ya-bing; Miao, Lei-ying; Sun, Hong-chen; Li, Cheng-ku
2007-03-01
To study the methods of decalcification for making united slices of tooth and affiliated periodontic tissues. Twenty-one samples containing dog molars and affiliated periodontic tissues were divided into seven mean groups. The pH value of solution, time of decalcification, weight and volume of samples, and content of decalcified calcium were detected. The slices were observed by HE, specific, and immunohistochemical stain. The velocity of decalcification increased with decrease of solution pH. The weight of samples lightened by 37.61%, the volume reduced by 25.97% on average, and calcium decalcified was 174.49 mg per gram humid samples. The EDTA decalcification was slowest, but it was best. Decalcification was fast in Plank-Rycho solution while the section was worst, and faster in the formyl solution containing aluminium chloride than in EDTA, and the section was better. The 50% formyl solution containing aluminium chloride is an ideal decalcifying solution.
Meat quality and cooking attributes of thawed pork with different low field NMR T(21).
Li, Chunbao; Liu, Dengyong; Zhou, Guanghong; Xu, Xinglian; Qi, Jun; Shi, Peilei; Xia, Tianlan
2012-10-01
A relationship of low field NMR T(2) components to meat quality and cooking attributes of pork was investigated. Longissimus muscle was removed from 23 pig carcasses at 24h postmortem for meat quality measurements and cooking test. Frozen samples were classified into three groups by LF-NMR T(21) of thawed samples: A (<40ms), B (40-44ms) and C (>44ms). There were significant differences (P<0.05) in pH, lightness (L* value) and pressing loss among the three groups. Cooking time to attain 70°C was slightly lower in group C than the other groups. Shear force value of cooked samples was not affected by T(21). The component T(21) correlated (P<0.05) with L* value, muscle pH and pressing loss, while L* value correlated (P<0.05) with thawing loss and muscle pH. Therefore, combined LF-NMR and color measurements could be a good way to differentiate water holding capacity of pork. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mohebbi, Sara; Erfurth, Florian; Hennersdorf, Philipp; Brakhage, Axel A.; Saluz, Hans Peter
2016-01-01
Hyperspectral imaging (HSI) is a technique based on the combination of classical spectroscopy and conventional digital image processing. It is also well suited for the biological assays and quantitative real-time analysis since it provides spectral and spatial data of samples. The method grants detailed information about a sample by recording the entire spectrum in each pixel of the whole image. We applied HSI to quantify the constituent pH variation in a single infected apoptotic monocyte as a model system. Previously, we showed that the human-pathogenic fungus Aspergillus fumigatus conidia interfere with the acidification of phagolysosomes. Here, we extended this finding to monocytes and gained a more detailed analysis of this process. Our data indicate that melanised A. fumigatus conidia have the ability to interfere with apoptosis in human monocytes as they enable the apoptotic cell to recover from mitochondrial acidification and to continue with the cell cycle. We also showed that this ability of A. fumigatus is dependent on the presence of melanin, since a non-pigmented mutant did not stop the progression of apoptosis and consequently, the cell did not recover from the acidic pH. By conducting the current research based on the HSI, we could measure the intracellular pH in an apoptotic infected human monocyte and show the pattern of pH variation during 35 h of measurements. As a conclusion, we showed the importance of melanin for determining the fate of intracellular pH in a single apoptotic cell. PMID:27727286
Methodological implications in pH standardization of exhaled breath condensate.
Hoffmeyer, F; Berresheim, H; Beine, A; Sucker, K; Brüning, T; Bünger, J
2015-05-14
The variable amount of dissolved carbon dioxide is one of the main confounding factors of exhaled breath condensate (EBC) pH measurements. There have been many attempts at identifying the optimal approach to displace CO2 as a way to gain reproducible and valid pH values in EBC samples. The aim of the present study was to assess the correlation of pH and pCO2 in untreated, neat EBC samples and, after deaeration, to reevaluate the standardization of CO2 as a means to obtain valid pH values. A further aim was to evaluate the impact of deaeration on the acid-base balance in EBC samples. EBC was collected from seven female and 31 male subjects. The pH and pCO2 values immediately determined in untreated, neat EBC samples were strongly correlated (rp = -0.723, p < 0.0001). This correlation was not observed after deaeration with argon (rs = 0.264, p = 0.109). Based on a regression function for the pH/pCO2 relationship, the calculated pH at a pCO2 of 5.33 kPa was 6.07 (IQR 5.99, 6.20). No significant difference was observed between the pH measured in neat EBC samples and those calculated after deaeration with regression function and measured neat pCO2. Our data suggest that pCO2 is the most important confounder of pH measurement in EBC samples and, when adjusting for pCO2, the acid-base balance of EBC samples is not significantly influenced by the process of deaeration. Furthermore, measurement with a blood-gas analyzer and standardization of pH for pCO2 allows sensitive assaying of EBC samples. Therefore, this method provides a basis for detection of even small changes in airway pH due to inhalative exposure or respiratory disease.
ERIC Educational Resources Information Center
van der Haert, Margaux; Arias Ortiz, Elena; Emplit, Philippe; Halloin, Véronique; Dehon, Catherine
2014-01-01
In this article, the determinants of "time to dropout" from doctoral studies and "time to PhD completion" are studied using a discrete-time competing risks survival analysis for a sample of 3092 doctoral candidates from the Université libre de Bruxelles. Not surprisingly, results show that students supported with research…
Microbial population in cloud water at the Puy de Dôme: Implications for the chemistry of clouds
NASA Astrophysics Data System (ADS)
Amato, Pierre; Ménager, Matthieu; Sancelme, Martine; Laj, Paolo; Mailhot, Gilles; Delort, Anne-Marie
Airborne micro-organisms are ubiquitous in the atmosphere where they can remain alive and be transported over long distances, thus colonizing new environments. Despite their great importance in relation to ecological and socio-economical issues (bio-terrorism, health, etc.) very few studies have been carried out in this field. In this study, the structure of the microbial community present in atmospheric water samples from clouds at the Puy de Dôme (alt 1465 m, Massif Central, France) is described and the metabolic potential of some bacteria is investigated. The total microflora has been quantified by epifluorescence microscopy, while the cultivable aerobic micro-organisms were isolated. Bacteria were identified by 16S DNA sequencing and fungi by morphological criteria. The total bacterial count reached about 3×10 4 cells m -3 of cloud volume (1×10 5 cells mL -1 of cloud water), of which less than 1% are cultivable. Most of the isolated micro-organisms, including 12 fungal and 17 bacterial strains, are described here for the first time in atmospheric water. Many bacterial strains seem to be adapted to the extreme conditions found in cloud water (pH, T°, UV radiations, etc.). Comparison of the two samples (March 2003) shows that pH can be a major factor controlling the structure of this community: an acidic pH (Sample 1: pH=4, 9) favours the presence of fungi and spore-forming bacteria, while a more neutral pH (Sample 2: pH=5, 8) favours greater biodiversity. We have also shown, using in situ 1H NMR, that most of the isolated bacteria are able to degrade various organic substrates such as formate, acetate, lactate, methanol and formaldehyde which represent the major organic compounds present in cloud water. In addition, the detection of intermediates indicated preferential metabolic routes for some of the strains.
Rigor mortis development in turkey breast muscle and the effect of electrical stunning.
Alvarado, C Z; Sams, A R
2000-11-01
Rigor mortis development in turkey breast muscle and the effect of electrical stunning on this process are not well characterized. Some electrical stunning procedures have been known to inhibit postmortem (PM) biochemical reactions, thereby delaying the onset of rigor mortis in broilers. Therefore, this study was designed to characterize rigor mortis development in stunned and unstunned turkeys. A total of 154 turkey toms in two trials were conventionally processed at 20 to 22 wk of age. Turkeys were either stunned with a pulsed direct current (500 Hz, 50% duty cycle) at 35 mA (40 V) in a saline bath for 12 seconds or left unstunned as controls. At 15 min and 1, 2, 4, 8, 12, and 24 h PM, pectoralis samples were collected to determine pH, R-value, L* value, sarcomere length, and shear value. In Trial 1, the samples obtained for pH, R-value, and sarcomere length were divided into surface and interior samples. There were no significant differences between the surface and interior samples among any parameters measured. Muscle pH significantly decreased over time in stunned and unstunned birds through 2 h PM. The R-values increased to 8 h PM in unstunned birds and 24 h PM in stunned birds. The L* values increased over time, with no significant differences after 1 h PM for the controls and 2 h PM for the stunned birds. Sarcomere length increased through 2 h PM in the controls and 12 h PM in the stunned fillets. Cooked meat shear values decreased through the 1 h PM deboning time in the control fillets and 2 h PM in the stunned fillets. These results suggest that stunning delayed the development of rigor mortis through 2 h PM, but had no significant effect on the measured parameters at later time points, and that deboning turkey breasts at 2 h PM or later will not significantly impair meat tenderness.
Cravotta, C.A.
2008-01-01
Water-quality data for discharges from 140 abandoned mines in the Anthracite and Bituminous Coalfields of Pennsylvania reveal complex relations among the pH and dissolved solute concentrations that can be explained with geochemical equilibrium models. Observed values of pH ranged from 2.7 to 7.3 in the coal-mine discharges (CMD). Generally, flow rates were smaller and solute concentrations were greater for low-pH CMD samples; pH typically increased with flow rate. Although the frequency distribution of pH was similar for the anthracite and bituminous discharges, the bituminous discharges had smaller median flow rates; greater concentrations of SO4, Fe, Al, As, Cd, Cu, Ni and Sr; comparable concentrations of Mn, Cd, Zn and Se; and smaller concentrations of Ba and Pb than anthracite discharges with the same pH values. The observed relations between the pH and constituent concentrations can be attributed to (1) dilution of acidic water by near-neutral or alkaline ground water; (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals; and (3) aqueous SO4-complexation and surface-complexation (adsorption) reactions. The formation of AlSO4+ and AlHSO42 + complexes adds to the total dissolved Al concentration at equilibrium with Al(OH)3 and/or Al hydroxysulfate phases and can account for 10-20 times greater concentrations of dissolved Al in SO4-laden bituminous discharges compared to anthracite discharges at pH of 5. Sulfate complexation can also account for 10-30 times greater concentrations of dissolved FeIII concentrations at equilibrium with Fe(OH)3 and/or schwertmannite (Fe8O8(OH)4.5(SO4)1.75) at pH of 3-5. In contrast, lower Ba concentrations in bituminous discharges indicate that elevated SO4 concentrations in these CMD sources could limit Ba concentrations by the precipitation of barite (BaSO4). Coprecipitation of Sr with barite could limit concentrations of this element. However, concentrations of dissolved Pb, Cu, Cd, Zn, and most other trace cations in CMD samples were orders of magnitude less than equilibrium with sulfate, carbonate, and/or hydroxide minerals. Surface complexation (adsorption) by hydrous ferric oxides (HFO) could account for the decreased concentrations of these divalent cations with increased pH. In contrast, increased concentrations of As and, to a lesser extent, Se with increased pH could result from the adsorption of these oxyanions by HFO at low pH and desorption at near-neutral pH. Hence, the solute concentrations in CMD and the purity of associated "ochres" formed in CMD settings are expected to vary with pH and aqueous SO4 concentration, with potential for elevated SO4, As and Se in ochres formed at low pH and elevated Cu, Cd, Pb and Zn in ochres formed at near-neutral pH. Elevated SO4 content of ochres could enhance the adsorption of cations at low pH, but decrease the adsorption of anions such as As. Such information on environmental processes that control element concentrations in aqueous samples and associated precipitates could be useful in the design of systems to reduce dissolved contaminant concentrations and/or to recover potentially valuable constituents in mine effluents.
Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K
2015-09-01
Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lwin, Nilar, E-mail: nilarlwin111@gmail.com; School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang; Othman, Radzali, E-mail: radzali@utem.edu.my
The synthesis of nano-crystalline Mg–Mn ferrites by a solution combustion method using citric acid and ammonia was investigated by varying the pH of the precursor solution, which played an important role in controlling the morphology of the synthesized powders. The phase formation, microstructure and electromagnetic properties were studied using X-ray diffraction, scanning electron microscopy, impedance analyzer and vibrating sample magnetometer. Single phase pure spinel Mg–Mn ferrite powders were obtained for all the samples at different pH (< 1, 3, 5, 7, 9). The results showed that an increase of pH improves the crystallinity of the Mg–Mn ferrite nanoparticles. The averagemore » grain size of sintered samples was found to decrease from 2 μm to 0.5 μm with increasing pH values from pH < 1 to pH 9, respectively. The dielectric constant of the samples with different pH is in the range of 7–12 from frequencies of 1 MHz to 1 GHz. The highest saturation magnetization (30.04 emu/g) was obtained for the sample with pH < 1. - Highlights: • Mg–Mn ferrites were synthesized by a solution combustion method with different pH. • Auto-combustion process resulted in the formation of single phase spinel ferrite. • An increase of pH improves the crystallinity of the Mg–Mn ferrite nanoparticles. • pH variation has influence on phase formation and morphology of the ferrite.« less
Romar-Gasalla, Aurora; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino
2018-05-13
Batch experiments were used to test P sorbent potential of soil samples, pyritic and granitic materials, mussel shell, mussel shell ash, sawdust, and slate waste fines for different pH and incubation times. Maximum P sorption varied in a wide range of pH: < 4 for pyritic material, 4-6 for forest soil, > 5 for slate fines, > 6 for shell ash, and pH 6-8 for mussel shell. P sorption was rapid (< 24 h) for forest soil, shell ash, pyritic material, and fine shell. On the opposite side, it was clearly slower for vineyard soil, granitic material, slate fines, pine sawdust, and coarse shell, with increased P sorption even 1 month later. For any incubation time, P sorption was > 90% in shell ash, whereas forest soil, pyritic material, and fine shell showed sorption rates approaching 100% within 24 h of incubation. These results could be useful to manage and/or recycle the sorbents tested when focusing on P immobilization or removal, in circumstances where pH changes and where contact time may vary from hours to days, thus aiding to diminish P pollution and subsequent eutrophication risks, promoting conservation and sustainability.
Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin
2017-11-01
The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.
Application of the Oxidation-Reduction Potential (ORP) for Pre-grading Tuna Freshness On-board
NASA Astrophysics Data System (ADS)
Cheevaporanapivat, Mongkol; Sakai, Hisaharu; Mine, Yuuji; Watanabe, Manabu; Suzuki, Toru
Application of ORP as a rapid indicator for grading tuna's freshness on the ship was studied. The long line trawling process was used for catching the sample tuna in the South Pacific Ocean. All captured sample tuna were weighed, gender identified and investigated for their mortality, then measured ORP and K value. Three species of tuna were caught: blue marlin (Makaira mazara), yellow fin tuna (Thunnus albacares), and swordfish (Xiphia gladius). Most of the fish captured were male and they had been dead after picking onboard. The measured ORP values of blue marlin varied in the range of 0.295-0.362 Volt, with pH between 5.35-5.84. Both ORP and pH of swordfish was similar to that of blue marlin. But for yellow fin tuna, the ORP value was about the same as blue marlin while its pH was significantly higher. ORP value in all species tended to increase with pH of the fish meat decrease. It is interesting that ORP value of tuna increased in correlation with K value. These results suggested that ORP and pH change, which are measured in the short time, are the effective indicators for grading tuna's freshness on-board.
Umar, Dilshad; Dilshad, Bahija; Farhan, Mohammed; Ali, Arshiya; Baroudi, Kusai
2016-01-01
Herbal mouthwashes have been considered to be a more advantageous option to their chemical counterparts, for a long-time. The use of pomegranate fruit dates from ancient times and reports of its therapeutic abilities have echoed throughout the ages. To evaluate the effect on the salivary pH and the Streptococcus mutans count in healthy subjects before and after pomegranate mouthrinse. Fifty healthy patients were randomly divided into two groups of 25 subjects each. Group A was treated with 0.2% chlorhexidine mouthrinse; while Group B was treated with pomegranate peel extract (PPE) mouthrinse and the saliva samples were collected at three different intervals: Prerinse, after 10 min, and 60 min. The salivary pH was measured using a digital pH meter and the S. mutans count was determined by the commercial system Dentocult SM. The statistical analyses used in this study are Mann-Whitney U-test and t-test. PPE mouthrinse had an inhibitory effect on S. mutans count in adults. There was also an increase in the salivary pH after 10 min of the mouthrinse. PPE mouthrinse may be considered as a potential anticariogenic mouthrinse.
Acid-rain induced changes in streamwater quality during storms on Catoctin Mountain, Maryland
Rice, Karen C.; Bricker, O.P.
1992-01-01
Catoctin Mountain receives some of the most acidic (lowest pH) rain in the United States. In 1990, the U.S. Geological Survey (USGS), in cooperation with the Maryland Department of the Environment (MDE) and the Maryland Department of Natural Resources (DNR), began a study of the effects of acid rain on the quality of streamwater on the part of Catoctin Mountain within Cunningham Falls State Park, Maryland (fig. 1). Samples of precipitation collected on the mountain by the USGS since 1982 have been analyzed for acidity and concentration of chemical constituents. During 1982-91, the volume-weighted average pH of precipitation was 4.2. (Volume weighting corrects for the effect of acids being washed out of the atmosphere at the beginning of rainfall). The pH value is measured on a logarithmic scale, which means that for each whole number change, the acidity changes by a factor of 10. Thus rain with a pH of 4.2 is more than 10 times as acidic as uncontaminated rain, which has a pH of about 5.6. The acidity of rain during several rainstorms on Catoctin Mountain was more than 100 times more acidic than uncontaminated rain.
Validity of HydraTrend reagent strips for the assessment of hydration status.
Abbey, Bryce M; Heelan, Kate A; Brown, Gregory A; Bartee, Rodrick T
2014-09-01
Hydration is used by athletic governing organizations for weight class eligibility. The measurement of urine specific gravity (USG) as a measure of hydration by reagent strips is a controversial issue. The purpose of this study was to determine the validity of HydraTrend reagent strips that facilitate the correction of USG for alkaline urine samples against refractometry for the assessment of USG. Fifty-one participants (33 males, age = 22.3 ± 1.3 years; 18 females, age = 22.4 ± 1.2 years) provided 84 urine samples. The samples were tested for USG using refractometry and reagent strips and for pH using reagent strips and a digital pH meter. Strong correlation coefficients were found between refractometry and reagent strips for USG (rs(82) = 0.812, p < 0.01) and between reagent strips and pH meter for pH (rs(82) = 0.939, p < 0.01). It was observed that false negative results for National Collegiate Athletic Association (NCAA) requirements (fail refractometry with USG >1.020, pass reagent strips with USG ≤1.020) occurred 39% (33/84) of the time and false negative results for National Federation of State High School Association (NFHS) requirements (fail refractometry with USG >1.025, pass reagent strips with USG ≤1.025) occurred 14% (12/84) of the time. There were no false positives (pass refractometry and fail reagent strips) for NCAA or NFHS requirements. These data show that refractometry and reagent strips have strong positive correlations. However, the risk of a false negative result leading to incorrect certification of euhydration status outweighs the benefits of the HydraTrend reagent strips for the measurement of USG.
Antimicrobial Cellulose: Preparation and Application of 5-Methyl-5-Aminomethylhydantoin
2006-08-01
they release active chlorine to microbes relatively more rapidly and kill the pathogens in the shortest time. Amide N-Cl bonds being relatively more...for 5~35 min. A 1% Clorox solution was used for chlorination without pH adjustment. bCoating solution: 5 % AH in distilled water. cCoating solution...0.37% 0.75 % 0.94 % 0.80 % 0.80 % aThe cloth samples were cured at 1450C for 35 min and then chlorinated with 1% Clorox 12 without pH adjustment
Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan
2015-07-01
A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tao, Yong; Liu, Jing-Fu; Hu, Xia-Lin; Li, Hong-Cheng; Wang, Thanh; Jiang, Gui-Bin
2009-08-28
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C(8)MIM][PF(6)] with 14% TOPO (w/v); donor phase: 4mL, pH 4.5 KH(2)PO(4) with 2M Na(2)SO(4); acceptor phase: 25microL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1-0.4microg/L, RSD
Quantifying Laryngopharyngeal Reflux in Singers: Perceptual and Objective Findings
Lewis, Vicki M.
2017-01-01
This study examines the relationship between laryngopharyngeal reflux (LPR) symptoms and oropharyngeal pH levels in singers. We hypothesized that reported symptoms would correlate with objective measures of pH levels from the oropharynx, including the number and total duration of reflux episodes. Twenty professional/semiprofessional singers completed the Reflux Symptom Index (RSI) and underwent oropharyngeal pH monitoring. Mild, moderate, or severe pH exposure was recorded during oropharyngeal pH monitoring. Correlations were performed to examine potential relationships between reflux symptoms and duration of LPR episodes. Symptom severity did not correlate with pH levels; however, we found a number of covariances of interest. Large sample sizes are necessary to determine if true correlations exist. Our results suggest that singers may exhibit enhanced sensitivity to LPR and may therefore manifest symptoms, even in response to subtle changes in pH. This study emphasizes the importance of sensitive and objective measures of reflux severity as well as consideration of the cumulative time of reflux exposure in addition to the number of reflux episodes. PMID:29098155
FastID: Extremely Fast Forensic DNA Comparisons
2017-05-19
FastID: Extremely Fast Forensic DNA Comparisons Darrell O. Ricke, PhD Bioengineering Systems & Technologies Massachusetts Institute of...Technology Lincoln Laboratory Lexington, MA USA Darrell.Ricke@ll.mit.edu Abstract—Rapid analysis of DNA forensic samples can have a critical impact on...time sensitive investigations. Analysis of forensic DNA samples by massively parallel sequencing is creating the next gold standard for DNA
ERIC Educational Resources Information Center
Qing, Siyu
2014-01-01
The National Science Foundation (NSF) Survey of Doctorate Recipients (SDR) collects information on a sample of individuals in the United States with PhD degrees. A significant portion of the sampled individuals appear in multiple survey years and can be linked across time. Survey weights in each year are created and adjusted for oversampling and…
Quintáns-Fondo, Ana; Santás-Miguel, Vanesa; Nóvoa-Muñoz, Juan C; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino
2018-01-01
The purpose of this work was to elucidate the repercussion of changing pH, incubation time and As(V) competition on fluoride (F - ) sorption on forest and vineyard soil samples, pyritic, and granitic materials, as well as on the by-products pine sawdust, oak wood ash, mussel shell ash, fine and coarse mussel shell, and slate processing waste fines. To reach this end, the methodological approach was based on batch-type experiments. The results indicate that, for most materials, F - sorption was very high at the start, but was clearly diminished when the pH value increased. However, oak wood ash and shell ash showed high F - sorption even at alkaline pH, and pine sawdust showed low F - sorption for any pH value. Specifically, F - sorption was close to 100% for both ashes at pH < 6, and around 70% at pH 10, while for forest soil it was close to 90% at pH < 2, and around 60% at pH values near 8. Regarding the effect of incubation time on F - sorption, it was very low for both soils, pyritic material, granitic material, and both kinds of ashes, as all of them showed very rapid F - sorption from the start, with differences being lesser than 10% between sorption at 30 min and 1 month of incubation. However, sawdust and slate fines sorbed 20% of added F - in 30 min, remaining constant up to 12 h, and doubling after 30 days. And finally, mussel shell sorbed 20% at 30 min, increasing to close to 60% when incubation time was 30 days. This means that some of the materials showed a first sorption phase characterized by rapid F - sorption, and a slower sorption in a second phase. As regards the effect of the presence of As(V) on F - sorption, it was almost negligible, indicating the absence of competition for sorption sites. In view of that all, these results could aid to appropriately manage soils and by-products when focusing on F - removal, in circumstances where pH value changes, contact time vary from hours to days, and potential competition between F - and As(V) could take place.
NASA Astrophysics Data System (ADS)
Quintáns-Fondo, Ana; Santás-Miguel, Vanesa; Nóvoa-Muñoz, Juan C.; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J.; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino
2018-03-01
The purpose of this work was to elucidate the repercussion of changing pH, incubation time and As(V) competition on fluoride (F-) sorption on forest and vineyard soil samples, pyritic and granitic materials, as well as on the by-products pine sawdust, oak wood ash, mussel shell ash, fine and coarse mussel shell, and slate processing waste fines. To reach this end, the methodological approach was based on batch-type experiments. The results indicate that, for most materials, F- sorption was very high at the start, but was clearly diminished when the pH value increased. However, oak wood ash and shell ash showed high F- sorption even at alkaline pH, and pine sawdust showed low F- sorption for any pH value. Specifically, F- sorption was close to 100% for both ashes at pH <6, and around 70% at pH 10, while for forest soil it was close to 90% at pH <2, and around 60% at pH values near 8. Regarding the effect of incubation time on F- sorption, it was very low for both soils, pyritic material, granitic material and both kinds of ashes, as all of them showed very rapid F- sorption from the start, with differences being lesser than 10% between sorption at 30 min and 1 month of incubation. However, sawdust and slate fines sorbed 20% of added F- in 30 minutes, remaining constant up to twelve hours, and doubling after 30 days. And finally, mussel shell sorbed 20% at 30 minutes, increasing to close to 60% when incubation time was 30 days. This means that some of the materials showed a first sorption phase characterized by rapid F- sorption, and a slower sorption in a second phase. As regards the effect of the presence of As(V) on F- sorption, it was almost negligible, indicating the absence of competition for sorption sites. In view of that all, these results could aid to appropriately manage soils and by-products when focusing on F- removal, in circumstances where pH value changes, contact time vary from hours to days, and potential competition between F- and As(V) could take place.
Kirkham, Kylian; Munson, Jessica M; McCluskey, Susan V; Graner, Kevin K
2017-01-01
The stability of dalteparin 1,000 units/mL in 0.9% sodium chloride for injection stored in polypropylene syringes under refrigeration was examined. Dalteparin 1,000-units/mL syringes were prepared by adding 9 mL of 0.9% sodium chloride for injection to 1 mL of dalteparin sodium 10,000 unit/mL from commercial single-use syringes. Compounded solutions in 0.5-mL aliquots were transferred to 1-mL polypropylene syringes and sealed with a Luer lock tip cap and stored at refrigerated temperatures (2°C to 8°C) with ambient fluorescent light exposure. Syringes from three batches of dalteparin 1,000 units/mL were potency tested in duplicate by a stability-indicating high-performance liquid chromatography assay using a 0.5-mL sample at specified intervals. Visual and pH testing were performed on each batch. Samples were visually inspected for container integrity, color, and clarity. Samples for pH testing were prepared using a 1:1 dilution of dalteparin 1,000 units/mL in sterile water for injection and underwent duplicate analysis at each time point. High-performance liquid chromatography analyses showed a remaining percent of the initial dalteparin content at day 30 of 94.88% ± 2.11%. Samples remained colorless and clear with no signs of container compromise and no visual particulate matter at each time point. Throughout the 30-day study period, pH values remained within 0.3-pH units from the initial value of 5.84. Dalteparin 1,000 unit/mL in 0.9% sodium chloride for injection, packaged in 1-mL polypropylene syringes was stable for at least 30 days while stored at refrigerated conditions with ambient fluorescent light exposure. Copyright© by International Journal of Pharmaceutical Compounding, Inc.
Royston, Patrick; Parmar, Mahesh K B
2016-02-11
Most randomized controlled trials with a time-to-event outcome are designed assuming proportional hazards (PH) of the treatment effect. The sample size calculation is based on a logrank test. However, non-proportional hazards are increasingly common. At analysis, the estimated hazards ratio with a confidence interval is usually presented. The estimate is often obtained from a Cox PH model with treatment as a covariate. If non-proportional hazards are present, the logrank and equivalent Cox tests may lose power. To safeguard power, we previously suggested a 'joint test' combining the Cox test with a test of non-proportional hazards. Unfortunately, a larger sample size is needed to preserve power under PH. Here, we describe a novel test that unites the Cox test with a permutation test based on restricted mean survival time. We propose a combined hypothesis test based on a permutation test of the difference in restricted mean survival time across time. The test involves the minimum of the Cox and permutation test P-values. We approximate its null distribution and correct it for correlation between the two P-values. Using extensive simulations, we assess the type 1 error and power of the combined test under several scenarios and compare with other tests. We investigate powering a trial using the combined test. The type 1 error of the combined test is close to nominal. Power under proportional hazards is slightly lower than for the Cox test. Enhanced power is available when the treatment difference shows an 'early effect', an initial separation of survival curves which diminishes over time. The power is reduced under a 'late effect', when little or no difference in survival curves is seen for an initial period and then a late separation occurs. We propose a method of powering a trial using the combined test. The 'insurance premium' offered by the combined test to safeguard power under non-PH represents about a single-digit percentage increase in sample size. The combined test increases trial power under an early treatment effect and protects power under other scenarios. Use of restricted mean survival time facilitates testing and displaying a generalized treatment effect.
Muñoz, L; López, O; Martino, R; Brunet, S; Bellido, M; Rubiol, E; Sierra, J; Nomdedéu, J F
2000-07-01
The Philadelphia chromosome in acute lymphoblastic leukemia (Ph+ ALL) is associated with a poor prognosis given the high frequency of chemoresistance and leukemia relapse. Minimal residual disease (MRD) detection before cytogenetic and hematologic relapse could be useful in early therapy. The most suitable methods for detecting MRD in Ph+ ALL are flow cytometry (FC) and reverse transcriptase polymerase chain reaction (RT-PCR). However, since both techniques carry the risk of false-negative results the combined use of these two techniques could overcome this problem. We report our experience using this approach in 47 bone marrow samples obtained from 10 Ph+ ALL patients. Twenty-seven marrow aspirates were taken from patients in clinical remission (CR). The samples were considered positive for MRD by FC when two conditions were met: 1) detection of an abnormal B-cell differentiation pattern and 2) presence of more than 1x10(-3) cells coexpressing CD22/CD34/CD45 or CD66/CD34/CD10. After FC analysis, RNA was purified using standard methods. FC was positive in 23/27 samples in CR (sensitivity 85%). RT-PCR was successfully performed in 23 samples in CR. RT-PCR was positive in 18/23 samples (sensitivity 78%). There were 5 samples with discordant results. FC was positive in 3 samples with a negative RT-PCR and FC was negative in 2 samples with a positive RT. All the 10 patients relapsed and only 1 is currently alive after an allogeneic stem cell transplantation (alloSCT). The median (range) time from MRD detection to relapse in patients treated with chemotherapy was 42 (39-71) days. These data suggest that RT-PCR may be negative despite the presence of neoplastic cells identified by their immunophenotypic traits. We conclude that immunologic and molecular techniques can be used in tandem for monitoring MRD in Ph+ ALL.
Effect of calcium chloride on physical properties of calcium-enriched mixture cement.
Abbaszadegan, Abbas; Sedigh Shams, Mahdi; Jamshidi, Yasin; Parashos, Peter; Bagheri, Rafat
2015-12-01
The aim of this study was to evaluate the effect of adding 10% calcium chloride (CaCl2) on the setting time, solubility and the pH of calcium-enriched mixture (CEM) cement. Setting time was assessed in accordance with American Dental Association specification N°57. Solubility was measured at 24 and 72 h, 7 and 14 days in hydrated and dehydrated conditions by calculating weight change. The pH of MiliQ water in which the CEM cement samples were immersed was measured immediately after each time interval with and without the addition of CaCl2. The data were analysed using the Mann-Whitney U-test and the Student's t-test. The initial setting time was significantly decreased after the addition of 10% CaCl2. The pH of water increased immediately when in contact with the cements in both groups. The weight loss of hydrated and dehydrated specimens was more than 3% and was significantly reduced by the addition of 10% CaCl2. © 2015 Australian Society of Endodontology.
Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan
2018-05-15
pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.
NASA Astrophysics Data System (ADS)
Karuna, Nardrapee
Rice straw, a high-abundance lignocellulosic residue from rice production has tremendous potential as a feedstock for biofuel production in California. In this study, the impact of post-alkali pretreatment conditioning schemes on enzyme saccharification efficiency was examined, particularly focusing on understanding resulting biomass compositional impacts on water interactions with the biomass and enzyme accessibility to the cellulose fraction. Rice straw was pretreated with sodium hydroxide and subsequently washed by two different conditions: 1) by extensive washing with distilled water to reduce the pH to the optimum for cellulases which is pH 5--6, and 2) immediate pH adjustment to pH 5--6 with hydrochloric acid before extensive washing with distilled water. The two post-pretreatment conditions gave significant differences in ash, acid-insoluble lignin, glucan and xylan compositions. Alkali pretreatment improved cellulase digestibility of rice straw, and water washing improved enzymatic digestibility more than neutralization. Hydrolysis reactions with a purified Trichoderma reesei Cel7A, a reducing-end specific cellulase, demonstrated that the differences in saccharification are likely due to differences in the accessibility of the cellulose fraction to the cellulolytic enzymes. Further analyses were conducted to study the mobility of the water associated with the rice straw samples by measuring T2 relaxation times of the water protons by 1H-Nuclear Magnetic Resonance (NMR) relaxometry. Results showed significant changes in water association with the rice straw due to the pretreatment and due to the two different post-pretreatment conditions. Pretreatment increased the amount of water at the surface of the rice straw samples as indicated by increased amplitude of the shortest T2 time peaks in the relaxation spectra. Moreover, the amount of water in the first T2 pool in the water washed sample was significantly greater than in the neutralized sample. These results suggest that the specific surface area of rice straw accessible to water protons was increased by the alkali pretreatment, likely due to solubilization of alkali-soluble components of the cell walls. Post-pretreatment processes resulted in differences in the specific surface area likely due to re-precipitation of alkali solubilized components during neutralization. The T2 relaxation times of the surface water pool in washed and raw rice straw were not significantly different, at 4.4 and 4.5 ms, respectively, but both T2 times were significantly shorter than that of the neutralized and then washed sample, at 5.5 ms. The expectation was that the T2 times of the surface water peaks would reflect differences in surface composition of the rice straw samples. Further analysis of surface composition is necessary to further interpret the shortest T2 times observed in the samples. The T2 spectra of the rice straw samples contained longer T2 time peaks that were interpreted as differences in porosity of the rice straw due to the treatments. Pretreatment caused physical changes to rice straw that impacted water organization (3 peaks to 4 peaks), but the amount of water in the peaks were greater in the washed rice straw than the neutralized rice straw suggesting that water-washed rice straw had more of the larger pores than the neutralized and then washed rice straw. One possible explanation is that the neutralization caused precipitation of alkali solubilized components that filled the volumes of the pores.
A new method for determining the acid number of biodiesel based on coulometric titration.
Barbieri Gonzaga, Fabiano; Pereira Sobral, Sidney
2012-08-15
A new method is proposed for determining the acid number (AN) of biodiesel using coulometric titration with potentiometric detection, basically employing a potentiostat/galvanostat and an electrochemical cell containing a platinum electrode, a silver electrode, and a combination pH electrode. The method involves a sequential application of a constant current between the platinum (cathode) and silver (anode) electrodes, followed by measuring the potential of the combination pH electrode, using an isopropanol/water mixture as solvent and LiCl as the supporting electrolyte. A preliminary evaluation of the new method, using acetic acid for doping a biodiesel sample, showed an average recovery of 100.1%. Compared to a volumetric titration-based method for determining the AN of several biodiesel samples (ranging from about 0.18 to 0.95 mg g(-1)), the new method produced statistically similar results with better repeatability. Compared to other works reported in the literature, the new method presented an average repeatability up to 3.2 times better and employed a sample size up to 20 times smaller. Copyright © 2012 Elsevier B.V. All rights reserved.
Analysis of Platelet-Rich Plasma Extraction
Fitzpatrick, Jane; Bulsara, Max K.; McCrory, Paul Robert; Richardson, Martin D.; Zheng, Ming Hao
2017-01-01
Background: Platelet-rich plasma (PRP) has been extensively used as a treatment in tissue healing in tendinopathy, muscle injury, and osteoarthritis. However, there is variation in methods of extraction, and this produces different types of PRP. Purpose: To determine the composition of PRP obtained from 4 commercial separation kits, which would allow assessment of current classification systems used in cross-study comparisons. Study Design: Controlled laboratory study. Methods: Three normal adults each donated 181 mL of whole blood, some of which served as a control and the remainder of which was processed through 4 PRP separation kits: GPS III (Biomet Biologics), Smart-Prep2 (Harvest Terumo), Magellan (Arteriocyte Medical Systems), and ACP (Device Technologies). The resultant PRP was tested for platelet count, red blood cell count, and white blood cell count, including differential in a commercial pathology laboratory. Glucose and pH measurements were obtained from a blood gas autoanalyzer machine. Results: Three kits taking samples from the “buffy coat layer” were found to have greater concentrations of platelets (3-6 times baseline), while 1 kit taking samples from plasma was found to have platelet concentrations of only 1.5 times baseline. The same 3 kits produced an increased concentration of white blood cells (3-6 times baseline); these consisted of neutrophils, leukocytes, and monocytes. This represents high concentrations of platelets and white blood cells. A small drop in pH was thought to relate to the citrate used in the sample preparation. Interestingly, an unexpected increase in glucose concentrations, with 3 to 6 times greater than baseline levels, was found in all samples. Conclusion: This study reveals the variation of blood components, including platelets, red blood cells, leukocytes, pH, and glucose in PRP extractions. The high concentrations of cells are important, as the white blood cell count in PRP samples has frequently been ignored, being considered insignificant. The lack of standardization of PRP preparation for clinical use has contributed at least in part to the varying clinical efficacy in PRP use. Clinical Relevance: The variation of platelet and other blood component concentrations between commercial PRP kits may affect clinical treatment outcomes. There is a need for standardization of PRP for clinical use. PMID:28210651
NASA Astrophysics Data System (ADS)
Adelkhani, H.
2012-06-01
The effects of acidity of electrolyte (pH) on the hysteresis behavior, the specific surface area, and nanostructure morphology of electrolytic manganese dioxides (EMDs) have been studied by using the Barrett-Joyner-Halenda (BJH) analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM) images analysis. EMD samples are electrodeposited at a variable pH (6 to 1) and many fixed pH (2, 3, 4, 5, and 6). Results indicate that pH play key roles in the characteristics of EMD. The samples obtained at low pH (2 and 3) show multi-branched morphology and represent a H4 hysteresis loop. At pH 4 and 5, a uniform and dense structure of MnO2 is obtained without hysteresis behavior. The sample electrodeposited at pH 6 shows a regular reticulate, that its adsorption-desorption isotherm show hysteresis behavior. By electrodeposition at a variable pH, the sample shows a cauliflower-like and multi-branched form. From the viewpoint of classification of isotherm, pH strongly affects on Type of isotherm. The results show that γ-MnO2 is as main-product of electrodeposition and α-MnO2 and β-MnO2 were obtained as side-product at low and high pH, respectively.
Mapping Soil pH Buffering Capacity of Selected Fields
NASA Technical Reports Server (NTRS)
Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.
2003-01-01
Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.
USDA-ARS?s Scientific Manuscript database
Effects of treatment voltage and time of in-package atmospheric cold plasma (ACP) were studied on ozone formation, microbiological quality, surface color, and pH of fresh chicken fillets. Samples were sealed in food trays in air, treated with a dielectric-barrier-discharge (DBD) ACP system, and stor...
An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva.
Luo, Chongdai; Wang, Yangyang; Li, Xuemeng; Jiang, Xueqin; Gao, Panpan; Sun, Kang; Zhou, Jianhua; Zhang, Zhiguang; Jiang, Qing
2017-03-17
Saliva contains important personal physiological information that is related to some diseases, and it is a valuable source of biochemical information that can be collected rapidly, frequently, and without stress. In this article, we reported a new and simple localized surface plasmon resonance (LSPR) substrate composed of polyaniline (PANI)-gold hybrid nanostructures as an optical sensor for monitoring the pH of saliva samples. The overall appearance and topography of the substrates, the composition, and the wettability of the LSPR surfaces were characterized by optical and scanning electron microscope (SEM) images, infrared spectra, and contact angles measurement, respectively. The PANI-gold hybrid substrate readily responded to the pH. The response time was very short, which was 3.5 s when the pH switched from 2 to 7, and 4.5 s from 7 to 2. The changes of visible-near-infrared (NIR) spectra of this sensor upon varying pH in solution showed that-for the absorption at given wavelengths of 665 nm and 785 nm-the sensitivities were 0.0299 a.u./pH (a.u. = arbitrary unit) with a linear range of pH = 5-8 and 0.0234 a.u./pH with linear range of pH = 2-8, respectively. By using this new sensor, the pH of a real saliva sample was monitored and was consistent with the parallel measurements with a standard laboratory method. The results suggest that this novel LSPR sensor shows great potential in the field of mobile healthcare and home medical devices, and could also be modified by different sensitive materials to detect various molecules or ions in the future.
Janabi, Ali H D; Kerkhof, Lee J; McGuinness, Lora R; Biddle, Amy S; McKeever, Kenneth H
2016-10-01
There are many choices for methods of extracting bacterial DNA for Next Generation Sequencing (NGS) from fecal samples. Here, we compare our modifications of a phenol/chloroform extraction method plus an inhibitor removal solution (C3) (ph/Chl+C3) to the PowerFecal® DNA Isolation Kit (MoBio-K). DNA quality and quantity coupled to NGS results were used to assess differences in relative abundance, Shannon diversity index, unique species, and principle coordinate analysis (PCoA) between biological replicates. Six replicate samples, taken from a single ball of horse feces manually collected from the rectum, were subjected to each extraction method. The Ph/Chl+C3 method produced 100× higher DNA yields with less shearing than the MoBio-K method. To assess the methods, the two method samples were sent for sequencing of the bacterial V3-V4 region of 16S rRNA gene using the Illumina MiSeq platform. The relative abundance of Bacteroidetes was greater and there were more unique species assigned to this group in MoBio-K than in Ph/Chl+C3 (P<0.05). In contrast, Firmicutes had greater relative abundance and more unique species in Ph/Chl+C3 extracts than in MoBio-K (P<0.05). The other major bacterial phyla were equally abundant in samples using both extraction methods. Alpha diversity and Shannon Weaver indices showed greater evenness of bacterial distribution in Ph/Chl+C3 compared with MoBio-K (P<0.05), but there was no difference in the OTU richness. Principle coordinate analysis (PCoA) indicated a distinct separation between the two methods (P<0.05) and tighter clustering (less variability) in Ph/Chl+C3 than in MoBio-K. These results suggest that the Ph/Chl+C3 may be preferred for research to identify specific Firmicutes taxa such as Clostridium, and Bacillus. However; MoBio-K may be a better choice for projects focusing on Bacteroidetes abundance. The Ph/Chl+C3 method required less time, but has some safety concerns associated with exposure and disposal of phenol and chloroform. While the MoBio-K may be better choice for researchers with less access to safety equipment like a fume hood. Copyright © 2016 Elsevier B.V. All rights reserved.
da Silva Marques, Duarte Nuno; da Mata, António Duarte Sola Pereira; Patto, José Maria Vaz; Barcelos, Filipe Alexandre Duarte; de Almeida Rato Amaral, João Pedro; de Oliveira, Miguel Constantino Mendes; Ferreira, Cristina Gutierrez Castanheira
2011-11-01
To compare salivary pH changes and stimulation efficacy of two different gustatory stimulants of salivary secretion (GSSS) in patients with primary Sjögren syndrome. Portuguese Institute for Rheumatological Diseases. Double-blind randomized controlled trial. Eighty patients were randomized to two intervention groups. Sample size was calculated using an alpha error of 0.05 and a beta of 0.20. Participants were randomly assigned to receive a new GSSS containing a weaker malic acid, fluoride and xylitol or a traditionally citric acid-based one. Saliva collection was obtained by established methods at different times. The salivary pH of the samples was determined with a pH meter and a microelectrode. Salivary pH variations and counts of subjects with pH below 4.5 for over 1 min and stimulated salivary flow were the main outcome measures. Both GSSS significantly stimulated salivary output without significant differences between the two groups. The new gustatory stimulant of salivary secretion presented an absolute risk reduction of 52.78% [33.42-72.13 (95% CI)] when compared with the traditional one. In Xerostomic Primary Sjögren syndrome patients, gustatory stimulants of salivary secretion based on acid mail only with fluoride and xylitol present similar salivary stimulation capacity when compared to citric acid-based ones, besides significantly reducing the number of salivary pH drops below 4.5. This could be related to a diminished risk for dental erosion and should be confirmed with further studies. © 2011 John Wiley & Sons A/S.
Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Goud, D Raghavender; Dubey, D K; Pardasani, Deepak
2015-05-15
Present study deals with the preparation and evaluation of graphene based magnetic nano-composite for dispersive solid phase extraction of Chemical Weapons Convention (CWC) relevant chemicals from aqueous samples. Nano-composite, Fe3O4@SiO2-G was synthesized by covalently bonding silica coated Fe3O4 onto the graphene sheets. Nerve agents (NA), Sulfur mustard (SM) and their non-toxic environmental markers were the target analytes. Extraction parameters like amount of sorbent, extraction time and desorption conditions were optimized. Dispersion of 20 milligram of sorbent in 200mL of water sample for 20min. followed by methanol/chloroform extraction produced average to good recoveries (27-94%) of targeted analytes. Recoveries of real agents exhibited great dependency upon sample pH and ionic strength. Sarin produced maximum recovery under mild acidic conditions (56% at pH 5) while VX demanded alkaline media (83% at pH 9). Salts presence in the aqueous samples was found to be advantageous, raising the recoveries to as high as 94% for SM. Excellent limits of detection (LOD) for sulphur mustard and VX (0.11ngmL(-1) and 0.19ngmL(-1) respectively) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2015 Elsevier B.V. All rights reserved.
Nong, Chunyan; Niu, Zongliang; Li, Pengyao; Wang, Chunping; Li, Wanyu; Wen, Yingying
2017-04-15
Dual-cloud point extraction (dCPE) was successfully developed for simultaneous extraction of trace sulfonamides (SAs) including sulfamerazine (SMZ), sulfadoxin (SDX), sulfathiazole (STZ) in urine and water samples. Several parameters affecting the extraction were optimized, such as sample pH, concentration of Triton X-114, extraction temperature and time, centrifugation rate and time, back-extraction solution pH, back-extraction temperature and time, back-extraction centrifugation rate and time. High performance liquid chromatography (HPLC) was applied for the SAs analysis. Under the optimum extraction and detection conditions, successful separation of the SAs was achieved within 9min, and excellent analytical performances were attained. Good linear relationships (R 2 ≥0.9990) between peak area and concentration for SMZ and STZ were optimized from 0.02 to 10μg/mL, for SDX from 0.01 to 10μg/mL. Detection limits of 3.0-6.2ng/mL were achieved. Satisfactory recoveries ranging from 85 to 108% were determined with urine, lake and tap water spiked at 0.2, 0.5 and 1μg/mL, respectively, with relative standard deviations (RSDs, n=6) of 1.5-7.7%. This method was demonstrated to be convenient, rapid, cost-effective and environmentally benign, and could be used as an alternative tool to existing methods for analysing trace residues of SAs in urine and water samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Petruzzi, Leonardo; Sinigaglia, Milena; Corbo, Maria Rosaria; Beneduce, Luciano; Bevilacqua, Antonio
2013-07-01
This study investigated the effect of some physicochemical parameters on the removal of ochratoxin A (OTA) by yeasts. Two wild strains of Saccharomyces cerevisiae (W47 and Y28) were used to assess OTA removal under various conditions of temperature, pH, ethanol content and incubation time. All samples were analysed for OTA concentration by enzyme-linked immunosorbent assay (ELISA). In addition, yeast oenological traits were investigated: qualitative and technological traits were assessed on appropriate laboratory media, while the main products of microfermentation (sugars, ethanol, glycerol, acetic acid) were evaluated by Fourier transform infrared spectroscopy (FTIR). The results showed OTA reduction by 36-42% in cultures containing 100 g L⁻¹ ethanol incubated at pH 3.5 and 37 °C. OTA removal was affected by contact time, pH and ethanol content, as it was increased at low pH and by 100 g L⁻¹ ethanol. Moreover, the phenomenon was reversible, as OTA was lowest after 4 days, then it was partially released in the medium. © 2012 Society of Chemical Industry.
Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.
2014-04-02
Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNLmore » refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.« less
Paiva-Martins, Fátima; Santos, Vera; Mangericão, Hugo; Gordon, Michael H
2006-05-17
The antioxidant activity and interactions with copper of four olive oil phenolic compounds, namely oleuropein, hydroxytyrosol, 3,4-dihydroxyphenylethanol-elenolic acid (1), and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (2), in olive oil and oil-in-water emulsions stored at 60 degrees C were studied. All four phenolic compounds significantly extended the induction time of lipid oxidation in olive oil with the order of activity being hydroxytyrosol > compound 1 > compound 2 > oleuropein > alpha-tocopherol; but in the presence of Cu(ll), the stability of oil samples containing phenolic compounds decreased by at least 90%, and the antioxidant activity of hydroxytyrosol and compounds 1 and 2 became similar. In oil-in-water emulsions prepared from olive oil stripped of tocopherols, hydroxytyrosol enhanced the prooxidant effect of copper at pH 5.5 but not at pH 7.4. The stability of samples containing copper at pH 5.5 was not significantly different if oleuropein was present from that of the control. Oleuropein at pH 7.4, and compounds 1 and 2 at both pH values tested, reduced the prooxidant effect of copper. The lower stability and the higher reducing capacity of all compounds at pH 7.4 could not explain the higher stability of emulsions containing phenolic compounds at this pH value. However, mixtures containing hydroxytyrosol or oleuropein with copper showed higher 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity at pH 7.4 than at pH 5.5. Moreover, the compound 2-copper complex showed higher radical scavenging activity then the uncomplexed compound at pH 5.5. It can be concluded that the formation of a copper complex with radical scavenging activity is a key step in the antioxidant action of the olive oil phenolic compounds in an emulsion containing copper ions.
Lesho, E P; Roth, B J
1997-11-05
Our laboratory uses pH paper rather than a blood gas analyzer to measure pleural fluid pH to decrease cost and avoid analyzer malfunction due to viscous fluids. To compare these two methods of determining pleural fluid pH, 42 patients undergoing diagnostic or therapeutic thoracentesis had two 1-mL aliquots of pleural fluid anaerobically collected in a heparinized syringe and placed on ice. pH measurements were made using litmus paper (pHydron Vivid 6-8 brand litmus paper; MicroEssential Labs; Brooklyn, NY) and the model 995-Hb blood gas analyzer (AVL Instruments; Roswell, GA) within 1 h of collection. Agreement analysis was performed in three ways: on the entire group; in subcategories of complicated or uncomplicated parapneumonic effusions (<7.1, 7.1 to 7.3, >7.3); and in subcategories of poor prognosis or better prognosis malignant effusions(<7.3, >7.3). pH measured with pH paper was significantly more variable (SD=0.55, coefficient of variation [CV]=7.5%) than was pH measured with the blood gas analyzer (SD=0.11, CV=1.5%). There was no significant correlation between values obtained with the two techniques (r=-0.26, SD of the differences=0.59). Using the pH subcategories, there was 72% discordance in classification between litmus paper and arterial blood gas (ABG) determinations for patients with parapneumonic effusions. In patients with malignant effusions, there was 30% discordance. The pH values obtained by the ABG analyzer predicted tube thoracostomy 72% of the time, whereas the pH values obtained using pH paper were consistent only 36% of the time. Determination of pleural fluid pH using pH paper is unreliable and should not be considered an acceptable alternative to the blood gas analyzer. There is no need to determine pH on purulent samples. Hospital laboratories will be more likely to allow the use of the ABG analyzer on fluids other than blood if clinicians keep this in mind.
Camacho-Ruiz, María de los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A.
2015-01-01
A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. PMID:25748441
Khan, Jamshaid Ali; Khan, Imran Ullah; Iqbal, Zafar; Nasir, Fazli; Muhammad, Salar; Hannan, Peer Abdul; Ullah, Irfan
2015-09-01
Manifestation of microbial spoilage of any product by bacteria and to assess the effectiveness of the anti-microbial preservatives (parabens) used for the prevention and stability purpose. The aim of the present work is to study the effectiveness of preservatives used in the antacid suspensions and to analyze the effect of microbial growth on the quality of respective antacid suspensions. Samples of various antacid suspensions were randomly collected from local market and Government hospital pharmacies. Three different antacid formulations were prepared in the laboratory. All the formulations were preliminarily evaluated on the basis of organoleptic characteristics, pH, viscosity and assay. Efficacy of the preservative system in suspension formulation was determined by inoculating the samples in its final container, with specific strains of bacteria i.e. Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 6538, taking samples from the inoculated preparation at specified intervals of time i.e. 0 time, 07 days, 14 days and 28 days, growing it on nutrient agar medium and colony forming units (CFUs) were scored by plate count. At the same time the samples were also subjected to qualitative and quantitative testing. The decrease in CFU and alteration in assay, pH and viscosity was observed in all the formulations except formulation M2 and F3 that showed stability throughout the study period.
NASA Astrophysics Data System (ADS)
Kent, R. H.; Burton, C. A.
2001-12-01
This study examined the extent and variabiltity of nitrate loss in a 2.85 km reach of Cucamonga Creek, which is concrete-lined and dominated by treated municipal waste-water. Primary production was measured to determine if the loss could be attributed to algal assimilation. Samples for nitrite plus nitrate analysis were collected at the top and bottom of the study reach every hour throughout the 24-hour sampling period; samples for analyses of other parameters were collected less frequently. Water temperature, dissolved oxygen (DO), pH and specific conductance were monitored continuously throughout the sampling period using in-stream probes. During the two weeks prior to the study, periphyton samples were collected periodically at four stations along the reach for standing crop measurements and a growth rate time-series using Chlorophyll A and ash-free-dry mass. Water samples from the upstream station were compared to those taken an hour later (the approximate travel time) at the downstream station. Nitrate concentrations were lower at the downstream station in 21 of 25 of the paired samples, indicating nearly continuous loss in the reach. The total loss of NO3 for the day was about 0.71 g as N/m2. Most of the loss occurred during daylight hours, with the peak occurring at midday. During the night, CO2 concentrations were relatively constant at about 25 mg/L. Concentrations began to decline at sunrise, and declined to 0 mg/L at the lower site after midday. Peak nitrate loss occurred at about the same time as the CO2 concentration was at its minimum. DO declined slightly during the night, began to rise at sunrise, reached a peak during midday, and declined in late afternoon through evening; pH followed a similar pattern. Net primary productivity, as measured by the differences in DO between the two sites was 13 g O2/m2 for the day. Using the Redfield ratio, the predicted nitrate assimilation is about 0.66 g NO3 as N/m2. The continuous loss of nitrate between the two sites; the comparability between the observed loss in nitrate and that predicted using the Redfield ratio; and the timing of changes in nitrate loss, DO, pH and CO2 indicate that nitrate loss in this concrete-lined channel was primarily due to algal assimilation. The timing of the peak nitrate loss relative to the depletion of CO2 suggests that CO2 may be limiting photosynthesis, and therefore assimilation of nitrate by algae.
Shange, Nompumelelo; Makasi, Thandeka N; Gouws, Pieter A; Hoffman, Louwrens C
2018-01-01
Changes in pH, colour and microbiological counts were investigated in previously frozen Biceps femoris (BF) muscles from black wildebeest. Samples were stored under vacuum at refrigerated conditions (4.2±0.8°C) for 12days. Seven BF muscles had a high pH (DFD) (pH≥6) and five had a normal pH (pH<6). Overtime the pH of DFD did not significantly change whilst that of normal pH meat decreased. Browning under anaerobic storage conditions was seen, more for normal meat than DFD meat. Initial total viable counts, lactic acid bacteria and coliform counts from samples with normal pH, were significantly higher than counts from the DFD samples. However, overtime DFD meat showed a faster increase for all microorganisms tested compared to normal pH meat. Overall, this study revealed that DFD meat can have a shorter shelf-life than normal pH meat stored at 4.2±0.8°C. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sampling and storage of blood for pH and blood gas analysis.
Haskins, S C
1977-02-15
Techniques used in sampling and storage of a blood sample for pH and gas measurements can have an important effect on the measured values. Observation of these techniques and principles will minimize in vitro alteration of the pH and blood gas values. To consider that a significant change has occurred in a pH or blood gas measurement from previous values, the change must exceed 0.015 for pH, 3 mm Hg for PCO2, 5 mm Hg for PO2, and 2 mEq/L for [HCO-3] or base excess/deficit. In vitro dilution of the blood sample with anticoagulant should be avoided because it will alter the measured PCO2 and base excess/deficit values. Arterial samples should be collected for meaningful pH and blood gas values. Central venous and free-flowing capillary blood can be used for screening procedures in normal patients but are subject to considerable error. A blood sample can be stored for up to 30 minutes at room temperature without significant change in acid-base values but only up to 12 minutes before significant changes occur in PO2. A blood sample can be stored for up to 3.5 hours in an ice-water bath without significant change in pH and for 6 hours without significant change in PCO2 or PO2. Variations of body temperatures from normal will cause a measurable change in pH and blood gas values when the blood is exposed to the normal water bath temperatures of the analyzer.
Crepeau, Kathryn L.; Fram, Miranda S.; Bush, Noel
2004-01-01
An analytical method for the determination of the trihalomethane formation potential of water samples has been developed. The trihalomethane formation potential is measured by dosing samples with chlorine under specified conditions of pH, temperature, incubation time, darkness, and residual-free chlorine, and then analyzing the resulting trihalomethanes by purge and trap/gas chromatography equipped with an electron capture detector. Detailed explanations of the method and quality-control practices are provided. Method validation experiments showed that the trihalomethane formation potential varies as a function of time between sample collection and analysis, residual-free chlorine concentration, method of sample dilution, and the concentration of bromide in the sample.
Environmental implications of material leached from coal.
