Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Impact of aggregation on scaling behavior of Internet backbone traffic
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Li; Ribeiro, Vinay J.; Moon, Sue B.; Diot, Christophe
2002-07-01
We study the impact of aggregation on the scaling behavior of Internet backbone tra ffic, based on traces collected from OC3 and OC12 links in a tier-1 ISP. We make two striking observations regarding the sub-second small time scaling behaviors of Internet backbone traffic: 1) for a majority of these traces, the Hurst parameters at small time scales (1ms - 100ms) are fairly close to 0.5. Hence the traffic at these time scales are nearly uncorrelated; 2) the scaling behaviors at small time scales are link-dependent, and stay fairly invariant over changing utilization and time. To understand the scaling behavior of network traffic, we develop analytical models and employ them to demonstrate how traffic composition -- aggregation of traffic with different characteristics -- affects the small-time scalings of network traffic. The degree of aggregation and burst correlation structure are two major factors in traffic composition. Our trace-based data analysis confirms this. Furthermore, we discover that traffic composition on a backbone link stays fairly consistent over time and changing utilization, which we believe is the cause for the invariant small-time scalings we observe in the traces.
Palva, J. Matias; Zhigalov, Alexander; Hirvonen, Jonni; Korhonen, Onerva; Linkenkaer-Hansen, Klaus; Palva, Satu
2013-01-01
Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form long-range temporal correlations (LRTCs). In millisecond time scales, neuronal activity comprises cascade-like neuronal avalanches that exhibit power-law size and lifetime distributions. However, it remains unknown whether these neuronal scaling laws are correlated with those characterizing behavioral performance or whether neuronal LRTCs and avalanches are related. Here, we show that the neuronal scaling laws are strongly correlated both with each other and with behavioral scaling laws. We used source reconstructed magneto- and electroencephalographic recordings to characterize the dynamics of ongoing cortical activity. We found robust power-law scaling in neuronal LRTCs and avalanches in resting-state data and during the performance of audiovisual threshold stimulus detection tasks. The LRTC scaling exponents of the behavioral performance fluctuations were correlated with those of concurrent neuronal avalanches and LRTCs in anatomically identified brain systems. The behavioral exponents also were correlated with neuronal scaling laws derived from a resting-state condition and with a similar anatomical topography. Finally, despite the difference in time scales, the scaling exponents of neuronal LRTCs and avalanches were strongly correlated during both rest and task performance. Thus, long and short time-scale neuronal dynamics are related and functionally significant at the behavioral level. These data suggest that the temporal structures of human cognitive fluctuations and behavioral variability stem from the scaling laws of individual and intrinsic brain dynamics. PMID:23401536
A model of return intervals between earthquake events
NASA Astrophysics Data System (ADS)
Zhou, Yu; Chechkin, Aleksei; Sokolov, Igor M.; Kantz, Holger
2016-06-01
Application of the diffusion entropy analysis and the standard deviation analysis to the time sequence of the southern California earthquake events from 1976 to 2002 uncovered scaling behavior typical for anomalous diffusion. However, the origin of such behavior is still under debate. Some studies attribute the scaling behavior to the correlations in the return intervals, or waiting times, between aftershocks or mainshocks. To elucidate a nature of the scaling, we applied specific reshulffling techniques to eliminate correlations between different types of events and then examined how it affects the scaling behavior. We demonstrate that the origin of the scaling behavior observed is the interplay between mainshock waiting time distribution and the structure of clusters of aftershocks, but not correlations in waiting times between the mainshocks and aftershocks themselves. Our findings are corroborated by numerical simulations of a simple model showing a very similar behavior. The mainshocks are modeled by a renewal process with a power-law waiting time distribution between events, and aftershocks follow a nonhomogeneous Poisson process with the rate governed by Omori's law.
Fine Scale Baleen Whale Behavior Observed Via Tagging Over Daily Time Scales
2015-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Fine Scale Baleen Whale Behavior Observed Via Tagging...followed over time scales of days from an oceanographic vessel so that environmental sampling can be conducted in proximity to the tagged whale ...characterize the relationship between diel variability in the foraging behavior of baleen whales (North Atlantic right whales and sei whales ) and the
Classification of Animal Movement Behavior through Residence in Space and Time.
Torres, Leigh G; Orben, Rachael A; Tolkova, Irina; Thompson, David R
2017-01-01
Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST's ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST's ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST's response to less resolved data. Finally, we evaluate RST's performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can enhance our fine- and broad- scale understanding of animal movement ecology.
Scaling behavior of online human activity
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Dan; Cai, Shi-Min; Huang, Junming; Fu, Yan; Zhou, Tao
2012-11-01
The rapid development of the Internet technology enables humans to explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e., traces), we can get insights about the dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, books, and movies rating, are comprehensively investigated by using the detrended fluctuation analysis technique and the multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three types of media show similar scaling properties with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based on their activities (i.e., rating per unit time), we find that the scaling exponents of the interevent time series in the three groups are different. Hence, these results suggest that a stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary in the three groups. To explain the differences of the collective behaviors restricted to the three groups, we study the dynamic behavior of human activity at the individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associated with long-range anticorrelations. By comparing the interevent time distributions of four representative users, we can find that the bimodal distributions may bring forth the extraordinary scaling behaviors. These results of the analysis of the online human activity in the e-commerce may not only provide insight into its dynamic behaviors but may also be applied to acquire potential economic interest.
Sadhasivam, Senthilkumar; Cohen, Lindsey L; Hosu, Liana; Gorman, Kristin L; Wang, Yu; Nick, Todd G; Jou, Jing Fang; Samol, Nancy; Szabova, Alexandra; Hagerman, Nancy; Hein, Elizabeth; Boat, Anne; Varughese, Anna; Kurth, Charles Dean; Willging, J Paul; Gunter, Joel B
2010-04-01
Behavior in response to distressful events during outpatient pediatric surgery can contribute to postoperative maladaptive behaviors, such as temper tantrums, nightmares, bed-wetting, and attention seeking. Currently available perioperative behavioral assessment tools have limited utility in guiding interventions to ameliorate maladaptive behaviors because they cannot be used in real time, are only intended to be used during 1 phase of the experience (e.g., perioperative), or provide only a static assessment of the child (e.g., level of anxiety). A simple, reliable, real-time tool is needed to appropriately identify children and parents whose behaviors in response to distressful events at any point in the perioperative continuum could benefit from timely behavioral intervention. Our specific aims were to (1) refine the Perioperative Adult Child Behavioral Interaction Scale (PACBIS) to improve its reliability in identifying perioperative behaviors and (2) validate the refined PACBIS against several established instruments. The PACBIS was used to assess the perioperative behaviors of 89 children aged 3 to 12 years presenting for adenotonsillectomy and their parents. Assessments using the PACBIS were made during perioperative events likely to prove distressing to children and/or parents (perioperative measurement of blood pressure, induction of anesthesia, and removal of the IV catheter before discharge). Static measurements of perioperative anxiety and behavioral compliance during anesthetic induction were made using the modified Yale Preoperative Anxiety Scale and the Induction Compliance Checklist (ICC). Each event was videotaped for later scoring using the Child-Adult Medical Procedure Interaction Scale-Short Form (CAMPIS-SF) and Observational Scale of Behavioral Distress (OSBD). Interrater reliability using linear weighted kappa (kappa(w)) and multiple validations using Spearman correlation coefficients were analyzed. The PACBIS demonstrated good to excellent interrater reliability, with kappa(w) ranging from 0.62 to 0.94. The Child Coping and Child Distress subscores of the PACBIS demonstrated strong concurrent correlations with the modified Yale Preoperative Anxiety Scale, ICC, CAMPIS-SF, and OSBD. The Parent Positive subscore of the PACBIS correlated strongly with the CAMPIS-SF and OSBD, whereas the Parent Negative subscore showed significant correlation with the ICC. The PACBIS has strong construct and predictive validities. The PACBIS is a simple, easy to use, real-time instrument to evaluate perioperative behaviors of both children and parents. It has good to excellent interrater reliability and strong concurrent validity against currently accepted scales. The PACBIS offers a means to identify maladaptive child or parental behaviors in real time, making it possible to intervene to modify such behaviors in a timely fashion.
Non-stationary dynamics in the bouncing ball: A wavelet perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behera, Abhinna K., E-mail: abhinna@iiserkol.ac.in; Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in; Sekar Iyengar, A. N., E-mail: ansekar.iyengar@saha.ac.in
2014-12-01
The non-stationary dynamics of a bouncing ball, comprising both periodic as well as chaotic behavior, is studied through wavelet transform. The multi-scale characterization of the time series displays clear signatures of self-similarity, complex scaling behavior, and periodicity. Self-similar behavior is quantified by the generalized Hurst exponent, obtained through both wavelet based multi-fractal detrended fluctuation analysis and Fourier methods. The scale dependent variable window size of the wavelets aptly captures both the transients and non-stationary periodic behavior, including the phase synchronization of different modes. The optimal time-frequency localization of the continuous Morlet wavelet is found to delineate the scales corresponding tomore » neutral turbulence, viscous dissipation regions, and different time varying periodic modulations.« less
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Morales Matamoros, Oswaldo; Gálvez M., Ernesto; Pérez A., Alfonso
2004-03-01
The behavior of crude oil price volatility is analyzed within a conceptual framework of kinetic roughening of growing interfaces. We find that the persistent long-horizon volatilities satisfy the Family-Viscek dynamic scaling ansatz, whereas the mean-reverting in time short horizon volatilities obey the generalized scaling law with continuously varying scaling exponents. Furthermore we find that the crossover from antipersistent to persistent behavior is accompanied by a change in the type of volatility distribution. These phenomena are attributed to the complex avalanche dynamics of crude oil markets and so a similar behavior may be observed in a wide variety of physical systems governed by avalanche dynamics.
Self-affinity in the dengue fever time series
NASA Astrophysics Data System (ADS)
Azevedo, S. M.; Saba, H.; Miranda, J. G. V.; Filho, A. S. Nascimento; Moret, M. A.
2016-06-01
Dengue is a complex public health problem that is common in tropical and subtropical regions. This disease has risen substantially in the last three decades, and the physical symptoms depict the self-affine behavior of the occurrences of reported dengue cases in Bahia, Brazil. This study uses detrended fluctuation analysis (DFA) to verify the scale behavior in a time series of dengue cases and to evaluate the long-range correlations that are characterized by the power law α exponent for different cities in Bahia, Brazil. The scaling exponent (α) presents different long-range correlations, i.e. uncorrelated, anti-persistent, persistent and diffusive behaviors. The long-range correlations highlight the complex behavior of the time series of this disease. The findings show that there are two distinct types of scale behavior. In the first behavior, the time series presents a persistent α exponent for a one-month period. For large periods, the time series signal approaches subdiffusive behavior. The hypothesis of the long-range correlations in the time series of the occurrences of reported dengue cases was validated. The observed self-affinity is useful as a forecasting tool for future periods through extrapolation of the α exponent behavior. This complex system has a higher predictability in a relatively short time (approximately one month), and it suggests a new tool in epidemiological control strategies. However, predictions for large periods using DFA are hidden by the subdiffusive behavior.
A wavelet analysis of scaling laws and long-memory in stock market volatility
NASA Astrophysics Data System (ADS)
Vuorenmaa, Tommi A.
2005-05-01
This paper studies the time-varying behavior of scaling laws and long-memory. This is motivated by the earlier finding that in the FX markets a single scaling factor might not always be sufficient across all relevant timescales: a different region may exist for intradaily time-scales and for larger time-scales. In specific, this paper investigates (i) if different scaling regions appear in stock market as well, (ii) if the scaling factor systematically differs from the Brownian, (iii) if the scaling factor is constant in time, and (iv) if the behavior can be explained by the heterogenuity of the players in the market and/or by intraday volatility periodicity. Wavelet method is used because it delivers a multiresolution decomposition and has excellent local adaptiviness properties. As a consequence, a wavelet-based OLS method allows for consistent estimation of long-memory. Thus issues (i)-(iv) shed light on the magnitude and behavior of a long-memory parameter, as well. The data are the 5-minute volatility series of Nokia Oyj at the Helsinki Stock Exchange around the burst of the IT-bubble. Period one represents the era of "irrational exuberance" and another the time after it. The results show that different scaling regions (i.e. multiscaling) may appear in the stock markets and not only in the FX markets, the scaling factor and the long-memory parameter are systematically different from the Brownian and they do not have to be constant in time, and that the behavior can be explained for a significant part by an intraday volatility periodicity called the New York effect. This effect was magnified by the frenzy trading of short-term speculators in the bubble period. The found stronger long-memory is also attributable to irrational exuberance.
NASA Astrophysics Data System (ADS)
Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore
2018-03-01
We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.
Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling
NASA Astrophysics Data System (ADS)
Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu
2018-01-01
Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.
NASA Astrophysics Data System (ADS)
Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.
2011-11-01
We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.
Towards a critical transition theory under different temporal scales and noise strengths
NASA Astrophysics Data System (ADS)
Shi, Jifan; Li, Tiejun; Chen, Luonan
2016-03-01
The mechanism of critical phenomena or critical transitions has been recently studied from various aspects, in particular considering slow parameter change and small noise. In this article, we systematically classify critical transitions into three types based on temporal scales and noise strengths of dynamical systems. Specifically, the classification is made by comparing three important time scales τλ, τtran, and τergo, where τλ is the time scale of parameter change (e.g., the change of environment), τtran is the time scale when a particle or state transits from a metastable state into another, and τergo is the time scale when the system becomes ergodic. According to the time scales, we classify the critical transition behaviors as three types, i.e., state transition, basin transition, and distribution transition. Moreover, for each type of transition, there are two cases, i.e., single-trajectory transition and multitrajectory ensemble transition, which correspond to the transition of individual behavior and population behavior, respectively. We also define the critical point for each type of critical transition, derive several properties, and further propose the indicators for predicting critical transitions with numerical simulations. In addition, we show that the noise-to-signal ratio is effective to make the classification of critical transitions for real systems.
Cycles, scaling and crossover phenomenon in length of the day (LOD) time series
NASA Astrophysics Data System (ADS)
Telesca, Luciano
2007-06-01
The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.
Time-scale invariance as an emergent property in a perceptron with realistic, noisy neurons
Buhusi, Catalin V.; Oprisan, Sorinel A.
2013-01-01
In most species, interval timing is time-scale invariant: errors in time estimation scale up linearly with the estimated duration. In mammals, time-scale invariance is ubiquitous over behavioral, lesion, and pharmacological manipulations. For example, dopaminergic drugs induce an immediate, whereas cholinergic drugs induce a gradual, scalar change in timing. Behavioral theories posit that time-scale invariance derives from particular computations, rules, or coding schemes. In contrast, we discuss a simple neural circuit, the perceptron, whose output neurons fire in a clockwise fashion (interval timing) based on the pattern of coincidental activation of its input neurons. We show numerically that time-scale invariance emerges spontaneously in a perceptron with realistic neurons, in the presence of noise. Under the assumption that dopaminergic drugs modulate the firing of input neurons, and that cholinergic drugs modulate the memory representation of the criterion time, we show that a perceptron with realistic neurons reproduces the pharmacological clock and memory patterns, and their time-scale invariance, in the presence of noise. These results suggest that rather than being a signature of higher-order cognitive processes or specific computations related to timing, time-scale invariance may spontaneously emerge in a massively-connected brain from the intrinsic noise of neurons and circuits, thus providing the simplest explanation for the ubiquity of scale invariance of interval timing. PMID:23518297
Scaling behaviors of precipitation over China
NASA Astrophysics Data System (ADS)
Jiang, Lei; Li, Nana; Zhao, Xia
2017-04-01
Scaling behaviors in the precipitation time series derived from 1951 to 2009 over China are investigated by detrended fluctuation analysis (DFA) method. The results show that there exists long-term memory for the precipitation time series in some stations, where the values of the scaling exponent α are less than 0.62, implying weak persistence characteristics. The values of scaling exponent in other stations indicate random behaviors. In addition, the scaling exponent α in precipitation records varies from station to station over China. A numerical test is made to verify the significance in DFA exponents by shuffling the data records many times. We think it is significant when the values of scaling exponent before shuffled precipitation records are larger than the interval threshold for 95 % confidence level after shuffling precipitation records many times. By comparison, the daily precipitation records exhibit weak positively long-range correlation in a power law fashion mainly at the stations taking on zonal distributions in south China, upper and middle reaches of the Yellow River, northern part of northeast China. This may be related to the subtropical high. Furthermore, the values of scaling exponent which cannot pass the significance test do not show a clear distribution pattern. It seems that the stations are mainly distributed in coastal areas, southwest China, and southern part of north China. In fact, many complicated factors may affect the scaling behaviors of precipitation such as the system of the east and south Asian monsoon, the interaction between sea and land, and the big landform of the Tibetan Plateau. These results may provide a better prerequisite to long-term predictor of precipitation time series for different regions over China.
NASA Astrophysics Data System (ADS)
Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Aly, Ayman A.
2014-09-01
In this paper, we studied the cosmological application of the interacting Ricci Dark Energy (RDE) model in the framework of the scalar Gauss-Bonnet modified gravity model. We studied the properties of the reconstructed potential , the Strong Energy Condition (SEC), the Weak Energy Condition (WEC) and the deceleration parameter q for three different models of scale factor, i.e. the emergent, the intermediate and the logamediate one. We obtained that , for the emergent scenario, has a decreasing behavior, while, for the logamediate scenario, the potential start with an increasing behavior then, for later times, it shows a slowly decreasing behavior. Finally, for the intermediate scenario, the potential has an initial increasing behavior, then for a time of t≈1.2, it starts to decrease. We also found that both SEC and WEC are violated for all the three scale factors considered. Finally, studying the plots of q, we derived that an accelerated universe can be achieved for the three models of scale factor considered.
NASA Astrophysics Data System (ADS)
Matsuzaki, F.; Yoshikawa, N.; Tanaka, M.; Fujimaki, A.; Takai, Y.
2003-10-01
Recently many single flux quantum (SFQ) logic circuits containing several thousands of Josephson junctions have been designed successfully by using digital domain simulation based on the hard ware description language (HDL). In the present HDL-based design of SFQ circuits, a structure-level HDL description has been used, where circuits are made up of basic gate cells. However, in order to analyze large-scale SFQ digital systems, such as a microprocessor, more higher-level circuit abstraction is necessary to reduce the circuit simulation time. In this paper we have investigated the way to describe functionality of the large-scale SFQ digital circuits by a behavior-level HDL description. In this method, the functionality and the timing of the circuit block is defined directly by describing their behavior by the HDL. Using this method, we can dramatically reduce the simulation time of large-scale SFQ digital circuits.
Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems.
Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei
2015-01-01
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode.
Decoupling processes and scales of shoreline morphodynamics
Hapke, Cheryl J.; Plant, Nathaniel G.; Henderson, Rachel E.; Schwab, William C.; Nelson, Timothy R.
2016-01-01
Behavior of coastal systems on time scales ranging from single storm events to years and decades is controlled by both small-scale sediment transport processes and large-scale geologic, oceanographic, and morphologic processes. Improved understanding of coastal behavior at multiple time scales is required for refining models that predict potential erosion hazards and for coastal management planning and decision-making. Here we investigate the primary controls on shoreline response along a geologically-variable barrier island on time scales resolving extreme storms and decadal variations over a period of nearly one century. An empirical orthogonal function analysis is applied to a time series of shoreline positions at Fire Island, NY to identify patterns of shoreline variance along the length of the island. We establish that there are separable patterns of shoreline behavior that represent response to oceanographic forcing as well as patterns that are not explained by this forcing. The dominant shoreline behavior occurs over large length scales in the form of alternating episodes of shoreline retreat and advance, presumably in response to storms cycles. Two secondary responses include long-term response that is correlated to known geologic variations of the island and the other reflects geomorphic patterns with medium length scale. Our study also includes the response to Hurricane Sandy and a period of post-storm recovery. It was expected that the impacts from Hurricane Sandy would disrupt long-term trends and spatial patterns. We found that the response to Sandy at Fire Island is not notable or distinguishable from several other large storms of the prior decade.
Coevolution of strategy-selection time scale and cooperation in spatial prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Rong, Zhihai; Wu, Zhi-Xi; Chen, Guanrong
2013-06-01
In this paper, we investigate a networked prisoner's dilemma game where individuals' strategy-selection time scale evolves based on their historical learning information. We show that the more times the current strategy of an individual is learnt by his neighbors, the longer time he will stick on the successful behavior by adaptively adjusting the lifetime of the adopted strategy. Through characterizing the extent of success of the individuals with normalized payoffs, we show that properly using the learned information can form a positive feedback mechanism between cooperative behavior and its lifetime, which can boost cooperation on square lattices and scale-free networks.
Correlation Tests of the Ditching Behavior of an Army B-24D Airplane and a 1/16-size Model
NASA Technical Reports Server (NTRS)
Jarvis, George A.; Fisher, Lloyd J.
1946-01-01
Behaviors of both model and full-scale airplanes were ascertained by making visual observations, by recording time histories of decelerations, and by taking motion picture records of ditchings. Results are presented in form of sequence photographs and time-history curves for attitudes, vertical and horizontal displacements, and longitudinal decelerations. Time-history curves for attitudes and horizontal and vertical displacements for model and full-scale tests were in agreement; maximum longitudinal decelerations for both ditchings did not occur at same part of run; full-scale maximum deceleration was 50 percent greater.
NASA Astrophysics Data System (ADS)
Wahlquist, Joseph A.
This work focused on characterizing the mechanical behavior of biological material in physiologically relevant conditions and at sub millimeter length scales. Elucidating the time, length scale, and directionally dependent mechanical behavior of cartilage and other biological materials is critical to adequately recapitulate native mechanosensory cues for cells, create computational models that mimic native tissue behavior, and assess disease progression. This work focused on three broad aspects of characterizing the mechanical behavior of articular cartilage. First, we sought to reveal the causes of time-dependent deformation and variation of mechanical properties with distance from the articular surface. Second, we investigated size dependence of mechanical properties. Finally, we examined material anisotropy of both the calcified and uncalcified tissues of the osteochondral interface. This research provides insight into how articular cartilage serves to support physiologic loads and simultaneously sustain chondrocyte viability.
Kerner, Matthew S
2005-06-01
Using the theory of planned behavior as a conceptual framework, scales assessing Attitude to Leisure-time Physical Activity, Expectations of Others, Perceived Control, and Intention to Engage in Leisure-time Physical Activity were developed for use among middle-school students. The study sample included 349 boys and 400 girls, 10 to 14 years of age (M=11.9 yr., SD=.9). Unipolar and bipolar scales with seven response choices were developed, with each scale item phrased in a Likert-type format. Following revisions, 22 items were retained in the Attitude to Leisure-time Physical Activity Scale, 10 items in the Expectations of Others Scale, 3 items in the Perceived Control Scale, and 17 items in the Intention to Engage in Leisure-time Physical Activity Scale. Adequate internal consistency was indicated by standardized coefficients alpha ranging from .75 to .89. Current results must be extended to assess discriminant and predictive validities and to check various reliabilities with new samples, then evaluation of intervention techniques for promotion of positive attitudes about leisure-time physical activity, including perception of control and intentions to engage in leisure-time physical activity.
Direct Behavior Rating Instrumentation: Evaluating the Impact of Scale Formats
ERIC Educational Resources Information Center
Miller, Faith G.; Riley-Tillman, T. Chris; Chafouleas, Sandra M.; Schardt, Alyssa A.
2017-01-01
The purpose of this study was to investigate the impact of two different Direct Behavior Rating--Single Item Scale (DBR-SIS) formats on rating accuracy. A total of 119 undergraduate students participated in one of two study conditions, each utilizing a different DBR-SIS scale format: one that included percentage of time anchors on the DBR-SIS…
Distinguishing advective and powered motion in self-propelled colloids
NASA Astrophysics Data System (ADS)
Byun, Young-Moo; Lammert, Paul E.; Hong, Yiying; Sen, Ayusman; Crespi, Vincent H.
2017-11-01
Self-powered motion in catalytic colloidal particles provides a compelling example of active matter, i.e. systems that engage in single-particle and collective behavior far from equilibrium. The long-time, long-distance behavior of such systems is of particular interest, since it connects their individual micro-scale behavior to macro-scale phenomena. In such analyses, it is important to distinguish motion due to subtle advective effects—which also has long time scales and length scales—from long-timescale phenomena that derive from intrinsically powered motion. Here, we develop a methodology to analyze the statistical properties of the translational and rotational motions of powered colloids to distinguish, for example, active chemotaxis from passive advection by bulk flow.
Wilson, Robyn S.; Hardisty, David J.; Epanchin-Niell, Rebecca S.; Runge, Michael C.; Cottingham, Kathryn L.; Urban, Dean L.; Maguire, Lynn A.; Hastings, Alan; Mumby, Peter J.; Peters, Debra P.C.
2016-01-01
Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers’ actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.
Wilson, Robyn S; Hardisty, David J; Epanchin-Niell, Rebecca S; Runge, Michael C; Cottingham, Kathryn L; Urban, Dean L; Maguire, Lynn A; Hastings, Alan; Mumby, Peter J; Peters, Debra P C
2016-02-01
Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers' actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed. © 2015 Society for Conservation Biology.
Individual consistency in the behaviors of newly-settled reef fish
Meekan, Mark G.; McCormick, Mark I.
2015-01-01
Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish. PMID:26020013
Individual consistency in the behaviors of newly-settled reef fish.
White, James R; Meekan, Mark G; McCormick, Mark I
2015-01-01
Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish.
Intrinsic Multi-Scale Dynamic Behaviors of Complex Financial Systems
Ouyang, Fang-Yan; Zheng, Bo; Jiang, Xiong-Fei
2015-01-01
The empirical mode decomposition is applied to analyze the intrinsic multi-scale dynamic behaviors of complex financial systems. In this approach, the time series of the price returns of each stock is decomposed into a small number of intrinsic mode functions, which represent the price motion from high frequency to low frequency. These intrinsic mode functions are then grouped into three modes, i.e., the fast mode, medium mode and slow mode. The probability distribution of returns and auto-correlation of volatilities for the fast and medium modes exhibit similar behaviors as those of the full time series, i.e., these characteristics are rather robust in multi time scale. However, the cross-correlation between individual stocks and the return-volatility correlation are time scale dependent. The structure of business sectors is mainly governed by the fast mode when returns are sampled at a couple of days, while by the medium mode when returns are sampled at dozens of days. More importantly, the leverage and anti-leverage effects are dominated by the medium mode. PMID:26427063
Autocorrelation and cross-correlation in time series of homicide and attempted homicide
NASA Astrophysics Data System (ADS)
Machado Filho, A.; da Silva, M. F.; Zebende, G. F.
2014-04-01
We propose in this paper to establish the relationship between homicides and attempted homicides by a non-stationary time-series analysis. This analysis will be carried out by Detrended Fluctuation Analysis (DFA), Detrended Cross-Correlation Analysis (DCCA), and DCCA cross-correlation coefficient, ρ(n). Through this analysis we can identify a positive cross-correlation between homicides and attempted homicides. At the same time, looked at from the point of view of autocorrelation (DFA), this analysis can be more informative depending on time scale. For short scale (days), we cannot identify auto-correlations, on the scale of weeks DFA presents anti-persistent behavior, and for long time scales (n>90 days) DFA presents a persistent behavior. Finally, the application of this new type of statistical analysis proved to be efficient and, in this sense, this paper can contribute to a more accurate descriptive statistics of crime.
Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng
2011-01-01
Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...
Data series embedding and scale invariant statistics.
Michieli, I; Medved, B; Ristov, S
2010-06-01
Data sequences acquired from bio-systems such as human gait data, heart rate interbeat data, or DNA sequences exhibit complex dynamics that is frequently described by a long-memory or power-law decay of autocorrelation function. One way of characterizing that dynamics is through scale invariant statistics or "fractal-like" behavior. For quantifying scale invariant parameters of physiological signals several methods have been proposed. Among them the most common are detrended fluctuation analysis, sample mean variance analyses, power spectral density analysis, R/S analysis, and recently in the realm of the multifractal approach, wavelet analysis. In this paper it is demonstrated that embedding the time series data in the high-dimensional pseudo-phase space reveals scale invariant statistics in the simple fashion. The procedure is applied on different stride interval data sets from human gait measurements time series (Physio-Bank data library). Results show that introduced mapping adequately separates long-memory from random behavior. Smaller gait data sets were analyzed and scale-free trends for limited scale intervals were successfully detected. The method was verified on artificially produced time series with known scaling behavior and with the varying content of noise. The possibility for the method to falsely detect long-range dependence in the artificially generated short range dependence series was investigated. (c) 2009 Elsevier B.V. All rights reserved.
Decision dynamics of departure times: Experiments and modeling
NASA Astrophysics Data System (ADS)
Sun, Xiaoyan; Han, Xiao; Bao, Jian-Zhang; Jiang, Rui; Jia, Bin; Yan, Xiaoyong; Zhang, Boyu; Wang, Wen-Xu; Gao, Zi-You
2017-10-01
A fundamental problem in traffic science is to understand user-choice behaviors that account for the emergence of complex traffic phenomena. Despite much effort devoted to theoretically exploring departure time choice behaviors, relatively large-scale and systematic experimental tests of theoretical predictions are still lacking. In this paper, we aim to offer a more comprehensive understanding of departure time choice behaviors in terms of a series of laboratory experiments under different traffic conditions and feedback information provided to commuters. In the experiment, the number of recruited players is much larger than the number of choices to better mimic the real scenario, in which a large number of commuters will depart simultaneously in a relatively small time window. Sufficient numbers of rounds are conducted to ensure the convergence of collective behavior. Experimental results demonstrate that collective behavior is close to the user equilibrium, regardless of different scales and traffic conditions. Moreover, the amount of feedback information has a negligible influence on collective behavior but has a relatively stronger effect on individual choice behaviors. Reinforcement learning and Fermi learning models are built to reproduce the experimental results and uncover the underlying mechanism. Simulation results are in good agreement with the experimentally observed collective behaviors.
Training Family Day Care Providers to Use Behavior Modification Procedures: A Case Study.
ERIC Educational Resources Information Center
Powers, Michael D.
Effects of brief time out on the biting behavior of a 21- month-old boy enrolled in a day care setting was examined. The Motivation Assessment Scale (MAS; Durand, 1983) was used to determine the function of the child's biting. A parent report survey, the MAS assesses disruptive behavior using a Likert-type scale and discriminates the function of a…
NASA Astrophysics Data System (ADS)
Safdari, Hadiseh; Chechkin, Aleksei V.; Jafari, Gholamreza R.; Metzler, Ralf
2015-04-01
Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
Safdari, Hadiseh; Chechkin, Aleksei V; Jafari, Gholamreza R; Metzler, Ralf
2015-04-01
Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
Transitions in effective scaling behavior of accelerometric time series across sleep and wake
NASA Astrophysics Data System (ADS)
Wohlfahrt, Patrick; Kantelhardt, Jan W.; Zinkhan, Melanie; Schumann, Aicko Y.; Penzel, Thomas; Fietze, Ingo; Pillmann, Frank; Stang, Andreas
2013-09-01
We study the effective scaling behavior of high-resolution accelerometric time series recorded at the wrists and hips of 100 subjects during sleep and wake. Using spectral analysis and detrended fluctuation analysis we find long-term correlated fluctuations with a spectral exponent \\beta \\approx 1.0 (1/f noise). On short time scales, β is larger during wake (\\approx 1.4 ) and smaller during sleep (\\approx 0.6 ). In addition, characteristic peaks at 0.2-0.3 Hz (due to respiration) and 4-10 Hz (probably due to physiological tremor) are observed in periods of weak activity. Because of these peaks, spectral analysis is superior in characterizing effective scaling during sleep, while detrending analysis performs well during wake. Our findings can be exploited to detect sleep-wake transitions.
Entangled time in flocking: Multi-time-scale interaction reveals emergence of inherent noise
Murakami, Hisashi
2018-01-01
Collective behaviors that seem highly ordered and result in collective alignment, such as schooling by fish and flocking by birds, arise from seamless shuffling (such as super-diffusion) and bustling inside groups (such as Lévy walks). However, such noisy behavior inside groups appears to preclude the collective behavior: intuitively, we expect that noisy behavior would lead to the group being destabilized and broken into small sub groups, and high alignment seems to preclude shuffling of neighbors. Although statistical modeling approaches with extrinsic noise, such as the maximum entropy approach, have provided some reasonable descriptions, they ignore the cognitive perspective of the individuals. In this paper, we try to explain how the group tendency, that is, high alignment, and highly noisy individual behavior can coexist in a single framework. The key aspect of our approach is multi-time-scale interaction emerging from the existence of an interaction radius that reflects short-term and long-term predictions. This multi-time-scale interaction is a natural extension of the attraction and alignment concept in many flocking models. When we apply this method in a two-dimensional model, various flocking behaviors, such as swarming, milling, and schooling, emerge. The approach also explains the appearance of super-diffusion, the Lévy walk in groups, and local equilibria. At the end of this paper, we discuss future developments, including extending our model to three dimensions. PMID:29689074
Behavioral, Psychological, and Demographic Predictors of Physical Fitness.
1987-12-14
calisthenics ) were assessed: (a) frequency (i.e., times per week or month an exercise was done), and (b) duration (i.e., time spent exercising during a... workout period). An exercise activity scale was computed as the sum of the frequency-by-duration cross-product for each exercise. Substance consumption... street ") (alpha =- .79). Items used in these scales were taken from health behavior questionnaires developed by Vickers and He-vig (cf. Vickers & Hervig
Temporal scaling behavior of forest and urban fires
NASA Astrophysics Data System (ADS)
Wang, J.; Song, W.; Zheng, H.; Telesca, L.
2009-04-01
It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.
Scaling and design of landslide and debris-flow experiments
Iverson, Richard M.
2015-01-01
Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L < < 1 is satisfied, as is commonly the case. This time scale separation indicates that steady-state experiments can be used to study some details of landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.
Mapping the structure of animal behavior
NASA Astrophysics Data System (ADS)
Berman, Gordon; Choi, Daniel; Bialek, William; Shaevitz, Joshua
2014-03-01
Most animals possess the ability to actuate a vast diversity of movements, ostensibly constrained only by morphology and physics. In practice, however, a frequent assumption in behavioral science is that most of an animal's activities can be described in terms of a small set of stereotyped motifs. Here we introduce a method for mapping the behavioral space of organisms, relying only upon the underlying structure of postural movement data to organize and classify behaviors. Applying our method to movies of size closely-related species of freely-behaving fruit flies, we find a wide variety of non-stereotyped and stereo-typed behaviors, spanning a wide range of time scales. We observe subtle behavioral differences between these species, identifying the some of the effects of phylogenic history on behavior. Moreover, we find that the transitions between the observed behaviors display a hierarchical syntax, with similar behaviors likely to transition between each other, but with a long time scale of memory. These results suggest potential mechanisms for the evolution of behavior and for the neural control of movements.
Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins
NASA Astrophysics Data System (ADS)
Dahlke, K.; Sing, C. E.
2018-02-01
Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.
Ram, Nilam; Conroy, David E; Pincus, Aaron L; Lorek, Amy; Rebar, Amanda; Roche, Michael J; Coccia, Michael; Morack, Jennifer; Feldman, Josh; Gerstorf, Denis
Human development is characterized by the complex interplay of processes that manifest at multiple levels of analysis and time-scales. We introduce the Intraindividual Study of Affect, Health and Interpersonal Behavior (iSAHIB) as a model for how multiple time-scale study designs facilitate more precise articulation of developmental theory. Combining age heterogeneity, longitudinal panel, daily diary, and experience sampling protocols, the study made use of smartphone and web-based technologies to obtain intensive longitudinal data from 150 persons age 18-89 years as they completed three 21-day measurement bursts ( t = 426 bursts, t = 8,557 days) wherein they provided reports on their social interactions ( t = 64,112) as they went about their daily lives. We illustrate how multiple time-scales of data can be used to articulate bioecological models of development and the interplay among more 'distal' processes that manifest at 'slower' time-scales (e.g., age-related differences and burst-to-burst changes in mental health) and more 'proximal' processes that manifest at 'faster' time-scales (e.g., changes in context that progress in accordance with the weekly calendar and family influence processes).
Wavelet analysis and scaling properties of time series
NASA Astrophysics Data System (ADS)
Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.
2005-10-01
We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.
Scaling properties of marathon races
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, Jose; Rodriguez, Eduardo
2006-06-01
Some regularities in popular marathon races are identified in this paper. It is found for high-performance participants (i.e., racing times in the range [2:15,3:15] h), the average velocity as a function of the marathoner's ranking behaves as a power-law, which may be suggesting the presence of critical phenomena. Elite marathoners with racing times below 2:15 h can be considered as outliers with respect to this behavior. For the main marathon pack (i.e., racing times in the range [3:00,6:00] h), the average velocity as a function of the marathoner's ranking behaves linearly. For this racing times, the interpersonal velocity, defined as the difference of velocities between consecutive runners, displays a continuum of scaling behavior ranging from uncorrelated noise for small scales to correlated 1/f-noise for large scales. It is a matter of fact that 1/f-noise is characterized by correlations extended over a wide range of scales, a clear indication of some sort of cooperative effect.
Multi-scale Modeling of Chromosomal DNA in Living Cells
NASA Astrophysics Data System (ADS)
Spakowitz, Andrew
The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).
Critical Song Features for Auditory Pattern Recognition in Crickets
Meckenhäuser, Gundula; Hennig, R. Matthias; Nawrot, Martin P.
2013-01-01
Many different invertebrate and vertebrate species use acoustic communication for pair formation. In the cricket Gryllus bimaculatus, females recognize their species-specific calling song and localize singing males by positive phonotaxis. The song pattern of males has a clear structure consisting of brief and regular pulses that are grouped into repetitive chirps. Information is thus present on a short and a long time scale. Here, we ask which structural features of the song critically determine the phonotactic performance. To this end we employed artificial neural networks to analyze a large body of behavioral data that measured females’ phonotactic behavior under systematic variation of artificially generated song patterns. In a first step we used four non-redundant descriptive temporal features to predict the female response. The model prediction showed a high correlation with the experimental results. We used this behavioral model to explore the integration of the two different time scales. Our result suggested that only an attractive pulse structure in combination with an attractive chirp structure reliably induced phonotactic behavior to signals. In a further step we investigated all feature sets, each one consisting of a different combination of eight proposed temporal features. We identified feature sets of size two, three, and four that achieve highest prediction power by using the pulse period from the short time scale plus additional information from the long time scale. PMID:23437054
Analytical study of index-coupled herd behavior in financial markets
NASA Astrophysics Data System (ADS)
Berman, Yonatan; Shapira, Yoash; Schwartz, Moshe
2016-12-01
Herd behavior in financial markets had been investigated extensively in the past few decades. Scholars have argued that the behavioral tendency of traders and investors to follow the market trend, notably reflected in indices both on short and long time scales, is substantially affecting the overall market behavior. Research has also been devoted to revealing these behaviors and characterizing the market herd behavior. In this paper we present a simple herd behavior model for the dynamics of financial variables by introducing a simple coupling mechanism of stock returns to the index return, deriving analytic expressions for statistical properties of the returns. We found that several important phenomena in the stock market, namely the correlations between stock market returns and the exponential decay of short-term autocorrelations, are derived from our model. These phenomena have been given various explanations and theories, with herd market behavior being one of the leading. We conclude that the coupling mechanism, which essentially encapsulates the herd behavior, indeed creates correlation and autocorrelation. We also show that this introduces a time scale to the system, which is the characteristic time lag between a change in the index and its effect on the return of a stock.
NASA Astrophysics Data System (ADS)
McGranaghan, Ryan M.; Mannucci, Anthony J.; Forsyth, Colin
2017-12-01
We explore the characteristics, controlling parameters, and relationships of multiscale field-aligned currents (FACs) using a rigorous, comprehensive, and cross-platform analysis. Our unique approach combines FAC data from the Swarm satellites and the Advanced Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) to create a database of small-scale (˜10-150 km, <1° latitudinal width), mesoscale (˜150-250 km, 1-2° latitudinal width), and large-scale (>250 km) FACs. We examine these data for the repeatable behavior of FACs across scales (i.e., the characteristics), the dependence on the interplanetary magnetic field orientation, and the degree to which each scale "departs" from nominal large-scale specification. We retrieve new information by utilizing magnetic latitude and local time dependence, correlation analyses, and quantification of the departure of smaller from larger scales. We find that (1) FACs characteristics and dependence on controlling parameters do not map between scales in a straight forward manner, (2) relationships between FAC scales exhibit local time dependence, and (3) the dayside high-latitude region is characterized by remarkably distinct FAC behavior when analyzed at different scales, and the locations of distinction correspond to "anomalous" ionosphere-thermosphere behavior. Comparing with nominal large-scale FACs, we find that differences are characterized by a horseshoe shape, maximizing across dayside local times, and that difference magnitudes increase when smaller-scale observed FACs are considered. We suggest that both new physics and increased resolution of models are required to address the multiscale complexities. We include a summary table of our findings to provide a quick reference for differences between multiscale FACs.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Smith, Eric A.
1992-01-01
The behavior of in situ measurements of surface fluxes obtained during FIFE 1987 is examined by using correlative and spectral techniques in order to assess the significance of fluctuations on various time scales, from subdiurnal up to synoptic, intraseasonal, and annual scales. The objectives of this analysis are: (1) to determine which temporal scales have a significant impact on areal averaged fluxes and (2) to design a procedure for filtering an extended flux time series that preserves the basic diurnal features and longer time scales while removing high frequency noise that cannot be attributed to site-induced variation. These objectives are accomplished through the use of a two-dimensional cross-time Fourier transform, which serves to separate processes inherently related to diurnal and subdiurnal variability from those which impact flux variations on the longer time scales. A filtering procedure is desirable before the measurements are utilized as input with an experimental biosphere model, to insure that model based intercomparisons at multiple sites are uncontaminated by input variance not related to true site behavior. Analysis of the spectral decomposition indicates that subdiurnal time scales having periods shorter than 6 hours have little site-to-site consistency and therefore little impact on areal integrated fluxes.
Universality of fast quenches from the conformal perturbation theory
NASA Astrophysics Data System (ADS)
Dymarsky, Anatoly; Smolkin, Michael
2018-01-01
We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system's response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming and generalizing universal scalings found previously. Finally, we discuss late time behavior after the quench and argue that all local quantities will equilibrate to their thermal values specified by an excess energy acquired by the system during the quench.
Turcott, R G; Lowen, S B; Li, E; Johnson, D H; Tsuchitani, C; Teich, M C
1994-01-01
The behavior of lateral-superior-olive (LSO) auditory neurons over large time scales was investigated. Of particular interest was the determination as to whether LSO neurons exhibit the same type of fractal behavior as that observed in primary VIII-nerve auditory neurons. It has been suggested that this fractal behavior, apparent on long time scales, may play a role in optimally coding natural sounds. We found that a nonfractal model, the nonstationary dead-time-modified Poisson point process (DTMP), describes the LSO firing patterns well for time scales greater than a few tens of milliseconds, a region where the specific details of refractoriness are unimportant. The rate is given by the sum of two decaying exponential functions. The process is completely specified by the initial values and time constants of the two exponentials and by the dead-time relation. Specific measures of the firing patterns investigated were the interspike-interval (ISI) histogram, the Fano-factor time curve (FFC), and the serial count correlation coefficient (SCC) with the number of action potentials in successive counting times serving as the random variable. For all the data sets we examined, the latter portion of the recording was well approximated by a single exponential rate function since the initial exponential portion rapidly decreases to a negligible value. Analytical expressions available for the statistics of a DTMP with a single exponential rate function can therefore be used for this portion of the data. Good agreement was obtained among the analytical results, the computer simulation, and the experimental data on time scales where the details of refractoriness are insignificant.(ABSTRACT TRUNCATED AT 250 WORDS)
Marshall, Paul; Schroeder, Ryan; O'Brien, Jeffrey; Fischer, Rebecca; Ries, Adam; Blesi, Brita; Barker, Jessica
2010-10-01
This study examines the effectiveness of symptom validity measures to detect suspect effort in cognitive testing and invalid completion of ADHD behavior rating scales in 268 adults referred for ADHD assessment. Patients were diagnosed with ADHD based on cognitive testing, behavior rating scales, and clinical interview. Suspect effort was diagnosed by at least two of the following: failure on embedded and free-standing SVT measures, a score > 2 SD below the ADD population average on tests, failure on an ADHD behavior rating scale validity scale, or a major discrepancy between reported and observed ADHD behaviors. A total of 22% of patients engaged in symptom exaggeration. The Word Memory test immediate recall and consistency score (both 64%), TOVA omission errors (63%) and reaction time variability (54%), CAT-A infrequency scale (58%), and b Test (47%) had good sensitivity as well as at least 90% specificity. Clearly, such measures should be used to help avoid making false positive diagnoses of ADHD.
Modeling the Neurodynamics of Submarine Piloting and Navigation Teams
2014-05-07
phenomena. The Hurst exponent , H, which is commonly used in a number of scientific fields, provides an estimate of correlation overtime scales...times series for a SPAN performance and CWT representation. The CWT is superimposed by scaling exponent trend near a time of stress. Scaling... exponents at the outset correspond to corrective or anticorrelated behavior. Scaling exponents increase throughout as the team manages the incident and
Trading leads to scale-free self-organization
NASA Astrophysics Data System (ADS)
Ebert, M.; Paul, W.
2012-12-01
Financial markets display scale-free behavior in many different aspects. The power-law behavior of part of the distribution of individual wealth has been recognized by Pareto as early as the nineteenth century. Heavy-tailed and scale-free behavior of the distribution of returns of different financial assets have been confirmed in a series of works. The existence of a Pareto-like distribution of the wealth of market participants has been connected with the scale-free distribution of trading volumes and price-returns. The origin of the Pareto-like wealth distribution, however, remained obscure. Here we show that in a market where the imbalance of supply and demand determines the direction of prize changes, it is the process of trading itself that spontaneously leads to a self-organization of the market with a Pareto-like wealth distribution for the market participants and at the same time to a scale-free behavior of return fluctuations and trading volume distributions.
Sex differences in giraffe foraging behavior at two spatial scales.
Ginnett, T F; Demment, Montague W
1997-04-01
We test predictions about differences in the foraging behaviors of male and female giraffes (Giraffa camelopardalis tippelskirchi Matchie) that derive from a hypothesis linking sexual size dimorphism to foraging behavior. This body-size hypothesis predicts that males will exhibit specific behaviors that increase their dry-matter intake rate relative to females. Foraging behavior was examined at two hierarchical levels corresponding to two spatial and temporal scales, within patches and within habitats. Patches are defined as individual trees or shrubs and habitats are defined as collections of patches within plant communities. Males were predicted to increase dry-matter intake rate within patches by taking larger bites, cropping bites more quickly, chewing less, and chewing faster. Within habitats, males were expected to increase intake rate by increasing the proportion of foraging time devoted to food ingestion as opposed to inter-patch travel time and vigilance. The predictions were tested in a free-ranging population of giraffes in Mikumi National Park, Tanzania. Males spent less total time foraging than females but allocated a greater proportion of their foraging time to forage ingestion as opposed to travel between patches. There was no sex difference in rumination time but males spent more time in activities other than foraging and rumination, such as walking. Within patches, males took larger bites than females, but females cropped bites more quickly and chewed faster. Males had longer per-bite handling times than females but had shorter handling times per gram of intake. Within habitats, males had longer average patch residence times but there was no significant sex difference in inter-patch travel times. There was no overall difference between sexes in vigilance while foraging, although there were significant sex by habitat and sex by season interactions. Although not all the predictions were confirmed, overall the results agree qualitatively with the body-size hypothesis. Sex-related differences in foraging behavior led to greater estimated intake rates for males at the within-patch and within-habitat scales.
Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.
Federico, Alejandro; Kaufmann, Guillermo H
2007-04-10
We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.
Fine Scale Baleen Whale Behavior Observed via Tagging Over Daily Time Scales
2013-09-30
sei whales) and the diel vertical migration behavior of their copepod prey. I hypothesize that (1) right whales track the diel vertical migration of... copepods by feeding near the bottom during the day and at the surface at night, and (2) sei whales are unable to feed on copepods at depth during the...day, and are therefore restricted to feeding on copepods at the surface only. Because copepod diel vertical migration is variable over time (days to
Ten-Year Time Trends in Emotional and Behavioral Problems of Dutch Children Referred for Youth Care
ERIC Educational Resources Information Center
Veerman, Jan Willem; De Meyer, Ronald
2012-01-01
Emotional and behavioral problems assessed with the "Child Behavior Checklist" (CBCL) were analyzed from 2,739 Dutch children referred to Families First (FF) or Intensive Family Treatment (IFT) from 1999 to 2008, to examine time trends. From the year 2004 onward, six of the eight CBCL-syndrome scales yielded significant decreases from the…
ERIC Educational Resources Information Center
Kell, Harrison J.; Martin-Raugh, Michelle P.; Carney, Lauren M.; Inglese, Patricia A.; Chen, Lei; Feng, Gary
2017-01-01
Behaviorally anchored rating scales (BARS) are an essential component of structured interviews. Use of BARS to evaluate interviewees' performance is associated with greater predictive validity and reliability and less bias. BARS are time-consuming and expensive to construct, however. This report explores the feasibility of gathering participants'…
Measuring fire behavior with photography
Hubert B. Clements; Darold E. Ward; Carl W. Adkins
1983-01-01
Photography is practical for recording and measuring some aspects of forest fire behavior if the scale and perspective can be determined. This paper describes a photogrammetric method for measuring flame height and rate of spread for fires on flat terrain. The flames are photographed at known times with a camera in front of the advancing fire. Scale and perspective of...
Polansky, Leo; Douglas-Hamilton, Iain; Wittemyer, George
2013-01-01
Adaptive movement behaviors allow individuals to respond to fluctuations in resource quality and distribution in order to maintain fitness. Classically, studies of the interaction between ecological conditions and movement behavior have focused on such metrics as travel distance, velocity, home range size or patch occupancy time as the salient metrics of behavior. Driven by the emergence of very regular high frequency data, more recently the importance of interpreting the autocorrelation structure of movement as a behavioral metric has become apparent. Studying movement of a free ranging African savannah elephant population, we evaluated how two movement metrics, diel displacement (DD) and movement predictability (MP - the degree of autocorrelated movement activity at diel time scales), changed in response to variation in resource availability as measured by the Normalized Difference Vegetation Index. We were able to capitalize on long term (multi-year) yet high resolution (hourly) global positioning system tracking datasets, the sample size of which allows robust analysis of complex models. We use optimal foraging theory predictions as a framework to interpret our results, in particular contrasting the behaviors across changes in social rank and resource availability to infer which movement behaviors at diel time scales may be optimal in this highly social species. Both DD and MP increased with increasing forage availability, irrespective of rank, reflecting increased energy expenditure and movement predictability during time periods of overall high resource availability. However, significant interactions between forage availability and social rank indicated a stronger response in DD, and a weaker response in MP, with increasing social status. Relative to high ranking individuals, low ranking individuals expended more energy and exhibited less behavioral movement autocorrelation during lower forage availability conditions, likely reflecting sub-optimal movement behavior. Beyond situations of contest competition, rank status appears to influence the extent to which individuals can modify their movement strategies across periods with differing forage availability. Large-scale spatiotemporal resource complexity not only impacts fine scale movement and optimal foraging strategies directly, but likely impacts rates of inter- and intra-specific interactions and competition resulting in socially based movement responses to ecological dynamics.
Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition
Tao, Weiwei; Cao, Penghui; Park, Harold S.