Moyo, Stanley; Mujuru, Munyaradzi; McCrindle, Rob I; Mokgalaka-Matlala, Ntebogeng
2011-05-01
Samples of coal were collected from different seams at a South African coal mine and comparative leaching experiments were carried out under various pH conditions and times to investigate the leaching behavior and potential environmental impact of possibly hazardous elements such as As, Cd, Co, Cr, Mn, Ni, Pb, Th and U. The calculated leaching intensities, sequential extraction results and cumulative percentages demonstrate that the leaching behavior of the elements is strongly influenced by the pH, the leaching time and the properties and occurrences of the elements. The leached concentrations of As, Cd, Co, Cr, Mn, Ni and Pb exceeded the maximum concentrations recommended by the Environmental Protection Agency (EPA) for surface water.
Wang, Xin Rui; Wang, Xing Ze; Li, Yong; Liu, Kun; Liu, Shi Xin; Du, Jing; Huang, Zhuo; Luo, Yan; Huo, Jian Zhong; Wu, Xiang Xia; Liu, Yuan Yuan; Ding, Bin
2018-06-01
In this work, a novel water-stable coordination polymer with {4 4 } network topology {[Zn(L) 2 (NO 3 ) 2 ]} n (1) (L = 4,4'-Bis(triazol-1-ylmethyl)biphenyl) has been synthesized through the hydrothermal and sonochemical approaches. 1 has been characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy, UV-vis absorption spectrum and scanning electron microscopy (SEM). PXRD patterns of the as-synthesized samples 1 have confirmed the purity of the bulky samples. In the sonochemical preparation approaches, different ultrasound irradiation power and ultrasound time were also used in order to investigate the impact factor for morphology and size of nano-structured 1. Photo-luminescence studies have revealed that 1 can efficiently distinguish Fe 3+ from Fe 2+ and other metal ions. On the other hand, 1 also can exhibit a highly sensitive, excellently selective and real-time detection of benzaldehyde and pH through photo-luminescence quenching process. As for 1, density functional theory (DFT) and time-dependent DFT (TDDFT) theory has been applied to calculate these spectroscopic data, the result agree with the experimental results for detection of benzaldehyde. Photo-luminescent recyclability results indicated 1 can be reused at least five times in the detection process. To the best of our knowledge, this is the first example of a multi-responsive regenerable luminescent sensor for highly selective, sensitive and real-time sensing of Fe 3+ over Fe 2+ , benzaldehyde and pH values. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of pH on fecal recovery of energy derived from volatile fatty acids.
Kien, C L; Liechty, E A
1987-01-01
We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry.
Theory and practice in the electrometric determination of pH in precipitation
NASA Astrophysics Data System (ADS)
Brennan, Carla Jo; Peden, Mark E.
Basic theory and laboratory investigations have been applied to the electrometric determination of pH in precipitation samples in an effort to improve the reliability of the results obtained from these low ionic strength samples. The theoretical problems inherent in the measurement of pH in rain have been examined using natural precipitation samples with varying ionic strengths and pH values. The importance of electrode design and construction has been stressed. The proper choice of electrode can minimize or eliminate problems arising from residual liquid junction potentials, streaming potentials and temperature differences. Reliable pH measurements can be made in precipitation samples using commercially available calibration buffers providing low ionic strength quality control solutions are routinely used to verify electrode and meter performance.
Time to career: Science and engineering education to career trajectories
NASA Astrophysics Data System (ADS)
Choi, Angie Nim
Two waves of data from the 2006 and 2008 Survey of Earned Doctorates and Survey of Doctorate Recipients were used in this study to investigate time to doctorate (TTD) and time to career (TTC) for science and engineering PhDs. Three-way factorial ANOVAs were conducted, and TTD results indicated main effects for gender, US citizenship, and Biglan classification, and interaction effects for gender and US citizenship. US citizen PhDs progressed to their career approximately one mean year faster than foreign PhDs. For TTC, PhDs who held postdocs progressed to their careers in 14 and 15 years for females and males respectively compared to 19 years for those without postdoctoral appointments. PhDs working in academe also had shorter TTC rates than those working in industry or government settings. TTC rates were lowest for PhDs from engineering fields and highest for those from health sciences. A multiple linear regression based upon the 2006 data was also used to determine the best predictors of TTC based upon individual, academic, and employer characteristics, and the model was cross-validated with an independent sample from the 2008 data. The regression solution was significant, F (20, 11000) = 97.06, p < .001, and significant predictors were gender, US citizen, children ages 2-5, married or married-like relationship, TTD, teaching assistantship, research assistantship, student loans, salary, postdoc, government employer, and business/industry employer. The regression solution for predicting TTC had a medium effect size (R2 = .14), and the cross-validated model had a slightly higher effect (R2 = .28).
NASA Astrophysics Data System (ADS)
Indrianingsih, A. W.; Rosyida, V. T.; Jatmiko, T. H.; Prasetyo, D. J.; Poeloengasih, C. D.; Apriyana, W.; Nisa, K.; Nurhayati, S.; Hernawan; Darsih, C.; Pratiwi, D.; Suwanto, A.; Ratih, D.
2017-12-01
Bacterial cellulose produced by Acetobacter xylinum is a unique type of bacterial cellulose. It contains more than 90% of water. A preliminary study had shown that bacterial cellulose films has remarkable mechanical properties. The aim of this study was to investigate the optimum condition such as percentage of carbon source, time of cultivation, and pH to produce bacterial cellulose films from local coconut water, and its characterization on morphology, swelling ability and tensile strength of dried bacterial cellulose. A. xylinum was grown on coconut water culture medium with addition of 3%, 5%, and 7% of sugar, while the cultivation time was vary from 3 days, 5 days and 7 days. pH condition was conducted in pH 3, pH 5 and pH 7. Bacterial cellulose samples were dried using oven with temperature of 100°C until the moisture content reached 4-5%. This study showed that several parameters for optimum condition to produce bacterial cellulose films from local waste of coconut water had been obtained (5% of carbon source; pH 5; and 7 day of incubation period). The electron microscopy also showed that dried bacterial cellulose films had pores covered by fibrils on the surface. Therefore, the present work proposes the optimum formula and condition that can be used based on properties of end product needed.
Detection of viruses in drinking water by concentration on magnetic iron oxide.
Rao, V C; Waghmare, S V; Lakhe, S B
1981-09-01
Discharge of raw domestic wastes containing human enteric viruses into water courses, consumption of untreated water from canals, streams, and shallow wells in villages, and cross-contamination of water in the distribution system because of intermittent water supply in urban areas continue to cause widespread outbreaks of infectious hepatitis in India. To detect a low number of viruses in 50- to 100-liter samples of water, a method was developed with magnetic iron oxide as the virus adsorbent. Poliovirus-seeded dechlorinated tap water, adjusted to pH 3.0 and 0.0005 M AlCl3, was filtered through a 10-g bed of iron oxide sandwiched between two AP20 prefilter pads held in a 142-mm-diameter, stainless-steel holder. Virus was eluted from iron oxide by recirculating three times a 100-ml volume of 3% beef extract, pH 9.0. The eluate was reconcentrated to 5 ml by adjusting to pH 3, adding 1 g of iron oxide, stirring for 30 min, and eluting the readsorbed virus with 5 ml of beef extract, pH 9.0. Virus recovery varied from 60 to 80%. Using the above method, we took a survey of drinking water at three locations in Nagpur during 1976 and found the presence of virus in 7 of 50 samples. The quantity of virus recovered ranged from 1 to 7 plaque-forming units per 30 to 60 liters. Virus was detected in some samples even with residual chlorine. No coliforms were detected in the virus-positive samples.
Simultaneous wireless assessment of intra-oral pH and temperature.
Farella, M; Loke, C; Sander, S; Songini, A; Allen, M; Mei, L; Cannon, R D
2016-08-01
Intra-oral pH plays an important role in the pathogenesis of tooth erosion and decay, but there is limited information about its variation in real life settings. The aims of this research were to: 1) develop a wireless device, which can be used to continuously monitor intra-oral pH and temperature in real-time; 2) test and validate the device under controlled laboratory conditions; and 3) collect data in a natural environment in a sample of healthy volunteers. A wireless device for measuring pH and temperature simultaneously was developed, calibrated and validated against the gold standard glass electrode pH meter. A smart phone was used as data logger. The wireless device was embedded in an oral appliance and worn by eleven participants (mean age 31.1±6.9years) for 24h, while conducting standardised drinking tasks and regular daily activities. The wireless device could accurately measure pH and temperature both in vitro and in vivo. The recovery time following the swallow of a standard acidic drink varied markedly among individuals (mean=1.3±0.9min). The intra-oral pH and temperature recorded in the natural environment also showed a large inter- and intra-individual variability. The average intra-oral pH when asleep (6.7±0.5) was lower (p<0.001) than when awake (7.2±0.5). The average intra-oral temperature during sleep (35.6±0.5°C) was higher (p<0.001) than when awake (34.5±0.7°C). Intra-oral pH and temperature can be continuously and wirelessly assessed in real-life settings, and show individual-specific patterns with circadian variations. Intra-oral pH becomes slightly acidic during sleep while intra-oral temperature increases and fluctuates less. We propose a wireless device that is capable of measuring intra-oral pH over a 24-h period. We found marked inter-individual variation after acidic stimuli, and day to sleep time variation of both intra-oral temperature and pH. Our approach may provide new insight into the relationship between oral pH, tooth wear and decay. Copyright © 2016 Elsevier Ltd. All rights reserved.
Applications of organo-silica nanocomposites for SPNE of Hg(II)
NASA Astrophysics Data System (ADS)
Kaur, Anupreet
2016-02-01
An analytical method using modified SiO2 nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of Hg(II) in different water samples. Conditions of the analysis such as preconcentration factor, effect of pH, sample volume, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer SiO2-APTMS was found to be 181.42 µmol g-1 at optimum pH and the detection limit (3σ) was 0.45 µg L-1. The extractant showed rapid kinetic sorption. The adsorption equilibrium of Hg(II) on nanometer SiO2-APTMS was achieved just in 15 min. Adsorbed Hg(II) was easily eluted with 4 mL of 2.0 M hydrochloric acid. The maximum preconcentration factor was 75. The method was applied for the determination of trace amounts of Hg(II) in various synthetic samples and water samples.
NASA Astrophysics Data System (ADS)
Szczepański, M.; Szajdak, L.; Bogacz, A.
2009-04-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.
Cuozzo, Frank P; Sauther, Michelle L; Yamashita, Nayuta; Lawler, Richard R; Brockman, Diane K; Godfrey, Laurie R; Gould, Lisa; Youssouf, Ibrahim Antho Jacky; Lent, Cheryl; Ratsirarson, Joelisoa; Richard, Alison F; Scott, Jessica R; Sussman, Robert W; Villers, Lynne M; Weber, Martha A; Willis, George
2008-04-01
Chemical deterioration of teeth is common among modern humans, and has been suggested for some extinct primates. Dental erosion caused by acidic foods may also obscure microwear signals of mechanical food properties. Ring-tailed lemurs at the Beza Mahafaly Special Reserve (BMSR), Madagascar, display frequent severe tooth wear and subsequent tooth loss. In contrast, sympatric Verreaux's sifaka display far less tooth wear and infrequent tooth loss, despite both species regularly consuming acidic tamarind fruit. We investigated the potential impact of dietary acidity on tooth wear, collecting data on salivary pH from both species, as well as salivary pH from ring-tailed lemurs at Tsimanampesotse National Park, Madagascar. We also collected salivary pH data from ring-tailed lemurs at the Indianapolis Zoo, none of which had eaten for at least 12 hr before data collection. Mean salivary pH for the BMSR ring-tailed lemurs (8.098, n=41, SD=0.550) was significantly more alkaline than Verreaux's sifaka (7.481, n=26, SD=0.458). The mean salivary pH of BMSR (8.098) and Tsimanampesotse (8.080, n=25, SD=0.746) ring-tailed lemurs did not differ significantly. Salivary pH for the Indianapolis Zoo sample (8.125, n=16, SD=0.289) did not differ significantly from either the BMSR or Tsimanampesotse ring-tailed lemurs, but was significantly more alkaline than the BMSR Verreaux's sifaka sample. Regardless of the time between feeding and collection of pH data (from several minutes to nearly 1 hr), salivary pH for each wild lemur was above the "critical" pH of 5.5, below which enamel demineralization occurs. Thus, the high pH of lemur saliva suggests a strong buffering capacity, indicating the impact of acidic foods on dental wear is short-lived, likely having a limited effect. However, tannins in tamarind fruit may increase friction between teeth, thereby increasing attrition and wear in lemurs. These data also suggest that salivary pH varies between lemur species, corresponding to broad dietary categories.
Rojas de Morales, Thais; Navas, Rita; Viera, Ninoska; Alvarez, Carmen Julia; Chaparro, Neira; Griman, Dariana
2007-10-01
To analyze the behavior of pH and sodium bicarbonate (NAHCO3) in the saliva of patients with leukemia during the administration protocol for Methotrexate (Mtx). A controlled clinical essay was carried out on 23 patients between 4 and 18 years of age with high-risk Acute Lymphoblastic Leukemia. Sampling was carried out at To: basal condition; T1: 12 hours after intravenous administration of sodium bicarbonate, before administering Mtx and T2: 3 hours after administering Mtx, the time of maximum concentration. Chiron-Diagnostic 378 equipment was used to determine pH and sodium bicarbonate. The data was interpreted using Analysis of Variance at the 5% significance level. The highest values of sodium bicarbonate were observed at T2, with salivary pH levels remaining within neutrality ranges, diminishing slightly in T1. CONCLUSION. In this study, the dose of sodium bicarbonate considered in the administration protocol of 3 g /m2 Mtx, kept sodium bicarbonate levels in saliva at normal levels and pH neutral.
The Effect of Geraniol on Liver Regeneration Αfter Hepatectomy in Rats
CANBEK, MEDIHA; UYANOGLU, MUSTAFA; CANBEK, SELCUK; CEYHAN, EMRE; OZEN, AHMET; DURMUS, BASAK; TURGAK, OZGE
2017-01-01
Geraniol is a monoterpenoid alcohol that has a hepatoprotective effect. We investigated the regenerative effects of geraniol in rats after a 70% partial hepatectomy (PH). Using Wistar albino rats, nine groups were created: Group I was the control group, while the remaining groups received a single intraperitoneal dose of saline, Silymarin, or geraniol after PH. A 70% PH was performed on all groups except for groups II and III. Blood serum samples were obtained for alanine amino transferase (ALT) analysis. Then liver tissues were harvested for histological and real-time polymerase chain reaction (PCR) analyses. Tumor necrosis factor-α (TNFα) and interleukin 6 (IL6) gene expression were examined 24 and 48 h after PH. ALT levels were found to be statistically significantly increased in all PH-treated groups. TNFα and IL6 gene expression levels were elevated in geraniol-treated groups. Histological evaluation revealed a hepatoprotective effect for geraniol-treated groups. Our results suggest that geraniol plays a significant role during liver regeneration, which involves the elevated expression of TNFα and IL6 48 h after PH. PMID:28358702
Maton, Kenneth I.; Beason, Tiffany S.; Godsay, Surbhi; Sto. Domingo, Mariano R.; Bailey, TaShara C.; Sun, Shuyan; Hrabowski, Freeman A.
2016-01-01
Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs than comparison students. The first of two studies in this report extends the prior research by examining levels of PhD completion for Meyerhoff (N = 479) versus comparison sample (N = 249) students among the first 16 cohorts. Entering African-American Meyerhoff students were 4.8 times more likely to complete STEM PhDs than comparison sample students. To enhance understanding of potential mechanisms of influence, the second study used data from the 22nd (Fall 2010) to 25th (Fall 2013) cohorts (N = 109) to test the hypothesis that perceived program benefit at the end of freshman year would mediate the relationship between sense of community at the end of Summer Bridge and science identity and research self-efficacy at the end of sophomore year. Study 2 results indicated that perceived program benefit fully mediated the relationship between sense of community and both criterion measures. The findings underscore the potential of comprehensive STEM intervention programs to enhance PhD completion, and suggest mechanisms of influence. PMID:27587857
RuO2 pH Sensor with Super-Glue-Inspired Reference Electrode
Wajrak, Magdalena; Alameh, Kamal
2017-01-01
A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices. PMID:28878182
RuO₂ pH Sensor with Super-Glue-Inspired Reference Electrode.
Lonsdale, Wade; Wajrak, Magdalena; Alameh, Kamal
2017-09-06
A pH-sensitive RuO₂ electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO₂ working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO₂ pH-sensitive working electrode and a SiO₂-PVB junction-modified RuO₂ reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.
Precipitation of molybdenum(V) as the hydroxide and its separation from rhenium.
Yatirajam, V; Ahuja, U; Kakkar, L R
1975-03-01
A study of the conditions for precipitation of molybdenum(V) hydroxide shows that for Mo concentration 1 mg ml about 97.5% of the Mo can be precipitated between pH 5 and 5.8. Lower concentrations of molybdenum(V) or molybdenum(VI) can be precipitated quantitatively by using 20 times the amount of zirconium as collector, at the same pH. On this basis, a simple method is given for quantitative separation of rhenium from large amounts of molybdenum and is attested by analysis of synthetic and molybdenite samples.
Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.
2007-01-01
The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the waste-rock piles. As pH increased in the waste-pile leachates, concentrations of several metals decreased with increasing time and agitation. Similar pH-dependent reactions may take place upon migration of the leachates in the waste-rock piles. Bulk chemistry, mineralogy, and leachate sulfur-isotope data indicate that the Capulin and Sugar Shack West waste-rock piles are compositionally different from the younger Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles. The Capulin and Sugar Shack West piles have the lowest-pH leachates (pH 3.0-4.1) of the waste-pile samples, and the source material for the Capulin and Sugar Shack West piles appears to be similar to the source material for the erosional-scar areas. Calcite dissolution, in addition to gypsum dissolution, appears to produce the calcium and sulfate concentrations in leachates from the Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles.
Rodriguez, Ana C; Torrez Irigoyen, Martín R; Navarro, Alba S; Yamul, Diego K
2017-11-01
Large amounts of honey and liquid whey derived from the dairy industry are produced in Argentina. Honey is exported in bulk and whey is transformed into whey protein concentrates and isolates. The objective of this work was to investigate the effect of pH, composition and storage time on the properties of dried gels with honey, whey proteins and hydrocolloids. Color properties varied according to pH and composition. The fracture stress of dried gels prepared with corn starch was higher than that of gels prepared with guar gum in all conditions assayed. Young's modulus was higher at pH 7 for both compositions and increased with storage time. Rubbery characteristics were found in dried gels with guar gum, while both corn starch and guar gum made the microstructure rougher. Multivariate analysis showed that samples could be grouped by pH. Panelists preferred pH 7 products over acidic ones, and no significant differences in sensory properties were found using either corn starch or guar gum in the formulation. The results demonstrated that it is possible to generate a new product, which may open new applications for honey and whey in food formulations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Liu, Xianli; Xu, Dong; Wu, Feng; Liao, Zhenhuan; Liu, Jiantong; Deng, Nansheng
2004-03-01
Under a high-pressure mercury lamp (HPML) and using an exposure time of 4 h, the photoproduction of hydroxyl radicals (*OH) could be induced in an aqueous solution containing humic acid (HA). Hydroxyl radicals were determined by high-performance liquid chromatography using benzene as a probe. The results showed that *OH photoproduction increased from 1.80 to 2.74 microM by increasing the HA concentration from 10 to 40 mg L(-1) at an exposure time of 4 h (pH 6.5). Hydroxyl radical photoproduction in aqueous solutions of HA containing algae was greater than that in the aqueous solutions of HA without algae. The photoproduction of *OH in the HA solution with Fe(III) was greater than that of the solution without Fe(III) at pH ranging from 4.0 to 8.0. The photoproduction of *OH in HA solution with algae with or without Fe(III) under a 250 W HPML was greater than that under a 125 W HPML. The photoproduction of *OH in irradiated samples was influenced by the pH. The results showed that HPML exposure for 4 h in the 4-8 pH range led to the highest *OH photoproduction at pH 4.0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, J.R.; Bailey, E.H.; Purvis, O.W.
1998-11-01
Uranium sorption experiments were carried out at {approximately}25 C using natural samples of the lichen Peltigera membranacea. Thalli were incubated in solutions containing 100 ppm U for up to 24 h at pH values from 2 to 10. Equilibrium sorption was not observed at less than {approximately}6 h under any pH condition. U sorption was strongest in the pH range 4--5, with maximum sorption occurring at a pH of 4.5 and an incubation time of 24 h. Maximum U uptake by P. membranacea averaged {approximately}42,000 ppm, or {approximately}4.2 wt% U. This appears to represent the highest concentration of biosorbed U,more » relative to solution U activity, of any lichen reported to date. Investigation of post-experimental lichen tissues using electron probe microanalysis (EPM) reveals that U uptake is spatially heterogeneous within the lichen body, and that U attains very high local concentrations on scattered areas of the upper cortex. Energy dispersive spectroscopic (EDS) analysis reveals that strong U uptake correlates with P signal intensity, suggesting involvement of biomass-derived phosphate ligands or surface functional groups in the uptake process.« less
Yedeme, Kokebe; Legese, Melese Hailu; Gonfa, Almaz; Girma, Somson
2017-01-01
Background: From swimming pools, bathers may acquire many potential pathogens or may be affected by the physicochemical characteristics of water used during bathing. Hence, this study aimed at assessing the physicochemical and microbiological quality of public swimming pools located at different hotels and recreation center in Addis Ababa, Ethiopia. Method: A cross sectional study was carried out from February to May, 2016. Nine hotels and one recreation center which recognized to have public swimming services were included. A total of 60 swimming pool water samples from 10 swimming pools were collected at deeper, shallow and intake point twice on a weekly basis using a 250 ml sterile bottle containing sodium thiosulphate. PH, residual chlorine and temperature of samples were recorded at the time of collection. Sample containing bottles were transported in ice box to microbiological laboratory and analyzed on the same day. Standard cultural and biochemical methods were used for isolation and characterization of the main microbial groups. Total viable count, total coliform count, fecal coliform count and E. coli were determined. Data was analyzed using SPSS Version 20. Results: Average PH and temperature of swimming pool water samples were 7.1 and 29oC respectively. Of all analyzed water samples, 58.4% (n=35/60) of them had PH range of 7.2-7.8, 58.3% (n=35/60) of samples had temperature in the range of 21oC-32oC and 25% (n=15/60) of water samples had residual chlorine in the range of 2-3mg/l. 73.3% (n=44/60) of the samples had a total viable count below 200 MPN/ml and 70% (n-42/60) of the samples had Total Coliform Count values less than 2 MPN/100 ml. Moreover, 66.7% (n=40/60) of the samples had fecal coliform counts falling below 1 MPN /100 ml. E. coli was absent in 70% (n=42/60) of the samples while it was present in 30% (n=18/60) of the samples. Conclusion: PH, residual chlorine and temperature value of majority of the swimming pools’ water samples were within the acceptable limit. Regarding microbial quality, most swimming pools’ water samples complied to the WHO standard. Swimming pools that did not comply to the standard both in physicochemical levels and microbial quality need improvement due to their significant health implication. PMID:28761562
Automation of high-frequency sampling of environmental waters for reactive species
NASA Astrophysics Data System (ADS)
Kim, H.; Bishop, J. K.; Wood, T.; Fung, I.; Fong, M.
2011-12-01
Trace metals, particularly iron and manganese, play a critical role in some ecosystems as a limiting factor to determine primary productivity, in geochemistry, especially redox chemistry as important electron donors and acceptors, and in aquatic environments as carriers of contaminant transport. Dynamics of trace metals are closely related to various hydrologic events such as rainfall. Storm flow triggers dramatic changes of both dissolved and particulate trace metals concentrations and affects other important environmental parameters linked to trace metal behavior such as dissolved organic carbon (DOC). To improve our understanding of behaviors of trace metals and underlying processes, water chemistry information must be collected for an adequately long period of time at higher frequency than conventional manual sampling (e.g. weekly, biweekly). In this study, we developed an automated sampling system to document the dynamics of trace metals, focusing on Fe and Mn, and DOC for a multiple-year high-frequency geochemistry time series in a small catchment, called Rivendell located at Angelo Coast Range Reserve, California. We are sampling ground and streamwater using the automated sampling system in daily-frequency and the condition of the site is substantially variable from season to season. The ranges of pH of ground and streamwater are pH 5 - 7 and pH 7.8 - 8.3, respectively. DOC is usually sub-ppm, but during rain events, it increases by an order of magnitude. The automated sampling system focuses on two aspects- 1) a modified design of sampler to improve sample integrity for trace metals and DOC and 2) remote controlling system to update sampling volume and timing according to hydrological conditions. To maintain sample integrity, the developed method employed gravity filtering using large volume syringes (140mL) and syringe filters connected to a set of polypropylene bottles and a borosilicate bottle via Teflon tubing. Without filtration, in a few days, the dissolved concentration of Fe and Mn in the ground and streamwater samples stored in low density polyethylene (LDPE) sample bags decreased by 89% and 97%, respectively. In some cases of groundwater, the concentration of Ca decreased by 25%, due to degassing of CO2. However, DOC of the samples in LDPE bags without filtration increased up to 50% in 2 weeks, suggesting contamination from the bag. Performance of the new design was evaluated using the Fe-Mn-spiked Rivendell samples and environmental water samples collected from 1) Rivendell, 2) the Strawberry Creek located at the University of California, Berkeley campus, and 3) the San Francisco Bay. The samples were filtered using the developed method and stored in room temperature in 2 - 3 weeks without further treatment. The method improved the sample integrity significantly; the average recovery rates of Fe, Mn, DOC, and Ca were 92%, 98%, 90%, and 97%, respectively.
Raidal, S L; Andrews, F M; Nielsen, S G; Trope, G
2017-11-01
Limited data are available on the relative pharmacokinetics and pharmacodynamics of different omeprazole formulations. To compare pharmacokinetic and pharmacodynamic effects of a novel omeprazole formulation against a currently registered product. Masked 2 period, 2 treatment crossover. Twelve clinically healthy horses were studied over two 6-day treatment periods. Horses were randomly assigned to receive a novel omeprazole paste (Ulcershield: ULS) or a currently registered reference omeprazole product (OMO). Gastric pH was measured continuously for 10 h on the day prior to commencing treatment (Day -1) and after 6 days of oral treatment (Day 5) using in situ antimony pH probes within an indwelling nasogastric tube. Plasma pharmacokinetics were determined on Days 0 and 6. Treatment significantly (P<0.005) increased gastric pH on Day 5, compared to results obtained prior to treatment (Day -1) and there was no significant difference between products (P = 0.773). Similarly, comparison of median hourly gastric pH (P = 0.593), mean gastric pH (P = 0.154), percentage time pH<4 (P = 0.259) and area under the time-gastric pH response curve (P = 0.734) did not discriminate between products. Both treatments resulted in significantly lower gastric ulcer severity scores (both P = 0.004), with no difference between treatments (P = 0.688). Comparison of mean log area under time-plasma concentration curves demonstrated that, although the lower limit of the 90% confidence interval was within the -20% limit for bioequivalence, the upper limit was exceeded, suggesting that the test product could have greater bioavailability than the reference product. The small sample size, large interhorse plasma omeprazole concentrations, and low bioavailability of omeprazole impacted the sensitivity of the bioequivalence analysis. ULS matched or slightly exceeded OMO plasma concentrations. Both products resulted in equivalent increases in gastric pH, gastric pH profiles and decrease in gastric ulcer scores. Thus, ULS was pharmacodynamically equivalent to OMO and was associated with an equivalent beneficial effect on gastric squamous mucosal ulceration. © 2017 EVJ Ltd.
Aresta, Antonella; Monaci, Linda; Zambonin, Carlo Giorgio
2002-06-01
An SPME-HPLC-UV method for the determination of delorazepam, a representative benzodiazepine, in spiked human urine samples was developed for the first time. The performances of two commercially available fibers, a carbowax/templated resin (Carbowax/TPR-100) and a polydimethylsiloxane/divinylbenzene (PDMS/DVB), were compared, indicating the latter as the most suitable for urine samples analysis. All the aspects influencing adsorption (extraction time, pH, temperature, salt addition) and desorption (desorption and injection time, desorption solvent mixture composition) of the analyte on the fiber have been investigated. In particular, short extraction times were necessary to reach the equilibrium and very short desorption times were employed. The procedure required simple sample pre-treatment and was able to detect 5 ng/ml in spiked urine, regardless of the complexity of the matrix.
A wireless pH sensor using magnetoelasticity for measurement of body fluid acidity.
Pang, Pengfei; Gao, Xianjuan; Xiao, Xilin; Yang, Wenyue; Cai, Qingyun; Yao, Shouzhuo
2007-04-01
The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.
Investigating controls on boron isotope ratios in shallow marine carbonates
NASA Astrophysics Data System (ADS)
Zhang, Shuang; Henehan, Michael J.; Hull, Pincelli M.; Reid, R. Pamela; Hardisty, Dalton S.; Hood, Ashleigh v. S.; Planavsky, Noah J.
2017-01-01
The boron isotope-pH proxy has been widely used to reconstruct past ocean pH values. In both planktic foraminifera and corals, species-specific calibrations are required in order to reconstruct absolute values of pH, due to the prevalence of so-called vital effects - physiological modification of the primary environmental signals by the calcifying organisms. Shallow marine abiotic carbonate (e.g. ooids and cements) could conceivably avoid any such calibration requirement, and therefore provide a potentially useful archive for reconstructions in deep (pre-Cenozoic) time. However, shallow marine abiotic carbonates could also be affected by local shifts in pH caused by microbial photosynthesis and respiration, something that has up to now not been fully tested. In this study, we present boron isotope measurements from shallow modern marine carbonates, from the Bahama Bank and Belize to investigate the potential of using shallow water carbonates as pH archives, and to explore the role of microbial processes in driving nominally 'abiogenic' carbonate deposition. For Bahama bank samples, our boron-based pH estimates derived from a range of carbonate types (i.e. ooids, peloids, hardground cements, carbonate mud, stromatolitic micrite and calcified filament micrite) are higher than the estimated modern mean-annual seawater pH values for this region. Furthermore, the majority (73%) of our marine carbonate-based pH estimates fall out of the range of the estimated pre-industrial seawater pH values for this region. In shallow sediment cores, we did not observe a correlation between measured pore water pH and boron-derived pH estimates, suggesting boron isotope variability is a depositional rather than early diagenetic signal. For Belize reef cements, conversely, the pH estimates are lower than likely in situ seawater pH at the time of cement formation. This study indicates the potential for complications when using shallow marine non-skeletal carbonates as marine pH archives. In addition, variability in δ11B based pH estimates provides additional support for the idea that photosynthetic CO2 uptake plays a significant role in driving carbonate precipitation in a wide range of shallow water carbonates.
Applications of optically detected MRI for enhanced contrast and penetration in metal
NASA Astrophysics Data System (ADS)
Ruangchaithaweesuk, Songtham; Yu, Dindi S.; Garcia, Nissa C.; Yao, Li; Xu, Shoujun
2012-10-01
We report quantitative measurements using optically detected magnetic resonance imaging (MRI) for enhanced pH contrast and flow inside porous metals. Using a gadolinium chelate as the pH contrast agent, we show the response is 0.6 s-1 mM-1 per pH unit at the ambient magnetic field for the pH range 6-8.5. A stopped flow scheme was used to directly measure T1 relaxation time to determine the relaxivity. Flow profiles and images were obtained for a series of porous metals with different average pore sizes. The signal amplitudes and spatial distributions were compared. A clogged region in one of the samples was revealed using optically detected MRI but not optical imaging or scanning electron microscopy. These applications will significantly broaden the impact of optically detected MRI in chemical imaging and materials research.
Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release.
Yuan, Peng; Southon, Peter D; Liu, Zongwen; Kepert, Cameron J
2012-09-21
The surfaces of naturally occurring halloysite nanotubes were functionalized with γ-aminopropyltriethoxysilane (APTES), which was found to have a substantial effect on the loading and subsequent release of a model dye molecule. APTES was mostly anchored at the internal lumen surface of halloysite through covalent grafting, forming a functionalized surface covered by aminopropyl groups. The dye loading of the functionalized halloysite was 32% greater than that of the unmodified sample, and the release from the functionalized halloysite was dramatically prolonged as compared to that from the unmodified one. Dye release was prolonged at low pH and the release at pH 3.5 was approximately three times slower than that at pH 10.0. These results demonstrate that organosilane functionalization makes pH an external trigger for controlling the loading of guest on halloysite and the subsequent controlled release.
Evaluation of pH of Bathing Soaps and Shampoos for Skin and Hair Care.
Tarun, Jose; Susan, Jose; Suria, Jacob; Susan, Veronica John; Criton, Sebastian
2014-09-01
Normal healthy skin has potential of hydrogen (pH) range of 5.4-5.9 and a normal bacterial flora. Use of soap with high pH causes an increase in skin pH, which in turn causes an increase in dehydrative effect, irritability and alteration in bacterial flora. The majority of soaps and shampoos available in the market do not disclose their pH. The aim of this study was to assess the pH of different brands of bathing soaps and shampoos available in the market. The samples of soaps and shampoos were collected from shops in the locality. The samples of different brands are coded before the analysis of the pH. Solution of each sample was made and pH was measured using pH meter. Majority of the soaps have a pH within the range of 9-10. Majority of the shampoos have a pH within the range of 6-7. The soaps and shampoos commonly used by the population at large have a pH outside the range of normal skin and hair pH values. Therefore, it is hoped that before recommending soap to patient especially those who have sensitive and acne prone skin, due consideration is given to the pH factor and also that manufacturers will give a thought to pH of soaps and shampoos manufactured by them, so that their products will be more skin and hair friendly.
Kung, Hsien-Feng; Lee, Yi-Chen; Lin, Chiang-Wei; Huang, Yu-Ru; Cheng, Chao-An; Lin, Chia-Min; Tsai, Yung-Hsiang
2017-10-01
The effects of polyethylene packaging (PEP) (in air) and vacuum packaging (VP) on the histamine related quality of milkfish sticks stored at different temperatures (-20°C, 4°C, 15°C, and 25°C) were studied. The results showed that the aerobic plate count (APC), pH, total volatile basic nitrogen (TVBN), and histamine contents increased as storage time increased when the PEP and VP samples were stored at 25°C. At below 15°C, the APC, TVBN, pH, and histamine levels in PEP and VP samples were retarded, but the VP samples had considerably lower levels of APC, TVBN, and histamine than PEP samples. Once the frozen fish samples stored at -20°C for 2 months were thawed and stored at 25°C, VP retarded the increase of histamine in milkfish sticks as compared to PEP. In summary, this result suggested the milkfish sticks packed with VP and stored below 4°C could prevent deterioration of product quality and extend shelf-life. Copyright © 2017. Published by Elsevier B.V.
Excess glycogen does not resolve high ultimate pH of oxidative muscle.
England, Eric M; Matarneh, Sulaiman K; Oliver, Emily M; Apaoblaza, Ariel; Scheffler, Tracy L; Shi, Hao; Gerrard, David E
2016-04-01
Skeletal muscle glycogen content can impact the extent of postmortem pH decline. Compared to glycolytic muscles, oxidative muscles contain lower glycogen levels antemortem which may contribute to the higher ultimate pH. In an effort to explore further the participation of glycogen in postmortem metabolism, we postulated that increasing the availability of glycogen would drive additional pH decline in oxidative muscles to equivalent pH values similar to the ultimate pH of glycolytic muscles. Glycolysis and pH declines were compared in porcine longissimus lumborum (glycolytic) and masseter (oxidative) muscles using an in vitro system in the presence of excess glycogen. The ultimate pH of the system containing longissimus lumborum reached a value similar to that observed in intact muscle. The pH decline of the system containing masseter samples stopped prematurely resulting in a higher ultimate pH which was similar to that of intact masseter muscle. To investigate further, we titrated powdered longissimus lumborum and masseter samples in the reaction buffer. As the percentage of glycolytic sample increased, the ultimate pH decreased. These data show that oxidative muscle produces meat with a high ultimate pH regardless of glycogen content and suggest that inherent muscle factors associated with glycolytic muscle control the extent of pH decline in pig muscles. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Schaen, A. T.; Ding, K.; Seyfried, W. E.
2013-12-01
Developments in electrochemistry and material science have facilitated the construction of ceramic (YSZ) based chemical sensor systems that can be used to measure and monitor pH and redox in aqueous fluids at elevated temperatures and pressures. In recent years, these sensor systems have been deployed to acquire real-time and time series in-situ data for high-temperature hydrothermal vent fluids at the Main Endeavour Field (Juan de Fuca Ridge), 9oN (East Pacific Rise), and at the ultramafic-hosted Rainbow field (36oN, Mid-Atlantic Ridge). Here we review in-situ pH data measured at these sites and apply these data to estimate the pH of fluids ascending to the seafloor from hydrothermal alteration zones deeper in the crust. In general, in-situ pH measured at virtually all vent sites is well in excess of that measured shipboard owing to the effects of temperature on the distribution of aqueous species and the solubility of metal sulfides, especially Cu and Zn, originally dissolved in the vent fluids. In situ pH measurements determined at MEF (Sully vent) and EPR 9oN (P-vent) in 2005 and 2008 were 4.4 ×0.02 and 5.05×0.05, respectively. The temperature and pressure (seafloor) of the vent fluids at each of the respective sites were 356oC and 220 bar, and 380oC and 250 bar. Plotting these data with respect to fluid density reveals that the in-situ pH of each vent fluid is approximately 1.5 pH units below neutrality. The density-pH (in-situ) correlation, however, is important because it provides a means from which the vent fluids were derived. Using dissolved silica and chloride from fluid samples at the MEF (Sully) suggest T/P conditions of approximately 435oC, 380 bar, based on quartz-fluid and NaCl-H2O systems. At the fluid density calculated for these conditions, pH (in-situ) is predicted to be ~6.2. Attempts are presently underway to assess the effect of the calculated pH on metal sulfide and silicate (e.g., plagioclase, chlorite) solubility in comparison with constraints imposed by the full range of chemical components in the vent fluids sampled and analyzed in association with pH (in-situ) measurements. Since pH is a master variable in all geochemical systems, the novel approach proposed here may provide new insight on hydrothermal alteration processes at conditions difficult or impossible to assess by more traditional means, ultimately influencing hydrothermal fluid fluxes.
Determination of nonylphenol and nonylphenol ethoxylates in wastewater using MEKC.
Núñez, Laura; Wiedmer, Susanne K; Parshintsev, Jevgeni; Hartonen, Kari; Riekkola, Marja-Liisa; Tadeo, José L; Turiel, Esther
2009-06-01
Nonylphenol ethoxylates (NPEO(x)) are surfactants which are used worldwide and can be transformed in the environment by microorganisms to form nonylphenol (NP). Analysis of these compounds was carried out with micellar electrokinetic capillary chromatography (MEKC). Different parameters such as background electrolyte (BGE) solution, pH, type of surfactant, and sample stacking were optimized. The use of CHES (20 mM, pH 9.1) in combination with 50 mM sodium cholate as a surfactant as BGE solution, together with sample stacking using 50 mM NaCl in the sample and an injection time of 20 s, provided the best separation of the compounds studied. The method was applied to the determination of target analytes in two types of sludge water coming from two steps of a wastewater treatment plant. Liquid-liquid extraction was carried out using toluene as solvent, resulting in recoveries around 100% for all studied analytes. The presence of NPEO(x) was observed in the first step of the sludge water treatment, based on migration time and UV spectra. Identification was confirmed using tandem MS. LOQs of the studied compounds were in the range of 12.7 to 30.8 ng/mL, which is satisfactory for the analysis of real wastewater samples.
Navarro, M; Pichini, S; Farré, M; Ortuño, J; Roset, P N; Segura, J; de la Torre, R
2001-10-01
Saliva is an alternative biologic matrix for drugs-of-abuse testing that offers the advantages of noninvasive, rapid, and easy sampling. We studied the excretion profile of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites in both saliva and plasma, as well the effect of the drug on salivary pH. Saliva and plasma samples were obtained from eight healthy MDMA consumers after ingestion of a single 100-mg dose of the drug. Concentrations of MDMA and its main metabolites, 3,4-methylenedioxyamphetamine (MDA) and 4-hydroxy-3-methoxymethamphetamine (HMMA), in saliva and plasma were measured by gas chromatography-mass spectrometry. Apparent pharmacokinetic parameters for MDMA in saliva were estimated, and the saliva-to-plasma ratio at each time interval was calculated and correlated with salivary pH. MDMA, MDA, and HMMA were detected in saliva. Salivary concentrations of MDMA were 1728.9-6510.6 microg/L and peaked at 1.5 h after drug intake. This was followed by a progressive decrease, with a mean concentration of 126.2 microg/L at 24 h. The saliva-to-plasma ratio was 32.3-1.2, with a peak of 18.1 at 1.5 h after drug administration. Salivary pH seemed to be affected by MDMA administration; pH values decreased by 0.6 units (mean pH values of 6.9 and 6.8 at 1.5 and 4 h after drug administration vs predose pH of 7.4). Measurement of MDMA in saliva is a valuable alternative to determination of plasma drug concentrations in both clinical and toxicologic studies. On-site testing is also facilitated by noninvasive and rapid collection of salivary specimens.
NASA Astrophysics Data System (ADS)
Bogunović, Igor; Pereira, Paulo; Šeput, Miranda
2016-04-01
Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the soil profile. Future research should focus on spatial patterns on soil pH, electrical conductivity and sodium adsorption ratio. Keywords: geostatistics, semivariogram, interpolation models, soil chemical properties
Yuuki, Kenji; Tsukasaki, Hiroaki; Kawawa, Tadaharu; Shiba, Akihiko; Shiba, Kiyoko
2008-07-01
Clinical findings were compared with glucose, protein, albumin, bilirubin, creatinine, pH, occult blood, ketone body, nitrite, and white blood cells contained in whole saliva to investigate the components that most markedly reflect the periodontal condition. The subjects were staff of the Prosthodontics Department, Showa University, and patients who visited for dental treatments (57 subjects in total). At the first time, saliva samples were gargled with 1.5 ml of distilled water for 15 seconds and collected by spitting out into a paper cup. At the second time, saliva samples were collected by the same method. At the third time, saliva samples after chewing paraffin gum for 60 seconds were collected by spitting out into a paper cup. Thus whole saliva collecting that was divided on three times. After sampling, 8 mul of the saliva sample was dripped in reagent sticks for the 10 items of urinary test paper and the reflectance was measured using a specific reflectometer. In the periodontal tissue evaluation, the degree of alveolar bone resorption, probing value, and tooth mobility and the presence or absence of lesions in the root furcation were examined and classified into 4 ranks. The mean values in each periodontal disease rank and correlation between the periodontal disease ranks and the components were statistically analyzed. Bilirubin and ketone body were not measurable. The components density of the 8 items was increased as the periodontal disease rank increased. Regarding the correlation between the periodontal disease ranks and the components, high correlations were noted for protein, albumin, creatinine, pH, and white blood cells. The simultaneous measurement method of 8 salivary components using test paper may be very useful for the diagnosis of periodontal disease of abutment teeth.
Removal of oxytetracycline from aqueous solutions by hydroxyapatite as a low-cost adsorbent
NASA Astrophysics Data System (ADS)
Harja, Maria; Ciobanu, Gabriela
2017-11-01
The present paper involved a study of the adsorption process of the oxytetracycline drug from aqueous medium by using the hydroxyapatite nanopowders as adsorbent materials. The batch adsorption experiments were performed by monitoring the solution pH, contact time, adsorbent dosage and drug solution concentration. At pH 8 and ambient temperature, high oxytetracycline removal rates of about 97.58% and 89.95% for the uncalcined and calcined nanohydroxyapatites, respectively, were obtained. The kinetic studies indicate that the oxytetracycline adsorption onto nanohydroxyapatite samples follows a pseudo-second order kinetic model. The maximum adsorption capacities of 291.32 mg/g and 278.27 mg/g for uncalcined and calcined nanohydroxyapatite samples, respectively, have been found. So, the conclusion can be drawn that the hydroxyapatite shows good adsorption ability towards oxytetracycline.
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Li, Mingxing; Fan, Hongyuan; Zeng, Dezhi; Xiong, Ji
2013-08-01
The effects of salt-bath nitriding time on the microstructure, microhardness, and erosion-corrosion behavior of nitrided 17-4PH stainless steel at 703 K (430 °C) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and erosion-corrosion testing. The experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt-bathing nitriding, the main phase of the nitrided layer was expanded martensite ( α`), expanded austenite (S), CrN, Fe4N, and Fe2N. The thickness of nitrided layers increased with the treating time. The salt-bath nitriding improves effectively the surface hardness. The maximum values measured from the treated surface are observed to be 1100 HV0.1 for 40 hours approximately, which is about 3.5 times as hard as the untreated material (309 HV0.1). Low-temperature nitriding can improve the erosion-corrosion resistance against two-phase flow. The sample nitrided for 4 hours has the best corrosion resistance.
Sen, Indranil; Zou, Wei; Alvaran, Josephine; Nguyen, Linda; Gajek, Ryszard; She, Jianwen
2015-01-01
In order to better distinguish the different toxic inorganic and organic forms of arsenic (As) exposure in individuals, we have developed and validated a simple and robust analytical method for determining the following six As species in human urine: arsenous (III) acid (As-III), As (V) acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine (AsB), and arsenocholine. In this method, human urine is diluted using a pH 5.8 buffer, separation is performed using an anion exchange column with isocratic HPLC, and detection is achieved using inductively coupled plasma-MS. The method uses a single mobile phase consisting of low concentrations of both phosphate buffer (5 mM) and ammonium nitrate salt (5 mM) at pH 9.0; this minimizes the column equilibration time and overcomes challenges with separation between AsB and As-III. In addition, As-III oxidation is prevented by degassing the sample preparation buffer at pH 5.8, degassing the mobile phase online at pH 9.0, and by the use of low temperature (-70 °C) and flip-cap airtight tubes for long term storage of samples. The method was validated using externally provided reference samples. Results were in agreement with target values at varying concentrations and successfully passed external performance test criteria. Internal QC samples were prepared and repeatedly analyzed to assess the method's long-term precision, and further analyses were completed on anonymous donor urine to assess the quality of the method's baseline separation. Results from analyses of external reference samples agreed with target values at varying concentrations, and results from precision studies yielded absolute CV values of 3-14% and recovery from 82 to 115% for the six As species. Analysis of anonymous donor urine confirmed the well-resolved baseline separation capabilities of the method for real participant samples.
Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Marsik, Joseph; McCleskey, R. Blaine
2011-01-01
Water samples were collected approximately every two weeks during the spring of 2010 from the Level 1 portal of the Standard Mine and from two locations on Elk Creek. The objective of the sampling was to: (1) better define the expected range and timing of variations in pH and metal concentrations in Level 1 discharge and Elk Creek during spring runoff; and (2) further evaluate possible mechanisms controlling water quality during spring runoff. Samples were analyzed for major ions, selected trace elements, and stable isotopes of oxygen and hydrogen (oxygen-18 and deuterium). The Level 1 portal sample and one of the Elk Creek samples (EC-CELK1) were collected from the same locations as samples taken in the spring of 2007, allowing comparison between the two different years. Available meteorological and hydrologic data suggest that 2010 was an average water year and 2007 was below average. Field pH and dissolved metal concentrations in Level 1 discharge had the following ranges: pH, 2.90 to 6.23; zinc, 11.2 to 26.5 mg/L; cadmium, 0.084 to 0.158 mg/L; manganese, 3.23 to 10.2 mg/L; lead, 0.0794 to 1.71 mg/L; and copper, 0.0674 to 1.14 mg/L. These ranges were generally similar to those observed in 2007. Metal concentrations near the mouth of Elk Creek (EC-CELK1) were substantially lower than in 2007. Possible explanations include remedial efforts at the Standard Mine site implemented after 2007 and greater dilution due to higher Elk Creek flows in 2010. Temporal patterns in pH and metal concentrations in Level 1 discharge were similar to those observed in 2007, with pH, zinc, cadmium, and manganese concentrations generally decreasing, and lead and copper generally increasing during the snowmelt runoff period. Zinc and cadmium concentrations were inversely correlated with flow and thus apparently dilution-controlled. Lead and copper concentrations were inversely correlated with pH and thus apparently pH-controlled. Zinc, cadmium, and manganese concentrations near the mouth of Elk Creek did not display the pronounced increase observed during high flow in 2007, again perhaps due to remedial activities at the mine site or greater dilution in 2010. Zinc and cadmium loads near the mouth of Elk Creek were generally greater than those at the Level 1 portal for the six sample days in 2010. Whereas metal loads in September 2007 suggested that Level 1 portal discharge was the primary source of metals to the creek, metal loads computed for this study suggest that this may not have been the case in the spring of 2010. d18O values are well correlated with flow, becoming lighter (more negative) during snowmelt in both Level 1 discharge and Elk Creek. Seasonal variations in the chemistry of Level 1 discharge, along with portal flow tracking very closely with creek flow, are consistent with geochemical and environmental tracer data from 2007 that indicate short residence times (<1 year) for groundwater discharging from the Standard Mine.
Bahrami, Abdulrahman; Ghamari, Farhad; Yamini, Yadollah; Ghorbani Shahna, Farshid; Moghimbeigi, Abbas
2017-01-01
This work describes a new extraction method with hollow-fiber liquid-phase microextraction based on facilitated pH gradient transport for analyzing hippuric acid and mandelic acid in aqueous samples. The factors affecting the metabolites extraction were optimized as follows: the volume of sample solution was 10 mL with pH 2 containing 0.5 mol·L−1 sodium chloride, liquid membrane containing 1-octanol with 20% (w/v) tributyl phosphate as the carrier, the time of extraction was 150 min, and stirring rate was 500 rpm. The organic phase immobilized in the pores of a hollow fiber was back-extracted into 24 µL of a solution containing sodium carbonate with pH 11, which was placed inside the lumen of the fiber. Under optimized conditions, the high enrichment factors of 172 and 195 folds, detection limit of 0.007 and 0.009 µg·mL−1 were obtained. The relative standard deviation (RSD) (%) values for intra- and inter-day precisions were calculated at 2.5%–8.2% and 4.1%–10.7%, respectively. The proposed method was successfully applied to the analysis of these metabolites in real urine samples. The results indicated that hollow-fiber liquid-phase microextraction (HF-LPME) based on facilitated pH gradient transport can be used as a sensitive and effective method for the determination of mandelic acid and hippuric acid in urine specimens. PMID:28208685
Schebor, C; Chirife, J
2000-07-01
The water activity (a(w)) and pH values of commercially available filled fresh pasta and gnocchi packed under modified atmosphere and manufactured in Argentina and Uruguay were examined. The retail survey included 58 samples (several brands) of filled pasta and 11 samples of gnocchi. Fillings consisted of different combinations of cheese (various types), beef, ricotta, ham, chicken, and spinach. The survey revealed that the a(w) values of the 58 samples of filled pasta ranged from 0.916 to 0.973, and their pH values ranged from 5.2 to 7.0. The a(w) of gnocchi was consistently higher and ranged from 0.936 to 0.983, with pH values from 4.8 to 6.4. Some samples of filled pasta and most gnocchi samples were found to have a(w) and pH values that would support growth of spores of Clostridium botulinum, if present, under conditions of temperature abuse (i.e., 30 degrees C).
Study of Vis/NIR spectroscopy measurement on acidity of yogurt
NASA Astrophysics Data System (ADS)
He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli
2006-09-01
A fast measurement of pH of yogurt using Vis/NIR-spectroscopy techniques was established in order to measuring the acidity of yogurt rapidly. 27 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The pH of yogurt on positions scanned by spectrum was measured by a pH meter. The mathematical model between pH and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS) by using Unscramble V9.2. Then 25 unknown samples from 5 different brands were predicted based on the mathematical model. The result shows that The correlation coefficient of pH based on PLS model is more than 0.890, and standard error of calibration (SEC) is 0.037, standard error of prediction (SEP) is 0.043. Through predicting the pH of 25 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0918. The results show the good to excellent prediction performances. The Vis/NIR spectroscopy technique had a significant greater accuracy for determining the value of pH. It was concluded that the VisINIRS measurement technique can be used to measure pH of yogurt fast and accurately, and a new method for the measurement of pH of yogurt was established.
Waters, Brian W; Hung, Yen-Con
2014-04-01
Chlorinated water and electrolyzed oxidizing (EO) water solutions were made to compare the free chlorine stability and microbicidal efficacy of chlorine-containing solutions with different properties. Reduction of Escherichia coli O157:H7 was greatest in fresh samples (approximately 9.0 log CFU/mL reduction). Chlorine loss in "aged" samples (samples left in open bottles) was greatest (approximately 40 mg/L free chlorine loss in 24 h) in low pH (approximately 2.5) and high chloride (Cl(-) ) concentrations (greater than 150 mg/L). Reduction of E. coli O157:H7 was also negatively impacted (<1.0 log CFU/mL reduction) in aged samples with a low pH and high Cl(-) . Higher pH values (approximately 6.0) did not appear to have a significant effect on free chlorine loss or numbers of surviving microbial cells when fresh and aged samples were compared. This study found chloride levels in the chlorinated and EO water solutions had a reduced effect on both free chlorine stability and its microbicidal efficacy in the low pH solutions. Greater concentrations of chloride in pH 2.5 samples resulted in decreased free chlorine stability and lower microbicidal efficacy. © 2014 Institute of Food Technologists®
Determining the Release of Radionuclides from Tank 18F Waste Residual Solids: FY2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Pore water leaching studies were conducted on actual Savannah River Site (SRS) Tank 18F residual waste solids to support Liquid Waste tank closure efforts. A test methodology was developed during previous simulant testing to produce slurries of tank residual solids and grout-representative solids in grout pore water solutions (based on SRS groundwater compositions) with pH and E h values expected during the aging of the closed waste tank. The target conditions are provided below where the initial pore water has a reducing potential and a relatively high pH (Reducing Region II). The pore water is expected to become increasingly oxidizingmore » with time (Oxidizing Region II) and during the latter stages of aging (Oxidizing Region III) the pH is expected to decrease. For the reducing case, tests were conducted with both unwashed and washed Tank 18F residual solids. For the oxidizing cases (Oxidizing Regions II and III), all samples were washed with simulated grout pore water solutions prior to testing, since it is expected that these conditions will occur after considerable pore water solution has passed through the system. For the reducing case, separate tests were conducted with representative ground grout solids and with calcium carbonate reagent, which is the grout phase believed to be controlling the pH. Ferrous sulfide (FeS) solids were also added to the reducing samples to lower the slurry E h value. Calcium carbonate solids were used as the grout-representative solid phase for each of the oxidizing cases. Air purge-gas with and without CO 2 removed was transferred through the oxidizing test samples and nitrogen purge-gas was transferred through the reducing test samples during leach testing. The target pH values were achieved to within 0.5 pH units for all samples. Leaching studies were conducted over an E h range of approximately 0.7 V. However, the highest and lowest E h values achieved of ~+0.5 V and ~-0.2 V were significantly less positive and less negative, respectively, than the target values. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively.« less
Ritchie, Elspeth K; Martin, Elaine B; Racher, Andy; Jaques, Colin
2017-06-10
Understanding the causes of discrepancies in pH readings of a sample can allow more robust pH control strategies to be implemented. It was found that 59.4% of differences between two offline pH measurement technologies for an historical dataset lay outside an expected instrument error range of ±0.02pH. A new variable, Osmo Res , was created using multiple linear regression (MLR) to extract information indirectly captured in the recorded measurements for osmolality. Principal component analysis and time series analysis were used to validate the expansion of the historical dataset with the new variable Osmo Res . MLR was used to identify variables strongly correlated (p<0.05) with differences in pH readings by the two offline pH measurement technologies. These included concentrations of specific chemicals (e.g. glucose) and Osmo Res, indicating culture medium and bolus feed additions as possible causes of discrepancies between the offline pH measurement technologies. Temperature was also identified as statistically significant. It is suggested that this was a result of differences in pH-temperature compensations employed by the pH measurement technologies. In summary, a method for extracting indirectly captured information has been demonstrated, and it has been shown that competing pH measurement technologies were not necessarily interchangeable at the desired level of control (±0.02pH). Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of particle size on calcium release and elevation of pH of endodontic cements.
Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Lotfi, Mehrdad; Soukup, Jason W; Garcia-Godoy, Franklin; Sheibani, Nader
2015-06-01
Elevation of pH and calcium ion release are of great importance in antibacterial activity and the promotion of dental soft and hard tissue healing process. In this study, we evaluated the effect of particle size on the elevation of pH and the calcium ion release from calcium silicate-based dental cements. Twelve plastic tubes were divided into three groups, filled with white mineral trioxide aggregate (WMTA), WMTA plus 1% methylcellulose, and nano-modified WMTA (nano-WMTA), and placed inside flasks containing 10 ml of distilled water. The pH values were measured using a pH sensor 3, 24, 72, and 168 h after setting of the cements. The calcium ion release was measured using an atomic absorption spectrophotometer with same sample preparation method. Data were subjected to two-way analysis of variance (anova) followed by post hoc Tukey tests with significance level of P < 0.05. Nano-WMTA showed significant pH elevation only after 24 h (P < 0.05) compared with WMTA, and after 3, 24, and 72 h compared with WMTA plus 1% methylcellulose (P < 0.05). Nano-WMTA showed significantly higher calcium ion release values compared to the other two groups (P < 0.05). Nano-modification of WMTA remarkably increased the calcium ion release at all time intervals postsetting, which can significantly influence the osteogenic properties of human dental pulp cells and as a consequence enhance mineralized matrix nodule formation to achieve desirable clinical outcomes. However, the increase in pH values mainly occurred during the short time postsetting. Addition of 1% methylcellulose imposed a delay in elevation of pH and calcium ion release by WMTA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Crystallization and demineralization phenomena in washed-rind cheese.
Tansman, Gil F; Kindstedt, Paul S; Hughes, John M
2017-11-01
This report documents an observational study of a high-moisture washed-rind cheese. Three batches of cheese were sampled on a weekly basis for 6 wk and again at wk 10. Center, under-rind, rind, and smear samples were tested for pH, moisture, and selected mineral elements. Powder x-ray diffractometry and petrographic microscopy were applied to identify and image the crystal phases. The pH of the rind increased by over 2 pH units by wk 10. The pH of the under-rind increased but remained below the rind pH, whereas the center pH decreased for most of aging and only began to rise after wk 5. Diffractograms of smear material revealed the presence of 4 crystal phases: brushite, calcite, ikaite, and struvite. The phases nucleated in succession over the course of aging, with calcite and ikaite appearing around the same time. A very small amount of brushite appeared sporadically in center and under-rind samples, but otherwise no other crystallization was observed beneath the rind. Micrographs revealed that crystals in the smear grew to over 250 μm in length by wk 10, and at least 2 different crystal phases, probably ikaite and struvite, could be differentiated by their different optical properties. The surface crystallization was accompanied by a mineral diffusion phenomenon that resulted, on average, in a 217, 95.7, and 149% increase in calcium, phosphorus, and magnesium, respectively, in the rind by wk 10. The diffusion phenomenon caused calcium, phosphorus, and magnesium to decrease, on average, by 55.0, 21.5, and 36.3%, respectively, in the center by wk 10. The present study represents the first observation of crystallization and demineralization phenomena in washed-rind cheese. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Effects of Extended Freezer Storage on the Integrity of Human Milk.
Ahrabi, Ali Faraghi; Handa, Deepali; Codipilly, Champa N; Shah, Syed; Williams, Janet E; McGuire, Mark A; Potak, Debra; Aharon, Grace Golda; Schanler, Richard J
2016-10-01
To examine the integrity (pH, bacterial counts, host defense factors, nutrient contents, and osmolality) of freshly expressed and previously refrigerated human milk subjected to long-term freezer storage. Mothers donated 100 mL of freshly expressed milk. Samples were divided into baseline, storage at -20°C (fresh frozen) for 1, 3, 6, and 9 months, and prior storage at +4°C for 72 hours (refrigerated frozen) before storage at -20°C for 1 to 9 months. Samples were analyzed for pH, total bacterial colony count, gram-positive and gram-negative colony counts, and concentrations of total protein, fat, nonesterified fatty acids, lactoferrin, secretory IgA, and osmolality. Milk pH, total bacterial colony count, and Gram-positive colony counts decreased significantly with freezer storage (P < .001); bacterial counts decreased most rapidly in the refrigerated frozen group. The gram-negative colony count decreased significantly over time (P < .001). Nonesterified fatty acid concentrations increased significantly with time in storage (P < .001). Freezing for up to 9 months did not affect total protein, fat, lactoferrin, secretory IgA, or osmolality in either group. Freezer storage of human milk for 9 months at -20°C is associated with decreasing pH and bacterial counts, but preservation of key macronutrients and immunoactive components, with or without prior refrigeration for 72 hours. These data support current guidelines for freezer storage of human milk for up to 9 months for both freshly expressed and refrigerated milk. Copyright © 2016 Elsevier Inc. All rights reserved.
Khajeh, Mostafa; Sarafraz-Yazdi, Ali; Natavan, Zahra Bameri
2016-03-01
The aim of this research was to develop a low price and environmentally friendly adsorbent with abundant of source to remove methylene blue (MB) from water samples. Sawdust solid-phase extraction coupled with high-performance liquid chromatography was used for the extraction and determination of MB. In this study, an experimental data-based artificial neural network model is constructed to describe the performance of sawdust solid-phase extraction method for various operating conditions. The pH, time, amount of sawdust, and temperature were the input variables, while the percentage of extraction of MB was the output. The optimum operating condition was then determined by genetic algorithm method. The optimized conditions were obtained as follows: 11.5, 22.0 min, 0.3 g, and 26.0°C for pH of the solution, extraction time, amount of adsorbent, and temperature, respectively. Under these optimum conditions, the detection limit and relative standard deviation were 0.067 μg L(-1) and <2.4%, respectively. The Langmuir and Freundlich adsorption models were applied to describe the isotherm constant and for the removal and determination of MB from water samples. © The Author(s) 2013.
Yogurt made from milk heated at different pH values.
Ozcan, Tulay; Horne, David S; Lucey, John A
2015-10-01
Milk for yogurt manufacture is subjected to high heat treatment to denature whey proteins. Low milk pH values (≤ 6.5) at heating result in most denatured whey proteins becoming associated with casein micelles, whereas high milk pH values (≥ 7.0) at heating result in the formation of mostly soluble (nonmicellar) denatured whey protein complexes. There are conflicting reports on the relative importance of soluble and casein-bound whey protein aggregates on the properties of acid gels. Prior studies investigating the effect of pH of milk at heating used model gels in which milk was acidified by glucono-δ-lactone; in this study, we prepared yogurt gels using commercial starter cultures. Model acid gels can have very different texture and physical properties from those made by fermentation with starter cultures. In this study, we investigated the effects of different pH values of milk at heating on the rheological, light backscatter, and microstructural properties of yogurt gels. Reconstituted skim milk was adjusted to pH values 6.2, 6.7, and 7.2 and heated at 85°C for 30 min. A portion of the heated milk samples was readjusted back to pH 6.7 after heating. Milks were inoculated with 3% (wt/wt) yogurt starter culture and incubated at 40°C until pH 4.6. Gel formation was monitored using dynamic oscillatory rheology, and parameters measured included the storage modulus (G') and loss tangent (LT) values. Light-backscattering properties, such as the backscatter ratio (R) and the first derivative of light backscatter ratio (R'), were also monitored during fermentation. Fluorescence microscopy was used to observe gel microstructure. The G' values at pH 4.6 were highest in gels made from milk heated at pH 6.7 and lowest in milk heated at pH 6.2, with or without pH adjustment after heating. The G' values at pH 4.6 were lower in samples after adjustment back to pH 6.7 after heating. No maximum in the LT parameter was observed during gelation for yogurts made from milk heated at pH 6.2; a maximum in LT was observed at pH ~4.8 for samples heated at pH 6.7 or 7.2, with or without pH adjustment after heating. Higher R-values were observed with an increase in pH of heating, with or without pH adjustment after heating. The sample heated at pH 6.2 had only one major peak in its R' profile during acidification, whereas samples heated at pH 6.7 and 7.2 had 2 large peaks. The lack of a maximum in LT parameter and the presence of a single peak in the R' profile for the samples heated at pH 6.2 were likely due to the partial solubilization of insoluble calcium phosphate when milk was acidified to this lower pH value. No clear differences were observed in the microstructures of gels between the different treatments. This study indicates that heating milk at the natural pH (~6.7) created an optimum balance of casein-bound and soluble denatured whey proteins, which resulted in yogurt with the highest gel stiffness. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Scott, Brittney R; Yang, Xiang; Geornaras, Ifigenia; Delmore, Robert J; Woerner, Dale R; Reagan, James O; Morgan, J Brad; Belk, Keith E
2015-11-01
Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings.
Pharmacokinetics and pharmacodynamics of famotidine and ranitidine in critically ill children.
Madani, Shailender; Kauffman, Ralph; Simpson, Pippa; Lehr, Victoria Tutag; Lai, Mary Lieh; Sarniak, Ashok; Tolia, Vasundhara
2014-02-01
To characterize and compare acid suppression (pharmacodynamics) and pharmacokinetics of IV famotidine and ranitidine in critically ill children at risk for stress gastritis. Single-blind, randomized study in PICU patients 6 months to 18 years requiring mechanical ventilation with continuous gastric pH monitoring, randomized to IV famotidine 12 mg/m(2) or ranitidine 60 mg/m(2) when gastric pH < 4.0 >1 hour with serial blood sampling following first dose. Twenty-four children randomized to either famotidine (n = 12) or ranitidine (n = 12). Sixteen out of twenty-four completed both PK and PD study arms (7/12 famotidine; 4.7 ± 3.4 years; 9/12 ranitidine; 6.6 ± 4.7 years; p = 0.38). Time to gastric pH 4.0 and total time pH above 4.0 similar with no difference in pH at 6 and 12 hours (p > 0.2). No difference between drugs in clearance, volume of distribution and half-life (p > 0.05). Ratio of AUC pH to AUC drug concentration 0-12 hours after first dose was significantly greater for famotidine (0.06849 ± 0.01460 SD) than ranitidine (0.02453 ± 0.01448; p < 0.001) demonstrating greater potency of famotidine. pH lowering efficacy of both drugs is similar. Greater potency of famotidine may offer clinical advantage due to lower drug exposure and less frequent dosing to achieve same pH lowering effect. © 2013, The American College of Clinical Pharmacology.
Amperometric micro pH measurements in oxygenated saliva.
Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G
2017-07-24
An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.
Batra, Renu; Kataria, Pratik; Kapoor, Sonali
2016-10-01
Scientifically and clinically there has been lot of development in the field of aesthetic dentistry. However, there is limited or restricted information regarding the color stability of flowable composite materials. The aim of this study was to evaluate the spectrophotometric color stability of three different flowable composite materials with respect to three different pH of saliva. The study included 90 different samples. Thirty samples in each composite group; (Group A: G-aenial universal flo; Group B: Z 350 XT flowable; Group C: Esthet x flow). All samples from each group were immersed in distilled water for 24 hours. Total color difference (ΔE) was recorded for each sample. After this 10 samples from each group were respectively immersed in 6.5, 7 and 7.5 pH of artificial saliva. All samples were kept in dark room for seven days and then ΔE for each sample was recorded and was compared to previous recorded ΔE for the same sample. Maximum color change was seen irrespective of material in 6.5 pH of saliva. G-aenial universal flo showed least change irrespective of pH of saliva. Thus, the present study reveals that acidic pH level affects the coloration of composite resins by affecting the surface integrity and as reported in previous studies, various coloring agents in beverages and other dietary components assists the process due to absorption of these coloring substances into the resin matrix.
The effect of liming on antibacterial and hormone levels in wastewater biosolids.
Olszewski, Jennifer M; Lozano, Nuria; Haines, Christine; Rice, Clifford P; Ramirez, Mark; Torrents, Alba
2013-01-01
This study analyzes the effect of liming on levels of triclocarban (TCC), triclosan (TCS), estrone (E1), and progesterone (P), two antimicrobial agents and two natural hormones, respectively. Factors studied include lime particle size, mixing time, and overall lime contact time. The study results suggest that coarse lime may be more active than fine lime due to less interaction with surrounding air. Both TCS and TCC concentrations were lower in coarse limed samples versus unlimed samples and the decrease was a function of time. A similar, but statistically insignificant trend in TCC and TCS levels was observed in fine lime samples with respect to unlimed samples. Liming was also found to decrease apparent E1 levels, with more notable decreases in samples amended with coarse lime. P-levels significantly increased after 1-day of contact time, stabilizing over the next 14 days of the study period. This increase and stabilization of P-levels was attributed to the pH and moisture-driven conversion of more chemically complex steroids into P.
Najafi, Sarvenaz; Jalali, Mohsen
2016-06-01
In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints.
Abbate, G M; Levrini, L; Caria, M P
2014-01-01
This study evaluated whether sodium bicarbonate applied on the oral mucosa through a new mucoadhesive spray (Cariex) could control a drop in salivary pH after a glucose rinse, and therefore enhance the buffering potential of saliva. A sample of 50 healthy adults was selected. At day 1, the measurement of salivary pH was performed in the lower fornix in correspondence with the lower molars. Each subject rinsed with 10 ml of a 10% glucose solution and then pH was monitored continually for 40 minutes. At day 2, the same experimental procedure was repeated and three shots of the spray were administered on the oral mucosa. The tested spray is composed of sodium bicarbonate, xylitol, and excipients. Without the mucoadhesive spray, salivary pH became significantly lower following the glucose rinse (p < 0.01). Following the spray, the time in which the pH remained lower than 6.0 was reduced statistically significantly (p < 0.01). A continual rise of salivary pH was observed for the 40 minutes in which the pH recording was performed. Conclusions: The use of a sodium bicarbonate spray on the mucosa was shown to control the lowering of salivary pH following carbohydrate consumption, and might therefore add to the prevention of caries and dental erosion.
Measurement of pH in whole blood by near-infrared spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, M. Kathleen; Maynard, John D.; Robinson, M. Ries
1999-03-01
Whole blood pH has been determined {ital in vitro} by using near-infrared spectroscopy over the wavelength range of 1500 to 1785 nm with multivariate calibration modeling of the spectral data obtained from two different sample sets. In the first sample set, the pH of whole blood was varied without controlling cell size and oxygen saturation (O{sub 2} Sat) variation. The result was that the red blood cell (RBC) size and O{sub 2} Sat correlated with pH. Although the partial least-squares (PLS) multivariate calibration of these data produced a good pH prediction cross-validation standard error of prediction (CVSEP)=0.046, R{sup 2}=0.982, themore » spectral data were dominated by scattering changes due to changing RBC size that correlated with the pH changes. A second experiment was carried out where the RBC size and O{sub 2} Sat were varied orthogonally to the pH variation. A PLS calibration of the spectral data obtained from these samples produced a pH prediction with an R{sup 2} of 0.954 and a cross-validated standard error of prediction of 0.064 pH units. The robustness of the PLS calibration models was tested by predicting the data obtained from the other sets. The predicted pH values obtained from both data sets yielded R{sup 2} values greater than 0.9 once the data were corrected for differences in hemoglobin concentration. For example, with the use of the calibration produced from the second sample set, the pH values from the first sample set were predicted with an R{sup 2} of 0.92 after the predictions were corrected for bias and slope. It is shown that spectral information specific to pH-induced chemical changes in the hemoglobin molecule is contained within the PLS loading vectors developed for both the first and second data sets. It is this pH specific information that allows the spectra dominated by pH-correlated scattering changes to provide robust pH predictive ability in the uncorrelated data, and visa versa. {copyright} {ital 1999} {ital Society for Applied Spectroscopy}« less
Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples.
Prats-Alfonso, Elisabet; Abad, Llibertat; Casañ-Pastor, Nieves; Gonzalo-Ruiz, Javier; Baldrich, Eva
2013-01-15
This work demonstrates the implementation of iridium oxide films (IROF) grown on silicon-based thin-film platinum microelectrodes, their utilization as a pH sensor, and their successful formatting into a urea pH sensor. In this context, Pt electrodes were fabricated on Silicon by using standard photolithography and lift-off procedures and IROF thin films were growth by a dynamic oxidation electrodeposition method (AEIROF). The AEIROF pH sensor reported showed a super-Nerstian (72.9±0.9mV/pH) response between pH 3 and 11, with residual standard deviation of both repeatability and reproducibility below 5%, and resolution of 0.03 pH units. For their application as urea pH sensors, AEIROF electrodes were reversibly modified with urease-coated magnetic microparticles (MP) using a magnet. The urea pH sensor provided fast detection of urea between 78μM and 20mM in saline solution, in sample volumes of just 50μL. The applicability to urea determination in real urine samples is discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Talari, Roya; Varshosaz, Jaleh; Mostafavi, Seyed Abolfazl; Nokhodchi, Ali
2009-01-01
The micronization using milling process to enhance dissolution rate is extremely inefficient due to a high energy input, and disruptions in the crystal lattice which can cause physical or chemical instability. Therefore, the aim of the present study is to use in situ micronization process through pH change method to produce micron-size gliclazide particles for fast dissolution hence better bioavailability. Gliclazide was recrystallized in presence of 12 different stabilizers and the effects of each stabilizer on micromeritic behaviors, morphology of microcrystals, dissolution rate and solid state of recrystallized drug particles were investigated. The results showed that recrystallized samples showed faster dissolution rate than untreated gliclazide particles and the fastest dissolution rate was observed for the samples recrystallized in presence of PEG 1500. Some of the recrystallized drug samples in presence of stabilizers dissolved 100% within the first 5 min showing at least 10 times greater dissolution rate than the dissolution rate of untreated gliclazide powders. Micromeritic studies showed that in situ micronization technique via pH change method is able to produce smaller particle size with a high surface area. The results also showed that the type of stabilizer had significant impact on morphology of recrystallized drug particles. The untreated gliclazide is rod or rectangular shape, whereas the crystals produced in presence of stabilizers, depending on the type of stabilizer, were very fine particles with irregular, cubic, rectangular, granular and spherical/modular shape. The results showed that crystallization of gliclazide in presence of stabilizers reduced the crystallinity of the samples as confirmed by XRPD and DSC results. In situ micronization of gliclazide through pH change method can successfully be used to produce micron-sized drug particles to enhance dissolution rate.
Li, Jinhua; Liu, Junying; Lu, Wenhui; Gao, Fangfang; Wang, Liyan; Ma, Jiping; Liu, Huitao; Liao, Chunyang; Chen, Lingxin
2018-04-23
A pretreatment method of dispersive solid-phase extraction (DSPE) along with back-extraction followed by CE-UV detector was developed for the determination of mercury species in water samples. Sulfhydryl-functionalized SiO 2 microspheres (SiO 2 -SH) were synthesized and used as DSPE adsorbents for selective extraction and enrichment of three organic mercury species namely ethylmercury (EtHg), methylmercury (MeHg), and phenylmercury (PhHg), along with L-cysteine (L-cys) containing hydrochloric acid as back-extraction solvent. Several main extraction parameters were systematically investigated including sample pH, amount of adsorbent, extraction and back-extraction time, volume of eluent, and concentration of hydrochloric acid. Under optimal conditions, good linearity was achieved with correlation coefficients over 0.9990, in the range of 4-200 μg/L for EtHg, and 2-200 μg/L for MeHg and PhHg. The LODs were obtained of 1.07, 0.34, and 0.24 μg/L for EtHg, MeHg, and PhHg, respectively, as well as the LOQs were 3.57, 1.13, and 0.79 μg/L, respectively, with enrichment factors ranging from 109 to 184. Recoveries were attained with tap and lake water samples in a range of 62.3-107.2%, with relative standard deviations of 3.5-10.1%. The results proved that the method of SiO 2 -SH based DSPE coupled with CE-UV was a simple, rapid, cost-effective, and eco-friendly alternative for the determination of mercury species in water samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Miniaturized and direct spectrophotometric multi-sample analysis of trace metals in natural waters.
Albendín, Gemma; López-López, José A; Pinto, Juan J
2016-03-15
Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method. Copyright © 2015 Elsevier Inc. All rights reserved.
Analysis of acrylamide in food products by in-line preconcentration capillary zone electrophoresis.
Bermudo, Elisabet; Núñez, Oscar; Puignou, Luis; Galceran, Maria Teresa
2006-09-29
Two in-line preconcentration capillary zone electrophoresis (CZE) methods (field amplified sample injection (FASI) and stacking with sample matrix removal (LVSS)) have been evaluated for the analysis of acrylamide (AA) in foodstuffs. To allow the determination of AA by CZE, it was derivatized using 2-mercaptobenzoic acid. For FASI, the optimum conditions were water at pH > or = 10 adjusted with NH3 as sample solvent, 35 s hydrodynamic injection (0.5 psi) of a water plug, 35 s of electrokinetic injection (-10 kV) of the sample, and 6s hydrodynamic injection (0.5 psi) of another water plug to prevent AA removal by EOF. In stacking with sample matrix removal, the reversal time was found to be around 3.3 min. A 40 mM phosphate buffer (pH 8.5) was used as carrier electrolyte for CZE separation in both cases. For both FASI and LVSS methods, linear calibration curves over the range studied (10-1000 microg L(-1) and 25-1000 microg L(-1), respectively), limit of detection (LOD) on standards (1 microg L(-1) for FASI and 7 microg L(-1) for LVSS), limit of detection on samples (3 ng g(-1) for FASI and 20 ng g(-1) for LVSS) and both run-to-run (up to 14% for concentration and 0.8% for time values) and day-to-day precisions (up to 16% and 5% for concentration and time values, respectively) were established. Due to the lower detection limits obtained with the FASI-CZE this method was applied to the analysis of AA in different foodstuffs such as biscuits, cereals, crisp bread, snacks and coffee, and the results were compared with those obtained by LC-MS/MS.
Precise method for the measurement of catalase activity in honey.
Huidobro, José F; Sánchez, M Pilar; Muniategui, Soledad; Sancho, M Teresa
2005-01-01
An improved method is reported for the determination of catalase activity in honey. We tested different dialysis membranes, dialysis fluid compositions and amounts, dialysis temperatures, sample amounts, and dialysis times. The best results were obtained by dialysis of 7.50 g sample in a cellulose dialysis sack, using two 3 L portions of 0.015 M sodium phosphate buffer (pH 7.0) as the dialysis fluid at 4 degrees C for 22 h. As in previous methods, catalase activity was determined on the basis of the rate of disappearance of the substrate, H202, with the H202 determined spectrophotometrically at 400 nm in an assay system containing o-dianisidine and peroxidase. Trials indicated that the best solvent for the o-dianisidine was 0.2 M sodium phosphate buffer, pH 6.1; the best starting H202 concentration was 3 mM; the best HCl concentration for stopping the reaction was 6 N; and the best sample volume for catalase measurement was 7.0 mL. Precision values (relative standard deviations for analyses of 10 subsamples of each of 3 samples) were high, ranging from 0.48% for samples with high catalase activity to 1.98% for samples with low catalase activity.
Development of a carbonate crust on alkaline nuclear waste sludge at the Hanford site.
Page, Jason S; Reynolds, Jacob G; Ely, Tom M; Cooke, Gary A
2018-01-15
Hard crusts on aging plutonium production waste have hindered the remediation of the Hanford Site in southeastern Washington, USA. In this study, samples were analyzed to determine the cause of a hard crust that developed on the highly radioactive sludge during 20 years of inactivity in one of the underground tanks (tank 241-C-105). Samples recently taken from the crust were compared with those acquired before the crust appeared. X-ray diffraction and scanning electron microscopy (SEM) indicated that aluminum and uranium phases at the surface had converted from (hydr)oxides (gibbsite and clarkeite) into carbonates (dawsonite and cejkaite) and identified trona as the cementing phase, a bicarbonate that formed at the expense of thermonatrite. Since trona is more stable at lower pH values than thermonatrite, the pH of the surface decreased over time, suggesting that CO 2 from the atmosphere lowered the pH. Thus, a likely cause of crust formation was the absorption of CO 2 from the air, leading to a reduction of the pH and carbonation of the waste surface. The results presented here help establish a model for how nuclear process waste can age and can be used to aid future remediation and retrieval activities. Copyright © 2017 Elsevier B.V. All rights reserved.
Camacho-Ruiz, María de Los Angeles; Mateos-Díaz, Juan Carlos; Carrière, Frédéric; Rodriguez, Jorge A
2015-05-01
A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.
Heberer, Th; Reddersen, K; Mechlinski, A
2002-01-01
Recently, the occurrence and fate of pharmaceutically active compounds (PhACs) in the aquatic environment was recognized as one of the emerging issues in environmental chemistry and as a matter of public concern. Residues of PhACs have been found as contaminants in sewage, surface, and ground- and drinking water samples. Since June 2000, a new long-term monitoring program of sewage, surface, ground- and drinking water has been carried out in Berlin, Germany. Samples, collected periodically from selected sites in the Berlin area, are investigated for residues of PhACs and related contaminants. The purpose of this monitoring is to investigate these compounds over a long time period to get more reliable data on their occurrence and fate in the different aquatic compartments. Moreover, the surface water investigations allow the calculation of season-dependent contaminant loads in the Berlin waters. In the course of the monitoring program, PhACs and some other polar compounds were detected at concentrations up to the microg/L-level in all compartments of the Berlin water cycle. The monitoring is accompanied and supported by several other investigations such as laboratory column experiments and studies on bank filtration and drinking water treatment using conventional or membrane filtration techniques.
Lenart, Anna; Wolny-Koładka, Katarzyna
2013-01-01
The present study aimed to identify the effect of heavy metal concentration and soil pH on the abundance of the selected soil microorganisms within ArcelorMittal Poland steelworks, Cracow. The analysis included 20 soil samples, where the concentration of Fe, Zn, Cd, Pb, Ni, Cu, Mn, Cr and soil pH were evaluated together with the number of mesophilic bacteria, fungi, Actinomycetes and Azotobacter spp. In the majority of samples soil pH was alkaline. The limits of heavy metals exceeded in eight samples and in one sample, the concentration of Zn exceeded 31-fold. Chromium was the element which most significantly limited the number of bacteria and Actinomycetes.
Short-time dissolution mechanisms of kaolinitic tropical soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malengreau, N.; Sposito, Garrison
1996-03-01
Previous research on the short-time dissolution behavior of kaolinitic Oxisols suggested pH-dependent kinetics involving ligand-promoted dissolution, metal readsorption, and colloidal dispersion, with soil organic matter conjectured to play a decisive role. A novel combination of spectroscopy, lightscattering, and batch dissolution experiments, conducted at controlled pH and ionic strength over five dissolution periods ranging from 1 to 12 h, was applied to evaluate this mechanism for samples of a representative kaolinitic Oxisol; collected at both forested and cultivated field sites (leading to significant differences in organic matter content and field soil pH). The overall characteristics of the pH-dependent net release kineticsmore » of Al, Fe, and Si by the soil samples, for any dissolution period in the range investigated, were determined by the pH value at which colloid dispersion commenced, which decreased significantly as the soil organic matter content increased. Plots of log(Si/Al released) (or Si/Fe released) vs. -log [H+] ([H+] is proton concentration) were superimposable for all dissolution periods studied, rising to a plateau value above the point of zero net charge of the soils (pH 3.2). Light-scattering and X-ray diffraction data showed conclusively that this plateau represented the release of siliceous colloids containing kaolinite and X-ray amorphous material. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, and electron spin resonance spectroscopy, applied to the soil samples before and after dissolution, and after conventional chemical extractions to remove Al, C, Fe, and Si, showed that kaolinite and iron oxide phases (the latter being highly Al-substituted and present in both coatings and occlusions) were essentially unaltered by dissolution, even at -log [H+] = 2, whereas substantial dissolution loss of soil quartz occurred. Diffuse reflectance spectroscopy gave strong evidence that C in these soils occurs principally in discrete solid phases, not as a reactive coating on mineral surfaces.« less
Evaluation of quick tests for phosphorus determination in dairy manures.
Lugo-Ospina, A; Dao, Thanh H; Van Kessel, J A; Reeves, J B
2005-05-01
Nutrients in animal manure are valuable inputs in agronomic crop production. Rapid and timely information about manure nutrient content are needed to minimize the risks of phosphorus (P) over-application and losses of dissolved P (DP) in runoff from fields treated with manure. We evaluated the suitability of a commercial hand-held reflectometer, a hydrometer, and an electrical conductivity (EC) meter for determining DP and total P (TP) in dairy manures. Bulk samples (n = 107) collected from farms across CT, MD, NY, PA, and VA were highly variable in total solids (TS) concentration, ranging from 11 to 213gL(-1), in suspensions' pH (6.3-9.2), and EC (6.2-53.3 dS m(-1)). Manure DP concentrations measured using the RQFlex reflectometer (RQFlex-DP(s)) were related to molybdate-reactive P (MRP(s)) concentrations as follows: RQFlex-DP(s) = 0.471 x MRP(s) + 1102 (r2 = 0.29). Inclusion of pH and squared-pH terms improved the prediction of manure DP from RQFlex results (r2 = 0.66). Excluding five outlier samples that had pH < or = 6.9 the coefficient of determination (r2) for the MRP(s) and RQFlex-DP(s) relationship was 0.83 for 95% of the samples. Manure TS were related to hydrometer specific gravity readings (r2 = 0.53) that were in turn related to TP (r2 = 0.34), but not to either RQFlex-DP or MRP. Relationships between suspensions' EC and DP or TP were non-significant. Therefore, the RQFlex method is the only viable option for on-site quick estimates of DP that can be made more robust when complemented with TS and pH measurements. The DP quick test can provide near real-time information on soluble manure nutrient content across a wide range of handling and storage conditions on dairy farms and quick estimates of potential soluble P losses in runoff following land applications of manure.
Manuelian, C L; Visentin, G; Boselli, C; Giangolini, G; Cassandro, M; De Marchi, M
2017-09-01
Milk coagulation and acidity traits are important factors to inform the cheesemaking process. Those traits have been deeply studied in bovine milk, whereas scarce information is available for buffalo milk. However, the dairy industry is interested in a method to determine milk coagulation and acidity features quickly and in a cost-effective manner, which could be provided by Fourier-transform mid-infrared (FT-MIR) spectroscopy. The aim of this study was to evaluate the potential of FT-MIR to predict coagulation and acidity traits of Mediterranean buffalo milk. A total of 654 records from 36 herds located in central Italy with information on milk yield, somatic cell score, milk chemical composition, milk acidity [pH, titratable acidity (TA)], and milk coagulation properties (rennet coagulation time, curd firming time, and curd firmness) were available for statistical analysis. Reference measures of milk acidity and coagulation properties were matched with milk spectral information, and FT-MIR prediction models were built using partial least squares regression. The data set was divided into a calibration set (75%) and a validation set (25%). The capacity of FT-MIR spectroscopy to correctly classify milk samples based on their renneting ability was evaluated by a canonical discriminant analysis. Average values for milk coagulation traits were 13.32 min, 3.24 min, and 39.27 mm for rennet coagulation time, curd firming time, and curd firmness, respectively. Milk acidity traits averaged 6.66 (pH) and 7.22 Soxhlet-Henkel degrees/100 mL (TA). All milk coagulation and acidity traits, except for pH, had high variability (17 to 46%). Prediction models of coagulation traits were moderately to scarcely accurate, whereas the coefficients of determination of external validation were 0.76 and 0.66 for pH and TA, respectively. Canonical discriminant analysis indicated that information on milk coagulating ability is present in the MIR spectra, and the model correctly classified as noncoagulating the 91.57 and 67.86% of milk samples in the calibration and validation sets, respectively. In conclusion, our results can be relevant to the dairy industry to classify buffalo milk samples before processing. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ahaotu, I; Ogueke, C C; Owuamanam, C I; Ahaotu, N N; Nwosu, J N
2011-10-15
The ability of microorganisms involved in cassava mash fermentation to produce and improve protein value by these microorganisms during fermentation was studied. Standard microbiological procedures were used to isolate, identify and determine the numbers of the organisms. Alcaligenes faecalis, Lactobacillus plantarum, Bacillus subtilis, Leuconostoc cremoris, Aspergillus niger, A. tamari, Geotrichum candidum and Penicillium expansum were isolated and identified from cassava waste water while standard analytical methods were used to determine the ability of the isolates to produce linamarase and the proximate composition, pH and titrable acidity of the fermenting mash. The linamarase activity of the isolates ranged from 0.0416 to 0.2618 micromol mL(-1) nmol(-1). Bacillus subtilis, A. niger, A. tamari and P. expansum did not express any activity for the enzyme. Protein content of mash fermented with mixed fungal culture had the highest protein value (15.4 mg/g/dry matter) while the raw cassava had the least value (2.37 mg/g/dry matter). The naturally fermented sample had the least value for the fermented samples (3.2 mg/g/dry matter). Carbohydrate and fat contents of naturally fermented sample were higher than values obtained from the other fermented samples. Microbial numbers of the sample fermented with mixed bacterial culture was highest and got to their peak at 48 h (57 x 10(8) cfu g(-1)). pH decreased with increase in fermentation time with the mash fermented by the mixed culture of fungi having the lowest pH of 4.05 at the end of fermentation. Titrable acidity increased with increase in fermentation time with the highest value of 1.32% at 96 h of fermentation produced by the mixed culture of fungi. Thus fermentation with the pure cultures significantly increased the protein content of mash.
Synthesis and properties of precipitated cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Ristic, Mira; Krehula, Stjepko; Reissner, Michael; Jean, Malick; Hannoyer, Beatrice; Musić, Svetozar
2017-07-01
The formation and properties of cobalt ferrite were investigated with XRD, FT-IR, FE-SEM, Mössbauer and magnetometry. Cobalt ferrite samples were prepared (a) by combining coprecipitation Co(OH)2/2Fe(OH)3, using NaOH between pH 5.2 and 11.4 and autoclaving, and (b) by autoclaving the Co(OH)2/2Fe(OH)3 coprecipitate in a very strong alkaline medium. XRD and FE SEM showed that both CoFe2O4 crystallites and particles were in the nanosize range. The FT-IR spectra were typical of spinel ferrites. Cobalt ferrite precipitated at pH 7.2 and at 11.4 contained a small fraction of α-Fe2O3, whereas in the sample precipitated at pH 11.4 a very small amount (traces) of α-FeOOH were detected by FT-IR, additionally. Parameters obtained by Mössbauer spectroscopy suggested a structural migration of cobalt and iron ions in prepared cobalt ferrite spinels with the prolonged time of autoclaving. Magnetic measurements showed the magnetic behaviour typical of spinel ferrite nanoparticles.
Chemical characterization of fog and rain water collected at the eastern Andes cordillera
NASA Astrophysics Data System (ADS)
Beiderwieden, E.; Wrzesinsky, T.; Klemm, O.
2005-09-01
During a three month period in 2003 and 2004, the chemistry of fog and rainwater were studied at the "El Tiro" site in a tropical mountain forest ecosystem in Ecuador, South America. The fogwater samples were collected using a passive fog collector, and for the rain water, a standard rain sampler was employed. For all samples, electric conductivity, pH, and the concentrations of NH4+, K+, Na+, Ca2+, Mg2+, Cl-, NO3-, PO43-, and SO42- were measured. For each fog sample, a 5 day back trajectory was calculated by the use of the HYSPLIT model. Two types of trajectories occurred. One type was characterized by advection of air masses from the East over the Amazonian basin, the other trajectory arrived one from the West after significant travel time over the Pacific Ocean. We found considerably higher ion concentrations in fogwater samples than in rain samples. Median pH values are 4.58 for fog water, and 5.26 for the rain samples, respectively. The median electric conductivity was 23 μS cm-1 for the fog and 6 μS cm-1 for the rain. The continent samples exhibit higher concentrations of most ions as compared to the pacific samples, but these differences could not be detected statistically.
The pH of chemistry assays plays an important role in monoclonal immunoglobulin interferences.
Alberti, Michael O; Drake, Thomas A; Song, Lu
2015-12-01
Immunoglobulin paraproteins can interfere with multiple chemistry assays. We want to investigate the mechanisms of immunoglobulin interference. Serum samples containing paraproteins from the index patient and eight additional patients were used to investigate the interference with the creatinine and total protein assays on the Beckman Coulter AU5400/2700 analyzer, and to determine the effects of pH and ionic strength on the precipitation of different immunoglobulins in these patient samples. The paraprotein interference with the creatinine and total protein assays was caused by the precipitation of IgM paraprotein in the index patient's samples under alkaline assay conditions. At extremely high pH (12-13) and extremely low pH (1-2) and low ionic strength, paraprotein formed large aggregates in samples from the index patient but not from other patients. The pH and ionic strength are the key factors that contribute to protein aggregation and precipitation which interfere with the creatinine and total protein measurements on AU5400/2700. The different amino acid sequence of each monoclonal paraprotein will determine the pH and ionic strength at which the paraprotein will precipitate.
NASA Astrophysics Data System (ADS)
Yu, Soonyoung; Chae, Gitak; Jo, Minki; Kim, Jeong-Chan; Yun, Seong-Taek
2015-04-01
CO2-rich springs have been studied as a natural analogue of CO2 leakage through shallow subsurface environment, as they provide information on the behaviors of CO2 during the leakage from geologic CO2 storage sites. For this study, we monitored the δ13C values as well as temperature, pH, EC, DO, and alkalinity for a CO2-rich spring for 48 hours. The water samples (N=47) were collected every hour in stopper bottles without headspace to avoid the interaction with air and the CO2 degassing. The δ13C values of total dissolved inorganic carbon (TDIC) in the water samples were analyzed using a cavity ring-down spectroscopy (CRDS) system (Picarro). The values of δ13CTDIC, temperature, pH, EC, DO, and alkalinity were in the range of -9.43 ~ -8.91 o 12.3 ~ 13.2oC, 4.86 ~ 5.02, 186 ~ 189 μS/cm, 1.8 ~ 3.4 mg/L, and 0.74 ~ 0.95 meq/L, respectively. The concentrations of TDIC calculated using pH and alkalinity values were between 22.5 and 34.8 mmol/L. The δ13CTDIC data imply that dissolved carbon in the spring was derived from a deep-seated source (i.e., magmatic) that was slightly intermixed with soil CO2. Careful examination of the time-series variation of measured parameters shows the following characteristics: 1) the δ13CTDIC values are negatively correlated with pH (r = -0.59) and positively correlated with TDIC (r = 0.58), and 2) delay times of the change of pH and alkalinity following the change of δ13CTDIC values are 0 and -3 hours, respectively; the pH change occurs simultaneously with the change of δ13CTDIC, while the alkalinity change happens before 3 hours. Our results indicate that the studied CO2-rich spring is influenced by the intermittent supply of deep-seated CO2. [Acknowledgment] This work was financially supported by the fundamental research project of KIGAM and partially by the "Geo-Advanced Innovative Action (GAIA) Project (2014000530003)" from Korea Ministry of Environment (MOE).
Plasticizing Effects of Polyamines in Protein-Based Films
Sabbah, Mohammed; Di Pierro, Prospero; Giosafatto, C. Valeria L.; Esposito, Marilena; Mariniello, Loredana; Regalado-Gonzales, Carlos; Porta, Raffaele
2017-01-01
Zeta potential and nanoparticle size were determined on film forming solutions of native and heat-denatured proteins of bitter vetch as a function of pH and of different concentrations of the polyamines spermidine and spermine, both in the absence and presence of the plasticizer glycerol. Our results showed that both polyamines decreased the negative zeta potential of all samples under pH 8.0 as a consequence of their ionic interaction with proteins. At the same time, they enhanced the dimension of nanoparticles under pH 8.0 as a result of macromolecular aggregations. By using native protein solutions, handleable films were obtained only from samples containing either a minimum of 33 mM glycerol or 4 mM spermidine, or both compounds together at lower glycerol concentrations. However, 2 mM spermidine was sufficient to obtain handleable film by using heat-treated samples without glycerol. Conversely, brittle materials were obtained by spermine alone, thus indicating that only spermidine was able to act as an ionic plasticizer. Lastly, both polyamines, mainly spermine, were found able to act as “glycerol-like” plasticizers at concentrations higher than 5 mM under experimental conditions at which their amino groups are undissociated. Our findings open new perspectives in obtaining protein-based films by using aliphatic polycations as components. PMID:28489025
Efficiency of beef extract for the recovery of poliovirus from wastewater effluents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landry, E.F.; Vaughn, J.M.; Thomas, M.Z.
1978-10-01
The efficiency of poliovirus elution from fiber glass cartridge filters (K27), epoxy-fiber glass-asbestos filters (M780), and pleated cartridge filters was assessed by using 3% beef extract (pH 9.0) or 0.1 M glycine (pH 11.5). Poliovirus type I, strain LSc, was seeded into 20 to 25 gallon (ca. 75.6 to 95.6 liter) samples of treated sewage effluent and concentrated by using a filter adsorption-elution technique. Virus elution was accomplished by using either two 600-ml portions of 3% beef extract (pH 9.0), or two 1 liter portions of 0.1 M glycine (pH 11.5). In all experiments, beef extract elution followed by organicmore » flocculation was found to be superior, yielding a mean recovery efficiency of 85%, with recoveries ranging from 68 to 100%. Elution with 0.1 M glycine (pH 11.5) followed by inorganic flocculation resulted in a mean recovery efficiency of 36%. The variable range of recoveries with beef extract could not be significantly improved by varying the type of beef extract or by extending the elution time to 30 min. Second-step reconcentration of 1 liter seeded sewage effluent and renovated wastewater samples indicated that organic flocculation was a more efficient method for virus recovery than inorganic flocculation. Beef extract concentrations of less than 3% were found to be efficient in the recovery of poliovirus from renovated wastewater.« less
NASA Astrophysics Data System (ADS)
Hojberg, A. L.; Engesgaard, P.; Bjerg, P. L.
The fate of selected pesticides under natural groundwater conditions was studied by natural gradient short and long term injection experiments in a shallow uncon- fined aerobic aquifer. Bentazone, DNOC, MCPP, dichlorprop, isoproturon, and BAM (dichlobenil metabolite) were injected in aqueous solution with bromide as a nonre- active tracer. The Bromide and pesticide plumes were sampled during the initial 25 m of migration in a dense monitoring net of multilevel samplers. The aquifer was physical and geochemical heterogeneous, which affected transport of several of the pesticides. A 3D reactive transport code was developed including one- and two-site linear/nonlinear equilibrium/nonequilibrium sorption and first-order as well as single Monod degradation kinetic coupled to microbial growth. Model simulations demon- strated that microbial growth was likely supported by the phenoxy acids MCPP and dichlorprop, while degradation of DNOC was adequately described by first-order degradation with no initial lag time. An observed vertical increase in pH was observed at the site and implemented in the transport code. The numerical analysis indicated that degradation of the three degradable pesticides may have been affected by vertical pH variations. Spatial variability in observed DNOC sorption was similarly suspected to be an effect of varying pH. pH dependency on DNOC sorption was confirmed by the model recognized by a match to observed breakthrough at the individual sampling points, when pH variation was included in the simulations.
NASA Astrophysics Data System (ADS)
Vogel, S. W.; Powell, R. D.; Griffith, I.; Lawson, T.; Schiraga, S.; Ludlam, G.; Oen, J.
2009-12-01
A number of instrumentation is currently under development designed to enable the study of subglacial environments in Antarctica through narrow kilometer long boreholes. Instrumentation includes: - slim line Sub-Ice ROV (SIR), - Geochemical Instrumentation Package for Sub Ice Environments (GIPSIE) to study geochemical fluxes in water and across the sediment water interface (CO2, CH4, dO, NH4, NO3, Si, PO4, pH, redox, T, H2, HS, O2, N2O, CTD, particle size, turbidity, color camera, current meter and automated water sampler) with real-time telemetry for targeted sampling, - long term energy-balance mooring system, - active source slide hammer sediment corer, and - integration of a current sensor into the ITP profiler. The instrumentation design is modular and suitable for remote operated as well as autonomous long-term deployment. Of interest to the broader science community is the development of the GIPSIE and efforts to document the effect of sample recovery from depth on the sample chemistry. The GIPSIE is a geochemical instrumentation package with life stream telemetry, allowing for user controlled targeted sampling of water column and the water sediment interphase for chemical and biological work based on actual measurements and not a preprogrammed automated system. The porewater profiler (pH, redox, T, H2, HS, O2, N2O) can penetrate the upper 50 cm of sediment and penetration is documented with real time video. Associated with GIPSIE is an on-site lab set-up, utilizing a set of identical sensors. Comparison between the insitu measurements and measurements taken onsite directly after samples are recovered from depth permits assessing the effect of sample recovery on water and sediment core chemistry. Sample recovery related changes are mainly caused by changes in the pressure temperature field and exposure of samples to atmospheric conditions. Exposure of anaerobic samples to oxygen is here a specific concern. Recovery from depth effects in generally pH, solubility of gases and nutrients and can initiate complex chemical reaction, the product of which is later measured in the lab. Further information on the instrument developments can be found at http://jove.geol.niu.edu/faculty/svogel/Technology/Technology-index.html
[Extraction and purification technologies of total flavonoids from Aconitum tanguticum].
Li, Yan-Rong; Yan, Li-Xin; Feng, Wei-Hong; Li, Chun; Wang, Zhi-Min
2014-04-01
To optimize the extraction and purification technologies of total flavonoids from Aconitum tanguticum whole plant. With the content of total flavonoids as index, the optimum extraction conditions for the concentration, volume of alcohol, extracting time and times were selected by orthogonal optimized; Comparing the adsorption quantity (mg/g) and resolution (%), four kinds of macroporous adsorption resins including D101, AB-8, X-5 and XAD-16 were investigated for the enrichment ability of total flavonoids from Aconitum tanguticum; Concentration and pH value of sample, sampling amount, elution solvent and loading and elution velocity for the optimum adsorption resin were determined. The content of total flavonoids in Aconitum tanguticum was about 4.39%; The optimum extraction technique was 70% alcohol reflux extraction for three times,each time for one hour, the ratio of material and liquid was 1:10 (w/v); The optimum purification technology was: using XAD-16 macroporous resin, the initial concentration of total flavonoids of Aconitum tanguticum was 8 mg/mL, the sampling amount was 112 mg/g dry resin, the pH value was 5, the loading velocity was 3 mL/min, the elution solvent was 70% ethanol and the elution velocity was 5 mL/min. Under the optimum conditions, the average content of total flavonoids was raised from 4.39% to 46.19%. The optimum extraction and purification technologies for total flavonoids of Aconitum tanguticum were suitable for industrial production for its simplicity and responsibility.
The Effect of Geraniol on Liver Regeneration After Hepatectomy in Rats.
Canbek, Mediha; Uyanoglu, Mustafa; Canbek, Selcuk; Ceyhan, Emre; Ozen, Ahmet; Durmus, Basak; Turgak, Ozge
2017-01-01
Geraniol is a monoterpenoid alcohol that has a hepatoprotective effect. We investigated the regenerative effects of geraniol in rats after a 70% partial hepatectomy (PH). Using Wistar albino rats, nine groups were created: Group I was the control group, while the remaining groups received a single intraperitoneal dose of saline, Silymarin, or geraniol after PH. A 70% PH was performed on all groups except for groups II and III. Blood serum samples were obtained for alanine amino transferase (ALT) analysis. Then liver tissues were harvested for histological and real-time polymerase chain reaction (PCR) analyses. Tumor necrosis factor-α (TNFα) and interleukin 6 (IL6) gene expression were examined 24 and 48 h after PH. ALT levels were found to be statistically significantly increased in all PH-treated groups. TNFα and IL6 gene expression levels were elevated in geraniol-treated groups. Histological evaluation revealed a hepatoprotective effect for geraniol-treated groups. Our results suggest that geraniol plays a significant role during liver regeneration, which involves the elevated expression of TNFα and IL6 48 h after PH. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Measuring pH variability using an experimental sensor on an underwater glider
NASA Astrophysics Data System (ADS)
Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner
2017-05-01
Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian Sea. Higher pH was observed where salinity was > 38. 65, and lower pH was found where salinity ranged between 38.3 and 38.65. The higher pH was associated with saltier Levantine Intermediate Water, and it is possible that the lower pH was related to the remineralisation of organic matter. Furthermore, shoaling isopycnals closer to shore coinciding with low pH and c(O2), high salinity, alkalinity, dissolved inorganic carbon concentrations, and chlorophyll fluorescence waters may be indicative of upwelling.
Ho, Jeffrey D; Dawes, Donald M; Cole, Jon B; Hottinger, Julie C; Overton, Kenneth G; Miner, James R
2009-09-10
Safety concerns about TASER Conducted Electrical Weapon (CEW) use and media reports of deaths after exposure have been expressed. CEWs are sometimes used on exhausted subjects to end resistance. The alternative is often a continued struggle. It is unclear if CEW use is metabolically different than allowing a continued struggle. We sought to determine if CEW exposure on exhausted humans caused worsening acidosis when compared with continued exertion. This was a prospective study of human volunteers recruited during a CEW training course. Volunteers were from several different occupations and represented a wide range of ages and body mass index characteristics. Medical histories, baseline pH and lactate values were obtained. Patients were assigned to one of four groups: 2 control groups consisting of Exertion only and CEW Exposure only, and the 2 experimental groups that were Exertion plus CEW Exposure and Exertion plus additional Exertion. Blood sampling occurred after Exertion and after any CEW exposure. This was repeated every 2-min until 20 min after protocol completion. Descriptive statistics were used to compare the four groups. The experimental groups and the control groups were compared individually at each time point using Wilcoxon rank sum tests. Lactate and pH association was assessed using multiple linear regression. Forty subjects were enrolled. There were no median pH or lactate differences between CEW Exposure groups at baseline, or between Exertion protocol groups immediately after completion. The CEW Exposure only group had higher pH and lower lactate values at all time points after exposure than the Exertion only group. After completing the Exertion protocol, there was no difference in the pH or lactate values between the continued Exertion group and the CEW Exposure group at any time points. Subjects who had CEW Exposure only had higher pH and lower lactate values than subjects who completed the Exertion protocol only. CEW exposure does not appear to worsen acidosis in exhausted subjects any differently than briefly continued exertion.
NASA Astrophysics Data System (ADS)
Wojciech Szajdak, Lech; Szczepański, Marek
2010-05-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are four investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from this four chosen sites: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a 'mean sample', which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The elution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. All experiments were repeated at different pH 6.0, 6.5, 7.0, 8.0, 8.5 of 0.5 M ammonium acetate buffer solution. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter. The rates of organic matter elution for all samples of peats were significant different at four used wavelengths λ=272 nm, λ=320 nm, λ=465 nm, and λ=665 nm. It was observed that the rates increased between λ=272 nm and λ=320 nm and decreased from λ=465 nm to λ=665 nm. Although, the lowest values of the pseudo first-order rate constants measured at λ=665 nm for all samples of peats from four places ranged from 1.9524 10-4 s-1 to 2.7361 10-4 s-1. Therefore, the highest values of t0.5 ranged from 42.2 to 59.2 min for all samples from Zbęchy, Shelterbelt, Mostek and Hirudo. This work was supported by a grant No. N N305 3204 36 founded by Polish Ministry of Education.
Demers-Mathieu, Veronique; Qu, Yunyao; Underwood, Mark A; Dallas, David C
2018-06-01
This study investigated the effect of time post-ingestion on gastric digestion and gastric hormones after feeding preterm infants unfortified and fortified human milk. Human milk and infant gastric samples were collected from 14 preterm (23-32 weeks birth gestational age) mother-infant pairs within 7-98 days postnatal age. Gastric samples were collected one, two and three hours after beginning of feeding. Samples were analysed for pH, proteolysis, general protease activity and the concentrations of pepsin, gastrin and gastrin-releasing peptide (GRP). One-way ANOVA with repeated measures followed by Tukey's multiple comparisons test was used. Gastric pH was significantly decreased after each hour in the preterm infant stomach from one to three hours postprandial. Proteolysis increased significantly from human milk to gastric contents at one, two and three hours postprandial (by 62, 131% and 181%, p < 0.05). General protease activity increased significantly by 58% from human milk to the gastric contents at two hours postprandial. GRP was present in human milk, whereas gastrin was produced in the infant stomach. Although preterm infants may digest human milk proteins to a lesser extent than term infants, we demonstrated that the preterm infant stomach actively degrades milk proteins with increasing breakdown over digestion time. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Carro, Antonia María; González, Paula; Fajar, Noelia; Lorenzo, Rosa Antonia; Cela, Rafael
2009-06-01
The headspace solid-phase micro-extraction technique with on-fibre derivatisation followed by gas chromatography-tandem mass spectrometry has been evaluated for the analysis of 1,3-dichloro-2-propanol in water. An asymmetric factorial design has been performed to study the influence of five experimental factors: extraction time and temperature, derivatisation time and temperature and pH. The best extraction performance is achieved in the headspace mode, with 5 mL stirred water samples (pH 4) containing 1.3 g of NaCl, equilibrated for 30 min at 25 degrees C, using divinylbenzene-carboxen-polydimethylsiloxane as the fibre coating. On-fibre derivatisation has been used for the first time with 50 microL of bis(trimethylsilyl)trifluoroacetamide at 25 degrees C during 15 min, leading to effective yields. The proposed method provides high sensitivity, good linearity and repeatability (relative standard deviation of 5.1% for 10 ng mL(-1) and n = 5). The limits of detection and quantification were 0.4 and 1.4 ng mL(-1), respectively. Analytical recoveries obtained for different water samples were approx. 100%.
NASA Astrophysics Data System (ADS)
Mise, Shashikant; Patil, Trupti Nagendra
2015-09-01
The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.
Mazzer, Alice R.; Perraud, Xavier; Halley, Jennifer; O’Hara, John; Bracewell, Daniel G.
2015-01-01
Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. PMID:26346187
Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis
Sun, Alexander; Phelps, Tom; Yao, Chengyang; Venkatesh, A. G.; Conrad, Douglas; Hall, Drew A.
2017-01-01
Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs. PMID:28556804
Smartphone-Based pH Sensor for Home Monitoring of Pulmonary Exacerbations in Cystic Fibrosis.
Sun, Alexander; Phelps, Tom; Yao, Chengyang; Venkatesh, A G; Conrad, Douglas; Hall, Drew A
2017-05-30
Currently, Cystic Fibrosis (CF) patients lack the ability to track their lung health at home, relying instead on doctor checkups leading to delayed treatment and lung damage. By leveraging the ubiquity of the smartphone to lower costs and increase portability, a smartphone-based peripheral pH measurement device was designed to attach directly to the headphone port to harvest power and communicate with a smartphone application. This platform was tested using prepared pH buffers and sputum samples from CF patients. The system matches within ~0.03 pH of a benchtop pH meter while fully powering itself and communicating with a Samsung Galaxy S3 smartphone paired with either a glass or Iridium Oxide (IrOx) electrode. The IrOx electrodes were found to have 25% higher sensitivity than the glass probes at the expense of larger drift and matrix sensitivity that can be addressed with proper calibration. The smartphone-based platform has been demonstrated as a portable replacement for laboratory pH meters, and supports both highly robust glass probes and the sensitive and miniature IrOx electrodes with calibration. This tool can enable more frequent pH sputum tracking for CF patients to help detect the onset of pulmonary exacerbation to provide timely and appropriate treatment before serious damage occurs.
Williams, Emma L; Bagg, Eleanor A L; Mueller, Michael; Vandrovcova, Jana; Aitman, Timothy J; Rumsby, Gill
2015-01-01
Definitive diagnosis of primary hyperoxaluria (PH) currently utilizes sequential Sanger sequencing of the AGXT, GRPHR, and HOGA1 genes but efficacy is unproven. This analysis is time-consuming, relatively expensive, and delays in diagnosis and inappropriate treatment can occur if not pursued early in the diagnostic work-up. We reviewed testing outcomes of Sanger sequencing in 200 consecutive patient samples referred for analysis. In addition, the Illumina Truseq custom amplicon system was evaluated for paralleled next-generation sequencing (NGS) of AGXT,GRHPR, and HOGA1 in 90 known PH patients. AGXT sequencing was requested in all patients, permitting a diagnosis of PH1 in 50%. All remaining patients underwent targeted exon sequencing of GRHPR and HOGA1 with 8% diagnosed with PH2 and 8% with PH3. Complete sequencing of both GRHPR and HOGA1 was not requested in 25% of patients referred leaving their diagnosis in doubt. NGS analysis showed 98% agreement with Sanger sequencing and both approaches had 100% diagnostic specificity. Diagnostic sensitivity of Sanger sequencing was 98% and for NGS it was 97%. NGS has comparable diagnostic performance to Sanger sequencing for the diagnosis of PH and, if implemented, would screen for all forms of PH simultaneously ensuring prompt diagnosis at decreased cost. PMID:25629080
Nam, Seung-Woo; Choi, Dae-Jin; Kim, Seung-Kyu; Her, Namguk; Zoh, Kyung-Duk
2014-04-15
In this study, we investigated adsorption characteristics of nine selected micropollutants (six pharmaceuticals, two pesticides, and one endocrine disruptor) in water using an activated carbon. The effects of carbon dosage, contact time, pH, DOM (dissolved organic matter), and temperature on the adsorption removal of micropollutants were examined. Increasing carbon dosage and contact time enhanced the removal of micropollutants. Sorption coefficients of hydrophilic compounds (caffeine, acetaminophen, sulfamethoxazole, and sulfamethazine) fit a linear isotherm and hydrophobic compounds (naproxen, diclofenac, 2, 4-D, triclocarban, and atrazine) fit a Freundlich isotherm. The removal of hydrophobic pollutants and caffeine were independent of pH changes, but acetaminophen, sulfamethazine, and sulfamethoxazole were adsorbed by mainly electrostatic interaction with activated carbon and so were affected by pH. The decrease in adsorption removal in surface water samples was observed and this decrease was more significant for hydrophobic than hydrophilic compounds. The decline in the adsorption capacity in surface water samples is caused by the competitive inhibition of DOM with micropollutants onto activated carbon. Low temperature (5°C) also decreased the adsorption removal of micropollutants, and affected hydrophobic compounds more than hydrophilic compounds. The results obtained in this study can be applied to optimize the adsorption capacities of micropollutants using activated carbon in water treatment process. Copyright © 2014 Elsevier B.V. All rights reserved.
Korehi, Hananeh; Blöthe, Marco; Schippers, Axel
2014-11-01
In freshly deposited sulfidic mine tailings the pH is alkaline or circumneutral. Due to pyrite or pyrrhotite oxidation the pH is dropping over time to pH values <3 at which acidophilic iron- and sulfur-oxidizing prokaryotes prevail and accelerate the oxidation processes, well described for several mine waste sites. The microbial communities at the moderate acidic stage in mine tailings are only scarcely studied. Here we investigated the microbial diversity via 16S rRNA gene sequence analysis in eight samples (pH range 3.2-6.5) from three different sulfidic mine tailings dumps in Botswana, Germany and Sweden. In total 701 partial 16S rRNA gene sequences revealed a divergent microbial community between the three sites and at different tailings depths. Proteobacteria and Firmicutes were overall the most abundant phyla in the clone libraries. Acidobacteria, Actinobacteria, Bacteroidetes, and Nitrospira occurred less frequently. The found microbial communities were completely different to microbial communities in tailings at
Carrasco Pancorbo, Alegría; Cruces-Blanco, Carmen; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto
2004-11-03
A sensitive, rapid, efficient, and reliable method for the separation and determination of phenolic acids by capillary zone electrophoresis has been carried out. A detailed method optimization was carried out to separate 14 different compounds by studying parameters such as pH, type and concentration of buffer, applied voltage, and injection time. The separation was performed within 16 min, using a 25 mM sodium borate buffer (pH 9.6) at 25 kV with 8 s of hydrodynamic injection. With this method and using a liquid-liquid extraction system, with recovery values around 95%, it has been possible to detect small quantities of phenolic acids in olive oil samples. This is apparently the first paper showing the quantification of this specific family of phenolic compounds in virgin olive oil samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmieri, M.D.; Fritz, J.S.