2018-04-30
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less
Superplastic Creep of Metal Nanowires from Rate-Dependent Plasticity Transition.
Tao, Weiwei; Cao, Penghui; Park, Harold S
2018-05-22
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time-dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time-dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. We report that both Cu and Ag nanowires show significantly increased ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.
Superplastic Creep of Metal Nanowires From Rate-Dependent Plasticity Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Weiwei; Cao, Penghui; Park, Harold S.
Understanding the time-dependent mechanical behavior of nanomaterials such as nanowires is essential to predict their reliability in nanomechanical devices. This understanding is typically obtained using creep tests, which are the most fundamental loading mechanism by which the time dependent deformation of materials is characterized. However, due to existing challenges facing both experimentalists and theorists, the time dependent mechanical response of nanowires is not well-understood. Here, we use atomistic simulations that can access experimental time scales to examine the creep of single-crystal face-centered cubic metal (Cu, Ag, Pt) nanowires. Here, we report that both Cu and Ag nanowires show significantly increasedmore » ductility and superplasticity under low creep stresses, where the superplasticity is driven by a rate-dependent transition in defect nucleation from twinning to trailing partial dislocations at the micro- or millisecond time scale. The transition in the deformation mechanism also governs a corresponding transition in the stress-dependent creep time at the microsecond (Ag) and millisecond (Cu) time scales. Overall, this work demonstrates the necessity of accessing time scales that far exceed those seen in conventional atomistic modeling for accurate insights into the time-dependent mechanical behavior and properties of nanomaterials.« less
NASA Astrophysics Data System (ADS)
Schneider, Kai; Kadoch, Benjamin; Bos, Wouter
2017-11-01
The angle between two subsequent particle displacement increments is evaluated as a function of the time lag. The directional change of particles can thus be quantified at different scales and multiscale statistics can be performed. Flow dependent and geometry dependent features can be distinguished. The mean angle satisfies scaling behaviors for short time lags based on the smoothness of the trajectories. For intermediate time lags a power law behavior can be observed for some turbulent flows, which can be related to Kolmogorov scaling. The long time behavior depends on the confinement geometry of the flow. We show that the shape of the probability distribution function of the directional change can be well described by a Fischer distribution. Results for two-dimensional (direct and inverse cascade) and three-dimensional turbulence with and without confinement, illustrate the properties of the proposed multiscale statistics. The presented Monte-Carlo simulations allow disentangling geometry dependent and flow independent features. Finally, we also analyze trajectories of football players, which are, in general, not randomly spaced on a field.
Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang
We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less
Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis
Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang; ...
2016-01-28
We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less
Kite, Benjamin A.; Pearson, Matthew R.; Henson, James M.
2016-01-01
The purpose of the present studies was to examine the effects of response scale on the observed relationships between protective behavioral strategies (PBS) measures and alcohol-related outcomes. We reasoned that an ‘absolute frequency’ scale (stem: “how many times…”; response scale: 0 times to 11+ times) conflates the frequency of using PBS with the frequency of consuming alcohol; thus, we hypothesized that the use of an absolute frequency response scale would result in positive relationships between types of PBS and alcohol-related outcomes. Alternatively, a ‘contingent frequency’ scale (stem: “When drinking…how often…”; response scale: never to always) does not conflate frequency of alcohol use with use of PBS; therefore, we hypothesized that use of a contingent frequency scale would result in negative relationships between use of PBS and alcohol-related outcomes. Two published measures of PBS were used across studies: the Protective Behavioral Strategies Survey (PBSS) and the Strategy Questionnaire (SQ). Across three studies, we demonstrate that when measured using a contingent frequency response scale, PBS measures relate negatively to alcohol-related outcomes in a theoretically consistent manner; however, when PBS measures were measured on an absolute frequency response scale, they were non-significantly or positively related to alcohol-related outcomes. We discuss the implications of these findings for the assessment of PBS. PMID:23438243
Behavioral responses of wolves to roads: scale-dependent ambivalence
Nelson, Lindsey; Wabakken, Petter; Sand, Håkan; Liberg, Olof
2014-01-01
Throughout their recent recovery in several industrialized countries, large carnivores have had to cope with a changed landscape dominated by human infrastructure. Population growth depends on the ability of individuals to adapt to these changes by making use of new habitat features and at the same time to avoid increased risks of mortality associated with human infrastructure. We analyzed the summer movements of 19 GPS-collared resident wolves (Canis lupus L.) from 14 territories in Scandinavia in relation to roads. We used resource and step selection functions, including >12000 field-checked GPS-positions and 315 kill sites. Wolves displayed ambivalent responses to roads depending on the spatial scale, road type, time of day, behavioral state, and reproductive status. At the site scale (approximately 0.1 km2), they selected for roads when traveling, nearly doubling their travel speed. Breeding wolves moved the fastest. At the patch scale (10 km2), house density rather than road density was a significant negative predictor of wolf patch selection. At the home range scale (approximately 1000 km2), breeding wolves increased gravel road use with increasing road availability, although at a lower rate than expected. Wolves have adapted to use roads for ease of travel, but at the same time developed a cryptic behavior to avoid human encounters. This behavioral plasticity may have been important in allowing the successful recovery of wolf populations in industrialized countries. However, we emphasize the role of roads as a potential cause of increased human-caused mortality. PMID:25419085
Behavioral responses of wolves to roads: scale-dependent ambivalence.
Zimmermann, Barbara; Nelson, Lindsey; Wabakken, Petter; Sand, Håkan; Liberg, Olof
2014-11-01
Throughout their recent recovery in several industrialized countries, large carnivores have had to cope with a changed landscape dominated by human infrastructure. Population growth depends on the ability of individuals to adapt to these changes by making use of new habitat features and at the same time to avoid increased risks of mortality associated with human infrastructure. We analyzed the summer movements of 19 GPS-collared resident wolves ( Canis lupus L.) from 14 territories in Scandinavia in relation to roads. We used resource and step selection functions, including >12000 field-checked GPS-positions and 315 kill sites. Wolves displayed ambivalent responses to roads depending on the spatial scale, road type, time of day, behavioral state, and reproductive status. At the site scale (approximately 0.1 km 2 ), they selected for roads when traveling, nearly doubling their travel speed. Breeding wolves moved the fastest. At the patch scale (10 km 2 ), house density rather than road density was a significant negative predictor of wolf patch selection. At the home range scale (approximately 1000 km 2 ), breeding wolves increased gravel road use with increasing road availability, although at a lower rate than expected. Wolves have adapted to use roads for ease of travel, but at the same time developed a cryptic behavior to avoid human encounters. This behavioral plasticity may have been important in allowing the successful recovery of wolf populations in industrialized countries. However, we emphasize the role of roads as a potential cause of increased human-caused mortality.
Association Among Internet Usage, Body Image and Eating Behaviors of Secondary School Students
KAEWPRADUB, Natthakarn; KIATRUNGRIT, Komsan; HONGSANGUANSRI, Sirichai; PAVASUTHIPAISIT, Chosita
2017-01-01
Background Presently, the internet plays a big role in daily life, especially for adolescents. In this age group, they are more concerned about their face and body shape. Despite the numerous studies on the effect traditional media has on body image, very few have focused on the effect of newer forms of media (e.g. online media). And almost none have looked at the relationship between time spent online and body image. Aim To study the associations between time spent on the internet, body image satisfaction and eating behaviors of students grades 7 to 12 in the Thai educational system. Methods The sample group included 620 students, who were selected using simple random sampling from 6 secondary schools in Bangkok. Data were collected using the Media and Internet use behavior questionnaires, The Body-Esteem Scale for Adolescents and Adults: Thai version (BESAA), Drive for Muscularity Scale (DMS: males only), The Rosenberg Self-Esteem Scale: Thai version, Eating Attitude Test-26: Thai version (EAT-26) and the eating behaviors at risk of obesity questionnaire. Results Mean (sd) age of the sample was 15.7 (1.9) years, 246 participants (39.7%) were male and 374 (60.3%) were female. Using the internet and social networks for content related to body image and eating behaviors, was negatively associated with body image satisfaction but positively associated with inappropriate eating attitudes/behaviors, binging, purging, use of laxatives/diuretics and drive for muscularity with respect to behaviors and attitudes, and was associated with eating behaviors that carried a risk for obesity. Conclusions Time spent on internet, especially engaged in activities related to self-image, and eating attitudes and behaviors, were associated with a decrease in body image satisfaction and problematic eating behaviors. PMID:28955140
Association Among Internet Usage, Body Image and Eating Behaviors of Secondary School Students.
Kaewpradub, Natthakarn; Kiatrungrit, Komsan; Hongsanguansri, Sirichai; Pavasuthipaisit, Chosita
2017-08-25
Presently, the internet plays a big role in daily life, especially for adolescents. In this age group, they are more concerned about their face and body shape. Despite the numerous studies on the effect traditional media has on body image, very few have focused on the effect of newer forms of media (e.g. online media). And almost none have looked at the relationship between time spent online and body image. To study the associations between time spent on the internet, body image satisfaction and eating behaviors of students grades 7 to 12 in the Thai educational system. The sample group included 620 students, who were selected using simple random sampling from 6 secondary schools in Bangkok. Data were collected using the Media and Internet use behavior questionnaires, The Body-Esteem Scale for Adolescents and Adults: Thai version (BESAA), Drive for Muscularity Scale (DMS: males only), The Rosenberg Self-Esteem Scale: Thai version, Eating Attitude Test-26: Thai version (EAT-26) and the eating behaviors at risk of obesity questionnaire. Mean (sd) age of the sample was 15.7 (1.9) years, 246 participants (39.7%) were male and 374 (60.3%) were female. Using the internet and social networks for content related to body image and eating behaviors, was negatively associated with body image satisfaction but positively associated with inappropriate eating attitudes/behaviors, binging, purging, use of laxatives/diuretics and drive for muscularity with respect to behaviors and attitudes, and was associated with eating behaviors that carried a risk for obesity. Time spent on internet, especially engaged in activities related to self-image, and eating attitudes and behaviors, were associated with a decrease in body image satisfaction and problematic eating behaviors.
Comparing emerging and mature markets during times of crises: A non-extensive statistical approach
NASA Astrophysics Data System (ADS)
Namaki, A.; Koohi Lai, Z.; Jafari, G. R.; Raei, R.; Tehrani, R.
2013-07-01
One of the important issues in finance and economics for both scholars and practitioners is to describe the behavior of markets, especially during times of crises. In this paper, we analyze the behavior of some mature and emerging markets with a Tsallis entropy framework that is a non-extensive statistical approach based on non-linear dynamics. During the past decade, this technique has been successfully applied to a considerable number of complex systems such as stock markets in order to describe the non-Gaussian behavior of these systems. In this approach, there is a parameter q, which is a measure of deviation from Gaussianity, that has proved to be a good index for detecting crises. We investigate the behavior of this parameter in different time scales for the market indices. It could be seen that the specified pattern for q differs for mature markets with regard to emerging markets. The findings show the robustness of the stated approach in order to follow the market conditions over time. It is obvious that, in times of crises, q is much greater than in other times. In addition, the response of emerging markets to global events is delayed compared to that of mature markets, and tends to a Gaussian profile on increasing the scale. This approach could be very useful in application to risk and portfolio management in order to detect crises by following the parameter q in different time scales.
Track-based event recognition in a realistic crowded environment
NASA Astrophysics Data System (ADS)
van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.
2014-10-01
Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2015-10-01
In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015), 10.1103/PhysRevE.91.013002] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n , all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E ∝k⊥1 -ξ and the dispersion law ω ∝k⊥2 -η . In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L .
NASA Astrophysics Data System (ADS)
Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro
2009-05-01
The detrended fluctuation analysis is used to study the behavior of different time series obtained from the trajectory of the center of pressure, the output of the activity of the human postural control system. The results suggest that these trajectories present two different regimes in their scaling properties: persistent (for high frequencies, short-range time scale) to antipersistent (for low frequencies, long-range time scale) behaviors. The similitude between the results obtained for the measurements, done with both eyes open and eyes closed, indicate either that the visual system may be disregarded by the postural control system while maintaining the quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with the type of analysis performed here.
ERIC Educational Resources Information Center
Norman, Åsa; Bohman, Benjamin; Nyberg, Gisela; Schäfer Elinder, Liselotte
2018-01-01
Background: According to social cognitive theory, self-efficacy is central to behavior change. Consequently, parental self-efficacy (PSE) for influencing children's dietary, physical activity (PA), sedentary, and screen time behaviors is important for child obesity prevention. The aim of this study was to evaluate the psychometric properties of an…
Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force
NASA Astrophysics Data System (ADS)
Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki
2012-07-01
We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.
Understanding metropolitan patterns of daily encounters.
Sun, Lijun; Axhausen, Kay W; Lee, Der-Horng; Huang, Xianfeng
2013-08-20
Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters' bounded nature. An individual's encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of "familiar strangers" in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or "structure of co-presence" across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and--particularly--disclosing the impact of human behavior on various diffusion/spreading processes.
Circadian clock and cardiac vulnerability: A time stamp on multi-scale neuroautonomic regulation
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.
2005-03-01
Cardiovascular vulnerability displays a 24-hour pattern with a peak between 9AM and 11AM. This daily pattern in cardiac risk is traditionally attributed to external factors including activity levels and sleep-wake cycles. However,influences from the endogenous circadian pacemaker independent from behaviors may also affect cardiac control. We investigate heartbeat dynamics in healthy subjects recorded throughout a 10-day protocol wherein the sleep/wake and behavior cycles are desynchronized from the endogenous circadian cycle,enabling assessment of circadian factors while controlling for behavior-related factors. We demonstrate that the scaling exponent characterizing temporal correlations in heartbeat dynamics over multiple time scales does exhibit a significant circadian rhythm with a sharp peak at the circadian phase corresponding to the period 9-11AM, and that this rhythm is independent from scheduled behaviors and mean heart rate. Our findings of strong circadian rhythms in the multi-scale heartbeat dynamics of healthy young subjects indicate that the underlying mechanism of cardiac regulation is strongly influenced by the endogenous circadian pacemaker. A similar circadian effect in vulnerable individuals with underlying cardiovascular disease would contribute to the morning peak of adverse cardiac events observed in epidemiological studies.
Understanding metropolitan patterns of daily encounters
Sun, Lijun; Axhausen, Kay W.; Lee, Der-Horng; Huang, Xianfeng
2013-01-01
Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters’ bounded nature. An individual’s encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of “familiar strangers” in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or “structure of co-presence” across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and—particularly—disclosing the impact of human behavior on various diffusion/spreading processes. PMID:23918373
Multifractals embedded in short time series: An unbiased estimation of probability moment
NASA Astrophysics Data System (ADS)
Qiu, Lu; Yang, Tianguang; Yin, Yanhua; Gu, Changgui; Yang, Huijie
2016-12-01
An exact estimation of probability moments is the base for several essential concepts, such as the multifractals, the Tsallis entropy, and the transfer entropy. By means of approximation theory we propose a new method called factorial-moment-based estimation of probability moments. Theoretical prediction and computational results show that it can provide us an unbiased estimation of the probability moments of continuous order. Calculations on probability redistribution model verify that it can extract exactly multifractal behaviors from several hundred recordings. Its powerfulness in monitoring evolution of scaling behaviors is exemplified by two empirical cases, i.e., the gait time series for fast, normal, and slow trials of a healthy volunteer, and the closing price series for Shanghai stock market. By using short time series with several hundred lengths, a comparison with the well-established tools displays significant advantages of its performance over the other methods. The factorial-moment-based estimation can evaluate correctly the scaling behaviors in a scale range about three generations wider than the multifractal detrended fluctuation analysis and the basic estimation. The estimation of partition function given by the wavelet transform modulus maxima has unacceptable fluctuations. Besides the scaling invariance focused in the present paper, the proposed factorial moment of continuous order can find its various uses, such as finding nonextensive behaviors of a complex system and reconstructing the causality relationship network between elements of a complex system.
Multi-scale modeling in cell biology
Meier-Schellersheim, Martin; Fraser, Iain D. C.; Klauschen, Frederick
2009-01-01
Biomedical research frequently involves performing experiments and developing hypotheses that link different scales of biological systems such as, for instance, the scales of intracellular molecular interactions to the scale of cellular behavior and beyond to the behavior of cell populations. Computational modeling efforts that aim at exploring such multi-scale systems quantitatively with the help of simulations have to incorporate several different simulation techniques due to the different time and space scales involved. Here, we provide a non-technical overview of how different scales of experimental research can be combined with the appropriate computational modeling techniques. We also show that current modeling software permits building and simulating multi-scale models without having to become involved with the underlying technical details of computational modeling. PMID:20448808
Universal scaling law in human behavioral organization.
Nakamura, Toru; Kiyono, Ken; Yoshiuchi, Kazuhiro; Nakahara, Rika; Struzik, Zbigniew R; Yamamoto, Yoshiharu
2007-09-28
We describe the nature of human behavioral organization, specifically how resting and active periods are interwoven throughout daily life. Active period durations with physical activity count successively above a predefined threshold, when rescaled with individual means, follow a universal stretched exponential (gamma-type) cumulative distribution with characteristic time, both in healthy individuals and in patients with major depressive disorder. On the other hand, resting period durations below the threshold for both groups obey a scale-free power-law cumulative distribution over two decades, with significantly lower scaling exponents in the patients. We thus find universal distribution laws governing human behavioral organization, with a parameter altered in depression.
Universal Scaling Law in Human Behavioral Organization
NASA Astrophysics Data System (ADS)
Nakamura, Toru; Kiyono, Ken; Yoshiuchi, Kazuhiro; Nakahara, Rika; Struzik, Zbigniew R.; Yamamoto, Yoshiharu
2007-09-01
We describe the nature of human behavioral organization, specifically how resting and active periods are interwoven throughout daily life. Active period durations with physical activity count successively above a predefined threshold, when rescaled with individual means, follow a universal stretched exponential (gamma-type) cumulative distribution with characteristic time, both in healthy individuals and in patients with major depressive disorder. On the other hand, resting period durations below the threshold for both groups obey a scale-free power-law cumulative distribution over two decades, with significantly lower scaling exponents in the patients. We thus find universal distribution laws governing human behavioral organization, with a parameter altered in depression.
NASA Technical Reports Server (NTRS)
Barrett, C. E.; Presler, A. F.
1976-01-01
A FORTRAN computer program (COREST) was developed to analyze the high-temperature paralinear oxidation behavior of metals. It is based on a mass-balance approach and uses typical gravimetric input data. COREST was applied to predominantly Cr2O3-forming alloys tested isothermally for long times. These alloys behaved paralinearly above 1100 C as a result of simultaneous scale formation and scale vaporization. Output includes the pertinent formation and vaporization constants and kinetic values of interest. COREST also estimates specific sample weight and specific scale weight as a function of time. Most importantly, from a corrosion standpoint, it estimates specific metal loss.
Takahiro Sayama; Jeffrey J. McDonnell
2009-01-01
Hydrograph source components and stream water residence time are fundamental behavioral descriptors of watersheds but, as yet, are poorly represented in most rainfall-runoff models. We present a new time-space accounting scheme (T-SAS) to simulate the pre-event and event water fractions, mean residence time, and spatial source of streamflow at the watershed scale. We...
Xu, Xianglong; Sharma, Manoj; Liu, Lingli; Hu, Ping; Zhao, Yong
2016-09-13
(1) OBJECTIVE: We aimed to explore the role of social cognitive theory (SCT) of mothers in the physical activity and healthy nutrition behaviors of preschool children; (2) METHODS: We used a self-administered five-point Likert common physical activity and nutrition behaviors scale in Chinese based on a social cognitive theory scale in English with established validity and reliability in the USA. The current study adopted the proportional sampling method to survey mothers of preschool children in four areas-namely, Chongqing, Chengdu, Taiyuan, and Shijiazhuang-of China; (3) RESULTS: We included 1208 mothers (80.0% mothers of normal weight children, age 31.87 ± 4.19 years). Positive correlations were found between maternal social cognition and preschool children's physical activity (PA) behavior (p < 0.0001). However, an insignificant correlation is observed between preschool children's fruits and vegetables (FV) behavior, screen time (ST) behavior, and maternal social cognition; (4) CONCLUSIONS: This study provides some implications for increasing fruit and vegetable consumption, increasing physical activity time, and reducing screen time in preschool children using SCT in China. Maternal social cognition is associated with preschool children's PA behavior, and the results suggest that maternal social cognition may not affect children FV and ST behaviors. Further research is necessary to test the mediation of maternal social cognition on preschool children's ST behavior and the correlations between maternal social cognition and children's ST behavior.
NASA Astrophysics Data System (ADS)
Gray, A. B.
2017-12-01
Watersheds with sufficient monitoring data have been predominantly found to display nonstationary suspended sediment dynamics, whereby the relationship between suspended sediment concentration and discharge changes over time. Despite the importance of suspended sediment as a keystone of geophysical and biochemical processes, and as a primary mediator of water quality, stationary behavior remains largely assumed in the context of these applications. This study presents an investigation into the time dependent behavior of small mountainous rivers draining the coastal ranges of the western continental US over interannual to interdecadal time scales. Of the 250+ small coastal (drainage area < 2x104 km2) watersheds in this region, only 23 have discharge associated suspended sediment concentration time series with base periods of 10 years or more. Event to interdecadal scale nonstationary suspended sediment dynamics were identified throughout these systems. Temporal patterns of non-stationary behavior provided some evidence for spatial coherence, which may be related to synoptic hydro-metrological patterns and regional scale changes in land use patterns. However, the results also highlight the complex, integrative nature of watershed scale fluvial suspended sediment dynamics. This underscores the need for in-depth, forensic approaches for initial processes identification, which require long term, high resolution monitoring efforts in order to adequately inform management. The societal implications of nonstationary sediment dynamics and their controls were further explored through the case of California, USA, where over 150 impairment listings have resulted in more than 50 sediment TMDLs, only 3 of which are flux based - none of which account for non-stationary behavior.
Deciphering hierarchical features in the energy landscape of adenylate kinase folding/unfolding
NASA Astrophysics Data System (ADS)
Taylor, J. Nicholas; Pirchi, Menahem; Haran, Gilad; Komatsuzaki, Tamiki
2018-03-01
Hierarchical features of the energy landscape of the folding/unfolding behavior of adenylate kinase, including its dependence on denaturant concentration, are elucidated in terms of single-molecule fluorescence resonance energy transfer (smFRET) measurements in which the proteins are encapsulated in a lipid vesicle. The core in constructing the energy landscape from single-molecule time-series across different denaturant concentrations is the application of rate-distortion theory (RDT), which naturally considers the effects of measurement noise and sampling error, in combination with change-point detection and the quantification of the FRET efficiency-dependent photobleaching behavior. Energy landscapes are constructed as a function of observation time scale, revealing multiple partially folded conformations at small time scales that are situated in a superbasin. As the time scale increases, these denatured states merge into a single basin, demonstrating the coarse-graining of the energy landscape as observation time increases. Because the photobleaching time scale is dependent on the conformational state of the protein, possible nonequilibrium features are discussed, and a statistical test for violation of the detailed balance condition is developed based on the state sequences arising from the RDT framework.
Choice with frequently changing food rates and food ratios.
Baum, William M; Davison, Michael
2014-03-01
In studies of operant choice, when one schedule of a concurrent pair is varied while the other is held constant, the constancy of the constant schedule may exert discriminative control over performance. In our earlier experiments, schedules varied reciprocally across components within sessions, so that while food ratio varied food rate remained constant. In the present experiment, we held one variable-interval (VI) schedule constant while varying the concurrent VI schedule within sessions. We studied five conditions, each with a different constant left VI schedule. On the right key, seven different VI schedules were presented in seven different unsignaled components. We analyzed performances at several different time scales. At the longest time scale, across conditions, behavior ratios varied with food ratios as would be expected from the generalized matching law. At shorter time scales, effects due to holding the left VI constant became more and more apparent, the shorter the time scale. In choice relations across components, preference for the left key leveled off as the right key became leaner. Interfood choice approximated strict matching for the varied right key, whereas interfood choice hardly varied at all for the constant left key. At the shortest time scale, visit patterns differed for the left and right keys. Much evidence indicated the development of a fix-and-sample pattern. In sum, the procedural difference made a large difference to performance, except for choice at the longest time scale and the fix-and-sample pattern at the shortest time scale. © Society for the Experimental Analysis of Behavior.
Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite
Tang, Rujun; Jiang, Chen; Qian, Wenhu; Jian, Jie; Zhang, Xin; Wang, Haiyan; Yang, Hao
2015-01-01
The dielectric properties of Z-type hexaferrite Sr3Co2Fe24O41 (SCFO) have been investigated as a function of temperature from 153 to 503 K between 1 and 2 GHz. The dielectric responses of SCFO are found to be frequency dependent and thermally activated. The relaxation-type dielectric behavior is observed to be dominating in the low frequency region and resonance-type dielectric behavior is found to be dominating above 108 Hz. This frequency dependence of dielectric behavior is explained by the damped harmonic oscillator model with temperature dependent coefficients. The imaginary part of impedance (Z″) and modulus (M″) spectra show that there is a distribution of relaxation times. The scaling behaviors of Z″ and M″ spectra further suggest that the distribution of relaxation times is temperature independent at low frequencies. The dielectric loss spectra at different temperatures have not shown a scaling behavior above 108 Hz. A comparison between the Z″ and the M″ spectra indicates that the short-range charges motion dominates at low temperatures and the long-range charges motion dominates at high temperatures. The above results indicate that the dielectric dispersion mechanism in SCFO is temperature independent at low frequencies and temperature dependent at high frequencies due to the domination of resonance behavior. PMID:26314913
Inhomogeneous scaling behaviors in Malaysian foreign currency exchange rates
NASA Astrophysics Data System (ADS)
Muniandy, S. V.; Lim, S. C.; Murugan, R.
2001-12-01
In this paper, we investigate the fractal scaling behaviors of foreign currency exchange rates with respect to Malaysian currency, Ringgit Malaysia. These time series are examined piecewise before and after the currency control imposed in 1st September 1998 using the monofractal model based on fractional Brownian motion. The global Hurst exponents are determined using the R/ S analysis, the detrended fluctuation analysis and the method of second moment using the correlation coefficients. The limitation of these monofractal analyses is discussed. The usual multifractal analysis reveals that there exists a wide range of Hurst exponents in each of the time series. A new method of modelling the multifractal time series based on multifractional Brownian motion with time-varying Hurst exponents is studied.
Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex
Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo
2015-01-01
The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537
Managerial Behavior: Developing Skills for Management Effectiveness in Times of Economic Setbacks
ERIC Educational Resources Information Center
Beatty, Richard W.; Morgan, Cyril P.
1975-01-01
The skills necessary for managerial success can be developed through methods directed at behavior change such as assessment centers, behaviorally anchored rating scales, role renegotiation, and feedback from educators. (Available from Office of Publications, Graduate School of Business Administration, University of Michigan, Ann Arbor, MI 48104,…
Ion kinetic scale in the solar wind observed.
Śafránková, Jana; Němeček, Zdeněk; Přech, Lubomír; Zastenker, Georgy N
2013-01-11
This Letter shows the first results from the solar wind monitor onboard the Spektr-R spacecraft which measures plasma moments with a time resolution of 31 ms. This high-time resolution allows us to make direct observations of solar wind turbulence below ion kinetic length scales. We present examples of the frequency spectra of the density, velocity, and thermal velocity. Our study reveals that although these parameters exhibit the same behavior at the magnetohydrodynamic scale, their spectra are remarkably different at the kinetic scale.
What Counts as Behavior? The Molar Multiscale View
2013-01-01
Because the definition of behavior changes as our understanding of behavior changes, giving a final definition is impossible. One can, however, rule out some possibilities and propose some others based on what we currently know. Behavior is not simply movement, but must be defined by its function. Also, our understanding of behavior must agree with evolutionary theory. I suggest 4 basic principles: (a) only whole organisms behave; (b) behavior is purposive; (c) behavior takes time; and (d) behavior is choice. Saying that parts of an organism behave is nonsense, and, moreover, evolutionary theory explains the existence of organisms mainly through their adaptive behavior. Behavior is purposive in that behavior is shaped by its consequences, through an organism's lifetime or through interactions with the environment across many generations of natural selection. Behavior takes time in that behavior is interaction with the environment that cannot take place at a moment. Moreover, at a moment in time, one cannot definitely identify the function of behavior. Identification of an activity requires a span of time. Behavior is choice in the sense that a suitable span of time always includes time spent in more than 1 activity. Activities include parts that are themselves activities on a smaller time scale and compete for time. Thus, behavior constitutes time allocation. An accounting problem arises whenever any behavior is attributed to multiple consequences. In the molar multiscale view, this raises the question of whether 2 activities can occur at the same time. The question remains open. PMID:28018040
Xu, Yinlin; Ma, Qianli D Y; Schmitt, Daniel T; Bernaola-Galván, Pedro; Ivanov, Plamen Ch
2011-11-01
We investigate how various coarse-graining (signal quantization) methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval Δ, this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when Δ < 1, while for Δ > 1 a crossover appears at small scales and moves to intermediate and large scales with increasing Δ. For very rough coarse-graining (Δ > 3) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the Centro-Symmetry method where the crossover continuously moves across scales and leads to a random behavior at all scales; thus indicating a much stronger effect of the Centro-Symmetry compared to the Floor and the Symmetry method. For coarse-graining in time, where data points are averaged in non-overlapping time windows, we find that the scaling for both anti-correlated and positively correlated signals is practically preserved. The results of our simulations are useful for the correct interpretation of the correlation and scaling properties of symbolic sequences.
Xu, Yinlin; Ma, Qianli D.Y.; Schmitt, Daniel T.; Bernaola-Galván, Pedro; Ivanov, Plamen Ch.
2014-01-01
We investigate how various coarse-graining (signal quantization) methods affect the scaling properties of long-range power-law correlated and anti-correlated signals, quantified by the detrended fluctuation analysis. Specifically, for coarse-graining in the magnitude of a signal, we consider (i) the Floor, (ii) the Symmetry and (iii) the Centro-Symmetry coarse-graining methods. We find that for anti-correlated signals coarse-graining in the magnitude leads to a crossover to random behavior at large scales, and that with increasing the width of the coarse-graining partition interval Δ, this crossover moves to intermediate and small scales. In contrast, the scaling of positively correlated signals is less affected by the coarse-graining, with no observable changes when Δ < 1, while for Δ > 1 a crossover appears at small scales and moves to intermediate and large scales with increasing Δ. For very rough coarse-graining (Δ > 3) based on the Floor and Symmetry methods, the position of the crossover stabilizes, in contrast to the Centro-Symmetry method where the crossover continuously moves across scales and leads to a random behavior at all scales; thus indicating a much stronger effect of the Centro-Symmetry compared to the Floor and the Symmetry method. For coarse-graining in time, where data points are averaged in non-overlapping time windows, we find that the scaling for both anti-correlated and positively correlated signals is practically preserved. The results of our simulations are useful for the correct interpretation of the correlation and scaling properties of symbolic sequences. PMID:25392599
Zhang, Wenqing; Qiu, Lu; Xiao, Qin; Yang, Huijie; Zhang, Qingjun; Wang, Jianyong
2012-11-01
By means of the concept of the balanced estimation of diffusion entropy, we evaluate the reliable scale invariance embedded in different sleep stages and stride records. Segments corresponding to waking, light sleep, rapid eye movement (REM) sleep, and deep sleep stages are extracted from long-term electroencephalogram signals. For each stage the scaling exponent value is distributed over a considerably wide range, which tell us that the scaling behavior is subject and sleep cycle dependent. The average of the scaling exponent values for waking segments is almost the same as that for REM segments (∼0.8). The waking and REM stages have a significantly higher value of the average scaling exponent than that for light sleep stages (∼0.7). For the stride series, the original diffusion entropy (DE) and the balanced estimation of diffusion entropy (BEDE) give almost the same results for detrended series. The evolutions of local scaling invariance show that the physiological states change abruptly, although in the experiments great efforts have been made to keep conditions unchanged. The global behavior of a single physiological signal may lose rich information on physiological states. Methodologically, the BEDE can evaluate with considerable precision the scale invariance in very short time series (∼10^{2}), while the original DE method sometimes may underestimate scale-invariance exponents or even fail in detecting scale-invariant behavior. The BEDE method is sensitive to trends in time series. The existence of trends may lead to an unreasonably high value of the scaling exponent and consequent mistaken conclusions.
NASA Astrophysics Data System (ADS)
Zhang, Wenqing; Qiu, Lu; Xiao, Qin; Yang, Huijie; Zhang, Qingjun; Wang, Jianyong
2012-11-01
By means of the concept of the balanced estimation of diffusion entropy, we evaluate the reliable scale invariance embedded in different sleep stages and stride records. Segments corresponding to waking, light sleep, rapid eye movement (REM) sleep, and deep sleep stages are extracted from long-term electroencephalogram signals. For each stage the scaling exponent value is distributed over a considerably wide range, which tell us that the scaling behavior is subject and sleep cycle dependent. The average of the scaling exponent values for waking segments is almost the same as that for REM segments (˜0.8). The waking and REM stages have a significantly higher value of the average scaling exponent than that for light sleep stages (˜0.7). For the stride series, the original diffusion entropy (DE) and the balanced estimation of diffusion entropy (BEDE) give almost the same results for detrended series. The evolutions of local scaling invariance show that the physiological states change abruptly, although in the experiments great efforts have been made to keep conditions unchanged. The global behavior of a single physiological signal may lose rich information on physiological states. Methodologically, the BEDE can evaluate with considerable precision the scale invariance in very short time series (˜102), while the original DE method sometimes may underestimate scale-invariance exponents or even fail in detecting scale-invariant behavior. The BEDE method is sensitive to trends in time series. The existence of trends may lead to an unreasonably high value of the scaling exponent and consequent mistaken conclusions.
[Addiction and personality traits: sensation seeking, anhedonia, impulsivity].
Sarramon, C; Verdoux, H; Schmitt, L; Bourgeois, M
1999-01-01
This study presents the evaluation of three dimensional traits of personality (Sensation Seeking, Anhedonia, Impulsivity) among 65 patients admitted in a psychiatric ward, with or without addictive behaviors. Our objective is to establish that these personality traits are commun to all addictive behaviors and to test the hypothesis that high scores on the three scales are linked to a greater probability of presenting with addictive behaviors. The two most frequent types of addiction were alcoholism and drug abuse. The subjects presenting with one or several addictive behaviors had higher average scores on the three scales. Our results printed in the same direction for the subjects having shown an addictive behavior in their past history. The risk to present with an addictive behavior increased with the total scores of these self-report questionnaires. There was a significant relationship between 3 sub-dimensions on the Sensation Seeking Scale and addictive behavior. Each time sub-scores of boredom susceptibility, disinhibition and thrill and adventure rise by one, the risk to present with an addictive behavior is multiplied by 1.4 for the first two and by 1.3 for the third one. Subjects with high scores on the anhedonia and impulsivity scales respectively show a risk multiplied by 1.6 and 3.3 of developing an addictive behavior. These results of this transverse study confirm the link between addiction behavior and these three personality traits.
Scaling Exponents in Financial Markets
NASA Astrophysics Data System (ADS)
Kim, Kyungsik; Kim, Cheol-Hyun; Kim, Soo Yong
2007-03-01
We study the dynamical behavior of four exchange rates in foreign exchange markets. A detrended fluctuation analysis (DFA) is applied to detect the long-range correlation embedded in the non-stationary time series. It is for our case found that there exists a persistent long-range correlation in volatilities, which implies the deviation from the efficient market hypothesis. Particularly, the crossover is shown to exist in the scaling behaviors of the volatilities.
Capello, Manuela; Robert, Marianne; Soria, Marc; Potin, Gael; Itano, David; Holland, Kim; Deneubourg, Jean-Louis; Dagorn, Laurent
2015-01-01
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated unprecedented opportunities for studying the behavior of marine organisms in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for the variety of timescales involved in the remote detection of tagged animals related to instrumental, environmental and behavioral events. In this paper we propose a methodological framework for estimating the site fidelity ("residence times") of acoustic tagged animals at different timescales, based on the survival analysis of continuous residence times recorded at multiple receivers. Our approach is validated through modeling and applied on two distinct datasets obtained from a small coastal pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic species (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behavior. The methodological framework proposed herein allows estimating the most appropriate temporal scale for processing passive acoustic telemetry data depending on the scientific question of interest. Our method provides residence times free of the bias inherent to environmental and instrumental noise that can be used to study the small scale behavior of acoustic tagged animals. At larger timescales, it can effectively identify residence times that encompass the diel behavioral excursions of fish out of the acoustic detection range. This study provides a systematic framework for the analysis of passive acoustic telemetry data that can be employed for the comparative study of different species and study sites. The same methodology can be used each time discrete records of animal detections of any nature are employed for estimating the site fidelity of an animal at different timescales.
Novel Behavioral and Neural Evidences for Age-Related changes in Force complexity.
Chen, Yi-Ching; Lin, Linda L; Hwang, Ing-Shiou
2018-02-17
This study investigated age-related changes in behavioral and neural complexity for a polyrhythmic movement, which appeared to be an exception to the loss of complexity hypothesis. Young (n = 15; age = 24.2 years) and older (15; 68.1 years) adults performed low-level force-tracking with isometric index abduction to couple a compound sinusoidal target. Multi-scale entropy (MSE) of tracking force and inter-spike interval (ISI) of motor unit (MU) in the first dorsal interosseus muscle were assessed. The MSE area of tracking force at shorter time scales of older adults was greater (more complex) than that of young adults, whereas an opposite trend (less complex for the elders) was noted at longer time scales. The MSE area of force fluctuations (the stochastic component of the tracking force) were generally smaller (less complex) for older adults. Along with greater mean and coefficient of ISI, the MSE area of the cumulative discharge rate of elders tended to be lower (less complex) than that of young adults. In conclusion, age-related complexity changes in polyrhythmic force-tracking depended on the time scale. The adaptive behavioral consequences could be multi-factorial origins of the age-related impairment in rate coding, increased discharge noises, and lower discharge complexity of pooled MUs.
Working-for-Food Behaviors: A Preclinical Study in Prader-Willi Mutant Mice.
Lassi, Glenda; Maggi, Silvia; Balzani, Edoardo; Cosentini, Ilaria; Garcia-Garcia, Celina; Tucci, Valter
2016-11-01
Abnormal feeding behavior is one of the main symptoms of Prader-Willi syndrome (PWS). By studying a PWS mouse mutant line, which carries a paternally inherited deletion of the small nucleolar RNA 116 (Snord116), we observed significant changes in working-for-food behavioral responses at various timescales. In particular, we report that PWS mutant mice show a significant delay compared to wild-type littermate controls in responding to both hour-scale and seconds-to-minutes-scale time intervals. This timing shift in mutant mice is associated with better performance in the working-for-food task, and results in better decision making in these mutant mice. The results of our study reveal a novel aspect of the organization of feeding behavior, and advance the understanding of the interplay between the metabolic functions and cognitive mechanisms of PWS. Copyright © 2016 by the Genetics Society of America.
Scaling sexual behavior or "sexual risk propensity" among men at risk for HIV in Kisumu, Kenya.
Mattson, C L; Campbell, Richard T; Karabatsos, George; Agot, Kawango; Ndinya-Achola, J O; Moses, Stephen; Bailey, Robert C
2010-02-01
We present a scale to measure sexual risk behavior or "sexual risk propensity" to evaluate risk compensation among men engaged in a randomized clinical trial of male circumcision. This statistical approach can be used to represent each respondent's level of sexual risk behavior as the sum of his responses on multiple dichotomous and rating scale (i.e. ordinal) items. This summary "score" can be used to summarize information on many sexual behaviors or to evaluate changes in sexual behavior with respect to an intervention. Our 18 item scale demonstrated very good reliability (Cronbach's alpha of 0.87) and produced a logical, unidimensional continuum to represent sexual risk behavior. We found no evidence of differential item function at different time points (except for reporting a concurrent partners when comparing 6 and 12 month follow-up visits) or with respect to the language with which the instrument was administered. Further, we established criterion validity by demonstrating a statistically significant association between the risk scale and the acquisition of incident sexually transmitted infections (STIs) at the 6 month follow-up and HIV at the 12 month follow-up visits. This method has broad applicability to evaluate sexual risk behavior in the context of other HIV and STI prevention interventions (e.g. microbicide or vaccine trials), or in response to treatment provision (e.g., anti-retroviral therapy).
Xu, Xianglong; Sharma, Manoj; Liu, Lingli; Hu, Ping; Zhao, Yong
2016-01-01
(1) Objective: We aimed to explore the role of social cognitive theory (SCT) of mothers in the physical activity and healthy nutrition behaviors of preschool children; (2) Methods: We used a self-administered five-point Likert common physical activity and nutrition behaviors scale in Chinese based on a social cognitive theory scale in English with established validity and reliability in the USA. The current study adopted the proportional sampling method to survey mothers of preschool children in four areas—namely, Chongqing, Chengdu, Taiyuan, and Shijiazhuang—of China; (3) Results: We included 1208 mothers (80.0% mothers of normal weight children, age 31.87 ± 4.19 years). Positive correlations were found between maternal social cognition and preschool children’s physical activity (PA) behavior (p < 0.0001). However, an insignificant correlation is observed between preschool children’s fruits and vegetables (FV) behavior, screen time (ST) behavior, and maternal social cognition; (4) Conclusions: This study provides some implications for increasing fruit and vegetable consumption, increasing physical activity time, and reducing screen time in preschool children using SCT in China. Maternal social cognition is associated with preschool children’s PA behavior, and the results suggest that maternal social cognition may not affect children FV and ST behaviors. Further research is necessary to test the mediation of maternal social cognition on preschool children’s ST behavior and the correlations between maternal social cognition and children’s ST behavior. PMID:27649215
Neubert, Mitchell J; Kacmar, K Michele; Carlson, Dawn S; Chonko, Lawrence B; Roberts, James A
2008-11-01
In this research, the authors test a model in which the regulatory focus of employees at work mediates the influence of leadership on employee behavior. In a nationally representative sample of 250 workers who responded over 2 time periods, prevention focus mediated the relationship of initiating structure to in-role performance and deviant behavior, whereas promotion focus mediated the relationship of servant leadership to helping and creative behavior. The results indicate that even though initiating structure and servant leadership share some variance in explaining other variables, each leadership style incrementally predicts disparate outcomes after controlling for the other style and dispositional tendencies. A new regulatory focus scale, the Work Regulatory Focus (WRF) Scale, also was developed and initially validated for this study. Implications for the results and the WRF Scale are discussed.
Do fears of malpractice litigation influence teaching behaviors?
Reed, Darcy A; Windish, Donna M; Levine, Rachel B; Kravet, Steven J; Wolfe, Leah; Wright, Scott M
2008-01-01
Medical malpractice is prominently positioned in the consciousness of American physicians, and the perceived threat of malpractice litigation may push physicians to practice defensively and alter their teaching behaviors. The purposes of this study were to characterize the attitudes of academic medical faculty toward malpractice litigation and to identify teaching behaviors associated with fear of malpractice litigation. We surveyed 270 full-time clinically active physicians in the Department of Medicine at a large academic medical center. The survey assessed physicians' attitudes toward malpractice issues, fear of malpractice litigation, and self-reported teaching behaviors associated with concerns about litigation. Two hundred and fifteen physicians responded (80%). Faculty scored an average of 25.5 +/- 6.9 (range = 6-42, higher scores indicate greater fear) on a reliable malpractice fear scale. Younger age (Spearman's rho = 0.19, p = .02) and greater time spent in clinical activities (rho = 0.26, p < .001) were correlated with higher scores on the Malpractice Fear Scale. Faculty reported that because of the perceived prevalence of lawsuits and claims made against physicians, they spend more time writing clinical notes for patients seen by learners (74%), give learners less autonomy in patient care (44%), and limit opportunities for learners to perform clinical procedures (32%) and deliver bad news to patients (33%). Faculty with higher levels of fear on the Malpractice Fear Scale were more likely to report changing their teaching behaviors because of this perceived threat (rho = 0.38, p < .001). Physicians report changes in teaching behaviors because of concerns about malpractice litigation. Although concerns about malpractice may promote increased supervision and positive role modeling, they may also limit important educational opportunities for learners. These results may serve to heighten awareness to the fact that teaching behaviors and decisions may be influenced by the malpractice climate.
ERIC Educational Resources Information Center
Pennefather, Jordan T.; Smolkowski, Keith
2015-01-01
We describe the psychometric evaluation of the "Elementary Social Behavior Assessment" (ESBA™), a 12-item scale measuring teacher-preferred, positive social skills. The ESBA was developed for use in elementary school classrooms to measure teacher perceptions of students using time-efficient, web-based data collection methods that allow…
Minimum entropy density method for the time series analysis
NASA Astrophysics Data System (ADS)
Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae
2009-01-01
The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.
The combustion behavior of large scale lithium titanate battery
Huang, Peifeng; Wang, Qingsong; Li, Ke; Ping, Ping; Sun, Jinhua
2015-01-01
Safety problem is always a big obstacle for lithium battery marching to large scale application. However, the knowledge on the battery combustion behavior is limited. To investigate the combustion behavior of large scale lithium battery, three 50 Ah Li(NixCoyMnz)O2/Li4Ti5O12 batteries under different state of charge (SOC) were heated to fire. The flame size variation is depicted to analyze the combustion behavior directly. The mass loss rate, temperature and heat release rate are used to analyze the combustion behavior in reaction way deeply. Based on the phenomenon, the combustion process is divided into three basic stages, even more complicated at higher SOC with sudden smoke flow ejected. The reason is that a phase change occurs in Li(NixCoyMnz)O2 material from layer structure to spinel structure. The critical temperatures of ignition are at 112–121°C on anode tab and 139 to 147°C on upper surface for all cells. But the heating time and combustion time become shorter with the ascending of SOC. The results indicate that the battery fire hazard increases with the SOC. It is analyzed that the internal short and the Li+ distribution are the main causes that lead to the difference. PMID:25586064
A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics
NASA Astrophysics Data System (ADS)
Fekak, Fatima-Ezzahra; Brun, Michael; Gravouil, Anthony; Depale, Bruno
2017-07-01
In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit-implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean's event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean's schemes and provides also an excellent energy behavior. Then, the two time scales explicit-implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit-explicit interface is well controlled and the computational time is lower than a full-explicit simulation.
The Effect of Loneliness on Social Networking Sites Use and Its Related Behaviors.
Ranaeiy, Samira; Taghavi, Mohammad Reza; Goodarzi, Mohammad Ali
2016-08-01
The current research was conducted to examine the effect of "Loneliness", on time spent in Social Networking Sites (S.N.S), main reasons for S.N.S use, and its related behaviors. 156 students of Shiraz University voluntarily participated in this research. Loneliness was assessed usingthe UCLA Loneliness scale. 25% of highest scoring students reported that they were lonely whereas 25% of the lowest scoring students were considered to be non-lonely. The positive and negative reasons of using S.N.S were assessed based on Reasons for Internet Use Scale, and internet behaviors were assessed based on Scale of Internet Behaviors. There was no difference in time spent in S.N.S as well as the positive and negative reasons of using S.N.S (contrary to literature), but internet behaviors showed a significant difference between "lonely" and "non-lonely" individuals. "Lonely" and "non-lonely" individuals showed a significant difference in "social aspect" of S.N.S behaviors. There was also a significant difference between "Lonely" and "non-Lonely" individuals in "Negative impact" of S.N.S behaviors. Yet, there seemed to be no difference in "competency and convenience aspect" of S.N.S behaviors. This study suggested that there is no difference between lonely and non-lonely individuals in reasons for using S.N.S and time spent in S.N.S. This finding stands contrary to previous research findings and general literature on the subject In other words, what drives people to S.N.S at the first place shows no significant difference between lonely and non-lonely individuals while after attending S.N.S, social behavior of lonely individuals shows a significant difference which is consistently enhanced online. Lonely people also significantly develop internet-related problems in their daily functioning, including interference with real life socializing.
Further Evidence of the Utility and Validity of a Measure of Outcome for Children and Adolescents
ERIC Educational Resources Information Center
Turchik, Jessica A.; Karpenko, Veronika; Ogles, Benjamin M.
2007-01-01
The "Ohio Youth Problems, Functioning, and Satisfaction Scales" (Ohio Scales) are a recently developed set of measures designed to be a brief, practical assessment of changes in behavior over time in children and adolescents. The authors explored the convergent validity of the Ohio Scales by examining the relationship between the scales and…
Howard, Matt C; Jayne, Bradley S
2015-03-01
Cyberpsychology is a recently emergent field that examines the impact of technology upon human cognition and behavior. Given its infancy, authors have rapidly created new measures to gauge their constructs of interest. Unfortunately, few of these authors have had the opportunity to test their scales' psychometric properties and validity. This is concerning, as many theoretical assumptions may be founded upon scales with inadequate attributes. If this were found to be true, then previous findings in cyberpsychology studies would need to be retested, and future research would need to shift its focus to creating psychometrically sound and valid measures. To provide inferences on this concern, the current study examines the article reporting, scale creation, and scale reliabilities of every article published in Cyberpsychology, Behavior, and Social Networking from its inception to July 2014. The final data set encompassed the coding of 1,478 individual articles, including 921 scales, and spanning 17 years. The results demonstrate that the simple survey methodology has become more popular over time. Authors are gradually applying empirically tested scales. However, self-created measures are still the most popular, leading to concerns about the measures' validity. Also, the use of multi-item measures has increased over time, but many articles still fail to report adequate information to assess the reliability of the applied scales. Lastly, the average scale reliability is 0.81, which barely meets standard cutoffs. Overall, these results are not overly concerning, but suggestions are given on methods to improve the reporting of measures, the creation of scales, and the state of cyberpsychology.
Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series
NASA Astrophysics Data System (ADS)
Morales, Raffaello; Di Matteo, T.; Gramatica, Ruggero; Aste, Tomaso
2012-06-01
We investigate the use of the Hurst exponent, dynamically computed over a weighted moving time-window, to evaluate the level of stability/instability of financial firms. Financial firms bailed-out as a consequence of the 2007-2008 credit crisis show a neat increase with time of the generalized Hurst exponent in the period preceding the unfolding of the crisis. Conversely, firms belonging to other market sectors, which suffered the least throughout the crisis, show opposite behaviors. We find that the multifractality of the bailed-out firms increase at the crisis suggesting that the multi fractal properties of the time series are changing. These findings suggest the possibility of using the scaling behavior as a tool to track the level of stability of a firm. In this paper, we introduce a method to compute the generalized Hurst exponent which assigns larger weights to more recent events with respect to older ones. In this way large fluctuations in the remote past are less likely to influence the recent past. We also investigate the scaling associated with the tails of the log-returns distributions and compare this scaling with the scaling associated with the Hurst exponent, observing that the processes underlying the price dynamics of these firms are truly multi-scaling.
Reconstruction scenario in modified Horava-Lifshitz F( R) gravity with well-known scale factors
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Rani, Shamaila
2015-05-01
In this paper, we analyze the behavior of pilgrim dark energy with G-O cutoff scale in modified Horava-Lifshitz F( R) gravity through correspondence scenario. We consider three well-known scale factors in which one scale factor describes the unification of matter dominated and accelerated phases and others are intermediate and bouncing forms. We obtain the models for these scale factors and obtain increasing behavior with the passage of time. We also extract equation of state parameter corresponding to these models. We observe that this parameter shows transition from phantom towards quintessence by crossing the phantom divide line in all cases. We also give comparison of our results of equation of state parameter with observational constraints.