Metal ions are determined by adding N-methylfurohydroxamic acid to an aqueous sample and then separating the metal chelates by direct injection onto a liquid chromatographic column. Separations on a C/sub 8/ silica column and a polystyrene-divinylbenzene column are compared, with better separations seen on the polymeric column. The complexes formed at low pH values are cationic and are separated by an ion pairing mechanism. Retention times and selectivity of the metal complexes can be varied by changing the pH. Several metal ions can be separated and quantified; separation conditions, linear calibration curve ranges, and detection limits are presented for Zr(IV),more » Hf(IV), Fe(III), Nb(V), Al(III), and Sb(III). Interferences due to the presence of other ions in solution are investigated. Finally, an antiperspirant sample is analyzed for zirconium by high-performance liquid chromatography.« less
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Not All Prehospital Time is Equal: Influence of Scene Time on Mortality
Brown, Joshua B.; Rosengart, Matthew R.; Forsythe, Raquel M.; Reynolds, Benjamin R.; Gestring, Mark L.; Hallinan, William M.; Peitzman, Andrew B.; Billiar, Timothy R.; Sperry, Jason L.
2016-01-01
Background Trauma is time-sensitive and minimizing prehospital (PH) time is appealing. However, most studies have not linked increasing PH time with worse outcomes, as raw PH times are highly variable. It is unclear whether specific PH time patterns affect outcomes. Our objective was to evaluate the association of PH time interval distribution with mortality. Methods Patients transported by EMS in the Pennsylvania trauma registry 2000-2013 with total prehospital time (TPT)≥20min were included. TPT was divided into three PH time intervals: response, scene, and transport time. The number of minutes in each PH time interval was divided by TPT to determine the relative proportion each interval contributed to TPT. A prolonged interval was defined as any one PH interval contributing ≥50% of TPT. Patients were classified by prolonged PH interval or no prolonged PH interval (all intervals<50% of TPT). Patients were matched for TPT and conditional logistic regression determined the association of mortality with PH time pattern, controlling for confounders. PH interventions were explored as potential mediators, and prehospital triage criteria used identify patients with time-sensitive injuries. Results There were 164,471 patients included. Patients with prolonged scene time had increased odds of mortality (OR 1.21; 95%CI 1.02–1.44, p=0.03). Prolonged response, transport, and no prolonged interval were not associated with mortality. When adjusting for mediators including extrication and PH intubation, prolonged scene time was no longer associated with mortality (OR 1.06; 0.90–1.25, p=0.50). Together these factors mediated 61% of the effect between prolonged scene time and mortality. Mortality remained associated with prolonged scene time in patients with hypotension, penetrating injury, and flail chest. Conclusions Prolonged scene time is associated with increased mortality. PH interventions partially mediate this association. Further study should evaluate whether these interventions drive increased mortality because they prolong scene time or by another mechanism, as reducing scene time may be a target for intervention. Level of Evidence IV, prognostic study PMID:26886000
Vecoli, C; Prevost, F E; Ververis, J J; Medeiros, A A; O'Leary, G P
1983-08-01
Plasmid-mediated beta-lactamases from strains of Escherichia coli and Pseudomonas aeruginosa were separated by isoelectric focusing on a 0.8-mm thin-layer agarose gel with a pH gradient of 3.5 to 9.5. Their banding patterns and isoelectric points were compared with those obtained with a 2.0-mm polyacrylamide gel as the support medium. The agarose method produced banding patterns and isoelectric points which corresponded to the polyacrylamide gel data for most samples. Differences were observed for HMS-1 and PSE-1 beta-lactamases. The HMS-1 sample produced two highly resolvable enzyme bands in agarose gels rather than the single faint enzyme band observed on polyacrylamide gels. The PSE-1 sample showed an isoelectric point shift of 0.2 pH unit between polyacrylamide and agarose gel (pI 5.7 and 5.5, respectively). The short focusing time, lack of toxic hazard, and ease of formulation make agarose a practical medium for the characterization of beta-lactamases.
Vecoli, C; Prevost, F E; Ververis, J J; Medeiros, A A; O'Leary, G P
1983-01-01
Plasmid-mediated beta-lactamases from strains of Escherichia coli and Pseudomonas aeruginosa were separated by isoelectric focusing on a 0.8-mm thin-layer agarose gel with a pH gradient of 3.5 to 9.5. Their banding patterns and isoelectric points were compared with those obtained with a 2.0-mm polyacrylamide gel as the support medium. The agarose method produced banding patterns and isoelectric points which corresponded to the polyacrylamide gel data for most samples. Differences were observed for HMS-1 and PSE-1 beta-lactamases. The HMS-1 sample produced two highly resolvable enzyme bands in agarose gels rather than the single faint enzyme band observed on polyacrylamide gels. The PSE-1 sample showed an isoelectric point shift of 0.2 pH unit between polyacrylamide and agarose gel (pI 5.7 and 5.5, respectively). The short focusing time, lack of toxic hazard, and ease of formulation make agarose a practical medium for the characterization of beta-lactamases. Images PMID:6605714
Depth matters: Soil pH and dilution effects in the northern Great Plains
USDA-ARS?s Scientific Manuscript database
In the northern Great Plans (NGP), surface sampling depths of 0-15.2 cm or 0-20.3 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near-surface (e.g., <10 cm). Thus, sampling deeper can potentially dilute (increase) pH measurements and the...
Hageman, Philip L.; Seal, Robert R.; Diehl, Sharon F.; Piatak, Nadine M.; Lowers, Heather
2015-01-01
A comparison study of selected static leaching and acid–base accounting (ABA) methods using a mineralogically diverse set of 12 modern-style, metal mine waste samples was undertaken to understand the relative performance of the various tests. To complement this study, in-depth mineralogical studies were conducted in order to elucidate the relationships between sample mineralogy, weathering features, and leachate and ABA characteristics. In part one of the study, splits of the samples were leached using six commonly used leaching tests including paste pH, the U.S. Geological Survey (USGS) Field Leach Test (FLT) (both 5-min and 18-h agitation), the U.S. Environmental Protection Agency (USEPA) Method 1312 SPLP (both leachate pH 4.2 and leachate pH 5.0), and the USEPA Method 1311 TCLP (leachate pH 4.9). Leachate geochemical trends were compared in order to assess differences, if any, produced by the various leaching procedures. Results showed that the FLT (5-min agitation) was just as effective as the 18-h leaching tests in revealing the leachate geochemical characteristics of the samples. Leaching results also showed that the TCLP leaching test produces inconsistent results when compared to results produced from the other leaching tests. In part two of the study, the ABA was determined on splits of the samples using both well-established traditional static testing methods and a relatively quick, simplified net acid–base accounting (NABA) procedure. Results showed that the traditional methods, while time consuming, provide the most in-depth data on both the acid generating, and acid neutralizing tendencies of the samples. However, the simplified NABA method provided a relatively fast, effective estimation of the net acid–base account of the samples. Overall, this study showed that while most of the well-established methods are useful and effective, the use of a simplified leaching test and the NABA acid–base accounting method provide investigators fast, quantitative tools that can be used to provide rapid, reliable information about the leachability of metals and other constituents of concern, and the acid-generating potential of metal mining waste.
Soil pH mediates the balance between stochastic and deterministic assembly of bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Binu M.; Stegen, James C.; Kim, Mincheol
Little is known about the factors affecting the relative influence of stochastic and deterministic processes that governs the assembly of microbial communities in successional soils. Here, we conducted a meta-analysis of bacterial communities using six different successional soils data sets, scattered across different regions, with different pH conditions in early and late successional soils. We found that soil pH was the best predictor of bacterial community assembly and the relative importance of stochastic and deterministic processes along successional soils. Extreme acidic or alkaline pH conditions lead to assembly of phylogenetically more clustered bacterial communities through deterministic processes, whereas pH conditionsmore » close to neutral lead to phylogenetically less clustered bacterial communities with more stochasticity. We suggest that the influence of pH, rather than successional age, is the main driving force in producing trends in phylogenetic assembly of bacteria, and that pH also influences the relative balance of stochastic and deterministic processes along successional soils. Given that pH had a much stronger association with community assembly than did successional age, we evaluated whether the inferred influence of pH was maintained when studying globally-distributed samples collected without regard for successional age. This dataset confirmed the strong influence of pH, suggesting that the influence of soil pH on community assembly processes occurs globally. Extreme pH conditions likely exert more stringent limits on survival and fitness, imposing strong selective pressures through ecological and evolutionary time. Taken together, these findings suggest that the degree to which stochastic vs. deterministic processes shape soil bacterial community assembly is a consequence of soil pH rather than successional age.« less
Makrlíková, Anna; Opekar, František; Tůma, Petr
2015-08-01
A computer-controlled hydrodynamic sample introduction method has been proposed for short-capillary electrophoresis. In the method, the BGE flushes sample from the loop of a six-way sampling valve and is carried to the injection end of the capillary. A short pressure impulse is generated in the electrolyte stream at the time when the sample zone is at the capillary, leading to injection of the sample into the capillary. Then the electrolyte flow is stopped and the separation voltage is turned on. This way of sample introduction does not involve movement of the capillary and both of its ends remain constantly in the solution during both sample injection and separation. The amount of sample introduced to the capillary is controlled by the duration of the pressure pulse. The new sample introduction method was tested in the determination of ammonia, creatinine, uric acid, and hippuric acid in human urine. The determination was performed in a capillary with an overall length of 10.5 cm, in two BGEs with compositions 50 mM MES + 5 mM NaOH (pH 5.1) and 1 M acetic acid + 1.5 mM crown ether 18-crown-6 (pH 2.4). A dual contactless conductivity/UV spectrometric detector was used for the detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, A. Z.; Sonnichsen, F. N.; Chu, S. N.; Bradley, A. M.; Hoering, K.
2016-02-01
The marine CO2 (inorganic carbon) system is characterized by four primary parameters - total dissolved inorganic carbon (DIC), total alkalinity (TA), partial pressure of CO2 (pCO2), and pH. These parameters are central to the study of the marine carbon cycle and ocean acidification. Simultaneous measurements of two of the four CO2 parameters are required to fully resolve the seawater CO2 system, and DIC is one of the preferred parameters. A self-calibrating, in-situ sensor, Channelized Optical System (CHANOS), has recently been developed to provide simultaneous measurements of both DIC and pH, resolving carbonate chemistry with a single system. CHANOS is among the first to achieve simultaneous, in-situ measurements of a desired pair of CO2 parameters. DIC and pH channels both use flow-through, spectrophotometric methods to detect relative absorbances of the acid and base forms of a pH-sensitive indicator. The precision of CHANOS in laboratory and in-situ tests are ±0.002 and ±3.0 µmol kg-1 for pH and DIC, respectively. In-situ comparison with bottle sampling and analyses indicate that the accuracies for pH and DIC are ±0.004 and ±5.0 µmol kg-1, respectively. It has been demonstrated that CHANOS can make in-situ, climatology-quality measurements to resolve the CO2 system in dynamic aquatic environments. To further improve response time of the sensor, especially for DIC measurements, a new generation of CHANOS-DIC is under development. The new system adapts the recently developed spectrophotometric DIC method to achieve flow-through CO2 equilibration between an acidified sample and an indicator solution with a response time as fast as 22s. Continuous measurements are also achievable. Because of the fast response of CHANOS measurements, it is versatile and suitable for deployments on both fixed (e.g. buoys) and mobile (e.g., AUV, ROV, and profilers) platforms.
Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.
Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma
2015-01-01
A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.
Martin, Ştefan Adrian; Tomescu, Valeriu; Voidăzan, Septimiu
2016-01-01
pH is the direct indicator of the body reaction following the activities performed. Establishing precise correlations between pH and blood biochemical parameters might support the balancing of values during periods of marked physical activity. We conducted a case study in a group of elite rowers. Twelve athletes were included in the study. Monitoring was carried out by collecting biological samples several times a day: in the morning, 80 minutes pre-workout, 12 hours after the last physical effort performed, at two different times, 10 days apart. Determinations were aimed at adapting the reported biochemical parameters depending on the effort performed. The following parameters were monitored: pH, HCO3, pCO2, pO2, BE, SBE, SBC, Ca++, Mg++, LDH, GPT, T-Pro, and Alb. The mean value of pH found in athletes was 7.41±0.024. The value obtained was significantly correlated to biochemical parameters such as BE (2.32±1.79), SBC (1.67±1.45), SBE (2.70±1.75). However, bicarbonate (HCO3) was statistically significantly related with SBE, SBC, SBE, and pO2, but did not present a strong association with the pH value (p=0.094). However, values such as Alb, Ca++, LDH, BE, SBC are related to pH value as a result of variations in the data submitted. The processed data evidence the fact that blood pH, in this case, is significantly influenced by a number of indices that correlate energy system activity, individual adaptation to effort, and the recovery process. The parameters under investigation (SBE, SBC, SBE, CPK, LDH) are associated with pH changes that could confirm the recovery efficiency of the athlete, along with a possible metabolic acidosis/alkalosis.
Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J
2016-01-05
A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.
Use of a control test to aid pH assessment of chemical eye injuries.
Connor, A J; Severn, P
2009-11-01
Chemical burns of the eye represent 7.0%-9.9% of all ocular trauma. Initial management of ocular chemical injuries is irrigation of the eye and conjunctival sac until neutralisation of the tear surface pH is achieved.We present a case of alkali injury in which the raised tear film pH seemed to be unresponsive to irrigation treatment. Suspicion was raised about the accuracy of the litmus paper used to test the tear film pH. The error was confirmed by use of a control litmus pH test of the examining doctor's eyes. Errors in litmus paper pH measurement can occur because of difficulty in matching the paper with scale colours and drying of the paper, which produces a darker colour. A small tear film sample can also create difficulty in colour matching, whereas too large a sample can wash away pigment from the litmus paper. Samples measured too quickly after irrigation can result in a falsely neutral pH measurement. Use of faulty or inappropriate materials can also result in errors. We advocate the use of control litmus pH test in all patients. This would highlight errors in pH measurements and aid in the detection of the end point of irrigation.
Good, A.B.; Schroder, L.J.
1984-01-01
Simulated precipitation samples containing 16 metal ions were prepared at 4 pH values. Absorptive characteristics of polypropylene, polyethylene, and polyester/polyolefin sacks were evaluated at pH 3.5, 4.0, 4.5, and 5.0. Simulated precipitation was in contact with the sacks for 17 days, and subsamples were removed for chemical analysis at 3, 7, 10, 14, and 17 days after initial contact. All three types of plastic sacks absorbed Fe throughout the entire pH range. Polypropylene and polyethylene absorbed Pb throughout the entire pH range; polyester/polyolefin sacks absorbed Pb at pH 4.0 or greater. All plastic sacks also absorbed Cu, Mo, and V at pH 4.5 and 5.0. Leaching the plastic sacks with 0.7 percent HNO3 did not result in 100 percent of Cu, Fe, Pb, and V. These sacks would be suitable collection vessels for Ba, Be, Ca, Cd, Co, Li, Mg, Mn, Na Sr and Zn in precipitation through the pH range of 3.5 to 5.0.
Dong, Haoran; Guan, Xiaohong; Lo, Irene M C
2012-09-01
Nano zero-valent iron (NZVI) offers a promising approach for arsenic remediation, but the spent NZVI with elevated arsenic content could arouse safety concerns. This study investigated the fate of As(V)-treated NZVI (As-NZVI), by examining the desorption potential of As under varying conditions. The desorption kinetics of As from As-NZVI as induced by phosphate was well described by a biphasic rate model. The effects of As(V)/NZVI mass ratio, pH, and aging time on arsenic desorption from As-NZVI by phosphate were investigated. Less arsenic desorption was observed at lower pH or higher As(V)/NZVI mass ratio, where stronger complexes (bidentate) formed between As(V) and NZVI corrosion products as indicated by FTIR analysis. Compared with the fresh As-NZVI, the amount of phosphate-extractable As significantly decreased in As-NZVI aged for 30 or 60 days. The results of the sequential extraction experiments demonstrated that a larger fraction of As was sorbed in the crystalline phases after aging, making it less susceptible to phosphate displacement. However, at pH 9, a slightly higher proportion of phosphate-extractable As was observed in the 60-day sample than in the 30-day sample. XPS results revealed the transformation of As(V) to more easily desorbed As(III) during aging and a higher As(III)/As(V) ratio in the 60-day sample at pH 9, which might have resulted in the higher desorption. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sorption of albendazole in sediments and soils: Isotherms and kinetics.
Mutavdžić Pavlović, Dragana; Glavač, Antonija; Gluhak, Mihaela; Runje, Mislav
2018-02-01
Albendazole is a broad-spectrum anthelmintic drug effective against gastrointestinal parasites in humans and animals. Despite the fact that it has been detected in environment (water, sediment and soil), there is no information on its fate in the environment. So, in order to understand the sorption process of albendazole in environment, the sorption mechanism and kinetic properties were investigated through sorption equilibrium and sorption rate experiments. For that purpose, batch sorption of albendazole on five sediment samples and five soil samples from Croatia's region with different physico-chemical properties was investigated. Except physico-chemical properties of used environmental solid samples, the effects of various parameters such as contact time, initial concentration, ionic strength and pH on the albendazole sorption were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Langmuir sorption models were applied to describe the equilibrium isotherms. The estimated K d values varied from 29.438 to 104.43 mLg -1 at 0.01 M CaCl 2 and for natural pH value of albendazole solution (pH 6.6). Experimental data showed that the best agreement was obtained with the linear model (R 2 > 0.99), while the rate of albendazole sorption is the best described with the kinetic model of pseudo-second-order. Obtained results point to a medium or even strong sorption of albendazole for soil or sediment particles, which is particularly dependent on the proportion of organic matter, pH, copper and zinc in them. Copyright © 2017 Elsevier Ltd. All rights reserved.
Korosue, Kenji; Murase, Harutaka; Sato, Fumio; Ishimaru, Mutsuki; Kotoyori, Yasumitsu; Tsujimura, Koji; Nambo, Yasuo
2013-01-15
To test the usefulness of measuring pH and refractometry index, compared with measuring calcium carbonate concentration, of preparturient mammary gland secretions for predicting parturition in mares. Evaluation study. 27 pregnant Thoroughbred mares. Preparturient mammary gland secretion samples were obtained once or twice daily 10 days prior to foaling until parturition. The samples were analyzed for calcium carbonate concentration with a water hardness kit (151 samples), pH with pH test paper (222 samples), and refractometry index with a Brix refractometer (214 samples). The sensitivity, specificity, and positive and negative predictive values for each test were calculated for evaluation of predicting parturition. The PPV within 72 hours and the NPV within 24 hours for calcium carbonate concentration determination (standard value set to 400 μg/g) were 93.8% and 98.3%, respectively. The PPV within 72 hours and the NPV within 24 hours for the pH test (standard value set at 6.4) were 97.9% and 99.4%, respectively. The PPV within 72 hours and the NPV within 24 hours for the Brix test (standard value set to 20%) were 73.2% and 96.5%, respectively. Results suggested that the pH test with the standard value set at a pH of 6.4 would be useful in the management of preparturient mares by predicting when mares are not ready to foal. This was accomplished with equal effectiveness of measuring calcium carbonate concentration with a water hardness kit.
Laurent, Jeff; Joiner, Thomas E; Catanzaro, Salvatore J
2011-12-01
The Positive and Negative Affect Scale for Children (PANAS-C) and the Physiological Hyperarousal Scale for Children (PH-C) seem ideal measures for school mental health screenings, because they are theory based, psychometrically sound, and brief. This study provides descriptive information and preliminary cutoff scores in an effort to increase the practical utility of the measures. Scores on the PANAS-C Positive Affect (PA) and Negative Affect (NA) scales and the PH-C were compared for a general sample of schoolchildren (n = 226), a group of students referred for special education services (n = 83), and youths on an inpatient psychiatric unit (n = 37). Expected patterns of scores emerged for the general school and referred school samples, although only scores on the PH-C were statistically significantly different. Differences in scores between the general school and inpatient samples were significant for all 3 scales. Differences in scores between the referred school and inpatient samples were significant for the NA scale and the PH-C but not for the PA scale. In addition, we used traditional self-report measures to form groups of normal, anxious, depressed, and mixed anxious and depressed youths. Again, predicted general patterns of PA, NA and PH scores were supported, although statistical differences were not always evident. In particular, scores on the PH-C for the anxious and depressed groups were inconsistent with predictions. Possible reasons related to sample and scale issues are discussed. Finally, preliminary cutoff scores were proposed for the PANAS-C scales and the PH-C.
All-Atom Continuous Constant pH Molecular Dynamics With Particle Mesh Ewald and Titratable Water.
Huang, Yandong; Chen, Wei; Wallace, Jason A; Shen, Jana
2016-11-08
Development of a pH stat to properly control solution pH in biomolecular simulations has been a long-standing goal in the community. Toward this goal recent years have witnessed the emergence of the so-called constant pH molecular dynamics methods. However, the accuracy and generality of these methods have been hampered by the use of implicit-solvent models or truncation-based electrostatic schemes. Here we report the implementation of the particle mesh Ewald (PME) scheme into the all-atom continuous constant pH molecular dynamics (CpHMD) method, enabling CpHMD to be performed with a standard MD engine at a fractional added computational cost. We demonstrate the performance using pH replica-exchange CpHMD simulations with titratable water for a stringent test set of proteins, HP36, BBL, HEWL, and SNase. With the sampling time of 10 ns per replica, most pK a 's are converged, yielding the average absolute and root-mean-square deviations of 0.61 and 0.77, respectively, from experiment. Linear regression of the calculated vs experimental pK a shifts gives a correlation coefficient of 0.79, a slope of 1, and an intercept near 0. Analysis reveals inadequate sampling of structure relaxation accompanying a protonation-state switch as a major source of the remaining errors, which are reduced as simulation prolongs. These data suggest PME-based CpHMD can be used as a general tool for pH-controlled simulations of macromolecular systems in various environments, enabling atomic insights into pH-dependent phenomena involving not only soluble proteins but also transmembrane proteins, nucleic acids, surfactants, and polysaccharides.
Nojavan, Saeed; Bidarmanesh, Tina; Mohammadi, Ali; Yaripour, Saeid
2016-03-01
In the present study, for the first time electromembrane extraction followed by high performance liquid chromatography coupled with ultraviolet detection was optimized and validated for quantification of four gonadotropin-releasing hormone agonist anticancer peptides (alarelin, leuprolide, buserelin and triptorelin) in biological and aqueous samples. The parameters influencing electromigration were investigated and optimized. The membrane consists 95% of 1-octanol and 5% di-(2-ethylhexyl)-phosphate immobilized in the pores of a hollow fiber. A 20 V electrical field was applied to make the analytes migrate from sample solution with pH 7.0, through the supported liquid membrane into an acidic acceptor solution with pH 1.0 which was located inside the lumen of hollow fiber. Extraction recoveries in the range of 49 and 71% within 15 min extraction time were obtained in different biological matrices which resulted in preconcentration factors in the range of 82-118 and satisfactory repeatability (7.1 < RSD% < 19.8). The method offers good linearity (2.0-1000 ng/mL) with estimation of regression coefficient higher than 0.998. The procedure allows very low detection and quantitation limits of 0.2 and 0.6 ng/mL, respectively. Finally, it was applied to determination and quantification of peptides in human plasma and wastewater samples and satisfactory results were yielded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of soil organic matter on antimony bioavailability after the remediation process.
Nakamaru, Yasuo Mitsui; Martín Peinado, Francisco José
2017-09-01
We evaluated the long-term (18 year) and short-term (4 weeks) changes of Sb in contaminated soil with SOM increase under remediation process. In the Aznalcóllar mine accident (1998) contaminated area, the remediation measurement implemented the Guadiamar Green Corridor, where residual pollution is still detected. Soils of the re-vegetated area (O2) with high pH and high SOM content, moderately re-vegetated area (O1) and unvegetated area (C) were sampled. Soil pH, CEC, SOM amount and soil Sb forms were evaluated. Soil Sb was measured as total, soluble, exchangeable, EDTA extractable, acid oxalate extractable, and pyro-phosphate extractable fractions. Further, the short-term effect of artificial organic matter addition was also evaluated with incubation study by adding compost to the sampled soil from C, O1 and O2 areas. After 4 weeks of incubation, soil chemical properties and Sb forms were evaluated. In re-vegetated area (O2), soil total Sb was two times lower than in unvegetated area (C); however, soluble, exchangeable, and EDTA extractable Sb were 2-8 times higher. The mobile/bioavailable Sb increase was also observed after 4 weeks of incubation with the addition of compost. Soluble, exchangeable, and EDTA extractable Sb was increased 2-4 times by compost addition. By the linear regression analysis, the significantly related factors for soluble, exchangeable, and EDTA extractable Sb values were pH, CEC, and SOM, respectively. Soluble Sb increase was mainly related to pH rise. Exchangeable Sb should be bound by SOM-metal complex and increased with CEC. EDTA extractable fraction should be increased with increase of SOM as SOM-Fe associated Sb complex. From these results, it was shown that increase of SOM under natural conditions or application of organic amendment under remediation process should increase availability of Sb to plants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cui, Meiyu; Qiu, Jinxue; Li, Zhenghua; He, Miao; Jin, Mingshi; Kim, Jiman; Quinto, Maurizio; Li, Donghao
2015-01-01
In this study, a stainless steel wire/ionic liquid-solid phase microextraction technique was developed for the direct extraction of APs from water samples. Some parameters were optimised, such as selection of the substrate and ILs, extraction time, extraction temperature, stirring rate and sample pH, etc. The experimental data demonstrated that the etched stainless steel wire was a suitable substrate for IL-coated SPME. The coating was prepared by directly depositing the ILs onto the surface of the etched stainless steel wire, which exhibited a porous structure and a high surface area. The [C8MIM][PF6] IL exhibited maximum efficiency with an extraction time of 30 min, and the aqueous sample was maintained at 40 °C and adjusted to pH 2 under stirring conditions. The enrichment factor of the IL coating for the four APs ranged from 1382 to 4779, the detection limits (LOD, S/N=3) of the four APs ranged from 0.01 to 0.04 ng mL(-1) and the RSD values for purified water spiked with APs ranged from 4.0 to 11.8% (n=3). The calibration graphs were linear in the concentration range from 0.5 to 200 ng mL(-1) (R(2)>0.9569). The optimised method was successfully applied for the analysis of real water samples, and the method was suitable for the extraction of APs from water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
González-Sálamo, Javier; González-Curbelo, Miguel Ángel; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier; Rodríguez-Delgado, Miguel Ángel
2018-06-01
A new hollow fiber liquid-phase microextraction (HF-LPME) method has been developed for the extraction of a group of phthalic acid esters (PAEs) of interest from different water samples prior to gas chromatography tandem mass spectrometry analysis. HF-LPME was carried out using 1-octanol as extraction solvent followed by a back extraction step with cyclohexane. The different parameters that affect HF-LPME such as sample pH, ionic strength, extraction time, stirring rate, extraction temperature and back extraction conditions were investigated. The optimized conditions involved the extraction of 10 mL of sample without pH adjustment or addition of salt during 75 min under a stirring of 850 rpm at 60 °C and subsequent desorption with 200 μL of cyclohexane for 10 min in an ultrasonic bath. The method was validated in terms of calibration and recovery studies using dibutyl phthalate-d 4 as internal standard. The developed procedure gave satisfactory recovery (74-120%) and relative standard deviation values (<20%) for the studied PAEs in mineral, tap, pond and waste water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Manenti, Diego R; Módenes, Aparecido N; Soares, Petrick A; Boaventura, Rui A R; Palácio, Soraya M; Borba, Fernando H; Espinoza-Quiñones, Fernando R; Bergamasco, Rosângela; Vilar, Vítor J P
2015-01-01
In this work, the application of an iron electrode-based electrocoagulation (EC) process on the treatment of a real textile wastewater (RTW) was investigated. In order to perform an efficient integration of the EC process with a biological oxidation one, an enhancement in the biodegradability and low toxicity of final compounds was sought. Optimal values of EC reactor operation parameters (pH, current density and electrolysis time) were achieved by applying a full factorial 3(3) experimental design. Biodegradability and toxicity assays were performed on treated RTW samples obtained at the optimal values of: pH of the solution (7.0), current density (142.9 A m(-2)) and different electrolysis times. As response variables for the biodegradability and toxicity assessment, the Zahn-Wellens test (Dt), the ratio values of dissolved organic carbon (DOC) relative to low-molecular-weight carboxylates anions (LMCA) and lethal concentration 50 (LC50) were used. According to the Dt, the DOC/LMCA ratio and LC50, an electrolysis time of 15 min along with the optimal values of pH and current density were suggested as suitable for a next stage of treatment based on a biological oxidation process.
Rapid development of xylanase assay conditions using Taguchi methodology.
Prasad Uday, Uma Shankar; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath
2016-11-01
The present investigation is mainly concerned with the rapid development of extracellular xylanase assay conditions by using Taguchi methodology. The extracellular xylanase was produced from Aspergillus niger (KP874102.1), a new strain isolated from a soil sample of the Baramura forest, Tripura West, India. Four physical parameters including temperature, pH, buffer concentration and incubation time were considered as key factors for xylanase activity and were optimized using Taguchi robust design methodology for enhanced xylanase activity. The main effect, interaction effects and optimal levels of the process factors were determined using signal-to-noise (S/N) ratio. The Taguchi method recommends the use of S/N ratio to measure quality characteristics. Based on analysis of the S/N ratio, optimal levels of the process factors were determined. Analysis of variance (ANOVA) was performed to evaluate statistically significant process factors. ANOVA results showed that temperature contributed the maximum impact (62.58%) on xylanase activity, followed by pH (22.69%), buffer concentration (9.55%) and incubation time (5.16%). Predicted results showed that enhanced xylanase activity (81.47%) can be achieved with pH 2, temperature 50°C, buffer concentration 50 Mm and incubation time 10 min.
Wan Ibrahim, Wan Nazihah; Sanagi, Mohd Marsin; Mohamad Hanapi, Nor Suhaila; Kamaruzaman, Sazlinda; Yahaya, Noorfatimah; Wan Ibrahim, Wan Aini
2018-06-07
We describe the preparation, characterization and application of a composite film adsorbent based on blended agarose-chitosan-multi-walled carbon nanotubes for the preconcentration of selected non-steroidal anti-inflammatory drugs in aqueous samples before determination by high-performance liquid chromatography with UV detection. The composite film showed high surface area (4.0258 m 2 /g) and strong hydrogen bonding between multi-walled carbon nanotubes and agarose/chitosan matrix, which prevent adsorbent deactivation and ensure long-term stability. Several parameters, namely, sample pH, addition of salt, extraction time, desorption solvent and concentration of multi-walled carbon nanotubes in the composite film were optimized using a one-factor-at-time approach. The optimum extraction conditions obtained were as follows: isopropanol as conditioning solvent, 10 mL of sample solution at pH 2, extraction time of 30 min, stirring speed of 600 rpm, 100 μL of isopropanol as desorption solvent, desorption time of 5 min under ultrasonication, and 0.4% w/v of composite film. Under optimized conditions, the calibration curved showed good linearity in the range of 1-500 ng/mL (r 2 = 0.997-0.999), good limits of detection (0.89-8.05 ng/mL) were obtained with good relative standard deviations of < 4.59% (n = 3) for the determination of naproxen, diclofenac sodium salt and mefenamic acid drugs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Using membrane composition to fine-tune the pKa of an optical liposome pH sensor.
Clear, Kasey J; Virga, Katelyn; Gray, Lawrence; Smith, Bradley D
2016-04-14
Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe p K a is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe p K a in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe p K a values by < 1 unit. The results show that rational modification of the membrane composition is a general non-covalent way to fine-tune the p K a of an optical liposome sensor for optimal pH sensing performance.
How-to-Do-It: Why Don't Cells Grow Larger? A Lab Exercise.
ERIC Educational Resources Information Center
Stanek, Joseph A., Jr.
1983-01-01
Describes a laboratory investigation designed to analyze surface area to volume ratio related to cell division. Uses agar-gel "cells" with pH indicator added which are then "fed" acid for a measured time. Discusses procedures and materials used, providing a sample data table and important guiding questions. (JM)
Hart, Robert J.; Taylor, Howard E.; Anderson, G.M.
2012-01-01
Twenty sentinel sampling sites were established and sampled during 2004–06 at Lake Powell, Arizona and Utah, by the U.S. Geological Survey and the National Park Service—Glen Canyon National Recreation Area. The sentinel sampling sites provide sampling locations on Lake Powell, the Nation’s second largest reservoir that can be visited and sampled repeatedly over time to monitor changes in water and sediment quality and also biota. The sites were established in response to an Environmental Impact Statement that addressed the use of personal watercraft on Lake Powell. The use of personal watercraft can potentially introduce hydrocarbons and other contaminants and are of concern to the health of visitors and aquatic habitats of these environments. Data from this initial sampling period (2004–06) include (1) discrete measurements of water temperature, specific conductance, pH, and water clarity; (2) major ions, nutrients, and organic carbon; (3) trace elements including rare earths; (4) organic compounds including oil and grease, total petroleum hydrocarbons, and volatile organic compounds; (5) polycyclic aromatic hydrocarbons in lakebed sediments; and (6) continuous depth profile measurements of water temperature, specific conductance, pH, dissolved oxygen, and turbidity. Also, the National Park Service-Glen Canyon National Recreation Area collected bacteria samples during this initial sampling period.
Chemical oxidation of anthracite with hydrogen peroxide via the Fenton reaction
Heard, I.; Senftle, F.E.
1984-01-01
Solutions of 30% H2O2 ranging from pH = 0 to pH = 11.5 have been used to oxidize anthracite at room temperature. The inorganic impurities, primarily pyrite, catalysed the oxidation and reduction of H2O2 (the Fenton reaction) to form the hydroxyl radical; the oxidation of the organic matter was minimal and was observed only in strong acidic solutions (pH < 1.5). After acid demineralization, samples of the same anthracite underwent a significant enhancement of oxidation in both acid and alkaline solutions (pH = 0.4-11.5). As all the iron had been removed from the surface and the reactions were completed in a much shorter time, the oxidation mechanism must have been of a different nature than that for the untreated anthracite. A qualitative model based on the catalytic decomposition of H2O2 by activated carbon sites in the coal surface is used to explain the oxidation of the demineralized anthracite. ?? 1984.
Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam
2013-01-01
8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t 1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417
[Effect of UV Light Radiation on the Coagulation of Chlorella and Its Mechanism].
Wang, Wen-dong; Zhang, Ke; Xu, Hong-bin; Liu, Guo-qi
2016-01-15
Considering algae were difficult to be effectively removed in conventional water treatment process, UV radiation was used to enhance the coagulation of algae in this study. The results showed that with the increase of radiation time, the removal rates of both algae and turbidity experienced a decrease after an increase, and reached their maximum values at 50 min. When the dosage of PAC was 5 mg x L(-1), the removal rates of algae and turbidity of the radiated sample were 20.1% and 18% higher than the blank sample, respectively. When pH ranged from 6 to 9, the coagulation efficiency varied little. At pH 8 and with a radiation time of 50 min, the removal rates of algae and turbidity reached 93.5% and 90.6%, respectively. Meanwhile, the Zeta potential reached the maximum, and the algae generated extracellular organic matter, which favored the subsequent coagulation. After radiated for 60 min, the algal cells was destroyed, leading to a release of intracellular organic matter into the solution. Accordingly, the Zeta potential decreased, which had a negative effect on the subsequent coagulation process.
Regression equations for disinfection by-products for the Mississippi, Ohio and Missouri rivers
Rathbun, R.E.
1996-01-01
Trihalomethane and nonpurgeable total organic-halide formation potentials were determined for the chlorination of water samples from the Mississippi, Ohio and Missouri Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at twelve locations on the Mississippi from New Orleans to Minneapolis, and on the Ohio and Missouri 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH, initial free-chlorine concentration, and reaction time. Multiple linear regression analysis of the data indicated that pH, reaction time, and the dissolved organic carbon concentration and/or the ultraviolet absorbance of the water were the most significant variables. The initial free-chlorine concentration had less significance and bromide concentration had little or no significance. Analysis of combinations of the dissolved organic carbon concentration and the ultraviolet absorbance indicated that use of the ultraviolet absorbance alone provided the best prediction of the experimental data. Regression coefficients for the variables were generally comparable to coefficients previously presented in the literature for waters from other parts of the United States.
Evaluation of soil quality indicators in paddy soils under different crop rotation systems
NASA Astrophysics Data System (ADS)
Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh
2013-04-01
Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy
Cui, Xiangqian; Zhang, Panjie; Yang, Xiaoling; Yang, Miyi; Zhou, Wenfeng; Zhang, Sanbin; Gao, Haixiang; Lu, Runhua
2015-06-09
A novel sorbent (β-CD/ATP composite) for dispersive solid-phase extraction (d-SPE) prepared by bonding β-cyclodextrin to modified attapulgite via silane coupling was used to determine the concentrations of four (fluoro)quinolones (Qs) in honey samples. The subsequent quantification of the Qs (ciprofloxacin, norfloxacin, ofloxacin, and gatifloxacin) was accomplished using high-performance liquid chromatography (HPLC) with ultraviolet detection after the d-SPE procedure. Parameters that may influence the extraction efficiency, such as type and volume of the eluent, type and amount of the sorbent, times of the vortex and sonication process, and pH of the sample, were investigated using batch and column procedures. The optimal experimental conditions (5 mL sample at pH 3, 4 mg of β-CD/ATP composite as the sorbent, 200 μL of 40% ammonia in methanol as the eluent, with vortex time 60s and sonication time 6 min, and no addition of salt) were obtained from this statistical evaluation. The limits of detection (LODs) were determined to the range from 0.30 to 3.95 μg L(-1). Good recoveries (83.6-88.6%) were obtained under the optimum conditions, and the relative standard deviations (RSDs), which are used to indicate reproducibility, were less than 7.4%. The method was validated with three real honey samples, and the results demonstrated that β-CD/ATP composite possessed a high adsorption capacity for Qs. Although the LODs were slightly higher than expected, this study confirmed the possibility of using cyclodextrin grafted palygorskite in analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Wen, Yingying; Li, Jinhua; Yang, Fangfang; Zhang, Weiwei; Li, Weiran; Liao, Chunyang; Chen, Lingxin
2013-03-15
A novel method for the simultaneous separation and determination of four benzimidazole fungicides (i.e., carbendazim, fuberidazole, thiophanate-methyl and thiophanate) in high salinity samples was developed by using salting-out assisted liquid-liquid extraction (SALLE) via water-miscible acetonitrile as the extractant coupled with high-performance liquid chromatography. Box-Behnken design and response surface were employed to assist the optimization of SALLE conditions, including volume of salting-out solvent, the pH of sample solution and salting-out solvent as variable factors. The optimal salting-out parameters were obtained as follows: 2 mL of acetonitrile was added to 2 mL of sample solution with pH=4 and then 2 mL salting-out solvent containing 5 mol L(-1) sodium chloride at a pH of 7 was added to the solution for extraction. This procedure afforded a convenient and cost-saving operation with good cleanup ability for the benzimidazole fungicides, such as good linear relationships (R>0.996) between peak area and concentration from 2.5 ng mL(-1) to 500 ng mL(-1), low limits of detection between 0.14 ng mL(-1) and 0.38 ng mL(-1) and the intra-day precisions of retention time below 1.0%. The method recoveries obtained at fortified three concentrations for three seawater samples ranged from 60.4% to 99.1%. The simple, rapid and eco-benign SALLE based method proved potentially applicable for trace benzimidazole fungicides analysis in high salinity samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Salmon, C P; Knize, M G; Felton, J S; Zhao, B; Seow, A
2006-04-01
Chicken and fish samples prepared by 42 Singapore Chinese in their homes were obtained. Researchers were present to collect data on raw sample weight, cooking time, maximum cooking surface temperature, and cooked sample weight. Each participant prepared one pan-fried fish sample and two pan-fried chicken samples, one marinated, one not marinated. The cooked samples were analyzed for five heterocyclic aromatic amine (HAA) mutagens, including MeIQx (2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline); 4,8-DiMeIQx (2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline); 7,8-DiMeIQx (2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline); PhIP (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine), and IFP (2-amino-(1,6-dimethylfuro[3,2-e]imidazo[4,5-b])pyridine). A paired Student's t-test showed that marinated chicken had lower concentrations of PhIP (p<0.05), but higher concentrations of MeIQx (p<0.05) and 4,8-DiMeIQx (p<0.001) than non-marinated chicken, and also that weight loss due to cooking was less in marinated chicken than in non-marinated chicken (p<0.001). Interestingly, the maximum cooking surface temperature was higher for fish than for either marinated or non-marinated chicken (p<0.001), yet fish was lower in 4,8-DiMeIQx per gram than marinated or non-marinated chicken (p<0.001), lower in PhIP than non-marinated chicken (p<0.05), and lost less weight due to cooking than either marinated or non-marinated chicken (p<0.001). Fish was also lower in MeIQx and 7,8-DiMeIQx than marinated chicken (p<0.05). This study provides new information on HAA content in the Singapore Chinese diet.
Carletto, Jeferson Schneider; Luciano, Raquel Medeiros; Bedendo, Gizelle Cristina; Carasek, Eduardo
2009-04-06
A hollow fiber renewal liquid membrane (HFRLM) extraction method to determine cadmium (II) in water samples using Flame Atomic Absorption Spectrometry (FAAS) was developed. Ammonium O,O-diethyl dithiophosphate (DDTP) was used to complex cadmium (II) in an acid medium to obtain a neutral hydrophobic complex (ML(2)). The organic solvent introduced to the sample extracts this complex from the aqueous solution and carries it over the poly(dimethylsiloxane) (PDMS) membrane, that had their walls previously filled with the same organic solvent. The organic solvent is solubilized inside the PDMS membrane, leading to a homogeneous phase. The complex strips the lumen of the membrane where, at higher pH, the complex Cd-DDTP is broken down and cadmium (II) is released into the stripping phase. EDTA was used to complex the cadmium (II), helping to trap the analyte in the stripping phase. A multivariate procedure was used to optimize the studied variables. The optimized variables were: sample (donor phase) pH 3.25, DDTP concentration 0.05% (m/v), stripping (acceptor phase) pH 8.75, EDTA concentration 1.5x10(-2) mol L(-1), extraction temperature 40 degrees C, extraction time 40 min, a solvent mixture N-butyl acetate and hexane (60/40%, v/v) with a volume of 100 microL, and addition of ammonium sulfate to saturate the sample. The sample volume used was 20 mL and the stripping volume was 165 microL. The analyte enrichment factor was 120, limit of detection (LOD) 1.3 microg L(-1), relative standard deviation (RSD) 5.5% and the working linear range 2-30 microg L(-1).
Pigeon peas as a supplement for lactating dairy cows fed corn silage-based diets.
Corriher, V A; Hill, G M; Bernard, J K; Jenkins, T C; West, J W; Mullinix, B G
2010-11-01
Holstein rumen-cannulated cows [n=7; initial body weight (BW) 640.56±71.43 kg] were fed a corn silage basal diet with 1 of 3 concentrates (C=control; P10=10% pigeon peas; P20=20% pigeon peas). Cows were randomly assigned to treatments in a replicated 3×3 Latin square and individually fed using Calan gates. Each experimental period was 21 d with 7 d for adaption and 14 d for sample collection. Ruminal fluid samples were taken the last day of each experimental period and analyzed for pH, ammonia, long-chain fatty acids, and volatile fatty acids (VFA). Consecutive a.m. and p.m. milk samples were taken during the last 2 wk of the 21-d period and analyzed for fat, protein, long-chain fatty acids, and somatic cell count. Dry matter intake (kg/d) was reduced during the second period and was greater for P10 diets. Milk protein was greater for cows fed P20 compared with P10. Energy-corrected milk was greater for cows fed the control diet compared with P10. Treatment had no effect on milk yield. Ruminal fluid pH decreased over sampling times; however, pH remained at or above 5.5. Diets did not affect ruminal fluid pH; however, pH was different for sampling periods. Ruminal ammonia decreased until 8h postfeeding at which time it peaked consistent with changes in ammonia concentrations that usually peak 3 to 5h postfeeding on diets high in plant proteins. Dietary treatments altered ruminal fluid VFA with reduced concentrations of acetate and greater concentrations of propionate for control diet, resulting in reduced acetate:propionate ratio. Isobutyrate exhibited an hour by treatment interaction, in which isobutyrate decreased until 8h postfeeding and then tended to be greater for P10 than for other treatments. Animals fed the P10 diet had greater concentrations of ruminal isovalerate. Ruminal cis-9,trans-11 and trans-10,cis-12 conjugated linoleic acid (CLA) isomers were not affected by dietary treatments. The P10 diet had greatest ruminal synthesis of cis-9,trans-11, but control cows had greatest ruminal synthesis of trans-10,cis-12. Milk CLA isomers were similar among treatments. Trends were observed for greater cis-9,trans-11 and trans-10,cis-12 for the P10 diet. Pigeon peas may be used as a protein supplement in dairy diets without affecting milk production, dry matter intake, or ruminal environment when they replace corn and soybean meal. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The inhibition of marine nitrification by ocean disposal of carbon dioxide.
Huesemann, Michael H; Skillman, Ann D; Crecelius, Eric A
2002-02-01
In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO2-induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the environmental effects of ocean disposal of CO2 is needed to determine whether the potential costs related to marine ecosystem disturbance and disruption can be justified in terms of the perceived benefits that may be achieved by temporarily delaying global warming.
Bayen, Stéphane; Segovia, Elvagris; Loh, Lay Leng; Burger, David F; Eikaas, Hans S; Kelly, Barry C
2014-06-01
Tools specifically validated for tropical environments are needed to accurately describe the behavior of chemical contaminants in tropical ecosystems. In the present study, sampling rates (Rs) were determined for the commercial pharmaceutical-type Polar Organic Chemical Integrative Sampler (POCIS) with a 45.8cm(2) exposure surface for 35 Pharmaceutically Active Compounds (PhACs) and Endocrine Disrupting Compounds (EDCs), of which eight compounds (albuterol, atorvastatin, diltiazem, dilantin, enalapril, norfluoxetine, risperidone and warfarin) were reported for the first time. These sampling rates were measured in an outdoor laboratory calibration setup to best capture diurnal tropical temperature variations (29±3°C). The effect of stirring and salinity was investigated. For all compounds, the sampling rates were higher under stirred conditions as compared to quiescent conditions. Calibration results in the presence of 30g sodium chloride support that the effects of salinity on POCIS sampling rates are compound-specific. Comparisons between Time-Weight Average (TWA) water concentrations using POCIS and spot sample levels in the field (2 lake and 1 mangrove estuary sites) are presented. Results showed that POCIS TWA concentrations were in agreement with spot sample concentrations for these aquatic systems. Results indicate that POCIS can be used to effectively measure the TWA concentration for a range of PhACs and EDCs in tropical waters. However, based on the results from mass balance and field deployments, POCIS did not appear suitable for compounds with a low mass balance recovery during calibration (e.g. triclosan and linuron in this study). Copyright © 2014 Elsevier B.V. All rights reserved.
Dias, Adriana Neves; da Silva, Ana Cristine; Simão, Vanessa; Merib, Josias; Carasek, Eduardo
2015-08-12
This study describes the use of cork as a new coating for bar adsorptive microextraction (BAμE) and its application in determining benzophenone, triclocarban and parabens in aqueous samples by HPLC-DAD. In this study bars with 7.5 and 15 mm of length were used. The extraction and liquid desorption steps for BAμE were optimized employing multivariate and univariate procedures. The desorption time and solvent used for liquid desorption were optimized by univariate and multivariate studies, respectively. For the extraction step the sample pH was optimized by univariate experiments while the parameters extraction time and ionic strength were evaluated using the Doehlert design. The optimum extraction conditions were sample pH 5.5, NaCl concentration 25% and extraction time 90 min. Liquid desorption was carried out for 30 min with 250 μL (bar length of 15 mm) or 100 μL (bar length of 7.5 mm) of ACN:MeOH (50:50, v/v). The quantification limits varied between 1.6 and 20 μg L(-1) (bar length of 15 mm) and 0.64 and 8 μg L(-1) (bar length of 7.5 mm). The linear correlation coefficients were higher than 0.98 for both bars. The method with 7.5 mm bar length showed recovery values between 65 and 123%. The bar-to-bar reproducibility and the repeatability were lower than 13% (n = 2) and 14% (n = 3), respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
2014-08-01
The system abilities of two chromatographic techniques, capillary electrophoresis (CE) and high performance liquid chromatography (HPLC), were compared for the analysis of four tetracyclines (tetracycline, chlorotetracycline, oxytetracycline and doxycycline). The pH, concentration of background electrolyte (BGE) were optimized for the analysis of the standard mixture sample, meanwhile, the effects of separation voltage and water matrix (pH value and hardness) effects were investigated. In hydrodynamic injection (HDI) mode, a good quantitative linearity and baseline separation within 9. 0 min were obtained for the four tetracyclines at the optimal conditions; the analytical time was about half of that of HPLC. The limits of detection (LODs) were in the range of 0. 28 - 0. 62 mg/L, and the relative standard deviations (RSDs) (n= 6) of migration time and peak area were 0. 42% - 0. 56% and 2. 24% - 2. 95%, respectively. The obtained recoveries spiked in tap water and fishpond water were at the ranges of 96. 3% - 107. 2% and 87. 1% - 105. 2%, respectively. In addition, the stacking method, field-amplified sample injection (FASI), was employed to improve the sensitivity, and the LOD was down to the range of 17.8-35.5 μg/L. With FASI stacking, the RSDs (n=6) of migration time and peak area were 0. 85%-0. 95% and 1. 69%-3.43%, respectively. Due to the advantages of simple sample pretreatment and fast speed, CE is promising in the analysis of the antibiotics in environmental water.
Sampling depth confounds soil acidification outcomes
USDA-ARS?s Scientific Manuscript database
In the northern Great Plains (NGP) of North America, surface sampling depths of 0-15 or 0-20 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near the soil surface. Thus, sampling deeper can potentially dilute (increase) pH measurements an...
Study of vesicle size distribution dependence on pH value based on nanopore resistive pulse method
NASA Astrophysics Data System (ADS)
Lin, Yuqing; Rudzevich, Yauheni; Wearne, Adam; Lumpkin, Daniel; Morales, Joselyn; Nemec, Kathleen; Tatulian, Suren; Lupan, Oleg; Chow, Lee
2013-03-01
Vesicles are low-micron to sub-micron spheres formed by a lipid bilayer shell and serve as potential vehicles for drug delivery. The size of vesicle is proposed to be one of the instrumental variables affecting delivery efficiency since the size is correlated to factors like circulation and residence time in blood, the rate for cell endocytosis, and efficiency in cell targeting. In this work, we demonstrate accessible and reliable detection and size distribution measurement employing a glass nanopore device based on the resistive pulse method. This novel method enables us to investigate the size distribution dependence of pH difference across the membrane of vesicles with very small sample volume and rapid speed. This provides useful information for optimizing the efficiency of drug delivery in a pH sensitive environment.
Macció, Laura; Vallés, Diego; Cantera, Ana Maria
2013-12-01
A crude extract with high proteolytic activity (78.1 EU/mL), prepared from ripe fruit of Bromelia antiacantha was used to hydrolyze and remove soft tissues from the epigyne of Apopyllus iheringi. This enzymatic extract presented four actives isoforms which have a broad substrate specificity action. Enzyme action on samples was optimized after evaluation under different conditions of pH, enzyme-substrate ratio and time (parameters selected based on previous studies) of treatment (pH 4.0, 6.0 and 8.0 at 42°C with different amount of enzyme). Scanning electron microscopy was used to evaluate conditions resulting in complete digestion of epigyne soft tissues. Optimal conditions for soft tissue removal were 15.6 total enzyme units, pH 6.0 for 18 h at 42°C.
Kavita, Uma; Duo, Jia; Crawford, Sean M; Liu, Rong; Valcin, Joan; Gleason, Carol; Dong, Huijin; Gadkari, Snaehal; Dodge, Robert W; Pillutla, Renuka C; DeSilva, Binodh S
2017-09-01
We developed a homogeneous bridging anti-drug antibody (ADA) assay on an electro chemiluminescent immunoassay (ECLIA) platform to support the immunogenicity evaluation of a dimeric domain antibody (dAb) therapeutic in clinical studies. During method development we evaluated the impact of different types of acid at various pH levels on polyclonal and monoclonal ADA controls of differing affinities and on/off rates. The data shows for the first time that acids of different pH can have a differential effect on ADA of various affinities and this in turn impacts assay sensitivity and drug tolerance as defined by these surrogate controls. Acid treatment led to a reduction in signal of intermediate and low affinity ADA, but not high affinity or polyclonal ADA. We also found that acid pretreatment is a requisite for dissociation of drug bound high affinity ADA, but not for low affinity ADA-drug complexes. Although we were unable to identify an acid that would allow a 100% retrieval of ADA signal post-treatment, use of glycine pH3.0 enabled the detection of low, intermediate and high affinity antibodies (Abs) to various extents. Following optimization, the ADA assay method was validated for clinical sample analysis. Consistencies within various parameters of the clinical data such as dose dependent increases in ADA rates and titers were observed, indicating a reliable ADA method. Pre- and post-treatment ADA negative or positive clinical samples without detectable drug were reanalyzed in the absence of acid treatment or presence of added exogenous drug respectively to further assess the effectiveness of the final acid treatment procedure. The overall ADA results indicate that assay conditions developed and validated based on surrogate controls sufficed to provide a reliable clinical data set. The effect of low pH acid treatment on possible pre-existing ADA or soluble multimeric target in normal human serum was also evaluated, and preliminary data indicate that acid type and pH also affect drug-specific signal differentially in individual samples. The results presented here represent the most extensive analyses to date on acid treatment of a wide range of ADA affinities to explore sensitivity and drug tolerance issues. They have led to a refinement of our current best practices for ADA method development and provide a depth of data to interrogate low pH mediated immune complex dissociation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Godlewska-Żyłkiewicz, Beata
2003-08-01
Inexpensive baker's yeast Saccharomyces cerevisiae and green algae Chlorella vulgaris, either free or immobilized on silica gel have been shown to selectively accumulate platinum and palladium from water samples in acidic medium (pH 1.6-1.8). Optimization of conditions of metals biosorption (sample pH, algae and yeast masses, adsorption time, temperature) was performed in batch mode. The procedure of matrix separation based on biosorption of platinum and palladium on algae C. vulgaris covalently immobilized on silica gel in flow mode was developed. The use of algae in flow procedure offers several advantages compared with its use in the batch mode. The procedure shows better reproducibility (<2%), improved efficiency of platinum retention on the column (93.3±1.6%), is less laborious and less time consuming. The best recovery of biosorbed metals from column (87.7±3.3% for platinum and 96.8±1.1 for palladium) was obtained with solution of 0.3 mol l -1 thiourea in 1 mol l -1 hydrochloric acid. The influence of thiourea on analytical signals of examined metals during GFAAS determination is discussed. The procedure has been applied for separation of noble metals from tap and waste water samples spiked with platinum and palladium.
Heller, G; Topakian, T; Altenberger, C; Cerny-Reiterer, S; Herndlhofer, S; Ziegler, B; Datlinger, P; Byrgazov, K; Bock, C; Mannhalter, C; Hörmann, G; Sperr, W R; Lion, T; Zielinski, C C; Valent, P; Zöchbauer-Müller, S
2016-01-01
Little is known about the impact of DNA methylation on the evolution/progression of Ph+ chronic myeloid leukemia (CML). We investigated the methylome of CML patients in chronic phase (CP-CML), accelerated phase (AP-CML) and blast crisis (BC-CML) as well as in controls by reduced representation bisulfite sequencing. Although only ~600 differentially methylated CpG sites were identified in samples obtained from CP-CML patients compared with controls, ~6500 differentially methylated CpG sites were found in samples from BC-CML patients. In the majority of affected CpG sites, methylation was increased. In CP-CML patients who progressed to AP-CML/BC-CML, we identified up to 897 genes that were methylated at the time of progression but not at the time of diagnosis. Using RNA-sequencing, we observed downregulated expression of many of these genes in BC-CML compared with CP-CML samples. Several of them are well-known tumor-suppressor genes or regulators of cell proliferation, and gene re-expression was observed by the use of epigenetic active drugs. Together, our results demonstrate that CpG site methylation clearly increases during CML progression and that it may provide a useful basis for revealing new targets of therapy in advanced CML. PMID:27211271
Epimural Indicator Phylotypes of Transiently-Induced Subacute Ruminal Acidosis in Dairy Cattle
Wetzels, Stefanie U.; Mann, Evelyne; Metzler-Zebeli, Barbara U.; Pourazad, Poulad; Qumar, Muhammad; Klevenhusen, Fenja; Pinior, Beate; Wagner, Martin; Zebeli, Qendrim; Schmitz-Esser, Stephan
2016-01-01
The impact of a long-term subacute rumen acidosis (SARA) on the bovine epimural bacterial microbiome (BEBM) and its consequences for rumen health is poorly understood. This study aimed to investigate shifts in the BEBM during a long-term transient SARA model consisting of two concentrate-diet-induced SARA challenges separated by a 1-week challenge break. Eight cows were fed forage and varying concentrate amounts throughout the experiment. In total, 32 rumen papilla biopsies were taken for DNA isolation (4 sampling time points per cow: at the baseline before concentrate was fed, after the first SARA challenge, after the challenge break, and after the second SARA challenge). Ruminal pH was continuously monitored. The microbiome was determined using Illumina MiSeq sequencing of the 16S rRNA gene (V345 region). In total 1,215,618 sequences were obtained and clustered into 6833 operational taxonomic units (OTUs). Campylobacter and Kingella were the most abundant OTUs (16.5 and 7.1%). According to ruminal pH dynamics, the second challenge was more severe than the first challenge. Species diversity estimates and evenness increased during the challenge break compared to all other sampling time points (P < 0.05). During both SARA challenges, Kingella- and Azoarcus-OTUs decreased (0.5 and 0.4 fold-change) and a dominant Ruminobacter-OTU increased during the challenge break (18.9 fold-change; P < 0.05). qPCR confirmed SARA-related shifts. During the challenge break noticeably more OTUs increased compared to other sampling time points. Our results show that the BEBM re-establishes the baseline conditions slower after a SARA challenge than ruminal pH. Key phylotypes that were reduced during both challenges may help to establish a bacterial fingerprint to facilitate understanding effects of SARA conditions on the BEBM and their consequences for the ruminant host. PMID:26973642
Epimural Indicator Phylotypes of Transiently-Induced Subacute Ruminal Acidosis in Dairy Cattle.
Wetzels, Stefanie U; Mann, Evelyne; Metzler-Zebeli, Barbara U; Pourazad, Poulad; Qumar, Muhammad; Klevenhusen, Fenja; Pinior, Beate; Wagner, Martin; Zebeli, Qendrim; Schmitz-Esser, Stephan
2016-01-01
The impact of a long-term subacute rumen acidosis (SARA) on the bovine epimural bacterial microbiome (BEBM) and its consequences for rumen health is poorly understood. This study aimed to investigate shifts in the BEBM during a long-term transient SARA model consisting of two concentrate-diet-induced SARA challenges separated by a 1-week challenge break. Eight cows were fed forage and varying concentrate amounts throughout the experiment. In total, 32 rumen papilla biopsies were taken for DNA isolation (4 sampling time points per cow: at the baseline before concentrate was fed, after the first SARA challenge, after the challenge break, and after the second SARA challenge). Ruminal pH was continuously monitored. The microbiome was determined using Illumina MiSeq sequencing of the 16S rRNA gene (V345 region). In total 1,215,618 sequences were obtained and clustered into 6833 operational taxonomic units (OTUs). Campylobacter and Kingella were the most abundant OTUs (16.5 and 7.1%). According to ruminal pH dynamics, the second challenge was more severe than the first challenge. Species diversity estimates and evenness increased during the challenge break compared to all other sampling time points (P < 0.05). During both SARA challenges, Kingella- and Azoarcus-OTUs decreased (0.5 and 0.4 fold-change) and a dominant Ruminobacter-OTU increased during the challenge break (18.9 fold-change; P < 0.05). qPCR confirmed SARA-related shifts. During the challenge break noticeably more OTUs increased compared to other sampling time points. Our results show that the BEBM re-establishes the baseline conditions slower after a SARA challenge than ruminal pH. Key phylotypes that were reduced during both challenges may help to establish a bacterial fingerprint to facilitate understanding effects of SARA conditions on the BEBM and their consequences for the ruminant host.
Boyacı, Ezel; Sparham, Chris; Pawliszyn, Janusz
2014-01-01
The dual nature of the quaternary ammonium compounds, having permanently charged hydrophilic quaternary ammonium heads and long-chain hydrophobic tails, makes the sample preparation step and analysis of these compounds challenging. A high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography mass spectrometry was developed for simultaneous quantitative analysis of nine benzylic and aliphatic quaternary ammonium compounds. Chromatographic separation and detection of analytes were obtained in reverse-phase mode in 8 min using a triple quadrupole mass spectrometer. Hydrophilic lipophilic balance particle-coated blades were found to be the most suitable among the different coatings tested in terms of recoveries and carryover on the blades. For desorption solvents, 70/30, v/v (A/B) with 0.1 % formic acid (where A is 10 mM ammonium acetate in acetonitrile/water (95/5 , v/v) and B is 0.1 % (v/v) formic acid in isopropyl alcohol) was shown to be the most efficient solvent for the desorption of the analytes from the SPME sorbent. The SPME method was optimised in terms of extraction, pH, and preconditioning, as well as extraction and desorption times. Optimum conditions were 45 min of extraction time and 15 min of desorption time, all with agitation. The extraction was found to be optimum in a range of pH 6.0 to 8.0, which is consistent with the natural pH of water samples. Wide linear dynamic ranges with the developed method were obtained for each compound, enabling the application of the method for a wide range of concentrations. The developed method was validated according to the Food and Drug Administration criteria. The proposed method is the first SPME-based approach describing the applicability of the high-throughput thin-film SPME in a 96-well system for analysis of such challenging compounds.
The effects of microfluidization on rheological and textural properties of gluten-free corn breads.
Ozturk, Oguz Kaan; Mert, Behic
2018-03-01
This study presents the potential of microfluidization as a value adding process to corn gluten meal (CGM), which is often used as animal feed and is underutilized in food industry. In this study, we aimed to improve water holding ability of corn gluten and to investigate possibility of using this zein-rich byproduct as the main ingredient in gluten-free bread formulations. For this reason, microfluidization as a milling process for CGM, and its effects on rheological and textural properties of gluten-free bread formulations were investigated. In addition, the effects of pH modification and hydrocolloids were analyzed. Microfluidization led to a higher surface area by disintegrating the large CGM molecules, and the structure became compatible to be used in gluten-free bread formulations by overcoming hydrophobic nature. However, structural deformations were detected with pH modifications. The linear viscoelastic region of dough was observed at strains lower than 0.5%. For all formulations, elastic moduli (G') were higher than viscous moduli (G") indicating solid-like behavior. The addition of HPMC and guar resulted in higher moduli values. Microfluidization and pH modifications provided brighter color by revealing lutein and zeaxanthin due to decreased particle size. Texture profile showed that microfluidization and hydrocolloids decreased hardness, increased springiness and cohesiveness, which are desired characteristics for bread. Lastly, the addition of hydrocolloids led to an increase in specific volume by providing gas retention within the structure. HPMC provided 1.23-1.62 times bigger samples than control samples while it was only 1.02-1.12 times bigger for samples with guar according to specific volume analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Peng, Xiaojun; Pang, Jinshan; Deng, Aihua
2011-12-01
A novel method for the simultaneous determination of seven phenoxyacid herbicides such as dicamba, fluroxypyr, 4-chlorophenoxyacetic acid (4-CPA), 2-methyl-4-chlorophenoxyacetic acid (MCPA), 2, 4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB) and 4-(2-methyl-4-chlorophenoxy) butyric acid (MCPB) in environmental water by three phase hollow fiber liquid phase microextraction (HF-LPME) coupled with high performance liquid chromatography (HPLC) was developed. In order to optimize the experimental conditions, the orthogonal test has been used. The effects of extraction solvent, pH of the donor phase and acceptor phase, extraction time, stirring speed and salt concentration on the detection were investigated. The optimal experimental conditions were as follows: octanol as organic solvent, pH 3 of donor phase, pH 12 of acceptor phase, extraction time of 30 min, stirring speed of 400 r/min. The results showed that the proposed method provided a wide linear range for 7 phenoxyacid herbicides with correlation coefficients of 0.995 3 - 0.998 8. The detection limits ranged from 0.2 to 1.0 microg/L. The enrichment factors were in the range of 76.7 - 121. The recoveries were in the range of 68% - 104% and the relative standard deviations (RSDs) were less than 8.1% for the environmental water samples. The method has the advantages of sensitivity, simplicity, fastness and the use of very small amounts of organic solvent. The method can meet the requirements of the determination of trace phenoxyacid herbicides in the environmental water samples, and the study provided a useful method for the analysis of trace substances in water samples.
Wang, Hui-Long; Liu, Shu-Qin; Zhang, Xiu-Yan
2009-09-30
The encapsulated potassium ferrate(VI) (K(2)FeO(4)) samples were successfully prepared by phase separation method in organic solvents. The ethyl cellulose and paraffin were selected for the microcapsule wall materials (WM). The as prepared microcapsules were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The stability can be enhanced greatly when ferrate(VI) was encapsulated in the microcapsules with a mass ratio of Fe(VI):WM in the range of 1:1-1:3 for the same conserved time in air compared for pure K(2)FeO(4). The sustained release behavior of the microcapsules with different Fe(VI):WM mass ratios in 8.0M KOH solution was also investigated. The results indicated that the Fe(VI) release was reduced with increase of Fe(VI):WM mass ratios from 1:1 to 1:3. The release kinetics of the microcapsules is found to obey Ritger-Peppas equation. The prepared Fe(VI) microcapsules has been used for the removal of a typical alkyl dinitro phenol compound, 2-sec-butyl-4,6-dinitrophenol (DNBP), from aqueous solution. The effect of pH, microcapsule concentration and reaction time was studied thoroughly. The optimal pH for DNBP degradation was 6.5, and at this pH and a microcapsule concentration of 1.2g/L, approximately 93% of the DNBP was degraded after 80 min. The encapsulated ferrate(VI) samples were found to be very effective in the decolorization and COD reduction of real wastewater from DNBP manufacturing. Thus, this study showed the feasible and potential use of encapsulated Fe(VI) samples in degradation of various toxic organic contaminants and industrial effluents.
Lee, In-Hee; Chung, Hwa-Jin; Shin, Joon-Shik; Ha, In-Hyuk; Kim, Me-Riong; Koh, Wonil; Lee, Jinho
2017-01-01
GCSB-5, an herbal drug composition with an anti-inflammatory effect, is prepared by boiling, which is the most common herbal extraction method in traditional Korean medicine. Several parameters are involved in the process, i.e., extractant type, herb-to-extractant ratio, extraction temperature and pressure, and total boiling time. The aim of this study was to examine the influence of boiling time on index compound amount and the antioxidative and anti-inflammatory activities of GCSB-5. Different samples of GCSB-5 were obtained by decocting for 30, 60, 90, 120, 150, and 240 min. Each sample was tested for hydrogen ion concentration (pH), total soluble solid content (TSSC), marker compound profiles, and antioxidative and anti-inflammatory activity. pH was found to decrease while TSSC increased with extended decoction. Marker compound contents for GCSB-5 (acanthoside D for Acanthopanax sessiliflorus Seem, 20-hydroxyecdysone for Achyranthes japonica Nakai, and pinoresinol diglucoside for Eucommia ulmoides Oliver) remained relatively constant regardless of the length of boiling. Total D-glucose amount increased with longer boiling. The antioxidative and anti-inflammatory potentials of GCSB-5 were not substantially affected by decoction duration. Biological characteristics and marker compound content of GCSB-5 were not altered significantly in prolonged boiling. Longer boiling duration of GCSB-5 did not increase yield in a time-dependent manner, but yields of 210 and 240 min samples were significantly higherHydrogen ion concentration of GCSB-5 samples decreased while total soluble solid content and D-glucose concentration levels increased with boiling durationAlthough concentrations of some index compounds increased with extended boiling duration of GCSB-5, increase was small and not in a direct proportional relationshipAntioxidative and anti-inflammatory properties of GCSB-5 were not substantially affected by decoction duration. Abbreviations used: CAM: Complementary and alternative medicine; KIOM: Korea Institute of Oriental Medicine; KMD: Korean medicine doctor; TSSC: Total soluble solid content; pH: Hydrogen ion concentration; HPLC: High-performance liquid chromatography; NO: Nitric oxide; NO 2 : Nitric dioxide; LPS: Lipopolysaccharide; DMSO: Dimethyl sulfoxide.
Aspects of the "Design Space" in high pressure liquid chromatography method development.
Molnár, I; Rieger, H-J; Monks, K E
2010-05-07
The present paper describes a multifactorial optimization of 4 critical HPLC method parameters, i.e. gradient time (t(G)), temperature (T), pH and ternary composition (B(1):B(2)) based on 36 experiments. The effect of these experimental variables on critical resolution and selectivity was carried out in such a way as to systematically vary all four factors simultaneously. The basic element is a gradient time-temperature (t(G)-T) plane, which is repeated at three different pH's of the eluent A and at three different ternary compositions of eluent B between methanol and acetonitrile. The so-defined volume enables the investigation of the critical resolution for a part of the Design Space of a given sample. Further improvement of the analysis time, with conservation of the previously optimized selectivity, was possible by reducing the gradient time and increasing the flow rate. Multidimensional robust regions were successfully defined and graphically depicted. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Grafting of GMA and some comonomers onto chitosan for controlled release of diclofenac sodium.
Sharma, Rajeev Kr; Lalita; Singh, Anirudh P; Chauhan, Ghanshyam S
2014-03-01
In order to develop pH sensitive hydrogels for controlled drug release we have graft copolymerized glycidyl methacrylate (GMA) with comonomers acrylic acid, acrylamide and acrylonitrile, onto chitosan (Ch) by using potassium persulphate (KPS) as free radical initiator in aqueous solution. The optimum percent grafting for GMA was recorded for 1g chitosan at [KPS]=25.00 × 10(-3)mol/L, [GMA]=0.756 × 10(-3)mol/L, reaction temperature=60 °C and reaction time=1h in 20 mL H2O. Binary monomers were grafted for five different concentrations at optimum grafting conditions evaluated for GMA alone onto chitosan. The graft copolymers were characterized by FTIR, XRD, TGA and SEM. The swelling properties of chitosan and graft copolymers were investigated at different pH to define their end uses in sustained release of an anti-inflammatory drug, diclofenac sodium. Percent drug release w.r.t. drug loaded in polymeric sample was studied as function of time in buffer solutions of pH 2.0 and 7.4. In vitro release data was analyzed using Fick's Law. Chitosan grafted with binary monomers, GMA-co-AAm and GMA-co-AN showed very good results for sustained release of drug at 7.4 pH. Copyright © 2014 Elsevier B.V. All rights reserved.
Castro-Rosas, J; Escartín, E F
2005-07-15
External surfaces of samples of shrimp carapace were inoculated with Vibrio cholerae and stored at 22 degrees C for 1 h in a moist environment to facilitate their adhesion, or for 24 h to permit their colonization of the material. Colonizing cells showed a higher resistance to the effects of high temperatures, low pH, and desiccation conditions than adherent cells. Periods of 10, 5, and 3 min and 0 s were required to inactivate the pathogen when attached cells were exposed to 50, 60, 65, or 70 degrees C. The corresponding times for colonizing cells were 30, 15, 10, and 1 min. At pH 2.5 numbers of attached V. cholerae were reduced by >5 log after 16 min, whereas the reduction of colonizing cells was only 2.8 log. The survival times of the microorganism on dried carapaces stored at 5 and 22 degrees C were, respectively, 60 and 10 min for adherent cells, and 12 and 4 h for colonizing cells. The increased resistance to the effects of high temperatures, low pH, and desiccation of V. cholerae O1 colonizing shrimp carapaces may have significant implications for food safety and the epidemiology of cholera.
The effect of protected sardine fish oil as feed supplement on ruminal fermentation
NASA Astrophysics Data System (ADS)
Pramono, A.; Widayati, D. T.; Handayanta, E.
2018-03-01
The research aims to evaluate the influence of protected sardine fish oil as feed supplement on ruminal fermentation (pH rumen fluid, ammonia concentration and volatile fatty acids production in the rumen). Protected feed supplement was produced from sardine fish oil and soybean meal, through two protection methods, they were saponification and microencapsulation. The experiment consists of two treatments i.e. P0: basal diet (control) and P1: basal diet + 3 % protected feed supplement. Each treatment was repeated 10 times. The kinetics observation of the pH rumen fluid, ammonia concentration and volatile fatty acids production were performed at incubation times 0, 2, 4 and 6 hours respectively. Data were analyzed using independent samples t-test. Results in cow with protected feed supplement showed that kinetics of pH rumen fluid: 7.23; 7.13; 6.90 and 6.76 respectively; ruminal ammonia concentration: 26.70; 31.06; 19.75 and 15.52 respectively; and volatile fatty acids production: 22.75; 26.08; 29.19 and 25.79 respectively. The results could be concluded that the effect of supplementation of protected sardine fish oil have an optimal of pH rumen fluid, ammonia concentration, and volatile fatty acids production so it did not interfere the ruminal fermentation in the rumen.
Sun, Jieping; Liang, Qionglin; Han, Qiang; Zhang, Xiaoqiong; Ding, Mingyu
2015-01-01
A novel magnetic graphene oxide nanocomposite was synthesized by one-step coprecipitation method and characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and vibrating sample magnetometer. The nanocomposite beard many intriguing properties, including chemical stability, high adsorption capacity, and superparamagnetic. These properties evoked great interest and desire of its exploration in magnetic solid-phase extraction of heavy metal ions from complex samples. Several parameters effecting the analytical performance, such as the sample pH, amounts of adsorbent, sample volumes, elution volumes, and coexisting ions, had been investigated in detail. The adsorbed metal ions were easy eluted by controlling the pH condition and the materials could be reused more than 20 times. Under the optimized conditions, the limits of detection were 0.016, 0.046, 0.395, 0.038, 0.157 μg L(-1) for Co(2+), Ni(2+), Cu(2+), Cd(2+), and Pb(2+), respectively. The intra-day relative standard deviations (n=5) were in the range of 1.8-5.5% at 10 μg L(-1). The proposed method was successfully applied to biological sample analysis and got excellent recoveries in the range of 81-113% even the matrix was complex. Copyright © 2014 Elsevier B.V. All rights reserved.
Salahinejad, Maryam; Aflaki, Fereydoon
2011-06-01
Dispersive liquid-liquid microextraction followed by inductively coupled plasma-optical emission spectrometry has been investigated for determination of Cd(II) ions in water samples. Ammonium pyrrolidine dithiocarbamate was used as chelating agent. Several factors influencing the microextraction efficiency of Cd (II) ions such as extracting and dispersing solvent type and their volumes, pH, sample volume, and salting effect were optimized. The optimization was performed both via one variable at a time, and central composite design methods and the optimum conditions were selected. Both optimization methods showed nearly the same results: sample size 5 mL; dispersive solvent ethanol; dispersive solvent volume 2 mL; extracting solvent chloroform; extracting solvent volume 200 [Formula: see text]L; pH and salt amount do not affect significantly the microextraction efficiency. The limits of detection and quantification were 0.8 and 2.5 ng L( - 1), respectively. The relative standard deviation for five replicate measurements of 0.50 mg L( - 1) of Cd (II) was 4.4%. The recoveries for the spiked real samples from tap, mineral, river, dam, and sea waters samples ranged from 92.2% to 104.5%.
Matarneh, Sulaiman K; Yen, Con-Ning; Elgin, Jennifer M; Beline, Mariane; da Luz E Silva, Saulo; Wicks, Jordan C; England, Eric M; Dalloul, Rami A; Persia, Michael E; Omara, Islam I; Shi, Hao; Gerrard, David E
2018-05-01
During postmortem metabolism, muscle pH gradually declines to reach an ultimate pH near 5.6 across most meat species. Yet, broiler pectoralis major (P. major) muscle generates meat with high ultimate pH (pH ∼ 5.9). For better understanding of the underlying mechanism responsible for this phenomenon, we evaluated the involvement of breast muscle chilling on the extent of postmortem metabolism. Broiler breast muscles were either subjected to chilling treatment (control) or left at room temperature (RT) for 120 min. P. major muscle from the RT treatment had lower ultimate pH, greater glycogen degradation and lactate accumulation. While these findings suggest that carcass chilling can contribute to the premature termination of postmortem metabolism, chilling did not fully explain the high ultimate pH of P. major muscle. Our results also revealed that glucose-6-phosphate (G6P) was very low at 24 h, and therefore we hypothesized that G6P was limiting. To test this hypothesis, muscle samples from P. major and porcine longissimus lumborum (LL) muscle were homogenized into a reaction buffer that mimics postmortem glycolysis with or without 0.5 mg/mL isolated mitochondria. While samples containing porcine LL muscle reached the normal level of ultimate pH, P. major muscle samples reached a value similar to that observed in vivo even in the presence of excess G6P, indicating that G6P was not limiting. Mitochondria enhanced the glycolytic flux and pH decline in systems containing muscle from both species. More importantly, however, was that in vitro system containing chicken with mitochondria reached pH value similar to that of samples containing LL muscle without mitochondria. To investigate further, phosphofructokinase (PFK) activity was compared in broiler P. major and porcine LL muscle at different pH values. PFK activity was lower in P. major muscle at pH 7, 6.5, and 6.2 than LL muscle. In conclusion, carcass chilling can partially contribute to the high ultimate pH of broiler P. major muscle, while low PFK activity and mitochondria content limit the flux through glycolysis.
Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M
2004-11-01
A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
NASA Astrophysics Data System (ADS)
Tran, Dat Quang; Pham, Hung Thanh; Do, Hung Quoc
2017-06-01
Reduced graphene oxide-Zn0.5Ni0.5Fe2O4 ferrite-polyaniline nanocomposite (RGO-ZNF-PANI) was synthesized by a three-step method. The prepared samples were characterized by x-ray diffraction, Raman spectroscopy, scanning electron microscopy and vibrating sample magnetometer. In particular, we found that this material is capable of effectively removing uranium from an aquatic environment. This is confirmed by our experimental results using the method of inductively coupled plasma mass spectrometry. Adsorptive behaviour of uranium from an aqueous solution on the RGO-ZNF-PANI nanocomposite was examined as a function of pH, contact time, and equilibrium. Uranium concentration was carried out by batch techniques. The adsorption isotherm agrees well with the Langmuir model, having a maximum sorption capacity of 1885 mg/g, at pH 5 and 25°C.
Windham, Gayle C; Pinney, Susan M; Voss, Robert W; Sjödin, Andreas; Biro, Frank M; Greenspan, Louise C; Stewart, Susan; Hiatt, Robert A; Kushi, Lawrence H
2015-10-01
Exposure to hormonally active chemicals could plausibly affect pubertal timing, so we are investigating this in the Breast Cancer and the Environment Research Program. Our goal was to examine persistent organic pollutants (POPs) in relation to pubertal onset. Ethnically diverse cohorts of 6- to 8-year-old girls (n = 645) provided serum for measure of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and lipids. Tanner stages [breast (B) and pubic hair (PH)], and body mass index (BMI) were measured at up to seven annual clinic visits. Using accelerated failure time models, we calculated time ratios (TRs) for age at Tanner stages 2 or higher (2+) and POPs quartiles (Q1-4), adjusting for confounders (race/ethnicity, site, caregiver education, and income). We also calculated prevalence ratios (PRs) of Tanner stages 2+ at time of blood sampling. Cross-sectionally, the prevalence of B2+ and PH2+ was inversely related to chemical serum concentrations; but after adjustment for confounders, only the associations with B2+, not PH2+, were statistically significant. Longitudinally, the age at pubertal transition was consistently older with greater chemical concentrations; for example: adjusted TR for B2+ and Q4 for ΣPBDE = 1.05; 95% CI: 1.02, 1.08, for ΣPCB = 1.05; 95% CI: 1.01, 1.08, and for ΣOCP = 1.10; 95% CI: 1.06, 1.14, indicating median ages of about 6 and 11 months older than least exposed, and with similar effect estimates for PH2+. Adjusting for BMI attenuated associations for PCBs and OCPs but not for PBDEs. This first longitudinal study of puberty in girls with serum POPs measurements (to our knowledge) reveals a delay in onset with higher concentrations.
Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I
2014-04-01
Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no significant effect on the thermal tolerance of E. coli (P > 0.01). The data from this study will be useful for establishing critical limits for safe thermal processing of pH-controlled juices and similar products.
Dong, Hailiang; Jiang, Hongchen; Briggs, Brandon R.; Peacock, Joseph P.; Huang, Qiuyuan; Huang, Liuqin; Wu, Geng; Zhi, Xiaoyang; Li, Wenjun; Dodsworth, Jeremy A.; Hedlund, Brian P.; Zhang, Chuanlun; Hartnett, Hilairy E.; Dijkstra, Paul; Hungate, Bruce A.
2013-01-01
The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world. PMID:23326417
Hou, Weiguo; Wang, Shang; Dong, Hailiang; Jiang, Hongchen; Briggs, Brandon R; Peacock, Joseph P; Huang, Qiuyuan; Huang, Liuqin; Wu, Geng; Zhi, Xiaoyang; Li, Wenjun; Dodsworth, Jeremy A; Hedlund, Brian P; Zhang, Chuanlun; Hartnett, Hilairy E; Dijkstra, Paul; Hungate, Bruce A
2013-01-01
The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21-123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5-2.6), high temperature (85.1-89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6-4.8) and cooler temperature (55.1-64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2-9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon "Candidatus Nitrosocaldus yellowstonii", and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world.
Bradley, J S; Phillips, J O; Cavanaugh, J E; Metzler, M H
1998-11-01
To evaluate the clinical utility of measuring gastric pH with a pH meter vs. pH paper in critical care patients. Prospective comparison of gastric pH measurements, using both pH meter and pH paper. Surgical intensive care unit (ICU) at a rural Midwestern university medical center. Fifty-one patients who received therapy for prophylaxis of stress ulcers in the surgical ICU. Therapy for stress ulcer prophylaxis was monitored. The pH of 985 gastric samples, taken from 51 patients, was measured with both pH meter and pH paper. The pH meter and pH paper measures demonstrated a concordance correlation coefficient of .896. The mean difference between the two measures (pH paper - pH meter) was estimated to be between -0.4 and 1.4, suggesting a positive bias for the paper. The prevalence of events representing clinically relevant differences between the pH meter and pH paper in the measurement of the same gastric sample was calculated. The frequency with which each of the events occurred consecutively (or, in one case, two nearly consecutive events on the same day) was also calculated. Bias in a clinically relevant range was estimated. A set of "probability profiles" was constructed. A hand-held pH meter and pH paper are not interchangeable measures of gastric pH. The pH paper exhibits an appreciable positive bias compared with a hand-held pH meter in the clinically relevant range of 2 to 6. More research is needed to determine if that bias affects treatment outcomes. We recommend the use of a pH meter for patients who demonstrate pH readings of < or = 4, consecutive with readings of < or = 5.
Jasik, Michał; Małek, Stanisław; Żelazny, Mirosław
2017-12-01
The purpose of this study was to identify the factors affecting spring water chemistry in different tree stands and to measure the influence of water stage on the physicochemical parameters of spring waters in a small Carpathian catchment. Water samples were collected three times per year at various stages of the water: after the spring thaw, after a period of heavy rain and after a dry period in 2011 and 2012. Water samples were left in the laboratory to reach room temperature (19-20°C) and analyzed for EC (reference T=25°C) and pH. After filtration through 0.45μm PTFE syringe filters, the water samples were analyzed by means of ion chromatography using a DIONEX ICS 5000 unit. The following ions were analyzed: Ca 2+ , Mg 2+ , Na + , K + , HCO 3 - , SO 4 2- , Cl - , and NO 3 - . Multivariate analysis (PCA) allowed the identification of two factors of spring water chemistry: factor 1, water stage and factor 2 tree stand composition. Seasonal variation of spring water chemistry showed that, higher pH values and mineralization as well as higher concentrations of Ca 2+ and Mg 2+ were measured during low water stage periods while lower EC and pH values were noted after spring snowmelt and rainfall, when higher concentrations of NO 3 - and SO 4 2- were also found. Higher concentrations of Ca 2+ and Mg 2+ and higher pH of spring waters located in beech-fir stands and in those mixed with a large proportion of beech as well as a lower concentration of Ca 2+ , Mg 2+ and HCO 3 - , pH, conductivity and mineralization of these spring waters, in which the alimentation areas were covered by upper subalpine spruce stands were noted. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Contreras Quintana, S. H.; Werne, J. P.; Brown, E. T.; Halbur, J.; Sinninghe Damsté, , J.; Schouten, S.; Correa-Metrio, A.; Fawcett, P. J.
2014-12-01
Branched glycerol dialkyl glycerol tetraethers (GDGTs) are recently discovered bacterial membrane lipids, ubiquitously present in peat bogs and soils, as well as in rivers, lakes and lake sediments. Their distribution appears to be controlled mainly by soil pH and annual mean air temperature (MAT) and they have been increasingly used as paleoclimate proxies in sedimentary records. In order to validate their application as paleoclimate proxies, it is essential evaluate the influence of small scale environmental variability on their distribution. Initial application of the original soil-based branched GDGT distribution proxy to lacustrine sediments from Valles Caldera, New Mexico (NM) was promising, producing a viable temperature record spanning two glacial/interglacial cycles. In this study, we assess the influence of analytical and spatial soil heterogeneity on the concentration and distribution of 9 branched GDGTs in soils from Valles Caldera, and show how this variability is propagated to MAT and pH estimates using multiple soil-based branched GDGT transfer functions. Our results show that significant differences in the abundance and distribution of branched GDGTs in soil can be observed even within a small area such as Valles Caldera. Although the original MBT-CBT calibration appears to give robust MAT estimates and the newest calibration provides pH estimates in better agreement with modern local soils in Valles Caldera, the environmental heterogeneity (e.g. vegetation type and soil moisture) appears to affect the precision of MAT and pH estimates. Furthermore, the heterogeneity of soils leads to significant variability among samples taken even from within a square meter. While such soil heterogeneity is not unknown (and is typically controlled for by combining multiple samples), this study quantifies heterogeneity relative to branched GDGT-based proxies for the first time, indicating that care must be taken with samples from heterogeneous soils in MAT and pH reconstructions.
Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.
Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina
2016-06-01
Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. Copyright © 2016 Elsevier B.V. All rights reserved.
Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji
2015-01-01
The liquid junction potential (LJP), the phenomenon that occurs when two electrolyte solutions of different composition come into contact, prevents accurate measurements in potentiometry. The effect of the LJP is usually remarkable in measurements of diluted solutions with low buffering capacities or low ion concentrations. Our group has constructed a simple method to eliminate the LJP by exerting spatiotemporal control of a liquid junction (LJ) formed between two solutions, a sample solution and a baseline solution (BLS), in a flow-through-type differential pH sensor probe. The method was contrived based on microfluidics. The sensor probe is a differential measurement system composed of two ion-sensitive field-effect transistors (ISFETs) and one Ag/AgCl electrode. With our new method, the border region of the sample solution and BLS is vibrated in order to mix solutions and suppress the overshoot after the sample solution is suctioned into the sensor probe. Compared to the conventional method without vibration, our method shortened the settling time from over two min to 15 s and reduced the measurement error by 86% to within 0.060 pH. This new method will be useful for improving the response characteristics and decreasing the measurement error of many apparatuses that use LJs. PMID:25835300
Guerra, Denis L; Batista, Adriano C; da Costa, Paulo C Corrêa; Viana, Rúbia R; Airoldi, Claudio
2010-06-01
The original sepiolite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine (AMP) was anchored onto Amazon sepiolite surface by heterogeneous route. The natural (SPT) and modified (SPT(AMP)) sepiolite samples were characterized by elemental analysis, SEM, N(2) adsorption, and nuclear magnetic nuclei of (29)Si and (13)C. The well-defined peaks obtained in the (13)C NMR spectrum in the 0-160 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove As(V) from aqueous solution was followed by a series of adsorption isotherms at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 7.26×10(-2) and 11.70×10(-2) mmol g(-1) for SPT and SPT(AMP), respectively. In order to evaluate the clay samples as adsorbents in dynamic system, a glass column was fulfilled with clay samples (1.0 g) and it was fed with 2.0×10(-2) mmol dm(-3) As(V) at pH 4.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such As(V)-nitrogen interactions. Copyright © 2010. Published by Elsevier Inc.
Portable device for the detection of colorimetric assays
Nowak, E.; Kawchuk, J.; Hoorfar, M.; Najjaran, H.
2017-01-01
In this work, a low-cost, portable device is developed to detect colorimetric assays for in-field and point-of-care (POC) analysis. The device can rapidly detect both pH values and nitrite concentrations of five different samples, simultaneously. After mixing samples with specific reagents, a high-resolution digital camera collects a picture of the sample, and a single-board computer processes the image in real time to identify the hue–saturation–value coordinates of the image. An internal light source reduces the effect of any ambient light so the device can accurately determine the corresponding pH values or nitrite concentrations. The device was purposefully designed to be low-cost, yet versatile, and the accuracy of the results have been compared to those from a conventional method. The results obtained for pH values have a mean standard deviation of 0.03 and a correlation coefficient R2 of 0.998. The detection of nitrites is between concentrations of 0.4–1.6 mg l−1, with a low detection limit of 0.2 mg l−1, and has a mean standard deviation of 0.073 and an R2 value of 0.999. The results represent great potential of the proposed portable device as an excellent analytical tool for POC colorimetric analysis and offer broad accessibility in resource-limited settings. PMID:29291093
Training Patterns and Lifetime Career Achievements of US Academic Cardiothoracic Surgeons.
Rosati, Carlo Maria; Valsangkar, Nakul P; Gaudino, Mario; Blitzer, David; Vardas, Panos N; Girardi, Leonard N; Turrentine, Mark W; Brown, John W; Koniaris, Leonidas G
2017-03-01
We aimed to investigate the impact of taking dedicated time for research (DTR) during training and/or getting a PhD on subsequent career achievements of US academic cardiothoracic surgeons. Online resources (institutional Web sites, CTSNet, Scopus, NIH RePORTER) were queried to collect training information (timing of medical school/residency/fellowship graduation, DTR, PhD) and academic metrics (publications, citations, research funding) for 694 academic cardiothoracic surgeons practicing at 56 premiere US institutions. Excluding missing data, 464 (75 %) surgeons took DTR and 156 (25 %) did not; 629 (91 %) were MD only and 65 (9 %) also had a PhD. DTR was associated with higher number of ongoing publications (~5.6/year vs. ~3.8/year), with no difference for accrued number of total citations. History of DTR was more prevalent among surgeons with versus without NIH funding (87 vs. 71 %; p < 0.001), but no difference was seen across academic ranks and among those who were division/department chiefs. No overall increase in publications/citations, academic rank advancement, NIH funding, or leadership roles was found for those with a PhD. Among cardiothoracic surgeons, devoting time during the training years exclusively to research might be associated with higher career-long academic productivity in terms of annual number new publications and ability to get NIH funding, but without significant impact in terms of academic rank or institutional role advancement. No significant difference was found between those with versus without a PhD in terms of career-long number of publications/citations, academic rank, NIH funding, or leadership role, even though sample size might have been insufficient to identify any such potential difference.
Ramsay, G; Ionescu, R; Eftink, M R
1995-08-01
In a previous paper (Ramsay and Eftink, Biophys. J. 66:516-523) we reported the development of a modified spectrophotometer that can make nearly simultaneous circular dichroism (CD) and fluorescence measurements. This arrangement allows multiple data sets to be collected during a single experiment, resulting in a saving of time and material, and improved correlation between the different types of measurements. The usefulness of the instrument was shown by thermal melting experiments on several different protein systems. This CD/fluorometer spectrophotometer has been further modified by interfacing with a syringe pump and a pH meter. This arrangement allows ligand, pH, and chemical denaturation titration experiments to be performed while monitoring changes in the sample's CD, absorbance, fluorescence, and light scattering properties. Our data acquisition program also has an ability to check whether the signals have approached equilibrium before the data is recorded. For performing pH titrations we have developed a procedure which uses the signal from a pH meter in a feedback circuit in order to collect data at evenly spaced pH intervals. We demonstrate the use of this instrument with studies of the unfolding of sperm whale apomyoglobin, as induced by acid pH and by the addition of guanidine-HCI.
Ramsay, G; Ionescu, R; Eftink, M R
1995-01-01
In a previous paper (Ramsay and Eftink, Biophys. J. 66:516-523) we reported the development of a modified spectrophotometer that can make nearly simultaneous circular dichroism (CD) and fluorescence measurements. This arrangement allows multiple data sets to be collected during a single experiment, resulting in a saving of time and material, and improved correlation between the different types of measurements. The usefulness of the instrument was shown by thermal melting experiments on several different protein systems. This CD/fluorometer spectrophotometer has been further modified by interfacing with a syringe pump and a pH meter. This arrangement allows ligand, pH, and chemical denaturation titration experiments to be performed while monitoring changes in the sample's CD, absorbance, fluorescence, and light scattering properties. Our data acquisition program also has an ability to check whether the signals have approached equilibrium before the data is recorded. For performing pH titrations we have developed a procedure which uses the signal from a pH meter in a feedback circuit in order to collect data at evenly spaced pH intervals. We demonstrate the use of this instrument with studies of the unfolding of sperm whale apomyoglobin, as induced by acid pH and by the addition of guanidine-HCI. Images FIGURE 2 PMID:8527683
Complexation of lead by Bermuda grass root exudates in aqueous media.
Thomas, Catherine; Butler, Afrachanna; Larson, Steven; Medina, Victor; Begonia, Maria
2014-01-01
Exudates produced from Bermuda grass roots were collected in deionized water from sterilized Bermuda grass sod at 3-day intervals over a period of 15 days. Exudates were analyzed for total organic carbon, and characterized via Fourier Transform Infrared Spectroscopy. Exudate samples were adjusted to pH values of 4.5, 6.5, and 7.5, amended with lead and quantified for soluble and complexed lead via Inductively Coupled Plasma--Optical Emission Spectrometry. Data obtained from total organic carbon measurements indicated compositional changes in Bermuda grass root exudates as organic carbon concentrations increased over time. Analysis of the infrared spectroscopy data indicated that carboxylic acids and amine functional groups were present in root exudates. Also, the ability of root-exuded compounds to solubilize lead in aqueous media was demonstrated as exudate samples dissolved an average of 60% more lead than deionized water. At pH values 4.5 and 7.5, lead complexation by Bermuda grass root exudates increased with decreasing molecular weight size fractions, while an opposite trend was observed at pH 6.5. Results from this study demonstrated the ability of Bermuda grass root exudates to complex lead in aqueous media.
Ranucci, David; Miraglia, Dino; Trabalza-Marinucci, Massimo; Acuti, Gabriele; Codini, Michela; Ceccarini, Maria Rachele; Forte, Claudio; Branciari, Raffaella
2015-11-02
The aim of this study was to evaluate the dietary effect of feeding pigs with diets enriched with sweet chestnut wood ( Castanea sativa Mill.) or oregano ( Origanum vulgaris L.) extract on the microbiological and chemical characteristics of cooked pork ham. Three groups of 10 pigs were fed with a control diet (CTRL), with the CTRL diet enriched with 0.2% of oregano extract (OR) and with the CTRL diet enriched with 0.2% of sweet chestnut wood extract (SCW), respectively. Six cooked hams per group were produced, sliced and packaged under a modified atmosphere (N2:CO2=80:20) and stored at refrigeration temperature (4±1°C). Three packages per cooked ham were sampled for analyses at three different storage times (0, 10 and 20 days). At day 0 time, antioxidant capacity of the products (ORAC FL assay) and chemical composition were performed. At each sampling time, from all the samples the following analyses were performed: total microbial count (TMC), lactic acid bacteria count (LAB), Enterobacteriaceae count, Listeria monocytogenes , pH value, colour coordinates (L*, a*, b*), total basic volatile nitrogen (TBVN) and thiobarbituric reactive substances (TBARs) determinations. No differences in TMC, LAB and Enterobacteriaceae count, pH, TBVN, chemical composition and L* values were registered between the three groups at all the sampling times considered. No Listeria monocytogenes was detected in the samples tested. Significant differences were registered for ORAC FL at 0 days, a* and b* values and TBARs value at 10 and 20 days of storage, with higher values for ORAC FL , a* and b* values and lower values for TBARs in SCW and OR than CTRL. No antimicrobial effect could be recorded for OR and SCW but a higher oxidative stability, also highlighted by the colour maintenance, was observed in both OR and SCW.
Great Salt Lake Composition and Rare Earth Speciation Analysis
Jiao, Yongqin; Lammers, Laura; Brewer, Aaron
2017-04-19
We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would form at mid to higher pH's. Although we expected strong aqueous complexes with fluorides at neutral pH and with chlorides, and hydroxides at low pH, we observe that the dominant species in the low to mid pH range to be Tb3+ as a free ion. Still, we do see the presence of fluoride and chloride complexes within the expected low to mid pH range.
Sorption and speciation of selenium in boreal forest soil.
Söderlund, Mervi; Virkanen, Juhani; Holgersson, Stellan; Lehto, Jukka
2016-11-01
Sorption and speciation of selenium in the initial chemical forms of selenite and selenate were investigated in batch experiments on humus and mineral soil samples taken from a 4-m deep boreal forest soil excavator pit on Olkiluoto Island, on the Baltic Sea coast in southwestern Finland. The HPLC-ICP-MS technique was used to monitor any possible transformations in the selenium liquid phase speciation and to determine the concentrations of selenite and selenate in the samples for calculation of the mass distribution coefficient, K d , for both species. Both SeO 3 2- and SeO 4 2- proved to be resistant forms in the prevailing soil conditions and no changes in selenium liquid phase speciation were seen in the sorption experiments in spite of variations in the initial selenium species, incubation time or conditions, pH, temperature or microbial activity. Selenite sorption on the mineral soil increased with time in aerobic conditions whilst the opposite trend was seen for the anaerobic soil samples. Selenite retention correlated with the contents of organic matter and weakly crystalline oxides of aluminum and iron, solution pH and the specific surface area. Selenate exhibited poorer sorption on soil than selenite and on average the K d values were 27-times lower. Mineral soil was more efficient in retaining selenite and selenate than humus, implicating the possible importance of weakly crystalline aluminum and iron oxides for the retention of oxyanions in Olkiluoto soil. Sterilization of the soil samples decreased the retention of selenite, thus implying some involvement of soil microbes in the sorption processes or a change in sample composition, but it produced no effect for selenate. There was no sorption of selenite by quartz, potassium feldspar, hornblende or muscovite. Biotite showed the best retentive properties for selenite in the model soil solution at about pH 8, followed by hematite, plagioclase and chlorite. The K d values for these minerals were 18, 14, 8 and 7 L/kg, respectively. It is proposed that selenite sorption is affected by the structural Fe(II) in biotite, which is capable of inducing the reduction of SeO 3 2- to Se(0). Selenite probably forms a surface complex with Fe(III) atoms on the surface of hematite, thus explaining its retention on this mineral. None of the minerals retained selenate to any extent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows.
Danscher, Anne Mette; Li, Shucong; Andersen, Pia H; Khafipour, Ehsan; Kristensen, Niels B; Plaizier, Jan C
2015-07-17
The prevalence of subacute ruminal acidosis (SARA) in dairy cows is high with large impact on economy and welfare. Its current field diagnosis is based on point ruminal pH measurements by oral probe or rumenocentesis. These techniques are invasive and inaccurate, and better markers for the diagnosis of SARA are needed. The goal of this study was to evaluate clinical signs of SARA and to investigate the use of blood, faecal and urinary parameters as indicators of SARA. Six lactating, rumen cannulated, Danish Holstein cows were used in a cross-over study with three periods. The first and second periods included two cows on control diet and two cows on nutritional SARA challenge. The third period only included two cows on SARA challenge. Control diet was a conventional total mixed ration [45.5% dry matter (DM), 17.8% crude protein, 43.8% neutral detergent fibre, and 22.5% acid detergent fibre (DM basis)]. SARA challenge was conducted by substituting control diet with grain pellets (50% wheat/barley) over 3 days to reach 40% grain in the diet. Ruminal pH was measured continuously. Blood samples were collected once daily at 7 h after feeding. Samples of faeces and urine were collected at feeding, and at 7 and 12 h after feeding. Blood samples were analysed for pCO2, pO2, pH, electrolytes, lactate, glucose, packed cell volume (PCV), and total plasma protein concentration. Milk composition, ruminal VFA, and pH of faeces and urine were measured. SARA was associated with decreased (P < 0.05) minimum ruminal, faecal and urinary pH. Daily times and areas of ruminal pH below 5.8, and 5.6 were increased to levels representative for SARA. Significant differences were detected in milk composition and ruminal VFAs. Blood calcium concentration was decreased (P < 0.05), and pCO2 tended to be increased (P = 0.10). Significant differences were not detected in other parameters. SARA challenge was associated with changes in faecal and urinary pH, blood calcium concentration and pCO2. These may be helpful as indicators of SARA. However changes were small, and diurnal variations were present. None of these parameters are able to stand alone as indicators of SARA.
Comparison of survival of diarrhoeagenic agents in two local weaning foods (ogi and koko).
Bakare, S; Smith, S I; Olukoya, D K; Akpan, E
1998-12-01
The pH values of both cooked and uncooked ogi and koko samples were determined and the survival rate of four diarrhoeagenic agents, enteroinvasive Escherichia coli, Salmonella typhi, Shigella flexneri, and Vibrio cholerae were studied after they were seeded into cooked ogi and koko. Analysis of the pH of the cooked inoculated samples showed that there was a slight increase in pH (decrease in acidity) during storage for 48 h and 37 degrees C (from 3.5 to 3.7 for ogi and from 3.7 to 4.1 for koko). The study also showed that ogi had a slightly lower pH value than koko both before and after cooking. In both cases, the cooked samples had a slightly lower pH value than the uncooked samples. The pH value of ogi ranged from 3.0 to 3.6 and that of koko from 3.5 to 3.9. The survival experiment showed that the inoculated enteric pathogens were inhibited in cooked ogi and koko during storage for 24-48 h. The antibacterial effect of cooked koko was more pronounced, on the four enteric pathogens studied, than that of cooked ogi. Except for Shigella flexneri and E. coli in ogi, non of the other bacteria studied was recovered after 24 h.
Yu, Honglian; Merib, Josias; Anderson, Jared L
2016-03-18
Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Moscati, Ronald; Ho, Jeffrey D; Dawes, Donald M; Miner, James R
2010-06-01
This study examines the physiologic effects of prolonged conducted electrical weapon (CEW) exposure on alcohol-intoxicated adult subjects. Adult volunteers were recruited at a TASER International training conference. All subjects ingested mixed drinks until clinical intoxication or until a minimum breath alcohol level of 0.08 mg/dL was achieved. Blood samples for venous pH, Pco(2), bicarbonate, and lactate were measured in all subjects at baseline, immediately after alcohol ingestion, immediately after exposure to a 15-second TASER X26 discharge (Taser International Inc, Scottsdale, AZ), and 24 hours post-alcohol ingestion. Laboratory values were compared at sampling times using repeated-measure analysis of variance. A focused analysis comparing time points within groups was then performed using paired t tests. Twenty-two subjects were enrolled into the study. There was a decrease in pH and bicarbonate and an increase in lactate after alcohol ingestion. There was a further increase in lactate and drop in pH after CEW exposure. No subject experienced a significant adverse event. All values had returned to baseline levels at 24 hours except lactate, which demonstrated a small but clinically insignificant increase. Prolonged continuous CEW exposure in the setting of acute alcohol intoxication has no clinically significant effect on subjects in terms of markers of metabolic acidosis. The acidosis seen is consistent with what occurs with ethanol intoxication or moderate exertion. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Gastric pH and residual volume after 1 and 2 h fasting time for clear fluids in children†.
Schmidt, A R; Buehler, P; Seglias, L; Stark, T; Brotschi, B; Renner, T; Sabandal, C; Klaghofer, R; Weiss, M; Schmitz, A
2015-03-01
Current guidelines suggest a fasting time of 2 h for clear fluids, which is often exceeded in clinical practice, leading to discomfort, dehydration and stressful anaesthesia induction to patients, especially in the paediatric population. Shorter fluid fasting might be a strategy to improve patient comfort but has not been investigated yet. This prospective clinical trial compares gastric pH and residual volume after 1 vs 2 h of preoperative clear fluid fasting. Children (1-16 yr, ASA I or II) undergoing elective procedures in general anaesthesia requiring tracheal intubation were randomized into group A with 60 min or B with 120 min preoperative clear fluid fasting. To determine gastric pH and residual volume, the gastric content was sampled in supine, left and right lateral patient position using an oro-gastric tube after intubation. Data are median (interquartile range) for group A or B (P<0.05). In total, 131 children aged 1.01-16.23 yr were included; gastric pH was determined in 120 cases. Patient characteristic data were similar between the two groups, except for gender (46/33 males in group A/B; P=0.02). Despite significantly shorter fasting times for clear fluids in group A compared with group B (76/136 min; P<0.001), no significant difference was observed regarding gastric pH [1.43 (1.30-1.56)/1.44 (1.29-1.68), P=0.66] or residual volume [0.43 (0.21-0.84)/0.46 (0.19-0.78) ml kg(-1), P=0.47]. One hour clear fluid fasting does not alter gastric pH or residual volume significantly compared with 2 h fasting. The study was approved by the local ethics committee (KEK-ZH-Nr. 2011-0034) and registered with ClinicalTrials.gov (NCT01516775). © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Finnegan, Michael Patrick
The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.
Biochemical and genetic diagnosis of the primary hyperoxalurias: a review.
Rumsby, G
2000-01-01
The primary hyperoxalurias are a group of inherited disorders of endogenous oxalate overproduction. Diagnosis of the two best-characterized disorders, primary hyperoxaluria (PH) Types 1 and 2, is achieved by sequential measurement of alanine:glyoxylate aminotransferase and glyoxylate reductase enzyme activity in a single needle liver biopsy. While genetic analysis of PH2 is still at a relatively early stage, the AGXT gene defective in the Type 1 disorder is well characterized, and a number of mutations have been identified. To determine whether mutation analysis could replace enzymatic analysis for the diagnosis of PH1, DNA samples from 127 consecutive unrelated patients in whom there was a high clinical suspicion of primary hyperoxaluria were analyzed for the presence of the G630A and T853C mutations, which together account for approximately 34% of the mutant alleles in our patient cohort. The sensitivity of mutation detection was 47% in those patients with enzymologically confirmed Type 1 disease, showing that mutation analysis cannot effectively replace enzymology at the present time. However, there is little doubt of the value of genetic methods (mutation and linkage analysis) for diagnosing PH1 (and eventually PH2) in other family members and for prenatal diagnosis and carrier testing.
Optimization of Urea-EnFET Based on Ta2O5 Layer with Post Annealing
Lue, Cheng-En; Yu, Ting-Chun; Yang, Chia-Ming; Pijanowska, Dorota G.; Lai, Chao-Sung
2011-01-01
In this study, the urea-enzymatic field effect transistors (EnFETs) were investigated based on pH-ion sensitive field effect transistors (ISFETs) with tantalum pentoxide (Ta2O5) sensing membranes. In addition, a post N2 annealing was used to improve the sensing properties. At first, the pH sensitivity, hysteresis, drift, and light induced drift of the ISFETs were evaluated. After the covalent bonding process and urease immobilization, the urea sensitivity of the EnFETs were also investigated and compared with the conventional Si3N4 sensing layer. The ISFETs and EnFETs with annealed Ta2O5 sensing membranes showed the best responses, including the highest pH sensitivity (56.9 mV/pH, from pH 2 to pH 12) and also corresponded to the highest urea sensitivity (61 mV/pCurea, from 1 mM to 7.5 mM). Besides, the non-ideal factors of pH hysteresis, time drift, and light induced drift of the annealed samples were also lower than the controlled Ta2O5 and Si3N4 sensing membranes. PMID:22163862
Optimization of urea-EnFET based on Ta2O5 layer with post annealing.
Lue, Cheng-En; Yu, Ting-Chun; Yang, Chia-Ming; Pijanowska, Dorota G; Lai, Chao-Sung
2011-01-01
In this study, the urea-enzymatic field effect transistors (EnFETs) were investigated based on pH-ion sensitive field effect transistors (ISFETs) with tantalum pentoxide (Ta(2)O(5)) sensing membranes. In addition, a post N(2) annealing was used to improve the sensing properties. At first, the pH sensitivity, hysteresis, drift, and light induced drift of the ISFETs were evaluated. After the covalent bonding process and urease immobilization, the urea sensitivity of the EnFETs were also investigated and compared with the conventional Si(3)N(4) sensing layer. The ISFETs and EnFETs with annealed Ta(2)O(5) sensing membranes showed the best responses, including the highest pH sensitivity (56.9 mV/pH, from pH 2 to pH 12) and also corresponded to the highest urea sensitivity (61 mV/pC(urea), from 1 mM to 7.5 mM). Besides, the non-ideal factors of pH hysteresis, time drift, and light induced drift of the annealed samples were also lower than the controlled Ta(2)O(5) and Si(3)N(4) sensing membranes.
A method for early determination of meat ultimate pH.
Young, O A; West, J; Hart, A L; van Otterdijk, F F H
2004-02-01
A patented method of rapidly determining the ultimate pH from approximate glycolytic potential of muscles of slaughtered animals has been devised. The method is based on the rapid hydrolysis of muscle glycogen to glucose by the enzyme amyloglucosidase and subsequent measurement of the liberated glucose. In acetate buffer at pH 4.5, glucose concentration can be determined in 30 s with domestic meters for diabetes control. The meter response differed from that of glucose in blood, but was linear with concentration. In slurries comprising homogenised meat in acetate buffer and added glucose, a similar linear response was obtained. Amyloglucosidase was capable of rapidly hydrolysing glycogen to glucose in such slurries. In the 24 h following slaughter, a decrease in glycogen, as determined by glucose, occurred in parallel with the decline in pH. At the same time, lactate progressively accumulated as expected. Values for the approximate glycolytic potential and (by calibration) ultimate pH, were obtained on prerigor muscle within 7 min of muscle sampling in an industrial environment. The method is suitable for on-line application in beef abattoirs particularly those employing hot boning where ultimate must be known at the grading point.
Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost
NASA Astrophysics Data System (ADS)
Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.
2012-12-01
Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2, +3, or +5 °C for 6 months. The pH decreased in all samples (5.5 to 5.9). The proportions of carbon in labile and intermediate turnover pools from permafrost samples decreased during incubation, while microbial biomass carbon increased in all cases. Microcosm samples and original core material were analyzed by 16S rDNA pyrosequencing and showed increased populations of bacteria that ferment simple and complex carbohydrates, as well as acidophilic bacteria. Microbial diversity declined in permafrost samples. Concentrations of CO2 and CH4 were measured monthly by gas chromatography. CO2 production was highest in the surface/near surface incubations (4-14%) while CH4 was undetectable. Active layer sediments produced considerably less CO2 (0.2-0.7%) but CH4 was detected up to 0.25%. Concentrations of CO2 found in the deep permafrost incubations were comparable to those in the active layer, while CH4 was considerably higher ranging from 0.2-0.6%. Overall, the CO2 generation rate (0.02-0.12 μmol/g/month) was roughly 50 times that of methanogenesis (0.002-0.007 μmol/g/month). GHG levels peaked after 4 months, and the decreasing pH suggested that organic acid accumulation could control GHG biogenesis. Surprisingly, increasing temperature and water content did not necessarily increase GHG emission rates or proportions of CO2 and CH4.
Quintana, José Benito; Rodil, Rosario; Cela, Rafael
2012-06-01
The degradation of two β-blockers (atenolol and propranolol) and one β-receptor agonist (salbutamol) during water chlorination was investigated by liquid chromatography-mass spectrometry (LC-MS). An accurate-mass quadrupole time-of-flight system (QTOF) was used to follow the time course of the pharmaceuticals and also used in the identification of the by-products. The degradation kinetics of these drugs was investigated at different concentrations of chlorine, bromide and sample pH by means of a Box-Behnken experimental design. Depending on these factors, dissipation half-lives varied in the ranges 68-145 h for atenolol, 1.3-33 min for salbutamol and 42-8362 min for propranolol. Normally, an increase in chlorine dosage and pH resulted in faster degradation of these pharmaceuticals. Moreover, the presence of bromide in water samples also resulted in a faster transformation of atenolol at low chlorine doses. The use of an accurate-mass high-resolution LC-QTOF-MS system permitted the identification of a total of 14 by-products. The transformation pathway of β-blockers/agonists consisted mainly of halogenations, hydroxylations and dealkylations. Also, many of these by-products are stable, depending on the chlorination operational parameters employed.
Time course of pH change in plant epidermis using microscopic pH imaging system
NASA Astrophysics Data System (ADS)
Dan, Risako; Shimizu, Megumi; Kazama, Haruko; Sakaue, Hirotaka
2010-11-01
We established a microscopic pH imaging system to track the time course of pH change in plant epidermis in vivo. In the previous research, we have found out that anthocyanin containing cells have higher pH. However, it was not clear whether the anthocyanin increased the pH or anthocyanin was synthesized result from the higher pH. Therefore, we further investigated the relationship between anthocyanin and pH change. To track the time course of pH change in plant epidermis, we established a system using luminescent imaging technique. We used HPTS (8-Hydroxypyrene-1,3,6-Trisulfonate) as pH indicator and applied excitation ratio imaging method. Luminescent image was converted to a pH distribution by obtained in vitro calibration using known pH solution. Cellular level observation was enabled by merging microscopic color picture of the same region to the pH change image. The established system was applied to epidermal cells of red-tip leaf lettuce, Lactuca Sativa L. and the time course was tracked in the growth process. We would discuss about the relationship between anthocyanin and pH change in plant epidermis.
Fast and "green" method for the analytical monitoring of haloketones in treated water.
Serrano, María; Silva, Manuel; Gallego, Mercedes
2014-09-05
Several groups of organic compounds have emerged as being particularly relevant as environmental pollutants, including disinfection by-products (DBPs). Haloketones (HKs), which belong to the unregulated volatile fraction of DBPs, have become a priority because of their occurrence in drinking water at concentrations below 1μg/L. The absence of a comprehensive method for HKs has led to the development of the first method for determining fourteen of these species. In an effort to miniaturise, this study develops a micro liquid-liquid extraction (MLLE) method adapted from EPA Method 551.1. In this method practically, the whole extract (50μL) was injected into a programmed temperature vaporiser-gas chromatography-mass spectrometer in order to improve sensitivity. The method was validated by comparing it to EPA Method 551.1 and showed relevant advantages such as: lower sample pH (1.5), higher aqueous/organic volume ratio (60), lower solvent consumption (200μL) and fast and cost-saving operation. The MLLE method achieved detection limits ranging from 6 to 60ng/L (except for 1,1,3-tribromo-3-chloroacetone, 120ng/L) with satisfactory precision (RSD, ∼6%) and high recoveries (95-99%). An evaluation was carried out of the influence of various dechlorinating agents as well as of the sample pH on the stability of the fourteen HKs in treated water. To ensure the HKs integrity for at least 1 week during storage at 4°C, the samples were acidified at pH ∼1.5, which coincides with the sample pH required for MLLE. The green method was applied to the speciation of fourteen HKs in tap and swimming pool waters, where one and seven chlorinated species, respectively, were found. The concentration of 1.1-dichloroacetone in swimming pool water increased ∼25 times in relation to tap water. Copyright © 2014 Elsevier B.V. All rights reserved.