Stress-dependent grain size evolution of nanocrystalline Ni-W and its impact on friction behavior
Argibay, N.; Furnish, T. A.; Boyce, B. L.; ...
2016-06-07
The friction behavior of ultra-nanocrystalline Ni-W coatings was investigated. A critical stress threshold was identified below which friction remained low, and above which a time-dependent evolution toward higher friction behavior occurred. Founded on established plasticity models we propose a correlation between surface grain size and applied stress that can be used to predict the critical stress separating the two friction regimes. Lastly, this interpretation of plasticity models suggests that macro-scale low and high friction regimes are respectively associated with the nano-scale mechanisms of grain boundary and dislocation-mediated plasticity.
Dynamics of behavioral organization and its alteration in major depression
NASA Astrophysics Data System (ADS)
Nakamura, Toru; Kiyono, Ken; Yoshiuchi, Kazuhiro; Nakahara, Rika; Struzik, Zbigniew R.; Yamamoto, Yoshiharu
2007-07-01
We describe the nature of human behavioral organization, specifically how resting and active periods are interwoven throughout daily life. Active period durations with physical activity counts successively above a predefined threshold follow a stretched exponential (gamma-type) cumulative distribution with characteristic time, both in healthy individuals and in patients with major depressive disorder. On the contrary, resting period durations below the threshold for both groups obey a scale free power law cumulative distribution over two decades, with significantly lower scaling exponents in the patients. We thus find underlying robust laws governing human behavioral organization, with a parameter altered in depression.
Temporal scaling of the growth dependent optical properties of microalgae
NASA Astrophysics Data System (ADS)
Zhao, J. M.; Ma, C. Y.; Liu, L. H.
2018-07-01
The optical properties of microalgae are basic parameters for analyzing light field distribution in photobioreactors (PBRs). With the growth of microalgae cell, their optical properties will vary with growth time due to accumulation of pigment and lipid, cell division and metabolism. In this work, we report a temporal scaling behavior of the growth dependent optical properties of microalgae cell suspensions with both experimental and theoretical evidence presented. A new concept, the temporal scaling function (TSF), defined as the ratio of absorption or scattering cross-sections at growth phase to that at stationary phase, is introduced to characterize the temporal scaling behavior. The temporal evolution and temporal scaling characteristics of the absorption and scattering cross-sections of three example microalgae species, Chlorella vulgaris, Chlorella pyrenoidosa, and Chlorella protothecoides, were experimentally studied at spectral range 380-850 nm. It is shown that the TSFs of the absorption and scattering cross-sections for different microalgae species are approximately constant at different wavelength, which confirms theoretical predictions very well. With the aid of the temporal scaling relation, the optical properties at any growth time can be calculated based on those measured at stationary phase, hence opens a new way to determine the time-dependent optical properties of microalgae. The findings of this work will help the understanding of time dependent optical properties of microalgae and facilitate their applications in light field analysis in PBRs design.
Metastable Distributions of Markov Chains with Rare Transitions
NASA Astrophysics Data System (ADS)
Freidlin, M.; Koralov, L.
2017-06-01
In this paper we consider Markov chains X^\\varepsilon _t with transition rates that depend on a small parameter \\varepsilon . We are interested in the long time behavior of X^\\varepsilon _t at various \\varepsilon -dependent time scales t = t(\\varepsilon ). The asymptotic behavior depends on how the point (1/\\varepsilon , t(\\varepsilon )) approaches infinity. We introduce a general notion of complete asymptotic regularity (a certain asymptotic relation between the ratios of transition rates), which ensures the existence of the metastable distribution for each initial point and a given time scale t(\\varepsilon ). The technique of i-graphs allows one to describe the metastable distribution explicitly. The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent Markov chains.
Posner, Kelly; Brown, Gregory K.; Stanley, Barbara; Brent, David A.; Yershova, Kseniya V.; Oquendo, Maria A.; Currier, Glenn W.; Melvin, Glenn A.; Greenhill, Laurence; Shen, Sa; Mann, J. John
2013-01-01
Objective Research on suicide prevention and interventions requires a standard method for assessing both suicidal ideation and behavior to identify those at risk and to track treatment response. The Columbia–Suicide Severity Rating Scale (C-SSRS) was designed to quantify the severity of suicidal ideation and behavior. The authors examined the psychometric properties of the scale. Method The C-SSRS’s validity relative to other measures of suicidal ideation and behavior and the internal consistency of its intensity of ideation subscale were analyzed in three multisite studies: a treatment study of adolescent suicide attempters (N=124); a medication efficacy trial with depressed adolescents (N=312); and a study of adults presenting to an emergency department for psychiatric reasons (N=237). Results The C-SSRS demonstrated good convergent and divergent validity with other multi-informant suicidal ideation and behavior scales and had high sensitivity and specificity for suicidal behavior classifications compared with another behavior scale and an independent suicide evaluation board. Both the ideation and behavior subscales were sensitive to change over time. The intensity of ideation subscale demonstrated moderate to strong internal consistency. In the adolescent suicide attempters study, worst-point lifetime suicidal ideation on the C-SSRS predicted suicide attempts during the study, whereas the Scale for Suicide Ideation did not. Participants with the two highest levels of ideation severity (intent or intent with plan) at baseline had higher odds for attempting suicide during the study. Conclusions These findings suggest that the C-SSRS is suitable for assessment of suicidal ideation and behavior in clinical and research settings. PMID:22193671
Stochastic analysis of epidemics on adaptive time varying networks
NASA Astrophysics Data System (ADS)
Kotnis, Bhushan; Kuri, Joy
2013-06-01
Many studies investigating the effect of human social connectivity structures (networks) and human behavioral adaptations on the spread of infectious diseases have assumed either a static connectivity structure or a network which adapts itself in response to the epidemic (adaptive networks). However, human social connections are inherently dynamic or time varying. Furthermore, the spread of many infectious diseases occur on a time scale comparable to the time scale of the evolving network structure. Here we aim to quantify the effect of human behavioral adaptations on the spread of asymptomatic infectious diseases on time varying networks. We perform a full stochastic analysis using a continuous time Markov chain approach for calculating the outbreak probability, mean epidemic duration, epidemic reemergence probability, etc. Additionally, we use mean-field theory for calculating epidemic thresholds. Theoretical predictions are verified using extensive simulations. Our studies have uncovered the existence of an “adaptive threshold,” i.e., when the ratio of susceptibility (or infectivity) rate to recovery rate is below the threshold value, adaptive behavior can prevent the epidemic. However, if it is above the threshold, no amount of behavioral adaptations can prevent the epidemic. Our analyses suggest that the interaction patterns of the infected population play a major role in sustaining the epidemic. Our results have implications on epidemic containment policies, as awareness campaigns and human behavioral responses can be effective only if the interaction levels of the infected populace are kept in check.
Farrell, Albert D; Goncy, Elizabeth A; Sullivan, Terri N; Thompson, Erin L
2018-02-01
This study evaluated the structure and validity of the Problem Behavior Frequency Scale-Teacher Report Form (PBFS-TR) for assessing students' frequency of specific forms of aggression and victimization, and positive behavior. Analyses were conducted on two waves of data from 727 students from two urban middle schools (Sample 1) who were rated by their teachers on the PBFS-TR and the Social Skills Improvement System (SSIS), and on data collected from 1,740 students from three urban middle schools (Sample 2) for whom data on both the teacher and student report version of the PBFS were obtained. Confirmatory factor analyses supported first-order factors representing 3 forms of aggression (physical, verbal, and relational), 3 forms of victimization (physical, verbal and relational), and 2 forms of positive behavior (prosocial behavior and effective nonviolent behavior), and higher-order factors representing aggression, victimization, and positive behavior. Strong measurement invariance was established over gender, grade, intervention condition, and time. Support for convergent validity was found based on correlations between corresponding scales on the PBFS-TR and teacher ratings on the SSIS in Sample 1. Significant correlations were also found between teacher ratings on the PBFS-TR and student ratings of their behavior on the Problem Behavior Frequency Scale-Adolescent Report (PBFS-AR) and a measure of nonviolent behavioral intentions in Sample 2. Overall the findings provided support for the PBFS-TR and suggested that teachers can provide useful data on students' aggressive and prosocial behavior and victimization experiences within the school setting. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
US stock market efficiency over weekly, monthly, quarterly and yearly time scales
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.
2014-11-01
In financial markets, the weak form of the efficient market hypothesis implies that price returns are serially uncorrelated sequences. In other words, prices should follow a random walk behavior. Recent developments in evolutionary economic theory (Lo, 2004) have tailored the concept of adaptive market hypothesis (AMH) by proposing that market efficiency is not an all-or-none concept, but rather market efficiency is a characteristic that varies continuously over time and across markets. Within the AMH framework, this work considers the Dow Jones Index Average (DJIA) for studying the deviations from the random walk behavior over time. It is found that the market efficiency also varies over different time scales, from weeks to years. The well-known detrended fluctuation analysis was used for the characterization of the serial correlations of the return sequences. The results from the empirical showed that interday and intraday returns are more serially correlated than overnight returns. Also, some insights in the presence of business cycles (e.g., Juglar and Kuznets) are provided in terms of time variations of the scaling exponent.
Fractal scaling analysis of groundwater dynamics in confined aquifers
NASA Astrophysics Data System (ADS)
Tu, Tongbi; Ercan, Ali; Kavvas, M. Levent
2017-10-01
Groundwater closely interacts with surface water and even climate systems in most hydroclimatic settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological processes by considering potential temporal long-range dependence and scaling crossovers in the groundwater level fluctuations. In this study, it is demonstrated that the groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior. Detrended fluctuation analysis (DFA) was utilized to quantify the monofractality, and multifractal detrended fluctuation analysis (MF-DFA) and multiscale multifractal analysis (MMA) were employed to examine the multifractal behavior. The DFA results indicated that fractals exist in groundwater level time series, and it was shown that the estimated Hurst exponent is closely dependent on the length and specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist, which may be partially due to a broad probability density distribution with infinite moments. Furthermore, it is demonstrated that the underlying distribution of groundwater level fluctuations exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics depending on the site characteristics. However, fractional Brownian motion (fBm), which has been identified as an appropriate model to characterize groundwater level fluctuation, is Gaussian with finite moments. Therefore, fBm may be inadequate for the description of physical processes with infinite moments, such as the groundwater level fluctuations in this study. It is concluded that there is a need for generalized governing equations of groundwater flow processes that can model both the long-memory behavior and the Brownian finite-memory behavior.
Stress-induced modification of the boson peak scaling behavior.
Corezzi, Silvia; Caponi, Silvia; Rossi, Flavio; Fioretto, Daniele
2013-11-21
The scaling behavior of the so-called boson peak in glass-formers and its relation to the elastic properties of the system remains a source of controversy. Here the boson peak in a binary reactive mixture is measured by Raman scattering (i) on cooling the unreacted mixture well below its glass-transition temperature and (ii) after quenching to very low temperature the mixture at different times during isothermal polymerization. We find that the scaling behavior of the boson peak with the properties of the elastic medium - as measured by the Debye frequency - holds for states in which the elastic moduli follow a generalized Cauchy-like relationship, and breaks down in coincidence with the departure from this relation. A possible explanation is given in terms of the development of long-range stresses in glasses. The present study provides new insight into the boson peak behavior and is able to reconcile the apparently conflicting results presented in literature.
Scale size-dependent characteristics of the nightside aurora
NASA Astrophysics Data System (ADS)
Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.
2017-02-01
We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.
Capello, Manuela; Robert, Marianne; Soria, Marc; Potin, Gael; Itano, David; Holland, Kim; Deneubourg, Jean-Louis; Dagorn, Laurent
2015-01-01
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated unprecedented opportunities for studying the behavior of marine organisms in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for the variety of timescales involved in the remote detection of tagged animals related to instrumental, environmental and behavioral events. In this paper we propose a methodological framework for estimating the site fidelity (“residence times”) of acoustic tagged animals at different timescales, based on the survival analysis of continuous residence times recorded at multiple receivers. Our approach is validated through modeling and applied on two distinct datasets obtained from a small coastal pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic species (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behavior. The methodological framework proposed herein allows estimating the most appropriate temporal scale for processing passive acoustic telemetry data depending on the scientific question of interest. Our method provides residence times free of the bias inherent to environmental and instrumental noise that can be used to study the small scale behavior of acoustic tagged animals. At larger timescales, it can effectively identify residence times that encompass the diel behavioral excursions of fish out of the acoustic detection range. This study provides a systematic framework for the analysis of passive acoustic telemetry data that can be employed for the comparative study of different species and study sites. The same methodology can be used each time discrete records of animal detections of any nature are employed for estimating the site fidelity of an animal at different timescales. PMID:26261985
Faugeras, Olivier; Touboul, Jonathan; Cessac, Bruno
2008-01-01
We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales. PMID:19255631
NASA Astrophysics Data System (ADS)
Kooi, Henk; Beaumont, Christopher
1996-02-01
Linear systems analysis is used to investigate the response of a surface processes model (SPM) to tectonic forcing. The SPM calculates subcontinental scale denudational landscape evolution on geological timescales (1 to hundreds of million years) as the result of simultaneous hillslope transport, modeled by diffusion, and fluvial transport, modeled by advection and reaction. The tectonically forced SPM accommodates the large-scale behavior envisaged in classical and contemporary conceptual geomorphic models and provides a framework for their integration and unification. The following three model scales are considered: micro-, meso-, and macroscale. The concepts of dynamic equilibrium and grade are quantified at the microscale for segments of uniform gradient subject to tectonic uplift. At the larger meso- and macroscales (which represent individual interfluves and landscapes including a number of drainage basins, respectively) the system response to tectonic forcing is linear for uplift geometries that are symmetric with respect to baselevel and which impose a fully integrated drainage to baselevel. For these linear models the response time and the transfer function as a function of scale characterize the model behavior. Numerical experiments show that the styles of landscape evolution depend critically on the timescales of the tectonic processes in relation to the response time of the landscape. When tectonic timescales are much longer than the landscape response time, the resulting dynamic equilibrium landscapes correspond to those envisaged by Hack (1960). When tectonic timescales are of the same order as the landscape response time and when tectonic variations take the form of pulses (much shorter than the response time), evolving landscapes conform to the Penck type (1972) and to the Davis (1889, 1899) and King (1953, 1962) type frameworks, respectively. The behavior of the SPM highlights the importance of phase shifts or delays of the landform response and sediment yield in relation to the tectonic forcing. Finally, nonlinear behavior resulting from more general uplift geometries is discussed. A number of model experiments illustrate the importance of "fundamental form," which is an expression of the conformity of antecedent topography with the current tectonic regime. Lack of conformity leads to models that exhibit internal thresholds and a complex response.
Trend Switching Processes in Financial Markets
NASA Astrophysics Data System (ADS)
Preis, Tobias; Stanley, H. Eugene
For an intriguing variety of switching processes in nature, the underlying complex system abruptly changes at a specific point from one state to another in a highly discontinuous fashion. Financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("bubble collapse"), on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for very short time scales. Our analysis is based on a German DAX Future data base containing 13,991,275 transactions recorded with a time resolution of 10- 2 s. For a parallel analysis, we use a data base of all S&P500 stocks providing 2,592,531 daily closing prices. We ask whether these ubiquitous switching processes have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have features similar to those present in phase transitions. We find that the well-known catastrophic bubbles that occur on large time scales - such as the most recent financial crisis - are no outliers but in fact single dramatic representatives caused by the formation of upward and downward trends on time scales varying over nine orders of magnitude from the very large down to the very small.
The physics of flocking: Correlation as a compass from experiments to theory
NASA Astrophysics Data System (ADS)
Cavagna, Andrea; Giardina, Irene; Grigera, Tomás S.
2018-01-01
Collective behavior in biological systems is a complex topic, to say the least. It runs wildly across scales in both space and time, involving taxonomically vastly different organisms, from bacteria and cell clusters, to insect swarms and up to vertebrate groups. It entails concepts as diverse as coordination, emergence, interaction, information, cooperation, decision-making, and synchronization. Amid this jumble, however, we cannot help noting many similarities between collective behavior in biological systems and collective behavior in statistical physics, even though none of these organisms remotely looks like an Ising spin. Such similarities, though somewhat qualitative, are startling, and regard mostly the emergence of global dynamical patterns qualitatively different from individual behavior, and the development of system-level order from local interactions. It is therefore tempting to describe collective behavior in biology within the conceptual framework of statistical physics, in the hope to extend to this new fascinating field at least part of the great predictive power of theoretical physics. In this review we propose that the conceptual cornerstone of this ambitious program be that of correlation. To illustrate this idea we address the case of collective behavior in bird flocks. Two key threads emerge, as two sides of one single story: the presence of scale-free correlations and the dynamical mechanism of information transfer. We discuss first static correlations in starling flocks, in particular the experimental finding of their scale-free nature, the formulation of models that account for this fact using maximum entropy, and the relation of scale-free correlations to information transfer. This is followed by a dynamic treatment of information propagation (propagation of turns across a flock), starting with a discussion of experimental results and following with possible theoretical explanations of those, which require the addition of behavioral inertia to existing theories of flocking. We finish with the definition and analysis of space-time correlations and their relevance to the detection of inertial behavior in the absence of external perturbations.
NASA Astrophysics Data System (ADS)
Lamb, Derek A.
2016-10-01
While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.
Behavioral Problems and Childhood Epilepsy: Parent vs Child Perspectives.
Eom, Soyong; Caplan, Rochelle; Berg, Anne T
2016-12-01
To test whether the reported association between pediatric epilepsy and behavioral problems may be distorted by the use of parental proxy report instruments. Children in the Connecticut Study of Epilepsy were assessed 8-9 years after their epilepsy diagnosis (time-1) with the parent-proxy Child Behavior Check List (CBCL) (ages 6-18 years) or the Young Adult Self-Report (≥18 years of age). For children <18 years of age, parents also completed the Child Health Questionnaire, which contains scales for impact of child's illness on the parents. The same study subjects completed the Adult Self-Report 6-8 years later (time-2). Sibling controls were also tested. Case-control differences were examined for evidence suggesting more behavioral problems in cases with epilepsy than in controls based on proxy- vs self-report measures. At time-1, parent-proxy CBCL scores were significantly higher (worse) for cases than controls (n = 140 matched pairs). After adjustment for Child Health Questionnaire scales reflecting parent emotional and time impact, only 1 case-control difference on the CBCL remained significant. Self-reported Young Adult Self-Report scores did not differ between cases and controls (n = 42 pairs). At time-2, there were no significant self-reported case-control differences on the Adult Self-Report (n = 105 pairs). Parent-proxy behavior measures appear to be influenced by the emotional impact of epilepsy on parents. This may contribute to apparent associations between behavioral problems and childhood epilepsy. Self-report measures in older adolescents (>18 years of age) and young adults do not confirm parental perceptions. Evidence suggesting more behavioral problems in children with epilepsy should be interpreted in light of the source of information. Copyright © 2016 Elsevier Inc. All rights reserved.
2011-01-01
Background In this article, the psychometric properties of the Forensic Inpatient Observation Scale (FIOS) were examined. This instrument was developed to observe behavioral functioning of forensic psychiatric patients. Up till now, it has only been used among adult forensic psychiatric patients and this is the first study in which the FIOS is used with youngsters. Methods Data were gathered of 133 patients. The FIOS was routinely used to assess the psychiatric condition of youngsters at fixed intervals with a three-month time period between each measurement. Ward staff working in close contact with the patient conducted the assessments. Of these 133 patients, an YSR/ASR questionnaire was available for 96 of them and a TRF for 110 of the 133 patients. For the descriptive, reliability and validity analyses, SPSS version 16.0 was used. Factor analyses were performed by means of Mplus Version 5.2. Results A series of confirmatory and exploratory factor analyses revealed a five-factor structure for the FIOS. The five-factor structure consisted of the following scales: self-care, social behavior, oppositional behavior, verbal skills and distress. The insight scale of the original factor structure could not be replicated in the youth sample. Cronbach's alpha's of the five scales ranged from .70 to .85. The self-care, verbal skills and oppositional behavior scales of the FIOS showed no relation with emotional and behavior problems reported by the patients themselves or their teachers. The distress scale of the FIOS did show a relation with the emotional problems reported by patients themselves and the social behavior scale with behavioral problems as reported by teachers. Conclusions The internal consistency of the FIOS was sufficient and the factor structure in the present sample of youngsters was in general comparable to the original factor structure in an adult sample. Its value lies in the focus on behavioral functioning of youngsters with judicial measures. What remains to be seen is whether this instrument is sensitive enough to register all aspects of behavioral changes, whether the interrater reliability is sufficient, and whether it has predictive validity to relapse and recidivism. PMID:21951650
Ultrafast studies of shock induced chemistry-scaling down the size by turning up the heat
NASA Astrophysics Data System (ADS)
McGrane, Shawn
2015-06-01
We will discuss recent progress in measuring time dependent shock induced chemistry on picosecond time scales. Data on the shock induced chemistry of liquids observed through picosecond interferometric and spectroscopic measurements will be reconciled with shock induced chemistry observed on orders of magnitude larger time and length scales from plate impact experiments reported in the literature. While some materials exhibit chemistry consistent with simple thermal models, other materials, like nitromethane, seem to have more complex behavior. More detailed measurements of chemistry and temperature across a broad range of shock conditions, and therefore time and length scales, will be needed to achieve a real understanding of shock induced chemistry, and we will discuss efforts and opportunities in this direction.
Cederberg, Katie L; Balto, Julia M; Motl, Robert W
2018-05-01
To examine self-regulation strategies as correlates of physical activity in persons with multiple sclerosis (MS). Cross-sectional, or survey, study. University-based research laboratory. Convenience sample of persons with MS (N=68). Not applicable. Exercise Self-Efficacy Scale (EXSE), 12-item Physical Activity Self-Regulation Scale (PASR-12), and Godin Leisure-Time Exercise Questionnaire (GLTEQ). Correlation analyses indicated that GLTEQ scores were positively and significantly associated with overall self-regulation (r=.43), self-monitoring (r=.45), goal-setting (r=.27), reinforcement (r=.30), time management (r=.41), and relapse prevention (r=.53) PASR-12 scores. Regression analyses indicated that relapse prevention (B=5.01; SE B=1.74; β=.51) and self-monitoring (B=3.65; SE B=1.71; β=.33) were unique predictors of physical activity behavior, and relapse prevention demonstrated a significant association with physical activity behavior that was accounted for by EXSE. Our results indicate that self-regulatory strategies, particularly relapse prevention, may be important correlates of physical activity behavior that can inform the design of future behavioral interventions in MS. Published by Elsevier Inc.
Effects of Spatial Scale on Cognitive Play in Preschool Children.
ERIC Educational Resources Information Center
Delong, Alton J.; And Others
1994-01-01
Examined effects of a reduced-scale play environment on the temporal aspects of complex play behavior. Children playing with playdough in a 7 x 5 x 5-foot structure began complex play more quickly, played in longer segments, and spent slightly more time in complex play than when in full-size conditions, suggesting that scale-reduced environments…
Temporal evolution of continental lithospheric strength in actively deforming regions
Thatcher, W.; Pollitz, F.F.
2008-01-01
It has been agreed for nearly a century that a strong, load-bearing outer layer of earth is required to support mountain ranges, transmit stresses to deform active regions and store elastic strain to generate earthquakes. However the dept and extent of this strong layer remain controversial. Here we use a variety of observations to infer the distribution of lithospheric strength in the active western United States from seismic to steady-state time scales. We use evidence from post-seismic transient and earthquake cycle deformation reservoir loading glacio-isostatic adjustment, and lithosphere isostatic adjustment to large surface and subsurface loads. The nearly perfectly elastic behavior of Earth's crust and mantle at the time scale of seismic wave propagation evolves to that of a strong, elastic crust and weak, ductile upper mantle lithosphere at both earthquake cycle (EC, ???10?? to 103 yr) and glacio-isostatic adjustment (GIA, ???103 to 104 yr) time scales. Topography and gravity field correlations indicate that lithosphere isostatic adjustment (LIA) on ???106-107 yr time scales occurs with most lithospheric stress supported by an upper crust overlying a much weaker ductile subtrate. These comparisons suggest that the upper mantle lithosphere is weaker than the crust at all time scales longer than seismic. In contrast, the lower crust has a chameleon-like behavior, strong at EC and GIA time scales and weak for LIA and steady-state deformation processes. The lower crust might even take on a third identity in regions of rapid crustal extension or continental collision, where anomalously high temperatures may lead to large-scale ductile flow in a lower crustal layer that is locally weaker than the upper mantle. Modeling of lithospheric processes in active regions thus cannot use a one-size-fits-all prescription of rheological layering (relation between applied stress and deformation as a function of depth) but must be tailored to the time scale and tectonic setting of the process being investigated.
Spatiotemporal property and predictability of large-scale human mobility
NASA Astrophysics Data System (ADS)
Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin
2018-04-01
Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.
NASA Astrophysics Data System (ADS)
Dou, Z.
2017-12-01
In this study, the influence of multi-scale roughness on transport behavior of the passive solute through the self-affine fracture was investigated. The single self-affine fracture was constructed by the successive random additions (SRA) and the fracture roughness was decomposed into two different scales (i.e. large-scale primary roughness and small-scale secondary roughness) by the Wavelet analysis technique. The fluid flow in fractures, which was characterized by the Forchheimer's law, showed the non-linear flow behaviors such as eddies and tortuous streamlines. The results indicated that the small-scale secondary roughness was primarily responsible for the non-linear flow behaviors. The direct simulations of asymptotic passive solute transport represented the Non-Fickian transport characteristics (i.e. early arrivals and long tails) in breakthrough curves (BTCs) and residence time distributions (RTDs) with and without consideration of the secondary roughness. Analysis of multiscale BTCs and RTDs showed that the small-scale secondary roughness played a significant role in enhancing the Non-Fickian transport characteristics. We found that removing small-scale secondary roughness led to the lengthening arrival and shortening tail. The peak concentration in BTCs decreased as the secondary roughness was removed, implying that the secondary could also enhance the solute dilution. The estimated BTCs by the Fickian advection-dispersion equation (ADE) yielded errors which decreased with the small-scale secondary roughness being removed. The mobile-immobile model (MIM) was alternatively implemented to characterize the Non-Fickian transport. We found that the MIM was more capable of estimating Non-Fickian BTCs. The small-scale secondary roughness resulted in the decreasing mobile domain fraction and the increasing mass exchange rate between immobile and mobile domains. The estimated parameters from the MIM could provide insight into the inherent mechanism of roughness-induced Non-Fickian transport behaviors.
Quantifying Stock Return Distributions in Financial Markets
Botta, Federico; Moat, Helen Susannah; Stanley, H. Eugene; Preis, Tobias
2015-01-01
Being able to quantify the probability of large price changes in stock markets is of crucial importance in understanding financial crises that affect the lives of people worldwide. Large changes in stock market prices can arise abruptly, within a matter of minutes, or develop across much longer time scales. Here, we analyze a dataset comprising the stocks forming the Dow Jones Industrial Average at a second by second resolution in the period from January 2008 to July 2010 in order to quantify the distribution of changes in market prices at a range of time scales. We find that the tails of the distributions of logarithmic price changes, or returns, exhibit power law decays for time scales ranging from 300 seconds to 3600 seconds. For larger time scales, we find that the distributions tails exhibit exponential decay. Our findings may inform the development of models of market behavior across varying time scales. PMID:26327593
Quantifying Stock Return Distributions in Financial Markets.
Botta, Federico; Moat, Helen Susannah; Stanley, H Eugene; Preis, Tobias
2015-01-01
Being able to quantify the probability of large price changes in stock markets is of crucial importance in understanding financial crises that affect the lives of people worldwide. Large changes in stock market prices can arise abruptly, within a matter of minutes, or develop across much longer time scales. Here, we analyze a dataset comprising the stocks forming the Dow Jones Industrial Average at a second by second resolution in the period from January 2008 to July 2010 in order to quantify the distribution of changes in market prices at a range of time scales. We find that the tails of the distributions of logarithmic price changes, or returns, exhibit power law decays for time scales ranging from 300 seconds to 3600 seconds. For larger time scales, we find that the distributions tails exhibit exponential decay. Our findings may inform the development of models of market behavior across varying time scales.
Modes and emergent time scales of embayed beach dynamics
NASA Astrophysics Data System (ADS)
Ratliff, Katherine M.; Murray, A. Brad
2014-10-01
In this study, we use a simple numerical model (the Coastline Evolution Model) to explore alongshore transport-driven shoreline dynamics within generalized embayed beaches (neglecting cross-shore effects). Using principal component analysis (PCA), we identify two primary orthogonal modes of shoreline behavior that describe shoreline variation about its unchanging mean position: the rotation mode, which has been previously identified and describes changes in the mean shoreline orientation, and a newly identified breathing mode, which represents changes in shoreline curvature. Wavelet analysis of the PCA mode time series reveals characteristic time scales of these modes (typically years to decades) that emerge within even a statistically constant white-noise wave climate (without changes in external forcing), suggesting that these time scales can arise from internal system dynamics. The time scales of both modes increase linearly with shoreface depth, suggesting that the embayed beach sediment transport dynamics exhibit a diffusive scaling.
Arkhincheev, V E
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
Fine Scale Baleen Whale Behavior Observed via Tagging Over Daily Time Scales
2012-09-30
right whales and sei whales) and the diel vertical migration behavior of their copepod prey. I hypothesize that (1) right whales track the diel...vertical migration of copepods by feeding near the bottom during the day and at the surface at night, and (2) sei whales are unable to feed on copepods at...depth during the day, and are therefore restricted to feeding on copepods at the surface only. Because copepod diel vertical migration is variable
NASA Astrophysics Data System (ADS)
Arkhincheev, V. E.
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways—by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
Modeling fire behavior on tropical islands with high-resolution weather data
John W. Benoit; Francis M. Fujioka; David R. Weise
2009-01-01
In this study, we consider fire behavior simulation in tropical island scenarios such as Hawaii and Puerto Rico. The development of a system to provide real-time fire behavior prediction in Hawaii is discussed. This involves obtaining fuels and topography information at a fine scale, as well as supplying daily high-resolution weather forecast data for the area of...
NASA Astrophysics Data System (ADS)
Abaimov, Sergey G.
The concept of self-organized criticality is associated with scale-invariant, fractal behavior; this concept is also applicable to earthquake systems. It is known that the interoccurrent frequency-size distribution of earthquakes in a region is scale-invariant and obeys the Gutenberg-Richter power-law dependence. Also, the interoccurrent time-interval distribution is known to obey Poissonian statistics excluding aftershocks. However, to estimate the hazard risk for a region it is necessary to know also the recurrent behavior of earthquakes at a given point on a fault. This behavior has been investigated in the literature, however, major questions remain unresolved. The reason is the small number of earthquakes in observed sequences. To overcome this difficulty this research utilizes numerical simulations of a slider-block model and a sand-pile model. Also, experimental observations of creep events on the creeping section of the San Andreas fault are processed and sequences up to 100 events are studied. Then the recurrent behavior of earthquakes at a given point on a fault or at a given fault is investigated. It is shown that both the recurrent frequency-size and the time-interval behaviors of earthquakes obey the Weibull distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.; ...
2017-11-30
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
NASA Astrophysics Data System (ADS)
Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie
2018-06-01
Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.
NASA Astrophysics Data System (ADS)
Kochmann, Julian; Wulfinghoff, Stephan; Ehle, Lisa; Mayer, Joachim; Svendsen, Bob; Reese, Stefanie
2017-09-01
Recently, two-scale FE-FFT-based methods (e.g., Spahn et al. in Comput Methods Appl Mech Eng 268:871-883, 2014; Kochmann et al. in Comput Methods Appl Mech Eng 305:89-110, 2016) have been proposed to predict the microscopic and overall mechanical behavior of heterogeneous materials. The purpose of this work is the extension to elasto-viscoplastic polycrystals, efficient and robust Fourier solvers and the prediction of micromechanical fields during macroscopic deformation processes. Assuming scale separation, the macroscopic problem is solved using the finite element method. The solution of the microscopic problem, which is embedded as a periodic unit cell (UC) in each macroscopic integration point, is found by employing fast Fourier transforms, fixed-point and Newton-Krylov methods. The overall material behavior is defined by the mean UC response. In order to ensure spatially converged micromechanical fields as well as feasible overall CPU times, an efficient but simple solution strategy for two-scale simulations is proposed. As an example, the constitutive behavior of 42CrMo4 steel is predicted during macroscopic three-point bending tests.
Hypothesis on the nature of time
NASA Astrophysics Data System (ADS)
Coumbe, D. N.
2015-06-01
We present numerical evidence that fictitious diffusing particles in the causal dynamical triangulation (CDT) approach to quantum gravity exceed the speed of light on small distance scales. We argue this superluminal behavior is responsible for the appearance of dimensional reduction in the spectral dimension. By axiomatically enforcing a scale invariant speed of light we show that time must dilate as a function of relative scale, just as it does as a function of relative velocity. By calculating the Hausdorff dimension of CDT diffusion paths we present a seemingly equivalent dual description in terms of a scale dependent Wick rotation of the metric. Such a modification to the nature of time may also have relevance for other approaches to quantum gravity.
Influences of coupled fire-atmosphere interaction on wildfire behavior
NASA Astrophysics Data System (ADS)
Linn, R.; Winterkamp, J.; Jonko, A. K.; Runde, I.; Canfield, J.; Parsons, R.; Sieg, C.
2017-12-01
Two-way interactions between fire and the environment affect fire behavior at scales ranging from buoyancy-induced mixing and turbulence to fire-scale circulations that retard or increase fire spread. Advances in computing have created new opportunities for the exploration of coupled fire-atmosphere behavior using numerical models that represent interactions between the dominant processes driving wildfire behavior, including convective and radiative heat transfer, aerodynamic drag and buoyant response of the atmosphere to heat released by the fire. Such models are not practical for operational, faster-than-real-time fire prediction due to their computational and data requirements. However, they are valuable tools for exploring influences of fire-atmosphere feedbacks on fire behavior as they explicitly simulate atmospheric motions surrounding fires from meter to kilometer scales. We use the coupled fire-atmosphere model FIRETEC to gain new insights into aspects of fire behavior that have been observed in the field and laboratory, to carry out sensitivity analysis that is impractical through observations and to pose new hypotheses that can be tested experimentally. Specifically, we use FIRETEC to study the following multi-scale coupled fire-atmosphere interactions: 1) 3D fire-atmosphere interaction that dictates multi-scale fire line dynamics; 2) influence of vegetation heterogeneity and variability in wind fields on predictability of fire spread; 3) fundamental impacts of topography on fire spread. These numerical studies support new conceptual models for the dominant roles of multi-scale fluid dynamics in determining fire spread, including the roles of crosswind fire line-intensity variations on heat transfer to unburned fuels and the role of fire line depth expansion in upslope acceleration of fires.
A k-epsilon modeling of near wall turbulence
NASA Technical Reports Server (NTRS)
Yang, Z.; Shih, T. H.
1991-01-01
A k-epsilon model is proposed for turbulent bounded flows. In this model, the turbulent velocity scale and turbulent time scale are used to define the eddy viscosity. The time scale is shown to be bounded from below by the Kolmogorov time scale. The dissipation equation is reformulated using the time scale, removing the need to introduce the pseudo-dissipation. A damping function is chosen such that the shear stress satisfies the near wall asymptotic behavior. The model constants used are the same as the model constants in the commonly used high turbulent Reynolds number k-epsilon model. Fully developed turbulent channel flows and turbulent boundary layer flows over a flat plate at various Reynolds numbers are used to validate the model. The model predictions were found to be in good agreement with the direct numerical simulation data.
Psychosocial and Behavioral Factors Associated with Bowel and Bladder Management after SCI
2017-02-01
TRAVEL : YES NO TIME SINCE INJURY: LEVEL OF INJURY/ASIA SCALE: Use the following script when screening a potential participant. 1. Can you tell me about...registry/medical record): SEX: Male Female WILLING TO TRAVEL : YES NO TIME SINCE INJURY: LEVEL OF INJURY/ASIA SCALE: Use the following...then we’re stuck there for five days. That causes him some stress. There have been times where we’ve travelled somewhere and he can’t shower
Fractal analysis on human dynamics of library loans
NASA Astrophysics Data System (ADS)
Fan, Chao; Guo, Jin-Li; Zha, Yi-Long
2012-12-01
In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The values of the Hurst exponent and length of non-periodic cycle calculated through rescaled range analysis indicate that the time series of human behaviors and their sub-series are fractal with self-similarity and long-range dependence. Then the time series are converted into complex networks by the visibility algorithm. The topological properties of the networks such as scale-free property and small-world effect imply that there is a close relationship among the numbers of repetitious behaviors performed by people during certain periods of time. Our work implies that there is intrinsic regularity in the human collective repetitious behaviors. The conclusions may be helpful to develop some new approaches to investigate the fractal feature and mechanism of human dynamics, and provide some references for the management and forecast of human collective behaviors.
Periodic and Aperiodic Variability in the Molecular Cloud ρ Ophiuchus
NASA Astrophysics Data System (ADS)
Parks, J. Robert; Plavchan, Peter; White, Russel J.; Gee, Alan H.
2014-03-01
Presented are the results of a near-IR photometric survey of 1678 stars in the direction of the ρ Ophiuchus (ρ Oph) star forming region using data from the 2MASS Calibration Database. For each target in this sample, up to 1584 individual J-, H-, and Ks -band photometric measurements with a cadence of ~1 day are obtained over three observing seasons spanning ~2.5 yr it is the most intensive survey of stars in this region to date. This survey identifies 101 variable stars with ΔKs -band amplitudes from 0.044 to 2.31 mag and Δ(J - Ks ) color amplitudes ranging from 0.053 to 1.47 mag. Of the 72 young ρ Oph star cluster members included in this survey, 79% are variable; in addition, 22 variable stars are identified as candidate members. Based on the temporal behavior of the Ks time-series, the variability is distinguished as either periodic, long time-scale or irregular. This temporal behavior coupled with the behavior of stellar colors is used to assign a dominant variability mechanism. A new period-searching algorithm finds periodic signals in 32 variable stars with periods between 0.49 to 92 days. The chief mechanism driving the periodic variability for 18 stars is rotational modulation of cool starspots while 3 periodically vary due to accretion-induced hot spots. The time-series for six variable stars contains discrete periodic "eclipse-like" features with periods ranging from 3 to 8 days. These features may be asymmetries in the circumstellar disk, potentially sustained or driven by a proto-planet at or near the co-rotation radius. Aperiodic, long time-scale variations in stellar flux are identified in the time-series for 31 variable stars with time-scales ranging from 64 to 790 days. The chief mechanism driving long time-scale variability is variable extinction or mass accretion rates. The majority of the variable stars (40) exhibit sporadic, aperiodic variability over no discernable time-scale. No chief variability mechanism could be identified for these variable stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Weizhao; Ren, Huaqing; Wang, Zequn
2016-10-19
An integrated computational materials engineering method is proposed in this paper for analyzing the design and preforming process of woven carbon fiber composites. The goal is to reduce the cost and time needed for the mass production of structural composites. It integrates the simulation methods from the micro-scale to the macro-scale to capture the behavior of the composite material in the preforming process. In this way, the time consuming and high cost physical experiments and prototypes in the development of the manufacturing process can be circumvented. This method contains three parts: the micro-scale representative volume element (RVE) simulation to characterizemore » the material; the metamodeling algorithm to generate the constitutive equations; and the macro-scale preforming simulation to predict the behavior of the composite material during forming. The results show the potential of this approach as a guidance to the design of composite materials and its manufacturing process.« less
Vieluf, Solveig; Temprado, Jean-Jacques; Berton, Eric; Jirsa, Viktor K; Sleimen-Malkoun, Rita
2015-03-13
The present study aimed at characterizing the effects of increasing (relative) force level and aging on isometric force control. To achieve this objective and to infer changes in the underlying control mechanisms, measures of information transmission, as well as magnitude and time-frequency structure of behavioral variability were applied to force-time-series. Older adults were found to be weaker, more variable, and less efficient than young participants. As a function of force level, efficiency followed an inverted-U shape in both groups, suggesting a similar organization of the force control system. The time-frequency structure of force output fluctuations was only significantly affected by task conditions. Specifically, a narrower spectral distribution with more long-range correlations and an inverted-U pattern of complexity changes were observed with increasing force level. Although not significant older participants displayed on average a less complex behavior for low and intermediate force levels. The changes in force signal's regularity presented a strong dependence on time-scales, which significantly interacted with age and condition. An inverted-U profile was only observed for the time-scale relevant to the sensorimotor control process. However, in both groups the peak was not aligned with the optimum of efficiency. Our results support the view that behavioral variability, in terms of magnitude and structure, has a functional meaning and affords non-invasive markers of the adaptations of the sensorimotor control system to various constraints. The measures of efficiency and variability ought to be considered as complementary since they convey specific information on the organization of control processes. The reported weak age effect on variability and complexity measures suggests that the behavioral expression of the loss of complexity hypothesis is not as straightforward as conventionally admitted. However, group differences did not completely vanish, which suggests that age differences can be more or less apparent depending on task properties and whether difficulty is scaled in relative or absolute terms.
2014-01-01
Background Scale-up to industrial production level of a fermentation process occurs after optimization at small scale, a critical transition for successful technology transfer and commercialization of a product of interest. At the large scale a number of important bioprocess engineering problems arise that should be taken into account to match the values obtained at the small scale and achieve the highest productivity and quality possible. However, the changes of the host strain’s physiological and metabolic behavior in response to the scale transition are still not clear. Results Heterogeneity in substrate and oxygen distribution is an inherent factor at industrial scale (10,000 L) which affects the success of process up-scaling. To counteract these detrimental effects, changes in dissolved oxygen and pressure set points and addition of diluents were applied to 10,000 L scale to enable a successful process scale-up. A comprehensive semi-quantitative and time-dependent analysis of the exometabolome was performed to understand the impact of the scale-up on the metabolic/physiological behavior of the host microorganism. Intermediates from central carbon catabolism and mevalonate/ergosterol synthesis pathways were found to accumulate in both the 10 L and 10,000 L scale cultures in a time-dependent manner. Moreover, excreted metabolites analysis revealed that hypoxic conditions prevailed at the 10,000 L scale. The specific product yield increased at the 10,000 L scale, in spite of metabolic stress and catabolic-anabolic uncoupling unveiled by the decrease in biomass yield on consumed oxygen. Conclusions An optimized S. cerevisiae fermentation process was successfully scaled-up to an industrial scale bioreactor. The oxygen uptake rate (OUR) and overall growth profiles were matched between scales. The major remaining differences between scales were wet cell weight and culture apparent viscosity. The metabolic and physiological behavior of the host microorganism at the 10,000 L scale was investigated with exometabolomics, indicating that reduced oxygen availability affected oxidative phosphorylation cascading into down- and up-stream pathways producing overflow metabolism. Our study revealed striking metabolic and physiological changes in response to hypoxia exerted by industrial bioprocess up-scaling. PMID:24593159
Hysteresis, regime shifts, and non-stationarity in aquifer recharge-storage-discharge systems
NASA Astrophysics Data System (ADS)
Klammler, Harald; Jawitz, James; Annable, Michael; Hatfield, Kirk; Rao, Suresh
2016-04-01
Based on physical principles and geological information we develop a parsimonious aquifer model for Silver Springs, one of the largest karst springs in Florida. The model structure is linear and time-invariant with recharge, aquifer head (storage) and spring discharge as dynamic variables at the springshed (landscape) scale. Aquifer recharge is the hydrological driver with trends over a range of time scales from seasonal to multi-decadal. The freshwater-saltwater interaction is considered as a dynamic storage mechanism. Model results and observed time series show that aquifer storage causes significant rate-dependent hysteretic behavior between aquifer recharge and discharge. This leads to variable discharge per unit recharge over time scales up to decades, which may be interpreted as a gradual and cyclic regime shift in the aquifer drainage behavior. Based on field observations, we further amend the aquifer model by assuming vegetation growth in the spring run to be inversely proportional to stream velocity and to hinder stream flow. This simple modification introduces non-linearity into the dynamic system, for which we investigate the occurrence of rate-independent hysteresis and of different possible steady states with respective regime shifts between them. Results may contribute towards explaining observed non-stationary behavior potentially due to hydrological regime shifts (e.g., triggered by gradual, long-term changes in recharge or single extreme events) or long-term hysteresis (e.g., caused by aquifer storage). This improved understanding of the springshed hydrologic response dynamics is fundamental for managing the ecological, economic and social aspects at the landscape scale.
Jian, Yun; Silvestri, Sonia; Brown, Jeff; Hickman, Rick; Marani, Marco
2014-01-01
An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population.
Anomalous behaviors during infiltration into heterogeneous porous media
NASA Astrophysics Data System (ADS)
Aarão Reis, F. D. A.; Bolster, D.; Voller, V. R.
2018-03-01
Flow and transport in heterogeneous porous media often exhibit anomalous behavior. A physical analog example is the uni-directional infiltration of a viscous liquid into a horizontal oriented Hele-Shaw cell containing through thickness flow obstacles; a system designed to mimic a gravel/sand medium with impervious inclusions. When there are no obstacles present or the obstacles form a multi-repeating pattern, the change of the length of infiltration F with time t tends to follow a Fickian like scaling, F ∼t1/2 . In the presence of obstacle fields laid out as Sierpinski carpet fractals, infiltration is anomalous, i.e., F ∼ tn, n ≠ 1/2. Here, we study infiltration into such Hele-Shaw cells. First we investigate infiltration into a square cell containing one fractal carpet and make the observation that it is possible to generate both sub (n < 1/2) and super (n > 1/2) diffusive behaviors within identical heterogeneity configurations. We show that this can be explained in terms of a scaling analysis developed from results of random-walk simulations in fractal obstacles; a result indicating that the nature of the domain boundary controls the exponent n of the resulting anomalous transport. Further, we investigate infiltration into a rectangular cell containing several repeats of a given Sierpinski carpet. At very early times, before the liquid encounters any obstacles, the infiltration is Fickian. When the liquid encounters the first (smallest scale) obstacle the infiltration sharply transitions to sub-diffusive. Subsequently, around the time where the liquid has sampled all of the heterogeneity length scales in the system, there is a rapid transition back to Fickian behavior. An explanation for this second transition is obtained by developing a simplified infiltration model based on the definition of a representative averaged hydraulic conductivity.
Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora
2016-02-05
Coupled length and time scales determine the dynamic behavior of polymers and underlie their unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine which time and length scales must be correctly modeled. In this paper, we probe the degree of coarse graining required to simultaneously retain significant atomistic details and access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using linear polyethylene as a model system, we probe how the coarse-graining scale affects the measured dynamics. Iterative Boltzmann inversion ismore » used to derive coarse-grained potentials with 2–6 methylene groups per coarse-grained bead from a fully atomistic melt simulation. We show that atomistic detail is critical to capturing large-scale dynamics. Finally, using these models we simulate polyethylene melts for times over 500 μs to study the viscoelastic properties of well-entangled polymer melts.« less
Role of Proteome Physical Chemistry in Cell Behavior.
Ghosh, Kingshuk; de Graff, Adam M R; Sawle, Lucas; Dill, Ken A
2016-09-15
We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell's proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell's proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2-3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells.
Beldzik, Ewa; Chialvo, Dante R.; Domagalik, Aleksandra; Fafrowicz, Magdalena; Gudowska-Nowak, Ewa; Marek, Tadeusz; Nowak, Maciej A.; Oginska, Halszka; Szwed, Jerzy
2014-01-01
The timing and dynamics of many diverse behaviors of mammals, e.g., patterns of animal foraging or human communication in social networks exhibit complex self-similar properties reproducible over multiple time scales. In this paper, we analyze spontaneous locomotor activity of healthy individuals recorded in two different conditions: during a week of regular sleep and a week of chronic partial sleep deprivation. After separating activity from rest with a pre-defined activity threshold, we have detected distinct statistical features of duration times of these two states. The cumulative distributions of activity periods follow a stretched exponential shape, and remain similar for both control and sleep deprived individuals. In contrast, rest periods, which follow power-law statistics over two orders of magnitude, have significantly distinct distributions for these two groups and the difference emerges already after the first night of shortened sleep. We have found steeper distributions for sleep deprived individuals, which indicates fewer long rest periods and more turbulent behavior. This separation of power-law exponents is the main result of our investigations, and might constitute an objective measure demonstrating the severity of sleep deprivation and the effects of sleep disorders. PMID:25222128
A study of flame spread in engineered cardboard fuelbeds: Part II: Scaling law approach
Brittany A. Adam; Nelson K. Akafuah; Mark Finney; Jason Forthofer; Kozo Saito
2013-01-01
In this second part of a two part exploration of dynamic behavior observed in wildland fires, time scales differentiating convective and radiative heat transfer is further explored. Scaling laws for the two different types of heat transfer considered: Radiation-driven fire spread, and convection-driven fire spread, which can both occur during wildland fires. A new...
Time scales of tunneling decay of a localized state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, Yue; Muga, J. G.; Sherman, E. Ya.
2010-12-15
Motivated by recent time-domain experiments on ultrafast atom ionization, we analyze the transients and time scales that characterize, aside from the relatively long lifetime, the decay of a localized state by tunneling. While the tunneling starts immediately, some time is required for the outgoing flux to develop. This short-term behavior depends strongly on the initial state. For the initial state, tightly localized so that the initial transients are dominated by over-the-barrier motion, the time scale for flux propagation through the barrier is close to the Buettiker-Landauer traversal time. Then a quasistationary, slow-decay process follows, which sets ideal conditions for observingmore » diffraction in time at longer times and distances. To define operationally a tunneling time at the barrier edge, we extrapolate backward the propagation of the wave packet that escaped from the potential. This extrapolated time is considerably longer than the time scale of the flux and density buildup at the barrier edge.« less
Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach
NASA Astrophysics Data System (ADS)
Comolli, Alessandro; Dentz, Marco
2017-09-01
We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
ERIC Educational Resources Information Center
Greene, Michael B.
Involvement Ratings In Settings (IRIS), a multi-dimensional non-verbal scale of involvement adaptable to a time-sampling method of data collection, was constructed with the aid of the videotapes of second-grade Follow Through classrooms made by CCEP. Scales were defined through observations of involved and alienated behavior, and the IRIS was…
Criticality and Phase Transition in Stock-Price Fluctuations
NASA Astrophysics Data System (ADS)
Kiyono, Ken; Struzik, Zbigniew R.; Yamamoto, Yoshiharu
2006-02-01
We analyze the behavior of the U.S. S&P 500 index from 1984 to 1995, and characterize the non-Gaussian probability density functions (PDF) of the log returns. The temporal dependence of fat tails in the PDF of a ten-minute log return shows a gradual, systematic increase in the probability of the appearance of large increments on approaching black Monday in October 1987, reminiscent of parameter tuning towards criticality. On the occurrence of the black Monday crash, this culminates in an abrupt transition of the scale dependence of the non-Gaussian PDF towards scale-invariance characteristic of critical behavior. These facts suggest the need for revisiting the turbulent cascade paradigm recently proposed for modeling the underlying dynamics of the financial index, to account for time varying—phase transitionlike and scale invariant-critical-like behavior.
Father involvement in child welfare: Associations with changes in externalizing behavior.
Leon, Scott C; Jhe Bai, Grace; Fuller, Anne K
2016-05-01
Nonresident fathers can have a significant impact on children's behavioral outcomes. Unfortunately, the impact of nonresident father involvement on the behavioral outcomes of children with child welfare involvement has received scant attention in the literature, a limitation the current study sought to address. A sample of 333 children in state custody in Illinois between the ages of six and 13 participated and were assessed using the externalizing behavior scale of the Child and Adolescent Needs and Strengths (CANS) at regular intervals throughout their time in care. Father involvement was measured through a review of case files and interviews with child welfare workers. Growth trajectories were fit to children's externalizing behavior across time and were predicted using Time 1 characteristics. Father involvement, total non-father relative involvement, and gender (girls) was associated with lower baseline externalizing behavior and the African American children in the sample experienced higher baseline externalizing behavior. However, only Time 1 father involvement predicted slope trajectories after controlling for Time 1 externalizing behavior; more father involvement was associated with lower externalizing behavior trajectories. These results suggest that even in the unique and stressful context of child welfare, father involvement can be protective regarding children's externalizing behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scale and Time Effects in Hydraulic Fracturing.
1984-07-01
An experimental study was conducted to determine the effects of scale and time on hydraulic fracturing in compacted samples of Teton Dam silt and...occurrence of hydraulic fracturing . Finite element analyses were used to investigate the possible effects of nonlinear soil behavior. Both experimental and...theoretical studies show that hydraulic fracturing can be initiated by seepage-induced forces without the presence of a preexisting flaw in the soil. (Author)
Resistivity scaling and electron relaxation times in metallic nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be; Imec, Kapeldreef 75, B-3001 Leuven; Sorée, Bart
2014-08-14
We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivitymore » scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.« less
NASA Astrophysics Data System (ADS)
Dorrestijn, Jesse; Kahn, Brian H.; Teixeira, João; Irion, Fredrick W.
2018-05-01
Satellite observations are used to obtain vertical profiles of variance scaling of temperature (T) and specific humidity (q) in the atmosphere. A higher spatial resolution nadir retrieval at 13.5 km complements previous Atmospheric Infrared Sounder (AIRS) investigations with 45 km resolution retrievals and enables the derivation of power law scaling exponents to length scales as small as 55 km. We introduce a variable-sized circular-area Monte Carlo methodology to compute exponents instantaneously within the swath of AIRS that yields additional insight into scaling behavior. While this method is approximate and some biases are likely to exist within non-Gaussian portions of the satellite observational swaths of T and q, this method enables the estimation of scale-dependent behavior within instantaneous swaths for individual tropical and extratropical systems of interest. Scaling exponents are shown to fluctuate between β = -1 and -3 at scales ≥ 500 km, while at scales ≤ 500 km they are typically near β ≈ -2, with q slightly lower than T at the smallest scales observed. In the extratropics, the large-scale β is near -3. Within the tropics, however, the large-scale β for T is closer to -1 as small-scale moist convective processes dominate. In the tropics, q exhibits large-scale β between -2 and -3. The values of β are generally consistent with previous works of either time-averaged spatial variance estimates, or aircraft observations that require averaging over numerous flight observational segments. The instantaneous variance scaling methodology is relevant for cloud parameterization development and the assessment of time variability of scaling exponents.
Impact of stock market structure on intertrade time and price dynamics.
Ivanov, Plamen Ch; Yuen, Ainslie; Perakakis, Pandelis
2014-01-01
We analyse times between consecutive transactions for a diverse group of stocks registered on the NYSE and NASDAQ markets, and we relate the dynamical properties of the intertrade times with those of the corresponding price fluctuations. We report that market structure strongly impacts the scale-invariant temporal organisation in the transaction timing of stocks, which we have observed to have long-range power-law correlations. Specifically, we find that, compared to NYSE stocks, stocks registered on the NASDAQ exhibit significantly stronger correlations in their transaction timing on scales within a trading day. Further, we find that companies that transfer from the NASDAQ to the NYSE show a reduction in the correlation strength of transaction timing on scales within a trading day, indicating influences of market structure. We also report a persistent decrease in correlation strength of intertrade times with increasing average intertrade time and with corresponding decrease in companies' market capitalization-a trend which is less pronounced for NASDAQ stocks. Surprisingly, we observe that stronger power-law correlations in intertrade times are coupled with stronger power-law correlations in absolute price returns and higher price volatility, suggesting a strong link between the dynamical properties of intertrade times and the corresponding price fluctuations over a broad range of time scales. Comparing the NYSE and NASDAQ markets, we demonstrate that the stronger correlations we find in intertrade times for NASDAQ stocks are associated with stronger correlations in absolute price returns and with higher volatility, suggesting that market structure may affect price behavior through information contained in transaction timing. These findings do not support the hypothesis of universal scaling behavior in stock dynamics that is independent of company characteristics and stock market structure. Further, our results have implications for utilising transaction timing patterns in price prediction and risk management optimization on different stock markets.
Impact of Stock Market Structure on Intertrade Time and Price Dynamics
Ivanov, Plamen Ch.; Yuen, Ainslie; Perakakis, Pandelis
2014-01-01
We analyse times between consecutive transactions for a diverse group of stocks registered on the NYSE and NASDAQ markets, and we relate the dynamical properties of the intertrade times with those of the corresponding price fluctuations. We report that market structure strongly impacts the scale-invariant temporal organisation in the transaction timing of stocks, which we have observed to have long-range power-law correlations. Specifically, we find that, compared to NYSE stocks, stocks registered on the NASDAQ exhibit significantly stronger correlations in their transaction timing on scales within a trading day. Further, we find that companies that transfer from the NASDAQ to the NYSE show a reduction in the correlation strength of transaction timing on scales within a trading day, indicating influences of market structure. We also report a persistent decrease in correlation strength of intertrade times with increasing average intertrade time and with corresponding decrease in companies' market capitalization–a trend which is less pronounced for NASDAQ stocks. Surprisingly, we observe that stronger power-law correlations in intertrade times are coupled with stronger power-law correlations in absolute price returns and higher price volatility, suggesting a strong link between the dynamical properties of intertrade times and the corresponding price fluctuations over a broad range of time scales. Comparing the NYSE and NASDAQ markets, we demonstrate that the stronger correlations we find in intertrade times for NASDAQ stocks are associated with stronger correlations in absolute price returns and with higher volatility, suggesting that market structure may affect price behavior through information contained in transaction timing. These findings do not support the hypothesis of universal scaling behavior in stock dynamics that is independent of company characteristics and stock market structure. Further, our results have implications for utilising transaction timing patterns in price prediction and risk management optimization on different stock markets. PMID:24699376
Sheehan Suicidality Tracking Scale (Sheehan-STS)
2009-01-01
Objective: Accurate and prospective assessments of treatment-emergent suicidal thoughts and behaviors are essential to both clinical care and randomized clinical trials. The Sheehan Suicidality Tracking Scale is a prospective, patient self-report or clinician-administered rating scale that tracks both treatment-emergent suicidal ideation and behaviors. The Sheehan Suicidality Tracking Scale was incorporated into a multicenter, randomized, double-blind, placebo-controlled, and active comparator study examining the efficacy of an experimental corticotropin-releasing factor antagonist (BMS-562086) for the treatment of generalized anxiety disorder. Method: The Sheehan Suicidality Tracking Scale was administered to subjects at baseline, Week 2, Week 4, and Week 8 or early termination. Subjects completed theSheehan Suicidality Tracking Scale by self report. The Sheehan Suicidality Tracking Scale was designated as an exploratory outcome measure in the study protocol, and post-hoc analyses were performed to examine the performance of the Sheehan Suicidality Tracking Scale. Results: A total of 82 subjects completed the Sheehan Suicidality Tracking Scale during the course of the study. Altogether, these subjects provided 297 completed Sheehan Suicidality Tracking Scale ratings across the study time points. Sixty-one subjects (n=25 placebo, n=24 BMS-562086, and n=12 escitalopram) had a baseline and at least one post-baseline Sheehan Suicidality Tracking Scale measurement. The mean change from baseline at Week 8 in the Sheehan Suicidality Tracking Scale total score was -0.10, -0.02, and -0.06 for escitalopram, placebo, and BMS-562086 groups, respectively. The sensitivity of the Sheehan Suicidality Tracking Scale and HAM-D Item #3 (suicide) for identifying subjects with suicidal thoughts or behaviors was 100 percent and 63 percent, respectively. Conclusions: The Sheehan Suicidality Tracking Scale may be a sensitive psychometric tool to prospectively assess for treatment-emergent suicidal thoughts and behaviors. Despite the small sample size and low occurrence of suicidal ideation during the course of this clinical trial, the self-reported Sheehan Suicidality Tracking Scale demonstrated increased sensitivity over the rater administered HAM-D Item #3 in identifying suicide related ideations and behaviors. Further research in larger study samples as well as in other psychiatric disorders are needed. PMID:19724740
Wu, Y Z; Wang, W J; Feng, N P; Chen, B; Li, G C; Liu, J W; Liu, H L; Yang, Y Y
2016-07-06
To evaluate the validity, reliability, and acceptability of the brief version of the self-management knowledge, attitude, and behavior (KAB) assessment scale for diabetes patients. Diabetes patients who were managed at the Xinkaipu Community Health Service Center of Tianxin in Changsha, Hunan Province were selected for survey by cluster sampling. A total of 350 diabetes patients were surveyed using the brief scale to collect data on knowledge, attitudes, and behaviors of self-management. Content validity was evaluated by Pearson correlation coefficient between the brief scale and subscales of knowledge, attitude, and behavior. Structure validity was evaluated by factor analysis, and discrimination validity was evaluated by an independent sample t-test between the high-score and low-score groups. Reliability was tested by internal consistency reliability and split-half reliability. The evaluation indexes of internal consistency reliability were Cronbach's α coefficients, θ coefficient, and Ω coefficient. Acceptability was evaluated by valid response rate and completion time of the brief scale. A total of 346(98.9%) valid questionnaires were returned, with average survey time of (11.43±3.4) minutes. Average score of the brief scale was 78.85 ± 11.22; scores of the knowledge, attitude, and behavior subscales were 16.45 ± 4.42, 21.33 ± 2.03, and 41.07 ± 8.34, respectively. Pearson correlation coefficients between the brief scale and the knowledge, attitude, and behavior subscales were 0.92, 0.42, and 0.60, respectively; P-values were all less than 0.01, indicating that the face validity and content validity of the brief scale were achieved to a good level. The common factor cumulative variance contribution rate of the brief scale and three subscales was from 53.66% to 61.75%, which achieved more than 50% of the approved standard. There were 11 common factors; 41 of the total 42 items had factor loadings above 0.40 in their relevant common factor, indicating that the brief scale and three subscales had good construct validity. Patients were divided into a high-score group and a low-score group, then scores of the brief scale and three subscales were compared between the groups using a t-test. The results were all significant, indicating that the brief scale and three subscales had good discriminate validity. Mean scores of the brief scale and three subscales of the high-score group were 91.55±6.81, 19.51±2.17, 22.74±1.88, and 49.30±6.20, respectively; these were higher than the low-score group (65.89±5.79, 12.29±4.76, 20.22±1.88, and 33.39±6.17, respectively) with t-values 27.76, 13.31, 9.20, and 17.56 (P-values were less than 0.001). The Cronbach's α coefficient, θ coefficient, Ω coefficient, and split-half reliability of the brief scale were 0.83, 0.87, 0.96, and 0.84, respectively. These values for the three subscales were all above 0.70, except for the θ coefficient of the attitude subscale with 0.64, indicating that the brief scale and three subscales had acceptable internal consistency reliability. The brief version of the diabetes self-management knowledge, attitude, and behavior assessment scale showed good acceptability, validity, and reliability, to responsibly evaluate self-management KAB among patients with diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grest, Gary S.
2017-09-01
Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less
Han, Hui; Wang, Gengfu; Su, Puyu
2016-01-01
To explore the relationship between pubertal timing and aggressive behaviors. Stratified random sampling was used to choose 5760 students from one junior high school and one high school. The pubertal development scale (PDS) questionnaire and perceived pubertal timing were used to evaluate the pubertal timing, and the Buss-Perry questionnaire was used to explore the students' aggressive behaviors. The score of aggressive behavior was significantly different in junior high school students with different perceived pubertal timing, the score of early pubertal timing was highest and the score of delay pubertal timing was lowest, and the score of physical aggression and verbal aggression of schoolboy in early pubertal timing and normal pubertal timing in high school was higher than the delay pubertal timing (P < 0.05). The score of physical aggression, anger and hostility of schoolgirl in early pubertal timing was highest, there was significant difference between them. The relationship between the perceived pubertal timing and the aggressive behavior was the physical aggression, anger and hostility score was highest in schoolgirls both in junior high school and high school, and the score of verbal aggression was higher in normal pubertal timing and early pubertal timing in schoolboys (P < 0.05), there was significant difference between them. There are closely relationship between the early pubertal timing and aggressive behaviors by used the PDS questionnaire, and the perceived pubertal timing is in a relatively large impact on girls' aggressive behaviors.
Wang, W J; Dong, J; Ren, Z P; Chen, B; He, W; Li, W D; Hao, Z W
2016-07-06
To evaluate the validity, reliability, and acceptability of the scale of knowledge, attitude, and behavior of lifestyle intervention in a diabetes high-risk population (HILKAB), and provide scientific evidence for its usage. By convenient sampling, we selected 406 individuals at high risk for diabetes for survey using the HILKAB. Pearson correlation coefficient, factor analysis, independent sampling, and t-test for high- and low-score groups were used to evaluate the content validity, construct validity, and discriminant validity of the scale. Reliability of the scale was evaluated by internal consistency, which included Cronbach's α coefficient, θ coefficient, Ω coefficient, and split-half reliability. Scale acceptability was evaluated by acceptance rate and completion time of the survey. In this study, 366 questionnaires (90.1%) was qnalified and the completion time was (8.62±2.79) minutes. Scores for knowledge, attitude, and behavior were 10.60±3.73, 26.56±3.58, 17.09±9.74, respectively. The scale had good face validity and content validity. The correlation coefficient of items and the dimension to which they belong was between 0.25 and 0.97, and the correlation coefficient of three dimensions and the entire scale was between 0.64 and 0.91, all with P<0.001. Factor analysis of the scale extracted eight common factors. The cumulative variance contribution rate was 65.23%, thereby reaching the 50% approved standard. Of 30 items there were 29 items with factor loadings ≥0.40, indicating the scale had good construct validity. For the high-score group, scores for knowledge, attitude, and behavior dimensions were 13.89±2.55, 29.56± 2.46, 28.05 ± 2.93, respectively, which were higher than those for the low-score group (7.67 ± 2.78, 23.89 ± 3.35, 6.25 ± 3.13); t-values were 55.14, 119.40, 95.29, respectively, with P<0.001. The scale consisted of three dimensions: knowledge, attitude, and behavior. The Cronbach's α coefficient was between 0.84 and 0.92, the θ coefficient was between 0.85 and 0.96, the Ω coefficient was between 0.90 and 0.94, and the split-half reliability was between 0.77 and 0.95, reaching the 0.70 standard letter. The validity, reliability, and acceptability of the HILKAB scale were satisfactory for use in a population at high risk of diabetes.
The role of urgency in maladaptive behaviors.
Anestis, Michael D; Selby, Edward A; Joiner, Thomas E
2007-12-01
Prior work on maladaptive behaviors has cited impulsivity as a risk factor. The concept of impulsivity, however, fails to address the potential role of negative affect in such behaviors. The UPPS Impulsive Behavior Scale addresses this weakness by dividing impulsivity into four subscales: Urgency, Sensation Seeking, (lack of) Premeditation, and (lack of) Perseverance. We predicted that urgency, defined as the tendency, specifically in the face of negative affect, to act quickly and without planning, would predict elevations on three maladaptive behaviors--excessive reassurance seeking, drinking to cope, and bulimic symptoms as measured by the Eating Disorder Inventory--in both cross-sectional and longitudinal analyses in an undergraduate sample (N=70). Participants were assessed at two time points, 3-4 weeks apart. Urgency significantly predicted all three outcome variables cross-sectionally at both Time 1 and Time 2. Time 1 urgency significantly predicted Time 2 excessive reassurance seeking. Changes in urgency from Time 1 to Time 2 predicted changes in all three outcome variables. Results indicate a clear cross-sectional relationship between urgency and certain maladaptive behaviors. Additionally, some form of longitudinal relationship may exist between these variables, although the use of residual change scores precluded distinction between true change and change due to error.
An unsupervised method for quantifying the behavior of paired animals
NASA Astrophysics Data System (ADS)
Klibaite, Ugne; Berman, Gordon J.; Cande, Jessica; Stern, David L.; Shaevitz, Joshua W.
2017-02-01
Behaviors involving the interaction of multiple individuals are complex and frequently crucial for an animal’s survival. These interactions, ranging across sensory modalities, length scales, and time scales, are often subtle and difficult to characterize. Contextual effects on the frequency of behaviors become even more difficult to quantify when physical interaction between animals interferes with conventional data analysis, e.g. due to visual occlusion. We introduce a method for quantifying behavior in fruit fly interaction that combines high-throughput video acquisition and tracking of individuals with recent unsupervised methods for capturing an animal’s entire behavioral repertoire. We find behavioral differences between solitary flies and those paired with an individual of the opposite sex, identifying specific behaviors that are affected by social and spatial context. Our pipeline allows for a comprehensive description of the interaction between two individuals using unsupervised machine learning methods, and will be used to answer questions about the depth of complexity and variance in fruit fly courtship.
Logarithmic violation of scaling in anisotropic kinematic dynamo model
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2016-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t')/k⊥d-1 +ξ , where k⊥ = |k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L.
The role of fanatics in consensus formation
NASA Astrophysics Data System (ADS)
Gündüç, Semra
2015-08-01
A model of opinion dynamics with two types of agents as social actors are presented, using the Ising thermodynamic model as the dynamics template. The agents are considered as opportunists which live at sites and interact with the neighbors, or fanatics/missionaries which move from site to site randomly in persuasion of converting agents of opposite opinion with the help of opportunists. Here, the moving agents act as an external influence on the opportunists to convert them to the opposite opinion. It is shown by numerical simulations that such dynamics of opinion formation may explain some details of consensus formation even when one of the opinions are held by a minority. Regardless the distribution of the opinion, different size societies exhibit different opinion formation behavior and time scales. In order to understand general behavior, the scaling relations obtained by comparing opinion formation processes observed in societies with varying population and number of randomly moving agents are studied. For the proposed model two types of scaling relations are observed. In fixed size societies, increasing the number of randomly moving agents give a scaling relation for the time scale of the opinion formation process. The second type of scaling relation is due to the size dependent information propagation in finite but large systems, namely finite-size scaling.
Analysis of cyclical behavior in time series of stock market returns
NASA Astrophysics Data System (ADS)
Stratimirović, Djordje; Sarvan, Darko; Miljković, Vladimir; Blesić, Suzana
2018-01-01
In this paper we have analyzed scaling properties and cyclical behavior of the three types of stock market indexes (SMI) time series: data belonging to stock markets of developed economies, emerging economies, and of the underdeveloped or transitional economies. We have used two techniques of data analysis to obtain and verify our findings: the wavelet transform (WT) spectral analysis to identify cycles in the SMI returns data, and the time-dependent detrended moving average (tdDMA) analysis to investigate local behavior around market cycles and trends. We found cyclical behavior in all SMI data sets that we have analyzed. Moreover, the positions and the boundaries of cyclical intervals that we found seam to be common for all markets in our dataset. We list and illustrate the presence of nine such periods in our SMI data. We report on the possibilities to differentiate between the level of growth of the analyzed markets by way of statistical analysis of the properties of wavelet spectra that characterize particular peak behaviors. Our results show that measures like the relative WT energy content and the relative WT amplitude of the peaks in the small scales region could be used to partially differentiate between market economies. Finally, we propose a way to quantify the level of development of a stock market based on estimation of local complexity of market's SMI series. From the local scaling exponents calculated for our nine peak regions we have defined what we named the Development Index, which proved, at least in the case of our dataset, to be suitable to rank the SMI series that we have analyzed in three distinct groups.
A challenge to chaotic itinerancy from brain dynamics
NASA Astrophysics Data System (ADS)
Kay, Leslie M.
2003-09-01
Brain hermeneutics and chaotic itinerancy proposed by Tsuda are attractive characterizations of perceptual dynamics in the mammalian olfactory system. This theory proposes that perception occurs at the interface between itinerant neural representation and interaction with the environment. Quantifiable application of these dynamics has been hampered by the lack of definable history and action processes which characterize the changes induced by behavioral state, attention, and learning. Local field potentials measured from several brain areas were used to characterize dynamic activity patterns for their use as representations of history and action processes. The signals were recorded from olfactory areas (olfactory bulb, OB, and pyriform cortex) and hippocampal areas (entorhinal cortex and dentate gyrus, DG) in the brains of rats. During odor-guided behavior the system shows dynamics at three temporal scales. Short time-scale changes are system-wide and can occur in the space of a single sniff. They are predictable, associated with learned shifts in behavioral state and occur periodically on the scale of the intertrial interval. These changes occupy the theta (2-12 Hz), beta (15-30 Hz), and gamma (40-100 Hz) frequency bands within and between all areas. Medium time-scale changes occur relatively unpredictably, manifesting in these data as alterations in connection strength between the OB and DG. These changes are strongly correlated with performance in associated trial blocks (5-10 min) and may be due to fluctuations in attention, mood, or amount of reward received. Long time-scale changes are likely related to learning or decline due to aging or disease. These may be modeled as slow monotonic processes that occur within or across days or even weeks or years. The folding of different time scales is proposed as a mechanism for chaotic itinerancy, represented by dynamic processes instead of static connection strengths. Thus, the individual maintains continuity of experience within the stability of fast periodic and slow monotonic processes, while medium scale events alter experience and performance dramatically but temporarily. These processes together with as yet to be determined action effects from motor system feedback are proposed as an instantiation of brain hermeneutics and chaotic itinerancy.
Scale Invariance in Lateral Head Scans During Spatial Exploration.
Yadav, Chetan K; Doreswamy, Yoganarasimha
2017-04-14
Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.
Scale Invariance in Lateral Head Scans During Spatial Exploration
NASA Astrophysics Data System (ADS)
Yadav, Chetan K.; Doreswamy, Yoganarasimha
2017-04-01
Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.
Lam, S S
2001-02-01
In 1990 Podsakoff, MacKenzie, Moorman, and Fetter developed a scale to measure the five dimensions of organizational citizenship behavior. Test-retest data over 15 weeks are reported for this scale for a sample of 82 female and 32 male Chinese tellers (ages 18 to 54 years) from a large international bank in Hong Kong. Stability was .83, and there was no significant change between Times 1 and 2. Analysis indicated the five-factor structure and showed it to be a reliable measure when used with a nonwestern sample.
Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams
NASA Astrophysics Data System (ADS)
Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping
2018-06-01
A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).
Psychosocial distress of part-time occlusion in children with intermittent exotropia.
Kim, Ungsoo Samuel; Park, Subin; Yoo, Hee Jeong; Hwang, Jeong-Min
2013-01-01
To evaluate the psychosocial distress of part-time occlusion therapy in intermittent exotropia. A total of 25 children (15 males and 10 females, aged 3 to 7 years, mean age 4.7 years) with intermittent exotropia were enrolled. Behavioral and psychosocial problems were assessed by the Korean Child Behavior Checklist (K-CBCL), which consists of eight categories of withdrawal, somatic problems, depression/anxiety, social problems, thought problems, attention problems, delinquent behavior, and aggressive behavior, and the Amblyopia Treatment Index (ATI). The ATI was designed to evaluate the three factors of compliance, adverse effect, and social stigma. The Parenting Stress Index (PSI) is a parent self-report designed to identify potentially dysfunctional parent-child systems. The K-CBCL was obtained before and after occlusion therapy, and the ATI and PSI were taken from parents only after occlusion therapy. We evaluated the change on the K-CBCL and the correlation between the K-CBCL and ATI. The attention problem assessed by the K-CBCL significantly decreased after occlusion therapy. On the ATI, the social stigma was relatively lower than compliance and adverse effect factors (Likert scale 2.64, 3.11, and 3.11, respectively). The somatic problem assessed by the K-CBCL and compliance on the ATI were significantly correlated (p = 0.014). There was no significant change in percentile scores of each subscale (parental dominant scale and child dominant scale) of the PSI. Total stress index before and after occlusion therapy was 97.16 ± 8.38 and 97.00 ± 8.16 respectively (p = 0.382). Occlusion therapy may influence the psychosocial impact on intermittent exotropia patients. Part-time occlusion significantly decreased the attention problem in children with intermittent strabismus. Children with a high somatic problem score on the KCBCL showed poor compliance to the part-time occlusion.
Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime
2016-12-01
We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.
Keller, Peggy S; Gilbert, Lauren R; Haak, Eric A; Bi, Shuang; Smith, Olivia A
2017-04-01
Early school start times may curtail children's sleep and inadvertently promote sleep restriction. The current study examines the potential implications for early school start times for behavioral problems in public elementary schools (student ages 5-12 years) in Kentucky. School start times were obtained from school Web sites or by calling school offices; behavioral and disciplinary problems, along with demographic information about schools, were obtained from the Kentucky Department of Education. Estimated associations controlled for teacher/student ratio, racial composition, school rank, enrollment, and Appalachian location. Associations between early school start time and greater behavioral problems (harassment, in-school removals, suspensions, and expulsions) were observed, although some of these associations were found only for schools serving the non-Appalachian region. Findings support the growing body of research showing that early school start times may contribute to student problems, and extend this research through a large-scale examination of elementary schools, behavioral outcomes, and potential moderators of risk. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.
The real-time control of planetary rovers through behavior modification
NASA Technical Reports Server (NTRS)
Miller, David P.
1991-01-01
It is not yet clear of what type, and how much, intelligence is needed for a planetary rover to function semi-autonomously on a planetary surface. Current designs assume an advanced AI system that maintains a detailed map of its journeys and the surroundings, and that carefully calculates and tests every move in advance. To achieve these abilities, and because of the limitations of space-qualified electronics, the supporting rover is quite sizable, massing a large fraction of a ton, and requiring technology advances in everything from power to ground operations. An alternative approach is to use a behavior driven control scheme. Recent research has shown that many complex tasks may be achieved by programming a robot with a set of behaviors and activation or deactivating a subset of those behaviors as required by the specific situation in which the robot finds itself. Behavior control requires much less computation than is required by tradition AI planning techniques. The reduced computation requirements allows the entire rover to be scaled down as appropriate (only down-link communications and payload do not scale under these circumstances). The missions that can be handled by the real-time control and operation of a set of small, semi-autonomous, interacting, behavior-controlled planetary rovers are discussed.
The Structure of Perceptions of Time.
ERIC Educational Resources Information Center
Mudrack, Peter E.
1997-01-01
The Time Structure Questionnaire (M. J. Bond and N. T. Feather, 1988) and the Time Management Behavior Scale (T. H. Macan and colleagues, 1990) were evaluated through results from 701 and 453 adults respectively. Results confirm the importance of examining subscales of these measures rather than simply aggregate scores. (SLD)
NASA Astrophysics Data System (ADS)
Rowlands, G.; Kiyani, K. H.; Chapman, S. C.; Watkins, N. W.
2009-12-01
Quantitative analysis of solar wind fluctuations are often performed in the context of intermittent turbulence and center around methods to quantify statistical scaling, such as power spectra and structure functions which assume a stationary process. The solar wind exhibits large scale secular changes and so the question arises as to whether the timeseries of the fluctuations is non-stationary. One approach is to seek a local stationarity by parsing the time interval over which statistical analysis is performed. Hence, natural systems such as the solar wind unavoidably provide observations over restricted intervals. Consequently, due to a reduction of sample size leading to poorer estimates, a stationary stochastic process (time series) can yield anomalous time variation in the scaling exponents, suggestive of nonstationarity. The variance in the estimates of scaling exponents computed from an interval of N observations is known for finite variance processes to vary as ~1/N as N becomes large for certain statistical estimators; however, the convergence to this behavior will depend on the details of the process, and may be slow. We study the variation in the scaling of second-order moments of the time-series increments with N for a variety of synthetic and “real world” time series, and we find that in particular for heavy tailed processes, for realizable N, one is far from this ~1/N limiting behavior. We propose a semiempirical estimate for the minimum N needed to make a meaningful estimate of the scaling exponents for model stochastic processes and compare these with some “real world” time series from the solar wind. With fewer datapoints the stationary timeseries becomes indistinguishable from a nonstationary process and we illustrate this with nonstationary synthetic datasets. Reference article: K. H. Kiyani, S. C. Chapman and N. W. Watkins, Phys. Rev. E 79, 036109 (2009).
Comparing Learner Community Behavior in Multiple Presentations of a Massive Open Online Course
ERIC Educational Resources Information Center
Gallagher, Silvia Elena; Savage, Timothy
2015-01-01
Massive Online Open Courses (MOOCs) can create large scale communities of learners who collaborate, interact and discuss learning materials and activities. MOOCs are often delivered multiple times with similar content to different cohorts of learners. However, research into the differences of learner communication, behavior and expectation between…
Comparing Learner Community Behavior in Multiple Presentations of a Massive Open Online Course
ERIC Educational Resources Information Center
Gallagher, Silvia Elena; Savage, Timothy
2016-01-01
Massive Online Open Courses (MOOCs) can create large scale communities of learners who collaborate, interact and discuss learning materials and activities. MOOCs are often delivered multiple times with similar content to different cohorts of learners. However, research into the differences of learner communication, behavior and expectation between…
Miri, Andrew; Daie, Kayvon; Burdine, Rebecca D.; Aksay, Emre
2011-01-01
The advent of methods for optical imaging of large-scale neural activity at cellular resolution in behaving animals presents the problem of identifying behavior-encoding cells within the resulting image time series. Rapid and precise identification of cells with particular neural encoding would facilitate targeted activity measurements and perturbations useful in characterizing the operating principles of neural circuits. Here we report a regression-based approach to semiautomatically identify neurons that is based on the correlation of fluorescence time series with quantitative measurements of behavior. The approach is illustrated with a novel preparation allowing synchronous eye tracking and two-photon laser scanning fluorescence imaging of calcium changes in populations of hindbrain neurons during spontaneous eye movement in the larval zebrafish. Putative velocity-to-position oculomotor integrator neurons were identified that showed a broad spatial distribution and diversity of encoding. Optical identification of integrator neurons was confirmed with targeted loose-patch electrical recording and laser ablation. The general regression-based approach we demonstrate should be widely applicable to calcium imaging time series in behaving animals. PMID:21084686
Rodríguez-Morilla, Beatriz; Madrid, Juan A.; Molina, Enrique; Correa, Angel
2017-01-01
Vigilance usually deteriorates over prolonged driving at non-optimal times of day. Exposure to blue-enriched light has shown to enhance arousal, leading to behavioral benefits in some cognitive tasks. However, the cognitive effects of long-wavelength light have been less studied and its effects on driving performance remained to be addressed. We tested the effects of a blue-enriched white light (BWL) and a long-wavelength orange light (OL) vs. a control condition of dim light on subjective, physiological and behavioral measures at 21:45 h. Neurobehavioral tests included the Karolinska Sleepiness Scale and subjective mood scale, recording of distal-proximal temperature gradient (DPG, as index of physiological arousal), accuracy in simulated driving and reaction time in the auditory psychomotor vigilance task. The results showed that BWL decreased the DPG (reflecting enhanced arousal), while it did not improve reaction time or driving performance. Instead, blue light produced larger driving errors than OL, while performance in OL was stable along time on task. These data suggest that physiological arousal induced by light does not necessarily imply cognitive improvement. Indeed, excessive arousal might deteriorate accuracy in complex tasks requiring precision, such as driving. PMID:28690558
Ditching Investigation of a 1/12-Scale Model of the Douglas F3D-2 Airplane, TED No. NACA DE 381
NASA Technical Reports Server (NTRS)
Fisher, Lloyd J.; Thompson, William C.
1955-01-01
An investigation of a 1/12- scale dynamically similar model of the Douglas F3D-2 airplane was made in calm water to observe the ditching behavior and to determine the safest procedure for making an emergency water landing. Various conditions of damage were simulated to determine the behavior which probably would occur in a full-scale ditching. The behavior of the model was determined from motion-picture records, time- history acceleration records, and visual observations. It was concluded that the airplane should be ditched at a medium high attitude of about 8 degrees with the landing flaps down 40 degrees. In calm water the airplane will probably make a smooth run of about 550 feet and will have a maximum longitudinal deceleration of about 3g. The fuselage bottom will probably be damaged enough to allow the fuselage to fill with water very rapidly.
Pankavich, S; Ortoleva, P
2010-06-01
The multiscale approach to N-body systems is generalized to address the broad continuum of long time and length scales associated with collective behaviors. A technique is developed based on the concept of an uncountable set of time variables and of order parameters (OPs) specifying major features of the system. We adopt this perspective as a natural extension of the commonly used discrete set of time scales and OPs which is practical when only a few, widely separated scales exist. The existence of a gap in the spectrum of time scales for such a system (under quasiequilibrium conditions) is used to introduce a continuous scaling and perform a multiscale analysis of the Liouville equation. A functional-differential Smoluchowski equation is derived for the stochastic dynamics of the continuum of Fourier component OPs. A continuum of spatially nonlocal Langevin equations for the OPs is also derived. The theory is demonstrated via the analysis of structural transitions in a composite material, as occurs for viral capsids and molecular circuits.
Anomalous diffusion for bed load transport with a physically-based model
NASA Astrophysics Data System (ADS)
Fan, N.; Singh, A.; Foufoula-Georgiou, E.; Wu, B.
2013-12-01
Diffusion of bed load particles shows both normal and anomalous behavior for different spatial-temporal scales. Understanding and quantifying these different types of diffusion is important not only for the development of theoretical models of particle transport but also for practical purposes, e.g., river management. Here we extend a recently proposed physically-based model of particle transport by Fan et al. [2013] to further develop an Episodic Langevin equation (ELE) for individual particle motion which reproduces the episodic movement (start and stop) of sediment particles. Using the proposed ELE we simulate particle movements for a large number of uniform size particles, incorporating different probability distribution functions (PDFs) of particle waiting time. For exponential PDFs of waiting times, particles reveal ballistic motion in short time scales and turn to normal diffusion at long time scales. The PDF of simulated particle travel distances also shows a change in its shape from exponential to Gamma to Gaussian with a change in timescale implying different diffusion scaling regimes. For power-law PDF (with power - μ) of waiting times, the asymptotic behavior of particles at long time scales reveals both super-diffusion and sub-diffusion, however, only very heavy tailed waiting times (i.e. 1.0 < μ < 1.5) could result in sub-diffusion. We suggest that the contrast between our results and previous studies (for e.g., studies based on fractional advection-diffusion models of thin/heavy tailed particle hops and waiting times) results could be due the assumption in those studies that the hops are achieved instantaneously, but in reality, particles achieve their hops within finite times (as we simulate here) instead of instantaneously, even if the hop times are much shorter than waiting times. In summary, this study stresses on the need to rethink the alternative models to the previous models, such as, fractional advection-diffusion equations, for studying the anomalous diffusion of bed load particles. The implications of these results for modeling sediment transport are discussed.
Scaling behavior of an airplane-boarding model.
Brics, Martins; Kaupužs, Jevgenijs; Mahnke, Reinhard
2013-04-01
An airplane-boarding model, introduced earlier by Frette and Hemmer [Phys. Rev. E 85, 011130 (2012)], is studied with the aim of determining precisely its asymptotic power-law scaling behavior for a large number of passengers N. Based on Monte Carlo simulation data for very large system sizes up to N=2(16)=65536, we have analyzed numerically the scaling behavior of the mean boarding time
Behavior analytic approaches to problem behavior in intellectual disabilities.
Hagopian, Louis P; Gregory, Meagan K
2016-03-01
The purpose of the current review is to summarize recent behavior analytic research on problem behavior in individuals with intellectual disabilities. We have focused our review on studies published from 2013 to 2015, but also included earlier studies that were relevant. Behavior analytic research on problem behavior continues to focus on the use and refinement of functional behavioral assessment procedures and function-based interventions. During the review period, a number of studies reported on procedures aimed at making functional analysis procedures more time efficient. Behavioral interventions continue to evolve, and there were several larger scale clinical studies reporting on multiple individuals. There was increased attention on the part of behavioral researchers to develop statistical methods for analysis of within subject data and continued efforts to aggregate findings across studies through evaluative reviews and meta-analyses. Findings support continued utility of functional analysis for guiding individualized interventions and for classifying problem behavior. Modifications designed to make functional analysis more efficient relative to the standard method of functional analysis were reported; however, these require further validation. Larger scale studies on behavioral assessment and treatment procedures provided additional empirical support for effectiveness of these approaches and their sustainability outside controlled clinical settings.
Novel Flood Detection and Analysis Method Using Recurrence Property
NASA Astrophysics Data System (ADS)
Wendi, Dadiyorto; Merz, Bruno; Marwan, Norbert
2016-04-01
Temporal changes in flood hazard are known to be difficult to detect and attribute due to multiple drivers that include processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defence, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic behavior to certain flood situations.
Prenatal examination behavior of Southeast Asian pregnant women in Taiwan: a questionnaire survey.
Lin, Miao-Ling; Wang, Hsiu-Hung
2008-05-01
There is growing concern about the factors affecting the prenatal examinations of immigrant women. The purpose of this study was to examine the relationships between the knowledge of pregnancy, attitude toward pregnancy and experience of medical services, and prenatal examination behavior of pregnant Southeast Asian women in Taiwan. This was a cross-sectional study with a structured questionnaire administered to participants. Participants were recruited from the community health centers in Kaohsiung County, Taiwan. The sampling criteria were as follows: each subject was to (a) have come from a Southeast Asian country, (b) be over 28 weeks pregnant to less than one year postpartum, (c) be able to communicate either in Mandarin or Taiwanese, and (d) be willing to participate in the research after hearing an explanation of it. As a result, 140 participants were recruited. A total of 132 participants completed the questionnaire and were used for data analysis. The participants completed structured questionnaires, which included the Demographic Inventory Scale, Knowledge of Pregnancy Scale, Attitudes toward Pregnancy Scale, Experience of Medical Services Scale and the Prenatal Examination Behavior Scale. Findings show that 80.3% of the subjects attended their first-time prenatal examination during the first trimester and 59.1% of the subjects evaluated their prenatal examinations as being adequate. Their attitude toward childbearing was significantly correlated with their prenatal examination behavior, including the initial time of prenatal examination and frequencies of prenatal examinations during pregnancy. Positive attitudes toward childbearing and prenatal examination, and the number of years spent in Taiwan were all significant predictive factors of frequencies of prenatal examinations during pregnancy. The findings of this study can not only help healthcare professionals understand the prenatal examination behavior and related factors of the participants, but also provide guidance to healthcare professionals as they assist these pregnant Southeast Asian women in Taiwan in developing childbearing and family plans. The attitude toward childbearing of the participants was significantly correlated with their prenatal examination behavior. They require professional help in seeking out appropriate medical services that will improve their healthcare quality during pregnancy.
Scaling Behavior in Mitochondrial Redox Fluctuations
Ramanujan, V. Krishnan; Biener, Gabriel; Herman, Brian A.
2006-01-01
Scale-invariant long-range correlations have been reported in fluctuations of time-series signals originating from diverse processes such as heart beat dynamics, earthquakes, and stock market data. The common denominator of these apparently different processes is a highly nonlinear dynamics with competing forces and distinct feedback species. We report for the first time an experimental evidence for scaling behavior in NAD(P)H signal fluctuations in isolated mitochondria and intact cells isolated from the liver of a young (5-month-old) mouse. Time-series data were collected by two-photon imaging of mitochondrial NAD(P)H fluorescence and signal fluctuations were quantitatively analyzed for statistical correlations by detrended fluctuation analysis and spectral power analysis. Redox [NAD(P)H / NAD(P)+] fluctuations in isolated mitochondria and intact liver cells were found to display nonrandom, long-range correlations. These correlations are interpreted as arising due to the regulatory dynamics operative in Krebs' cycle enzyme network and electron transport chain in the mitochondria. This finding may provide a novel basis for understanding similar regulatory networks that govern the nonequilibrium properties of living cells. PMID:16565066
Moscoso del Prado Martín, Fermín
2013-12-01
I introduce the Bayesian assessment of scaling (BAS), a simple but powerful Bayesian hypothesis contrast methodology that can be used to test hypotheses on the scaling regime exhibited by a sequence of behavioral data. Rather than comparing parametric models, as typically done in previous approaches, the BAS offers a direct, nonparametric way to test whether a time series exhibits fractal scaling. The BAS provides a simpler and faster test than do previous methods, and the code for making the required computations is provided. The method also enables testing of finely specified hypotheses on the scaling indices, something that was not possible with the previously available methods. I then present 4 simulation studies showing that the BAS methodology outperforms the other methods used in the psychological literature. I conclude with a discussion of methodological issues on fractal analyses in experimental psychology. PsycINFO Database Record (c) 2014 APA, all rights reserved.
An experimental study of large-scale vortices over a blunt-faced flat plate in pulsating flow
NASA Astrophysics Data System (ADS)
Hwang, K. S.; Sung, H. J.; Hyun, J. M.
Laboratory measurements are made of flow over a blunt flat plate of finite thickness, which is placed in a pulsating free stream, U=Uo(1+Aocos 2πfpt). Low turbulence-intensity wind tunnel experiments are conducted in the ranges of Stp<=1.23 and Ao<=0.118 at ReH=560. Pulsation is generated by means of a woofer speaker. Variations of the time-mean reattachment length xR as functions of Stp and Ao are scrutinized by using the forward-time fraction and surface pressure distributions (Cp). The shedding frequency of large-scale vortices due to pulsation is measured. Flow visualizations depict the behavior of large-scale vortices. The results for non-pulsating flows (Ao=0) are consistent with the published data. In the lower range of Ao, as Stp increases, xR attains a minimum value at a particular pulsation frequency. For large Ao, the results show complicated behaviors of xR. For Stp>=0.80, changes in xR are insignificant as Ao increases. The shedding frequency of large-scale vortices is locked-in to the pulsation frequency. A vortex-pairing process takes place between two neighboring large-scale vortices in the separated shear layer.
Longitudinal Profiles of Adaptive Behavior in Fragile X Syndrome
Quintin, Eve-Marie; Jo, Booil; Lightbody, Amy A.; Hazlett, Heather Cody; Piven, Joseph; Hall, Scott S.; Reiss, Allan L.
2014-01-01
OBJECTIVE: To examine longitudinally the adaptive behavior patterns in fragile X syndrome. METHOD: Caregivers of 275 children and adolescents with fragile X syndrome and 225 typically developing children and adolescents (2–18 years) were interviewed with the Vineland Adaptive Behavior Scales every 2 to 4 years as part of a prospective longitudinal study. RESULTS: Standard scores of adaptive behavior in people with fragile X syndrome are marked by a significant decline over time in all domains for males and in communication for females. Socialization skills are a relative strength as compared with the other domains for males with fragile X syndrome. Females with fragile X syndrome did not show a discernible pattern of developmental strengths and weaknesses. CONCLUSIONS: This is the first large-scale longitudinal study to show that the acquisition of adaptive behavior slows as individuals with fragile X syndrome age. It is imperative to ensure that assessments of adaptive behavior skills are part of intervention programs focusing on childhood and adolescence in this condition. PMID:25070318
Effects of a group rational-emotive behavior therapy program on the Type A behavior pattern.
Möller, A T; Botha, H C
1996-06-01
A sample of 44 male Type A insurance representatives, selected by means of the Videotaped Structured Interview, were randomly assigned to a treatment (n = 22) and a delayed treatment control group (n = 22). The treatment group participated in 9 weekly sessions of group Rational-Emotive Behavior Therapy and were followed up after 10 weeks. After the control period, the delayed treatment control group received the same treatment program. Repeated measurements were obtained by means of the Videotaped Structured Interview, Jenkins Activity Survey, Cook-Medley Hostility Scale, and Type A Cognitive Questionnaire. Self and spouse/friend ratings of Type A behavior were obtained by means of the Bortner Rating Scale. Analysis indicated that, compared to the control condition, the therapy significantly reduced the intensity of Type A behavior and its time urgency component. These improvements were maintained at follow-up and were accompanied by self-reports of significant positive changes in Type A behavior and irrational beliefs.
Dynamics of two-dimensional monolayer water confined in hydrophobic and charged environments.
Kumar, Pradeep; Han, Sungho
2012-09-21
We perform molecular dynamics simulations to study the effect of charged surfaces on the intermediate and long time dynamics of water in nanoconfinements. Here, we use the transferable interaction potential with five points (TIP5P) model of a water molecule confined in both hydrophobic and charged surfaces. For a single molecular layer of water between the surfaces, we find that the temperature dependence of the lateral diffusion constant of water up to very high temperatures remains Arrhenius with a high activation energy. In case of charged surfaces, however, the dynamics of water in the intermediate time regime is drastically modified presumably due to the transient coupling of dipoles of water molecules with electric field fluctuations induced by charges on the confining surfaces. Specifically, the lateral mean square displacements display a distinct super-diffusive behavior at intermediate time scale, defined as the time scale between ballistic and diffusive regimes. This change in the intermediate time-scale dynamics in the charged confinement leads to the enhancement of long-time dynamics as reflected in increasing diffusion constant. We introduce a simple model for a possible explanation of the super-diffusive behavior and find it to be in good agreement with our simulation results. Furthermore, we find that confinement and the surface polarity enhance the low frequency vibration in confinement compared to bulk water. By introducing a new effective length scale of coupling between translational and orientational motions, we find that the length scale increases with the increasing strength of the surface polarity. Further, we calculate the correlation between the diffusion constant and the excess entropy and find a disordering effect of polar surfaces on the structure of water. Finally, we find that the empirical relation between the diffusion constant and the excess entropy holds for a monolayer of water in nanoconfinement.
A Stochastic Fractional Dynamics Model of Rainfall Statistics
NASA Astrophysics Data System (ADS)
Kundu, Prasun; Travis, James
2013-04-01
Rainfall varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, that allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is designed to faithfully reflect the scale dependence and is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and times scales. The main restriction is the assumption that the statistics of the precipitation field is spatially homogeneous and isotropic and stationary in time. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and in Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to the second moment statistics of the radar data. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well without any further adjustment. Some data sets containing periods of non-stationary behavior that involves occasional anomalously correlated rain events, present a challenge for the model.
Cognitive behavioral therapy for compulsive buying disorder.
Mitchell, James E; Burgard, Melissa; Faber, Ron; Crosby, Ross D; de Zwaan, Martina
2006-12-01
To our knowledge, no psychotherapy treatment studies for compulsive buying have been published. The authors conducted a pilot trial comparing the efficacy of a group cognitive behavioral intervention designed for the treatment of compulsive buying to a waiting list control. Twenty-eight subjects were assigned to receive active treatment and 11 to the waiting list control group. The results at the end of treatment showed significant advantages for cognitive behavioral therapy (CBT) over the waiting list in reductions in the number of compulsive buying episodes and time spent buying, as well as scores on the Yale-Brown Obsessive Compulsive Scale--Shopping Version and the Compulsive Buying Scale. Improvement was well-maintained at 6-month follow-up. The pilot data suggests that a cognitive behavioral intervention can be quite effective in the treatment of compulsive buying disorder. This model requires further testing.
Double dynamic scaling in human communication dynamics
NASA Astrophysics Data System (ADS)
Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua
2017-05-01
In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.
Role of Proteome Physical Chemistry in Cell Behavior
2016-01-01
We review how major cell behaviors, such as bacterial growth laws, are derived from the physical chemistry of the cell’s proteins. On one hand, cell actions depend on the individual biological functionalities of their many genes and proteins. On the other hand, the common physics among proteins can be as important as the unique biology that distinguishes them. For example, bacterial growth rates depend strongly on temperature. This dependence can be explained by the folding stabilities across a cell’s proteome. Such modeling explains how thermophilic and mesophilic organisms differ, and how oxidative damage of highly charged proteins can lead to unfolding and aggregation in aging cells. Cells have characteristic time scales. For example, E. coli can duplicate as fast as 2–3 times per hour. These time scales can be explained by protein dynamics (the rates of synthesis and degradation, folding, and diffusional transport). It rationalizes how bacterial growth is slowed down by added salt. In the same way that the behaviors of inanimate materials can be expressed in terms of the statistical distributions of atoms and molecules, some cell behaviors can be expressed in terms of distributions of protein properties, giving insights into the microscopic basis of growth laws in simple cells. PMID:27513457
Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter
2017-12-19
Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.
NASA Astrophysics Data System (ADS)
Hansen, S. K.; Berkowitz, B.
2014-12-01
Recently, we developed an alternative CTRW formulation which uses a "latching" upscaling scheme to rigorously map continuous or fine-scale stochastic solute motion onto discrete transitions on an arbitrarily coarse lattice (with spacing potentially on the meter scale or more). This approach enables model simplification, among many other things. Under advection, for example, we see that many relevant anomalous transport problems may be mapped into 1D, with latching to a sequence of successive, uniformly spaced planes. On this formulation (which we term RP-CTRW), the spatial transition vector may generally be made deterministic, with CTRW waiting time distributions encapsulating all the stochastic behavior. We demonstrate the excellent performance of this technique alongside Pareto-distributed waiting times in explaining experiments across a variety of scales using only two degrees of freedom. An interesting new application of the RP-CTRW technique is the analysis of radial (push-pull) tracer tests. Given modern computational power, random walk simulations are a natural fit for the inverse problem of inferring subsurface parameters from push-pull test data, and we propose them as an alternative to the classical type curve approach. In particular, we explore the visibility of heterogeneity through non-Fickian behavior in push-pull tests, and illustrate the ability of a radial RP-CTRW technique to encapsulate this behavior using a sparse parameterization which has predictive value.
Scaling analysis of bilateral hand tremor movements in essential tremor patients.
Blesic, S; Maric, J; Dragasevic, N; Milanovic, S; Kostic, V; Ljubisavljevic, Milos
2011-08-01
Recent evidence suggests that the dynamic-scaling behavior of the time-series of signals extracted from separate peaks of tremor spectra may reveal existence of multiple independent sources of tremor. Here, we have studied dynamic characteristics of the time-series of hand tremor movements in essential tremor (ET) patients using the detrended fluctuation analysis method. Hand accelerometry was recorded with (500 g) and without weight loading under postural conditions in 25 ET patients and 20 normal subjects. The time-series comprising peak-to-peak (PtP) intervals were extracted from regions around the first three main frequency components of power spectra (PwS) of the recorded tremors. The data were compared between the load and no-load condition on dominant (related to tremor severity) and non-dominant tremor side and with the normal (physiological) oscillations in healthy subjects. Our analysis shows that, in ET, the dynamic characteristics of the main frequency component of recorded tremors exhibit scaling behavior. Furthermore, they show that the two main components of ET tremor frequency spectra, otherwise indistinguishable without load, become significantly different after inertial loading and that they differ between the tremor sides (related to tremor severity). These results show that scaling, a time-domain analysis, helps revealing tremor features previously not revealed by frequency-domain analysis and suggest that distinct oscillatory central circuits may generate the tremor in ET patients.
Convection in a Very Compressible Fluid: Comparison of Simulations With Experiments
NASA Technical Reports Server (NTRS)
Meyer, H.; Furukawa, A.; Onuki, A.; Kogan, A. B.