Koziolek, Mirko; Grimm, Michael; Becker, Dieter; Iordanov, Ventzeslav; Zou, Hans; Shimizu, Jeff; Wanke, Christoph; Garbacz, Grzegorz; Weitschies, Werner
2015-09-01
Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Asghari, Alireza; Fazl-Karimi, Hamidreza; Barfi, Behruz; Rajabi, Maryam; Daneshfar, Ali
2014-08-01
Aminophenol isomers (2-, 3-, and 4-aminophenols) are typically classified as industrial pollutants with genotoxic and mutagenic effects due to their easy penetration through the skin and membranes of human, animals, and plants. In the present study, a simple and efficient ultrasound-assisted emulsification microextraction procedure coupled with high-performance liquid chromatography with ultraviolet detector was developed for preconcentration and determination of these compounds in human fluid and environmental water samples. Effective parameters (such as type and volume of extraction solvent, pH and ionic strength of sample, and ultrasonication and centrifuging time) were investigated and optimized. Under optimum conditions (including sample volume: 5 mL; extraction solvent: chloroform, 80 µL; pH: 6.5; without salt addition; ultrasonication: 3.5 min; and centrifuging time: 3 min, 5000 rpm min(-1)), the enrichment factors and limits of detection were ranged from 42 to 51 and 0.028 to 0.112 µg mL(-1), respectively. Once optimized, analytical performance of the method was studied in terms of linearity (0.085-157 µg mL(-1), r (2) > 0.998), accuracy (recovery = 88.6- 101.7%), and precision (repeatability: intraday precision < 3.98%, and interday precision < 5.12%). Finally, applicability of the method was evaluated by the extraction and determination of these compounds in human urine, hair dye, and real water samples. © The Author(s) 2014.
Zheng, Cao; Zhao, Jing; Bao, Peng; Gao, Jin; He, Jin
2011-06-24
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluation of trends in pH in the Yampa River, northwestern Colorado, 1950-2000
Chafin, Daniel T.
2002-01-01
In 1999, the U.S. Geological Survey began a study of pH trends in the Yampa River from near its headwaters to its mouth. The study was prompted by an apparent historical increase in measured pH at the Yampa River near Maybell, from an average of about 7.6 in the 1950's and 1960's to about 8.3 in the 1980's and 1990's. If real, further increase could cause more frequent exceedances of the Colorado water-quality standard of 9.0 and adversely affect aquatic life in the Yampa River Basin, including Dinosaur National Monument. The principal conclusion of this study is that this apparent historical increase in measured pH was caused mostly by changes in measurement protocol. Synoptic sampling during August 16-19, 1999, a period of relatively warm weather and base flow, showed that late afternoon pH of the Yampa River ranged from 8.46 to 9.20. The largest pH (9.20) exceeded the Colorado water-quality standard and was measured at Yampa River above Elk River, about 1.8 miles downstream from the Steamboat Springs Regional Waste Water Treatment Plant outfall, where nutrient enrichment caused photosynthesis by algae to dominate. Here, the dissolved oxygen concentration was 161 percent of saturation and carbon dioxide (CO2 was at 26 percent of saturation. At Yampa River downstream from a diversion near Hayden, 16.3 miles downstream, the effects of photosynthesis were still dominant, though attenuated by reaeration and dilution with freshwater from the Elk River. About 37.2 miles farther downstream, at Yampa River below Craig, which is about 6.2 miles downstream from the Craig Waste Water Treatment Plant, the effects of photosynthesis increased slightly, and pH rose to 8.80. Respiration plus oxidation of organic matter became dominant at Yampa River at Deerlodge Park in Dinosaur National Monument, where pH was 8.51, dissolved oxygen concentration was at 109 percent of saturation, and CO2 was at 189 percent of saturation. Respiration plus oxidation of organic matter, though diminished, apparently extended to the mouth of the Yampa River. Diurnal measurements on the Yampa River during August 23-26, 1999, show that the effects of photosynthesis and respiration plus oxidation of organic matter decreased downstream with distance from the developed urban area in the eastern part of the basin. Larger night-time values of pH in Dinosaur National Monument at Deerlodge Park and at the mouth of the Yampa River indicate that source waters varied with respect to capacity for respiration plus oxidation and photo-synthesis, that photosynthesis was minor, and that pH was largely controlled by respiration plus oxidation of organic matter. Synoptic sampling was repeated during March 13-16, 2000, when discharge was larger in response to late-winter melting of snow and ice at lower altitudes in the basin. Concentrations of nitrite plus nitrate were about 9 times greater in the Yampa River during March 2000 than during August 1999, and the largest increase (greater than 1,200 percent) was at Yampa River below Craig. At and downstream from Steamboat Springs, Colorado, pH at Yampa River sites averaged 8.85 during synoptic sampling in March 2000 compared to 8.70 in August 1999, with the partial pressure of carbon dioxide gas (PCO2) averaging 67 percent of saturation (compared to 99 percent during August 1999). The apparently larger effects of photosynthesis on pH and dissolved oxygen concentrations during March 2000 compared to August 1999 probably were caused by (1) slower rates of exchange of CO2 into and dissolved oxygen out of the river because of colder and deeper water and (2) slower rates of CO2 production and oxygen consumption resulting from slower rates of respiration by organisms and from slower rates of aerobic decomposition of organic matter in the colder river water and streambed sediment. Hypothetical thermodynamic simulations were done for samples collected in the lower Yampa River Basin to simulate the same amount of photosynthesis th
Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun
2014-09-01
The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.
Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David
2014-05-01
The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling rate. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Paul, J. C.; Schwab, P.; Knappett, P.; Deng, Y.
2017-12-01
Surface water pH values ranging from 2.5 to 2.6 have been reported in three lakes at a reclaimed lignite mine located in the Wilcox Formation of East Texas (the site). Traditional neutralization processes using alkaline chemicals to neutralize the surface water were found to be temporary solutions at the site. Low pH conditions usually are caused by oxidation of pyritic materials in the original tailings, but that was not always apparent based on previous studies at this site. The objective of this study is to determine factors contributing to acid seepage to aid in developing pre- and post-mining strategies to mitigate persistent acidity in surface waters at this and other sites. Mineralogy, hydrogeology, and hydrogeochemical reactions were evaluated. A network of 30 wells was used to monitor the water table and chemistry of the shallow, unconfined aquifer surrounding the lakes. Pressure transducers were deployed in 18 of these wells and each of the lakes to measure high frequency water levels over approximately one year. These water levels were contoured to visualize changing hydraulic head over time and determine the correlation in time between ground water flow directions and local rainfall events. Boreholes at 15 of the monitoring wells were continuously cored, and samples were taken at selected depth intervals based on pH measurements. XRD, SEM, and TEM were used to determine the mineralogy of select soil samples. Ion chromatography was used to determine sulfate concentration, and ICP-MS was used to determine solute concentrations from water and digested soil samples. Framboidal and microcrystalline pyrite were identified in the vadose zone in silt and clay-sized fractions; these minerals have high surface area that is conducive to rapid oxidation and acidification as ground water permeates from the vadose into the saturated zone. Morphology in addition to quantity of weatherable pyrite plays a significant role in acidification. Computer models were used to evaluate the effect of dissolving and precipitating solid phases on water chemistry along identified subsurface flow pathways with a focus on metal sulfides and iron oxides as influential to acid mine seepage into the affected lakes.
Removal of six pesticide residues in cowpea with alkaline electrolysed water.
Han, Yongtao; Song, Le; An, Quanshun; Pan, Canping
2017-06-01
Reduction of six pesticide residues (isoprocarb, chlorpyrifos, bifenthrin, beta-cypermethrin, difenoconazole and azoxystrobin) in cowpea by alkaline electrolysed water (AlEW) solutions with different pH was investigated. The commonly used washing treatments in household processing were used for comparison. The residue magnitudes were determined by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Results showed that the removal effect of AlEW solution on the six pesticides was superior to tap water, 5% sodium chloride, 5% sodium carbonate and 5% acetic acid solution. AlEW with pH 12.2 had more potential to eliminate the six pesticides in cowpeas. Moreover, the reduction of pesticide residues gradually increased with the increase of washing time. This study demonstrated that AlEW solution with pH of 12.2 could be used to reduce pesticide residues on fresh cowpea samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
A., Kluber Laurel [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Allen, Samantha A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hendershot, Nicholas [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2014-09-01
This data set contains the results of a microcosm incubation study on deep peat collected from the SPRUCE experimental site in the S1 Bog in September 2014. Microcosms were monitored for CO2 and CH4 production, and microbial community dynamics were assessed using qPCR and amplicon sequencing.The experiment was designed with a full factorial design with elevated temperature, nitrogen (N), (P), and pH treatments was used with samples from each transect serving replicates. In all, 96 microcosms were constructed to account for the 16 treatment combinations (N x P x pH x temperature), 2 time points, and 3 replicates. Temperature treatments were 6 °C, to mimic the SPRUCE ambient plot temperatures, and 15 °C to mimic the SPRUCE +9 °C treatment.
Bernardi, A; Bortoluzzi, E A; Felippe, W T; Felippe, M C S; Wan, W S; Teixeira, C S
2017-01-01
To evaluate nanoparticulate calcium carbonate (NPCC) using transmission electron microscopy and the effects of NPCC addition to MTA in regard to the setting time, dimensional change, compressive strength, solubility and pH. The experimental groups were G1 (MTA), G2 (MTA with 5% NPCC) and G3 (MTA with 10% NPCC). The tests followed ISO and ADA standards. The specimens in the dimensional change and compressive strength tests were measured immediately after setting, after 24 h and after 30 days. In the solubility test, rings filled with cement were weighed after setting and after 30 days. The pH was measured after 24 h and 30 days. The data were analysed with the ANOVA, Tukey's and Kruskal-Wallis tests (α = 5%). The setting time was reduced (P < 0.05) in samples from G2 and G3 compared to G1. After 24 h, the dimensional change was similar amongst the groups, and after 30 days, G2 was associated with less alteration than G1 and G3. There was a difference in the compressive strength (P < 0.001) after 24 h and 30 days (G1 > G2 > G3). The solubility test revealed a difference amongst the groups when the specimens were hydrated: G2 > G1 > G3 and dehydrated: G3 > G2 > G1. The pH of the groups was similar at 24 h with higher values in each group after 30 days (P < 0.05), and G2 and G3 had similar mean pH values but both were higher than G1. Nanoparticulate calcium carbonate had a cubic morphology with few impurities. The addition of nanoparticulate calcium carbonate to MTA accelerated the setting time, decreased compressive strength and, after 30 days, resulted in lower dimensional change (G2), higher solubility and a higher pH. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Guimarães, Vanessa; Rodríguez-Castellón, Enrique; Algarra, Manuel; Rocha, Fernando; Bobos, Iuliu
2016-11-05
The UO2(2+) adsorption on smectite (samples BA1, PS2 and PS3) with a heterogeneous structure was investigated at pH 4 (I=0.02M) and pH 6 (I=0.2M) in batch experiments, with the aim to evaluate the influence of pH, layer charge location and crystal thickness distribution. Mean crystal thickness distribution of smectite crystallite used in sorption experiments range from 4.8nm (sample PS2), to 5.1nm (sample PS3) and, to 7.4nm (sample BA1). Smaller crystallites have higher total surface area and sorption capacity. Octahedral charge location favor higher sorption capacity. The sorption isotherms of Freundlich, Langmuir and SIPS were used to model the sorption experiments. The surface complexation and cation exchange reactions were modeled using PHREEQC-code to describe the UO2(2+) sorption on smectite. The amount of UO2(2+) adsorbed on smectite samples decreased significantly at pH 6 and higher ionic strength, where the sorption mechanism was restricted to the edge sites of smectite. Two binding energy components at 380.8±0.3 and 382.2±0.3eV, assigned to hydrated UO2(2+) adsorbed by cation exchange and by inner-sphere complexation on the external sites at pH 4, were identified after the U4f7/2 peak deconvolution by X-photoelectron spectroscopy. Also, two new binding energy components at 380.3±0.3 and 381.8±0.3eV assigned to AlOUO2(+) and SiOUO2(+) surface species were observed at pH 6. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of pH and microbial composition on odour in food waste composting
Sundberg, Cecilia; Yu, Dan; Franke-Whittle, Ingrid; Kauppi, Sari; Smårs, Sven; Insam, Heribert; Romantschuk, Martin; Jönsson, Håkan
2013-01-01
A major problem for composting plants is odour emission. Slow decomposition during prolonged low-pH conditions is a frequent process problem in food waste composting. The aim was to investigate correlations between low pH, odour and microbial composition during food waste composting. Samples from laboratory composting experiments and two large scale composting plants were analysed for odour by olfactometry, as well as physico-chemical and microbial composition. There was large variation in odour, and samples clustered in two groups, one with low odour and high pH (above 6.5), the other with high odour and low pH (below 6.0). The low-odour samples were significantly drier, had lower nitrate and TVOC concentrations and no detectable organic acids. Samples of both groups were dominated by Bacillales or Actinobacteria, organisms which are often indicative of well-functioning composting processes, but the high-odour group DNA sequences were similar to those of anaerobic or facultatively anaerobic species, not to typical thermophilic composting species. High-odour samples also contained Lactobacteria and Clostridia, known to produce odorous substances. A proposed odour reduction strategy is to rapidly overcome the low pH phase, through high initial aeration rates and the use of additives such as recycled compost. PMID:23122203
... such as HIV/AIDS or hepatitis C. Normal Results Normal fetal blood sample results are: Normal pH: ... meaning of your specific test results. What Abnormal Results Mean A fetal scalp blood pH level of ...
Fakhari, Ali Reza; Tabani, Hadi; Nojavan, Saeed
2013-07-01
A simple and highly sensitive method that involves miniaturized hollow fibre assisted liquid-phase microextraction with gas chromatography-flame ionization detector was developed for the determination of trace concentration of sufentanil and alfentanil in biological samples. These drugs were extracted from 5 ml of aqueous solution with pH 10.0 into an organic extracting solvent (1-octanol) impregnated in the pores and lumen of a hollow fibre. After extraction for a prescribed time, 2.0 µl of the extraction solvent was injected directly in to the GC injection port. Under the optimized conditions, (1-octanol as extracting solvent, stirring rate of 700 rpm, 15% (w/v) salt addition, pH 10.0 and 25 min sampling time at 50 °C) large enrichment factors of 535 and 420 were achieved for sufentanil and alfentanil, respectively. Dynamic linear ranges were in the range of 0.05 to 500 ng/ml for sufentanil and 0.1 to 500 ng/ml for alfentanil. Limits of detection 0.01 and 0.02 ng/ml were obtained for sufentanil and alfentanil, respectively. The percent relative intra-day and inter-day standard deviations were found to be less than 8.4% (n = 5). Finally, this method was successfully applied for the separation, preconcentration and determination of trace concentration of sufentanil and alfentanil in plasma and urine samples. Copyright © 2012 John Wiley & Sons, Ltd.
Horčičiak, Michal; Masár, Marián; Bodor, Róbert; Danč, Ladislav; Bel, Peter
2012-03-01
A new method for the determination of trace glyphosate (GLYP), non-selective pesticide, by CZE with online ITP pre-treatment of drinking waters on a column-coupling (CC) chip has been developed. CC chip was equipped with two injection channels of 0.9 and 9.9 μL volumes, two separation channels of 9.3 μL total volume and a pair of conductivity detectors. A very effective ITP sample clean-up performed in the first channel at low pH (3.2) was introduced for quick CZE resolution and detection of GLYP carried out at higher pH (6.1) in the second channel on the CC chip. The LOD for GLYP was estimated at 2.5 μg/L (15 nmol/L) using a 9.9 |mL volume of the injection channel. ITP-CZE analyses of model and real samples have provided very favorable intra-day (0.1-1.2% RSD) and inter-day (2.9% RSD) repeatabilities of the migration time for GLYP while 0.2-6.9% RSD values were typical for the peak area data. Recoveries of GLYP in spiked drinking water varied in the range of 99-109%. A minimum pre-treatment of drinking water (degassing and dilution) and a short analysis time (ca. 10 min) were distinctive features of ITP-CZE determinations of GLYP on the CC chip with high sample volume loaded, as well. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mofidi, Zahra; Norouzi, Parviz; Sajadian, Masumeh; Ganjali, Mohammad Reza
2018-04-01
A novel, simple, and inexpensive analytical technique based on flat sheet supported liquid membrane microextraction coupled with fast Fourier transform stripping cyclic voltammetry on a reduced graphene oxide carbon paste electrode was used for the extraction and online determination of diclofenac in whole blood. First, diclofenac was extracted from blood samples using a polytetrafluoroethylene membrane impregnated with 1-octanol and then into an acceptor solution, subsequently it was oxidized on a carbon paste electrode modified with reduced graphene oxide nanosheets. The optimal values of the key parameters influencing the method were as follows: scan rate, 6 V/s; stripping potential, 200 mV; stripping time, 5 s; pH of the sample solution, 5; pH of the acceptor solution,7; and extraction time, 240 min. The calibration curves were plotted for the whole blood samples and the method was found to have a good linearity within the range of 1-25 μg/mL with a determination coefficient of 0.99. The limits of detection and quantification were 0.1 and 1.0 μg/mL, respectively. Using this coupled method, the extraction and determination were merged into one step. Accordingly, the speed of detection for sensitive determination of diclofenac in complex samples, such as blood, increased considerably. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ferdinands, Jill M; Crawford, Carol A Gotway; Greenwald, Roby; Van Sickle, David; Hunter, Eric; Teague, W Gerald
2008-01-01
Background Vigorous outdoors exercise during an episode of air pollution might cause airway inflammation. The purpose of this study was to examine the effects of vigorous outdoor exercise during peak smog season on breath pH, a biomarker of airway inflammation, in adolescent athletes. Methods We measured breath pH both pre- and post-exercise on ten days during peak smog season in 16 high school athletes engaged in daily long-distance running in a downwind suburb of Atlanta. The association of post-exercise breath pH with ambient ozone and particulate matter concentrations was tested with linear regression. Results We collected 144 pre-exercise and 146 post-exercise breath samples from 16 runners (mean age 14.9 years, 56% male). Median pre-exercise breath pH was 7.58 (interquartile range: 6.90 to 7.86) and did not change significantly after exercise. We observed no significant association between ambient ozone or particulate matter and post-exercise breath pH. However both pre- and post-exercise breath pH were strikingly low in these athletes when compared to a control sample of 14 relatively sedentary healthy adults and to published values of breath pH in healthy subjects. Conclusion Although we did not observe an acute effect of air pollution exposure during exercise on breath pH, breath pH was surprisingly low in this sample of otherwise healthy long-distance runners. We speculate that repetitive vigorous exercise may induce airway acidification. PMID:18328105
Ayres, Zoë J; Borrill, Alexandra J; Newland, Jonathan C; Newton, Mark E; Macpherson, Julie V
2016-01-05
The development of a voltammetric boron doped diamond (BDD) pH sensor is described. To obtain pH sensitivity, laser micromachining (ablation) is utilized to introduce controlled regions of sp(2) carbon into a high quality polycrystalline BDD electrode. The resulting sp(2) carbon is activated to produce electrochemically reducible quinone groups using a high temperature acid treatment, followed by anodic polarization. Once activated, no further treatment is required. The quinone groups show a linear (R(2) = 0.999) and Nernstian (59 mV/(pH unit)) pH-dependent reductive current-voltage response over a large analyzable pH range, from pH 2 to pH 12. Using the laser approach, it is possible to optimize sp(2) coverage on the BDD surface, such that a measurable pH response is recorded, while minimizing background currents arising from oxygen reduction reactions on sp(2) carbon in the potential region of interest. This enables the sensor to be used in aerated solutions, boding well for in situ analysis. The voltammetric response of the electrode is not compromised by the presence of excess metal ions such as Pb(2+), Cd(2+), Cu(2+), and Zn(2+). Furthermore, the pH sensor is stable over a 3 month period (the current time period of testing), can be stored in air between measurements, requires no reactivation of the surface between measurements, and can be reproducibly fabricated using the proposed approach. The efficacy of this pH sensor in a real-world sample is demonstrated with pH measurements in U.K. seawater.
The Relationship between TOC and pH with Exchangeable Heavy Metal Levels in Lithuanian Podzols
NASA Astrophysics Data System (ADS)
Khaledian, Yones; Pereira, Paulo; Brevik, Eric C.; Pundyte, Neringa; Paliulis, Dainius
2017-04-01
Heavy metals can have a negative impact on public and environmental health. The objective of this study was to investigate the relationship between total organic carbon (TOC) and pH with exchangeable heavy metals (Pb, Cd, Cu and Zn) in order to predict exchangeable heavy metal content in soils sampled near Panevėžys and Kaunas, Lithuania. Principal component regression (PCR) and nonlinear regression methods were tested to find the statistical relationship between TOC and pH with heavy metals. The results of PCR [R2 = 0.68, RMSE = 0.07] and non-linear regression [R2 = 0.74, RMSE= 0.065] (pH with TOC and exchangeable parameters) were statistically significant. However, this was not observed in the relationships of pH and TOC separately with exchangeable heavy metals. The results indicated that pH had a higher correlation with exchangeable heavy metals (non-linear regression [R2 = 0.72, RMSE= 0.066]) than TOC with heavy metals [R2 = 0.30, RMSE= 0.004]. It can be concluded that even though there was a strong relationship between TOC and pH with exchangeable metals, the metal mobility (exchangeable metals) can be explained by pH better than TOC in this study. Finally, manipulating soil pH could likely be productive to assess and control heavy metals when financial and time limitations exist (Khaledian et al. 2016). Reference(s) Khaledian Y, Pereira P, Brevik E.C, Pundyte N, Paliulis D. 2016. The Influence of Organic Carbon and pH on Heavy Metals, Potassium, and Magnesium Levels in Lithuanian Podzols. Land Degradation and Development. DOI: 10.1002/ldr.2638
Vu-Van, Tu; Pham-Duc, Phuc; Winkler, Mirko S; Zurbrügg, Christian; Zinsstag, Jakob; Le Thi Thanh, Huong; Bich, Tran Huu; Nguyen-Viet, Hung
2017-02-01
We studied the influence of different additive materials (lime, and rice husk) and aeration conditions on Ascaris lumbricoides egg die-off in 24 vaults of an experimental excreta storage unit. Excreta samples were collected once every two weeks over a 181-day period. Temperature, pH, and moisture content were recorded. A. lumbricoides eggs were quantitatively analyzed by the Romanenko method, which identified and counted live and dead eggs. From the first sampling (0 storage day) to the final sampling (181 storage days) the average percentage of viable A. lumbricoides eggs decreased gradually from 76.72 ± 11.23% (mean ± SD) to 8.26 ± 5.20%. The storage time and the high pH value significantly increased the die-off of helminth eggs. Over 181 storage days, all vaults option effectively reduced A. lumbricoides eggs die-off. The best vault option, with aeration and 10% lime per total weight, met the WHO standard for excreta treatment on the 111th storage day.
Determination of Acidity in Donor Milk.
Escuder-Vieco, Diana; Vázquez-Román, Sara; Sánchez-Pallás, Juan; Ureta-Velasco, Noelia; Mosqueda-Peña, Rocío; Pallás-Alonso, Carmen Rosa
2016-11-01
There is no uniformity among milk banks on milk acceptance criteria. The acidity obtained by the Dornic titration technique is a widely used quality control in donor milk. However, there are no comparative data with other acidity-measuring techniques, such as the pH meter. The objective of this study was to assess the correlation between the Dornic technique and the pH measure to determine the pH cutoff corresponding to the Dornic degree limit value used as a reference for donor milk quality control. Fifty-two human milk samples were obtained from 48 donors. Acidity was measured using the Dornic method and pH meter in triplicate. Statistical data analysis to estimate significant correlations between variables was carried out. The Dornic acidity value that led to rejecting donor milk was ≥ 8 Dornic degrees (°D). In the evaluated sample size, Dornic acidity measure and pH values showed a statistically significant negative correlation (τ = -0.780; P = .000). A pH value of 6.57 corresponds to 8°D and of 7.12 to 4°D. Donor milk with a pH over 6.57 may be accepted for subsequent processing in the milk bank. Moreover, the pH measurement seems to be more useful due to certain advantages over the Dornic method, such as objectivity, accuracy, standardization, the lack of chemical reagents required, and the fact that it does not destroy the milk sample.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.
Hamidi, Fatemeh; Hadjmohammadi, Mohammad Reza; Aghaie, Ali B G
2017-09-15
The applicability of Amino-functionalized Fe 3 O 4 nanoparticles (NPs) as an effective adsorbent was developed for the extraction and determination of clomipramine (CLP) in plasma sample by ultrasound-assisted dispersive magnetic solid phase extraction (UADM-SPE) and high-performance liquid chromatography-ultraviolet (HPLC-UV) detection. Fabrication of the Fe 3 O 4 @SiO 2 -NH 2 magnetic nanoparticles confirmed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The effect of different extraction parameters (i.e. pH of the sample solution, the amount of magnetic nanoparticles (MNPs), sample volume, temperature and sonication time) on the extraction recovery of CLP were investigated by response surface methodology through central composite design (CCD). The optimum condition is obtained when the affecting parameters are set to: pH of the sample solution=9, the amount of MNPs=37mg, sample volume=23mL, 25°C temperature and sonication time=1min. Under the optimum condition, extraction recovery was 90.6% with relative standard deviation of 3.5%, and enrichment factor of 117. The linear range for determination of CLP was 0.017-0.70mgL -1 with a determination coefficient (R 2 ) of 0.999. Limit of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.0167mgL -1 , respectively. The established UADM-SPE-HPLC-UV method was rapid, simple and efficient for determination of CLP in human plasma samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Kane, Lesley A; Yung, Christina K; Agnetti, Giulio; Neverova, Irina; Van Eyk, Jennifer E
2006-11-01
Separation of basic proteins with 2-DE presents technical challenges involving protein precipitation, load limitations, and streaking. Cardiac mitochondria are enriched in basic proteins and difficult to resolve by 2-DE. We investigated two methods, cup and paper bridge, for sample loading of this subproteome into the basic range (pH 6-11) gels. Paper bridge loading consistently produced improved resolution of both analytical and preparative protein loads. A unique benefit of this technique is that proteins retained in the paper bridge after loading basic gels can be reloaded onto lower pH gradients (pH 4-7), allowing valued samples to be analyzed on multiple pH ranges.
Should bulk cloudwater or fogwater samples obey Henry's law?
NASA Astrophysics Data System (ADS)
Pandis, Spyros N.; Seinfeld, John H.
1991-06-01
Mixing of droplets with different pH that are individually in Henry's law equilibrium with the surrounding atmosphere always results in a bulk mixture that is supersaturated with weak acids like S(IV) and HCOOH, and bases like NH3 with respect to the original atmosphere. High supersaturations result only when the pH of the bulk droplet mixture exceeds the pKa of the species, in which pH range large pH differences among droplets of different sizes lead to large deviations from Henry's law for the bulk mixture. The deviation is shown to depend on the ratio of the arithmetic mean to the harmonic mean of the hydrogen ion concentrations of the droplets with the liquid water content used as weighting factor in the calculation of the means. The theory developed can explain observed discrepancies from Henry's law in atmospheric samples and also other observed phenomena like the reported increase of pH values of bulk aqueous samples during storage.
Golden, Max C; Wanless, Brandon J; David, Jairus R D; Lineback, D Scott; Talley, Ryan J; Kottapalli, Bala; Glass, Kathleen A
2017-08-01
Clostridium botulinum is a foreseeable biological hazard in prepared refrigerated meals that needs to be addressed in food safety plans. The objective of this study was to evaluate the effect of product composition and storage temperature on the inhibition of botulinum toxin formation in nine experimental meals (meat, vegetable, or carbohydrate based). Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin in samples stored at 25°C for up to 96 h for phase 1, or at 25°C for 12 h and then transferred to 12.5°C for up to 12 and 6 weeks in phases 1 and 2, respectively. For phase 1, none of the treatments (equilibrated pH 5.8) supported toxin production when stored at 25°C for 48 h, but toxin production was observed in all treatments at 72 h. For the remaining experiments with storage at 12.5°C, toxin production was dependent on equilibrated pH, storage time, and growth of indigenous spoilage microorganisms. In phase 1, no gross spoilage and no botulinum toxin was detected for any treatment (pH ≤5.8) stored at 12.5°C for 12 weeks. In phase 2, gross spoilage varied by commodity, with the brussels sprouts meal with pH 6.5 showing the most rapid spoilage within 2 weeks and botulinum toxin detected at 5 and 6 weeks for the control and cultured celery juice treatments, respectively. In contrast, spoilage microbes decreased the pH of a pH 5.9 beef treatment by 1.0 unit, potentially inhibiting C. botulinum through 6 weeks at 12.5°C. None of the other treatments with pH 5.8 or below supported toxin production or spoilage. This study provides validation for preventive controls in refrigerated meals. These include equilibrated product pH and storage temperature and time to inhibit toxin formation by proteolytic C. botulinum, but the impact of indigenous microflora on safety and interpretation of challenge studies is also highlighted.
NASA Astrophysics Data System (ADS)
Hu, Yongguang; Li, Pingping; Mao, Hanping; Chen, Bin; Wang, Xi
2006-12-01
pH of the wetland soil is one of the most important indicators for aquatic vegetation and water bodies. Mount Beigu Wetland, just near the Yangtse River, is under ecological recovery. Visible and near infrared reflectance spectroscopy was adopted to estimate soil pH of the wetland. The spectroradiometer, FieldSpec 3 (ASD) with a full spectral range (350-2500 nm), was used to acquire the reflectance spectra of wetland soil, and soil pH was measured with the pH meter of IQ150 (Spectrum) and InPro 3030 (Mettler Toledo). 146 soil samples were taken with soil sampler (Eijkelkamp) according to different position and depth, which covered the wider range of pH value from 7.1 to 8.39. 133 samples were used to establish the calibration model with the method of partial least square regression and principal component analysis regression. 13 soil samples were used to validate the model. The results show that the model is not good, but the mean error and root mean standard error of prediction are less (1.846% and 0.186 respectively). Spectral reflectancebased estimation of soil pH of the wetland is applicable and the calibration model needs to be improved.
The pH and ionic composition of stratiform cloud water
NASA Astrophysics Data System (ADS)
Castillo, Raymond A.; Jiusto, James E.; Mclaren, Eugene
Over 50 cloud water samples were collected during five comprehensive case studies of the water chemistry of stratiform clouds at Whiteface Mountain, New York. The water samples were analyzed for pH, conductivity and ions of sodium, potassium, magnesium, calcium, ammonium, sulfate, chloride and nitrate. Trajectory analyses and cloud condensation nucleus concentrations at 0.5 % confirmed that the air masses in all five of these cases represented continental air that was relatively clean (low aerosol concentration) for the northeystern United States. The major ions related to cloud water pH were found to be sulfate, nitrate, potassium, ammonium and calcium. The results revealed a mean hydrogen ion concentration [ H+] = 0.239 meq ℓ -1 ( σ = ± 0.21) which converts to a mean pH = 3.6 for all collected cloud samples. The low pH values are related to a normal background of nitrate ions found in the rural continental air masses plus sulfate ions largely from the industrial emissions of the midwestern United States. The [NO -3], in two of the three cases presented, demonstrates the importance of the nitrate ions' contribution to the pH of cloud water. A dependent means analysis of 40 events yielded a significant difference (0.04 level of significance), with the mean pH of precipitation (4.2) being greater than the mean pH of cloud water (4.0) for event samples. The ion concentrations indicated that the cloud rainout process contributed from 67 % to almost 100% of the total ion concentration of the precipitation. The washout process, i.e. precipitation scavenging below the cloud base, contributed considerably less than the cloud/rainout process of those total precipitation anions associated with air pollution.
Water-quality and ground-water-level data, Bernalillo County, central New Mexico, 1995
Rankin, D.R.
1996-01-01
Water-quality and ground-water-level data were collected in two areas of eastern Bernalillo County in central New Mexico between March and July of 1995. Fifty-one wells, two springs, and the Ojo Grande Acequia in the east mountain area of Bernalillo County and nine wells in the northeast area of the city of Albuquerque were sampled. The water samples were analyzed for selected nutrient species; total organic carbon; major dissolved constituents; dissolved arsenic, boron, iron, and manganese; and methylene blue active substances. Analytical results were used to compute hardness, sodium adsorption ratio, and dissolved solids. Specific conductance, pH, temperature, and alkalinity were measured in the field at the time of sample collection. Ground- water-level and well-depth measurements were made at the time of sample collection when possible. Water-quality data, ground- water-level data, and well-depth data are presented in tabular form.
NASA Astrophysics Data System (ADS)
Khajeh, Mostafa; Pedersen-Bjergaard, Stig; Barkhordar, Afsaneh; Bohlooli, Mousa
2015-02-01
In this study, wheat stem was used for electromembrane extraction (EME) for the first time. The EME technique involved the use of a wheat stem whose channel was filled with 3 M HCl, immersed in 10 mL of an aqueous sample solution. Thorium migrated from aqueous samples, through a thin layer of 1-octanol and 5%v/v Di-(2-ethylhexyl) phosphate (DEHP) immobilized in the pores of a porous stem, and into an acceptor phase solution present inside the lumen of the stem. The pH of donor and acceptor phases, extraction time, voltage, and stirring speed were optimized. At the optimum conditions, an enrichment factor of 50 and a limit of detection of 0.29 ng mL-1 was obtained for thorium. The developed procedure was then applied to the extraction and determination of thorium in water samples and in reference material.
Mexis, S F; Chouliara, E; Kontominas, M G
2009-09-01
In the present study the combined effect of an O2 absorber and oregano essential oil (0.4% v/w) on shelf life extension of rainbow trout fillets (Onchorynchus mykiss) stored under refrigeration (4 degrees C) was investigated. The study was based on microbiological [TVC, Pseudomonas spp., Lactic Acid Bacteria, H2S-producing bacteria including Shewanella putrefaciens, Enterobacteriaceae and Clostridium spp.), physicochemical (pH, PV, TBA, TVBN and Drip loss) and sensory (odor, taste) changes occurring in the product as a function of treatment and storage time. Aerobically-packaged rainbow trout fillets stored at 4 degrees C were taken as control samples. Results showed that TVC exceeded 7 log cfu/g on day 4 of storage for control samples, day 7-8 for samples containing oregano oil, day 9 for samples containing the O2 absorber and day 12-13 for samples containing the O2 absorber and oregano oil. Pseudomonas spp., Enterobacteriaceae and LAB were only partially inhibited by the O2 absorber and/or the oregano oil. In all cases the inhibition effect was more pronounced when the combination of O2 absorber with oregano essential oil was used. pH decreased from an initial value of 6.65-6.09 and subsequently increased to 6.86 due to formation of protein decomposition products. % Drip loss ranged between 7% and 11-12% at the end of the product shelf life. PV values ranged between 11.4 and 27.0 meq O2/kg oil while malondialdehyde (MDA) ranged between 9.6 and 24.5 mg/kg. TVBN ranged between 10.6 and 54.6 mg/kg at the time of sensory rejection. Sensory shelf life was 4 days for the control samples, 7-8 days for samples containing oregano oil, 13-14 days for samples containing the O2 absorber and 17 days for samples containing the O2 absorber plus oregano oil.
Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad
2016-01-01
Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865
Sanagi, Mohd Marsin; Miskam, Mazidatulakmam; Wan Ibrahim, Wan Aini; Hermawan, Dadan; Aboul-Enein, Hassan Y
2010-07-01
A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.
Maton, Kenneth I; Beason, Tiffany S; Godsay, Surbhi; Sto Domingo, Mariano R; Bailey, TaShara C; Sun, Shuyan; Hrabowski, Freeman A
2016-01-01
Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs than comparison students. The first of two studies in this report extends the prior research by examining levels of PhD completion for Meyerhoff (N = 479) versus comparison sample (N = 249) students among the first 16 cohorts. Entering African-American Meyerhoff students were 4.8 times more likely to complete STEM PhDs than comparison sample students. To enhance understanding of potential mechanisms of influence, the second study used data from the 22nd (Fall 2010) to 25th (Fall 2013) cohorts (N = 109) to test the hypothesis that perceived program benefit at the end of freshman year would mediate the relationship between sense of community at the end of Summer Bridge and science identity and research self-efficacy at the end of sophomore year. Study 2 results indicated that perceived program benefit fully mediated the relationship between sense of community and both criterion measures. The findings underscore the potential of comprehensive STEM intervention programs to enhance PhD completion, and suggest mechanisms of influence. © 2016 K. I. Maton et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Effect of White Charcoal on COD Reduction in Wastewater Treatment
NASA Astrophysics Data System (ADS)
Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil
2017-06-01
The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.
Eteng, M U; Ebong, P E; Eyong, E U; Ettarh, R R
2001-08-01
The effect of storage on stability of human breast milk was investigated in 30 lactating mothers. Samples stored for 3, 6 and 24 hours at ambient temperature of 302K (29 degrees) were analysed for protein, lactose, pH, and microbial content. There were significant (p < 0.01) decreases in protein, lactose and pH upon storage for 6 and 24 hours, compared with storage for 3 hours as control. The mean +/- SEM values for protein for 6 and 24 hours were 15.56 +/- 0.48 and 13.27 +/- 0.50, compared with 17.26 +/- 0.41 for 3 hours. For lactose, corresponding values for 6 and 24 hours were 0.08 +/- 0.005 and 0.07 +/- 0.006, compared with 3 hours (0.09 +/- 0.005). The pH values were 6.1 +/- 0.09, 5.9 +/- 0.07 in 3, 6 and 24 hour samples rspectively. The skin floras investigated were Streptococcus viridians, Straphylococcus aureus and Staphylococcus albus. The microbial content increased with increase in storage time from 3 to 24 hours. The predominant bacterial specie was S. Albus, followed by S.viridians and S. aureus. A positive correlation (r = 0.453, p < 0.01) between lactose level and pH were obtained. These results suggest that breast milk is stable for 3 hours, beyond which significant changes occur in its biochemical composition and nutritional quality. The implications of these findings are discussed with respect to its consequences on their child's survival.
2018-01-01
Starch is increasingly used as a functional group in many industrial applications and foods due to its ability to work as a thickener. The experimental values of extracting starch from yellow skin potato indicate the processing conditions at 3000 rpm and 15 min as optimum for the highest yield of extracted starch. The effect of adding different concentrations of extracted starch under the optimized conditions was studied to determine the acidity, pH, syneresis, microbial counts, and sensory evaluation in stored yogurt manufactured at 5 °C for 15 days. The results showed that adding sufficient concentrations of starch (0.75%, 1%) could provide better results in terms of the minimum change in the total acidity, decrease in pH, reduction in syneresis, and preferable results for all sensory parameters. The results revealed that the total bacteria count of all yogurt samples increased throughout the storage time. However, adding different concentrations of optimized extracted starch had a significant effect, decreasing the microbial content compared with the control sample (YC). In addition, the results indicated that coliform bacteria were not found during the storage time. PMID:29382115
Novel pH sensing semiconductor for point-of-care detection of HIV-1 viremia
Gurrala, R.; Lang, Z.; Shepherd, L.; Davidson, D.; Harrison, E.; McClure, M.; Kaye, S.; Toumazou, C.; Cooke, G. S.
2016-01-01
The timely detection of viremia in HIV-infected patients receiving antiviral treatment is key to ensuring effective therapy and preventing the emergence of drug resistance. In high HIV burden settings, the cost and complexity of diagnostics limit their availability. We have developed a novel complementary metal-oxide semiconductor (CMOS) chip based, pH-mediated, point-of-care HIV-1 viral load monitoring assay that simultaneously amplifies and detects HIV-1 RNA. A novel low-buffer HIV-1 pH-LAMP (loop-mediated isothermal amplification) assay was optimised and incorporated into a pH sensitive CMOS chip. Screening of 991 clinical samples (164 on the chip) yielded a sensitivity of 95% (in vitro) and 88.8% (on-chip) at >1000 RNA copies/reaction across a broad spectrum of HIV-1 viral clades. Median time to detection was 20.8 minutes in samples with >1000 copies RNA. The sensitivity, specificity and reproducibility are close to that required to produce a point-of-care device which would be of benefit in resource poor regions, and could be performed on an USB stick or similar low power device. PMID:27829667
Speciation of trihalomethane mixtures for the Mississippi, Missouri, and Ohio Rivers
Rathbun, R.E.
1996-01-01
Trihalomethane formation potentials were determined for the chlorination of water samples from the Mississippi, Missouri, and Ohio Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at 12 locations on the Mississippi from New Orleans, LA, to Minneapolis, MN, and on the Missouri and Ohio 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH and initial free-chlorine concentration. Chloroform concentrations decreased with distance downstream and approximately paralleled the decrease of the dissolved organic-carbon concentration. Bromide concentrations were 3.7-5.7 times higher for the Missouri and 1.4-1.6 times higher for the Ohio than for the Mississippi above their confluences, resulting in an overall increase of the bromide concentration with distance downstream. Variations of the concentrations of the brominated trihalomethanes with distance downstream approximately paralleled the variation of the bromide concentration. Concentrations of all four trihalomethanes increased as the pH increased. Concentrations of chloroform and bromodichloromethane increased slightly and the concentration of bromoform decreased as the initial free-chlorine concentration increased; the chlorodibromomethane concentration had little dependence on the free-chlorine concentration.
Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul
2016-01-01
This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.
Intracellular pH Response to Weak Acid Stress in Individual Vegetative Bacillus subtilis Cells.
Pandey, Rachna; Vischer, Norbert O E; Smelt, Jan P P M; van Beilen, Johan W A; Ter Beek, Alexander; De Vos, Winnok H; Brul, Stanley; Manders, Erik M M
2016-11-01
Intracellular pH (pH i ) critically affects bacterial cell physiology. Hence, a variety of food preservation strategies are aimed at perturbing pH i homeostasis. Unfortunately, accurate pH i quantification with existing methods is suboptimal, since measurements are averages across populations of cells, not taking into account interindividual heterogeneity. Yet, physiological heterogeneity in isogenic populations is well known to be responsible for differences in growth and division kinetics of cells in response to external stressors. To assess in this context the behavior of intracellular acidity, we have developed a robust method to quantify pH i at single-cell levels in Bacillus subtilis Bacilli spoil food, cause disease, and are well known for their ability to form highly stress-resistant spores. Using an improved version of the genetically encoded ratiometric pHluorin (IpHluorin), we have quantified pH i in individual B. subtilis cells, cultured at an external pH of 6.4, in the absence or presence of weak acid stresses. In the presence of 3 mM potassium sorbate, a decrease in pH i and an increase in the generation time of growing cells were observed. Similar effects were observed when cells were stressed with 25 mM potassium acetate. Time-resolved analysis of individual bacteria in growing colonies shows that after a transient pH decrease, long-term pH evolution is highly cell dependent. The heterogeneity at the single-cell level shows the existence of subpopulations that might be more resistant and contribute to population survival. Our approach contributes to an understanding of pH i regulation in individual bacteria and may help scrutinizing effects of existing and novel food preservation strategies. This study shows how the physiological response to commonly used weak organic acid food preservatives, such as sorbic and acetic acids, can be measured at the single-cell level. These data are key to coupling often-observed single-cell heterogeneous growth behavior upon the addition of weak organic acid food preservatives. Generally, these data are gathered in the form of plate counting of samples incubated with the acids. Here, we visualize the underlying heterogeneity in cellular pH homeostasis, opening up avenues for mechanistic analyses of the heterogeneity in the weak acid stress response. Thus, microbial risk assessment can become more robust, widening the scope of use of these well-known weak organic acid food preservatives. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DETERMINATION OF DITHIOCARBAMATE PESTICIDES IN WASTEWATERS
A method was modified and validated for the determination of dithiocarbamate pesticides in wastewaters. The developed method consists of sample pH adjustment to pH 12.2; removal of indigenous CS2 by purging in a vortex evaporator; acidification of the sample to hydrolyze dithioca...
Galfi, Istvan; Virtanen, Jorma; Gasik, Michael M.
2017-01-01
A new, faster and more reliable analytical methodology for S(IV) species analysis at low pH solutions by bichromatometry is proposed. For decades the state of the art methodology has been iodometry that is still well justified method for neutral solutions, thus at low pH media possess various side reactions increasing inaccuracy. In contrast, the new methodology has no side reactions at low pH media, requires only one titration step and provides a clear color change if S(IV) species are present in the solution. The method is validated using model solutions with known concentrations and applied to analyses of gaseous SO2 from purged solution in low pH media samples. The results indicate that bichromatometry can accurately analyze SO2 from liquid samples having pH even below 0 relevant to metallurgical industrial processes. PMID:29145479
2014-01-01
Background We investigated Polygonum hydropiper L. (P. hydropiper) for phenolic contents, antioxidant, anticholinesterase activities, in an attempt to rationalize its use in neurological disorders. Methods Plant crude extract (Ph.Cr), its subsequent fractions: n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq) and saponins (Ph.Sp) were evaluated for 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) free radical scavenging potential. Further, acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities were performed using Ellman's assay. Moreover, total phenolic contents of plant extracts were determined and expressed in mg of gallic acid equivalent per gram of dry sample (mg GAE/g dry weight). Results Among different fractions, Ph.Cr (90.82), Ph.Chf (178.16), Ph.EtAc (203.44) and Ph.Bt (153.61) exhibited high phenolic contents. All fractions showed concentration dependent DPPH scavenging activity, with Ph.EtAc 71.33% (IC50 15 μg/ml), Ph.Bt 71.40% (IC50 3 μg/ml) and Ph.Sp 71.40% (IC50 35 μg/ml) were most potent. The plant extracts exhibited high ABTS scavenging ability i.e. Ph.Bt (91.03%), Ph.EtAc (90.56%), Ph.Sp (90.84%), Ph.Aq (90.56%) with IC50 < 0.01 μg/ml. All fractions showed moderate to high AChE inhibitory activity as; Ph.Cr, 86.87% (IC50 330 μg/ml), Ph.Hex, 87.49% (IC50 35 μg/ml), Ph.Chf, 84.76% (IC50 55 μg/ml), Ph.Sp, 87.58% (IC50 108 μg/ml) and Ph.EtAc 79.95% (IC50 310 μg/ml) at 1 mg/ml). Furthermore the BChE inhibitory activity was most prominent in Ph.Hex 90.30% (IC50 40 μg/ml), Ph.Chf 85.94% (IC50 215 μg/ml), Ph.Aq 87.62% (IC50 3 μg/ml) and Ph.EtAc 81.01% (IC50 395 μg/ml) fractions. Conclusions In this study, for the first time, we determined phenolic contents, isolated crude saponins, investigated antioxidant and anticholinestrase potential of P. hydropiper extracts. The results indicate that P. hydropiper is enriched with potent bioactive compounds and warrant further investigation by isolation and structural elucidation to find novel and affordable compounds for the treatment of various neurological disorders. PMID:24884823
Ayaz, Muhammad; Junaid, Muhammad; Ahmed, Jawad; Ullah, Farhat; Sadiq, Abdul; Ahmad, Sajjad; Imran, Muhammad
2014-05-03
We investigated Polygonum hydropiper L. (P. hydropiper) for phenolic contents, antioxidant, anticholinesterase activities, in an attempt to rationalize its use in neurological disorders. Plant crude extract (Ph.Cr), its subsequent fractions: n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq) and saponins (Ph.Sp) were evaluated for 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) free radical scavenging potential. Further, acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities were performed using Ellman's assay. Moreover, total phenolic contents of plant extracts were determined and expressed in mg of gallic acid equivalent per gram of dry sample (mg GAE/g dry weight). Among different fractions, Ph.Cr (90.82), Ph.Chf (178.16), Ph.EtAc (203.44) and Ph.Bt (153.61) exhibited high phenolic contents. All fractions showed concentration dependent DPPH scavenging activity, with Ph.EtAc 71.33% (IC50 15 μg/ml), Ph.Bt 71.40% (IC50 3 μg/ml) and Ph.Sp 71.40% (IC50 35 μg/ml) were most potent. The plant extracts exhibited high ABTS scavenging ability i.e. Ph.Bt (91.03%), Ph.EtAc (90.56%), Ph.Sp (90.84%), Ph.Aq (90.56%) with IC50<0.01 μg/ml. All fractions showed moderate to high AChE inhibitory activity as; Ph.Cr, 86.87% (IC50 330 μg/ml), Ph.Hex, 87.49% (IC50 35 μg/ml), Ph.Chf, 84.76% (IC50 55 μg/ml), Ph.Sp, 87.58% (IC50 108 μg/ml) and Ph.EtAc 79.95% (IC50 310 μg/ml) at 1 mg/ml). Furthermore the BChE inhibitory activity was most prominent in Ph.Hex 90.30% (IC50 40 μg/ml), Ph.Chf 85.94% (IC50 215 μg/ml), Ph.Aq 87.62% (IC50 3 μg/ml) and Ph.EtAc 81.01% (IC50 395 μg/ml) fractions. In this study, for the first time, we determined phenolic contents, isolated crude saponins, investigated antioxidant and anticholinestrase potential of P. hydropiper extracts. The results indicate that P. hydropiper is enriched with potent bioactive compounds and warrant further investigation by isolation and structural elucidation to find novel and affordable compounds for the treatment of various neurological disorders.
Chemical characterization of fog and rain water collected at the eastern Andes cordillera
NASA Astrophysics Data System (ADS)
Beiderwieden, E.; Wrzesinsky, T.; Klemm, O.
2005-06-01
During a three month period in 2003 and 2004, the chemistry of fog and rainwater were studied at the "El Tiro" site in a tropical mountain forest ecosystem in Ecuador, South America. The fogwater samples were collected using a passive fog collector, and for the rain water, a standard rain sampler was employed. For all samples, electric conductivity, pH, and the concentrations of NH4+, K+, Na+, Ca2+, Mg2+, Cl-, NO3-, PO43-, and SO42-, were measured. For each fog sample, a 5 day back trajectory was calculated by the use of the HYSPLIT model. Two types of trajectories occurred. One type was characterized by advection of air masses from the East over the Amazonian basin, the other trajectory arrived one from the West after significant travel time over the Pacific Ocean. We found considerably higher ion concentrations in fogwater samples than in rain samples. Median pH values are 4.58 for fog water, and 5.26 for the rain samples, respectively. The median electric conductivity was 23 µS cm-1 for the fog and 6 µS cm-1 for the rain. The concentrations of all analysed ions were relatively low compared to other mountainous sites (Weathers et al., 1988; Elias et al., 1995; Schemenauer et al., 1995; Wrzesinsky and Klemm, 2000; Zimmermann and Zimmermann, 2002). The continent samples exhibit higher concentrations of most ions as compared to the pacific samples.
Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test.
Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun
2014-12-02
This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.
McCaw, J; Ellis, M; Brewer, M S; McKeith, F K
1997-06-01
Pigs (n = 18) were selected to represent three different muscle conditions (six pigs per condition): normal: dark, firm, and dry; and halothane carrier. A 45-cm-long longissimus section was excised from each side of the carcass at 30 min postmortem and cut into six sections. Right side sections were assigned to the intermediate temperature incubation (23 degrees C), and left side sections were designated high temperature incubation (40 degrees C). Sections were randomly assigned to incubation times (0, 1, 2, 4, 6, or 8 h). The 0 h section from each incubation treatment was designated as a control and was placed directly into a 4 degree C cooler. Temperature and pH were evaluated on the control section and for each loin section a the end of the incubation time. Color (L*, a*, and b* values), percentage of purge loss, water-holding capacity, and drip loss were determined. Incubation treatment did not alter pH decline in dark, firm, and dry muscle; however, high temperature increased pH decline in normal and halothane carrier samples. Results suggest that there is a strong interaction between pH and temperature that affects pork quality attributes. High incubation temperature had a negative effect on most quality variables; however, muscle condition (normal or halothane carrier) had limited effects on muscle quality.
Hanke, A A; Dellweg, C; Kienbaum, P; Weber, C F; Görlinger, K; Rahe-Meyer, N
2010-07-01
Hypothermia and acidosis lead to an impairment of coagulation. It has been demonstrated that desmopressin improves platelet function under hypothermia. We tested platelet function ex vivo during hypothermia and acidosis. Blood samples were taken from 12 healthy subjects and assigned as follows: normal pH, pH 7.2, and pH 7.0, each with and without incubation with desmopressin. Platelet aggregation was assessed by multiple electrode aggregometry. Baseline was normal pH and 36 degrees C. The other samples were incubated for 30 min and measured at 32 degrees C. Acidosis significantly impaired aggregation. Desmopressin significantly increased aggregability during hypothermia and acidosis regardless of pH, but did not return it to normal values at low pH. During acidosis and hypothermia, acidosis should be corrected first; desmopressin can then be administered to improve platelet function as a bridge until normothermia can be achieved.
Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus
2011-09-01
Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH<4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 μg L(-1) using (78)Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mohammadi, Mohammad Javad; Takdastan, Afshin; Jorfi, Sahand; Neisi, Abdolkazem; Farhadi, Majid; Yari, Ahmad Reza; Dobaradaran, Sina; Khaniabadi, Yusef Omidi
2017-04-01
In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD) from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV-vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).
NASA Astrophysics Data System (ADS)
Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.
2018-02-01
A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.
Performance of Spent Mushroom Farming Waste (SMFW) Activated Carbon for Ni (II) Removal
NASA Astrophysics Data System (ADS)
Desa, N. S. Md; Ghani, Z. Ab; Talib, S. Abdul; Tay, C. C.
2016-07-01
The feasibility of a low cost agricultural waste of spent mushroom farming waste (SMFW) activated carbon for Ni(II) removal was investigated. The batch adsorption experiments of adsorbent dosage, pH, contact time, metal concentration, and temperature were determined. The samples were shaken at 125 rpm, filtered and analyzed using ICP-OES. The fifty percent of Ni(II) removal was obtained at 0.63 g of adsorbent dosage, pH 5-6 (unadjusted), 60 min contact time, 50 mg/L Ni(II) concentration and 25 °C temperature. The evaluated SMFW activated carbon showed the highest performance on Ni(II) removal compared to commercial Amberlite IRC86 resin and zeolite NK3. The result indicated that SMFW activated carbon is a high potential cation exchange adsorbent and suitable for adsorption process for metal removal. The obtained results contribute toward application of developed SMFW activated carbon in industrial pilot study.
Xie, Yun-Fei; Li, Yan; Yu, Hui; Qian, He; Yao, Wei-Rong
2014-03-01
In the present study, we developed a novel SERS substrate with the porous monolith material combined with classic gold nanoparticles, and erythrosine as the research object, by adjusting the different experimental conditions for optimal SERS enhancements, including system pH and mixing time, and ultimately selected the optimum pH value 5.06 and mixing time 25 min. Compared with the traditional gold plastic substrate enhancement effect, the experimental conditions were applied to the monolith substrate SERS detection of dye erythrosine, different concentrations of samples were used for erythrosine SERS detection, and the detection limit reached 0.1 g x mL(-1). The method uses the payload of gold nanoparticles in mesoporous materials to effectively enhance the SERS signal. And this method has the advantages of simpleness and good stability, which provides a favorable theoretical basis for the rapid prohibited colorings screening.
Stabilization of Co{sup 2+} in layered double hydroxides (LDHs) by microwave-assisted ageing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrero, M.; Benito, P.; Labajos, F.M.
2007-03-15
Co-containing layered double hydroxides at different pH have been prepared, and aged following different routes. The solids prepared have been characterized by element chemical analysis, powder X-ray diffraction, thermogravimetric and differential thermal analyses (both in nitrogen and in oxygen), FT-IR and Vis-UV spectroscopies, temperature-programmed reduction and surface area assessment by nitrogen adsorption at -196 deg. C. The best conditions found to preserve the cobalt species in the divalent oxidation state are preparing the samples at controlled pH, and then submit them to ageing under microwave irradiation. - Graphical abstract: The use of microwave-hydrothermal treatment, controlling both temperature and ageing time,more » permits to synthesize well-crystallized nanomaterials with controlled surface properties. An enhancement in the crystallinity degree and an increase in the particle size are observed when the irradiation time is prolonged.« less
Kent, B A; Arambel, M J; Winsryg, M D; Walters, J L
1989-09-01
Third-cutting alfalfa hay harvested at bud stage and wilted to approximately 65% moisture was treated with a live bacterial inoculant at the rate of 300,000 cfu/g fresh alfalfa. Treated alfalfa was packed in polyethylene bags. Samples were taken at time of ensiling and d 1, 2, 3, 4, 7, and 28 postensiling. Mean pH was lower in the treated haylage (5.09 and 5.71 for treatment and control, respectively). Mean temperatures were higher in the treated haylage (30.0 and 28.0 degrees C for treatment and control, respectively). Mold count, water-soluble carbohydrate, alpha amino nitrogen, CP, and ADF were not affected by treatment. Regardless of treatment, pH, mold counts, and water-soluble carbohydrates declined with time. There was no significant difference between treatments for DM intake, milk production, and milk composition.
Chango, Gabriela; Palacio, Edwin; Cerdà, Víctor
2018-08-15
A simple potentiometric chip-based multipumping flow system (MPFS) has been developed for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples. The proposed system was developed by using a poly(methyl methacrylate) chip microfluidic-conductor using the advantages of flow techniques with potentiometric detection. For this purpose, an automatic system has been designed and built by optimizing the variables involved in the process, such as: pH, ionic strength, stirring and sample volume. This system was applied successfully to water samples getting a versatile system with an analysis frequency of 12 samples per hour. Good correlation between chloride and fluoride concentration measured with ISE and ionic chromatography technique suggests satisfactory reliability of the system. Copyright © 2018 Elsevier B.V. All rights reserved.