2003-01-01
The time profile (Delta)T(t) of the temperature difference, measured across a very compressible fluid layer of supercritical He-3 after the start of a heat flow, shows a damped oscillatory behavior before steady state convection is reached. The results for (Delta)T(t) obtained from numerical simulations and from laboratory experiments are compared over a temperature range where the compressibility varies by a factor of approx. = 40. First the steady-state convective heat current j(sup conv) as a function of the Rayleigh number R(alpha) is presented, and the agreement is found to be good. Second, the shape of the time profile and two characteristic times in the transient part of (Delta)T(t) from simulations and experiments are compared, namely: 1) t(sub osc), the oscillatory period and 2) t(sub p), the time of the first peak after starting the heat flow. These times, scaled by the diffusive time tau(sub D) versus R(alpha), are presented. The agreement is good for t(sup osc)/tau(sub D), where the results collapse on a single curve showing a powerlaw behavior. The simulation hence confirms the universal scaling behavior found experimentally. However for t(sub p)/tau(sub D), where the experimental data also collapse on a single curve, the simulation results show systematic departures from such a behavior. A possible reason for some of the disagreements, both in the time profile and in t(sub p) is discussed. In the Appendix a third characteristic time, t(sub m), between the first peak and the first oscillation minimum is plotted and a comparison between the results of experiments and simulations is made.
Variations in synoptic-scale eddy activity during the life cycles of persistent flow anomalies
NASA Technical Reports Server (NTRS)
Dole, Randall M.; Neilley, Peter P.
1991-01-01
The objective of the study was to identify how synoptic-scale eddy activity varies throughout the life cycles of major scale flow anomalies. In particular, composite analyses of various measures of synoptic-scale eddy activity are constructed, with the composites obtained relative to the onset and termination times of cases typically associated with either blocking or abnormally intense zonal flows. The potential mechanisms that are likely to contribute to the observed changes in eddy behavior are discussed.
Montes, Guillermo; Lotyczewski, Bohdan S; Halterman, Jill S; Hightower, Alan D
2012-03-01
The impact of behavior problems on kindergarten readiness is not known. Our objective was to estimate the association between behavior problems and kindergarten readiness on a US national sample. In the US educational system, kindergarten is a natural point of entry into formal schooling at age 5 because fewer than half of the children enter kindergarten with prior formal preschool education. Parents of 1,200 children who were scheduled to enter kindergarten for the first time and were members of the Harris Interactive online national panel were surveyed. We defined behavior problems as an affirmative response to the question, "Has your child ever had behavior problems?" We validated this against attention deficit hyperactivity disorder diagnosis, scores on a reliable socioemotional scale, and child's receipt of early intervention services. We used linear, tobit, and logistic regression analyses to estimate the association between having behavior problems and scores in reliable scales of motor, play, speech and language, and school skills and an overall kindergarten readiness indicator. The sample included 176 children with behavior problems for a national prevalence of 14% (confidence interval, 11.5-17.5). Children with behavior problems were more likely to be male and live in households with lower income and parental education. We found that children with behavior problems entered kindergarten with lower speech and language, motor, play, and school skills, even after controlling for demographics and region. Delays were 0.6-1 SD below scores of comparable children without behavior problems. Parents of children with behavior problems were 5.2 times more likely to report their child was not ready for kindergarten. Childhood behavior problems are associated with substantial delays in motor, language, play, school, and socioemotional skills before entrance into kindergarten. Early screening and intervention is recommended.
NASA Astrophysics Data System (ADS)
Raghib, Michael; Levin, Simon; Kevrekidis, Ioannis
2010-05-01
Self-propelled particle models (SPP's) are a class of agent-based simulations that have been successfully used to explore questions related to various flavors of collective motion, including flocking, swarming, and milling. These models typically consist of particle configurations, where each particle moves with constant speed, but changes its orientation in response to local averages of the positions and orientations of its neighbors found within some interaction region. These local averages are based on `social interactions', which include avoidance of collisions, attraction, and polarization, that are designed to generate configurations that move as a single object. Errors made by the individuals in the estimates of the state of the local configuration are modeled as a random rotation of the updated orientation resulting from the social rules. More recently, SPP's have been introduced in the context of collective decision-making, where the main innovation consists of dividing the population into naïve and `informed' individuals. Whereas naïve individuals follow the classical collective motion rules, members of the informed sub-population update their orientations according to a weighted average of the social rules and a fixed `preferred' direction, shared by all the informed individuals. Collective decision-making is then understood in terms of the ability of the informed sub-population to steer the whole group along the preferred direction. Summary statistics of collective decision-making are defined in terms of the stochastic properties of the random walk followed by the centroid of the configuration as the particles move about, in particular the scaling behavior of the mean squared displacement (msd). For the region of parameters where the group remains coherent , we note that there are two characteristic time scales, first there is an anomalous transient shared by both purely naïve and informed configurations, i.e. the scaling exponent lies between 1 and 2. The long-time behavior of the msd of the centroid walk scales linearly with time for naïve groups (diffusion), but shows a sharp transition to quadratic scaling (advection) for informed ones. These observations suggest that the mesoscopic variables of interest are the magnitude of the drift, the diffusion coefficient and the time-scales at which the anomalous and the asymptotic behavior respectively dominate transport, the latter being linked to the time scale at which the group reaches a decision. In order to estimate these summary statistics from the msd, we assumed that the configuration centroid follows an uncoupled Continuous Time Random Walk (CTRW) with smooth jump and waiting time pdf's. The mesoscopic transport equation for this type of random walk corresponds to an Advection-Diffusion Equation with Memory (ADEM). The introduction of the memory, and thus non-Markovian effects, is necessary in order to correctly account for the two time scales present. Although we were not able to calculate the memory directly from the individual-level rules, we show that it can estimated from a single, relatively short, simulation run using a Mittag-Leffler function as template. With this function it is possible to predict accurately the behavior of the msd, as well as the full pdf for the position of the centroid. The resulting ADEM is self-consistent in the sense that transport parameters estimated from the memory via a Kubo relationship coincide with those estimated from the moments of the jump size pdf of the associated CTRW for a large number of group sizes, proportions of informed individuals, and degrees of bias along the preferred direction. We also discuss the phase diagrams for the transport coefficients estimated from this method, where we notice velocity-precision trade-offs, where precision is a measure of the deviation of realized group orientations with respect to the informed direction. We also note that the time scale to collective decision is invariant with respect to group size, and depends only on the proportion of informed individuals and the strength of the coupling along the informed direction.
Carer Reports of the Efficacy of Cognitive Behavioral Interventions for Anger
ERIC Educational Resources Information Center
Rose, John
2010-01-01
Anger resulting in Aggression can be a significant problem for some people with Intellectual Disabilities. Carers were asked to complete a provocation inventory and an attribution scale before and after a group cognitive behavioral intervention aimed for anger and at similar points in time for a waiting list control. When compared using an…
Phase transition in the parametric natural visibility graph.
Snarskii, A A; Bezsudnov, I V
2016-10-01
We investigate time series by mapping them to the complex networks using a parametric natural visibility graph (PNVG) algorithm that generates graphs depending on arbitrary continuous parameter-the angle of view. We study the behavior of the relative number of clusters in PNVG near the critical value of the angle of view. Artificial and experimental time series of different nature are used for numerical PNVG investigations to find critical exponents above and below the critical point as well as the exponent in the finite size scaling regime. Altogether, they allow us to find the critical exponent of the correlation length for PNVG. The set of calculated critical exponents satisfies the basic Widom relation. The PNVG is found to demonstrate scaling behavior. Our results reveal the similarity between the behavior of the relative number of clusters in PNVG and the order parameter in the second-order phase transitions theory. We show that the PNVG is another example of a system (in addition to magnetic, percolation, superconductivity, etc.) with observed second-order phase transition.
NASA Technical Reports Server (NTRS)
Stawarz, J. E.; Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Pouquet, A.; Burch, J. L.; Giles, B. L.; Khotyaintsev, Y.; Le Contel, O.;
2016-01-01
Spatial and high-time-resolution properties of the velocities, magnetic field, and 3-D electric field within plasma turbulence are examined observationally using data from the Magnetospheric Multiscale mission. Observations from a Kelvin-Helmholtz instability (KHI) on the Earth's magnetopause are examined, which both provides a series of repeatable intervals to analyze, giving better statistics, and provides a first look at the properties of turbulence in the KHI. For the first time direct observations of both the high-frequency ion and electron velocity spectra are examined, showing differing ion and electron behavior at kinetic scales. Temporal spectra exhibit power law behavior with changes in slope near the ion gyrofrequency and lower hybrid frequency. The work provides the first observational evidence for turbulent intermittency and anisotropy consistent with quasi two-dimensional turbulence in association with the KHI. The behavior of kinetic-scale intermittency is found to have differences from previous studies of solar wind turbulence, leading to novel insights on the turbulent dynamics in the KHI.
Human dynamics in repurchase behavior based on comments mining
NASA Astrophysics Data System (ADS)
Yang, Tian; Feng, Xin; Wu, Ye; Wang, Shengfeng; Xiao, Jinghua
2018-07-01
Hundreds of thousands of individual deals and comments are analyzed to ask: what kinds of patterns appear in their repurchase process? Our results suggest that, in the empirical description, the intervals between two consecutive purchases obey a power-law distribution. Notwithstanding a wide range of individual preferences, shoppers' repurchase behaviors show some similar patterns, called long-scale quiet and short-scale emergence, and the alternating appearance of them form an endless chain in repurchase. In agreement with the empirical results, these short-scale and long-scale patterns suggest an adaptive model with alterable exponents complying with a power-law distribution. And it also implies that each user behaves his own intrinsic pattern such as unique repurchase intensity and silence-emergence cycle, which contributes to customer life-time value from the new view of dynamics and repurchase cycles.
Scaling behavior studies of Ar{sup +} ion irradiated ripple structured mica surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metya, Amaresh, E-mail: amaresh.metya@saha.ac.in; Ghose, Debabrata, E-mail: amaresh.metya@saha.ac.in
We have studied scaling behavior of ripple structured mica surfaces. Clean mica (001) surface is sputtered by 500 eV Ar{sup +} ion beam at 40° incidence angle for different time ranging from 28 minutes to 245 minutes to form ripples on it. The scaling of roughness of sputtered surface characterized by AFM is observed into two regime here; one is super roughening which is for above the crossover bombardment time (i.e, t{sub x} ≥ 105 min) with the scaling exponents α = α{sub s} = 1.45 ± 0.03, α{sub local} = 0.87 ± 0.03, β = 1.81 ± 0.01, β{submore » local} = 1.67 ± 0.07 and another is a new type of scaling dynamics for t{sub x} ≤ 105 min with the scaling exponents α = 0.95 (calculated), α{sub s} = 1.45 ± 0.03, α{sub local} = 0.87 ± 0.03, β = 1.81 ± 0.01, β{sub local} = 1.67 ± 0.07. In the super roughening scaling dynamics, two types of power law dependency is observed on spatial frequency of morphology (k): for higher k values PSD ∼ k{sup −4} describing diffusion controlled smoothening and for lower k values PSD ∼ k{sup −2} reflecting kinetic roughening.« less
Gutenberg-Richter law for Internetquakes
NASA Astrophysics Data System (ADS)
Abe, Sumiyoshi; Suzuki, Norikazu
2003-03-01
The temporal behavior of the Internet is studied by performing Ping experiments. Sudden drastic changes in the Internet time series of round-trip times of the Ping signals (i.e., congestion of the network) are catastrophic and can be identified as “Internetquakes”. Magnitude of the Internetquakes is defined and the Gutenberg-Richter law is found to hold for the cumulative frequency of the Internetquakes and magnitude. Therefore, earthquakes, financial markets and the Internet share a common scale free nature in their temporal behaviors.
Dekker, Alain D; Sacco, Silvia; Carfi, Angelo; Benejam, Bessy; Vermeiren, Yannick; Beugelsdijk, Gonny; Schippers, Mieke; Hassefras, Lyanne; Eleveld, José; Grefelman, Sharina; Fopma, Roelie; Bomer-Veenboer, Monique; Boti, Mariángeles; Oosterling, G Danielle E; Scholten, Esther; Tollenaere, Marleen; Checkley, Laura; Strydom, André; Van Goethem, Gert; Onder, Graziano; Blesa, Rafael; Zu Eulenburg, Christine; Coppus, Antonia M W; Rebillat, Anne-Sophie; Fortea, Juan; De Deyn, Peter P
2018-01-01
People with Down syndrome (DS) are prone to develop Alzheimer's disease (AD). Behavioral and psychological symptoms of dementia (BPSD) are core features, but have not been comprehensively evaluated in DS. In a European multidisciplinary study, the novel Behavioral and Psychological Symptoms of Dementia in Down Syndrome (BPSD-DS) scale was developed to identify frequency and severity of behavioral changes taking account of life-long characteristic behavior. 83 behavioral items in 12 clinically defined sections were evaluated. The central aim was to identify items that change in relation to the dementia status, and thus may differentiate between diagnostic groups. Structured interviews were conducted with informants of persons with DS without dementia (DS, n = 149), with questionable dementia (DS+Q, n = 65), and with diagnosed dementia (DS+AD, n = 67). First exploratory data suggest promising interrater, test-retest, and internal consistency reliability measures. Concerning item relevance, group comparisons revealed pronounced increases in frequency and severity in items of anxiety, sleep disturbances, agitation & stereotypical behavior, aggression, apathy, depressive symptoms, and eating/drinking behavior. The proportion of individuals presenting an increase was highest in DS+AD, intermediate in DS+Q, and lowest in DS. Interestingly, among DS+Q individuals, a substantial proportion already presented increased anxiety, sleep disturbances, apathy, and depressive symptoms, suggesting that these changes occur early in the course of AD. Future efforts should optimize the scale based on current results and clinical experiences, and further study applicability, reliability, and validity. Future application of the scale in daily care may aid caregivers to understand changes, and contribute to timely interventions and adaptation of caregiving.
Dekker, Alain D.; Sacco, Silvia; Carfi, Angelo; Benejam, Bessy; Vermeiren, Yannick; Beugelsdijk, Gonny; Schippers, Mieke; Hassefras, Lyanne; Eleveld, José; Grefelman, Sharina; Fopma, Roelie; Bomer-Veenboer, Monique; Boti, Mariángeles; Oosterling, G. Danielle E.; Scholten, Esther; Tollenaere, Marleen; Checkley, Laura; Strydom, André; Van Goethem, Gert; Onder, Graziano; Blesa, Rafael; zu Eulenburg, Christine; Coppus, Antonia M.W.; Rebillat, Anne-Sophie; Fortea, Juan; De Deyn, Peter P.
2018-01-01
People with Down syndrome (DS) are prone to develop Alzheimer’s disease (AD). Behavioral and psychological symptoms of dementia (BPSD) are core features, but have not been comprehensively evaluated in DS. In a European multidisciplinary study, the novel Behavioral and Psychological Symptoms of Dementia in Down Syndrome (BPSD-DS) scale was developed to identify frequency and severity of behavioral changes taking account of life-long characteristic behavior. 83 behavioral items in 12 clinically defined sections were evaluated. The central aim was to identify items that change in relation to the dementia status, and thus may differentiate between diagnostic groups. Structured interviews were conducted with informants of persons with DS without dementia (DS, n = 149), with questionable dementia (DS+Q, n = 65), and with diagnosed dementia (DS+AD, n = 67). First exploratory data suggest promising interrater, test-retest, and internal consistency reliability measures. Concerning item relevance, group comparisons revealed pronounced increases in frequency and severity in items of anxiety, sleep disturbances, agitation & stereotypical behavior, aggression, apathy, depressive symptoms, and eating/drinking behavior. The proportion of individuals presenting an increase was highest in DS+AD, intermediate in DS+Q, and lowest in DS. Interestingly, among DS+Q individuals, a substantial proportion already presented increased anxiety, sleep disturbances, apathy, and depressive symptoms, suggesting that these changes occur early in the course of AD. Future efforts should optimize the scale based on current results and clinical experiences, and further study applicability, reliability, and validity. Future application of the scale in daily care may aid caregivers to understand changes, and contribute to timely interventions and adaptation of caregiving. PMID:29689719
Myrick, Jessica Gall; Noar, Seth M; Kelley, Dannielle; Zeitany, Alexandra E; Morales-Pico, Brenda M; Thomas, Nancy E
2017-01-01
In order to better understand drivers of dangerous indoor tanning behaviors, researchers developed the Comprehensive Indoor Tanning Expectations scale. To examine the longitudinal effectiveness of Comprehensive Indoor Tanning Expectations, we surveyed young women in the Southeastern United States at two time points ( N = 553). The scale demonstrated strong test-retest reliability. Participants who believed indoor tanning would improve their mood and afford social approval were significantly more likely to tan 6 months later, while participants who believed indoor tanning leads to psychological/physical discomfort were significantly less likely to tan 6 months later. Knowing the psychological bases for indoor tanning can inform intervention and message design.
Ditching Investigation of a 1/10-Scale Model of the Grumman F9F-2 Airplane, TED No. NACA DE 335
NASA Technical Reports Server (NTRS)
Fisher, Lloyd J.; McBride, Ellis E.
1955-01-01
An investigation was made of a 1/10-scale dynamically similar model of the Grumman FgF-2 airplane to study its behavior when ditched. The model was landed in calm water at the Langley Tank No. 2 monorail. Various landing attitudes, speeds, and configurations were investigated. The behavior of the model was determined from visual observations, acceleration records, and motion-picture records of the ditchings. Data are presented in tabular form, sequence photographs, time-history acceleration curves, and plots of attitude and speed against distance after contact.
Scaling properties of a rice-pile model: inertia and friction effects.
Khfifi, M; Loulidi, M
2008-11-01
We present a rice-pile cellular automaton model that includes inertial and friction effects. This model is studied in one dimension, where the updating of metastable sites is done according to a stochastic dynamics governed by a probabilistic toppling parameter p that depends on the accumulated energy of moving grains. We investigate the scaling properties of the model using finite-size scaling analysis. The avalanche size, the lifetime, and the residence time distributions exhibit a power-law behavior. Their corresponding critical exponents, respectively, tau, y, and yr, are not universal. They present continuous variation versus the parameters of the system. The maximal value of the critical exponent tau that our model gives is very close to the experimental one, tau=2.02 [Frette, Nature (London) 379, 49 (1996)], and the probability distribution of the residence time is in good agreement with the experimental results. We note that the critical behavior is observed only in a certain range of parameter values of the system which correspond to low inertia and high friction.
Sekerci, Yasemin Gümüs; Kitis, Yeter
2018-05-08
In this study, we examined the effects of exercise education and a motivational interview program, based on the stages of change model (SCM), on stage of change, using cognitive and behavioral methods, perceived benefits and barriers and self-confidence in Turkish women with diabetes. This intervention study was carried out in 2015 on 55 women selected from a family health centers' population. An exercise guide was prepared based on the SCM for the intervention group. The intervention group was followed seven times at 1-month intervals via home visits, and exercise education and the motivational interview program were conducted to identify changes in behavior. The control group received no intervention. Data were collected from both groups using a personal description form, Exercise Stages of Change Scale, Exercise Processes of Change Scale, Exercise Decisional Balance Scale, and Exercise Self-Efficacy Scale. After the exercise program, each group was re-subjected to the same scales. We used a chi-square test and independent and paired sample t-tests to analyze the data. The stages of change, using cognitive and behavioral methods, perceived benefits and self-confidence for exercise in the intervention group significantly improved compared with that in the control group (p < .05). In the intervention group, 81.5% of the participants started exercising. The exercise education and motivational interview program based on SCM positively affected stages of change, using cognitive and behavioral methods, perceived benefits, perceived barriers, and self-confidence for exercise behavior in women with diabetes. We conclude that the education and motivational interview program based on SCM are effective in promoting exercise habit.
Fluctuation scaling of quotation activities in the foreign exchange market
NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro; Nishimura, Maiko; Hołyst, Janusz A.
2010-07-01
We study the scaling behavior of quotation activities for various currency pairs in the foreign exchange market. The components’ centrality is estimated from multiple time series and visualized as a currency pair network. The power-law relationship between a mean of quotation activity and its standard deviation for each currency pair is found. The scaling exponent α and the ratio between common and specific fluctuations η increase with the length of the observation time window Δt. The result means that although for Δt=1 (min), the market dynamics are governed by specific processes, and at a longer time scale Δt>100 (min) the common information flow becomes more important. We point out that quotation activities are not independently Poissonian for Δt=1 (min), and temporally or mutually correlated activities of quotations can happen even at this time scale. A stochastic model for the foreign exchange market based on a bipartite graph representation is proposed.
NASA Astrophysics Data System (ADS)
Im, Kyungjae; Elsworth, Derek; Marone, Chris; Leeman, John
2017-12-01
Interseismic frictional healing is an essential process in the seismic cycle. Observations of both natural and laboratory earthquakes demonstrate that the magnitude of stress drop scales with the logarithm of recurrence time, which is a cornerstone of the rate and state friction (RSF) laws. However, the origin of this log linear behavior and short time "cutoff" for small recurrence intervals remains poorly understood. Here we use RSF laws to demonstrate that the back-projected time of null-healing intrinsically scales with the initial frictional state θi. We explore this behavior and its implications for (1) the short-term cutoff time of frictional healing and (2) the connection between healing rates derived from stick-slip sliding versus slide-hold-slide tests. We use a novel, continuous solution of RSF for a one-dimensional spring-slider system with inertia. The numerical solution continuously traces frictional state evolution (and healing) and shows that stick-slip cutoff time also scales with frictional state at the conclusion of the dynamic slip process θi (=Dc/Vpeak). This numerical investigation on the origins of stick-slip response is verified by comparing laboratory data for a range of peak slip velocities. Slower slip motions yield lesser magnitude of friction drop at a given time due to higher frictional state at the end of each slip event. Our results provide insight on the origin of log linear stick-slip evolution and suggest an approach to estimating the critical slip distance on faults that exhibit gradual accelerations, such as for slow earthquakes.
ERIC Educational Resources Information Center
Menzies, Holly M.; Lane, Kathleen Lynne
2012-01-01
In this study the authors examined the psychometric properties of the "Student Risk Screening Scale" (SRSS), including predictive validity in terms of student outcomes in behavioral and academic domains. The school, a diverse, suburban school in Southern California, administered the SRSS at three time points as part of regular school…
Experimental Investigation of the Behavior of Sub-Grid Scale Motions in Turbulent Shear Flow
NASA Technical Reports Server (NTRS)
Cantwell, Brian
1992-01-01
Experiments have been carried out on a vertical jet of helium issuing into a co-flow of air at a fixed exit velocity ratio of 2.0. At all the experimental conditions studied, the flow exhibits a strong self excited periodicity. The natural frequency behavior of the jet, the underlying fine-scale flow structure, and the transition to turbulence have been studied over a wide range of flow conditions. The experiments were conducted in a variable pressure facility which made it possible to vary the Reynolds number and Richardson number independently. A stroboscopic schlieren system was used for flow visualization and single-component Laser Doppler Anemometry was used to measure the axial component of velocity. The flow exhibits several interesting features. The presence of co-flow eliminates the random meandering typical of buoyant plumes in a quiescent environment and the periodicity of the helium jet under high Richardson number conditions is striking. Under these conditions transition to turbulence consists of a rapid but highly structured and repeatable breakdown and intermingling of jet and freestream fluid. At Ri = 1.6 the three-dimensional structure of the flow is seen to repeat from cycle to cycle. The point of transition moves closer to the jet exit as either the Reynolds number or the Richardson number increases. The wavelength of the longitudinal instability increases with Richardson number. At low Richardson numbers, the natural frequency scales on an inertial time scale. At high Richardson number the natural frequency scales on a buoyancy time scale. The transition from one flow regime to another occurs over a narrow range of Richardson numbers from 0.7 to 1. A buoyancy Strouhal number is used to correlate the high Richardson number frequency behavior.
Yang, Luke; Liu, Yung-Fang; Sun, Huey-Fang; Chiang, Hsien-Hsien; Tsai, Yu-Lun; Liaw, Jen-Jiuan
2017-03-01
The study purpose was to examine the validities and reliabilities of the Chinese-versions Frommelt Attitudes Toward Care of the Dying Scale (Attitudes Scale) and Caregiving Behaviors Scale for End-of-Life Patients and Families (Behaviors Scale). The scales were tested in a convenience sample of 318 nurses with ≥6 months work experience at three hospitals. Cronbach's alphas of the Attitudes and Behaviors Scales were .90 and .96, respectively. Each scale had Kaiser-Meyer-Olkin index >.85 and Bartlett's test of sphericity >4000 ( p < .001). Attitudes Scale loaded on three factors: respecting and caring for dying patients and families, avoiding care of the dying, and involving patients and families in end-of-life care. The Behaviors Scale loaded on two factors: supporting dying patients and families, and helping families cope with grief. Factor loadings for both scales were ≥.49. Both Attitudes and Behaviors Scales are reliable and valid for evaluating nurses' attitudes and caregiving behaviors for the dying.
Omori's law in the Internet traffic
NASA Astrophysics Data System (ADS)
Abe, S.; Suzuki, N.
2003-03-01
The Internet is a complex system, whose temporal behavior is highly nonstationary and exhibits sudden drastic changes regarded as main shocks or catastrophes. Here, analyzing a set of time series data of round-trip time measured in echo experiment with the Ping Command, the property of "aftershocks" (i.e., catastrophes of smaller scales) after a main shock is studied. It is found that the aftershocks obey Omori's law. Thus, the Internet shares with earthquakes and financial-market crashes a common scale-invariant feature in the temporal patterns of aftershocks.
Scaling properties of Polish rain series
NASA Astrophysics Data System (ADS)
Licznar, P.
2009-04-01
Scaling properties as well as multifractal nature of precipitation time series have not been studied for local Polish conditions until recently due to lack of long series of high-resolution data. The first Polish study of precipitation time series scaling phenomena was made on the base of pluviograph data from the Wroclaw University of Environmental and Life Sciences meteorological station located at the south-western part of the country. The 38 annual rainfall records from years 1962-2004 were converted into digital format and transformed into a standard format of 5-minute time series. The scaling properties and multifractal character of this material were studied by means of several different techniques: power spectral density analysis, functional box-counting, probability distribution/multiple scaling and trace moment methods. The result proved the general scaling character of time series at the range of time scales ranging form 5 minutes up to at least 24 hours. At the same time some characteristic breaks at scaling behavior were recognized. It is believed that the breaks were artificial and arising from the pluviograph rain gauge measuring precision limitations. Especially strong limitations at the precision of low-intensity precipitations recording by pluviograph rain gauge were found to be the main reason for artificial break at energy spectra, as was reported by other authors before. The analysis of co-dimension and moments scaling functions showed the signs of the first-order multifractal phase transition. Such behavior is typical for dressed multifractal processes that are observed by spatial or temporal averaging on scales larger than the inner-scale of those processes. The fractal dimension of rainfall process support derived from codimension and moments scaling functions geometry analysis was found to be 0.45. The same fractal dimension estimated by means of the functional box-counting method was equal to 0.58. At the final part of the study implementation of double trace moment method allowed for estimation of local universal multifractal rainfall parameters (α=0.69; C1=0.34; H=-0.01). The research proved the fractal character of rainfall process support and multifractal character of the rainfall intensity values variability among analyzed time series. It is believed that scaling of local Wroclaw's rainfalls for timescales at the range from 24 hours up to 5 minutes opens the door for future research concerning for example random cascades implementation for daily precipitation totals disaggregation for smaller time intervals. The results of such a random cascades functioning in a form of 5 minute artificial rainfall scenarios could be of great practical usability for needs of urban hydrology, and design and hydrodynamic modeling of storm water and combined sewage conveyance systems.
Aging in the three-dimensional random-field Ising model
NASA Astrophysics Data System (ADS)
von Ohr, Sebastian; Manssen, Markus; Hartmann, Alexander K.
2017-07-01
We studied the nonequilibrium aging behavior of the random-field Ising model in three dimensions for various values of the disorder strength. This allowed us to investigate how the aging behavior changes across the ferromagnetic-paramagnetic phase transition. We investigated a large system size of N =2563 spins and up to 108 Monte Carlo sweeps. To reach these necessary long simulation times, we employed an implementation running on Intel Xeon Phi coprocessors, reaching single-spin-flip times as short as 6 ps. We measured typical correlation functions in space and time to extract a growing length scale and corresponding exponents.
The statistical overlap theory of chromatography using power law (fractal) statistics.
Schure, Mark R; Davis, Joe M
2011-12-30
The chromatographic dimensionality was recently proposed as a measure of retention time spacing based on a power law (fractal) distribution. Using this model, a statistical overlap theory (SOT) for chromatographic peaks is developed that estimates the number of peak maxima as a function of the chromatographic dimension, saturation and scale. Power law models exhibit a threshold region whereby below a critical saturation value no loss of peak maxima due to peak fusion occurs as saturation increases. At moderate saturation, behavior is similar to the random (Poisson) peak model. At still higher saturation, the power law model shows loss of peaks nearly independent of the scale and dimension of the model. The physicochemical meaning of the power law scale parameter is discussed and shown to be equal to the Boltzmann-weighted free energy of transfer over the scale limits. The scale is discussed. Small scale range (small β) is shown to generate more uniform chromatograms. Large scale range chromatograms (large β) are shown to give occasional large excursions of retention times; this is a property of power laws where "wild" behavior is noted to occasionally occur. Both cases are shown to be useful depending on the chromatographic saturation. A scale-invariant model of the SOT shows very simple relationships between the fraction of peak maxima and the saturation, peak width and number of theoretical plates. These equations provide much insight into separations which follow power law statistics. Copyright © 2011 Elsevier B.V. All rights reserved.
Timescales of Massive Human Entrainment
Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick
2015-01-01
The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment—as expressed by the content and patterns of hundreds of thousands of messages on Twitter—during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5–10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357
Intermittent Granular Dynamics at a Seismogenic Plate Boundary.
Meroz, Yasmine; Meade, Brendan J
2017-09-29
Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10^{-15} s^{-1}, and released intermittently at intervals >100 yr, in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91±20 km, here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.
Intermittent Granular Dynamics at a Seismogenic Plate Boundary
NASA Astrophysics Data System (ADS)
Meroz, Yasmine; Meade, Brendan J.
2017-09-01
Earthquakes at seismogenic plate boundaries are a response to the differential motions of tectonic blocks embedded within a geometrically complex network of branching and coalescing faults. Elastic strain is accumulated at a slow strain rate on the order of 10-15 s-1 , and released intermittently at intervals >100 yr , in the form of rapid (seconds to minutes) coseismic ruptures. The development of macroscopic models of quasistatic planar tectonic dynamics at these plate boundaries has remained challenging due to uncertainty with regard to the spatial and kinematic complexity of fault system behaviors. The characteristic length scale of kinematically distinct tectonic structures is particularly poorly constrained. Here, we analyze fluctuations in Global Positioning System observations of interseismic motion from the southern California plate boundary, identifying heavy-tailed scaling behavior. Namely, we show that, consistent with findings for slowly sheared granular media, the distribution of velocity fluctuations deviates from a Gaussian, exhibiting broad tails, and the correlation function decays as a stretched exponential. This suggests that the plate boundary can be understood as a densely packed granular medium, predicting a characteristic tectonic length scale of 91 ±20 km , here representing the characteristic size of tectonic blocks in the southern California fault network, and relating the characteristic duration and recurrence interval of earthquakes, with the observed sheared strain rate, and the nanosecond value for the crack tip evolution time scale. Within a granular description, fault and blocks systems may rapidly rearrange the distribution of forces within them, driving a mixture of transient and intermittent fault slip behaviors over tectonic time scales.
The behavior of commensurate-incommensurate transitions using the phase field crystal model
NASA Astrophysics Data System (ADS)
Zhang, Tinghui; Lu, Yanli; Chen, Zheng
2018-02-01
We study the behavior of the commensurate-incommensurate (CI) transitions by using a phase field crystal model. The model is capable of modeling both elastic and plastic deformation and can simulate the evolution of the microstructure of the material at the atomic scale and the diffusive time scale, such as for adsorbed monolayer. Specifically, we study the behavior of the CI transitions as a function of lattice mismatch and the amplitude of substrate pinning potential. The behavior of CI phase transitions is revealed with the increase of the amplitude of pinning potential in some certain lattice mismatches. We find that for the negative lattice mismatch absorbed monolayer undergoes division, reorganization and displacement as increasing the amplitude of substrate pinning potential. In addition, for the positive mismatch absorbed monolayer undergoes a progress of phase transformation after a complete grain is split. Our results accord with simulations for atomic models of absorbed monolayer on a substrate surface.
Can, Doğan; Marín, Rebeca A.; Georgiou, Panayiotis G.; Imel, Zac E.; Atkins, David C.; Narayanan, Shrikanth S.
2016-01-01
The dissemination and evaluation of evidence based behavioral treatments for substance abuse problems rely on the evaluation of counselor interventions. In Motivational Interviewing (MI), a treatment that directs the therapist to utilize a particular linguistic style, proficiency is assessed via behavioral coding - a time consuming, non-technological approach. Natural language processing techniques have the potential to scale up the evaluation of behavioral treatments like MI. We present a novel computational approach to assessing components of MI, focusing on one specific counselor behavior – reflections – that are believed to be a critical MI ingredient. Using 57 sessions from 3 MI clinical trials, we automatically detected counselor reflections in a Maximum Entropy Markov Modeling framework using the raw linguistic data derived from session transcripts. We achieved 93% recall, 90% specificity, and 73% precision. Results provide insight into the linguistic information used by coders to make ratings and demonstrate the feasibility of new computational approaches to scaling up the evaluation of behavioral treatments. PMID:26784286
Achieving behavioral control with millisecond resolution in a high-level programming environment.
Asaad, Wael F; Eskandar, Emad N
2008-08-30
The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.
Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M.; Kapteyn, Henry C.; Tao, Zhensheng; Murnane, Margaret M.
2018-01-01
It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization. PMID:29511738
Tengdin, Phoebe; You, Wenjing; Chen, Cong; Shi, Xun; Zusin, Dmitriy; Zhang, Yingchao; Gentry, Christian; Blonsky, Adam; Keller, Mark; Oppeneer, Peter M; Kapteyn, Henry C; Tao, Zhensheng; Murnane, Margaret M
2018-03-01
It has long been known that ferromagnets undergo a phase transition from ferromagnetic to paramagnetic at the Curie temperature, associated with critical phenomena such as a divergence in the heat capacity. A ferromagnet can also be transiently demagnetized by heating it with an ultrafast laser pulse. However, to date, the connection between out-of-equilibrium and equilibrium phase transitions, or how fast the out-of-equilibrium phase transitions can proceed, was not known. By combining time- and angle-resolved photoemission with time-resolved transverse magneto-optical Kerr spectroscopies, we show that the same critical behavior also governs the ultrafast magnetic phase transition in nickel. This is evidenced by several observations. First, we observe a divergence of the transient heat capacity of the electron spin system preceding material demagnetization. Second, when the electron temperature is transiently driven above the Curie temperature, we observe an extremely rapid change in the material response: The spin system absorbs sufficient energy within the first 20 fs to subsequently proceed through the phase transition, whereas demagnetization and the collapse of the exchange splitting occur on much longer, fluence-independent time scales of ~176 fs. Third, we find that the transient electron temperature alone dictates the magnetic response. Our results are important because they connect the out-of-equilibrium material behavior to the strongly coupled equilibrium behavior and uncover a new time scale in the process of ultrafast demagnetization.
Kerner, Matthew S; Kalinski, Michael I
2002-08-01
Using the Theory of Planned Behavior as a framework, the Attitude to Leisure-time Physical Activity, Expectations of Others, Perceived Control, and Intention of Engage in Leisure-time Physical Activity scales were developed for use among high school students. The study population included 20 boys and 68 girls 13 to 17 years of age (for boys, M = 15.1 yr., SD = 1.0; for girls, M = 15.0 yr., SD = 1.1). Generation of items and the establishment of content validity were performed by professionals in exercise physiology, physical education, and clinical psychology. Each scale item was phrased in a Likert-type format. Both unipolar and bipolar scales with seven response choices were developed. Following the pilot testing and subsequent revisions, 32 items were retained in the Attitude to Leisure-time Physical Activity scale, 10 items were retained in the Expectations of Others scale, 3 items were retained in the Perceived Control Scale, and 24 items were retained in the Intention to Engage in Leisure-time Physical Activity scale. Coefficients indicated adequate stability and internal consistency with alpha ranging from .81 to .96. Studies of validities are underway, after which scales would be made available to those interested in intervention techniques for promoting positive attitudes toward physical fitness, perception of control over engaging in leisure-time physical activities, and good intentions to engage in leisure-time physical activities. The present results are encouraging.
Jan C. Thomas; Eric V. Mueller; Simon Santamaria; Michael Gallagher; Mohamad El Houssami; Alexander Filkov; Kenneth Clark; Nicholas Skowronski; Rory M. Hadden; William Mell; Albert Simeoni
2017-01-01
An experimental approach has been developed to quantify the characteristics and flux of firebrands during a management-scale wildfire in a pine-dominated ecosystem. By characterizing the local fire behavior and measuring the temporal and spatial variation in firebrand collection, the flux of firebrands has been related to the fire behavior for the first time. This...
Puberty suppression in adolescents with gender identity disorder: a prospective follow-up study.
de Vries, Annelou L C; Steensma, Thomas D; Doreleijers, Theo A H; Cohen-Kettenis, Peggy T
2011-08-01
Puberty suppression by means of gonadotropin-releasing hormone analogues (GnRHa) is used for young transsexuals between 12 and 16 years of age. The purpose of this intervention is to relieve the suffering caused by the development of secondary sex characteristics and to provide time to make a balanced decision regarding actual gender reassignment. To compare psychological functioning and gender dysphoria before and after puberty suppression in gender dysphoric adolescents. Of the first 70 eligible candidates who received puberty suppression between 2000 and 2008, psychological functioning and gender dysphoria were assessed twice: at T0, when attending the gender identity clinic, before the start of GnRHa; and at T1, shortly before the start of cross-sex hormone treatment. Behavioral and emotional problems (Child Behavior Checklist and the Youth-Self Report), depressive symptoms (Beck Depression Inventory), anxiety and anger (the Spielberger Trait Anxiety and Anger Scales), general functioning (the clinician's rated Children's Global Assessment Scale), gender dysphoria (the Utrecht Gender Dysphoria Scale), and body satisfaction (the Body Image Scale) were assessed. Behavioral and emotional problems and depressive symptoms decreased, while general functioning improved significantly during puberty suppression. Feelings of anxiety and anger did not change between T0 and T1. While changes over time were equal for both sexes, compared with natal males, natal females were older when they started puberty suppression and showed more problem behavior at both T0 and T1. Gender dysphoria and body satisfaction did not change between T0 and T1. No adolescent withdrew from puberty suppression, and all started cross-sex hormone treatment, the first step of actual gender reassignment. Puberty suppression may be considered a valuable contribution in the clinical management of gender dysphoria in adolescents. © 2010 International Society for Sexual Medicine.
NASA Astrophysics Data System (ADS)
Gintautas, Vadas; Hubler, Alfred
2006-03-01
As worldwide computer resources increase in power and decrease in cost, real-time simulations of physical systems are becoming increasingly prevalent, from laboratory models to stock market projections and entire ``virtual worlds'' in computer games. Often, these systems are meticulously designed to match real-world systems as closely as possible. We study the limiting behavior of a virtual horizontally driven pendulum coupled to its real-world counterpart, where the interaction occurs on a time scale that is much shorter than the time scale of the dynamical system. We find that if the physical parameters of the virtual system match those of the real system within a certain tolerance, there is a qualitative change in the behavior of the two-pendulum system as the strength of the coupling is increased. Applications include a new method to measure the physical parameters of a real system and the use of resonance spectroscopy to refine a computer model. As virtual systems better approximate real ones, even very weak interactions may produce unexpected and dramatic behavior. The research is supported by the National Science Foundation Grant No. NSF PHY 01-40179, NSF DMS 03-25939 ITR, and NSF DGE 03-38215.
Complexity multiscale asynchrony measure and behavior for interacting financial dynamics
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Niu, Hongli
2016-08-01
A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.
Laplacian scale-space behavior of planar curve corners.
Zhang, Xiaohong; Qu, Ying; Yang, Dan; Wang, Hongxing; Kymer, Jeff
2015-11-01
Scale-space behavior of corners is important for developing an efficient corner detection algorithm. In this paper, we analyze the scale-space behavior with the Laplacian of Gaussian (LoG) operator on a planar curve which constructs Laplacian Scale Space (LSS). The analytical expression of a Laplacian Scale-Space map (LSS map) is obtained, demonstrating the Laplacian Scale-Space behavior of the planar curve corners, based on a newly defined unified corner model. With this formula, some Laplacian Scale-Space behavior is summarized. Although LSS demonstrates some similarities to Curvature Scale Space (CSS), there are still some differences. First, no new extreme points are generated in the LSS. Second, the behavior of different cases of a corner model is consistent and simple. This makes it easy to trace the corner in a scale space. At last, the behavior of LSS is verified in an experiment on a digital curve.
Schizotypal Perceptual Aberrations of Time: Correlation between Score, Behavior and Brain Activity
Arzy, Shahar; Mohr, Christine; Molnar-Szakacs, Istvan; Blanke, Olaf
2011-01-01
A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances – including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum. PMID:21267456
Millisecond-Scale Motor Encoding in a Cortical Vocal Area
NASA Astrophysics Data System (ADS)
Nemenman, Ilya; Tang, Claire; Chehayeb, Diala; Srivastava, Kyle; Sober, Samuel
2015-03-01
Studies of motor control have almost universally examined firing rates to investigate how the brain shapes behavior. In principle, however, neurons could encode information through the precise temporal patterning of their spike trains as well as (or instead of) through their firing rates. Although the importance of spike timing has been demonstrated in sensory systems, it is largely unknown whether timing differences in motor areas could affect behavior. We tested the hypothesis that significant information about trial-by-trial variations in behavior is represented by spike timing in the songbird vocal motor system. We found that neurons in motor cortex convey information via spike timing far more often than via spike rate and that the amount of information conveyed at the millisecond timescale greatly exceeds the information available from spike counts. These results demonstrate that information can be represented by spike timing in motor circuits and suggest that timing variations evoke differences in behavior. This work was supported in part by the National Institutes of Health, National Science Foundation, and James S. McDonnell Foundation
Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas
2013-10-01
The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.
Dependence of the friction strengthening of graphene on velocity.
Zeng, Xingzhong; Peng, Yitian; Liu, Lei; Lang, Haojie; Cao, Xing'an
2018-01-25
Graphene shows great potential applications as a solid lubricant in micro- and nanoelectromechanical systems (MEMS/NEMS). An atomic-scale friction strengthening effect in a few initial atomic friction periods usually occurred on few-layer graphene. Here, velocity dependent friction strengthening was observed in atomic-scale frictional behavior of graphene by atomic force microscopy (AFM). The degree of the friction strengthening decreases with the increase of velocity first and then reaches a plateau. This could be attributed to the interaction potential between the tip and graphene at high velocity which is weaker than that at low velocity, because the strong tip-graphene contact interface needs a longer time to evolve. The subatomic-scale stick-slip behavior in the conventional stick-slip motion supports the weak interaction between the tip and graphene at high velocity. These findings can provide a deeper understanding of the atomic-scale friction mechanism of graphene and other two-dimensional materials.
Brierley, Gary; Fryirs, Kirstie
2009-06-01
Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to 'fight the site.'
Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng
2015-07-01
The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures themore » effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.« less
A scalable population code for time in the striatum.
Mello, Gustavo B M; Soares, Sofia; Paton, Joseph J
2015-05-04
To guide behavior and learn from its consequences, the brain must represent time over many scales. Yet, the neural signals used to encode time in the seconds-to-minute range are not known. The striatum is a major input area of the basal ganglia associated with learning and motor function. Previous studies have also shown that the striatum is necessary for normal timing behavior. To address how striatal signals might be involved in timing, we recorded from striatal neurons in rats performing an interval timing task. We found that neurons fired at delays spanning tens of seconds and that this pattern of responding reflected the interaction between time and the animals' ongoing sensorimotor state. Surprisingly, cells rescaled responses in time when intervals changed, indicating that striatal populations encoded relative time. Moreover, time estimates decoded from activity predicted timing behavior as animals adjusted to new intervals, and disrupting striatal function led to a decrease in timing performance. These results suggest that striatal activity forms a scalable population code for time, providing timing signals that animals use to guide their actions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evaluation of scaling invariance embedded in short time series.
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.
Evaluation of Scaling Invariance Embedded in Short Time Series
Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping
2014-01-01
Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356
An integrative neuroscience model of "significance" processing.
Williams, Leanne M
2006-03-01
The Gordon [37-40] framework of Integrative Neuroscience is used to develop a continuum model for understanding the central role of motivationally-determined "significance" in organizing human information processing. Significance is defined as the property which gives a stimulus relevance to our core motivation to minimize danger and maximize pleasure. Within this framework, the areas of cognition and emotion, theories of motivational arousal and orienting, and the current understanding of neural systems are brought together. The basis of integration is a temporal continuum in which significance processing extends from the most rapid millisecond time scale of automatic, nonconscious mechanisms to the time scale of seconds, in which memory is shaped, to the controlled and conscious mechanisms unfolding over minutes. Over this continuum, significant stimuli are associated with a spectrum of defensive (or consumptive) behaviors through to volitional regulatory behaviors for danger (versus pleasure) and associated brainstem, limbic, medial forebrain bundle and prefrontal circuits, all of which reflect a balance of excitatory (predominant at rapid time scales) to inhibitory mechanisms. Across the lifespan, the negative and positive outcomes of significance processing, coupled with constitutional and genetic factors, will contribute to plasticity, shaping individual adaptations and maladaptions in the balance of excitatory-inhibitory mechanisms.
Cyclic Oxidation Modeling Program Rewritten for MS Windows
NASA Technical Reports Server (NTRS)
Smialek, James L.; Auping, Judith V.
2002-01-01
Turbine superalloy components are subject to high-temperature oxidation during operation. Protection is often conferred by coatings designed to form slow-growing, adherent oxide scales. Degradation by oxidation is exacerbated by the thermal cycling encountered during normal aircraft operations. Cooling has been identified as the major contributor to stresses in the oxidation scales, and it may often cause some oxide scale spallation with a proportional loss of protective behavior. Overall oxidation resistance is, thus, studied by the weight change behavior of alloy coupons during high-temperature cyclic oxidation in furnace or burner rig tests. The various characteristics of this behavior are crucial in understanding the performance of alloys at high temperatures. This new modeling effort helps in the understanding of the major factors involved in the cyclic oxidation process. Weight change behavior in cyclic oxidation is typified by an initial parabolic weight gain response curve that eventually exhibits a maximum, then transitions into a linear rate of weight loss due to spalling. The overall shape and magnitude of the curve are determined by the parabolic growth rate, kp, the cycle duration, the type of oxide scale, and the regular, repetitive spalling process. This entire process was modeled by a computer program called the Cyclic Oxidation Spalling Program (COSP) previously developed at the NASA Glenn Research Center. Thus, by supplying appropriate oxidation input parameters, one can determine the best fit to the actual data. These parameters describe real behavior and can be used to compare alloys and project cyclic oxidation behavior for longer times or under different cycle frequencies.
Extraordinary Activity in the BL Lac Object OJ 287
NASA Astrophysics Data System (ADS)
Hughes, P. A.; Aller, H. D.; Aller, M. F.
We present the results of a wavelet transform analysis of data for the BL Lac object OJ 287 acquired as part of the UMRAO variability program. We find clear evidence for a persistent modulation of the total flux and polarization with period 1.66 years, and for another signal that dominates activity in the 1980s with period 1.12 years. It appears that the longer time scale periodicity is associated with an otherwise quiescent jet, and the shorter time scale activity is associated with the passage of a shock, or shocks. The periodic behavior in polarization exhibits excursions in U which correspond to a direction 45circ from the VLBI jet axis. This behavior suggests a small amplitude, cyclic variation in the flow direction in that part of the flow that dominates cm-wavelength emission.
Molecular dynamics of shock loading of metals with defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belak, J.F.
1997-12-31
The finite rise time of shock waves in metals is commonly attributed to dissipative or viscous behavior of the metal. This viscous or plastic behavior is commonly attributed to the motion of defects such as dislocations. Despite this intuitive understanding, the experimental observation of defect motion or nucleation during shock loading has not been possible due to the short time scales involved. Molecular dynamics modeling with realistic interatomic potentials can provide some insight into defect motion during shock loading. However, until quite recently, the length scale required to accurately represent a metal with defects has been beyond the scope ofmore » even the most powerful supercomputers. Here, the author presents simulations of the shock response of single defects and indicate how simulation might provide some insight into the shock loading of metals.« less
Pickett, Matthew D; Williams, R Stanley
2012-06-01
We built and measured the dynamical current versus time behavior of nanoscale niobium oxide crosspoint devices which exhibited threshold switching (current-controlled negative differential resistance). The switching speeds of 110 × 110 nm(2) devices were found to be Δt(ON) = 700 ps and Δt(OFF) = 2:3 ns while the switching energies were of the order of 100 fJ. We derived a new dynamical model based on the Joule heating rate of a thermally driven insulator-to-metal phase transition that accurately reproduced the experimental results, and employed the model to estimate the switching time and energy scaling behavior of such devices down to the 10 nm scale. These results indicate that threshold switches could be of practical interest in hybrid CMOS nanoelectronic circuits.
NASA Astrophysics Data System (ADS)
Yuan, Ye; Jin, Weiwei; Liu, Lufeng; Li, Shuixiang
2017-10-01
The critical behaviors of a granular system at the jamming transition have been extensively studied from both mechanical and thermodynamic perspectives. In this work, we numerically investigate the jamming behaviors of a variety of frictionless non-spherical particles, including spherocylinder, ellipsoid, spherotetrahedron and spherocube. In particular, for a given particle shape, a series of random configurations at different fixed densities are generated and relaxed to minimize interparticle overlaps using the relaxation algorithm. We find that as the jamming point (i.e., point J) is approached, the number of iteration steps (defined as the "time-scale" for our systems) required to completely relax the interparticle overlaps exhibits a clear power-law divergence. The dependence of the detailed mathematical form of the power-law divergence on particle shapes is systematically investigated and elucidated, which suggests that the shape effects can be generally categorized as elongation and roundness. Importantly, we show the jamming transition density can be accurately determined from the analysis of time-scale divergence for different non-spherical shapes, and the obtained values agree very well with corresponding ones reported in literature. Moreover, we study the plastic behaviors of over-jammed packings of different particles under a compression-expansion procedure and find that the jamming of ellipsoid is much more robust than other non-spherical particles. This work offers an alternative approximate procedure besides conventional packing algorithms for studying athermal jamming transition in granular system of frictionless non-spherical particles.
Scale and time dependence of serial correlations in word-length time series of written texts
NASA Astrophysics Data System (ADS)
Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.
2014-11-01
This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.
Psychological determinants of exercise behavior of nursing students.
Chan, Joanne Chung-Yan
2014-01-01
Though expected to be role models in health promotion, research has shown that nursing students often have suboptimal exercise behavior. This study explored the psychological factors associated with the exercise behavior of nursing students. A total of 195 first-year undergraduate nursing students completed a cross-sectional quantitative survey questionnaire, which included measures of their exercise behavior, the Physical Exercise Self-efficacy Scale, and the Exercise Barriers/Benefits Scale. The results showed that male students spent more time exercising and had higher exercise self-efficacy compared with female students, but there were no gender differences in the perceived barriers to or benefits of exercise. Fatigue brought on by exercising was the greatest perceived barrier to exercise, whereas increasing physical fitness and mental health were the greatest perceived benefits of exercise. Multiple linear regression showed that gender, exercise self-efficacy, perceived barriers to exercise, and perceived benefits of exercise were independent predictors of exercise behavior. Nurse educators can endeavor to promote exercise behavior among nursing students by highlighting the specific benefits of exercise, empowering students to overcome their perceived barriers to exercise, and enhancing students' exercise self-efficacy.