Park, Hyun-Jung; Shim, Hyun Soo; Lee, Sunyoung; Hahm, Dae Hyun; Lee, Hyejung; Oh, Chang Taek; Han, Hae Jung; Ji, Hyi Jeong; Shim, Insop
2018-05-08
Human placenta hydrolysate (hPH) has been utilized to improve menopausal, fatigue, liver function. Its high concentration of bioactive substances is known to produce including antioxidant, anti-inflammatory and anti-nociceptive activities. However, its mechanisms of stress-induced depression remain unknown. The present study examined the effect of hPH on stress-induced depressive behaviors and biochemical parameters in rats. hPH (0.02 ml, 0.2 ml or 1 ml/rat) was injected intravenously 30 min before the daily stress session in male Sprague-Dawley rats exposed to repeated immobilization stress (4 h/day for 7 days). The depressive-like behaviors of all groups were measured by elevated plus maze (EPM) and forced swimming test (FST). After the behavior tests, brain samples of all groups were collected for the analysis of glutathione peroxidase (GPx) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining. Treatment with hPH produced a significant decrease of immobility time in the FST compared to the controls. Additionally, hPH treatment elicited a slightly decreasing trend in anxiety behavior on the EPM. Furthermore, hPH increased the level of GPx protein in the hippocampus, and decreased the expression of NADPH-d in the paraventricular nucleus (PVN). This study demonstrated that hPH has anti-stress effects via the regulation of nitric oxide (NO) synthase and antioxidant activity in the brain. These results suggest that hPH may be useful in the treatment of stress-related diseases such as chronic fatigue syndrome.
Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production
NASA Astrophysics Data System (ADS)
Almén, Anna-Karin; Vehmaa, Anu; Brutemark, Andreas; Bach, Lennart; Lischka, Silke; Stuhr, Annegret; Furuhagen, Sara; Paul, Allanah; Bermúdez, J. Rafael; Riebesell, Ulf; Engström-Öst, Jonna
2016-02-01
Ocean acidification is caused by increasing amounts of carbon dioxide dissolving in the oceans leading to lower seawater pH. We studied the effects of lowered pH on the calanoid copepod Eurytemora affinis during a mesocosm experiment conducted in a coastal area of the Baltic Sea. We measured copepod reproductive success as a function of pH, chlorophyll a concentration, diatom and dinoflagellate biomass, carbon to nitrogen (C : N) ratio of suspended particulate organic matter, as well as copepod fatty acid composition. The laboratory-based experiment was repeated four times during 4 consecutive weeks, with water and copepods sampled from pelagic mesocosms enriched with different CO2 concentrations. In addition, oxygen radical absorbance capacity (ORAC) of animals from the mesocosms was measured weekly to test whether the copepod's defence against oxidative stress was affected by pH. We found no effect of pH on offspring production. Phytoplankton biomass, as indicated by chlorophyll a concentration and dinoflagellate biomass, had a positive effect. The concentration of polyunsaturated fatty acids in the females was reflected in the eggs and had a positive effect on offspring production, whereas monounsaturated fatty acids of the females were reflected in their eggs but had no significant effect. ORAC was not affected by pH. From these experiments we conclude that E. affinis seems robust against direct exposure to ocean acidification on a physiological level, for the variables covered in the study. E. affinis may not have faced acute pH stress in the treatments as the species naturally face large pH fluctuations.
Negligible effects of ocean acidification on Eurytemora affinis (Copepoda) offspring production
NASA Astrophysics Data System (ADS)
Almén, A.-K.; Vehmaa, A.; Brutemark, A.; Bach, L.; Lischka, S.; Stuhr, A.; Furuhagen, S.; Paul, A.; Bermúdez, R.; Riebesell, U.; Engström-Öst, J.
2015-10-01
Ocean acidification is caused by increasing amounts of carbon dioxide dissolving in the oceans leading to lower seawater pH. We studied the effects of lowered pH on the calanoid copepod Eurytemora affinis during a mesocosm experiment conducted in a coastal area of the Baltic Sea. We measured copepod reproductive success as a function of pH, chlorophyll a concentration, diatom and dinoflagellate biomass, carbon to nitrogen (C : N) ratio of suspended particulate organic matter, as well as copepod fatty acid composition. The laboratory-based experiment was repeated four times during four consecutive weeks, with water and copepods sampled from pelagic mesocosms enriched with different CO2 concentrations. In addition, oxygen radical absorbance capacity (ORAC) of animals from the mesocosms was measured weekly to test whether the copepod's defence against oxidative stress was affected by pH. We found no effect of pH on offspring production. Phytoplankton biomass, as indicated by chlorophyll a concentration, had a strong positive effect. The concentration of polyunsaturated fatty acids in the females were reflected in the eggs and had a positive effect on offspring production, whereas monounsaturated fatty acids of the females were reflected in their eggs but had no significant effect. ORAC was not affected by pH. From these experiments we conclude that E. affinis seems robust against direct exposure to ocean acidification on a physiological level, for the variables covered in the study. E. affinis may not have faced acute pH stress in the treatments as the species naturally face large pH fluctuations.
Gutiérrez-Zapata, Héctor M; Rojas, Karen L; Sanabria, Janeth; Rengifo-Herrera, Julián Andrés
2017-03-01
This study evaluated, at laboratory scale, if the using iron naturally present (0.3 mg L -1 ) and adding 10 mg L -1 of hydrogen peroxide was effective to remove 24.3 mgL -1 of 2,4-dichlorophenoxyacetic acid (2,4-D) from groundwater samples by simulated solar irradiation (global intensity = 300 W m -2 ). Under these conditions, the degradation of 2,4-D reached 75.2 % and the apparition of its main oxidation byproduct 2,4-dichlorophenol (DCP) was observed. On the other hand, pH exhibited an increasing from 7.0 to 8.3 during the experiment. Experiments using Milli-Q water at pH 7.0, iron, and H 2 O 2 concentrations of 0.3 and 10 mg L -1 , respectively, were carried out in order to study the effect of ions such as carbonate species, phosphate, and fluoride in typical concentrations often found in groundwater. Ion concentrations were combined by using a factorial experimental design 2 3 . Results showed that carbonates and fluoride did not produce a detrimental effect on the 2,4-D degradation, while phosphate inhibited the process. In this case, the pH increased also from 7.0 to 7.95 and 8.99. Effect of parameters such as pH, iron concentration, and hydrogen peroxide concentration on the 2,4-D degradation by the photo-Fenton process in groundwater was evaluated by using a factorial experimental design 2 3 . Results showed that the pH was the main parameter affecting the process. This study shows for the first time that using the photo-Fenton process at circumneutral pH and iron naturally present seems to be a promising process to remove pesticides from groundwater.
A titration approach to identify the capacity for starch digestion in milk-fed calves.
Gilbert, M S; van den Borne, J J G C; Berends, H; Pantophlet, A J; Schols, H A; Gerrits, W J J
2015-02-01
Calf milk replacers (MR) commonly contain 40% to 50% lactose. For economic reasons, starch is of interest as a lactose replacer. Compared with lactose, starch digestion is generally low in calves. It is, however, unknown which enzyme limits the rate of starch digestion. The objectives were to determine which enzyme limits starch digestion and to assess the maximum capacity for starch digestion in milk-fed calves. A within-animal titration study was performed, where lactose was exchanged stepwise for one of four starch products (SP). The four corn-based SP differed in size and branching, therefore requiring different ratios of starch-degrading enzymes for their complete hydrolysis to glucose: gelatinised starch (α-amylase and (iso)maltase); maltodextrin ((iso)maltase and α-amylase); maltodextrin with α-1,6-branching (isomaltase, maltase and α-amylase) and maltose (maltase). When exceeding the animal's capacity to enzymatically hydrolyse starch, fermentation occurs, leading to a reduced faecal dry matter (DM) content and pH. Forty calves (13 weeks of age) were assigned to either a lactose control diet or one of four titration strategies (n=8 per treatment), each testing the stepwise exchange of lactose for one SP. Dietary inclusion of each SP was increased weekly by 3% at the expense of lactose and faecal samples were collected from the rectum weekly to determine DM content and pH. The increase in SP inclusion was stopped when faecal DM content dropped below 10.6% (i.e. 75% of the average initial faecal DM content) for 3 consecutive weeks. For control calves, faecal DM content and pH did not change over time. For 87% of the SP-fed calves, faecal DM and pH decreased already at low inclusion levels, and linear regression provided a better fit of the data (faecal DM content or pH v. time) than non-linear regression. For all SP treatments, faecal DM content and pH decreased in time (P<0.001) and slopes for faecal DM content and pH in time differed from CON; P<0.001 for all SP), but did not differ between SP treatments. Faecal DM content of SP-fed calves decreased by 0.57% and faecal pH by 0.32 per week. In conclusion, faecal DM content and pH sensitively respond to incremental inclusion of SP in calf MR, independently of SP characteristics. All SP require maltase to achieve complete hydrolysis to glucose. We therefore suggest that maltase activity limits starch digestion and that fermentation may contribute substantially to total tract starch disappearance in milk-fed calves.
Hartl, Josef; Peschel, Astrid; Johannsmann, Diethelm; Garidel, Patrick
2017-12-13
Making use of a quartz crystal microbalance (QCM), concentrated solutions of therapeutic antibodies were studied with respect to their behavior under shear excitation with frequencies in the MHz range. At high protein concentration and neutral pH, viscoelastic behavior was found in the sense that the storage modulus, G', was nonzero. Fits of the frequency dependence of G'(ω) and G''(ω) (G'' being the loss modulus) using the Maxwell-model produced good agreement with the experimental data. The fit parameters were the relaxation time, τ, and the shear modulus at the inverse relaxation time, G* (at the "cross-over frequency" ω C = 1/τ). The influence of two different pharmaceutical excipients (histidine and citrate) was studied at variable concentrations of the antibody and variable pH. In cases, where viscoelasticity was observed, G* was in the range of a few kPa, consistent with entropy-driven interactions. τ was small at low pH, where the antibody carries a positive charge. τ increased with increasing pH. The relaxation time τ was found to be correlated with other parameters quantifying protein-protein interactions, namely the steady shear viscosity (η), the second osmotic virial coefficient as determined with both self-interaction chromatography (B 22,SIC ) and static light scattering (B 22,SLS ), and the diffusion interaction parameter as determined with dynamic light scattering (k D ). While B 22 and k D describe protein-protein interactions in diluted samples, the QCM can be applied to concentrated solutions, thereby being sensitive to higher-order protein-protein interactions.
Sugimoto, Mitsushige; Shirai, Naohito; Nishino, Masafumi; Kodaira, Chise; Uotani, Takahiro; Sahara, Shu; Ichikawa, Hitomi; Kagami, Takuma; Sugimoto, Ken; Furuta, Takahisa
2014-09-01
The aim of therapeutic regimens using proton pump inhibitors (PPIs) in patients with acid-related diseases is to potently inhibit acid secretion for the full 24 h. However, optimum treatment is still unclear because the pharmacodynamics of PPIs differ among CYP2C19 genotypes and most of the previous studies have had loss of sample power. Using pH monitoring, we compared acid inhibition at standard dosage of omeprazole (20 mg, 50 times), lansoprazole (30 mg, 68 times), and rabeprazole (10 mg, 65 times) in Helicobacter pylori-negative healthy young Japanese volunteers. Median pH with rabeprazole was 5.4 (3.3-7.5), which was significantly greater than with either omeprazole [4.4 (2.1-7.3)] or lansoprazole [4.8 (3.5-6.4)] (both P < 0.05). Median 24-h pH differed among the different CYP2C19 genotypes in all three PPIs. In CYP2C19 extensive metabolizers (EMs), the genotype that is refractory to PPI treatment, median pH with omeprazole, lansoprazole, and rabeprazole was 3.8 (2.1-4.4), 4.5 (3.5-5.3) and 4.8 (3.3-7.5), respectively. Treatment with the selected PPIs at their standard dosages had difficulty maintaining acid inhibition for a full 24 h, especially in CYP2C19 EM. However, rabeprazole has the merit of less influence of CYP2C19 genotype compared with the other PPIs.
Gruber, Pia; Marques, Marco P C; Sulzer, Philipp; Wohlgemuth, Roland; Mayr, Torsten; Baganz, Frank; Szita, Nicolas
2017-06-01
Monitoring and control of pH is essential for the control of reaction conditions and reaction progress for any biocatalytic or biotechnological process. Microfluidic enzymatic reactors are increasingly proposed for process development, however typically lack instrumentation, such as pH monitoring. We present a microfluidic side-entry reactor (μSER) and demonstrate for the first time real-time pH monitoring of the progression of an enzymatic reaction in a microfluidic reactor as a first step towards achieving pH control. Two different types of optical pH sensors were integrated at several positions in the reactor channel which enabled pH monitoring between pH 3.5 and pH 8.5, thus a broader range than typically reported. The sensors withstood the thermal bonding temperatures typical of microfluidic device fabrication. Additionally, fluidic inputs along the reaction channel were implemented to adjust the pH of the reaction. Time-course profiles of pH were recorded for a transketolase and a penicillin G acylase catalyzed reaction. Without pH adjustment, the former showed a pH increase of 1 pH unit and the latter a pH decrease of about 2.5 pH units. With pH adjustment, the pH drop of the penicillin G acylase catalyzed reaction was significantly attenuated, the reaction condition kept at a pH suitable for the operation of the enzyme, and the product yield increased. This contribution represents a further step towards fully instrumented and controlled microfluidic reactors for biocatalytic process development. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three dimensional graphene transistor for ultra-sensitive pH sensing directly in biological media.
Ameri, Shideh Kabiri; Singh, Pramod K; Sonkusale, Sameer R
2016-08-31
In this work, pH sensing directly in biological media using three dimensional liquid gated graphene transistors is presented. The sensor is made of suspended network of graphene coated all around with thin layer of hafnium oxide (HfO2), showing high sensitivity and sensing beyond the Debye-screening limit. The performance of the pH sensor is validated by measuring the pH of isotonic buffered, Dulbecco's phosphate buffered saline (DPBS) solution, and of blood serum derived from Sprague-Dawley rat. The pH sensor shows high sensitivity of 71 ± 7 mV/pH even in high ionic strength media with molarities as high as 289 ± 1 mM. High sensitivity of this device is owing to suspension of three dimensional graphene in electrolyte which provides all around liquid gating of graphene, leading to higher electrostatic coupling efficiency of electrolyte to the channel and higher gating control of transistor channel by ions in the electrolyte. Coating graphene with hafnium oxide film (HfO2) provides binding sites for hydrogen ions, which results in higher sensitivity and sensing beyond the Debye-screening limit. The 3D graphene transistor offers the possibility of real-time pH measurement in biological media without the need for desaltation or sample preparation. Copyright © 2016 Elsevier B.V. All rights reserved.
Zounr, Rizwan Ali; Tuzen, Mustafa; Deligonul, Nihal; Khuhawar, Muhammad Yar
2018-07-01
A simple, fast, green, sensitive and selective ultrasonic assisted deep eutectic solvent liquid-phase microextraction technique was used for preconcentration and extraction of cadmium (Cd) in water and food samples by electrothermal atomic absorption spectrometry (ETAAS). In this technique, a synthesized reagent (Z)-N-(3,5-diphenyl-1H-pyrrol-2-yl)-3,5-diphenyl-2H-pyrrol-2-imine (Azo) was used as a complexing agent for Cd. The main factors effecting the pre-concentration and extraction of Cd such as effect of pH, type and composition of deep eutectic solvent (DES), volume of DES, volume of complexing agent, volume of tetrahydrofuran (THF) and ultrasonication time have been examined in detail. At optimum conditions the value of pH and molar ratio of DES were found to be 6.0 and 1:4 (ChCl:Ph), respectively. The detection limit (LOD), limit of quantification (LOQ), relative standard deviation (RSD) and preconcentration factor (PF) were observed as 0.023 ng L -1 , 0.161 ng L -1 , 3.1% and 100, correspondingly. Validation of the developed technique was observed by extraction of Cd in certified reference materials (CRMs) and observed results were successfully compared with certified values. The developed procedure was practiced to various food, beverage and water samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ahmad, S; Srivastava, P K
2007-04-01
Investigations were carried to study the effect of heart incorporation (0%, 15% and 20%) and increasing levels of fat (20% and 25%) on physicochemical (pH, moisture content and thiobarbituric acid, TBA number) and microbiological (total plate count and yeast and mold count) quality and shelf life of semi dry sausages of buffalo meat during refrigerated storage (4°C). Different levels of fat significantly (p<0.05) increased the pH of the sausage samples. However different levels of heart incorporation did not significantly (p<0.05) affect pH, moisture content and TBA number of sausage samples. Fresh samples had pH, moisture content and TBA number in the range of 5.15-5.28, 42.4-47.4% and 0.073-0.134 respectively. Refrigerated storage significantly (p<0.05) increased TBA number of control samples while storage did not significantly (p<0.05) increase the TBA number of sodium ascorbate (SA) treated samples. Total plate counts of twelve sausage samples were f under the TFTC (too few to count) limit at the initial stage. Incorporation of different levels of heart and also increasing levels of fat did not significantly (p<0.05) increase the log TPC/g values. Yeast and molds were not detected in twelve samples of semi dry fermented sausages in their fresh condition. Storage revealed that there was a consistent decrease in pH, and moisture content. Refrigerated storage significantly (p<0.05) reduced both pH and moisture contents. TBA number and total plate counts and yeast and mold counts of controls were found to increase significantly (p<0.05) during refrigerated storage. However, in SA treated sausage, only TPC and yeast and mold count significantly (p<0.05) increased during refrigerated storage. Shelf life of the sausages was found to be 60 days under refrigerated storage (4°C).
Corrosion inhibition by inorganic cationic inhibitors on the high strength alumunium alloy, 2024-T3
NASA Astrophysics Data System (ADS)
Chilukuri, Anusha
The toxicity and carcinogenic nature of chromates has led to the investigation of environmentally friendly compounds that offer good corrosion resistance to AA 2024-T3. Among the candidate inhibitors are rare earth metal cationic (REM) and zinc compounds, which have received much of attention over the past two decades. A comparative study on the corrosion inhibition caused by rare earth metal cations, Ce3+, Pr3+, La3+ and Zn2+ cations on the alloy was done. Cathodic polarization showed that these inhibitor ions suppress the oxygen reduction reaction (ORR) to varying extents with Zn2+ providing the best inhibition. Pr3+ exhibited windows of concentration (100-300 ppm) in which the corrosion rate is minimum; similar to the Ce3+ cation. Scanning Electron Microscopy (SEM) studies showed that the mechanism of inhibition of the Pr3+ ion is also similar to that of the Ce3+ ion. Potentiodynamic polarization experiments after 30 min immersion time showed greatest suppression of oxygen reduction reaction in neutral chloride solutions (pH 7), which reached a maximum at a Zn2+ ion concentration of 5 mM. Anodic polarization experiments after 30 min immersion time, showed no anodic inhibition by the inhibitor in any concentration (0.1 mM - 10 mM) and at any pH. However, anodic polarization of samples immersed after longer immersion times (upto 4 days) in mildly acidic Zn2+ (pH 4) solutions showed significant reduction in anodic kinetics indicating that zinc also acts as a “slow anodic inhibitor”. In contrast to the polarization experiments, coupons exposed to inhibited acidic solutions at pH 4 showed complete suppression of dissolution of Al2CuMg particles compared to zinc-free solutions in the SEM studies. Samples exposed in pH 4 Zn2+-bearing solution exhibited highest polarization resistance which was also observed to increase with time. In deaerated solutions, the inhibition by Zn2+ at pH 4 is not observed as strongly. The ability to make the interfacial electrolyte alkaline is retarded in the absence of oxygen. As a result precipitation of Zn oxides and hydroxides was suppressed. Impedance in decarbonated chloride solutions showed that the absence of CO 2 reduces inhibition by Zn2+ at pH 4. The carbonate protective layer formed in aerated solutions is essential for providing better protection of the substrate at pH 4. Inhibitor cations were exchanged into insoluble ion-exchanging sodium bentonites and incorporated as pigments in organic coatings applied to AA 2024-T3 substrates. XRD of the pigments ensured ion exchange and UV-visible spectroscopy was used to characterize inhibitor ion release from the bentonites. Salt spray exposure tests on scribed panels were preformed and results were compared to those from SrCrO4 pigmented coatings. Zn-exchanged bentonite pigmented coatings showed better performance compared to the other exchanged bentonites when incorporated into epoxy coatings with total impedance magnitude in the same order as SrCrO4. PVB (Polyvinyl Butyral) coatings containing Zn bentonite, however, did not show superior behaviour in the impedance response due to less or no water uptake. Salt spray exposures for a period of 336 h, showed that Zn bentonite incorporated into PVB suppressed blistering compared to the neat PVB and other pigmented bentonites.
Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.
Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol
2017-10-01
A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Effect of Georgetown Lake on the water quality of Clear Creek, Georgetown, Colorado, 1997-98
Cuffin, Sally M.; Chafin, Daniel T.
2000-01-01
Georgetown Lake is a recreational reservoir located in the upper Clear Creek Basin, a designated Superfund site because of extensive metal mining in the past. Metals concentrations in Clear Creek increase as the stream receives runoff from mining-affected areas. In 1997, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, began a study to determine the effect of the reservoir on the transport of metals in Clear Creek. A bathymetric survey determined the capacity of the reservoir to be about 440 acre-feet of water, which remained constant during the study. Average water residence time in the reservoir is about 1?3 days during high flow. During low flow (10 cubic feet per second), average residence is about 22 days without ice cover and about 15 days with a 3-foot-thick ice cover. Sediment samples collected from the bottom of Georgetown Lake contained substantial concentrations of iron (average 25,500 milligrams per kilogram), aluminum (average 12,300 milligrams per kilogram), zinc (2,830 milligrams per kilogram), lead (618 milligrams per kilogram), manganese (548 milligrams per kilogram), and sulfide minerals (average 602 milligrams per kilogram as S). Sediment also contained abundant sulfate-reducing bacteria, indicating anoxic conditions. Algae and diatoms common to cold-water lakes were identified in sediment samples; one genus of algae is known to adapt to low-light conditions such as exist beneath ice cover. Vertical profiles of temperature, specific conductance, pH, and dissolved-oxygen concentrations were measured in the reservoir on July 28, 1997, when inflow to the reservoir was about 170 cubic feet per second and average residence time of water was about 1.3 days, and on February 13, 1998, when the reservoir was covered with about 3 feet of ice, inflow was about 15 cubic feet per second, and average residence time was about 12 days. The measurements on July 28, 1997, showed that the reservoir water was well mixed, although pH and dissolved oxygen concentrations were increased by photosynthesis near the bottom of the reservoir. Measurements on February 13, 1998, indicated thermal and chemical stratification with warmer water (about 4 degrees Celsius) beneath colder water and increases in pH and dissolved oxygen concentrations generally occurring near the top of the warmer layer. Concentrations of dissolved oxygen were saturated to oversaturated throughout the water column on both dates, although the concentrations were greater on February 13, 1998, because of colder temperature and photosynthesis. Median pH was about 0.5 unit higher on February 13, 1998, than on July 28, 1997, largely because the longer residence time on February 13, 1998, allowed greater cumulative effects of photosynthesis. Samples of inflow and outflow water were collected from August 1997 to August 1998. Dissolved cadmium and dissolved lead in inflow and outflow samples exceeded acute and chronic water-quality standards during some of the sampling period, whereas dissolved zinc exceeded both standards in inflow and outflow samples during the entire sampling period. Chromium, nickel, and silver were detected in a few samples at small concentrations. Arsenic, selenium, and thallium were not reported in any water samples. Georgetown Lake removes some metals from inflow water and releases others to outflow water. From August 1997 to August 1998, Georgetown Lake estimated outflow loads were about 21 percent less than the inflow load of cadmium and about 11 percent less than the inflow load of zinc. Estimated inflow loads were about 18 percent less than the outflow load of copper, about 13 percent less than the outflow load of iron, and about 27 percent less than the outflow load of manganese. Inflow and outflow loads of lead were essentially balanced. The outflow load of nitrite plus nitrate was about 14 percent less than the inflow load, probably because of plant uptake.
Soursop (Annona muricata) vinegar production and its chemical compositions
NASA Astrophysics Data System (ADS)
Ho, Chin Wai; Lazim, Azwan Mat; Fazry, Shazrul; Zaki, Umi Kalsum Hj Hussain; Lim, Seng Joe
2016-11-01
Vinegar is a liquid product that undergoes double fermentations, which are alcoholic and acetous fermentation. Sugar source was converted to ethanol in alcoholic fermentation, meanwhile ethanol was oxidised to acetic acid during acetous fermentation. Soursop (Annona muricata) was the starting material in this study, as it is easily available in Malaysia. Its highly aromatic, juicy and distinctive flavours enables the production of high quality vinegar. The objective of this research is to produce good quality soursop vinegar as an innovative method to preserve and utilise the soursop fruit in Malaysia and to determine its chemical compositions. It was found that the sugar content reduces over time, and it is inversely proportional to the ethanol concentration, due to the production of ethanol from sugar. Acetic acid was also found to increase with increasing fermentation time. pH showed no significant difference (p>0.05) in the reduction of sugar and the production of ethanol. However, significantly higher (p<0.05) production of acetic acid was observed at pH 5.0 and 5.5, compared to that at pH 4.5. There were no significant differences (p > 0.05) in Vitamin C contents in all soursop vinegar samples produced using different treatments.
Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection
NASA Astrophysics Data System (ADS)
Wulansarie, Ria; Dyah Pita Rengga, Wara; Rustamadji
2018-03-01
One of important marine commodities in Indonesia, shrimps are susceptible with Vibrio sp bacteria infection. That infection must be cleared. One of the technologies for disinfecting Vibrio sp. is ozone technology. In this research, Vibrio sp. is a pathogenic bacterium which infects Penaeus vannamei. Ozone technology is applied for threatening Vibrio sp. In this research, ozonation was performed in different pH. Those are neutral, acid (pH=4), and base (pH=9). The sample was water from shrimp embankment from Balai Besar Perikanan Budidaya Air Payau (BBPBAP) located in Jepara. That water was the habitat of Penaeus vannamei shrimp. The brand of ozonator used in this research was “AQUATIC”. The used ozonator in this research had 0,0325 g/hour concentration. The flow rate of sample used in this research was 2 L/minute. The ozonation process was performed in continuous system. A tank, pipe, pump, which was connected with microfilter, flowmeter and ozone generator were the main tools in this research. It used flowmeter and valve to set the flow rate scalable as desired. The first step was the insert of 5 L sample into the receptacle. Then, by using a pump, a sample supplied to the microfilter to be filtered and passed into the flow meter. The flow rate was set to 2 LPM. Furthermore, gas from ozonator passed to the flow for the disinfection of bacteria and then was recycled to the tank and the process run continuously. Samples of the results of ozonation were taken periodically from time 0, 3, 7, 12, 18, 24 to 30 minutes. The samples of the research were analyzed using Total Plate Count (TPC) test in BBPBAP Jepara to determine the number of Vibrio sp. bacteria. The result of this research was the optimal condition for pathogenic bacteria of shrimp (Vibrio sp.) ozonation was in neutral condition.
Comparison of VFA titration procedures used for monitoring the biogas process.
Lützhøft, Hans-Christian Holten; Boe, Kanokwan; Fang, Cheng; Angelidaki, Irini
2014-05-01
Titrimetric determination of volatile fatty acids (VFAs) contents is a common way to monitor a biogas process. However, digested manure from co-digestion biogas plants has a complex matrix with high concentrations of interfering components, resulting in varying results when using different titration procedures. Currently, no standardized procedure is used and it is therefore difficult to compare the performance among plants. The aim of this study was to evaluate four titration procedures (for determination of VFA-levels of digested manure samples) and compare results with gas chromatographic (GC) analysis. Two of the procedures are commonly used in biogas plants and two are discussed in literature. The results showed that the optimal titration results were obtained when 40 mL of four times diluted digested manure was gently stirred (200 rpm). Results from samples with different VFA concentrations (1-11 g/L) showed linear correlation between titration results and GC measurements. However, determination of VFA by titration generally overestimated the VFA contents compared with GC measurements when samples had low VFA concentrations, i.e. around 1 g/L. The accuracy of titration increased when samples had high VFA concentrations, i.e. around 5 g/L. It was further found that the studied ionisable interfering components had lowest effect on titration when the sample had high VFA concentration. In contrast, bicarbonate, phosphate and lactate had significant effect on titration accuracy at low VFA concentration. An extended 5-point titration procedure with pH correction was best to handle interferences from bicarbonate, phosphate and lactate at low VFA concentrations. Contrary, the simplest titration procedure with only two pH end-points showed the highest accuracy among all titration procedures at high VFA concentrations. All in all, if the composition of the digested manure sample is not known, the procedure with only two pH end-points should be the procedure of choice, due to its simplicity and accuracy. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hess, Ryan F.; Boyle, Timothy J.; Limmer, Steven; Yelton, William G.; Bingham, Samuel; Stillman, Greg; Lindblom, Scott; Cieslewski, Grzegorz
2014-06-01
For enhanced or Engineered Geothermal Systems (EGS) geothermal brine is pumped to the surface via the production wells, the heat extracted to turn a turbine to generate electricity, and the spent brine re-injected via injection wells back underground. If designed properly, the subsurface rock formations will lead this water back to the extraction well as heated brine. Proper monitoring of these geothermal reservoirs is essential for developing and maintaining the necessary level of productivity of the field. Chemical tracers are commonly used to characterize the fracture network and determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data at very low levels of detection, it does not provide information regarding the location of the fractures which were conducting the tracer between wellbores. Sandia is developing a high-temperature electrochemical sensor capable of measuring tracer concentrations and pH downhole on a wireline tool. The goal of this effort is to collect real-time pH and ionic tracer concentration data at temperatures up to 225 °C and pressures up to 3000 psi. In this paper, a prototype electrochemical sensor and the initial data obtained will be presented detailing the measurement of iodide tracer concentrations at high temperature and pressure in a newly developed laboratory scale autoclave.
The effects of fruit smoothies on enamel erosion.
Tahmassebi, J F; Kandiah, P; Sukeri, S
2014-06-01
This prospective, randomised in vitro study was to investigate the pH and titratable acidity of fruit smoothie drinks and to assess the effect of these drinks on enamel erosion. Fifty enamel slabs were divided into five groups which were allocated to the sample solutions groups: Innocent(®) smoothie strawberries and bananas (SB), Innocent(®) smoothie mangoes and passion fruit (MP) and Diet Coke. Distilled deionised water (DD) was used as negative control and citric acid 0.3% as positive control. All the slabs were subjected to a 21-day pH cycling regime involving 2 min of immersions, five times a day with appropriate remineralization periods in between. Measurement of surface loss was assessed using profilometry. Independent sample t tests were used to compare mean. The titratable acidity for both test smoothies were 3.5-4 times more than that needed to neutralise Diet Coke and citric acid 0.3%. The pH of SB, MP smoothie and Diet Coke was found to be 3.73, 3.59 and 2.95, respectively. MP smoothie caused the greatest amount of surface loss followed by Diet Coke. Both smoothies were found to cause significant surface loss. MP smoothie resulted in significantly higher surface loss compared with MB smoothie and citric acid 3 %. The smoothies tested were acidic and had high titratable acidity. They produced a significant erosion of enamel in vitro. The results of this study suggest that there should be increased awareness of the erosive effects of smoothies especially as their consumption seems to be on the increase.
PhD Funding as a Determinant of PhD and Career Research Performance
ERIC Educational Resources Information Center
Horta, Hugo; Cattaneo, Mattia; Meoli, Michele
2018-01-01
This article focuses on the effects of PhD funding on research performance both during the degree and throughout researchers' careers as measured through publications and citations. This analysis draws from a representative sample of researchers holding a doctorate based in Portugal and finds that those funded by grants during the PhD perform…
Hassanpour, Akbar; Hosseinzadeh-Khanmiri, Rahim; Babazadeh, Mirzaagha; Abolhasani, Jafar; Ghorbani-Kalhor, Ebrahim
2015-01-01
This paper describes the synthesis and application of a novel magnetic metal-organic framework (MOF) [(Fe₃O₄-benzoyl isothiocyanate)/Cu₃(benzene-1,3,5-tricarboxylate)₂] to pre-concentrate trace amounts of Cd(II), Pb(II), Zn(II) and Cr(III) ions and their determination by flame atomic absorption spectrometry. A Box-Behnken design was used to find the parameters affecting the pre-concentration procedure through response surface methodology. Three factors including uptake time, amount of the magnetic sorbent and pH of the sample were selected as affecting factors in the sorption step, and four factors including type, volume and concentration of the eluent as well as the elution time were selected in the elution step for the optimisation study. The opted values were 30 mg, 10.1 min, 5.9, EDTA, 4.0 ml, 0.57 mol l(-1) EDTA solution and 13.0 min for the amount of the magnetic sorbent, uptake time, pH of the sample, type, volume, concentration of the eluent, and elution time, respectively. The limits of detection (LODs) were 0.12, 0.7, 0.16, and 0.4 ng ml(-1) for Cd(II), Pb(II), Zn(II) and Cr(III) ions, respectively. The relative standard deviations (RSDs) of the method were less than 7.2% for five separate batch experiments for the determination of 30 μg l(-1) of Cd(II), Pb(II), Zn(II) and Cr(III) ions. The sorption capacity of the [(Fe₃O₄-benzoyl isothiocyanate)/MOF] was 175 mg g(-1) for Cd(II), 168 mg g(-1) for Pb(II), 210 mg g(-1) for Zn(II) and 196 mg g(-1) for Cr(III). It was found that the magnetic MOF nanocomposite demonstrated a higher capacity compared with Fe₃O₄-benzoyl isothiocyanate. Finally, the magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace amounts of the heavy metal ions from vegetable samples.
Amiri, Amir; Sharifian, Parisa; Soltanizadeh, Nafiseh
2018-05-01
The aim of this study was to evaluate the impact of duration (10, 20 and 30min) and power (100 and 300W) of high-intensity ultrasound (20kHz) on physicochemical properties of beef myofibrillar proteins in order to investigate novel process for modification of its functional characteristics. Results showed that augmentation of duration and power of ultrasound led to enhance pH. Also, the water holding capacity and gel strength were improved by increasing pH. The highest value in pH, reactive sulfhydryl content, water holding capacity and gel strength was obtained in sample subjected to 30min of ultrasound at 300W. The particle size distribution of the proteins was decreased after ultrasound treatment because of the cavitation force of ultrasound waves. In this circumstance, an improvement of emulsifying properties can be obtained. Ultrasonic waves had significant effects on the rheological properties of myofibrillar proteins. Treated samples were more elastic and stiffer than control, although the inverse trend was observed after 30min treatment at each power. Finally, a reducing trend in viscosity was observed by increasing time and power of sonication. Ultrasonic treatment could successfully improve functional properties with effect on physicochemical properties of myofibrillar proteins. Copyright © 2018 Elsevier B.V. All rights reserved.
Multiparameter flow cytometry of a pH sensitive ligand bound to receptors and inside cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fay, S.P.; Habbersett, R.; Posner, R.G.
1993-01-01
Because fluoresceinated ligands of the neutrophil formyl peptide receptor can be protonated either upon binding to the receptor on the cell surface or in acidified intracellular compartments, the authors synthesized a ligand conjugated to the pH sensitive fluorescent probe SNAFL (CHO-Met-Leu-Phe-Phe-Lys-SNAFL). In the three laser flow cytometer at LANL, protonated dye is excited at 488 nm and emits at 530 nm; unprotonated dye is excited at 568 nm and emits at 650 nm. Detection at the isobestic and isoemissive points at 528 and 600 nm is used to keep track of variations in ligand concentration from sample to sample. Themore » SNAFL-ligand bound to HL-60 cells (which overexpress the formyl peptide receptor) was compared to the free ligand in solution over a pH range from 6.5 to 9.0. The results suggest that the ligand bound to cell surface receptors was protonated in the binding pocket, possibly by virtue of its proximity to His 90, based on sequence data. When the cells were raised from 4[degrees] to 37[degrees], they also observed a time-dependent acidification of the ligand, indicative of ligand-receptor processing beginning 3-4 minutes after internalization.« less
Zhang, Saijin; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Grandbois, Russell; Schwehr, Kathleen A; Kaplan, Daniel I; Yeager, Chris M; Wellman, Dawn; Santschi, Peter H
2013-09-03
The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounted for up to 84% of the total iodine present. The alkaline pH (pH ∼ 8) and predominantly oxidizing environment may have prevented reduction of the iodate. In addition, groundwater samples were found to have large amounts of calcite precipitate which were likely formed as a result of CO2 degassing during removal from the deep subsurface (>70m depth). Further analyses indicated that between 7 and 40% of the dissolved (127)I and (129)I that was originally in the groundwater had coprecipitated in the calcite. Iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevating the pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of (129)I. Furthermore, the common sampling artifact resulting in the precipitation of calcite by degassing CO2, had the unintended consequence of providing insight into a potential solution for the in situ remediation of groundwater (129)I.
Selleri, Paolo; Di Girolamo, Nicola
2014-01-01
Point-of-care testing is an attractive option in rabbit medicine, because it permits rapid analysis of a panel of electrolytes, chemistries, blood gases, hemoglobin, and hematocrit, requiring only 65 μL of blood. The purpose of this study was to evaluate the performance of a portable clinical analyzer for measurement of pH, partial pressure of CO2, Na, chloride, potassium, blood urea nitrogen, glucose, hematocrit, and hemoglobin in healthy and diseased rabbits. Blood samples obtained from 30 pet rabbits were analyzed immediately after collection by the portable clinical analyzer (PCA) and immediately thereafter (time <20 sec) by a reference analyzer. Bland-Altman plots and Passing-Bablok regression analysis were used to compare the results. Limits of agreement were wide for all the variables studied, with the exception of pH. Most variables presented significant proportional and/or constant bias. The current study provides sufficient evidence that the PCA presents reliability for pH, although its low agreement with a reference analyzer for the other variables does not support their interchangeability. Limits of agreement provided for each variable allow researchers to evaluate if the PCA is reliable enough for their scope. To the authors' knowledge, the present is the first report evaluating a PCA in the rabbit.
Evans, Alina L; Fahlman, Åsa; Ericsson, Göran; Haga, Henning Andreas; Arnemo, Jon M
2012-12-31
Evaluation of physiology during capture and anesthesia of free-ranging wildlife is useful for determining the effect that capture methods have on both ecological research results and animal welfare. This study evaluates capture and anesthesia of moose (Alces alces) with etorphine-xylazine-acepromazine in Northern Sweden. Fifteen adult moose aged 3-15 years were darted from a helicopter with a combination of 3.37 mg etorphine, 75 mg xylazine, and 15 mg acepromazine. Paired arterial blood samples were collected 15 minutes apart with the first sample at 15-23 minutes after darting and were analyzed immediately with an i-STAT®1 Portable Clinical Analyzer. All animals developed hypoxemia (PaO2 <10 kPa) with nine animals having marked hypoxemia (PaO2 5.5-8 kPa). All moose were acidemic (ph<7.35) with nine moose having marked acidemia (pH<7.20). For PaCO2, 14 moose had mild hypercapnia (PaCO2 6-8 kPa) and two had marked hypercapnia (PaCO2>8 kPa). Pulse, respiratory rate, pH and HCO3 increased significantly over time from darting whereas lactate decreased. The hypoxemia found in this study is a strong indication for investigating alternative drug doses or combinations or treatment with supplemental oxygen.
Chan, J T Y; Omana, D A; Betti, M
2011-05-01
Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.
Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir.
Karabiyikli, Seniz; Kisla, Duygu
2012-04-16
In this study, the antimicrobial effects of both traditional and commercial pomegranate sour sauce samples on some green vegetables and also on "kısır" which is a popular and traditional appetizer in Turkey were investigated. The inhibitory effect of the pomegranate products on the naturally existing bacterial microflora of lettuce, spring onion, parsley and kısır were analyzed. Also, all these food samples were inoculated with Staphylococcus aureus (ATCC-25923) and Escherichia coli O157:H7 (ATCC-43895) and antimicrobial effect of the pomegranate products on the inoculated microflora was detected. All the food samples were treated with pomegranate products for different time periods and the effect of treatment time was investigated. pH and titratable acidity values of the traditional and commercial pomegranate sour sauce samples were detected. The results showed that although the pomegranate products had an antimicrobial effect on the natural bacterial microflora of the food samples, the effect on inoculated food samples was more prominent and additionally the application time was found to be a crucial parameter for both cases. Copyright © 2012 Elsevier B.V. All rights reserved.
Singh, B P; Bohidar, H B; Chopra, S
1991-10-15
Dynamic laser light scattering studies on the heat aggregation behavior of phycobilisomes (PBS), ferritin, insulin, and immunoglobulin (IgG) in dilute aqueous solutions has been reported. Except for PBS, results are reported for heat aggregation trends in these proteins for three different pH environments (4.0, 7.5, 9.1). For PBS, studies were performed only in the neutral buffer medium (pH 7.5). The experiments were performed in the very dilute concentration regime (between 0.23 and 1.8 gL-1). For all these samples heat aggregation and dissociation trends were found to be linear with temperature. Upon temperature reversal (self-cooling), hysteresis-like behavior observed in insulin was found to be predominantly large at pH 7.5. PBS, ferritin, and IgG showed no such behavior at any of three pH values, and retraced their path of aggregation while dissociating on temperature reversal. Heat aggregation and dissociation processes in ferritin were found to be independent of pH. The IgG samples showed smooth aggregation tendency only up to 35 degrees C in the buffer media pH 4.0 and 9.1, whereas for pH 7.0 the same could be observed until 60 degrees C. Low polydispersity in the correlation spectra was observed in case of all these samples.
Remediation of AMD using industrial waste adsorbents
NASA Astrophysics Data System (ADS)
Mohammed, Nuur Hani Bte; Yaacob, Wan Zuhairi Wan
2016-11-01
The study investigates the characteristic of industrial waste as adsorbents and its potential as heavy metals absorbents in AMD samples. The AMD sample was collected from active mine pond and the pH was measured in situ. The metal contents were analyzed by ICP-MS. The AMD water was very acidic (pH< 3.5), and the average heavy metals content in AMD were high especially in Fe (822.029 mg/l). Fly ash was found to be the most effective absorbent material containing high percentage of CaO (57.24%) and SiO2 (13.88%), followed by ladle furnace slag containing of high amount of CaO (51.52%) and Al2O3 (21.23%), while biomass ash consists of SiO2 (43.07%) and CaO (12.97%). Tank analysis display a huge changes due to pH value change from acidity to nearly neutral phases. After 50 days, fly ash remediation successfully increase the AMD pH values from pH 2.57-7.09, while slag change from acidity to nearly alkaline phase from pH 2.60-7.3 and biomass has change to pH 2.54-6.8. Fly ash has successfully remove Fe, Mn, Cu, and Ni. Meanwhile, slag sample displays as an effective adsorbent to adsorb more Pb and Cd in acid mine drainage.
Naumann, R; Alexander-Weber, Ch; Eberhardt, R; Giera, J; Spitzer, P
2002-11-01
Routine pH measurements are carried out with pH meter-glass electrode assemblies. In most cases the glass and reference electrodes are thereby fashioned into a single probe, the so-called 'combination electrode' or simply 'the pH electrode'. The use of these electrodes is subject to various effects, described below, producing uncertainties of unknown magnitude. Therefore, the measurement of pH of a sample requires a suitable calibration by certified standard buffer solutions (CRMs) traceable to primary pH standards. The procedures in use are based on calibrations at one point, at two points bracketing the sample pH and at a series of points, the so-called multi-point calibration. The multi-point calibration (MPC) is recommended if minimum uncertainty and maximum consistency are required over a wide range of unknown pH values. Details of uncertainty computations for the two-point and MPC procedure are given. Furthermore, the multi-point calibration is a useful tool to characterise the performance of pH electrodes. This is demonstrated with different commercial pH electrodes. ELECTRONIC SUPPLEMENTARY MATERIAL is available if you access this article at http://dx.doi.org/10.1007/s00216-002-1506-5. On that page (frame on the left side), a link takes you directly to the supplementary material.
Comparison of pH measurements made using 31P NMR and a fibreoptic pH meter.
Jayasundar, R; Hall, L D; Bleehen, N M
1992-01-01
The objective of this study was to compare pH measurements made in biological samples using 31P NMR (pHNMR) with those made with a novel, dye-based fibreoptic pH measurement system (pHF), which is compatible with use in electromagnetic fields without field perturbation. Using protein-free model solutions, pHNMR was calibrated against pHF, giving a correlation coefficient of 0.969 and a mean difference (+/- SD) between pHNMR and pHF of 0.037 +/- 0.054 over the pH range 6.8-7.7. Further calibration of pHNMR with pHF was carried out for human red blood lysates and then pHNMR was compared with pHF for whole, packed red blood cells over the pH range 7.0-7.8. Values for pHNMR, the intracellular pH, were consistently lower than for pHF, the extracellular pH, by a mean (+/- SD) of 0.15 +/- 0.02 units. A close correlation of extracellular pHNMR with pHF was demonstrated for a blood sample exhibiting two P(i) peaks, over the pH range 7.03-7.71. We conclude that concurrent use of NMR and the fibreoptic pH meter provides a reliable method of simultaneous measurement of intracellular and extracellular pH in biological systems.
Biochar effects on soil-resident ligninolytic fungi: in vitro growth response and its pH dependence
NASA Astrophysics Data System (ADS)
Taskin, Eren; Loffredo, Elisabetta
2016-04-01
Ligninolytic fungi play an essential role on soil fertility because of their decomposing activity that allows nutrients inside biomasses to be released back into the soil. Their enzymes are able to degrade lignin which is otherwise recalcitrant to microbial and chemical degradation. Biochar (BC) has been recently proposed as a soil amendment that may contribute to climate change mitigation via carbon sequestration in soil. Pyrolysis conditions, feedstock and several other factors affect BC characteristics which in turn may influence BC impact on soil microorganisms and terrestrial ecosystems. However, limited information is available in the literature about BC's impact on ligninolytic fungi. The objective of this in vitro study was to assess the impact of BC and pH change caused by BC addition on three soil-resident ligninolytic fungi, Pleurotus ostreatus, Trametes versicolor and Bjerkandera adusta. The BC sample used in this study was obtained from 100% red spruce pellets pyrolysed at a temperature of 550 °C, and it was added to PDA medium directly as solid BC at the doses of 2 g L-1 (BC-LD) and 10 g L-1 (BC-HD). pH values were determined and the experiments were conducted either adjusting the pH of the controls either without pH adjustment. The fungi were inoculated separately in Petri dishes filled with the various media and the radial mycelial growth was measured at several sampling times. Results obtained showed a fungal growth response clearly dependent on the species and the BC dose. BC-LD stimulated the growth of P. ostreatus and T. versicolor, whereas it inhibited that of B. adusta. BC-HD stimulated the growth of P. ostreatus and inhibited that of T. versicolor and B. adusta. Similar responses were obtained with or without pH adjustment for P. ostreatus and T. versicolor, whereas a pH dependency was found for B. adusta. The effects of these and other pertinent treatments on fungal enzymes of the fungi are currently under investigation.
Della Mónica, I F; Godoy, M S; Godeas, A M; Scervino, J M
2018-01-01
The aim of this work is to analyse the effect of pH, fungal identity and P chemical nature on microbial development and phosphatase release, discussing solubilization and mineralization processes in P cycling. P solubilizing fungi (Talaromyces flavus, T. helicus L, T. helicus N, T. diversus and Penicillium purpurogenum) were grown under three pH conditions (6, 6·5 and 8·5) and with different inorganic (calcium, iron, aluminium and rock) and organic (lecithin and phytate) P sources. P solubilization, mineralization, growth and phosphatase production were recorded. Acid and neutral environments maximized fungal development and P recycling. P chemical nature changed the phosphatases release pattern depending on the fungal identity. Acid phosphatase activity was higher than alkaline phosphatases, regardless of pH or sample times. Alkaline phosphatases were affected by a combination of those factors. P chemical nature and pH modify fungal growth, P mineralization and solubilization processes. The underlying fungal identity-dependent metabolism governs the capacity and efficiency of P solubilization and mineralization. P solubilization and mineralization processes are interrelated and simultaneously present in soil fungi. This study constitutes a reference work to improve the selection of fungal bioinoculants in different environmental conditions, highlighting their role in P cycling. © 2017 The Society for Applied Microbiology.
An Electrochemistry Study of Cryoelectrolysis in Frozen Physiological Saline.
Manuel, Thomas J; Munnangi, Pujita; Rubinsky, Boris
2017-07-01
Cryoelectrolysis is a new minimally invasive tissue ablation surgical technique that combines the processes of electrolysis and solid/liquid phase transformation (freezing). This study investigated this new technique by measuring the pH front propagation and the changes in resistance in a tissue simulant made of physiological saline gel with a pH dye as a function of the sample temperature in the high subzero range above the eutectic. Results demonstrated that effective electrolysis can occur in a high subzero freezing milieu and that the propagation of the pH front is only weakly dependent on temperature. These observations are consistent with a mechanism involving ionic movement through the concentrated saline solution channels between ice crystals at subfreezing temperatures above the eutectic. Moreover, results suggest that Joule heating in these microchannels may cause local microscopic melting, the observed weak dependence of pH front propagation on temperature, and the large changes in resistance with time. A final insight provided by the results is that the pH front propagation from the anode is more rapid than from the cathode, a feature indicative of the electro-osmotic flow from the cathode to the anode. The findings in this paper may be critical for designing future cryoelectrolytic ablation surgery protocols.
Simultaneous speciation and preservation of aqueous As, Sb and Se redox couples
NASA Astrophysics Data System (ADS)
Wu, D.; Pichler, T.
2014-12-01
We developed a new method for the simultaneous speciation analysis of inorganic arsenic (III, V), antimony (III, V) and selenium (IV, VI) in water samples via double-focusing sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS) coupled to high performance liquid chromatography (HPLC). A Hamilton PRX-X100 anion exchange column with EDTA (pH of 4.7) and 3% methanol as mobile phase was used for species separation. The flow rate was set to 1.5 mL min-1 and a solvent gradient (linear ramp from 5 mM to 30 mM) was applied. The overall analysis time for all six desired species was 11 minutes. The detection limits for As(III), As(V), Sb(III), Sb(V), Se(VI) and Se(IV) were 0.02 μg L-1, 0.06 μg L-1, 0.2 μg L-1, 0.02 μg L-1, 0.2 μg L-1 and 0.4 μg L-1 respectively. The retention times for As(III), As(V), Sb(III), Sb(V), Se(IV) and Se(VI) were 1.70, 2.94, 7.14, 2.28, 3.38 and 9.36 min, respectively. Subsequently, the stability of inorganic As(III, V), Sb(III, V) and Se(IV, VI) species in different water samples (groundwater, lake water and river water) was studied over a time scale of 11 weeks. High concentrations of Fe (25.0 mg/L) and Mn (25.0 mg/L) were added to different matrices to simulate Fe and Mn rich environments. All samples were spiked with 5.0 μg/L As(III, V) and Sb(III, V) and 15.0 μg/L Se(IV, VI).. We investigated several strategies for species preservation, i.e., EDTA only, EDTA combined with acidification (HCl, HNO3, formic acid and acetic acid). The preserved samples were stored at 4 °C in the dark. For comparison, another subsample without any preservation was stored at room temperature in the presence of light. The results showed that a combination EDTA acidified to pH of 3 can be used to preserve all species for at least 11 weeks. While EDTA only (pH = 6) failed to preserve As and Sb species, although Se species were preserved.
Living with pulmonary hypertension: unique insights from an international ethnographic study
Kingman, Martha; Hinzmann, Barbara; Sweet, Oliver; Vachiéry, Jean-Luc
2014-01-01
Objectives To better understand the patient's perspective of pulmonary hypertension (PH), including the impact of living with PH, disease management and treatment. Design This qualitative ethnographic study collected observational video footage, supplemented by field notes and patient diaries to assess the impact of PH on the patient's life. Setting Patients were observed and filmed in their home for up to 6 h, capturing the environment, interactions and activities of everyday life. Participants Patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic PH who were receiving PAH-specific medication were recruited through healthcare professionals (HCPs) and patient associations in seven countries across four continents. Sampling was purposive and subgroup analysis was not intended. Results Overall, 39 patients with PH were enrolled. Many patients had a poor understanding of PH and found their ‘invisible’ disease difficult to explain to others. An important finding was the secrecy surrounding PH. Feelings of insecurity and isolation were regularly reported, and many patients admitted to hiding their symptoms. The marked improvement in symptoms after therapy initiation made assessment of disease progression more difficult as patients compared their quality of life (QoL) against pretreatment levels. Extensive planning and adherence to daily routines were required in patients’ everyday life. Conclusions Ethnography was used for the first time, in several countries, to evaluate the patient's perception of living with PH. This approach revealed key findings that would not typically be uncovered using other qualitative techniques, including the secrecy surrounding PH, the difficulties in describing the disease and the challenges in assessing disease progression. A more tailored dissemination of information from HCPs and development of a simple and understandable PH definition may be beneficial in alleviating the secrecy reported by patients. A greater appreciation of how patients perceive their disease and QoL has the potential to improve PH management. PMID:24838724
Living with pulmonary hypertension: unique insights from an international ethnographic study.
Kingman, Martha; Hinzmann, Barbara; Sweet, Oliver; Vachiéry, Jean-Luc
2014-05-16
To better understand the patient's perspective of pulmonary hypertension (PH), including the impact of living with PH, disease management and treatment. This qualitative ethnographic study collected observational video footage, supplemented by field notes and patient diaries to assess the impact of PH on the patient's life. Patients were observed and filmed in their home for up to 6 h, capturing the environment, interactions and activities of everyday life. Patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic PH who were receiving PAH-specific medication were recruited through healthcare professionals (HCPs) and patient associations in seven countries across four continents. Sampling was purposive and subgroup analysis was not intended. Overall, 39 patients with PH were enrolled. Many patients had a poor understanding of PH and found their 'invisible' disease difficult to explain to others. An important finding was the secrecy surrounding PH. Feelings of insecurity and isolation were regularly reported, and many patients admitted to hiding their symptoms. The marked improvement in symptoms after therapy initiation made assessment of disease progression more difficult as patients compared their quality of life (QoL) against pretreatment levels. Extensive planning and adherence to daily routines were required in patients' everyday life. Ethnography was used for the first time, in several countries, to evaluate the patient's perception of living with PH. This approach revealed key findings that would not typically be uncovered using other qualitative techniques, including the secrecy surrounding PH, the difficulties in describing the disease and the challenges in assessing disease progression. A more tailored dissemination of information from HCPs and development of a simple and understandable PH definition may be beneficial in alleviating the secrecy reported by patients. A greater appreciation of how patients perceive their disease and QoL has the potential to improve PH management. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Alothman, Zeid A; Al-Shaalan, Nora H; Habila, Mohamed A; Unsal, Yunus E; Tuzen, Mustafa; Soylak, Mustafa
2015-02-01
A dispersive liquid-liquid microextraction procedure for lead(II) as its 5-(4-dimethylaminobenzylidene) rhodanine complex has been established prior to its microsampling flame atomic absorption spectrometric determination. The influences of various analytical parameters including pH, solvent type and volume, dispersive solvent type and volume, 5-(4-dimethylaminobenzylidene) rhodanine amount, salt effect, and centrifugation time and speed were investigated. The effects of certain alkali, alkaline earth, and transition metal ions on the quantitative extraction of lead(II) were also studied. Quantitative recoveries were obtained at pH 6. The enrichment factor was calculated as 125. The detection limit for lead is 1.1 μg/L. The accuracy of the method was tested with the additions recovery test and analysis of the standard reference materials (SPS-WW2 waste water, NIST SRM 1515 apple leaves, and TMDA-51.3 fortified water). Applications of the present procedure were tested by analyzing water and food samples.
Sharma, R K; Pandey, Amit; Gulati, Shikha; Adholeya, Alok
2012-03-30
A novel, highly selective, efficient and reusable chelating resin, diphenyldiketone-monothiosemicarbazone modified silica gel, was prepared and applied for the on-line separation and preconcentration of Pd(II) ions in catalytic converter and spiked tap water samples. Several parameters like effect of pH, sample volume, flow rate, type of eluent, and influence of various ionic interferences, etc. were evaluated for effective adsorption of palladium at trace levels. The resin was found to be highly selective for Pd(II) ions in the pH range 4-5 with a very high sorption capacity of 0.73 mmol/g and preconcentration factor of 335. The present environment friendly procedure has also been applied for large-scale extraction by employing the use of newly designed reactor in which on-line separation and preconcentration of Pd can be carried out easily and efficiently in short duration of time. Copyright © 2012 Elsevier B.V. All rights reserved.
The microbiological conditions of carcasses from large game animals in Italy.
Avagnina, A; Nucera, D; Grassi, M A; Ferroglio, E; Dalmasso, A; Civera, T
2012-07-01
This study investigates the microbiological conditions of large game animal carcasses following evisceration. Carcasses of animals (N=291) hunted in the Upper Susa Valley (Italian Alps) were analysed for pH, Aerobic Viable Count (AVC), Enterobacteriaceae, Yersinia spp., Listeria monocytogenes and Salmonella spp. After shooting, evisceration occurred within 60 min in 90.7% of animals and sampling within 90 min in 88.3% of animals. Mean pH values (5.97: ruminants; 5.77: wild boar) were similar to those of regularly slaughtered domestic species. AVC values were highest in animals shot in the abdomen. Within species, AVC and Enterobacteriaceae values did not differ across different shooting-evisceration/sampling times. However, these counts exceeded 5 and 2.5 log, respectively, in 18% of wild boar and 39% of ruminants; the highest values were detected in wild boar. No pathogens were detected in any species. These results reveal inadequate hygiene in game meat handling/harvesting, implicating the need for improved practices. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biodegradability and swelling capacity of kaolin based chitosan-g-PHEMA nanocomposite hydrogel.
Pradhan, Arun Kumar; Rana, Pradeep Kumar; Sahoo, Prafulla Kumar
2015-03-01
Chitosan, a natural biopolymer, obtained by alkaline deacetylation of chitin, exhibits excellent biological properties such as biodegradability, immunological and antibacterial activity. Recently, there has been a growing interest in the chemical modification of chitosan in order to widen its applications. The chemical modification of chitosan has been achieved via grafting of monomer, 2-hydroxyethyl methacrylate (HEMA) in the presence of the initiator, ammonium persulfate (APS) and kaolin was added to improve the mechanical strength of the newly developed nanocomposites hydrogel. The so prepared grafted nanocomposites hydrogel was characterized by FTIR, XRD, SEM, TEM and TGA. The equilibrium water content (EWC) of the samples were measured at different pH ranges 6.5-8.0 and found optimum at pH 7.5 for biomedical applications. Further, the biodegradability of the samples was studied at different time intervals from 15 days to 1 year but, the kaolin based nanohydrogels exhibited good biodegradability. Copyright © 2015 Elsevier B.V. All rights reserved.
Dong, Bin; Li, Guang; Yang, Xiaogang; Chen, Luming; Chen, George Z
2018-04-01
(NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O samples with different morphology are successfully synthesized via two-step synthesis route - ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The effects of the adoption of ultrasonic-intensified impinging stream pre-treatment, reagent concentration (C), pH value of solution and hydrothermal reaction time (T) on the physical and chemical properties of the synthesised (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O composites and FePO 4 particles were systematically investigated. Nano-seeds were firstly synthesized using the ultrasonic-intensified T-mixer and these nano-seeds were then transferred into a hydrothermal reactor, heated at 170 °C for 4 h. The obtained samples were characterized by utilising XRD, BET, TG-DTA, SEM, TEM, Mastersizer 3000 and FTIR, respectively. The experimental results have indicated that the particle size and morphology of the obtained samples are remarkably affected by the use of ultrasonic-intensified impinging stream pre-treatment, hydrothermal reaction time, reagent concentration, and pH value of solution. When such (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O precursor samples were transformed to FePO 4 products after sintering at 650 °C for 10 h, the SEM images have clearly shown that both the precursor and the final product still retain their monodispersed spherical microstructures with similar particle size of about 3 μm when the samples are synthesised at the optimised condition. Copyright © 2017 Elsevier B.V. All rights reserved.
Dissolution of Enamel on Exposure to Various Commercial Beverages Available in India.
Panda, Abikshyeet; Ghosh, Bikramaditya; Pal, Imon; Kumar, Vijay; Bhuyan, Lipsa; Dash, Kailash C
2017-11-01
The study was aimed to estimate the pH of the commonly available soft drinks in the Indian market and to assess the detrimental effects of the juices and beverages on the tooth surface by measuring the weight loss of the tooth sample. The study was done with eight different types of commercially available carbonated drink and fruit juices available in the Indian market among which six were carbonated drinks and two were juices. Carbonated drinks experimented were Coca-Cola, Pepsi, Fanta, Mirinda, 7Up and Sprite, and two fruit juices were Tropicana orange juice and real orange juice. Ten different bottles from each category were obtained, and the pH was estimated. Each of the beverages was divided into batch of 10 containers containing the tooth sample. Weight of all samples was measured at 24, 48, 72, 96, and 120 hours with subsequently changing each solution at an interval of 24 hours. The mean pH of the beverages was found ranging from 2.13 ± 0.02 in Pepsi to 3.41 ± 0.02 in Tropicana on opening. The mean pH of water was found to be 6.98 ± 0.01. Among carbonated drinks, the mean weight loss after 24 hours was highest in Coca-Cola and least in 7Up. Tropicana fruit juice had a higher tooth loss than real orange juices. When compared with water, the tooth loss was significantly higher in Coca-Cola after all specified time (hours). The pH of both carbonated drinks and fruit juices was below the critical pH. The weight loss was also seen after every 24 hours in all the carbonated drinks and beverages. The study showed that these commercial beverages are harmful to the tooth structures, and hence, the health professionals play a major role in educating the population about its effects and advising them to use these products precisely. The change in lifestyle has increased the demand of soft drinks and artificial juice in Indian market. The use of these carbonated drinks and fruit juices causes damage to the tooth structure in all ages, especially in young mass. Our study provides an idea about the deleterious effects of these commercial drinks on dental hard tissues.
Richards, Mark P; Proszkowiec-Weglarz, Monika; Rosebrough, Robert W; McMurtry, John P; Angel, Roselina
2010-12-01
The embryo to neonate transition is a critical period of development that has significant impact on broiler production. During this time important genetic programs governing metabolism and growth are established. The goal of this work was to study the effects of early post-hatch (PH) development and the time of initiation of feeding on activation of the genetic program regulating hepatic lipogenesis. A comparison of liver total RNA samples at hatch and 7 days PH was performed using oligonucleotide-based (Affymetrix GeneChip®) chicken genome microarrays. During the first week PH there was significant up-regulation of key lipogenic genes including: ATP citrate lyase (ACL), malic enzyme (ME), fatty acid synthase (FAS), acetyl-CoA carboxylase alpha (ACCα), stearoyl-CoA desaturase-1 (SCD-1), sterol regulatory element binding protein-2 (SREBP-2) and thyroid hormone responsive spot 14α (Spot 14α) among others. These findings were confirmed using gene-specific RT-PCR assays. In a follow-up study, we investigated the effects of withholding feed for the first 48 h PH (delayed feeding, DF) on lipogenic gene expression through 8 days PH. Body weight gain was significantly depressed by DF. Plasma levels of the major metabolic hormones that regulate lipogenic gene expression (insulin, glucagon and T(3)) changed significantly during PH development, but were largely unaffected by DF. Plasma glucose was significantly lower in the DF group at 24h PH but recovered thereafter. In general, DF inhibited the up-regulation of lipogenic genes until feeding was initiated. Delayed up-regulation was also observed for the lipogenic transcription factor genes, SREBP-1, SREBP-2 and peroxisome proliferator-activated receptor gamma (PPARγ), but not for carbohydrate response element binding protein (ChREB) or liver X receptor (LXR). Our results offer additional insight into the transcriptional programming of hepatic lipogenesis in response to the transition from high fat (yolk) to high carbohydrate (feed) nutrition that occurs during early PH development. Published by Elsevier Inc.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC. Div. of Science Resources Studies.
This report is based upon the National Science Foundation (NSF) 1975 Quick Response Survey which consisted of a stratified random sample of l,297 departments in 294 institutions (including 67 medical schools) granting a Ph.D. in science or engineering. Variables investigated were: (1) area of science, (2) full-time enrollment number, (3) part-time…
Optimization of adenovirus 40 and 41 recovery from tap water using small disk filters.
McMinn, Brian R
2013-11-01
Currently, the U.S. Environmental Protection Agency's Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS filter, but a more cost effective option, the NanoCeram® filter, has been shown to recover comparable levels of enterovirus and norovirus from both matrices. In order to achieve the highest viral recoveries, filtration methods require the identification of optimal concentration conditions that are unique for each virus type. This study evaluated the effectiveness of 1MDS and NanoCeram filters in recovering adenovirus (AdV) 40 and 41 from tap water, and optimized two secondary concentration procedures the celite and organic flocculation method. Adjustments in pH were made to both virus elution solutions and sample matrices to determine which resulted in higher virus recovery. Samples were analyzed by quantitative PCR (qPCR) and Most Probable Number (MPN) techniques and AdV recoveries were determined by comparing levels of virus in sample concentrates to that in the initial input. The recovery of adenovirus was highest for samples in unconditioned tap water (pH 8) using the 1MDS filter and celite for secondary concentration. Elution buffer containing 0.1% sodium polyphosphate at pH 10.0 was determined to be most effective overall for both AdV types. Under these conditions, the average recovery for AdV40 and 41 was 49% and 60%, respectively. By optimizing secondary elution steps, AdV recovery from tap water could be improved at least two-fold compared to the currently used methodology. Identification of the optimal concentration conditions for human AdV (HAdV) is important for timely and sensitive detection of these viruses from both surface and drinking waters. Published by Elsevier B.V.
Yousefi, Hanie; Ali, M Monsur; Su, Hsuan-Ming; Filipe, Carlos D M; Didar, Tohid F
2018-04-24
Here, we report the development of a transparent, durable, and flexible sensing surface that generates a fluorescence signal in the presence of a specific target bacterium. This material can be used in packaging, and it is capable of monitoring microbial contamination in various types of food products in real time without having to remove the sample or the sensor from the package. The sensor was fabricated by covalently attaching picoliter-sized microarrays of an E. coli-specific RNA-cleaving fluorogenic DNAzyme probe (RFD-EC1) to a thin, flexible, and transparent cyclo-olefin polymer (COP) film. Our experimental results demonstrate that the developed (RFD-EC1)-COP surface is specific, stable for at least 14 days under various pH conditions (pH 3-9), and can detect E. coli in meat and apple juice at concentrations as low as 10 3 CFU/mL. Furthermore, we demonstrate that our sensor is capable of detecting bacteria while still attached to the food package, which eliminates the need to manipulate the sample. The developed biosensors are stable for at least the shelf life of perishable packaged food products and provide a packaging solution for real-time monitoring of pathogens. These sensors hold the potential to make a significant contribution to the ongoing efforts to mitigate the negative public-health-related impacts of food-borne illnesses.
NASA Astrophysics Data System (ADS)
Mondal, Naba Kumar; Roy, Arunabha
2018-06-01
Contamination of underground water with fluoride (F) is a tremendous health hazard. Excessive F (> 1.5 mg/L) in drinking water can cause both dental and skeletal fluorosis. A fixed-bed column experiments were carried out with the operating variables such as different initial F concentrations, bed depths, pH and flow rates. Results revealed that the breakthrough time and exhaustion time decrease with increasing flow rate, decreasing bed depth and increasing influent fluoride concentration. The optimized conditions are: 10 mg/L initial fluoride concentration; flow rate 3.4 mL/min, bed depth 3.5 and pH 5. The bed depth service time model and the Thomas model were applied to the experimental results. Both the models were in good agreement with the experimental data for all the process parameters studied except flow rate, indicating that the models were appropriate for removal of F by natural banana peel dust in fix-bed design. Moreover, column adsorption was reversible and the regeneration was accomplished by pumping of 0.1 M NaOH through the loaded banana peel dust column. On the other hand, field water sample analysis data revealed that 86.5% fluoride can be removed under such optimized conditions. From the experimental results, it may be inferred that natural banana peel dust is an effective adsorbent for defluoridation of water.
Wang, Ren-Qi; Bao, Kai; Croué, Jean-Philippe; Ng, Siu Choon
2013-11-21
Natural occurring organic compounds from food, natural organic matter, as well as metabolic products have received intense attention in current chemical and biological studies. Examination of unknown compounds in complex sample matrices is hampered by the limited choices for data readout and molecular elucidation. Herein, we report a generic method of hydrophilic interaction chromatography (HILIC) coupled with matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the rapid characterization of ingredients in pharmaceutical compounds, tea, and coffee. The analytes were first fractionated using a cationic HILIC column prior to MALDI-MS analyses. It was found that the retention times of a compound arising from different samples were consistent under the same conditions. Accordingly, molecules can be readily characterized by both the mass and chromatographic retention time. The retention behaviors of acidic and basic compounds on the cationic HILIC column were found to be significantly influenced by the pH of mobile phases, whereas neutral compounds depicted a constant retention time at different pH. The general HILIC-MALDI-MS method is feasible for fast screening of naturally occurring organic compounds. A series of homologs can be determined if they have the same retention behavior. Their structural features can be elucidated by considering their mass differences and hydrophilic properties as determined by HILIC chromatogram.
Chemiluminescence measurements on irradiated garlic powder by the single photon counting technique
NASA Astrophysics Data System (ADS)
Narvaiz, P.
1995-02-01
The feasibility of identifying irradiated garlic powder measuring chemiluminescence by liquid scintillation spectrometry was studied. Samples packed in 100 μm thick polyethylene bags were irradiated in a 60Co semi-industrial facility, with doses of 10 and 30 kGy. Control and irradiated samples were stored at 20 ± 4°C and 70 ± 10% RH in darkness for 2 years. Assays were performed to establish the best sample concentration and pH of the buffer solution in which garlic powder was to be suspended for its measurement. The water content of garlic samples was also analyzed throughout storage time, as it related to the stability of the species causing luminescence. Chemiluminescence values diminished in every sample over storage time following an exponential pattern. Irradiated samples showed values significantly higher than those of the control samples, according to the radiation dose, throughout the storage period. This does not necessarily imply that the identification of the irradiated samples would be certain, since values of control samples coming from different origins have been found to fluctuate within a rather wide range. Nonetheless, in principle, the method looks promising for the measurement of chemiluminescence in irradiated samples
Hedaya, Mohsen A; Thomas, Vidhya; Abdel-Hamid, Mohamed E; Kehinde, Elijah O; Phillips, Oludotun A
2017-01-01
Linezolid is the first approved oxazolidinone antibacterial agent, whereas PH027 is a novel compound of the same class that exhibits good in vitro antibacterial activity. The objective of this study was to develop an UPLC-MS/MS assay for the analysis of linezolid and PH027 in plasma and to apply the method for comparative pharmacokinetic and tissue distribution studies of both compounds. Plasma samples and calibrators were extracted with diethyl ether after addition of the internal standard solution. After evaporation of the ether layer, the residue was reconstituted in mobile phase and injected into UPLC-MS/MS. The mobile phase consisted of 2mM ammonium acetate buffer solution and acetonitrile (70:30) at a flow rate of 0.2ml/min. Separation was achieved using UPLC BEH C 18 column, and quantitative determination of the analytes was performed using multiple-reaction monitoring (MRM) scanning mode. The method was validated by analyzing quality control tissue homogenate samples, and was applied to analyze tissue homogenate samples obtained following IV injections of linezolid and PH027 in rabbits. The developed UPLC-MS/MS method was linear in the concentration range of 50-5000ng/ml. Validation of the method proved that the method's precision, selectivity and stability were all within the acceptable limits. Linezolid and PH027 concentrations were accurately determined in the quality control tissue homogenate samples, and analysis of samples obtained following IV administration of the two compounds showed that the tissue to plasma concentration ratio of PH027 was higher than that of linezolid probably due to its higher lipophilicity. The developed UPLC-MS/MS method for the analysis of linezolid and PH027 in rabbit's plasma can accurately determine the concentrations of these compounds in different tissues. Copyright © 2016 Elsevier B.V. All rights reserved.
Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing
NASA Astrophysics Data System (ADS)
Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.
Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.
Asfaram, Arash; Ghaedi, Mehrorang; Purkait, Mihir Kumar
2017-09-01
A sensitive analytical method is investigated to concentrate and determine trace level of Sildenafil Citrate (SLC) present in water and urine samples. The method is based on a sample treatment using dispersive solid-phase micro-extraction (DSPME) with laboratory-made Mn@ CuS/ZnS nanocomposite loaded on activated carbon (Mn@ CuS/ZnS-NCs-AC) as a sorbent for the target analyte. The efficiency was enhanced by ultrasound-assisted (UA) with dispersive nanocomposite solid-phase micro-extraction (UA-DNSPME). Four significant variables affecting SLC recovery like; pH, eluent volume, sonication time and adsorbent mass were selected by the Plackett-Burman design (PBD) experiments. These selected factors were optimized by the central composite design (CCD) to maximize extraction of SLC. The results exhibited that the optimum conditions for maximizing extraction of SLC were 6.0 pH, 300μL eluent (acetonitrile) volume, 10mg of adsorbent and 6min sonication time. Under optimized conditions, virtuous linearity of SLC was ranged from 30 to 4000ngmL -1 with R 2 of 0.99. The limit of detection (LOD) was 2.50ngmL -1 and the recoveries at two spiked levels were ranged from 97.37 to 103.21% with the relative standard deviation (RSD) less than 4.50% (n=15). The enhancement factor (EF) was 81.91. The results show that the combination UAE with DNSPME is a suitable method for the determination of SLC in water and urine samples. Copyright © 2017 Elsevier B.V. All rights reserved.
[Evaluation of an automated pH-monitor and its logic of calculation].
Ducrotté, P; Hubin, M; Xin, H; Roussignol, C; Denis, P
1990-01-01
The aim of this study was to compare the results of 3-hour postprandial esophageal pH recordings obtained simultaneously from a standard Beckmann pH recorder and a commercially available fully automated pH recording device, "pH 60" in 30 subjects. Both apparatuses were connected to the same pH probe and to a unique chart recorder to obtain simultaneous pH graphic tracings. The percentage of time between each pH level below pH 5, the percentage of time with pH less than 4 and Kaye's score were determined hourly and for the overall recording time. The pH graphic traces in both apparatuses were strictly identical demonstrating the accuracy of the analog-to-digital converter and the memory module to record pH changes. Moreover, we found a significant correlation (p less than 0.01) and a good overall agreement for all compared parameters between manual and computerized analysis. This study documents that the commercially available ambulatory esophageal pH instrument studied produces accurate data for the diagnosis of gastroesophageal reflux.
Johnsson, P.A.; Reddy, M.M.
1990-01-01
This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.This report describes a continuous wet-only precipitation monitor designed by the U.S. Geological Survey to record variations in rainfall temperature, pH, and specific conductance at 1-min intervals over the course of storms. Initial sampling in the Adirondack Mountains showed that rainfall acidity varied over the course of summer storms, with low initial pH values increasing as storm intensity increased.
Uniform Corrosion and General Dissolution of Aluminum Alloys 2024-T3, 6061-T6, and 7075-T6
NASA Astrophysics Data System (ADS)
Huang, I.-Wen
Uniform corrosion and general dissolution of aluminum alloys was not as well-studied in the past, although it was known for causing significant amount of weight loss. This work comprises four chapters to understand uniform corrosion of aluminum alloys 2024-T3, 6061-T6, and 7075-T6. A preliminary weight loss experiment was performed for distinguishing corrosion induced weight loss attributed to uniform corrosion and pitting corrosion. The result suggested that uniform corrosion generated a greater mass loss than pitting corrosion. First, to understand uniform corrosion mechanism and kinetics in different environments, a series of static immersion tests in NaCl solutions were performed to provide quantitative measurement of uniform corrosion. Thereafter, uniform corrosion development as a function of temperature, pH, Cl-, and time was investigated to understand the influence of environmental factors. Faster uniform corrosion rate has been found at lower temperature (20 and 40°C) than at higher temperature (60 and 80°C) due to accelerated corrosion product formation at high temperatures inhibiting corrosion reactions. Electrochemical tests including along with scanning electron microscopy (SEM) were utilized to study the temperature effect. Second, in order to further understand the uniform corrosion influence on pit growth kinetics, a long term exposures for 180 days in both immersion and ASTM-B117 test were performed. Uniform corrosion induced surface recession was found to have limited impact on pit geometry regardless of exposure methods. It was also found that the competition for limited cathodic current from uniform corrosion the primary rate limiting factor for pit growth. Very large pits were found after uniform corrosion growth reached a plateau due to corrosion product coverage. Also, optical microscopy and focused ion beam (FIB) imaging has provided more insights of distinctive pitting geometry and subsurface damages found from immersion samples and B117 samples. Although uniform corrosion was studied in various electrolytes, the pH impact was still difficult to discern due to ongoing cathodic reactions that changed electrolyte pH with time. Therefore, buffered pH electrolytes with pH values of 3, 5, 8, and 10 were prepared static immersion tests. Electrochemical experiments were performed in each buffered pH conditions for understanding corrosion mechanisms. Uniform corrosion was found exhibiting higher corrosion rate in buffered acidic and alkaline electrolytes due to pH- and temperature-dependent corrosion product precipitation. Observations were supported by electrochemical, SEM, and EDS observations. Due to the complexity of corrosion data, a reliable corrosion prediction based on empirical observations could be challenging. Artificial neural network (ANN) modeling was used for corrosion data pattern recognition by mimicking human neural network systems. Predictive models were developed based on corrosion data acquired in this study. The model was adaptable through iteratively update its prediction by error minimization during the training phase. Trained ANN model can predict uniform corrosion successfully. In addition to ANN, fuzzy curve analysis was utilized to rank the influence of each input (temperature, pH, Cl-, and time). For example, temperature and pH were found to be the most influential parameters to uniform corrosion. This information can provide feedback for ANN improvement, also known as "data pruning".
Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang
2008-11-01
Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).
Hydrogeochemical Investigation of the Standard Mine Vicinity, Upper Elk Creek Basin, Colorado
Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Wanty, Richard B.
2008-01-01
Ground- and surface-water samples were collected in the vicinity of the Standard Mine in west-central Colorado in order to characterize the local ground-water flow system, determine metal concentrations in local ground water, and better understand factors controlling the discharge of metal-rich waters from the mine. The sampling program included a one-time sampling of springs, mine adits, and exploration pits in Elk Basin and Redwell Basin; repeated sampling throughout one year of Standard Mine Level 1 discharge and Elk Creek near its confluence with Coal Creek; and a one-time sampling of underground sites in Levels 3 and 5 of the Standard Mine. Samples were analyzed for major ions and trace elements, stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O), strontium isotopes, and tritium and dissolved noble gases (including helium isotopes) for tritium/helium-3 age dating. No clear correlations were observed between natural ground-water discharge locations and map-scale faults and lithology. Surface observations and the location of ground-water discharge suggest that simple topography, rather than large-scale geologic features, primarily controls the occurrence and flow of shallow ground water in Elk Basin. Discrete inflows from cross faults or other features were not observed in Levels 3 and 5 of the Standard Mine. Instead, water entered the mine as relatively persistent dripping from gouge and breccia within the Standard fault, which both tunnels follow. Therefore, the Standard fault itself is probably the main pathway of ground-water flow from the shallow subsurface to the mine workings. Low pH (as low as 3.2) and elevated concentrations of zinc, lead, cadmium, copper, and manganese (commonly exceeding water-quality standards for Elk Creek) were measured in samples located within or immediately downgradient of areas where sulfides are abundant, including the Standard fault, the Elk Lode portal, and the breccia pipe in Redwell Basin. Concentrations of these metals were typically low and pH values were circumneutral at surrounding locations. Metal concentrations in samples collected from underground workings in the Standard Mine were also generally higher than in samples collected at aboveground sites located outside of sulfide-rich areas. Metal concentrations in discharge from the Level 1 tunnel were among the highest measured in Elk Basin. All of these observations suggest that sulfide-rich mineralized rock is the primary control on dissolved metal concentrations and pH in ground water in the Standard Mine vicinity. Waste-rock piles apparently exert another major control on metal concentrations and pH; the lowest pH and highest metal concentrations typically are found in discharge from waste-rock piles. Concentrations of several chemical constituents along with strontium isotope data indicate that none of the sampled waters could have been the primary source of metals in discharge from Level 1. Therefore, this study did not identify the primary source location for metals in Level 1 discharge. Possible sources must be located below Levels 3 and 5 or farther back into the mountainside than the ends of Levels 3 and 5. Apparent tritium/helium-3 ground-water ages ranged from 0 to 9 yr, and a considerable majority were <1 yr. Tritium data and computed initial tritium values (measured tritium plus measured tritiogenic helium-3) suggest that much of the ground water in the Standard Mine vicinity was weeks to months old rather than years old. Tritium, d2H, and d18O data from water entering into and discharging from the Standard Mine displayed spatial and temporal patterns indicating that these tracers were influenced by seasonal variations in their concentration in precipitation. The tracer data therefore suggest that ground water entering into and discharging from the Standard Mine was largely composed of water <1 yr old. Pronounced seasonal variations in geochemistry in Level 1 discharge also are consistent with short r
Yaripour, Saeid; Mohammadi, Ali; Nojavan, Saeed
2016-07-01
In the present study, for the first time electromembrane extraction followed by high-performance liquid chromatography coupled with ultraviolet detection was developed and validated for the determination of tartrazine in some food samples. The parameters influencing electromembrane extraction were evaluated and optimized. The membrane consists of 1-octanol immobilized in the pores of a hollow fiber. As a driving force, a 30 V electrical field was applied to make the analyte migrate from sample solution with pH 3, through the supported liquid membrane into an acceptor solution with pH 10. Best preconcentration (enrichment factor >21) was obtained in extraction duration of 15 min. Effects of some solid nano-sorbents like carbon nanotubes and molecularly imprinted polymers on membrane performance and electromembrane extraction efficiency were evaluated. The method provided the linearity in the range 25-1000 ng/mL for tartrazine (R(2) > 0.9996) with repeatability range (RSD) between 3.8 and 8.5% (n = 3). The limits of detection and quantitation were 7.5 and 25 ng/mL, respectively. Finally, the method was applied to the determination and quantification of tartrazine from some food samples with relative recoveries in the range between 90 and 98%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New robust bilinear least squares method for the analysis of spectral-pH matrix data.
Goicoechea, Héctor C; Olivieri, Alejandro C
2005-07-01
A new second-order multivariate method has been developed for the analysis of spectral-pH matrix data, based on a bilinear least-squares (BLLS) model achieving the second-order advantage and handling multiple calibration standards. A simulated Monte Carlo study of synthetic absorbance-pH data allowed comparison of the newly proposed BLLS methodology with constrained parallel factor analysis (PARAFAC) and with the combination multivariate curve resolution-alternating least-squares (MCR-ALS) technique under different conditions of sample-to-sample pH mismatch and analyte-background ratio. The results indicate an improved prediction ability for the new method. Experimental data generated by measuring absorption spectra of several calibration standards of ascorbic acid and samples of orange juice were subjected to second-order calibration analysis with PARAFAC, MCR-ALS, and the new BLLS method. The results indicate that the latter method provides the best analytical results in regard to analyte recovery in samples of complex composition requiring strict adherence to the second-order advantage. Linear dependencies appear when multivariate data are produced by using the pH or a reaction time as one of the data dimensions, posing a challenge to classical multivariate calibration models. The presently discussed algorithm is useful for these latter systems.
Mohadesi, Alireza; Falahnejad, Masoumeh
2012-01-01
In the present study, an ultrasound-assisted emulsification microextraction based on solidification floating organic drop method is described for preconcentration of trace amounts of Mn (II). 2-(5-Bromo-2-pyridylazo)-5 diethylaminophenol was added to a solution of Mn+2 at ph = 10.0. After this, 1-undecanol was added to the solution as an extraction solvent, and solution was stirred. Several factors influencing the microextraction efficiency, such as pH, the amount of chelating agent, nature and volume of extraction solvent, the volume of sample solution, stirring rate, and extraction time were investigated and optimized. Then sample vial was cooled by inserting into an ice bath, and the solidified was transferred into a suitable vial for immediate melting. Finally the sample was injected into a graphite furnace atomic absorption spectrometry. Under the optimum condition the linear dynamic range was 0.50–10.0 ng mL−1 with a correlation coefficient of 0.9926, and the detection limit of 0.3 ng mL−1 was obtained. The enrichment factor was 160. The proposed method was successfully applied for separation and determination of manganese in sea, rain, tap, and river water samples. PMID:22645504
Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taşköprü, T., E-mail: ttaskopru@anadolu.edu.tr; Department of Physics, Çankırı Karatekin University, Çankırı 18100; Zor, M.
2015-10-15
Graphical abstract: SEM images of (a) as deposited β-Ni(OH)2 and (b) NiO samples deposited with pH 10 solution. The inset figures shows the absorbance spectra of (a) β-Ni(OH)2 and (b) NiO samples. - Highlights: • The formation of β-Ni(OH){sub 2} and NiO were confirmed with XRD, SEM, FT-IR and Raman. • Porous nickel oxide was synthesized after heat treatment of nickel hydroxide. • The increase in pH value changes the nanoflake structure to hexagonal nanosheet. • On increasing the pH from 8 to 11, the band gap decreases from 3.52 to 3.37 eV. - Abstract: Nickel hydroxide samples were depositedmore » onto glass substrates using Ni(NO{sub 3}){sub 2}·6H{sub 2}O and aqueous ammonia by chemical bath deposition technique. The influence of pH of solution was investigated by means of X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, optical absorption and BET analysis. The as-deposited samples were identified as β-Ni(OH){sub 2}, were transformed into NiO after heat treatment in air at 500 °C for 2 h. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets. The optical transitions observed in the absorbance spectra below optical band gap is due to defects or Ni{sup 2+} vacancies in NiO samples. The band gap energy of NiO samples changes between 3.37 and 3.52 eV depending on the pH values.« less
Berrang, M E; Windham, W R; Meinersmann, R J
2011-04-01
The objective of this study was to determine the individual and combined effects of a high pH scald and a postpick chlorine dip on bacteria present on broiler carcasses. In each of 3 replications, a flock was sampled at several sites within a commercial broiler processing plant. Carcasses were sampled by whole carcass rinse before and after treated scalding at mean pH 9.89 or control scalding at mean pH 6.88. Other carcasses from the same flock run on both the treated and control scald lines were collected and sampled before and after a chlorine dip tank operated at mean total chlorine level of 83.3 mg/kg and pH 6.04. Rinses were cultured for numbers of Campylobacter and Escherichia coli and presence or absence of Salmonella. High pH scald was more effective than standard scald to lessen the prevalence and numbers of Campylobacter on broiler carcasses; a lower prevalence was maintained through the postpick chlorine dip tank. The pH of the scald tank made no difference in numbers of E. coli recovered from broiler carcasses at any tested point on the processing line. High pH scald was not more effective than standard scald to lessen Salmonella prevalence. Furthermore, it is unclear why the postpick chlorine dip effectively lessened Salmonella prevalence on only the control scald line. Although no evidence exists that these treatments have an additive effect when used in series, each treatment shows some promise individually. Further optimization may result in more effective decontamination of broiler carcasses.
Veenendaal, Harm R; Brouwer-Hanzens, Anke J; van der Kooij, Dick
2017-10-15
Worldwide, over 90% of the notified cases of Legionnaires' disease are caused by Legionella pneumophila. However, the standard culture medium for the detection of Legionella in environmental water samples, Buffered Charcoal Yeast Extract (BCYE) agar of pH 6.9 ± 0.4 with or without antimicrobial agents incubated at 36 ± 1 °C, supports the growth of a large diversity of Legionella species. BCYE agar of elevated pH or/and incubation at elevated temperature gave strongly reduced recoveries of most of 26 L. non-pneumophila spp. tested, but not of L. pneumophila. BCYE agar of pH 7.3 ± 0.1, incubated at 40 ± 0.5 °C (BCYE pH 7.3/40 °C) was tested for selective enumeration of L. pneumophila. Of the L. non-pneumophila spp. tested, only L. adelaidensis and L. londiniensis multiplied under these conditions. The colony counts on BCYE pH 7.3/40 °C of a L. pneumophila serogroup 1 strain cultured in tap water did not differ significantly from those on BCYE pH 6.9/36 °C when directly plated and after membrane filtration and showed repeatability's of 13-14%. By using membrane filtration L. pneumophila was detected in 58 (54%) of 107 Legionella-positive water samples from premise plumbing systems under one or both of these culture conditions. The L. pneumophila colony counts (log-transformed) on BCYE pH 7.3/40 °C were strongly related (r 2 = 0.87) to those on BCYE pH 6.9/36 °C, but differed significantly (p < 0.05) by a mean of - 0.12 ± 0.30 logs. L. non-pneumophila spp. were detected only on BCYE pH 6.9/36 °C in 49 (46%) of the samples. Hence, BCYE pH 7.3/40 °C can facilitate the enumeration of L. pneumophila and their isolation from premise plumbing systems with culturable L. non-pneumophila spp., some of which, e.g. L. anisa, can be present in high numbers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jia, Rui-lai; Liu, Ji-bao; Wei, Yuan-song; Cai, Xing
2015-10-01
Previous studies have found that in the hydrolysis acidification process, sludge after microwave -H2O2-alkaline (MW-H2O2-OH, pH = 10) pretreatment had an acid production lag due to the residual hydrogen peroxide. In this study, effects of residual hydrogen peroxide after MW-H2O2-OH (pH = 10 or pH = 11) pretreatment on the sludge hydrolysis acidification were investigated through batch experiments. Our results showed that catalase had a higher catalytic efficiency than manganese dioxide for hydrogen peroxide, which could completely degraded hydrogen peroxide within 10 min. During the 8 d of hydrolysis acidification time, both SCOD concentrations and the total VFAs concentrations of four groups were firstly increased and then decreased. The optimized hydrolysis times were 0.5 d for four groups, and the optimized hydrolysis acidification times were 3 d for MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group. The optimized hydrolysis acidification time for MW-H2O2-OH (pH = 11) group was 4 d. Residual hydrogen peroxide inhibited acid production for sludge after MW-H2O2-OH (pH = 10) pretreatment, resulting in a lag in acidification stage. Compared with MW-H2O2-OH ( pH = 10) pretreatment, MW-H2O2-OH (pH = 11 ) pretreatment released more SCOD by 19.29% and more organic matters, which resulted in the increase of total VFAs production significantly by 84.80% at 5 d of hydrolysis acidification time and MW-H2O2-OH (pH = 11) group could shorten the lag time slightly. Dosing catalase (100 mg x -L(-1)) after the MW-H2O2-OH (pH = 10 or pH = 11) pretreatment not only significantly shortened the lag time (0.5 d) in acidification stage, but also produced more total VFAs by 23.61% and 50.12% in the MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH (pH = 11) + catalase group, compared with MW-H2O2-OH (pH = 10) group at 3d of hydrolysis acidification time. For MW-H2O2-OH (pH = 10) group, MW-H2O2-OH (pH = 10) + catalase group and MW-H2O2-OH(pH = 11) + catalase group, the dominant VFAs were acetic, iso-valeric and n-butyric acids. For MW-H2O2-OH (pH = 11) group, the dominant VFAs were acetic, propionic and iso-valeric acids. In the optimized hydrolysis acidification time for each group, percentages of the three main acids accounted for more than 75% of total VFAs, and percentages of acetic acid accounted for more than 41% of total VFAs.
Weber, G; Bauer, J
1998-06-01
On fractionation of highly heterogeneous protein mixtures, optimal resolution was achieved by forcing proteins to migrate through a preestablished pH gradient, until they entered a medium with a pH similar but not equal to their pIs. For this purpose, up to seven different media were pumped through the electrophoresis chamber so that they were flowing adjacently to each other, forming a pH gradient declining stepwise from the cathode to the anode. This gradient had a sufficiently strong band-focusing effect to counterbalance sample distortion effects of the flowing medium as proteins approached their isoelectric medium closer than 0.5 pH units. Continuous free-flow zone electrophoresis (FFZE) with high throughput capability was applicable if proteins did not precipitate or aggregate in these media. If components of heterogeneous protein mixtures had already started to precipitate or aggregate, in a medium with a pH exceeding their pI by more than 0.5 pH units, the application of interval modus and media forming flat pH gradients appeared advantageous.
Oxalate quantification in hemodialysate to assess dialysis adequacy for primary hyperoxaluria
Tang, Xiaojing; Voskoboev, Nikolay V.; Wannarka, Stacie L.; Olson, Julie B.; Milliner, Dawn S.; Lieske, John C.
2015-01-01
Background Patients with primary hyperoxaluria (PH) overproduce oxalate which is eliminated via the kidneys. If end stage kidney disease develops they are at high risk for systemic oxalosis, unless adequate oxalate is removed during hemodialysis to equal or exceed ongoing oxalate production. The purpose of this study was to validate a method to measure oxalate removal in this unique group of dialysis patients. Methods Fourteen stable patients with a confirmed diagnosis of PH on hemodialysis were included in the study. Oxalate was measured serially in hemodialysate and plasma samples in order to calculate rates of oxalate removal. Hemodialysis regimens were adjusted according to a given patient's historical oxalate production, amount of oxalate removal at dialysis, residual renal clearance of oxalate, and plasma oxalate levels. Results After a typical session of hemodialysis, plasma oxalate was reduced by 78.4±7.7%. Eight patients performed hemodialysis 6 times a week, two patients 5 times a week and three patients 3 times a week. Combined oxalate removal by hemodialysis and the kidneys was sufficient to match or exceed endogenous oxalate production. After a median period of 9 months, pre-dialysis plasma oxalate was significantly lower than initially (75.1±33.4 mmol/L vs. 54.8±46.6 mmol/L, P=0.02). Conclusion This methodology can be used to individualize the dialysis prescription of PH patients to prevent oxalosis during the time they are maintained on hemodialysis, and to reduce risk of oxalate injury to a transplanted kidney. PMID:24776840
Jithesh, C; Venkataramana, V; Penumatsa, Narendravarma; Reddy, S N; Poornima, K Y; Rajasigamani, K
2015-08-01
To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P < 0.05). The descriptive method of statistics was used to calculate the mean, standard deviation, minimum and maximum. SPSS 18 software ((SPSS.Ltd, Quarry bay, Hong Kong, PASW-statistics 18) was used to analyze the study. The analysis shows a significant difference between three groups. The study shows that the nickel releases from the recycled stainless steel brackets have the highest at all 4.2 pH except in 120 h. The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable.
Jithesh, C.; Venkataramana, V.; Penumatsa, Narendravarma; Reddy, S. N.; Poornima, K. Y.; Rajasigamani, K.
2015-01-01
Objectives: To determine and compare the potential difference of nickel release from three different orthodontic brackets, in different artificial pH, in different time intervals. Materials and Methods: Twenty-seven samples of three different orthodontic brackets were selected and grouped as 1, 2, and 3. Each group was divided into three subgroups depending on the type of orthodontic brackets, salivary pH and the time interval. The Nickel release from each subgroup were analyzed by using inductively coupled plasma-Atomic Emission Spectrophotometer (Perkin Elmer, Optima 2100 DV, USA) model. Quantitative analysis of nickel was performed three times, and the mean value was used as result. ANOVA (F-test) was used to test the significant difference among the groups at 0.05 level of significance (P < 0.05). The descriptive method of statistics was used to calculate the mean, standard deviation, minimum and maximum. SPSS 18 software ((SPSS.Ltd, Quarry bay, Hong Kong, PASW-statistics 18) was used to analyze the study. Result: The analysis shows a significant difference between three groups. The study shows that the nickel releases from the recycled stainless steel brackets have the highest at all 4.2 pH except in 120 h. Conclusion: The study result shows that the nickel release from the recycled stainless steel brackets is highest. Metal slot ceramic bracket release significantly less nickel. So, recycled stainless steel brackets should not be used for nickel allergic patients. Metal slot ceramic brackets are advisable. PMID:26538924
Angus, Derek W; Baker, James A; Mason, Rona; Martin, Iain J
2008-02-01
Rodent tissue distribution and pharmacokinetic studies were performed on basic compounds Org A and Org B in support of central nervous system drug discovery programs. A consistent observation from these studies was that drug concentrations in plasma obtained by cardiac puncture after CO(2) euthanasia were markedly higher compared with those from other sampling methods (serial sampling, isoflurane anesthesia, or cervical dislocation). Further investigations demonstrated that CO(2) euthanasia led to a reduction in blood pH in both rats and mice, which was not observed with the other sampling methods. The use of CO(2) euthanasia resulted in a decrease in the brain/plasma ratio of Org B, largely as a result of increased plasma concentrations. The pharmacokinetics of a basic drug, raloxifene, in rat were also influenced by sampling technique. CO(2) euthanasia before sampling, resulted in a 2- to 3-fold increase in the area under the drug concentration-time curve, a decrease in plasma clearance, and a decrease in the steady-state volume of distribution compared with isoflurane anesthesia. It is proposed that a decrease in the pH of blood relative to that of other tissues, as a consequence of CO(2) exposure, results in a redistribution of basic compounds out of the tissues, leading to higher concentrations in plasma.
Li, Ying; Yang, Cunman; Bao, Yijun; Ma, Xueru; Lu, Guanghua; Li, Yi
2016-08-01
A modified polar organic chemical integrative sampler (POCIS) could provide a convenient way of monitoring perfluorinated chemicals (PFCs) in water. In the present study, the modified POCIS was calibrated to monitor PFCs. The effects of water temperature, pH, and dissolved organic matter (DOM) on the sampling rate (R s) of PFCs were evaluated with a static renewal system. During laboratory validation over a 14-day period, the uptake kinetics of PFCs was linear with the POCIS. DOM and water temperature slightly influenced POCIS uptake rates, which is in consistent with the theory for uptake into POCIS. Therefore, within a narrow span of DOM and water temperatures, it was unnecessary to adjust the R s value for POCIS. Laboratory experiments were conducted with water over pH ranges of 3, 7, and 9. The R s values declined significantly with pH increase for PFCs. Although pH affected the uptake of PFCs, the effect was less than twofold. Application of the R s value to analyze PFCs with POCIS deployed in the field provided similar concentrations obtained from grab samples.
Xu, Xiao-Yu; Yan, Bing
2016-04-28
A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.
Chapa-Martínez, C A; Hinojosa-Reyes, L; Hernández-Ramírez, A; Ruiz-Ruiz, E; Maya-Treviño, L; Guzmán-Mar, J L
2016-09-15
The leaching of antimony (Sb) from polyethylene terephthalate (PET) bottling material was assessed in twelve brands of bottled water purchased in Mexican supermarkets by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). Dowex® 1X8-100 ion-exchange resin was used to preconcentrate trace amounts of Sb in water samples. Migration experiments from the PET bottle material were performed in water according to the following storage conditions: 1) temperature (25 and 75°C), 2) pH (3 and 7) and 3) exposure time (5 and 15days), using ultrapure water as a simulant for liquid foods. The test conditions were studied by a 2(3) factorial experimental design. The Sb concentration measured in the PET packaging materials varied between 73.0 and 111.3mg/kg. The Sb concentration (0.28-2.30μg/L) in all of the PET bottled drinking water samples examined at the initial stage of the study was below the maximum contaminant level of 5μg/L prescribed by European Union (EU) regulations. The parameters studied (pH, temperature, and storage time) significantly affected the release of Sb, with temperature having the highest positive significant effect within the studied experimental domain. The highest Sb concentration leached from PET containers was in water samples at pH7 stored at 75°C for a period of 5days. The extent of Sb leaching from the PET ingredients for different brands of drinking water can differ by as much as one order of magnitude in experiments conducted under the worst-case conditions. The chronic daily intake (CDI) caused by the release of Sb in one brand exceeded the Environmental Protection Agency (USEPA) regulated CDI value of 400ng/kg/day, with values of 514.3 and 566.2ng/kg/day for adults and children. Thus, the appropriate selection of the polymer used for the production of PET bottles seems to ensure low Sb levels in water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Oxidation of non-steroidal anti-inflammatory drugs with aqueous permanganate.
Rodríguez-Álvarez, Tania; Rodil, Rosario; Quintana, José Benito; Triñanes, Sara; Cela, Rafael
2013-06-01
Potassium permanganate is a strong oxidant widely used in drinking water treatment, that can react with organic micropollutants. Thus, the oxidation kinetics and transformation route of seven non-steroidal anti-inflammatory drugs (NSAIDs) upon reaction with potassium permanganate was investigated. A liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-Q-TOF-MS) system was used to follow the time course of pharmaceuticals concentrations and for the identification of their by-products. Under strong oxidation conditions (2 mg L(-1) KMnO4, 24 h), only two NSAIDs were significantly degraded: indomethacine and diclofenac. The degradation kinetics of these two drugs was investigated at different concentrations of permanganate, chlorides, phosphates and sample pH by means of a full factorial experimental design. Depending on these factors, half-lives were in the range: 2-270 h for indomethacine and 3-558 h for diclofenac, equivalent to apparent second order constants between 0.65 and 9.5 M(-1) s(-1) and 0.27 and 7.4 M(-1) s(-1), respectively. Permanganate concentration was the most significant factor on NSAIDs oxidation kinetics, but the pH also played a significant role in diclofenac reaction, being faster at acidic pH. In the case of indomethacine, the dose of permanganate seemed also to play an autocatalytic effect. The use of an accurate-mass high resolution LC-Q-TOF-MS system permitted the identification of a total of 13 by-products. The transformation path of these drugs consisted mainly of hydroxylations, decarboxylations and oxidation of aromatic double bonds, with ring opening. The software predicted toxicity of these products indicates that they are expected not to be more toxic than the NSAIDs, with the exception of two indomethacine by-products. Reaction in real samples was slower and/or incomplete for both pharmaceuticals, depending on the organic matter content of the sample. However, still all transformation products could be detected for indomethacine in permanganate treated surface water samples, and two out of five in the case of diclofenac. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nickheslat, Ali; Amin, Mohammad Mehdi; Izanloo, Hassan; Fatehizadeh, Ali; Mousavi, Seyed Mohammad
2013-01-01
Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm). The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal. PMID:23710198
NASA Astrophysics Data System (ADS)
Chen, Yongzhi; Chen, Xin; Deng, Yuefan
2007-07-01
A new method was proposed by Mongan et al. for constant pH molecular dynamics simulation and was implemented in AMBER 8 package. Protonation states are modeled with different charge sets, and titrating residues are sampled from a Boltzmann distribution of protonation states. The simulation periodically adopts Monte Carlo sampling based on Generalized Born (GB) derived energies. However, when this approach was applied to a bio-toxin, Botulinum Neurotoxin Type A (BoNT/A) at pH 4.4, 4.7, 5.0, 6.8 and 7.2, the pK predictions yielded by the method were inconsistent with the experimental values. The systems being simulated were divergent. Furthermore, the system behaviors in a very weak acidic solution (pH 6.8) and in a very weak basic solution (pH 7.2) were significantly different from the neutral case (pH 7.0). Hence, we speculate this method may require further study for modeling large biomolecule.
Salgado, R; Marques, R; Noronha, J P; Carvalho, G; Oehmen, A; Reis, M A M
2012-06-01
This study aimed to investigate the removal mechanisms of pharmaceutical active compounds (PhACs) and musks in a wastewater treatment plant (WWTP). Biological removal and adsorption in the activated sludge tank as well as the effect of UV radiation used for disinfection purposes were considered when performing a mass balance on the WWTP throughout a 2-week sampling campaign. Solid-phase extraction (SPE) was carried out to analyse the PhACs in the influent and effluent samples. Ultrasonic solvent extraction was used before SPE for PhACs analysis in sludge samples. PhAC extracts were analysed by LC-MS. Solid-phase microextraction of liquid and sludge samples was used for the analysis of musks, which were detected by GC-MS. The fluxes of the most abundant compounds (13 PhACs and 5 musks) out of 79 compounds studied were used to perform the mass balance on the WWTP. Results show that incomplete removal of diclofenac, the compound that was found in the highest abundance, was observed via biodegradation and adsorption, and that UV photolysis was the main removal mechanism for this compound. The effect of adsorption to the secondary sludge was often negligible for the PhACs, with the exceptions of diclofenac, etofenamate, hydroxyzine and indapamide. However, the musks showed a high level of adsorption to the sludge. UV radiation had an important role in reducing the concentration of some of the target compounds (e.g. diclofenac, ibuprofen, clorazepate, indapamide, enalapril and atenolol) not removed in the activated sludge tank. The main removal mechanism of PhACs and musks studied in the WWTP was most often biological (45%), followed by adsorption (33%) and by UV radiation (22%). In the majority of the cases, the WWTP achieved >75% removal of the most detected PhACs and musks, with the exception of diclofenac.
Parkhurst, David L.
1987-01-01
Chemical analyses are presented for 169 water samples from Tar Creek drainage and the Picher lead-zinc mining area of northeast Oklahoma and southeast Kansas. Water samples were taken from November 1983 through February 1986 from the abandoned mines, from points of mine-water discharge, and from surface-water locations upstream and downstream from mine discharge area. The pH, temperature, alkalinity, dissolved oxygen, and specific conductance were measured in the field. Laboratory analyses routinely included the major ions plus aluminum, cadmium, copper, iron, lead, manganese, nickel, and zinc. Non-routine analyses of dissolved gases and tritium are presented. Stable carbon-isotope ratios for 11 mine-water samples and three carbonate-rock samples are reported. Miscellaneous stream-discharge measurements made at the time of sampling or taken from gaging-station records are included in the report.
Metal availability and bio-accessibility in water-logged soils: in vitro experiments.
NASA Astrophysics Data System (ADS)
Florido, M. C.; Madrid, F.; Madrid, L.; Ajmone-Marsan, F.
2010-05-01
Reducing conditions of submerged soils were simulated in vitro by keeping various soil samples for various times of reaction (between 1 and 15 days) in sealed flasks and N2 atmosphere under an aqueous solution, 0.01 M CaCl2 containing 1 g/l glucose. Surface samples of soils from urban green areas of Ljubljana (LJU), Torino (TOR) and Sevilla, were chosen. In the latter case, two samples of the same soil were included, before (SE-0) and after (SE-8) receiving a composted biosolid (two yearly doses of 80000 kg/ha) obtained from sewage sludge, often used as amendment by the Parks & Gardens Service of the local Government. A fifth soil (QUE) was chosen from the area affected by an accident where 2 million m3 of metal-rich mine tailings were spilled over the Guadiamar river (SW Spain) and its riparian areas. This highly polluted soil was included for comparison. Values of Eh, pH and several metal concentrations were determined in the solution after each time, and metal availability and bio-accessibility were estimated in the soils after treatment. The metals studied were Fe, Mn and some of those called 'urban' metals, namely Cu, Pb and Zn. The solution pH for LJU, TOR and SE-0 was slightly acidified in the first days and increased steadily afterwards. In contrast, QUE and SE-8 show pH increases from the beginning and a constant pH after 4-8 days. This agrees with the expected H+ consumption during reduction. Most soils show strong initial Eh decreases, subsequent slower increases up to 5-8 days and slow decreases afterwards. Solution Fe and Mn showed significant increases throughout the experiment, and Pb showed slight increases only up to 4 days. In contrast, other metals showed non-significant changes, and very low amounts were dissolved during the treatment. However, the amounts of available and, especially, bio-accessible urban metals in the solid phases were significantly increased by the treatment. Such increases may cause a greater leaching of metals to the water table or a greater uptake of potentially toxic metals. In the case of ornamental sites, playgrounds and other recreational areas, such increases can have a direct significance on public health through a hand-to-mouth transfer. The observed increases are significant even in soils with not very high metal contents, as it is the case of LJU or SE samples.
Low voltage electrophoresis chip with multi-segments synchronized scanning
NASA Astrophysics Data System (ADS)
Gu, Wenwen; Wen, Zhiyu; Xu, Yi
2017-03-01
For low voltage electrophoresis chip, there is always a problem that the samples are truncated and peaks are broadened, as well as longer time for separation. In this paper, a low voltage electrophoresis separation model was established, and the separation conditions were discussed. A new driving mode was proposed for applying low voltage, which was called multi-segments synchronized scanning. By using this driving mode, the reversed electric field that existed between the multi-segments can enrich samples and shorten the sample zone. The low voltage electrophoresis experiments using multi-segments synchronized scanning were carried out by home-made silicon-PDMS-based chip. The fluorescein isothiocyanate (FITC) labeled lysine and phenylalanine mixed samples with the concentration of 10-4 mol/L were successfully separated under the optimal conditions of 10 mmol/L borax buffer (pH = 10.0), 200 V/cm separation electric field and electrode switch time of 2.5 s. The separation was completed with a resolution of 2.0, and the peak time for lysine and phenylalanine was 4 min and 6 min, respectively.
Sample injection and electrophoretic separation on a simple laminated paper based analytical device.
Xu, Chunxiu; Zhong, Minghua; Cai, Longfei; Zheng, Qingyu; Zhang, Xiaojun
2016-02-01
We described a strategy to perform multistep operations on a simple laminated paper-based separation device by using electrokinetic flow to manipulate the fluids. A laminated crossed-channel paper-based separation device was fabricated by cutting a filter paper sheet followed by lamination. Multiple function units including sample loading, sample injection, and electrophoretic separation were integrated on a single paper based analytical device for the first time, by applying potential at different reservoirs for sample, sample waste, buffer, and buffer waste. As a proof-of-concept demonstration, mixed sample solution containing carmine and sunset yellow were loaded in the sampling channel, and then injected into separation channel followed by electrophoretic separation, by adjusting the potentials applied at the four terminals of sampling and separation channel. The effects of buffer pH, buffer concentration, channel width, and separation time on resolution of electrophoretic separation were studied. This strategy may be used to perform multistep operations such as reagent dilution, sample injection, mixing, reaction, and separation on a single microfluidic paper based analytical device, which is very attractive for building micro total analysis systems on microfluidic paper based analytical devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heller, Melina; Vitali, Luciano; Oliveira, Marcone Augusto Leal; Costa, Ana Carolina O; Micke, Gustavo Amadeu
2011-07-13
The present study aimed to develop a methodology using capillary electrophoresis for the determination of sinapaldehyde, syringaldehyde, coniferaldehyde, and vanillin in whiskey samples. The main objective was to obtain a screening method to differentiate authentic samples from seized samples suspected of being false using the phenolic aldehydes as chemical markers. The optimized background electrolyte was composed of 20 mmol L(-1) sodium tetraborate with 10% MeOH at pH 9.3. The study examined two kinds of sample stacking, using a long-end injection mode: normal sample stacking (NSM) and sample stacking with matrix removal (SWMR). In SWMR, the optimized injection time of the samples was 42 s (SWMR42); at this time, no matrix effects were observed. Values of r were >0.99 for the both methods. The LOD and LOQ were better than 100 and 330 mg mL(-1) for NSM and better than 22 and 73 mg L(-1) for SWMR. The CE-UV reliability in the aldehyde analysis in the real sample was compared statistically with LC-MS/MS methodology, and no significant differences were found, with a 95% confidence interval between the methodologies.
Han, Woong Kyu; Jin, Mei Hua; Han, Sang Won
2012-02-01
To evaluate whether the antioxidant vitamin E can prevent the harmful effects of reactive oxidative stress (ROS) that occur during compensatory testicular hypertrophy (CTH). Thirty Sprague-Dawley rats were divided into six equal groups: neonatal hemicastrated vitamin E (NH_Vit E/NH) and sham surgical controls (NC), and pubertal hemicastrated vitamin E (PH_Vit E/PH) and sham surgical controls (PC). Vitamin E was administered orally to the NH_Vit E and PH_Vit E groups three times a week from week 3-12 prior to sacrifice. Antioxidant enzymes were measured in testis samples from each animal. Differences in superoxide dismutase activity were observed between the NH (21.04 ± 0.48) and NH_Vit E (22.62 ± 0.64) groups (P = 0.008); the PH (20.59 ± 0.11) and PC (20.91 ± 0.20) groups (P = 0.032); and the PH (20.59 ± 0.11) and PH_Vit E (22.32 ± 1.01) groups (P = 0.008). Thiobarbituric acid-reactive substance in the PH and PH_Vit E groups was 0.097 ± 0.022 and 0.036 ± 0.004 (P = 0.008), respectively; and in the NH and NH_Vit E groups it was 0.135 ± 0.02 and 0.039 ± 0.003 (P = 0.008), respectively. These results suggest that CTH is not associated with reducing oxidative injury, nor does it prevent ROS-induced cell damage. However, administration of vitamin E does reduce oxidative injury and prevent ROS-induced cell damage in a hemicastrated rat model. Copyright © 2010 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Impact of preacidification of milk and fermentation time on the properties of yogurt.
Peng, Y; Horne, D S; Lucey, J A
2009-07-01
Casein interactions play an important role in the textural properties of yogurt. The objective of this study was to investigate how the concentration of insoluble calcium phosphate (CCP) that is associated with casein particles and the length of fermentation time influence properties of yogurt gels. A central composite experimental design was used. The initial milk pH was varied by preacidification with glucono-delta-lactone (GDL), and fermentation time (time to reach pH 4.6 from the initial pH) was altered by varying the inoculum level. We hypothesized that by varying the initial milk pH value, the amount of CCP would be modified and that by varying the length of the fermentation time we would influence the rate and extent of solubilization of CCP during any subsequent gelation process. We believe that both of these factors could influence casein interactions and thereby alter gel properties. Milks were preacidified to pH values from 6.55 to 5.65 at 40 degrees C using GDL and equilibrated for 4 h before inoculation. Fermentation time was varied from 250 to 500 min by adding various amounts of culture at 40 degrees C. Gelation properties were monitored using dynamic oscillatory rheology, and microstructure was studied using fluorescence microscopy. Whey separation and permeability were analyzed at pH 4.6. The preacidification pH value significantly affected the solubilization of CCP. Storage modulus values at pH 4.6 were positively influenced by the preacidification pH value and negatively affected by fermentation time. The value for the loss tangent maximum during gelation was positively affected by the preacidification pH value. Fermentation time positively affected whey separation and significantly influenced the rate of CCP dissolution during fermentation, as CCP dissolution was a slow process. Longer fermentation times resulted in greater loss of CCP at the pH of gelation. At the end of fermentation (pH approximately 4.6), virtually all CCP was dissolved. Preacidification of milk increased the solubilization of CCP, increased the early loss of CCP crosslinks, and produced weak gels. Long fermentation times allowed more time for solubilization of CCP during the critical gelation stage of the process and increased the possibility of greater casein rearrangements; both could have contributed to the increase in whey separation.
Paris, A; Maurice-Tison, S; Coatleven, F; Vandenbossche, F; Dallay, D; Horovitz, J
2012-06-01
To compare the interest of lactate microanalysis with pH measurement (Gold Standard procedure) in cord blood and fetal scalp blood samples for the assessment of abnormal fetal heart rate (FHR) during labour. A prospective observational study conducted from July 1st 2007 till March 31st 2008 on 162 patients with abnormal FHR during labour. Sampling failure for scalp lactate was less than 1 % compared to a failure of 10.5 % for scalp pH (P<0.001). There was a good correlation between pH and lactates in fetal scalp blood samples and in cord blood samples, between lactate in the last fetal scalp sample and in cord blood. When there was umbilical acidosis (pH≤7.15 or lactate≥5mmol/L), Apgar score at 5 minutes was significantly lower than when there was no acidosis (4.66±3.59 versus 8.35±2.73 for pH ; 6.6±3.77 versus 8.45±2.58 for lactate). The specificity of the lactate in the umbilical cord artery (≥5 mmol/laws) was 76.4 % for predicting an Apgar score at 5 minutes less than 7 ; 79.7 % for predicting the need for immediate neonatal care ; 77.3 % for predicting an hospital stay in neonatal unit. These figures were generally worse but close to those found for a threshold value of umbilical artery pH≤7.15. The values of lactate in cord blood and fetal scalp blood samples were comparable to pH values (Gold standard procedure). This method is easy to perform and is an attractive alternative to pH for monitoring fetal asphyxia. It is our opinion that the combination of the two methods is of interest. Copyright © 2011 Elsevier Masson SAS. All rights reserved.