BrainLiner: A Neuroinformatics Platform for Sharing Time-Aligned Brain-Behavior Data
Takemiya, Makoto; Majima, Kei; Tsukamoto, Mitsuaki; Kamitani, Yukiyasu
2016-01-01
Data-driven neuroscience aims to find statistical relationships between brain activity and task behavior from large-scale datasets. To facilitate high-throughput data processing and modeling, we created BrainLiner as a web platform for sharing time-aligned, brain-behavior data. Using an HDF5-based data format, BrainLiner treats brain activity and data related to behavior with the same salience, aligning both behavioral and brain activity data on a common time axis. This facilitates learning the relationship between behavior and brain activity. Using a common data file format also simplifies data processing and analyses. Properties describing data are unambiguously defined using a schema, allowing machine-readable definition of data. The BrainLiner platform allows users to upload and download data, as well as to explore and search for data from the web platform. A WebGL-based data explorer can visualize highly detailed neurophysiological data from within the web browser, and a data-driven search feature allows users to search for similar time windows of data. This increases transparency, and allows for visual inspection of neural coding. BrainLiner thus provides an essential set of tools for data sharing and data-driven modeling. PMID:26858636
A scale-invariant internal representation of time.
Shankar, Karthik H; Howard, Marc W
2012-01-01
We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.
Gómez-Extremera, Manuel; Carpena, Pedro; Ivanov, Plamen Ch; Bernaola-Galván, Pedro A
2016-04-01
We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time series, which is a simple and useful approach to distinguish between systems with different dynamical properties but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time series into magnitude and sign series derived from the consecutive increments in the original series, and we study their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear properties of the composed series depend on the correlation exponents of their magnitude and sign series. Based on this information we propose a method to generate surrogate series with controlled correlation exponent and multifractal spectrum.
Impact of degree heterogeneity on the behavior of trapping in Koch networks
NASA Astrophysics Data System (ADS)
Zhang, Zhongzhi; Gao, Shuyang; Xie, Wenlei
2010-12-01
Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent γ of power-law degree distribution P(k )˜k-γ, which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent γ in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number N, which is obviously independent of γ and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where γ influences qualitatively the MFPT of trapping problem.
Castillo, Isabel; Tomás, Inés; Ntoumanis, Nikos; Bartholomew, Kimberley; Duda, Joan L; Balaguer, Isabel
2014-01-01
The purpose of this research was to translate into Spanish and examine the psychometric properties of the Spanish version of the Controlling Coach Behaviors Scale (CCBS) in male soccer players. The CCBS is a questionnaire designed to assess athletes' perceptions of sports coaches' controlling interpersonal style from the perspective of the self-determination theory. Study 1 tested the factorial structure of the translated scale using confirmatory factor analysis (CFA) and provided evidence of discriminant validity. Studies 2 and 3 examined the invariance across time and across competitive level via multi-sample CFA. Reliability analyses were also conducted. The CFA results revealed that a four-factor model was acceptable, indicating that a controlling interpersonal style is a multidimensional construct represented by four separate and related controlling coaching strategies. Further, results supported the invariance of the CCBS factor structure across time and competitive level and provided support for the internal consistency of the scale. Overall, the CCBS demonstrated adequate internal consistency, as well as good factorial validity. The Spanish version of the CCBS represents a valid and reliable adaptation of the instrument, which can be confidently used to measure soccer players' perceptions of their coaches' controlling interpersonal style.
Scaling of prosocial behavior in cities
NASA Astrophysics Data System (ADS)
Arbesman, Samuel; Christakis, Nicholas A.
2011-06-01
Previous research has examined how various behaviors scale in cities in relation to their population sizes. Behavior related to innovation and productivity has been found to increase per capita as the size of the city increases, a phenomenon known as superlinear scaling. Criminal behavior has also been found to scale superlinearly. Here we examine a variety of prosocial behaviors (e.g., voting and organ donation), which also would be presumed to be categorized into a single class of scaling with population. We find that, unlike productivity and innovation, prosocial behaviors do not scale in a unified manner. We argue how this might be due to the nature of interactions that are distinct for different prosocial behaviors.
Scientific and Technological Foundations for Scaling Production of Nanostructured Metals
NASA Astrophysics Data System (ADS)
Lowe, Terry C.; Davis, Casey F.; Rovira, Peter M.; Hayne, Mathew L.; Campbell, Gordon S.; Grzenia, Joel E.; Stock, Paige J.; Meagher, Rilee C.; Rack, Henry J.
2017-05-01
Severe Plastic Deformation (SPD) has been explored in a wide range of metals and alloys. However, there are only a few industrial scale implementations of SPD for commercial alloys. To demonstrate and evolve technology for producing ultrafine grain metals by SPD, a Nanostructured Metals Manufacturing Testbed (NMMT) has been established in Golden, Colorado. Machines for research scale and pilot scale Equal Channel Angular Pressing-Conform (ECAP-C) technology have been configured in the NMMT to systematically evaluate and evolve SPD processing and advance the foundational science and technology for manufacturing. We highlight the scientific and technological areas that are critical for scale up of continuous SPD of aluminum, copper, magnesium, titanium, and iron-based alloys. Key areas that we will address in this presentation include the need for comprehensive analysis of starting microstructures, data on operating deformation mechanisms, high pressure thermodynamics and phase transformation kinetics, tribological behaviors, temperature dependence of lubricant properties, adaptation of tolerances and shear intensity to match viscoplastic behaviors, real-time process monitoring, and mechanics of billet/tooling interactions.
Time-series modeling of long-term weight self-monitoring data.
Helander, Elina; Pavel, Misha; Jimison, Holly; Korhonen, Ilkka
2015-08-01
Long-term self-monitoring of weight is beneficial for weight maintenance, especially after weight loss. Connected weight scales accumulate time series information over long term and hence enable time series analysis of the data. The analysis can reveal individual patterns, provide more sensitive detection of significant weight trends, and enable more accurate and timely prediction of weight outcomes. However, long term self-weighing data has several challenges which complicate the analysis. Especially, irregular sampling, missing data, and existence of periodic (e.g. diurnal and weekly) patterns are common. In this study, we apply time series modeling approach on daily weight time series from two individuals and describe information that can be extracted from this kind of data. We study the properties of weight time series data, missing data and its link to individuals behavior, periodic patterns and weight series segmentation. Being able to understand behavior through weight data and give relevant feedback is desired to lead to positive intervention on health behaviors.
NASA Astrophysics Data System (ADS)
Sobolowski, Stefan; Chen, Linling; Miles, Victoria
2016-04-01
The outlet glaciers along the margins of the Greenland Ice Sheet (GrIS) exhibit a range of behaviors, which are crucial for understanding GrIS mass changes from a dynamical point of view. However, the drivers of this behavior are still poorly understood. Arguments (counter-arguments) have been made for a strong (weak) local oceanic influence on marine terminating outlet glaciers while decadal-scale drivers linked to fluctuations in the Ice sheet itself and the North Atlantic ocean (e.g. Atlantic Multidecadal Variability) have also been posited as drivers. Recently there have also been studies linking (e.g. seasonal to interannual) atmospheric variability, synoptic activity and the Ice Sheet variability. But these studies typically investigate atmospheric links to the large-scale behavior of the Ice Sheet itself and do not go down to the scale of the outlet glaciers. Conversely, investigations of the outlet glaciers often do not include potential links to non-local atmospheric dynamics. Here the authors attempt to bridge the gap and investigate the relationship between atmospheric variability across a range of scales and the behavior of three outlet glaciers on Greenland's southeast coast over a 33-year period (1980-2012). The glaciers - Helheim, Midgard and Fenris - are near Tasiilaq, are marine terminating and exhibit varying degree of connection to the GrIS. ERA-Interim reanalysis, sea-ice data and glacier observations are used for the investigation. Long records of mass balance are unavailable for these glaciers and front position is employed as a measure of glacier atmosphere interactions across multiple scales, as it exhibits robust relationships to atmospheric variability on time scales of seasons to many years, with the strongest relationships seen at seasonal - interannual time scales. The authors do not make the argument that front position is a suitable proxy for mass balance, only that it is indicative of the role of local and remote atmospheric/climate dynamics in glacier behavior. Our study suggests a strong relationship between large-scale tropospheric circulation patterns, such as the so-called Greenland Blocking Index (GBI), and glacier front position. This relationship is seen in the wintertime (summertime) circulation influence on spring (fall) front position. Dynamically, a physical pathway is illustrated via canonical correlation analyses and composites of low-mid level winds, which show strong southerly advection into the region when the GBI is positive. There are also potential links between local and remote diabatic heating in the atmospheric column, SSTs, sea-ice concentration and front position. Whether there are physical pathways connecting remote surface processes, such as heating along western Greenland is not yet clear. Causality is always difficult to infer in reanalysis-based studies but physical intuition and theory provide multiple lines of evidence, which suggest a substantial influence of large-scale atmospheric dynamics at the margins of the GrIS. Improving our understanding of these physical connections will be crucial, as we know the outlet glaciers will respond under rapidly changing climate conditions.
Autistic characteristics in adults with epilepsy and perceived seizure activity.
Wakeford, SallyAnn; Hinvest, Neal; Ring, Howard; Brosnan, Mark
2015-11-01
The prevalence of autism spectrum disorders in epilepsy is approximately 15%-47%, with previous research by Wakeford and colleagues reporting higher autistic traits in adults with epilepsy. The aim of this study was to investigate autistic characteristics and their relationship to having seizures by employing two behavioral assessments in two samples: adults with epilepsy and controls. The study employed the Social Responsiveness Scale - Shortened (SRS-S) (patients with epilepsy (n=76), control (n=19)) and the brief Repetitive Behavior Scale - Revised (RBS-R) (patients with epilepsy (n=47), control (n=21)). This study employed a unique method to quantify the extent to which autistic characteristics are related to perceived mild seizure activity. Adults with epilepsy were instructed to rate their usual behavior on each assessment and, at the same time, rate their behavior again when they perceived that they were having mild seizure activity. Significantly higher SRS-S scores were related to having a diagnosis of epilepsy and were perceived by adults with epilepsy to increase during mild seizure activity. These scores positively correlated with antiepileptic drug control. No difference was found for RBS-R scores in adults with epilepsy compared with controls. Together, these results suggest that adults with epilepsy have higher autistic characteristics measured by the social responsiveness scale, while sameness behaviors remain unimpaired. The autistic characteristics measured by the social responsiveness scale were reported by adults with epilepsy to be more severe during their mild seizure activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Selection by consequences, behavioral evolution, and the price equation.
Baum, William M
2017-05-01
Price's equation describes evolution across time in simple mathematical terms. Although it is not a theory, but a derived identity, it is useful as an analytical tool. It affords lucid descriptions of genetic evolution, cultural evolution, and behavioral evolution (often called "selection by consequences") at different levels (e.g., individual vs. group) and at different time scales (local and extended). The importance of the Price equation for behavior analysis lies in its ability to precisely restate selection by consequences, thereby restating, or even replacing, the law of effect. Beyond this, the equation may be useful whenever one regards ontogenetic behavioral change as evolutionary change, because it describes evolutionary change in abstract, general terms. As an analytical tool, the behavioral Price equation is an excellent aid in understanding how behavior changes within organisms' lifetimes. For example, it illuminates evolution of response rate, analyses of choice in concurrent schedules, negative contingencies, and dilemmas of self-control. © 2017 Society for the Experimental Analysis of Behavior.
Sub-second changes in accumbal dopamine during sexual behavior in male rats.
Robinson, D L; Phillips, P E; Budygin, E A; Trafton, B J; Garris, P A; Wightman, R M
2001-08-08
Transient (200--900 ms), high concentrations (200--500 nM) of dopamine, measured using fast-scan cyclic voltammetry, occurred in the nucleus accumbens core of male rats at the presentation of a receptive female. Additional dopamine signals were observed during subsequent approach behavior. Background-subtracted cyclic voltammograms of the naturally-evoked signals matched those of electrically-evoked dopamine measured at the same recording sites. Administration of nomifensine amplified natural and evoked dopamine release, and increased the frequency of detectable signals. While gradual changes in dopamine concentration during sexual behavior have been well established, these findings dramatically improve the time resolution. The observed dopamine transients, probably resulting from neuronal burst firing, represent the first direct correlation of dopamine with sexual behavior on a sub-second time scale.
Wang, Su-Chin; Yu, Ching-Len; Chang, Su-Hsien
2017-02-01
The purpose was to examine the effectiveness of music care on cognitive function, depression, and behavioral problems among elderly people with dementia in long-term care facilities in Taiwan. The study had a quasi-experimental, longitudinal research design and used two groups of subjects. Subjects were not randomly assigned to experimental group (n = 90) or comparison group (n = 56). Based on Bandura's social cognition theory, subjects in the experimental group received Kagayashiki music care (KMC) twice per week for 24 weeks. Subjects in the comparison group were provided with activities as usual. Results found, using the control score of the Clifton Assessment Procedures for the Elderly Behavior Rating Scale (baseline) and time of attending KMC activities as a covariate, the two groups of subjects had statistically significant differences in the mini-mental state examination (MMSE). Results also showed that, using the control score of the Cornell Scale for Depression in Dementia (baseline) and MMSE (baseline) as a covariate, the two groups of subjects had statistically significant differences in the Clifton Assessment Procedures for the Elderly Behavior Rating Scale. These findings provide information for staff caregivers in long-term care facilities to develop a non-invasive care model for elderly people with dementia to deal with depression, anxiety, and behavioral problems.
[Time perception, maternal tasks, and maternal role behavior among pregnant Japanese women].
Yamamoto, A
1996-01-01
The relationship of time perception, maternal tasks, and maternal role behavior was examined in 140 pregnant Japanese women with a short-term longitudinal design. A model developed by Rubin provided the conceptual framework for this research. The Time Perception Scale. Time Production Method, and the Prefatory Maternal Response measured the study variables. Study results revealed significant differences in duration of time, time production, maternal-fetal attachment, and maternal role behavior before and after quickening(fetal movement)occurred. Medium to strong positive relationships among time orientation, maternal-fetal attachment, gratification, and maternal role behavior were found before and after movement. After quickening, a weak relationship between time orientation and duration was found. After controlling maternal-fetal attachment and gratification in pregnancy and maternal role, orientation in time perception accounted for significant amounts of variance in maternal role behavior before and after fetal movement. Results show that the process of becoming a mother, which started before quickening, increased in magnitude after fetal movement. The function of fetal movement is important in developing motherhood. In the process of becoming a mother, cognitive, emotional, and behavioral aspects in becoming a mother are inseparable from each other. Future orientation of time perception contributes to development of maternal role behavior. Having a future orientation during pregnancy may indicate hope or positive expectation. Based on these findings, several recommendations were proposed: (a)to study further the general process of becoming a mother and the role of time perception in developing motherhood, (b)to disseminate information to the general public about the process in development of motherhood, (c)to construct theory to explain the process of becoming a mother, and(d)to conduct future research to clarify the construct of time perception and attachment.
Visual search of cyclic spatio-temporal events
NASA Astrophysics Data System (ADS)
Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire
2018-05-01
The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.
Scaling laws of strategic behavior and size heterogeneity in agent dynamics
NASA Astrophysics Data System (ADS)
Vaglica, Gabriella; Lillo, Fabrizio; Moro, Esteban; Mantegna, Rosario N.
2008-03-01
We consider the financial market as a model system and study empirically how agents strategically adjust the properties of large orders in order to meet their preference and minimize their impact. We quantify this strategic behavior by detecting scaling relations between the variables characterizing the trading activity of different institutions. We also observe power-law distributions in the investment time horizon, in the number of transactions needed to execute a large order, and in the traded value exchanged by large institutions, and we show that heterogeneity of agents is a key ingredient for the emergence of some aggregate properties characterizing this complex system.
NASA Astrophysics Data System (ADS)
Honarmand, M.; Moradi, M.
2018-06-01
In this paper, by using scaled boundary finite element method (SBFM), a perfect nanographene sheet or cracked ones were simulated for the first time. In this analysis, the atomic carbon bonds were modeled by simple bar elements with circular cross-sections. Despite of molecular dynamics (MD), the results obtained from SBFM analysis are quite acceptable for zero degree cracks. For all angles except zero, Griffith criterion can be applied for the relation between critical stress and crack length. Finally, despite the simplifications used in nanographene analysis, obtained results can simulate the mechanical behavior with high accuracy compared with experimental and MD ones.
Atmospheric Diabatic Heating in Different Weather States and the General Circulation
NASA Technical Reports Server (NTRS)
Rossow, William B.; Zhang, Yuanchong; Tselioudis, George
2016-01-01
Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.
Lee, Rebecca E; Mama, Scherezade K; Adamus-Leach, Heather J
2012-01-01
Cardiometabolic risk factors such as obesity, excess percent body fat, high blood pressure, elevated resting heart rate and sedentary behavior have increased in recent decades due to changes in the environment and lifestyle. Neighborhood micro-environmental, street scale elements may contribute to health above and beyond individual characteristics of residents. To investigate the relationship between neighborhood street scale elements and cardiometabolic risk factors among inactive ethnic minority women. Women (N = 410) completed measures of BMI, percent body fat, blood pressure, resting heart rate, sedentary behavior and demographics. Trained field assessors completed the Pedestrian Environment Data Scan in participants' neighborhoods. Data were collected from 2006-2008. Multiple regression models were conducted in 2011 to estimate the effect of environmental factors on cardiometabolic risk factors. Adjusted regression models found an inverse association between sidewalk buffers and blood pressure, between traffic control devices and resting heart rate, and a positive association between presence of pedestrian crossing aids and BMI (ps<.05). Neighborhood attractiveness and safety for walking and cycling were related to more time spent in a motor vehicle (ps<.05). Findings suggest complex relationships among micro-environmental, street scale elements that may confer important cardiometabolic benefits and risks for residents. Living in the most attractive and safe neighborhoods for physical activity may be associated with longer times spent sitting in the car.
Measuring Cognitive and Affective Constructs in the Context of an Acute Health Event
Boudreaux, Edwin D.; Moon, Simon; Tappe, Karyn A.; Bock, Beth; Baumann, Brigitte; Chapman, Gretchen B.
2013-01-01
The latest recommendations for building dynamic health behavior theories emphasize that cognitions, emotions, and behaviors – and the nature of their inter-relationships -- can change over time. This paper describes the development and psychometric validation of four scales created to measure smoking-related causal attributions, perceived illness severity, event-related emotions, and intention to quit smoking among patients experiencing acute cardiac symptoms. After completing qualitative work with a sample of 50 cardiac patients, we administered the scales to 300 patients presenting to the emergency department for cardiac-related symptoms. Factor analyses, alpha coefficients, ANOVAS, and Pearson correlation coefficients were used to establish the scales' reliability and validity. Factor analyses revealed a stable factor structures for each of the four constructs. The scales were internally consistent, with the majority having an alpha of >0.80 (range: 0.57 to 0.89). Mean differences in ratings of the perceived illness severity and event-related emotions were noted across the three time anchors. Significant increases in intention to quit at the time of enrollment, compared to retrospective ratings of intention to quit before the event, provide preliminary support for the sensitivity of this measure to the motivating impact of the event. Finally, smoking-related causal attributions, perceived illness severity, and event-related emotions correlated in the expected directions with intention to quit smoking, providing preliminary support for construct validity. PMID:22970703
Heavy Tail Behavior of Rainfall Extremes across Germany
NASA Astrophysics Data System (ADS)
Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.
2017-12-01
Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.
ERIC Educational Resources Information Center
Hamerslag, Robert; Oostdam, Ron; Tavecchio, Louis
2018-01-01
For the first time in the Netherlands, the Adjustment Scales for Early Transition in Schooling (ASETS) have been applied to kindergarten and first-grade elementary school. A study was conducted to examine the relation between the different behavioral (phenotypes) and situational dimensions (situtypes) of the ASETS and learning performance on…
A fragmentation model of earthquake-like behavior in internet access activity
NASA Astrophysics Data System (ADS)
Paguirigan, Antonino A.; Angco, Marc Jordan G.; Bantang, Johnrob Y.
We present a fragmentation model that generates almost any inverse power-law size distribution, including dual-scaled versions, consistent with the underlying dynamics of systems with earthquake-like behavior. We apply the model to explain the dual-scaled power-law statistics observed in an Internet access dataset that covers more than 32 million requests. The non-Poissonian statistics of the requested data sizes m and the amount of time τ needed for complete processing are consistent with the Gutenberg-Richter-law. Inter-event times δt between subsequent requests are also shown to exhibit power-law distributions consistent with the generalized Omori law. Thus, the dataset is similar to the earthquake data except that two power-law regimes are observed. Using the proposed model, we are able to identify underlying dynamics responsible in generating the observed dual power-law distributions. The model is universal enough for its applicability to any physical and human dynamics that is limited by finite resources such as space, energy, time or opportunity.
Detrended fluctuation analysis based on higher-order moments of financial time series
NASA Astrophysics Data System (ADS)
Teng, Yue; Shang, Pengjian
2018-01-01
In this paper, a generalized method of detrended fluctuation analysis (DFA) is proposed as a new measure to assess the complexity of a complex dynamical system such as stock market. We extend DFA and local scaling DFA to higher moments such as skewness and kurtosis (labeled SMDFA and KMDFA), so as to investigate the volatility scaling property of financial time series. Simulations are conducted over synthetic and financial data for providing the comparative study. We further report the results of volatility behaviors in three American countries, three Chinese and three European stock markets by using DFA and LSDFA method based on higher moments. They demonstrate the dynamics behaviors of time series in different aspects, which can quantify the changes of complexity for stock market data and provide us with more meaningful information than single exponent. And the results reveal some higher moments volatility and higher moments multiscale volatility details that cannot be obtained using the traditional DFA method.
Satellite attitude prediction by multiple time scales method
NASA Technical Reports Server (NTRS)
Tao, Y. C.; Ramnath, R.
1975-01-01
An investigation is made of the problem of predicting the attitude of satellites under the influence of external disturbing torques. The attitude dynamics are first expressed in a perturbation formulation which is then solved by the multiple scales approach. The independent variable, time, is extended into new scales, fast, slow, etc., and the integration is carried out separately in the new variables. The theory is applied to two different satellite configurations, rigid body and dual spin, each of which may have an asymmetric mass distribution. The disturbing torques considered are gravity gradient and geomagnetic. Finally, as multiple time scales approach separates slow and fast behaviors of satellite attitude motion, this property is used for the design of an attitude control device. A nutation damping control loop, using the geomagnetic torque for an earth pointing dual spin satellite, is designed in terms of the slow equation.
Behavior of plastic sand confinement grids
DOT National Transportation Integrated Search
1986-01-01
The concept of improving the load carrying ability of unbound aggregates, particularly sand, by lateral confinement has been investigated for some time. Extensive full-scale testing of the trafficability of confined beach sand pavement layers has bee...
Yu, Sungduk; Pritchard, Michael S.
2015-12-17
The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Sungduk; Pritchard, Michael S.
The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m 2) and longwave cloud forcing (~5 W/m 2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation ismore » more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less
Kussmann, Jörg; Ochsenfeld, Christian
2007-11-28
A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.
mSieve: Differential Behavioral Privacy in Time Series of Mobile Sensor Data.
Saleheen, Nazir; Chakraborty, Supriyo; Ali, Nasir; Mahbubur Rahman, Md; Hossain, Syed Monowar; Bari, Rummana; Buder, Eugene; Srivastava, Mani; Kumar, Santosh
2016-09-01
Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors.
Achieving behavioral control with millisecond resolution in a high-level programming environment
Asaad, Wael F.; Eskandar, Emad N.
2008-01-01
The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the one millisecond time-scale that is relevant for the alignment of behavioral and neural events. PMID:18606188
mSieve: Differential Behavioral Privacy in Time Series of Mobile Sensor Data
Saleheen, Nazir; Chakraborty, Supriyo; Ali, Nasir; Mahbubur Rahman, Md; Hossain, Syed Monowar; Bari, Rummana; Buder, Eugene; Srivastava, Mani; Kumar, Santosh
2016-01-01
Differential privacy concepts have been successfully used to protect anonymity of individuals in population-scale analysis. Sharing of mobile sensor data, especially physiological data, raise different privacy challenges, that of protecting private behaviors that can be revealed from time series of sensor data. Existing privacy mechanisms rely on noise addition and data perturbation. But the accuracy requirement on inferences drawn from physiological data, together with well-established limits within which these data values occur, render traditional privacy mechanisms inapplicable. In this work, we define a new behavioral privacy metric based on differential privacy and propose a novel data substitution mechanism to protect behavioral privacy. We evaluate the efficacy of our scheme using 660 hours of ECG, respiration, and activity data collected from 43 participants and demonstrate that it is possible to retain meaningful utility, in terms of inference accuracy (90%), while simultaneously preserving the privacy of sensitive behaviors. PMID:28058408
Rousu, Matthew C.; Thrasher, James F.
2014-01-01
Experimental and observational research often involves asking consumers to self-report the impact of some proposed option. Because self-reported responses involve no consequence to the respondent for falsely revealing how he or she feels about an issue, self-reports may be subject to social desirability and other influences that bias responses in important ways. In this article, we analyzed data from an experiment on the impact of cigarette packaging and pack warnings, comparing smokers’ self-reported impact (four-item scale) and the bids they placed in experimental auctions to estimate differences in demand. The results were consistent across methods; however, the estimated effect size associated with different warning labels was two times greater for the four-item self-reported response scale when compared to the change in demand as indicated by auction bids. Our study provides evidence that self-reported psychosocial responses provide a valid proxy for behavioral change as reflected by experimental auction bidding behavior. More research is needed to better understand the advantages and disadvantages of behavioral economic methods and traditional self-report approaches to evaluating health behavior change interventions. PMID:24399267
Emergence of scaling in human-interest dynamics.
Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng
2013-12-11
Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical "Big Data" sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction.
Effective theory of squeezed correlation functions
NASA Astrophysics Data System (ADS)
Mirbabayi, Mehrdad; Simonović, Marko
2016-03-01
Various inflationary scenarios can often be distinguished from one another by looking at the squeezed limit behavior of correlation functions. Therefore, it is useful to have a framework designed to study this limit in a more systematic and efficient way. We propose using an expansion in terms of weakly coupled super-horizon degrees of freedom, which is argued to generically exist in a near de Sitter space-time. The modes have a simple factorized form which leads to factorization of the squeezed-limit correlation functions with power-law behavior in klong/kshort. This approach reproduces the known results in single-, quasi-single-, and multi-field inflationary models. However, it is applicable even if, unlike the above examples, the additional degrees of freedom are not weakly coupled at sub-horizon scales. Stronger results are derived in two-field (or sufficiently symmetric multi-field) inflationary models. We discuss the observability of the non-Gaussian 3-point function in the large-scale structure surveys, and argue that the squeezed limit behavior has a higher detectability chance than equilateral behavior when it scales as (klong/kshort)Δ with Δ < 1—where local non-Gaussianity corresponds to Δ = 0.
Emergence of scaling in human-interest dynamics
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng
2013-12-01
Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical ``Big Data'' sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction.
Noisy swimming at low Reynolds numbers.
Dunkel, Jörn; Zaid, Irwin M
2009-08-01
Small organisms (e.g., bacteria) and artificial microswimmers move due to a combination of active swimming and passive Brownian motion. Considering a simplified linear three-sphere swimmer, we study how the swimmer size regulates the interplay between self-driven and diffusive behavior at low Reynolds number. Starting from the Kirkwood-Smoluchowski equation and its corresponding Langevin equation, we derive formulas for the orientation correlation time, the mean velocity and the mean-square displacement in three space dimensions. The validity of the analytical results is illustrated through numerical simulations. Tuning the swimmer parameters to values that are typical of bacteria, we find three characteristic regimes: (i) Brownian motion at small times, (ii) quasiballistic behavior at intermediate time scales, and (iii) quasidiffusive behavior at large times due to noise-induced rotation. Our analytical results can be useful for a better quantitative understanding of optimal foraging strategies in bacterial systems, and they can help to construct more efficient artificial microswimmers in fluctuating fluids.
Length of day-care attendance and attachment behavior in eighteen-month-old infants.
Schwartz, P
1983-08-01
Differences in the attachment behavior of 18-month-old full-time, part-time, and non-day-care infants from intact middle-class homes were compared. Mothers of the day-care infants had made arrangements to return to work before their infants' birth, and all the infants had been placed in day-care homes before 9 months of age. The study involved 2 sessions: a home observation and the strange-situation procedure in a laboratory setting. The home-observation and rating scale scores of maternal behaviors directed at the child yielded few group differences. More full-time day-care children (but not part-time children) were found to display avoidance of the mother during the final reunion episode of the strange-situation procedure than did non-day-care children. The length of the daily separation appears to be an important determinant of day-care effects on infant-mother attachment.
Directional change of fluid particles in two-dimensional turbulence and of football players
NASA Astrophysics Data System (ADS)
Kadoch, Benjamin; Bos, Wouter J. T.; Schneider, Kai
2017-06-01
Multiscale directional statistics are investigated in two-dimensional incompressible turbulence. It is shown that the short-time behavior of the mean angle of directional change of fluid particles is linearly dependent on the time lag and that no inertial range behavior is observed in the directional change associated with the enstrophy-cascade range. In simulations of the inverse-cascade range, the directional change shows a power law behavior at inertial range time scales. By comparing the directional change in space-periodic and wall-bounded flow, it is shown that the probability density function of the directional change at long times carries the signature of the confinement. The geometrical origin of this effect is validated by Monte Carlo simulations. The same effect is also observed in the directional statistics computed from the trajectories of football players (soccer players in American English).
NASA Astrophysics Data System (ADS)
Quiroz, M.; Cienfuegos, R.
2017-12-01
At present, there is good knowledge acquired by the scientific community on characterizing the evolution of tsunami energy at ocean and shelf scales. For instance, the investigations of Rabinovich (2013) and Yamazaki (2011), represent some important advances in this subject. In the present paper we rather focus on tsunami energy evolution, and ultimately its decay, in coastal areas because characteristic time scales of this process has implications for early warning, evacuation initiation, and cancelling. We address the tsunami energy evolution analysis at three different spatial scales, a global scale at the ocean basin level, in particular the Pacific Ocean basin, a regional scale comprising processes that occur at the continental shelf level, and finally a local scale comprising coastal areas or bays. These scales were selected following the motivation to understand how the response is associated with tsunami, and how the energy evolves until it is completely dissipated. Through signal processing methods, such as discrete and wavelets analysis, we analyze time series of recent tsunamigenic events in the main Chilean coastal cities. Based on this analysis, we propose a conceptual model based on the influence of geomorphological variables on the evolution and decay of tsunami energy. This model acts as a filter from the seismic source to the observed response in coastal zones. Finally, we hope to conclude with practical tools that will establish patterns of behavior and scaling of energy evolution through interconnections from seismic source variables and the geomorphological component to understand the response and predict behavior for a given site.
Predicting Positive Outcomes for Students with Emotional Disturbance
ERIC Educational Resources Information Center
Nickerson, Amanda B.; Brosof, Amy M.; Shapiro, Valerie B.
2004-01-01
This longitudinal study assessed changes in skills for students with emotional disturbance (ED) over a one-year time period in a private special education school and examined variables that predicted positive outcomes for these students. At Time 1, teachers rated 84 students with ED using standardized behavior rating scales to assess problem…
Power-law expansion of the Universe from the bosonic Lorentzian type IIB matrix model
NASA Astrophysics Data System (ADS)
Ito, Yuta; Nishimura, Jun; Tsuchiya, Asato
2015-11-01
Recent studies on the Lorentzian version of the type IIB matrix model show that (3+1)D expanding universe emerges dynamically from (9+1)D space-time predicted by superstring theory. Here we study a bosonic matrix model obtained by omitting the fermionic matrices. With the adopted simplification and the usage of a large-scale parallel computer, we are able to perform Monte Carlo calculations with matrix size up to N = 512, which is twenty times larger than that used previously for the studies of the original model. When the matrix size is larger than some critical value N c ≃ 110, we find that (3+1)D expanding universe emerges dynamically with a clear large- N scaling property. Furthermore, the observed increase of the spatial extent with time t at sufficiently late times is consistent with a power-law behavior t 1/2, which is reminiscent of the expanding behavior of the Friedmann-Robertson-Walker universe in the radiation dominated era. We discuss possible implications of this result on the original supersymmetric model including fermionic matrices.
Fast inertial particle manipulation in oscillating flows
NASA Astrophysics Data System (ADS)
Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha
2017-05-01
It is demonstrated that micron-sized particles suspended in fluid near oscillating interfaces experience strong inertial displacements above and beyond the fluid streaming. Experiments with oscillating bubbles show rectified particle lift over extraordinarily short (millisecond) times. A quantitative model on both the oscillatory and the steady time scales describes the particle displacement relative to the fluid motion. The formalism yields analytical predictions confirming the observed scaling behavior with particle size and experimental control parameters. It applies to a large class of oscillatory flows with applications from particle trapping to size sorting.
Scaling behavior of nonisothermal phase separation.
Rüllmann, Max; Alig, Ingo
2004-04-22
The phase separation process in a critical mixture of polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper critical solution temperature) was investigated by time-resolved light scattering during continuous quenches from the one-phase into the two-phase region. Continuous quenches were realized by cooling ramps with different cooling rates kappa. Phase separation kinetics is studied by means of the temporal evolution of the scattering vector qm and the intensity Im at the scattering peak. The curves qm(t) for different cooling rates can be shifted onto a single mastercurve. The curves Im(t) show similar behavior. As shift factors, a characteristic length Lc and a characteristic time tc are introduced. Both characteristic quantities depend on the cooling rate through power laws: Lc approximately kappa(-delta) and tc approximately kappa(-rho). Scaling behavior in isothermal critical demixing is well known. There the temporal evolutions of qm and Im for different quench depths DeltaT can be scaled with the correlation length xi and the interdiffusion coefficient D, both depending on DeltaT through critical power laws. We show in this paper that the cooling rate scaling in nonisothermal demixing is a consequence of the quench depth scaling in the isothermal case. The exponents delta and rho are related to the critical exponents nu and nu* of xi and D, respectively. The structure growth during nonisothermal demixing can be described with a semiempirical model based on the hydrodynamic coarsening mechanism well known in the isothermal case. In very late stages of nonisothermal phase separation a secondary scattering maximum appears. This is due to secondary demixing. We explain the onset of secondary demixing by a competition between interdiffusion and coarsening. (c) 2004 American Institute of Physics
Rheological Characterization of Unusual DWPF Slurry Samples (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koopman, D. C.
2005-09-01
A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set ofmore » unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours to weeks. The unusual shape of the slurry flow curves was not an artifact of the rheometric measurement. Adjusting the user-specified parameters in the rheometer measurement jobs can alter the shape of the flow curve of these time dependent samples, but this was not causing the unusual behavior. Variations in the measurement parameters caused the time dependence of a given slurry to manifest at different rates. The premise of the controlled shear rate flow curve measurement is that the dynamic response of the sample to a change in shear rate is nearly instantaneous. When this is the case, the data can be fitted to a time independent rheological equation, such as the Bingham plastic model. In those cases where this does not happen, interpretation of the data is difficult. Fitting time dependent data to time independent rheological equations, such as the Bingham plastic model, is also not appropriate.« less
Efficient coarse simulation of a growing avascular tumor
Kavousanakis, Michail E.; Liu, Ping; Boudouvis, Andreas G.; Lowengrub, John; Kevrekidis, Ioannis G.
2013-01-01
The subject of this work is the development and implementation of algorithms which accelerate the simulation of early stage tumor growth models. Among the different computational approaches used for the simulation of tumor progression, discrete stochastic models (e.g., cellular automata) have been widely used to describe processes occurring at the cell and subcell scales (e.g., cell-cell interactions and signaling processes). To describe macroscopic characteristics (e.g., morphology) of growing tumors, large numbers of interacting cells must be simulated. However, the high computational demands of stochastic models make the simulation of large-scale systems impractical. Alternatively, continuum models, which can describe behavior at the tumor scale, often rely on phenomenological assumptions in place of rigorous upscaling of microscopic models. This limits their predictive power. In this work, we circumvent the derivation of closed macroscopic equations for the growing cancer cell populations; instead, we construct, based on the so-called “equation-free” framework, a computational superstructure, which wraps around the individual-based cell-level simulator and accelerates the computations required for the study of the long-time behavior of systems involving many interacting cells. The microscopic model, e.g., a cellular automaton, which simulates the evolution of cancer cell populations, is executed for relatively short time intervals, at the end of which coarse-scale information is obtained. These coarse variables evolve on slower time scales than each individual cell in the population, enabling the application of forward projection schemes, which extrapolate their values at later times. This technique is referred to as coarse projective integration. Increasing the ratio of projection times to microscopic simulator execution times enhances the computational savings. Crucial accuracy issues arising for growing tumors with radial symmetry are addressed by applying the coarse projective integration scheme in a cotraveling (cogrowing) frame. As a proof of principle, we demonstrate that the application of this scheme yields highly accurate solutions, while preserving the computational savings of coarse projective integration. PMID:22587128
Universal scaling in the aging of the strong glass former SiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vollmayr-Lee, Katharina, E-mail: kvollmay@bucknell.edu; Gorman, Christopher H.; Castillo, Horacio E.
We show that the aging dynamics of a strong glass former displays a strikingly simple scaling behavior, connecting the average dynamics with its fluctuations, namely, the dynamical heterogeneities. We perform molecular dynamics simulations of SiO{sub 2} with van Beest-Kramer-van Santen interactions, quenching the system from high to low temperature, and study the evolution of the system as a function of the waiting time t{sub w} measured from the instant of the quench. We find that both the aging behavior of the dynamic susceptibility χ{sub 4} and the aging behavior of the probability distribution P(f{sub s,r}) of the local incoherent intermediatemore » scattering function f{sub s,r} can be described by simple scaling forms in terms of the global incoherent intermediate scattering function C. The scaling forms are the same that have been found to describe the aging of several fragile glass formers and that, in the case of P(f{sub s,r}), have been also predicted theoretically. A thorough study of the length scales involved highlights the importance of intermediate length scales. We also analyze directly the scaling dependence on particle type and on wavevector q and find that both the average and the fluctuations of the slow aging dynamics are controlled by a unique aging clock, which is not only independent of the wavevector q, but is also the same for O and Si atoms.« less
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
ERIC Educational Resources Information Center
Bussu, G.; Jones, E. J. H.; Charman, T.; Johnson, M. H.; Buitelaar, J. K.; Baron-Cohen, S.; Bedford, R.; Bolton, P.; Blasi, A.; Chandler, S.; Cheung, C.; Davies, K.; Elsabbagh, M.; Fernandes, J.; Gammer, I.; Garwood, H.; Gliga, T.; Guiraud, J.; Hudry, K.; Liew, M.; Lloyd-Fox, S.; Maris, H.; O'Hara, L.; Pasco, G.; Pickles, A.; Ribeiro, H.; Salomone, E.; Tucker, L.; Volein, A.
2018-01-01
We integrated multiple behavioural and developmental measures from multiple time-points using machine learning to improve early prediction of individual Autism Spectrum Disorder (ASD) outcome. We examined Mullen Scales of Early Learning, Vineland Adaptive Behavior Scales, and early ASD symptoms between 8 and 36 months in high-risk siblings (HR; n…
Pandey, Sachin; Rajaram, Harihar
2016-12-05
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Sachin; Rajaram, Harihar
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
2014-01-01
Background Children with Autism Spectrum Disorder (ASD) show unusual social behaviors and repetitive behaviors. Some of these behaviors, e.g., time spent in an area or turning rate/direction, can be automatically tracked. Automated tracking has several advantages over subjective ratings including reliability, amount of information provided, and consistency across laboratories, and is potentially of importance for diagnosis, animal models and objective assessment of treatment efficacy. However, its validity for ASD has not been examined. In this exploratory study, we examined associations between rating scale data with automated tracking of children’s movements using the Noldus EthoVision XT system; i.e., tracking not involving a human observer. Based on our observations and previous research, we predicted that time spent in the periphery of the room would be associated with autism severity and that rate and direction of turning would be associated with stereotypies. Methods Children with and without ASD were observed in a free-play situation for 3 min before and 3 min after Autism Diagnostic Observation Scale – Generic (ADOS-G) testing. The Noldus system provided measures of the rate and direction of turning, latency to approach and time spend near the periphery or the parent. Results Ratings of the severity of maladaptive social behaviors, stereotypies, autism severity, and arousal problems were positively correlated with increases in percent time spent in the periphery in the total sample and in the ASD subset. Adaptive social communication skills decreased with increases in the percentage of time spent in the periphery and increases in the latency to approach the parent in the ASD group. The rate and direction of turning was linked with stereotypies only in the group without ASD (the faster the rate of a turn to the left, the worse the rating). In the ASD group, there was a shift from a neutral turning bias prior to the ADOS assessment to a strong left turn bias after the ADOS assessment. In the entire sample, this left turn bias was associated with measures of autism severity. Conclusion Results suggest that automated tracking yields valid and unbiased information for assessing children with autism. Turning bias is an interesting and unexplored measure related to autism. PMID:24548743
Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models
NASA Astrophysics Data System (ADS)
Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.
2018-02-01
A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis; Stanier, Adam John
Here, we demonstrate a scalable fully implicit algorithm for the two-field low-β extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton–Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm ismore » shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 × 4096 mesh, we demonstrate a wall-clock-time speedup of ~6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement.« less
Fogleman, Nicholas D; Leaberry, Kirsten D; Rosen, Paul J; Walerius, Danielle M; Slaughter, Kelly E
2018-01-12
The current study explored the concurrent and longitudinal association between internalizing behaviors, externalizing behaviors, and peer victimization among children with and without ADHD. Eighty children (42 ADHD, 38 non-ADHD) ages 8-12 participated in the present study conducted over a 6-month period. During the baseline session, parents completed a structured diagnostic interview and the Vanderbilt ADHD Parent Rating Scale to determine whether their child met criteria for ADHD, and the Child Behavior Checklist (CBCL) to assess their child's internalizing and externalizing behaviors; children completed the Perception of Peer Support Scale (PPSS) to assess experiences of peer victimization. At the 6-month follow-up session, parents completed the CBCL and children completed the PPSS. Concurrently, internalizing behaviors were associated with peer victimization among children with and without ADHD; ADHD moderated this relation, such that internalizing behaviors were more strongly related to peer victimization among children with ADHD. Longitudinally, internalizing behaviors at baseline predicted peer victimization at 6-month follow-up; however, further analyses demonstrated there was a covarying change in internalizing behaviors and peer victimization. These findings suggest internalizing behaviors are related to peer victimization concurrently, and over time, and are associated with increased risk for peer victimization in the presence of ADHD. Additionally, internalizing behaviors and peer victimization appear to share a dynamic relationship; that is, decreases in internalizing behaviors predict similar decreases in peer victimization. No significant relations were observed between externalizing behaviors and peer victimization. Implications and limitations are discussed.
Generalizability of Scaling Gradients on Direct Behavior Ratings
ERIC Educational Resources Information Center
Chafouleas, Sandra M.; Christ, Theodore J.; Riley-Tillman, T. Chris
2009-01-01
Generalizability theory is used to examine the impact of scaling gradients on a single-item Direct Behavior Rating (DBR). A DBR refers to a type of rating scale used to efficiently record target behavior(s) following an observation occasion. Variance components associated with scale gradients are estimated using a random effects design for persons…
Relationship of corporal punishment and antisocial behavior by neighborhood.
Grogan-Kaylor, Andrew
2005-10-01
To examine the relationship of corporal punishment with children's behavior problems while accounting for neighborhood context and while using stronger statistical methods than previous literature in this area, and to examine whether different levels of corporal punishment have different effects in different neighborhood contexts. Longitudinal cohort study. General community. 1943 mother-child pairs from the National Longitudinal Survey of Youth. Internalizing and externalizing behavior problem scales of the Behavior Problems Index. Parental use of corporal punishment was associated with a 0.71 increase (P<.05) in children's externalizing behavior problems even when several parenting behaviors, neighborhood quality, and all time-invariant variables were accounted for. The association of corporal punishment and children's externalizing behavior problems was not dependent on neighborhood context. The research found no discernible relationship between corporal punishment and internalizing behavior problems.
Maternal depressive symptoms and physical activity in very low-income children
Fernald, Lia C.H.; Jones-Smith, Jessica C.; Ozer, Emily J.; Neufeld, Lynnette M.; DiGirolamo, Ann M.
2009-01-01
Objective To test the contribution of maternal depression during late infancy to physical activity in children five years later. Method Children (n=168) from very low-income households in semi-urban Mexico were assessed as toddlers (15 mo, Time 1) and at pre-school age (4–6 y, Time 2). Child low activity level (<20 minutes of activity daily for <7 d/wk) at Time 2 was the primary outcome measure and maternal depressive symptoms (Center for Epidemiologic Studies – Depression Scale) by self report at Time 1 was the primary independent variable. Covariates tested included child age, sex, BMI percentile, television viewing and behavior (Behavior Problem Index sub-scales), current maternal depressive symptoms, age, BMI and physical activity level, and family socio-economic status; all covariates were assessed at Time 2 except for socio-economic status. Results At 4–6 years old, 27.5% of children were categorized with low activity level. Exposure to high maternal depressive symptoms at child age 15 months was associated with an increased risk of having a low activity level at age 4–6 years (OR, 2.38; 95% CI, 1.05–5.40); results were unchanged with the inclusion of current maternal depressive symptoms. High child TV-viewing was significantly associated with low activity level (OR, 5.44; 95% CI, 2.06–14.3), but did not change the effect of maternal depressive symptoms in early childhood. Tests of mediation revealed that current child internalizing behavior, but not externalizing behavior, significantly attenuated the association between early high maternal depressive symptoms and later childhood activity level. Conclusion Exposure to maternal depressive symptoms in late infancy is a risk factor for low activity level in later childhood and the association may be mediated by child internalizing factors. PMID:18714208
Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals
NASA Astrophysics Data System (ADS)
Liu, Yuan; Illangasekare, Tissa H.; Kitanidis, Peter K.
2014-02-01
Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t2), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.
Baker-Jarvis, James; Kim, Sung
2012-01-01
The goal of this paper is to overview radio-frequency (RF) electromagnetic interactions with solid and liquid materials from the macroscale to the nanoscale. The overview is geared toward the general researcher. Because this area of research is vast, this paper concentrates on currently active research areas in the megahertz (MHz) through gigahertz (GHz) frequencies, and concentrates on dielectric response. The paper studies interaction mechanisms both from phenomenological and fundamental viewpoints. Relaxation, resonance, interface phenomena, plasmons, the concepts of permittivity and permeability, and relaxation times are summarized. Topics of current research interest, such as negative-index behavior, noise, plasmonic behavior, RF heating, nanoscale materials, wave cloaking, polaritonic surface waves, biomaterials, and other topics are overviewed. Relaxation, resonance, and related relaxation times are overviewed. The wavelength and material length scales required to define permittivity in materials is discussed. PMID:26900513
Dynamic foraging of a top predator in a seasonal polar marine environment.
Weinstein, Ben G; Friedlaender, Ari S
2017-11-01
The seasonal movement of animals at broad spatial scales provides insight into life-history, ecology and conservation. By combining high-resolution satellite-tagged data with hierarchical Bayesian movement models, we can associate spatial patterns of movement with marine animal behavior. We used a multi-state mixture model to describe humpback whale traveling and area-restricted search states as they forage along the West Antarctic Peninsula. We estimated the change in the geography, composition and characteristics of these behavioral states through time. We show that whales later in the austral fall spent more time in movements associated with foraging, traveled at lower speeds between foraging areas, and shifted their distribution northward and inshore. Seasonal changes in movement are likely due to a combination of sea ice advance and regional shifts in the primary prey source. Our study is a step towards dynamic movement models in the marine environment at broad scales.
The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain
NASA Technical Reports Server (NTRS)
Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.
1993-01-01
A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.
The Mars water cycle at other epochs - Recent history of the polar caps and layered terrain
NASA Astrophysics Data System (ADS)
Jakosky, B. M.; Henderson, B. G.; Mellon, M. T.
1993-04-01
A numerical model is presented of the integrated role of seasonal water cycle on the evolution of polar deposits on Mars over the last 10 million years. From the model, it is concluded that the only major difference between the polar caps which affects their long-term behavior is ultimately the difference in their elevations. Because of that difference, there is a preference for CO2 frost to stay longer on the northern polar cap. The average difference in sublimation at the caps results in a net south-to-north transport of water ice over long time scales. Superimposed on any long-term behavior is a transfer of water ice between the caps on the 10 exp 5 - 10 exp 6 yr time scales. The amount of water exchanged is small compared to the total ice content of the polar deposits.
Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach
NASA Astrophysics Data System (ADS)
Liu, Jiannan; Willcox, Jon A. L.; Kim, Hyung J.
2018-05-01
Many ionic liquids show behavior similar to that of glassy systems, e.g., large and long-lasted deviations from Gaussian dynamics and clustering of "mobile" and "immobile" groups of ions. Herein a time-dependent four-point density correlation function—typically used to characterize glassy systems—is implemented for the ionic liquids, choline acetate, and 1-butyl-3-methylimidazolium acetate. Dynamic correlation beyond the first ionic solvation shell on the time scale of nanoseconds is found in the ionic liquids, revealing the cooperative nature of ion motions. The traditional solvent, acetonitrile, on the other hand, shows a much shorter length-scale that decays after a few picoseconds.
Vederhus, Bente Johanne; Eide, Geir Egil; Natvig, Gerd Karin; Markestad, Trond; Graue, Marit; Halvorsen, Thomas
2015-01-01
Background. Knowledge of long-term health related outcomes in contemporary populations born extremely preterm (EP) is scarce. We aimed to explore developmental trajectories of health-related quality of life (HRQoL) and behavior from mid-childhood to early adulthood in extremely preterm and term-born individuals. Methods. Subjects born at gestational age ≤28 weeks or with birth weight ≤1,000 g within a region of Norway in 1991-92 and matched term-born control subjects were assessed at 10 and 18 years. HRQoL was measured with the Child Health Questionnaire (CHQ) and behavior with the Child Behavior Checklist (CBCL), using parent assessment at both ages and self-assessment at 18 years. Results. All eligible EP (n = 35) and control children participated at 10 years, and 31 (89%) and 29 (83%) at 18 years. At 10 years, the EP born boys were given significantly poorer scores by their parents than term-born controls on most CHQ and CBCL scales, but the differences were minor at 18 years; i.e., significant improvements had occurred in several CHQ (self-esteem, general health and parental impact-time) and CBCL (total problem, internalizing and anxious/depressed) scales. For the girls, the differences were smaller at 10 years and remained unchanged by 18 years. Emotional/behavioral difficulties at 10 years similarly predicted poorer improvement on CHQ-scales for both EP and term-born subjects at 18 years. Self-assessment of HRQoL and behavior at 18 years was similar in the EP and term-born groups on most scales. Conclusions. HRQoL and behavior improved towards adulthood for EP born boys, while the girls remained relatively similar, and early emotional and behavioral difficulties predicted poorer development in HRQoL through adolescence. These data indicate that gender and a longitudinal perspective should be considered when addressing health and wellbeing after extremely preterm birth.
Moura, Larissa da Silva
2016-01-01
Background. There is little information regarding the ability of observational scales to properly assess children's behavior during procedural sedation. Aim. To evaluate the characteristics of the Houpt scales, the Ohio State University Behavioral Rating Scale (OSUBRS) and the Venham Behavior Rating Scale when applied to preschool children undergoing conscious dental sedation. Design. This study included 27 children, 4–6 years old with early childhood caries that participated in a clinical trial (NCT02284204) that investigated two sedative regimes using oral midazolam/ketamine. Dental appointments were video-recorded; five calibrated observers assessed 1,209 minutes of video recording to score the children's behavior, following the instructions of the investigated scales. Data were analyzed by descriptive analysis and Spearman correlation tests (P < 0.05). Results. The Houpt overall behavior and the Venham scale were highly correlated (rho = −0.87; P < 0.001). OSUBRS scores were better correlated with Houpt overall behavior and Venham ratings, when compared to Houpt scores in the categories for movement and crying. Conclusions. The Houpt overall behavior and the Venham scores are global scales that properly measure children's behavior during dental sedation. Continuous assessment with OSUBRS through videos has a chance to give more precise data, while the Houpt categories can easily demonstrate children's behavior during procedures. PMID:28116299
NASA Astrophysics Data System (ADS)
Huveneers, François
2018-04-01
We investigate the long-time behavior of a passive particle evolving in a one-dimensional diffusive random environment, with diffusion constant D . We consider two cases: (a) The particle is pulled forward by a small external constant force and (b) there is no systematic bias. Theoretical arguments and numerical simulations provide evidence that the particle is eventually trapped by the environment. This is diagnosed in two ways: The asymptotic speed of the particle scales quadratically with the external force as it goes to zero, and the fluctuations scale diffusively in the unbiased environment, up to possible logarithmic corrections in both cases. Moreover, in the large D limit (homogenized regime), we find an important transient region giving rise to other, finite-size scalings, and we describe the crossover to the true asymptotic behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Supinski, B R; Miller, B P; Liblit, B
2011-09-13
Petascale platforms with O(10{sup 5}) and O(10{sup 6}) processing cores are driving advancements in a wide range of scientific disciplines. These large systems create unprecedented application development challenges. Scalable correctness tools are critical to shorten the time-to-solution on these systems. Currently, many DOE application developers use primitive manual debugging based on printf or traditional debuggers such as TotalView or DDT. This paradigm breaks down beyond a few thousand cores, yet bugs often arise above that scale. Programmers must reproduce problems in smaller runs to analyze them with traditional tools, or else perform repeated runs at scale using only primitive techniques.more » Even when traditional tools run at scale, the approach wastes substantial effort and computation cycles. Continued scientific progress demands new paradigms for debugging large-scale applications. The Correctness on Petascale Systems (CoPS) project is developing a revolutionary debugging scheme that will reduce the debugging problem to a scale that human developers can comprehend. The scheme can provide precise diagnoses of the root causes of failure, including suggestions of the location and the type of errors down to the level of code regions or even a single execution point. Our fundamentally new strategy combines and expands three relatively new complementary debugging approaches. The Stack Trace Analysis Tool (STAT), a 2011 R&D 100 Award Winner, identifies behavior equivalence classes in MPI jobs and highlights behavior when elements of the class demonstrate divergent behavior, often the first indicator of an error. The Cooperative Bug Isolation (CBI) project has developed statistical techniques for isolating programming errors in widely deployed code that we will adapt to large-scale parallel applications. Finally, we are developing a new approach to parallelizing expensive correctness analyses, such as analysis of memory usage in the Memgrind tool. In the first two years of the project, we have successfully extended STAT to determine the relative progress of different MPI processes. We have shown that the STAT, which is now included in the debugging tools distributed by Cray with their large-scale systems, substantially reduces the scale at which traditional debugging techniques are applied. We have extended CBI to large-scale systems and developed new compiler based analyses that reduce its instrumentation overhead. Our results demonstrate that CBI can identify the source of errors in large-scale applications. Finally, we have developed MPIecho, a new technique that will reduce the time required to perform key correctness analyses, such as the detection of writes to unallocated memory. Overall, our research results are the foundations for new debugging paradigms that will improve application scientist productivity by reducing the time to determine which package or module contains the root cause of a problem that arises at all scales of our high end systems. While we have made substantial progress in the first two years of CoPS research, significant work remains. While STAT provides scalable debugging assistance for incorrect application runs, we could apply its techniques to assertions in order to observe deviations from expected behavior. Further, we must continue to refine STAT's techniques to represent behavioral equivalence classes efficiently as we expect systems with millions of threads in the next year. We are exploring new CBI techniques that can assess the likelihood that execution deviations from past behavior are the source of erroneous execution. Finally, we must develop usable correctness analyses that apply the MPIecho parallelization strategy in order to locate coding errors. We expect to make substantial progress on these directions in the next year but anticipate that significant work will remain to provide usable, scalable debugging paradigms.« less
Wahlquist, Joseph A; DelRio, Frank W; Randolph, Mark A; Aziz, Aaron H; Heveran, Chelsea M; Bryant, Stephanie J; Neu, Corey P; Ferguson, Virginia L
2017-12-01
Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models. Copyright © 2017 Acta Materialia Inc. All rights reserved.
Simple Kinematic Pathway Approach (KPA) to Catchment-scale Travel Time and Water Age Distributions
NASA Astrophysics Data System (ADS)
Soltani, S. S.; Cvetkovic, V.; Destouni, G.
2017-12-01
The distribution of catchment-scale water travel times is strongly influenced by morphological dispersion and is partitioned between hillslope and larger, regional scales. We explore whether hillslope travel times are predictable using a simple semi-analytical "kinematic pathway approach" (KPA) that accounts for dispersion on two levels of morphological and macro-dispersion. The study gives new insights to shallow (hillslope) and deep (regional) groundwater travel times by comparing numerical simulations of travel time distributions, referred to as "dynamic model", with corresponding KPA computations for three different real catchment case studies in Sweden. KPA uses basic structural and hydrological data to compute transient water travel time (forward mode) and age (backward mode) distributions at the catchment outlet. Longitudinal and morphological dispersion components are reflected in KPA computations by assuming an effective Peclet number and topographically driven pathway length distributions, respectively. Numerical simulations of advective travel times are obtained by means of particle tracking using the fully-integrated flow model MIKE SHE. The comparison of computed cumulative distribution functions of travel times shows significant influence of morphological dispersion and groundwater recharge rate on the compatibility of the "kinematic pathway" and "dynamic" models. Zones of high recharge rate in "dynamic" models are associated with topographically driven groundwater flow paths to adjacent discharge zones, e.g. rivers and lakes, through relatively shallow pathway compartments. These zones exhibit more compatible behavior between "dynamic" and "kinematic pathway" models than the zones of low recharge rate. Interestingly, the travel time distributions of hillslope compartments remain almost unchanged with increasing recharge rates in the "dynamic" models. This robust "dynamic" model behavior suggests that flow path lengths and travel times in shallow hillslope compartments are controlled by topography, and therefore application and further development of the simple "kinematic pathway" approach is promising for their modeling.
A model of interval timing by neural integration.
Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip
2011-06-22
We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.
Viviant, Morgane; Monestiez, Pascal; Guinet, Christophe
2014-01-01
Predicting how climatic variations will affect marine predator populations relies on our ability to assess foraging success, but evaluating foraging success in a marine predator at sea is particularly difficult. Dive metrics are commonly available for marine mammals, diving birds and some species of fish. Bottom duration or dive duration are usually used as proxies for foraging success. However, few studies have tried to validate these assumptions and identify the set of behavioral variables that best predict foraging success at a given time scale. The objective of this study was to assess if foraging success in Antarctic fur seals could be accurately predicted from dive parameters only, at different temporal scales. For this study, 11 individuals were equipped with either Hall sensors or accelerometers to record dive profiles and detect mouth-opening events, which were considered prey capture attempts. The number of prey capture attempts was best predicted by descent and ascent rates at the dive scale; bottom duration and descent rates at 30-min, 1-h, and 2-h scales; and ascent rates and maximum dive depths at the all-night scale. Model performances increased with temporal scales, but rank and sign of the factors varied according to the time scale considered, suggesting that behavioral adjustment in response to prey distribution could occur at certain scales only. The models predicted the foraging intensity of new individuals with good accuracy despite high inter-individual differences. Dive metrics that predict foraging success depend on the species and the scale considered, as verified by the literature and this study. The methodology used in our study is easy to implement, enables an assessment of model performance, and could be applied to any other marine predator. PMID:24603534
Abdulla, A M; Hegde, A M
2015-01-01
The aim of the study was to estimate the diurnal variations of salivary cortisol in children with autism and healthy children and it's implication on behavior during non-invasive dental procedures. 50 children with autism and 50 healthy children in the age group between 6 to 12 years of both genders with the need for dental treatment were included in the study. Whole unstimulated saliva was collected from them during early hours of the day and during evenings for 2 consecutive days . The collected saliva was then subjected to electrochemiluminescence assay . Minimum invasive dental procedures like hand scaling, pit and fissure sealants and glass ionomer cement restorations were performed for the participants each time after the saliva sample collection and their behavior during the procedures was rated using Frankl's Behavior Rating Scale. Significant correlation was seen between cortisol levels and behavior in children with autism. As cortisol levels increased in children with autism, behavior worsened and as the cortisol levels decreased they showed positive behaviour. Cortisol acts as a stress marker and studying the diurnal variations of salivary cortisol can help us in attaining better knowledge about the behavior pattern and thereby assist us in modifying the behavior modification procedures and treatment planning in this group of special children.
Virtual Patterson Experiment - A Way to Access the Rheology of Aggregates and Melanges
NASA Astrophysics Data System (ADS)
Delannoy, Thomas; Burov, Evgueni; Wolf, Sylvie
2014-05-01
Understanding the mechanisms of lithospheric deformation requires bridging the gap between human-scale laboratory experiments and the huge geological objects they represent. Those experiments are limited in spatial and time scale as well as in choice of materials (e.g., mono-phase minerals, exaggerated temperatures and strain rates), which means that the resulting constitutive laws may not fully represent real rocks at geological spatial and temporal scales. We use the thermo-mechanical numerical modelling approach as a tool to link both experiments and nature and hence better understand the rheology of the lithosphere, by enabling us to study the behavior of polymineralic aggregates and their impact on the localization of the deformation. We have adapted the large strain visco-elasto-plastic Flamar code to allow it to operate at all spatial and temporal scales, from sub-grain to geodynamic scale, and from seismic time scales to millions of years. Our first goal was to reproduce real rock mechanics experiments on deformation of mono and polymineralic aggregates in Patterson's load machine in order to deepen our understanding of the rheology of polymineralic rocks. In particular, we studied in detail the deformation of a 15x15 mm mica-quartz sample at 750 °C and 300 MPa. This mixture includes a molten phase and a solid phase in which shear bands develop as a result of interactions between ductile and brittle deformation and stress concentration at the boundaries between weak and strong phases. We used digitized x-ray scans of real samples as initial configuration for the numerical models so the model-predicted deformation and stress-strain behavior can match those observed in the laboratory experiment. Analyzing the numerical experiments providing the best match with the press experiments and making other complementary models by changing different parameters in the initial state (strength contrast between the phases, proportions, microstructure, etc.) provides a number of new elements of understanding of the mechanisms governing the localization of the deformation across the aggregates. We next used stress-strain curves derived from the numerical experiments to study in detail the evolution of the rheological behavior of each mineral phase as well as that of the mixtures in order to formulate constitutive relations for mélanges and polymineralic aggregates. The next step of our approach would be to link the constitutive laws obtained at small scale (laws that govern the rheology of a polymineralic aggregate, the effect of the presence of a molten phase, etc.) to the large-scale behavior of the Earth by implementing them in lithosphere-scale models.
Mothers' Psychological Distress and Feeding of Their Preterm Infants.
Park, Jinhee; Thoyre, Suzanne; Estrem, Hayley; Pados, Britt F; Knafl, George J; Brandon, Debra
To examine the change in psychological distress of mothers of preterm infants and its association with maternal feeding behaviors as the infant transitions to full oral feeding. This descriptive exploratory study used a subset of data from a study of the effects of a coregulated feeding intervention for 34 mothers and hospitalized preterm infants in a Level-III neonatal intensive care unit (NICU). Maternal psychological distress was measured by maternal worry (Child Health Worry Scale), depression (Center for Epidemiology-Depression Scale), and role stress (Parental Stress Scale: NICU-Role Alteration) at three time points: within 1 week prior to the first oral feeding (T1), and at achievement of half (T2) and full oral feeding (T3). Feedings were videotaped at T2 and T3. An observational coding system measured maternal feeding behaviors. Linear mixed modeling evaluated the change in maternal psychological distress and its association with mothers' feeding behaviors as the infant transitioned to full oral feeding. Maternal depressive symptoms were highest at T1 and declined over time. Maternal worry and role stress were also highest at T1 but remained stable from T2 to T3. Increased maternal psychological distress, particularly depressive symptoms and role stress, were associated with less use of developmentally supportive feeding behaviors, that is, minimizing tactile stimulation, providing steady touch to contain or stabilize the infant, and regulating milk flow. Supporting maternal psychological well-being while infants are learning to feed orally may be an appropriate target for interventions to support mother-infant early feeding interactions.
Mothers' Psychological Distress and Feeding of Their Preterm Infants
Park, Jinhee; Thoyre, Suzanne; Estrem, Hayley; Pados, Britt F.; Knafl, George J.; Brandon, Debra
2016-01-01
Purpose To examine the change in psychological distress of mothers of preterm infants and its association with maternal feeding behaviors as the infant transitions to full oral feeding. Study Design and Methods This descriptive exploratory study used a subset of data from a study of the effects of a co-regulated feeding intervention for 34 mothers and hospitalized preterm infants in a level-III neonatal intensive care unit (NICU). Maternal psychological distress was measured by maternal worry (Child Health Worry Scale), depression (Center for Epidemiology-Depression Scale), and role stress (Parental Stress Scale: NICU-Role Alteration) at three time points: within one week prior to the first oral feeding (T1), and at achievement of half (T2) and full oral feeding (T3). Feedings were videotaped at T2 and T3. An observational coding system measured maternal feeding behaviors. Linear mixed modeling evaluated the change in maternal psychological distress and its association with mothers' feeding behaviors as the infant transitioned to full oral feeding. Results Maternal depressive symptoms were highest at T1 and declined over time. Maternal worry and role stress were also highest at T1 but remained stable from T2 to T3. Increased maternal psychological distress, particularly depressive symptoms and role stress, were associated with less use of developmentally supportive feeding behaviors, i.e., minimizing tactile stimulation, providing steady touch to contain or stabilize the infant, and regulating milk flow. Clinical Implications Supporting maternal psychological well-being while infants are learning to feed orally may be an appropriate target for interventions to support mother-infant early feeding interactions. PMID:27011000
On the dissolution of sunspot groups
NASA Technical Reports Server (NTRS)
Wallenhorst, S. G.; Howard, R.
1982-01-01
The behavior of magnetic fluxes from active regions is investigated for times near sunspot disappearance. It is found that the magnetic fluxes decrease on or near the date the spot vanishes. This effect is investigated and it is concluded that it is actually due to changes in the field, rather than through dissipation of the active region fields. This is important in considerations of the large-scale behavior of solar magnetic fields.
Scale-invariant Green-Kubo relation for time-averaged diffusivity
NASA Astrophysics Data System (ADS)
Meyer, Philipp; Barkai, Eli; Kantz, Holger
2017-12-01
In recent years it was shown both theoretically and experimentally that in certain systems exhibiting anomalous diffusion the time- and ensemble-averaged mean-squared displacement are remarkably different. The ensemble-averaged diffusivity is obtained from a scaling Green-Kubo relation, which connects the scale-invariant nonstationary velocity correlation function with the transport coefficient. Here we obtain the relation between time-averaged diffusivity, usually recorded in single-particle tracking experiments, and the underlying scale-invariant velocity correlation function. The time-averaged mean-squared displacement is given by 〈δ2¯〉 ˜2 DνtβΔν -β , where t is the total measurement time and Δ is the lag time. Here ν is the anomalous diffusion exponent obtained from ensemble-averaged measurements 〈x2〉 ˜tν , while β ≥-1 marks the growth or decline of the kinetic energy 〈v2〉 ˜tβ . Thus, we establish a connection between exponents that can be read off the asymptotic properties of the velocity correlation function and similarly for the transport constant Dν. We demonstrate our results with nonstationary scale-invariant stochastic and deterministic models, thereby highlighting that systems with equivalent behavior in the ensemble average can differ strongly in their time average. If the averaged kinetic energy is finite, β =0 , the time scaling of 〈δ2¯〉 and 〈x2〉 are identical; however, the time-averaged transport coefficient Dν is not identical to the corresponding ensemble-averaged diffusion constant.
ERIC Educational Resources Information Center
Goldhammer, Frank; Naumann, Johannes; Stelter, Annette; Tóth, Krisztina; Rölke, Heiko; Klieme, Eckhard
2014-01-01
Computer-based assessment can provide new insights into behavioral processes of task completion that cannot be uncovered by paper-based instruments. Time presents a major characteristic of the task completion process. Psychologically, time on task has 2 different interpretations, suggesting opposing associations with task outcome: Spending more…
Multiple scales in metapopulations of public goods producers
NASA Astrophysics Data System (ADS)
Bauer, Marianne; Frey, Erwin
2018-04-01
Multiple scales in metapopulations can give rise to paradoxical behavior: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilized in the well-mixed limit due to the mere existence of these scales. The scales in this model involve a length scale corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the interaction rate progressively stabilizes this species due to stochastic effects, and that the formation of spatial patterns is not crucial for this stabilization.
NASA Astrophysics Data System (ADS)
Matos, K.; Alves Meira Neto, A.; Troch, P. A. A.; Volkmann, T.
2017-12-01
Hydrological processes at the hillslope scale are complex and heterogeneous, but monitoring hillslopes with a large number of sensors or replicate experimental designs is rarely feasible. The Landscape Evolution Observatory (LEO) at Biosphere 2 consists of three replicated, large (330 m2) artificial hillslopes (East, Center and West) packed with 1-m depth of initially homogeneous, basaltic soil. Each landscape contains a spatially dense network of sensors capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture content and water potential, as well as the hillslope-integrated water balance components. A sophisticated irrigation system allows performing controlled forcing experiments. The three hillslopes are thought to be nearly identical, however recent data showed significant differences in discharge and storage behavior. A 45-day periodic-steady-state tracer experiment was conducted in November and December of 2016, where a 3.5-day long, identical irrigation sequence was repeated 15 times. Each sequence's rainfall, runoff, and storage dynamics were recorded, and distributed moisture characteristics were derived using paired moisture content and matric potential data from 496 positions in each hillslope. In order to understand why the three hillslopes behave hydrologically different, we analyzed soil water retention characteristics at various scales ranging from individually paired moisture and matric potential to whole-hillslope soil water retention characteristics. The results confirm the distinct hydrological behavior between the three hillslopes. The East and West hillslopes behave more similar with respect to the release of water. In contrast, the East and Center hillslopes are more similar with respect to their storage behavior. The differences in hillslope behavior arising from three identically built hillslopes are a surprising and beneficial opportunity to explore how differences in small-scale heterogeneity can impact hydrological dynamics at the hillslope scale.
Scale Dependence of Spatiotemporal Intermittence of Rain
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Siddani, Ravi K.
2011-01-01
It is a common experience that rainfall is intermittent in space and time. This is reflected by the fact that the statistics of area- and/or time-averaged rain rate is described by a mixed distribution with a nonzero probability of having a sharp value zero. In this paper we have explored the dependence of the probability of zero rain on the averaging space and time scales in large multiyear data sets based on radar and rain gauge observations. A stretched exponential fannula fits the observed scale dependence of the zero-rain probability. The proposed formula makes it apparent that the space-time support of the rain field is not quite a set of measure zero as is sometimes supposed. We also give an ex.planation of the observed behavior in tenus of a simple probabilistic model based on the premise that rainfall process has an intrinsic memory.
Diaz, Sabrina D; Smith, Lynne M; LaGasse, Linda L; Derauf, Chris; Newman, Elana; Shah, Rizwan; Arria, Amelia; Huestis, Marilyn A; Della Grotta, Sheri; Dansereau, Lynne M; Neal, Charles; Lester, Barry M
2014-06-01
To examine child behavioral and cognitive outcomes after prenatal exposure to methamphetamine. We enrolled 412 mother-infant pairs (204 methamphetamine-exposed and 208 unexposed matched comparisons) in the Infant Development, Environment, and Lifestyle study. The 151 children exposed to methamphetamine and 147 comparisons who attended the 7.5-year visit were included. Exposure was determined by maternal self-report and/or positive meconium toxicology. Maternal interviews assessed behavioral and cognitive outcomes using the Conners' Parent Rating Scale-Revised: Short Form. After adjusting for covariates, children exposed to methamphetamine had significantly higher cognitive problems subscale scores than comparisons and were 2.8 times more likely to have cognitive problems scores that were above average on the Conners' Parent Rating Scale-Revised: Short Form. No association between prenatal methamphetamine exposure and behavioral problems, measured by the oppositional, hyperactivity, and attention-deficit/hyperactivity disorder index subscales, were found. Prenatal methamphetamine exposure was associated with increased cognitive problems, which may affect academic achievement and lead to increased negative behavioral outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Pattern, growth, and aging in aggregation kinetics of a Vicsek-like active matter model
NASA Astrophysics Data System (ADS)
Das, Subir K.
2017-01-01
Via molecular dynamics simulations, we study kinetics in a Vicsek-like phase-separating active matter model. Quantitative results, for isotropic bicontinuous pattern, are presented on the structure, growth, and aging. These are obtained via the two-point equal-time density-density correlation function, the average domain length, and the two-time density autocorrelation function. Both the correlation functions exhibit basic scaling properties, implying self-similarity in the pattern dynamics, for which the average domain size exhibits a power-law growth in time. The equal-time correlation has a short distance behavior that provides reasonable agreement between the corresponding structure factor tail and the Porod law. The autocorrelation decay is a power-law in the average domain size. Apart from these basic similarities, the overall quantitative behavior of the above-mentioned observables is found to be vastly different from those of the corresponding passive limit of the model which also undergoes phase separation. The functional forms of these have been quantified. An exceptionally rapid growth in the active system occurs due to fast coherent motion of the particles, mean-squared-displacements of which exhibit multiple scaling regimes, including a long time ballistic one.
Switching Phenomena in a System with No Switches
NASA Astrophysics Data System (ADS)
Preis, Tobias; Stanley, H. Eugene
2010-02-01
It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).
Imaging of forced-imbibition in carbonate rocks using synchrotron X-ray micro-tomography
NASA Astrophysics Data System (ADS)
Singh, K.; Menke, H. P.; Andrew, M. G.; Lin, Q.; Saif, T.; Al-Khulaifi, Y.; Reynolds, C. A.; Bijeljic, B.; Rau, C.; Blunt, M. J.
2016-12-01
We have investigated the pore-scale behavior of brine-oil systems and oil trapping during forced-imbibition in a water-wet carbonate rock in a capillary-dominated flow regime at reservoir pressure conditions. To capture the dynamics of the brine-oil front progression and snap-off process, real-time tomograms with a time resolution of 38 s (24 s for imaging and 14 s for recording the data) and a spatial resolution of 3.28 µm were acquired at Diamond Light Source (UK). The data were first analyzed at global scale (complete imaged rock) for overall front behavior. From the saturation profiles, we obtain the location of the tail of the desaturation front that progresses with a velocity of 13 µm/min. This velocity is smaller than average flow velocity 16.88 µm/min, which explains why it needs slightly more than 1 pore volume of brine injection to reach the residual saturation of oil in a water-wet rock. The data were further analyzed at local scale to investigate the pore-scale mechanisms of oil trapping during brine flooding. We isolated various trapping events which resulted in the creation of discrete oil ganglia occupying one to several pore bodies. We perform pore-scale curvature analysis of brine-oil interfaces to obtain local capillary pressure that will be related to the shape and the size of throats in which ganglia were trapped.
The role of time and risk preferences in adherence to physician advice on health behavior change.
van der Pol, Marjon; Hennessy, Deirdre; Manns, Braden
2017-04-01
Changing physical activity and dietary behavior in chronic disease patients is associated with significant health benefits but is difficult to achieve. An often-used strategy is for the physician or other health professional to encourage behavior changes by providing advice on the health consequences of such behaviors. However, adherence to advice on health behavior change varies across individuals. This paper uses data from a population-based cross-sectional survey of 1849 individuals with chronic disease to explore whether differences in individuals' time and risk preferences can help explain differences in adherence. Health behaviors are viewed as investments in health capital within the Grossman model. Physician advice plays a role in the model in that it improves the understanding of the future health consequences of investments. It can be hypothesized that the effect of advice on health behavior will depend on an individuals' time and risk preference. Within the survey, which measured a variety of health-related behaviors and outcomes, including receipt and compliance with advice on dietary and physical activity changes, time preferences were measured using financial planning horizon, and risk preferences were measured through a commonly used question which asked respondents to indicate their willingness to take risks on a ten-point scale. Results suggest that time preferences play a role in adherence to physical activity advice. While time preferences also play a role in adherence to dietary advice, this effect is only apparent for males. Risk preferences do not seem to be associated with adherence. The results suggest that increasing the salience of more immediate benefits of health behavior change may improve adherence.
Camp, B W
1996-06-01
This study examines stability and change in characteristics of adolescent mothers from their child's infancy to school age, describes cognitive and behavioral characteristics of their children at school age, and reports on the relationship between maternal characteristics and child behavior and development at school age. Cognitive status and childrearing attitudes were assessed in 43 adolescent mothers (mean age 16.3 years) when their children were infants (Time 1) and again when children were school age (Time 2). At school age, mothers also completed the Louisville Behavior Checklist, and children were administered the Slosson Intelligence Test and the Wide Range Achievement Test. Significant correlations were obtained between maternal measures at Time 1 and Time 2, and no significant differences were observed between mean scores at Time 1 and Time 2 on any measures. Children demonstrated average intelligence, but mean achievement was almost 1 SD below average. Significantly more children had high scores than expected on scales for hyperactivity and academic disability. Except for maternal vocabulary, maternal measures obtained at Time 1 were not directly related to children's IQ or behavior problems. Maternal vocabulary and authoritarian and hostile childrearing attitudes assessed at Time 1 contributed independently to prediction of achievement test scores in a positive direction. Mothers' vocabulary at Time 2 and high or increased hostile childrearing attitudes contributed positively to prediction of child IQ. Mothers who still had high scores in authoritarian childrearing attitudes or whose scores increased had children with lower IQs. Changes in attitudes or contemporary measures of attitudes were also related to behavior problems at school age.
NASA Astrophysics Data System (ADS)
Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe
2017-12-01
Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. The signature of pressure changes in the fault zone due to pumping cycles is clearly recognizable in field tilt data and we aim to explain the peculiar features that appear in (1) tilt time series alone from a set of four instruments and 2) the ratio of tilt over pressure. We evidence that the shape of tilt measurements on both sides of a fault zone is sensitive to its diffusivity and its elastic modulus. The ratio of tilt over pressure predominantly encompasses information about the system's dynamic behavior and extent of the fault zone and allows separating contributions of flow in the different compartments. Hence, tiltmeters are well suited to characterize hydromechanical processes associated with fault zone hydrogeology at short time scales, where spaceborne surveying methods fail to recognize any deformation signal.
Blitz, Dawn M; Pritchard, Amy E; Latimer, John K; Wakefield, Andrew T
2017-04-01
Adaptive changes in the output of neural circuits underlying rhythmic behaviors are relayed to muscles via motor neuron activity. Presynaptic and postsynaptic properties of neuromuscular junctions can impact the transformation from motor neuron activity to muscle response. Further, synaptic plasticity occurring on the time scale of inter-spike intervals can differ between multiple muscles innervated by the same motor neuron. In rhythmic behaviors, motor neuron bursts can elicit additional synaptic plasticity. However, it is unknown whether plasticity regulated by the longer time scale of inter-burst intervals also differs between synapses from the same neuron, and whether any such distinctions occur across a physiological activity range. To address these issues, we measured electrical responses in muscles innervated by a chewing circuit neuron, the lateral gastric (LG) motor neuron, in a well-characterized small motor system, the stomatogastric nervous system (STNS) of the Jonah crab, Cancer borealis In vitro and in vivo , sensory, hormonal and modulatory inputs elicit LG bursting consisting of inter-spike intervals of 50-250 ms and inter-burst intervals of 2-24 s. Muscles expressed similar facilitation measured with paired stimuli except at the shortest inter-spike interval. However, distinct decay time constants resulted in differences in temporal summation. In response to bursting activity, augmentation occurred to different extents and saturated at different inter-burst intervals. Further, augmentation interacted with facilitation, resulting in distinct intra-burst facilitation between muscles. Thus, responses of multiple target muscles diverge across a physiological activity range as a result of distinct synaptic properties sensitive to multiple time scales. © 2017. Published by The Company of Biologists Ltd.
Spanish version of the Time Management Behavior Questionnaire for university students.
García-Ros, Rafael; Pérez-González, Francisco
2012-11-01
The main objective of the study is to analyze the psychometric properties and predictive capacity on academic performance in university contexts of a Spanish adaptation of the Time Management Behavior Questionnaire. The scale was applied to 462 students newly admitted at the Universitat de València in the 2006-2007 school year. The analyses performed made it possible to reproduce the factorial structure of the original version of the questionnaire with slight modifications in the ascription of various items. The underlying factorial structure includes four interrelated dimensions (Establishing objectives and priorities, Time management tools, Perception of time control and Preference for disorganization), which present satisfactory levels of reliability and an adequate convergent validity with the Time management subscale of the Motivated Strategies for Learning Questionnaire. The scores on the dimensions of time management show significant levels of association with academic performance in the first year of university studies, especially highlighting the predictive capacity of the subscale dealing with the Establishment of objectives and priorities. These results show the reliability and validity of this adaptation of the scale for evaluating how the students manage their academic time, and predicting their performance in the year they initiate the degree program, thus aiding in the development of intervention proposals directed towards improving these skills.
NASA Astrophysics Data System (ADS)
Palacios, Patricia
2018-05-01
In this paper, I compare the use of the thermodynamic limit in the theory of phase transitions with the infinite-time limit in the explanation of equilibrium statistical mechanics. In the case of phase transitions, I will argue that the thermodynamic limit can be justified pragmatically since the limit behavior (i) also arises before we get to the limit and (ii) for values of N that are physically significant. However, I will contend that the justification of the infinite-time limit is less straightforward. In fact, I will point out that even in cases where one can recover the limit behavior for finite t, i.e. before we get to the limit, one cannot recover this behavior for realistic time scales. I will claim that this leads us to reconsider the role that the rate of convergence plays in the justification of infinite limits and calls for a revision of the so-called Butterfield's principle.
NASA Astrophysics Data System (ADS)
Palacios, Patricia
2018-04-01
In this paper, I compare the use of the thermodynamic limit in the theory of phase transitions with the infinite-time limit in the explanation of equilibrium statistical mechanics. In the case of phase transitions, I will argue that the thermodynamic limit can be justified pragmatically since the limit behavior (i) also arises before we get to the limit and (ii) for values of N that are physically significant. However, I will contend that the justification of the infinite-time limit is less straightforward. In fact, I will point out that even in cases where one can recover the limit behavior for finite t, i.e. before we get to the limit, one cannot recover this behavior for realistic time scales. I will claim that this leads us to reconsider the role that the rate of convergence plays in the justification of infinite limits and calls for a revision of the so-called Butterfield's principle.
NASA Astrophysics Data System (ADS)
Preis, T.
2011-03-01
The two articles in this issue of the European Physical Journal Special Topics cover topics in Econophysics and GPU computing in the last years. In the first article [1], the formation of market prices for financial assets is described which can be understood as superposition of individual actions of market participants, in which they provide cumulative supply and demand. This concept of macroscopic properties emerging from microscopic interactions among the various subcomponents of the overall system is also well-known in statistical physics. The distribution of price changes in financial markets is clearly non-Gaussian leading to distinct features of the price process, such as scaling behavior, non-trivial correlation functions and clustered volatility. This article focuses on the analysis of financial time series and their correlations. A method is used for quantifying pattern based correlations of a time series. With this methodology, evidence is found that typical behavioral patterns of financial market participants manifest over short time scales, i.e., that reactions to given price patterns are not entirely random, but that similar price patterns also cause similar reactions. Based on the investigation of the complex correlations in financial time series, the question arises, which properties change when switching from a positive trend to a negative trend. An empirical quantification by rescaling provides the result that new price extrema coincide with a significant increase in transaction volume and a significant decrease in the length of corresponding time intervals between transactions. These findings are independent of the time scale over 9 orders of magnitude, and they exhibit characteristics which one can also find in other complex systems in nature (and in physical systems in particular). These properties are independent of the markets analyzed. Trends that exist only for a few seconds show the same characteristics as trends on time scales of several months. Thus, it is possible to study financial bubbles and their collapses in more detail, because trend switching processes occur with higher frequency on small time scales. In addition, a Monte Carlo based simulation of financial markets is analyzed and extended in order to reproduce empirical features and to gain insight into their causes. These causes include both financial market microstructure and the risk aversion of market participants.
ERIC Educational Resources Information Center
Myers, Carl L.; Bour, Jennifer L.; Sidebottom, Kristina J.; Murphy, Sara B.; Hakman, Melissa
2010-01-01
Broad-band or multidimensional behavior-rating scales are common tools for evaluating children. Two popular behavior-rating scales, the Behavior Assessment System for Children, Second Edition (BASC-2; Reynolds & Kamphaus, 2004) and the Child Behavior Checklist (CBCL; Achenbach & Rescorla, 2000), have undergone downward extensions so that…
Promoting Handwashing Behavior: The Effects of Large-scale Community and School-level Interventions.
Galiani, Sebastian; Gertler, Paul; Ajzenman, Nicolas; Orsola-Vidal, Alexandra
2016-12-01
This paper analyzes a randomized experiment that uses novel strategies to promote handwashing with soap at critical points in time in Peru. It evaluates a large-scale comprehensive initiative that involved both community and school activities in addition to communication campaigns. The analysis indicates that the initiative was successful in reaching the target audience and in increasing the treated population's knowledge about appropriate handwashing behavior. These improvements translated into higher self-reported and observed handwashing with soap at critical junctures. However, no significant improvements in the health of children under the age of 5 years were observed. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Reynolds, W. C.
1983-01-01
The capabilities and limitations of large eddy simulation (LES) and full turbulence simulation (FTS) are outlined. It is pointed out that LES, although limited at the present time by the need for periodic boundary conditions, produces large-scale flow behavior in general agreement with experiments. What is more, FTS computations produce small-scale behavior that is consistent with available experiments. The importance of the development work being done on the National Aerodynamic Simulator is emphasized. Studies at present are limited to situations in which periodic boundary conditions can be applied on boundaries of the computational domain where the flow is turbulent.
Coagulation-Fragmentation Model for Animal Group-Size Statistics
NASA Astrophysics Data System (ADS)
Degond, Pierre; Liu, Jian-Guo; Pego, Robert L.
2017-04-01
We study coagulation-fragmentation equations inspired by a simple model proposed in fisheries science to explain data for the size distribution of schools of pelagic fish. Although the equations lack detailed balance and admit no H-theorem, we are able to develop a rather complete description of equilibrium profiles and large-time behavior, based on recent developments in complex function theory for Bernstein and Pick functions. In the large-population continuum limit, a scaling-invariant regime is reached in which all equilibria are determined by a single scaling profile. This universal profile exhibits power-law behavior crossing over from exponent -2/3 for small size to -3/2 for large size, with an exponential cutoff.
NASA Astrophysics Data System (ADS)
Prudnikov, V. V.; Prudnikov, P. V.; Popov, I. S.
2018-03-01
A Monte Carlo numerical simulation of the specific features of nonequilibrium critical behavior is carried out for the two-dimensional structurally disordered XY model during its evolution from a low-temperature initial state. On the basis of the analysis of the two-time dependence of autocorrelation functions and dynamic susceptibility for systems with spin concentrations of p = 1.0, 0.9, and 0.6, aging phenomena characterized by a slowing down of the relaxation system with increasing waiting time and the violation of the fluctuation-dissipation theorem (FDT) are revealed. The values of the universal limiting fluctuation-dissipation ratio (FDR) are obtained for the systems considered. As a result of the analysis of the two-time scaling dependence for spin-spin and connected spin autocorrelation functions, it is found that structural defects lead to subaging phenomena in the behavior of the spin-spin autocorrelation function and superaging phenomena in the behavior of the connected spin autocorrelation function.
Real-Time Visualization of Network Behaviors for Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.
Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less
Indentation analysis of active viscoelastic microplasmodia of P. polycephalum
NASA Astrophysics Data System (ADS)
Fessel, Adrian; Oettmeier, Christina; Wechsler, Klaus; Döbereiner, Hans-Günther
2018-01-01
Simple organisms like Physarum polycephalum realize complex behavior, such as shortest path optimization or habituation, via mechanochemical processes rather than by a network of neurons. A full understanding of these phenomena requires detailed investigation of the underlying mechanical properties. To date, micromechanical measurements on P. polycephalum are sparse and lack reproducibility. This prompts study of microplasmodia, a reproducible and homogeneous form of P. polycephalum that resembles the plasmodial ectoplasm responsible for mechanical stability and generation of forces. We combine investigation of ultra-structure and dimension of P. polycephalum with the analysis of data obtained by indentation of microplasmodia, employing a novel nonlinear viscoelastic scaling model that accounts for finite dimension of the sample. We identify the multi-modal distribution of parameters such as Young’s moduls, Poisson’s ratio, and relaxation times associated with viscous processes that cover five orders of magnitude. Results suggest a characterization of microplasmodia as porous, compressible structures that act like elastic solids with high Young’s modulus on short time scales, whereas on long time-scales and upon repeated indentation viscous behavior dominates and the effective modulus is significantly decreased. Furthermore, Young’s modulus is found to oscillate in phase with shape of microplasmodia, emphasizing that modeling P. polycephalum oscillations as a driven oscillator with constant moduli is not practicable.
2011-01-01
present performance statistics to explain the scalability behavior. Keywords-atmospheric models, time intergrators , MPI, scal- ability, performance; I...across inter-element bound- aries. Basis functions are constructed as tensor products of Lagrange polynomials ψi (x) = hα(ξ) ⊗ hβ(η) ⊗ hγ(ζ)., where hα
Kerner, Matthew S; Kurrant, Anthony B
2003-12-01
This study was designed to test the efficacy of the theory of planned behavior in predicting intention to engage in leisure-time physical activity and leisure-time physical activity behavior of high school girls. Rating scales were used for assessing attitude to leisure-time physical activity, subjective norm, perceived control, and intention to engage in leisure-time physical activity among 129 ninth through twelfth graders. Leisure-time physical activity was obtained from 3-wk. diaries. The first hierarchical multiple regression indicated that perceived control added (R2 change = .033) to the contributions of attitude to leisure-time physical activity and subjective norm in accounting for 50.7% of the total variance of intention to engage in leisure-time physical activity. The second regression analysis indicated that almost 10% of the variance of leisure-time physical activity was explicated by intention to engage in leisure-time physical activity and perceived control, with perceived control contributing 6.4%. From both academic and theoretical standpoints, our findings support the theory of planned behavior, although quantitatively the variance of leisure-time physical activity was not well-accounted for. In addition, considering the small percentage increase in variance explained by the addition of perceived control explaining variance of intention to engage in leisure-time physical activity, the pragmatism of implementing the measure of perceived control is questionable for this population.
Intellectual, behavioral, and emotional functioning in children with syndromic craniosynostosis.
Maliepaard, Marianne; Mathijssen, Irene M J; Oosterlaan, Jaap; Okkerse, Jolanda M E
2014-06-01
To examine intellectual, behavioral, and emotional functioning of children who have syndromic craniosynostosis and to explore differences between diagnostic subgroups. A national sample of children who have syndromic craniosynostosis participated in this study. Intellectual, behavioral, and emotional outcomes were assessed by using standardized measures: Wechsler Intelligence Scale for Children, Third Edition, Child Behavior Checklist (CBCL)/6-18, Disruptive Behavior Disorder rating scale (DBD), and the National Institute of Mental Health Diagnostic Interview Schedule for Children. We included 82 children (39 boys) aged 6 to 13 years who have syndromic craniosynostosis. Mean Full-Scale IQ (FSIQ) was in the normal range (M = 96.6; SD = 21.6). However, children who have syndromic craniosynostosis had a 1.9 times higher risk for developing intellectual disability (FSIQ < 85) compared with the normative population (P < .001) and had more behavioral and emotional problems compared with the normative population, including higher scores on the CBCL/6-18, DBD Total Problems (P < .001), Internalizing (P < .01), social problems (P < .001), attention problems (P < .001), and the DBD Inattention (P < .001). Children who have Apert syndrome had lower FSIQs (M = 76.7; SD = 13.3) and children who have Muenke syndrome had more social problems (P < .01), attention problems (P < .05), and inattention problems (P < .01) than normative population and with other diagnostic subgroups. Although children who have syndromic craniosynostosis have FSIQs similar to the normative population, they are at increased risk for developing intellectual disability, internalizing, social, and attention problems. Higher levels of behavioral and emotional problems were related to lower levels of intellectual functioning.
NASA Astrophysics Data System (ADS)
Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.
2015-12-01
The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.
Marek, Ryan J; Ben-Porath, Yossef S; Merrell, Julie; Ashton, Kathleen; Heinberg, Leslie J
2014-04-01
Presurgical psychological screening of bariatric surgery candidates includes some form of standardized psychological assessment. However, associations between presurgical psychological screening and postoperative outcome have not been extensively studied. Here, we explore associations between presurgical Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) scores and early postoperative Somatic Concerns, Psychological Distress, and Maladaptive Eating Behaviors. The sample consisted of male (n = 238) and female (n = 621) patients who were administered the MMPI-2-RF at their presurgical psychological evaluation and received bariatric surgery. Patients were evaluated at their 1- and 3-month postoperative appointments. Confirmatory factor analysis indicated that three latent constructs-somatic concerns, psychological distress, and maladaptive eating behaviors-were represented by responses to a postoperative assessment and that these constructs could be measured consistently over time. Presurgical scores on MMPI-2-RF scales measuring internalizing dysfunction were associated with more psychological distress at postoperative follow-ups, scores on scales measuring somatization were associated with more postoperative somatic concerns, and scores on scales assessing emotional/internalizing, behavioral/externalizing, cognitive complaints, and thought dysfunction prior to surgery were associated with maladaptive eating behaviors after surgery. In conjunction with a presurgical psychological interview, the MMPI-2-RF provides information that can assist in anticipating postoperative outcomes and inform efforts to prevent them.
Efficacy outcome selection in the therapeutic hypothermia after pediatric cardiac arrest trials.
Holubkov, Richard; Clark, Amy E; Moler, Frank W; Slomine, Beth S; Christensen, James R; Silverstein, Faye S; Meert, Kathleen L; Pollack, Murray M; Dean, J Michael
2015-01-01
The Therapeutic Hypothermia After Pediatric Cardiac Arrest trials will determine whether therapeutic hypothermia improves survival with good neurobehavioral outcome, as assessed by the Vineland Adaptive Behavior Scales Second Edition, in children resuscitated after cardiac arrest in the in-hospital and out-of-hospital settings. We describe the innovative efficacy outcome selection process during Therapeutic Hypothermia After Pediatric Cardiac Arrest protocol development. Consensus assessment of potential outcomes and evaluation timepoints. None. We evaluated practical and technical advantages of several follow-up timepoints and continuous/categorical outcome variants. Simulations estimated power assuming varying hypothermia benefit on mortality and on neurobehavioral function among survivors. Twelve months after arrest was selected as the optimal assessment timepoint for pragmatic and clinical reasons. Change in Vineland Adaptive Behavior Scales Second Edition from prearrest level, measured as quasicontinuous with death and vegetative status being worst-possible levels, yielded optimal statistical power. However, clinicians preferred simpler multicategorical or binary outcomes because of easier interpretability and favored outcomes based solely on postarrest status because of concerns about accurate parental assessment of prearrest status and differing clinical impact of a given Vineland Adaptive Behavior Scales Second Edition change depending on prearrest status. Simulations found only modest power loss from categorizing or dichotomizing quasicontinuous outcomes because of high expected mortality. The primary outcome selected was survival with 12-month Vineland Adaptive Behavior Scales Second Edition no less than two SD below a reference population mean (70 points), necessarily evaluated only among children with prearrest Vineland Adaptive Behavior Scales Second Edition greater than or equal to 70. Two secondary efficacy outcomes, 12-month survival and quasicontinuous Vineland Adaptive Behavior Scales Second Edition change from prearrest level, will be evaluated among all randomized children, including those with compromised function prearrest. Extensive discussion of optimal efficacy assessment timing, and of the advantages versus drawbacks of incorporating prearrest status and using quasicontinuous versus simpler outcomes, was highly beneficial to the final Therapeutic Hypothermia After Pediatric Cardiac Arrest design. A relatively simple, binary primary outcome evaluated at 12 months was selected, with two secondary outcomes that address the potential disadvantages of primary outcome.
E-mail, decisional styles, and rest breaks.
Baker, James R; Phillips, James G
2007-10-01
E-mail is a common but problematic work application. A scale was created to measure tendencies to use e-mail to take breaks (e-breaking); and self-esteem and decisional style (vigilance, procrastination, buck-passing, hypervigilance) were used to predict the self-reported and actual e-mail behaviors of 133 participants (students and marketing employees). Individuals who were low in defensive avoidance (buck-passing) engaged in more e-mailing per week, both in time spent on e-mail and message volume. E-breakers were more likely to engage in behavioral procrastination and spent more time on personal e-mail.
Impedance spectral analysis and scaling behavior of Mn2+-Si4+ substituted Mn-Zn ferrites
NASA Astrophysics Data System (ADS)
Vasoya, N. H.; Saija, K. G.; Dolia, S. N.; Jha, Prafulla K.; Modi, K. B.
2017-11-01
This communication reports complex impedance (Z * = Z‧ - iZ″) spectral analysis of polycrystalline spinel ferrite system, Mn0.7+x Zn0.3Si x Fe2-2x O4 (x = 0.0-0.3), synthesized by a solid-state reaction route over the broad frequency (f = 20 Hz-1 MHz) and temperature (T = 300-673 K) ranges. Variation of Z‧(f, T) showing a typical negative temperature coefficient of resistant type behavior. Cole-Cole plots (Z″ versus Z‧) have been used to determine grain and grain boundary resistances, capacitances, relaxation frequencies and relaxation times. Relaxation time is found to decrease with temperature and it obeys the Arrhenius relationship. The corresponding activation energy values are found to be about ~0.6 eV suggesting conduction due to the polaron hopping based on the electron carriers. Evidence of the components from both localized and delocalized relaxations is observed. The scaling of Z″/Z max by using f max as a scaling parameter is more successful as compared to that carried out using σ dc as a scaling quantity. The results revealed that the complex dielectric parameters and structure of the ferrite ceramics are strongly coupled properties.
Blob-Spring Model for the Dynamics of Ring Polymer in Obstacle Environment
NASA Astrophysics Data System (ADS)
Lele, Ashish K.; Iyer, Balaji V. S.; Juvekar, Vinay A.
2008-07-01
The dynamical behavior of cyclic macromolecules in a fixed obstacle (FO) environment is very different than the behavior of linear chains in the same topological environment; while the latter relax by a snake-like reptational motion from their chain ends the former can relax only by contour length fluctuations since they are endless. Duke, Obukhov and Rubinstein proposed a scaling model (the DOR model) to interpret the dynamical scaling exponents shown by Monte Carlo simulations of rings in a FO environment. We present a model (blob-spring model) to describe the dynamics of flexible and non-concatenated ring polymer in FO environment based on a theoretical formulation developed for the dynamics of an unentangled fractal polymer. We argue that the perpetual evolution of ring perimeter by the motion of contour segments results in an extra frictional load. Our model predicts self-similar dynamics with scaling exponents for the molecular weight dependence of diffusion coefficient and relaxation times that are in agreement with the scaling model proposed by Obukhov et al.
X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies
NASA Technical Reports Server (NTRS)
Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.
2003-01-01
By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.
Persistent-random-walk approach to anomalous transport of self-propelled particles
NASA Astrophysics Data System (ADS)
Sadjadi, Zeinab; Shaebani, M. Reza; Rieger, Heiko; Santen, Ludger
2015-06-01
The motion of self-propelled particles is modeled as a persistent random walk. An analytical framework is developed that allows the derivation of exact expressions for the time evolution of arbitrary moments of the persistent walk's displacement. It is shown that the interplay of step length and turning angle distributions and self-propulsion produces various signs of anomalous diffusion at short time scales and asymptotically a normal diffusion behavior with a broad range of diffusion coefficients. The crossover from the anomalous short-time behavior to the asymptotic diffusion regime is studied and the parameter dependencies of the crossover time are discussed. Higher moments of the displacement distribution are calculated and analytical expressions for the time evolution of the skewness and the kurtosis of the distribution are presented.
Spectral Definition of the Characteristic Times for Anomalous Diffusion in a Potential
NASA Astrophysics Data System (ADS)
Kalmykov, Yuri P.; Coffey, William T.; Titov, Serguey V.
Characteristic times of the noninertial fractional diffusion of a particle in a potential are defined in terms of three time constants, viz., the integral, effective, and longest relaxation times. These times are described using the eigenvalues of the corresponding Fokker-Planck operator for the normal diffusion. Knowledge of them is sufficient to accurately predict the anomalous relaxation behavior for all time scales of interest. As a particular example, we consider the subdiffusion of a planar rotor in a double-well potential.
Critical behavior in earthquake energy dissipation
NASA Astrophysics Data System (ADS)
Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro
2017-09-01
We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.
A multilevel analysis of aggressive behaviors among nursing home residents.
Cassie, Kimberly M
2012-01-01
Individual and organizational characteristics associated with aggressive behavior among nursing home residents were examined among a sample of 5,494 residents from 23 facilities using the Minimum Data Set 2.0 and the Organizational Social Context scale. On admission, some individual level variables (age, sex, depression, activities of daily life [ADL] impairments, and cognitive impairments) and no organizational level variables were associated with aggressive behaviors. Over time, aggressive behaviors were linked with some individual characteristics (age, sex, and ADL impairments) and several organizational level variables (stressful climates, less rigid cultures, more resistant cultures, geographic location, facility size and staffing patterns). Findings suggest multi-faceted change strategies are needed.
Oscillation criteria for a class of second-order Emden-Fowler delay dynamic equations on time scales
NASA Astrophysics Data System (ADS)
Han, Zhenlai; Sun, Shurong; Shi, Bao
2007-10-01
By means of Riccati transformation technique, we establish some new oscillation criteria for the second-order Emden-Fowler delay dynamic equationsx[Delta][Delta](t)+p(t)x[gamma]([tau](t))=0 on a time scale ; here [gamma] is a quotient of odd positive integers with p(t) real-valued positive rd-continuous functions defined on . To the best of our knowledge nothing is known regarding the qualitative behavior of these equations on time scales. Our results in this paper not only extend the results given in [R.P. Agarwal, M. Bohner, S.H. Saker, Oscillation of second-order delay dynamic equations, Can. Appl. Math. Q. 13 (1) (2005) 1-18] but also unify the oscillation of the second-order Emden-Fowler delay differential equation and the second-order Emden-Fowler delay difference equation.
The length and time scales of water's glass transitions
NASA Astrophysics Data System (ADS)
Limmer, David T.
2014-06-01
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
The length and time scales of water's glass transitions.
Limmer, David T
2014-06-07
Using a general model for the equilibrium dynamics of supercooled liquids, I compute from molecular properties the emergent length and time scales that govern the nonequilibrium relaxation behavior of amorphous ice prepared by rapid cooling. Upon cooling, the liquid water falls out of equilibrium whereby the temperature dependence of its relaxation time is predicted to change from super-Arrhenius to Arrhenius. A consequence of this crossover is that the location of the apparent glass transition temperature depends logarithmically on cooling rate. Accompanying vitrification is the emergence of a dynamical length-scale, the size of which depends on the cooling rate and varies between angstroms and tens of nanometers. While this protocol dependence clarifies a number of previous experimental observations for amorphous ice, the arguments are general and can be extended to other glass forming liquids.
Gelation kinetics of gelatin using particle tracking microrheology
NASA Astrophysics Data System (ADS)
Hardcastle, Joseph; Bansil, Rama
2012-02-01
Previous studies with gelatin have observed four distinct stages during the physical gelation process [Normand et al. Macromolecules, 2000, 33, 1063]. In this presentation we report measurements of microrheology in an effort to examine the time evolution of the gel on short length scales and time scales. By tracking latex particles in gelatin solution at different temperatures we can follow the microrheological changes and kinetics of the gelation process. Using the generalized Stokes-Einstein relation viscoelastic properties of these quasi-static gel states the evolution of the storage and loss moduli, G' and G'', are examined as functions of both time and temperature. The data show that both G' and G'' exhibit power law scaling versus frequency with the same exponent. The temperature and concentration dependence of the frequency at which the system crosses over from viscous to elastic behavior will be presented.
Gust, Nicole; Koglin, Ute; Petermann, Franz
2015-01-01
The present study examines the relation between knowledge of emotion regulation strategies and social behavior in preschoolers. Knowledge of emotion regulation strategies of 210 children (mean age 55 months) was assessed. Teachers rated children's social behavior with SDQ. Linear regression analysis examined how knowledge of emotion regulation strategies influenced social behavior of children. Significant effects of gender on SDQ scales "prosocial behavior", "hyperactivity", "behavior problems", and SDQ total problem scale were identified. Age was a significant predictor of SDQ scales "prosocial behavior", "hyperactivity", "problems with peers" and SDQ total problem scale. Knowledge of emotion regulation strategies predicted SDQ total problem scores. Results suggest that deficits in knowledge of emotion regulation strategies are linked with increased problem behavior.
Factor Structure of Child Behavior Scale Scores in Peruvian Preschoolers
ERIC Educational Resources Information Center
Meyer, Erin L.; Schaefer, Barbara A.; Soto, Cesar Merino; Simmons, Crystal S.; Anguiano, Rebecca; Brett, Jeremy; Holman, Alea; Martin, Justin F.; Hata, Heidi K.; Roberts, Kimberly J.; Mello, Zena R.; Worrell, Frank C.
2011-01-01
Behavior rating scales aid in the identification of problem behaviors, as well as the development of interventions to reduce such behavior. Although scores on many behavior rating scales have been validated in the United States, there have been few such studies in other cultural contexts. In this study, the structural validity of scores on a…
ERIC Educational Resources Information Center
Wickerd, Garry; Hulac, David
2017-01-01
Accurate and rapid identification of students displaying behavioral problems requires instrumentation that is user friendly and reliable. The purpose of the study was to evaluate a multi-item direct behavior rating scale called the Direct Behavior Rating-Multiple Item Scale (DBR-MIS) for disruptive behavior to determine the number of…
Multi-Scale Modeling in Morphogenesis: A Critical Analysis of the Cellular Potts Model
Voss-Böhme, Anja
2012-01-01
Cellular Potts models (CPMs) are used as a modeling framework to elucidate mechanisms of biological development. They allow a spatial resolution below the cellular scale and are applied particularly when problems are studied where multiple spatial and temporal scales are involved. Despite the increasing usage of CPMs in theoretical biology, this model class has received little attention from mathematical theory. To narrow this gap, the CPMs are subjected to a theoretical study here. It is asked to which extent the updating rules establish an appropriate dynamical model of intercellular interactions and what the principal behavior at different time scales characterizes. It is shown that the longtime behavior of a CPM is degenerate in the sense that the cells consecutively die out, independent of the specific interdependence structure that characterizes the model. While CPMs are naturally defined on finite, spatially bounded lattices, possible extensions to spatially unbounded systems are explored to assess to which extent spatio-temporal limit procedures can be applied to describe the emergent behavior at the tissue scale. To elucidate the mechanistic structure of CPMs, the model class is integrated into a general multiscale framework. It is shown that the central role of the surface fluctuations, which subsume several cellular and intercellular factors, entails substantial limitations for a CPM's exploitation both as a mechanistic and as a phenomenological model. PMID:22984409
Design of scaled down structural models
NASA Technical Reports Server (NTRS)
Simitses, George J.
1994-01-01
In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.
Design of scaled down structural models
NASA Astrophysics Data System (ADS)
Simitses, George J.
1994-07-01
In the aircraft industry, full scale and large component testing is a very necessary, time consuming, and expensive process. It is essential to find ways by which this process can be minimized without loss of reliability. One possible alternative is the use of scaled down models in testing and use of the model test results in order to predict the behavior of the larger system, referred to herein as prototype. This viewgraph presentation provides justifications and motivation for the research study, and it describes the necessary conditions (similarity conditions) for two structural systems to be structurally similar with similar behavioral response. Similarity conditions provide the relationship between a scaled down model and its prototype. Thus, scaled down models can be used to predict the behavior of the prototype by extrapolating their experimental data. Since satisfying all similarity conditions simultaneously is in most cases impractical, distorted models with partial similarity can be employed. Establishment of similarity conditions, based on the direct use of the governing equations, is discussed and their use in the design of models is presented. Examples include the use of models for the analysis of cylindrical bending of orthotropic laminated beam plates, of buckling of symmetric laminated rectangular plates subjected to uniform uniaxial compression and shear, applied individually, and of vibrational response of the same rectangular plates. Extensions and future tasks are also described.
NASA Astrophysics Data System (ADS)
Antonov, N. V.; Gulitskiy, N. M.
2015-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ (t -t') /k⊥d -1 +ξ , where k⊥=|k⊥| and k⊥ is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")—the d -dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990), 10.1007/BF02161420]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L . The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order.
Multiscale functions, scale dynamics, and applications to partial differential equations
NASA Astrophysics Data System (ADS)
Cresson, Jacky; Pierret, Frédéric
2016-05-01
Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
Bai, Jinbing; Harper, Felicity W K; Penner, Louis A; Swanson, Kristen; Santacroce, Sheila J
2017-11-01
To study the relationship between parental verbal and nonverbal caring behaviors and child distress during cancer-related port access placement using correlational and time-window sequential analyses. . Longitudinal, observational design. . Children's Hospital of Michigan and St. Jude Children's Research Hospital. . 43 child-parent dyads, each with two or three video recordings of the child undergoing cancer-related port placement. . Two trained raters coded parent interaction behaviors and child distress using the Parent Caring Response Scoring System and Karmanos Child Coping and Distress Scale, respectively. Mixed modeling with generalized estimating equations examined the associations between parent interaction behaviors and parent distress, child distress, and child cooperation reported by multiple raters. Time-window sequential analyses were performed to investigate the temporal relationships in parent-child interactions within a five-second window. . Parent caring behaviors, child distress, and child cooperation. . Parent caring interaction behaviors were significantly correlated with parent distress, child distress, and child cooperation during repeated cancer port accessing. Sequential analyses showed that children were significantly less likely to display behavioral and verbal distress following parent caring behaviors than at any other time. If a child is already distressed, parent verbal and nonverbal caring behaviors can significantly reduce child behavioral and verbal distress. . Parent caring behaviors, particularly the rarely studied nonverbal behaviors (e.g., eye contact, distance close to touch, supporting/allowing), can reduce the child's distress during cancer port accessing procedures. . Studying parent-child interactions during painful cancer-related procedures can provide evidence to develop nursing interventions to support parents in caring for their child during painful procedures.
Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity
NASA Astrophysics Data System (ADS)
Zhou, Tao; Liu, Jian-Guo; Bai, Wen-Jie; Chen, Guanrong; Wang, Bing-Hong
2006-11-01
In this paper, we propose a susceptible-infected model with identical infectivity, in which, at every time step, each node can only contact a constant number of neighbors. We implemented this model on scale-free networks, and found that the infected population grows in an exponential form with the time scale proportional to the spreading rate. Furthermore, by numerical simulation, we demonstrated that the targeted immunization of the present model is much less efficient than that of the standard susceptible-infected model. Finally, we investigate a fast spreading strategy when only local information is available. Different from the extensively studied path-finding strategy, the strategy preferring small-degree nodes is more efficient than that preferring large-degree nodes. Our results indicate the existence of an essential relationship between network traffic and network epidemic on scale-free networks.
Empirical scaling law connecting persistence and severity of global terrorism
NASA Astrophysics Data System (ADS)
Gao, Jianbo; Fang, Peng; Liu, Feiyan
2017-09-01
Terrorism and counterterrorism have both been evolving rapidly. From time to time, there have been debates on whether the new terrorism is evolutionary or revolutionary. Such debate often becomes more heated after major terrorist activities, such as the terrorist attacks on September 11, 2001 and the November 13, 2015 coordinated Paris terror attack. Using country-wide terrorism data since 1970, we show that there exist scaling laws governing the continuity and persistence of world-wide terrorism, with the long-term scaling parameter for each country closely related to its yearly global terrorism index. This suggests that the new terrorism is more accurately considered evolutionary. It is further shown that the imbalance in the seesaw of terrorism and counterterrorism is not only responsible for the scaling behavior found here, but also provides new means of quantifying the severity of the global terrorism.
1977-12-15
reflecting assertive behavior are presented to the subjects and (b) the subjects respond by using a scale that permits him or her to indicate his...responses of sub— - jects are not assessed in terms of how assertive ~j~y perceive them to be. For example, an item might ask a subject to scale how...possible actions. This time we want you to tell us how strong or assertive each action is, in your opinion. Each action can be rated on a scale from 1 to 5
Mullins, Tanya L. Kowalczyk; Zimet, Gregory D.; Rosenthal, Susan L.; Morrow, Charlene; Ding, Lili; Huang, Bin; Kahn, Jessica A.
2016-01-01
Objective To examine the association between risk perceptions after human papillomavirus (HPV) vaccination and sexual behaviors and sexually transmitted infection (STI) diagnosis over 30 months following vaccination. Methods Participants included 112 sexually experienced girls aged 13–21 years who were enrolled at the time of first HPV vaccination and completed ≥2 of 4 follow-up visits at 2, 6, 18, 30 months and including 30 months. At each visit, participants completed surveys assessing risk perceptions (perceived need for safer sexual behaviors, perceived risk of STIs other than HPV) and sexual behaviors. STI testing was done at 6, 18, and 30 months. Outcomes were condom use at last intercourse with main male partner, number of sexual partners since last study visit, and STI diagnosis. Associations between risk perceptions and sexual behaviors/STIs were examined using generalized linear mixed models. Results Mean age was 17.9 years; 88% were Black; 49% had a history of STI at baseline. Scale scores for perceived need for safer sexual behaviors did not change significantly over time. Scale scores for perceived risk of STIs other than HPV significantly changed (p=0.027), indicating that girls perceived themselves to be more at risk of STIs other than HPV over 30 months following vaccination. Multivariable models demonstrated that greater perceived need for safer sexual behaviors following vaccination was associated with condom use (p=0.002) but not with number of partners or STI diagnosis. Perceived risk of STIs other than HPV was not associated with the three outcomes. Conclusions The finding that perceived risk for STIs other than HPV was not associated with subsequent sexual behaviors or STI diagnosis is reassuring. The association between perceived need for safer sexual behaviors and subsequent condom use suggests that the HPV vaccination visit is an important opportunity to reiterate the importance of safer sexual behaviors to sexually experienced girls. PMID:27291086
Behavioral Informatics and Computational Modeling in Support of Proactive Health Management and Care
Jimison, Holly B.; Korhonen, Ilkka; Gordon, Christine M.; Saranummi, Niilo
2016-01-01
Health-related behaviors are among the most significant determinants of health and quality of life. Improving health behavior is an effective way to enhance health outcomes and mitigate the escalating challenges arising from an increasingly aging population and the proliferation of chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors on a wide scale, advances at the intersection of technology and behavioral science may provide the tools to address this challenge. In this paper, we describe a vision and an approach to improve health behavior interventions using the tools of behavioral informatics, an emerging transdisciplinary research domain based on system-theoretic principles in combination with behavioral science and information technology. The field of behavioral informatics has the potential to optimize interventions through monitoring, assessing, and modeling behavior in support of providing tailored and timely interventions. We describe the components of a closed-loop system for health interventions. These components range from fine grain sensor characterizations to individual-based models of behavior change. We provide an example of a research health coaching platform that incorporates a closed-loop intervention based on these multiscale models. Using this early prototype, we illustrate how the optimized and personalized methodology and technology can support self-management and remote care. We note that despite the existing examples of research projects and our platform, significant future research is required to convert this vision to full-scale implementations. PMID:26441408
Method for a quantitative investigation of the frozen flow hypothesis
Schock; Spillar
2000-09-01
We present a technique to test the frozen flow hypothesis quantitatively, using data from wave-front sensors such as those found in adaptive optics systems. Detailed treatments of the theoretical background of the method and of the error analysis are presented. Analyzing data from the 1.5-m and 3.5-m telescopes at the Starfire Optical Range, we find that the frozen flow hypothesis is an accurate description of the temporal development of atmospheric turbulence on time scales of the order of 1-10 ms but that significant deviations from the frozen flow behavior are present for longer time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y.; Pang, N.; Halpin-Healy, T.
1994-12-01
The linear Langevin equation proposed by Edwards and Wilkinson [Proc. R. Soc. London A 381, 17 (1982)] is solved in closed form for noise of arbitrary space and time correlation. Furthermore, the temporal development of the full probability functional describing the height fluctuations is derived exactly, exhibiting an interesting evolution between two distinct Gaussian forms. We determine explicitly the dynamic scaling function for the interfacial width for any given initial condition, isolate the early-time behavior, and discover an invariance that was unsuspected in this problem of arbitrary spatiotemporal noise.
A Stochastic Model of Space-Time Variability of Mesoscale Rainfall: Statistics of Spatial Averages
NASA Technical Reports Server (NTRS)
Kundu, Prasun K.; Bell, Thomas L.
2003-01-01
A characteristic feature of rainfall statistics is that they depend on the space and time scales over which rain data are averaged. A previously developed spectral model of rain statistics that is designed to capture this property, predicts power law scaling behavior for the second moment statistics of area-averaged rain rate on the averaging length scale L as L right arrow 0. In the present work a more efficient method of estimating the model parameters is presented, and used to fit the model to the statistics of area-averaged rain rate derived from gridded radar precipitation data from TOGA COARE. Statistical properties of the data and the model predictions are compared over a wide range of averaging scales. An extension of the spectral model scaling relations to describe the dependence of the average fraction of grid boxes within an area containing nonzero rain (the "rainy area fraction") on the grid scale L is also explored.
Space and time scales in human-landscape systems.
Kondolf, G Mathias; Podolak, Kristen
2014-01-01
Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.
Evaluation of Lithofacies Up-Scaling Methods for Probabilistic Prediction of Carbon Dioxide Behavior
NASA Astrophysics Data System (ADS)
Park, J. Y.; Lee, S.; Lee, Y. I.; Kihm, J. H.; Kim, J. M.
2017-12-01
Behavior of carbon dioxide injected into target reservoir (storage) formations is highly dependent on heterogeneities of geologic lithofacies and properties. These heterogeneous lithofacies and properties basically have probabilistic characteristics. Thus, their probabilistic evaluation has to be implemented properly into predicting behavior of injected carbon dioxide in heterogeneous storage formations. In this study, a series of three-dimensional geologic modeling is performed first using SKUA-GOCAD (ASGA and Paradigm) to establish lithofacies models of the Janggi Conglomerate in the Janggi Basin, Korea within a modeling domain. The Janggi Conglomerate is composed of mudstone, sandstone, and conglomerate, and it has been identified as a potential reservoir rock (clastic saline formation) for geologic carbon dioxide storage. Its lithofacies information are obtained from four boreholes and used in lithofacies modeling. Three different up-scaling methods (i.e., nearest to cell center, largest proportion, and random) are applied, and lithofacies modeling is performed 100 times for each up-scaling method. The lithofacies models are then compared and analyzed with the borehole data to evaluate the relative suitability of the three up-scaling methods. Finally, the lithofacies models are converted into coarser lithofacies models within the same modeling domain with larger grid blocks using the three up-scaling methods, and a series of multiphase thermo-hydrological numerical simulation is performed using TOUGH2-MP (Zhang et al., 2008) to predict probabilistically behavior of injected carbon dioxide. The coarser lithofacies models are also compared and analyzed with the borehole data and finer lithofacies models to evaluate the relative suitability of the three up-scaling methods. Three-dimensional geologic modeling, up-scaling, and multiphase thermo-hydrological numerical simulation as linked methodologies presented in this study can be utilized as a practical probabilistic evaluation tool to predict behavior of injected carbon dioxide and even to analyze its leakage risk. This work was supported by the Korea CCS 2020 Project of the Korea Carbon Capture and Sequestration R&D Center (KCRC) funded by the National Research Foundation (NRF), Ministry of Science and ICT (MSIT), Korea.
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2017-12-01
Studies have shown that streamflow behavior and dynamics have a significant link with climate and climate variability. Patterns of persistent regime behavior from extended streamflow records in many watersheds justify investigating large-scale climate mechanisms as potential drivers of hydrologic regime behavior and streamflow variability. Understanding such streamflow-climate relationships is crucial to forecasting/simulation systems and the planning and management of water resources. In this study, hidden Markov models are used with reconstructed streamflow to detect regime-like behaviors - the hidden states - and state transition phenomena. Individual extreme events and their spatial variability across the basin are then verified with the identified states. Wavelet analysis is performed to examine the signals over time in the streamflow records. Joint analyses of the climatic data in the 20th century and the identified states are undertaken to better understand the hydroclimatic connections within the basin as well as important teleconnections that influence water supply. Compositing techniques are used to identify atmospheric circulation patterns associated with identified states of streamflow. The grouping of such synoptic patterns and their frequency are then examined. Sliding time-window correlation analysis and cross-wavelet spectral analysis are performed to establish the synchronicity of basin flows to the identified synoptic and teleconnection patterns. The Missouri River Basin (MRB) is examined in this study, both as a means of better understanding the synoptic climate controls in this important watershed and as a case study for the techniques developed here. Initial wavelet analyses of reconstructed streamflow at major gauges in the MRB show multidecadal cycles in regime behavior.
Perceived family perceptions of breastfeeding and Chinese new mothers' breastfeeding behaviors.
Lu, Hong; Li, Hongyan; Ma, Shuqin; Xia, Lijuan; Christensson, Kyllike
2011-11-01
To provide an understanding of Chinese new mothers' breastfeeding behaviors and especially to explore the relationship between the mothers perceived family perception about breastfeeding and the new mothers' breastfeeding behaviors. A cross-sectional questionnaire survey was conducted in Beijing and Yinchuan, the capital of Ning Xia Province, China. 214 new mothers with a baby at the age of 4 months were recruited to the study. The family perception of breastfeeding scale and the new mothers' breastfeeding behavior record were used. The response rate was n=200, 94%. Most of the new mothers perceived positive family perceptions about breastfeeding with an average score of 23.13 using the family perception of breastfeeding scale. Nearly half of the respondents reported that they exclusively breastfed their infants (n=94, 47%). The main reason for breastfeeding difficulty was inadequate lactation (n=56, 69%). The new mothers who breastfed their infants mentioned significantly stronger family perceptions/support compared to those who used mixed feeding or artificial feeding (p<0.001). There were no significant differences (p>0.05) in the types of mothers' feeding behaviors across the different age group, occupation, ethnicity, educational level, mode of delivery, the time of the baby's first suck, bottle feeding before the baby's first suck and the time of having colostrums. It is suggested to develop some strategies, such as family-centered antenatal and postnatal education programmes, to increase the rate of exclusive breastfeeding by influencing new mothers' families about breastfeeding. Further research is needed to explore socio-demographic variables associated with new-mothers' breastfeeding behaviors. Copyright © 2011 Elsevier B.V. All rights reserved.
Scaling behavior of EEG amplitude and frequency time series across sleep stages
NASA Astrophysics Data System (ADS)
Kantelhardt, Jan W.; Tismer, Sebastian; Gans, Fabian; Schumann, Aicko Y.; Penzel, Thomas
2015-10-01
We study short-term and long-term persistence properties (related with auto-correlations) of amplitudes and frequencies of EEG oscillations in 176 healthy subjects and 40 patients during nocturnal sleep. The amplitudes show scaling from 2 to 500 seconds (depending on the considered band) with large fluctuation exponents during (nocturnal) wakefulness (0.73-0.83) and small ones during deep sleep (0.50-0.69). Light sleep is similar to deep sleep, while REM sleep (0.64-0.76) is closer to wakefulness except for the EEG γ band. Some of the frequency time series also show long-term scaling, depending on the selected bands and stages. Only minor deviations are seen for patients with depression, anxiety, or Parkinson's disease.
Scale-invariant structure of energy fluctuations in real earthquakes
NASA Astrophysics Data System (ADS)
Wang, Ping; Chang, Zhe; Wang, Huanyu; Lu, Hong
2017-11-01
Earthquakes are obviously complex phenomena associated with complicated spatiotemporal correlations, and they are generally characterized by two power laws: the Gutenberg-Richter (GR) and the Omori-Utsu laws. However, an important challenge has been to explain two apparently contrasting features: the GR and Omori-Utsu laws are scale-invariant and unaffected by energy or time scales, whereas earthquakes occasionally exhibit a characteristic energy or time scale, such as with asperity events. In this paper, three high-quality datasets on earthquakes were used to calculate the earthquake energy fluctuations at various spatiotemporal scales, and the results reveal the correlations between seismic events regardless of their critical or characteristic features. The probability density functions (PDFs) of the fluctuations exhibit evidence of another scaling that behaves as a q-Gaussian rather than random process. The scaling behaviors are observed for scales spanning three orders of magnitude. Considering the spatial heterogeneities in a real earthquake fault, we propose an inhomogeneous Olami-Feder-Christensen (OFC) model to describe the statistical properties of real earthquakes. The numerical simulations show that the inhomogeneous OFC model shares the same statistical properties with real earthquakes.
Ditching Investigation of a 1/18-Scale Model of the North American B-45 Airplane
NASA Technical Reports Server (NTRS)
Fisher, Lloyd J.; Thompson, William C.
1949-01-01
An investigation of a 1/18-scale dynamically similar model of the North American B-45 airplane was made to observe the ditching behavior and determine the proper landing technique to be used in an emergency water landing. Various conditions of damage were simulated to determine the behavior which probably would occur in a full-scale ditching. The behavior of the model was determined from high-speed motion-picture records, time-history acceleration records, and visual observations. It was concluded that the airplane should be ditched at the maximum nose-high attitude with the landing flaps full down for minimum landing speed. During the ditching, the nose-wheel and bomb-bay doors probably will be torn away and the rear of the fuselage flooded. A violent dive will very likely occur. Longitudinal decelerations of approximately 5g and vertical accelerations of approximately -6g (including gravity) will be experienced near the pilots' compartment. Ditching braces installed in the bomb bay will tend to improve the behavior slightly but will be torn away along with the bomb-bay doors. A hydroflap installed ahead of the nose-wheel doors will eliminate the dive and failure of the nose-wheel doors, and substantially reduce the motions and accelerations.
Emergence of scaling in human-interest dynamics
Zhao, Zhi-Dan; Yang, Zimo; Zhang, Zike; Zhou, Tao; Huang, Zi-Gang; Lai, Ying-Cheng
2013-01-01
Human behaviors are often driven by human interests. Despite intense recent efforts in exploring the dynamics of human behaviors, little is known about human-interest dynamics, partly due to the extreme difficulty in accessing the human mind from observations. However, the availability of large-scale data, such as those from e-commerce and smart-phone communications, makes it possible to probe into and quantify the dynamics of human interest. Using three prototypical “Big Data” sets, we investigate the scaling behaviors associated with human-interest dynamics. In particular, from the data sets we uncover fat-tailed (possibly power-law) distributions associated with the three basic quantities: (1) the length of continuous interest, (2) the return time of visiting certain interest, and (3) interest ranking and transition. We argue that there are three basic ingredients underlying human-interest dynamics: preferential return to previously visited interests, inertial effect, and exploration of new interests. We develop a biased random-walk model, incorporating the three ingredients, to account for the observed fat-tailed distributions. Our study represents the first attempt to understand the dynamical processes underlying human interest, which has significant applications in science and engineering, commerce, as well as defense, in terms of specific tasks such as recommendation and human-behavior prediction. PMID:24326949
Getting It Right Matters: Climate Spectra and Their Estimation
NASA Astrophysics Data System (ADS)
Privalsky, Victor; Yushkov, Vladislav
2018-06-01
In many recent publications, climate spectra estimated with different methods from observed, GCM-simulated, and reconstructed time series contain many peaks at time scales from a few years to many decades and even centuries. However, respective spectral estimates obtained with the autoregressive (AR) and multitapering (MTM) methods showed that spectra of climate time series are smooth and contain no evidence of periodic or quasi-periodic behavior. Four order selection criteria for the autoregressive models were studied and proven sufficiently reliable for 25 time series of climate observations at individual locations or spatially averaged at local-to-global scales. As time series of climate observations are short, an alternative reliable nonparametric approach is Thomson's MTM. These results agree with both the earlier climate spectral analyses and the Markovian stochastic model of climate.
Scale Adhesion, Sulfur Content, and TBC Failure on Single Crystal Superalloys
NASA Technical Reports Server (NTRS)
Smialek, James L.
2002-01-01
This paper summarizes the main effects of sulfur impurity content on the cyclic oxidation resistance of single crystal superalloys, with emphasis on scale and TBC adhesion. Eleven hundred degrees C cyclic oxidation of PWA 1480 produces scale spallation leading to a weight loss of more than 30 Mg/sq cm after 500 one-hr cycles for a sulfur content of 6 ppmw. The sulfur content was reduced to levels below 0.1 ppmw by hydrogen annealing, resulting in weight gains of only 0.5 to 1.0 Mg/sq cm after 1000 one-hr cycles. Samples were produced with various sulfur contents by adjusting the annealing temperature, time, and sample thickness (i.e., diffusion product Dt/L(exp 2)). The subsequent cyclic oxidation behavior, mapped over a sulfur content/thickness diagram, shows a transition to adherent behavior at sulfur levels equivalent to 1 monolayer of total segregation. Additional information is contained in the original extended abstract.
Nonlinear filtering properties of detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Kiyono, Ken; Tsujimoto, Yutaka
2016-11-01
Detrended fluctuation analysis (DFA) has been widely used for quantifying long-range correlation and fractal scaling behavior. In DFA, to avoid spurious detection of scaling behavior caused by a nonstationary trend embedded in the analyzed time series, a detrending procedure using piecewise least-squares fitting has been applied. However, it has been pointed out that the nonlinear filtering properties involved with detrending may induce instabilities in the scaling exponent estimation. To understand this issue, we investigate the adverse effects of the DFA detrending procedure on the statistical estimation. We show that the detrending procedure using piecewise least-squares fitting results in the nonuniformly weighted estimation of the root-mean-square deviation and that this property could induce an increase in the estimation error. In addition, for comparison purposes, we investigate the performance of a centered detrending moving average analysis with a linear detrending filter and sliding window DFA and show that these methods have better performance than the standard DFA.
NASA Astrophysics Data System (ADS)
Sun, Xuelian; Liu, Zixian
2016-02-01
In this paper, a new estimator of correlation matrix is proposed, which is composed of the detrended cross-correlation coefficients (DCCA coefficients), to improve portfolio optimization. In contrast to Pearson's correlation coefficients (PCC), DCCA coefficients acquired by the detrended cross-correlation analysis (DCCA) method can describe the nonlinear correlation between assets, and can be decomposed in different time scales. These properties of DCCA make it possible to improve the investment effect and more valuable to investigate the scale behaviors of portfolios. The minimum variance portfolio (MVP) model and the Mean-Variance (MV) model are used to evaluate the effectiveness of this improvement. Stability analysis shows the effect of two kinds of correlation matrices on the estimation error of portfolio weights. The observed scale behaviors are significant to risk management and could be used to optimize the portfolio selection.
Zero-Field Ambient-Pressure Quantum Criticality in the Stoichiometric Non-Fermi Liquid System CeRhBi
NASA Astrophysics Data System (ADS)
Anand, Vivek K.; Adroja, Devashibhai T.; Hillier, Adrian D.; Shigetoh, Keisuke; Takabatake, Toshiro; Park, Je-Geun; McEwen, Keith A.; Pixley, Jedediah H.; Si, Qimiao
2018-06-01
We present the spin dynamics study of a stoichiometric non-Fermi liquid (NFL) system CeRhBi, using low-energy inelastic neutron scattering (INS) and muon spin relaxation (μSR) measurements. It shows evidence for an energy-temperature (E/T) scaling in the INS dynamic response and a time-field (t/Hη) scaling of the μSR asymmetry function indicating a quantum critical behavior in this compound. The E/T scaling reveals a local character of quantum criticality consistent with the power-law divergence of the magnetic susceptibility, logarithmic divergence of the magnetic heat capacity and T-linear resistivity at low temperature. The occurrence of NFL behavior and local criticality over a very wide dynamical range at zero field and ambient pressure without any tuning in this stoichiometric heavy fermion compound is striking, making CeRhBi a model system amenable to in-depth studies for quantum criticality.
MESOSCOPIC MODELING OF STOCHASTIC REACTION-DIFFUSION KINETICS IN THE SUBDIFFUSIVE REGIME
BLANC, EMILIE; ENGBLOM, STEFAN; HELLANDER, ANDREAS; LÖTSTEDT, PER
2017-01-01
Subdiffusion has been proposed as an explanation of various kinetic phenomena inside living cells. In order to fascilitate large-scale computational studies of subdiffusive chemical processes, we extend a recently suggested mesoscopic model of subdiffusion into an accurate and consistent reaction-subdiffusion computational framework. Two different possible models of chemical reaction are revealed and some basic dynamic properties are derived. In certain cases those mesoscopic models have a direct interpretation at the macroscopic level as fractional partial differential equations in a bounded time interval. Through analysis and numerical experiments we estimate the macroscopic effects of reactions under subdiffusive mixing. The models display properties observed also in experiments: for a short time interval the behavior of the diffusion and the reaction is ordinary, in an intermediate interval the behavior is anomalous, and at long times the behavior is ordinary again. PMID:29046618
Anterior insular cortex regulation in autism spectrum disorders
Caria, Andrea; de Falco, Simona
2015-01-01
Autism spectrum disorders (ASDs) comprise a heterogeneous set of neurodevelopmental disorders characterized by dramatic impairments of interpersonal behavior, communication, and empathy. Recent neuroimaging studies suggested that ASD are disorders characterized by widespread abnormalities involving distributed brain network, though clear evidence of differences in large-scale brain network interactions underlying the cognitive and behavioral symptoms of ASD are still lacking. Consistent findings of anterior insula cortex hypoactivation and dysconnectivity during tasks related to emotional and social processing indicates its dysfunctional role in ASD. In parallel, increasing evidence showed that successful control of anterior insula activity can be attained using real-time fMRI paradigms. More importantly, successful regulation of this region was associated with changes in behavior and brain connectivity in both healthy individuals and psychiatric patients. Building on these results we here propose and discuss the use of real-time fMRI neurofeedback in ASD aiming at improving emotional and social behavior. PMID:25798096
Tarescavage, Anthony M; Fischler, Gary L; Cappo, Bruce M; Hill, David O; Corey, David M; Ben-Porath, Yossef S
2015-03-01
The current study examined the predictive validity of Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011) scores in police officer screenings. We utilized a sample of 712 police officer candidates (82.6% male) from 2 Midwestern police departments. The sample included 426 hired officers, most of whom had supervisor ratings of problem behaviors and human resource records of civilian complaints. With the full sample, we calculated zero-order correlations between MMPI-2-RF scale scores and scale scores from the California Psychological Inventory (Gough, 1956) and Inwald Personality Inventory (Inwald, 2006) by gender. In the hired sample, we correlated MMPI-2-RF scale scores with the outcome data for males only, owing to the relatively small number of hired women. Several scales demonstrated meaningful correlations with the criteria, particularly in the thought dysfunction and behavioral/externalizing dysfunction domains. After applying a correction for range restriction, the correlation coefficient magnitudes were generally in the moderate to large range. The practical implications of these findings were explored by means of risk ratio analyses, which indicated that officers who produced elevations at cutscores lower than the traditionally used 65 T-score level were as much as 10 times more likely than those scoring below the cutoff to exhibit problem behaviors. Overall, the results supported the validity of the MMPI-2-RF in this setting. Implications and limitations of this study are discussed. 2015 APA, all rights reserved
Kwan, Mun Yee; Gordon, Kathryn H
2016-08-01
Two studies tested a model where perceived stress was the proposed mediator for the relationship between perceived social support and bulimic behaviors, and between perceived social support and unhealthy food consumption among undergraduate students. Study 1 was a longitudinal, online study in which undergraduate students completed the Multidimensional Scale of Perceived Social Support and the Bulimia Test-Revised at the Time 1 assessment, and the Perceived Stress Scale and the Eating Disorder Examination Questionnaire at the Time 2 assessment, approximately four weeks later. Study 2 was an experimental study in which female participants were randomly assigned into a group with or without social support. Stress was induced with a speech task, followed by a bogus taste task paradigm designed to assess unhealthy food consumption. Bootstrap analyses revealed an indirect effect of perceived social support on bulimic behaviors and unhealthy food consumption through perceived stress. Perceived social support was associated with lower perceived stress in both studies. Lower perceived stress was associated with less self-reported bulimic behaviors in Study 1 and greater consumption of unhealthy foods in Study 2. The negative association between perceived stress and calorie consumption in Study 2 was moderated by dietary restraint. Findings suggest that stress perception helps to explain the relationship between perceived social support and bulimic behaviors, and between perceived social support and calorie consumption. Stress perception may be an important treatment target for eating disorder symptoms among undergraduate students. Copyright © 2016 Elsevier Ltd. All rights reserved.
Linking the Grain Scale to Experimental Measurements and Other Scales
NASA Astrophysics Data System (ADS)
Vogler, Tracy
2017-06-01
A number of physical processes occur at the scale of grains that can have a profound influence on the behavior of materials under shock loading. Examples include inelastic deformation, pore collapse, fracture, friction, and internal wave reflections. In some cases such as the initiation of energetics and brittle fracture, these processes can have first order effects on the behavior of materials: the emergent behavior from the grain scale is the dominant one. In other cases, many aspects of the bulk behavior can be described by a continuum description, but some details of the behavior are missed by continuum descriptions. The multi-scale model paradigm envisions flow of information from smaller scales (atomic, dislocation, etc.) to the grain or mesoscale and the up to the continuum scale. A significant challenge in this approach is the need to validate each step. For the grain scale, diagnosing behavior is challenging because of the small spatial and temporal scales involved. Spatially resolved diagnostics have begun to shed light on these processes, and, more recently, advanced light sources have started to be used to probe behavior at the grain scale. In this talk, I will discuss some interesting phenomena that occur at the grain scale in shock loading, experimental approaches to probe the grain scale, and efforts to link the grain scale to smaller and larger scales. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE.
Visual Data-Analytics of Large-Scale Parallel Discrete-Event Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Caitlin; Carothers, Christopher D.; Mubarak, Misbah
Parallel discrete-event simulation (PDES) is an important tool in the codesign of extreme-scale systems because PDES provides a cost-effective way to evaluate designs of highperformance computing systems. Optimistic synchronization algorithms for PDES, such as Time Warp, allow events to be processed without global synchronization among the processing elements. A rollback mechanism is provided when events are processed out of timestamp order. Although optimistic synchronization protocols enable the scalability of large-scale PDES, the performance of the simulations must be tuned to reduce the number of rollbacks and provide an improved simulation runtime. To enable efficient large-scale optimistic simulations, one has tomore » gain insight into the factors that affect the rollback behavior and simulation performance. We developed a tool for ROSS model developers that gives them detailed metrics on the performance of their large-scale optimistic simulations at varying levels of simulation granularity. Model developers can use this information for parameter tuning of optimistic simulations in order to achieve better runtime and fewer rollbacks. In this work, we instrument the ROSS optimistic PDES framework to gather detailed statistics about the simulation engine. We have also developed an interactive visualization interface that uses the data collected by the ROSS instrumentation to understand the underlying behavior of the simulation engine. The interface connects real time to virtual time in the simulation and provides the ability to view simulation data at different granularities. We demonstrate the usefulness of our framework by performing a visual analysis of the dragonfly network topology model provided by the CODES simulation framework built on top of ROSS. The instrumentation needs to minimize overhead in order to accurately collect data about the simulation performance. To ensure that the instrumentation does not introduce unnecessary overhead, we perform a scaling study that compares instrumented ROSS simulations with their noninstrumented counterparts in order to determine the amount of perturbation when running at different simulation scales.« less
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44×1.22×0.076 m (tank 1) and 2.44×0.61×0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)3(0). However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Miller, Andrew W.; Rodriguez, Derrick R.; Honeyman, Bruce D.
2013-05-01
Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44 × 1.22 × 0.076 m (tank 1) and 2.44 × 0.61 × 0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)30. However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition.
Is walking a random walk? Evidence for long-range correlations in stride interval of human gait
NASA Technical Reports Server (NTRS)
Hausdorff, Jeffrey M.; Peng, C.-K.; Ladin, Zvi; Wei, Jeanne Y.; Goldberger, Ary L.
1995-01-01
Complex fluctuation of unknown origin appear in the normal gait pattern. These fluctuations might be described as being (1) uncorrelated white noise, (2) short-range correlations, or (3) long-range correlations with power-law scaling. To test these possibilities, the stride interval of 10 healthy young men was measured as they walked for 9 min at their usual rate. From these time series we calculated scaling indexes by using a modified random walk analysis and power spectral analysis. Both indexes indicated the presence of long-range self-similar correlations extending over hundreds of steps; the stride interval at any time depended on the stride interval at remote previous times, and this dependence decayed in a scale-free (fractallike) power-law fashion. These scaling indexes were significantly different from those obtained after random shuffling of the original time series, indicating the importance of the sequential ordering of the stride interval. We demonstrate that conventional models of gait generation fail to reproduce the observed scaling behavior and introduce a new type of central pattern generator model that sucessfully accounts for the experimentally observed long-range correlations.
Pesce, Lorenzo L.; Lee, Hyong C.; Hereld, Mark; ...
2013-01-01
Our limited understanding of the relationship between the behavior of individual neurons and large neuronal networks is an important limitation in current epilepsy research and may be one of the main causes of our inadequate ability to treat it. Addressing this problem directly via experiments is impossibly complex; thus, we have been developing and studying medium-large-scale simulations of detailed neuronal networks to guide us. Flexibility in the connection schemas and a complete description of the cortical tissue seem necessary for this purpose. In this paper we examine some of the basic issues encountered in these multiscale simulations. We have determinedmore » the detailed behavior of two such simulators on parallel computer systems. The observed memory and computation-time scaling behavior for a distributed memory implementation were very good over the range studied, both in terms of network sizes (2,000 to 400,000 neurons) and processor pool sizes (1 to 256 processors). Our simulations required between a few megabytes and about 150 gigabytes of RAM and lasted between a few minutes and about a week, well within the capability of most multinode clusters. Therefore, simulations of epileptic seizures on networks with millions of cells should be feasible on current supercomputers.« less
Hampson, Sarah E; Edmonds, Grant W; Goldberg, Lewis R
2017-01-01
This study examined the factor structure and predictive validity of the commonly used multidimensional Health Behavior Checklist. A three-factor structure was found in two community samples that included men and women. The new 16-item Good Health Practices scale and the original Wellness Maintenance scale were the only Health Behavior Checklist scales to be related to cardiovascular and metabolic risk factors. While the other Health Behavior Checklist scales require further validation, the Good Health Practices scale could be used where more objective or longer measures are not feasible.
Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array
Helble, Tyler A.; D’Spain, Gerald L.; Weller, David W.; Wiggins, Sean M.; Hildebrand, John A.
2017-01-01
Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics. PMID:29084266
Migratory behavior of eastern North Pacific gray whales tracked using a hydrophone array.
Guazzo, Regina A; Helble, Tyler A; D'Spain, Gerald L; Weller, David W; Wiggins, Sean M; Hildebrand, John A
2017-01-01
Eastern North Pacific gray whales make one of the longest annual migrations of any mammal, traveling from their summer feeding areas in the Bering and Chukchi Seas to their wintering areas in the lagoons of Baja California, Mexico. Although a significant body of knowledge on gray whale biology and behavior exists, little is known about their vocal behavior while migrating. In this study, we used a sparse hydrophone array deployed offshore of central California to investigate how gray whales behave and use sound while migrating. We detected, localized, and tracked whales for one full migration season, a first for gray whales. We verified and localized 10,644 gray whale M3 calls and grouped them into 280 tracks. Results confirm that gray whales are acoustically active while migrating and their swimming and acoustic behavior changes on daily and seasonal time scales. The seasonal timing of the calls verifies the gray whale migration timing determined using other methods such as counts conducted by visual observers. The total number of calls and the percentage of calls that were part of a track changed significantly over both seasonal and daily time scales. An average calling rate of 5.7 calls/whale/day was observed, which is significantly greater than previously reported migration calling rates. We measured a mean speed of 1.6 m/s and quantified heading, direction, and water depth where tracks were located. Mean speed and water depth remained constant between night and day, but these quantities had greater variation at night. Gray whales produce M3 calls with a root mean square source level of 156.9 dB re 1 μPa at 1 m. Quantities describing call characteristics were variable and dependent on site-specific propagation characteristics.
Multifractal analysis of geophysical time series in the urban lake of Créteil (France).
NASA Astrophysics Data System (ADS)
Mezemate, Yacine; Tchiguirinskaia, Ioulia; Bonhomme, Celine; Schertzer, Daniel; Lemaire, Bruno Jacques; Vinçon leite, Brigitte; Lovejoy, Shaun
2013-04-01
Urban water bodies take part in the environmental quality of the cities. They regulate heat, contribute to the beauty of landscape and give some space for leisure activities (aquatic sports, swimming). As they are often artificial they are only a few meters deep. It confers them some specific properties. Indeed, they are particularly sensitive to global environmental changes, including climate change, eutrophication and contamination by micro-pollutants due to the urbanization of the watershed. Monitoring their quality has become a major challenge for urban areas. The need for a tool for predicting short-term proliferation of potentially toxic phytoplankton therefore arises. In lakes, the behavior of biological and physical (temperature) fields is mainly driven by the turbulence regime in the water. Turbulence is highly non linear, nonstationary and intermittent. This is why statistical tools are needed to characterize the evolution of the fields. The knowledge of the probability distribution of all the statistical moments of a given field is necessary to fully characterize it. This possibility is offered by the multifractal analysis based on the assumption of scale invariance. To investigate the effect of space-time variability of temperature, chlorophyll and dissolved oxygen on the cyanobacteria proliferation in the urban lake of Creteil (France), a spectral analysis is first performed on each time series (or on subsamples) to have an overall estimate of their scaling behaviors. Then a multifractal analysis (Trace Moment, Double Trace Moment) estimates the statistical moments of different orders. This analysis is adapted to the specific properties of the studied time series, i. e. the presence of large scale gradients. The nonlinear behavior of the scaling functions K(q) confirms that the investigated aquatic time series are indeed multifractal and highly intermittent .The knowledge of the universal multifractal parameters is the key to calculate the different statistical moments and thus make some predictions on the fields. As a conclusion, the relationships between the fields will be highlighted with a discussion on the cross predictability of the different fields. This draws a prospective for the use of this kind of time series analysis in the field of limnology. The authors acknowledge the financial support from the R2DS-PLUMMME and Climate-KIC BlueGreenDream projects.
ERIC Educational Resources Information Center
Benner, Gregory J.; Beaudoin, Kathleen; Mooney, Paul; Uhing, Brad M.; Pierce, Corey D.
2008-01-01
In the present study, we sought to extend instrument validation research for a strength-based emotional and behavior rating scale, the "Teacher Rating Scale of the Behavior and Emotional Rating Scale-Second Edition" (BERS-2; Epstein, M. H. (2004). "Behavioral and emotional rating scale" (2nd ed.). Austin, TX: PRO-ED) through…
Probing AGN Accretion Physics through AGN Variability: Insights from Kepler
NASA Astrophysics Data System (ADS)
Kasliwal, Vishal Pramod
Active Galactic Nuclei (AGN) exhibit large luminosity variations over the entire electromagnetic spectrum on timescales ranging from hours to years. The variations in luminosity are devoid of any periodic character and appear stochastic. While complex correlations exist between the variability observed in different parts of the electromagnetic spectrum, no frequency band appears to be completely dominant, suggesting that the physical processes producing the variability are exceedingly rich and complex. In the absence of a clear theoretical explanation of the variability, phenomenological models are used to study AGN variability. The stochastic behavior of AGN variability makes formulating such models difficult and connecting them to the underlying physics exceedingly hard. We study AGN light curves serendipitously observed by the NASA Kepler planet-finding mission. Compared to previous ground-based observations, Kepler offers higher precision and a smaller sampling interval resulting in potentially higher quality light curves. Using structure functions, we demonstrate that (1) the simplest statistical model of AGN variability, the damped random walk (DRW), is insufficient to characterize the observed behavior of AGN light curves; and (2) variability begins to occur in AGN on time-scales as short as hours. Of the 20 light curves studied by us, only 3-8 may be consistent with the DRW. The structure functions of the AGN in our sample exhibit complex behavior with pronounced dips on time-scales of 10-100 d suggesting that AGN variability can be very complex and merits further analysis. We examine the accuracy of the Kepler pipeline-generated light curves and find that the publicly available light curves may require re-processing to reduce contamination from field sources. We show that while the re-processing changes the exact PSD power law slopes inferred by us, it is unlikely to change the conclusion of our structure function study-Kepler AGN light curves indicate that the DRW is insufficient to characterize AGN variability. We provide a new approach to probing accretion physics with variability by decomposing observed light curves into a set of impulses that drive diffusive processes using C-ARMA models. Applying our approach to Kepler data, we demonstrate how the time-scales reported in the literature can be interpreted in the context of the growth and decay time-scales for flux perturbations and tentatively identify the flux perturbation driving process with accretion disk turbulence on length-scales much longer than the characteristic eddy size. Our analysis technique is applicable to (1) studying the connection between AGN sub-type and variability properties; (2) probing the origins of variability by studying the multi-wavelength behavior of AGN; (3) testing numerical simulations of accretion flows with the goal of creating a library of the variability properties of different accretion mechanisms; (4) hunting for changes in the behavior of the accretion flow by block-analyzing observed light curves; and (5) constraining the sampling requirements of future surveys of AGN variability.
Classification of quench-dynamical behaviors in spinor condensates
NASA Astrophysics Data System (ADS)
Daǧ, Ceren B.; Wang, Sheng-Tao; Duan, L.-M.
2018-02-01
Thermalization of isolated quantum systems is a long-standing fundamental problem where different mechanisms are proposed over time. We contribute to this discussion by classifying the diverse quench-dynamical behaviors of spin-1 Bose-Einstein condensates, which includes well-defined quantum collapse and revivals, thermalization, and certain special cases. These special cases are either nonthermal equilibration with no revival but a collapse even though the system has finite degrees of freedom or no equilibration with no collapse and revival. Given that some integrable systems are already shown to demonstrate the weak form of eigenstate thermalization hypothesis (ETH), we determine the regions where ETH holds and fails in this integrable isolated quantum system. The reason behind both thermalizing and nonthermalizing behaviors in the same model under different initial conditions is linked to the discussion of "rare" nonthermal states existing in the spectrum. We also propose a method to predict the collapse and revival time scales and find how they scale with the number of particles in the condensate. We use a sudden quench to drive the system to nonequilibrium and hence the theoretical predictions given in this paper can be probed in experiments.
Jouvent, Eric; Reyes, Sonia; De Guio, François; Chabriat, Hugues
2015-01-01
The assessment of early and subtle cognitive and behavioral effects of cerebral small vessel disease (SVD) requires specific and long-lasting evaluations performed by experienced neuropsychologists. Simpler tools would be helpful for daily clinical practice. To determine whether a simple reaction time task that lasts 5 minutes and can be performed without external supervision on any tablet or laptop can be used as a proxy of early cognitive and behavioral alterations in CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy), a monogenic form of pure SVD related to NOTCH3 mutations. Twenty-two genetically confirmed patients with CADASIL having preserved global cognitive abilities and without disability (MMSE >24 and modified Rankin's scale ≤1) were compared to 29 age-and-gender matched controls to determine group differences according to: 1) conventional neuropsychological and behavioral testing; 2) a computerized battery evaluating reaction time, processing speed, and executive functions. In a second step, correlations between reaction time and cognitive and behavioral alterations detected using both conventional and computerized testing were tested in patients. Reaction time was significantly higher in patients than in controls (mean in patients: 283 ms - in controls: 254 ms, p = 0.03). In patients, reaction time was significantly associated with conventional and chronometric tests of executive functions, working memory, and apathy. Reaction time obtained using a very simple task may serve as a proxy of early cognitive and behavioral alterations in SVD and could be easily used in daily clinical practice.
A twin-sibling study on the relationship between exercise attitudes and exercise behavior.
Huppertz, Charlotte; Bartels, Meike; Jansen, Iris E; Boomsma, Dorret I; Willemsen, Gonneke; de Moor, Marleen H M; de Geus, Eco J C
2014-01-01
Social cognitive models of health behavior propose that individual differences in leisure time exercise behavior are influenced by the attitudes towards exercise. At the same time, large scale twin-family studies show a significant influence of genetic factors on regular exercise behavior. This twin-sibling study aimed to unite these findings by demonstrating that exercise attitudes can be heritable themselves. Secondly, the genetic and environmental cross-trait correlations and the monozygotic (MZ) twin intrapair differences model were used to test whether the association between exercise attitudes and exercise behavior can be causal. Survey data were obtained from 5,095 twins and siblings (18-50 years). A genetic contribution was found for exercise behavior (50 % in males, 43 % in females) and for the six exercise attitude components derived from principal component analysis: perceived benefits (21, 27 %), lack of skills, support and/or resources (45, 48 %), time constraints (25, 30 %), lack of energy (34, 44 %), lack of enjoyment (47, 44 %), and embarrassment (42, 49 %). These components were predictive of leisure time exercise behavior (R(2) = 28 %). Bivariate modeling further showed that all the genetic (0.36 < |rA| < 0.80) and all but two unique environmental (0.00 < |rE| < 0.27) correlations between exercise attitudes and exercise behavior were significantly different from zero, which is a necessary condition for the existence of a causal effect driving the association. The correlations between the MZ twins' difference scores were in line with this finding. It is concluded that exercise attitudes and exercise behavior are heritable, that attitudes and behavior are partly correlated through pleiotropic genetic effects, but that the data are compatible with a causal association between exercise attitudes and behavior.
A Twin-Sibling Study on the Relationship Between Exercise Attitudes and Exercise Behavior
Bartels, Meike; Jansen, Iris E.; Boomsma, Dorret I.; Willemsen, Gonneke; de Moor, Marleen H. M.; de Geus, Eco J. C.
2013-01-01
Social cognitive models of health behavior propose that individual differences in leisure time exercise behavior are influenced by the attitudes towards exercise. At the same time, large scale twin-family studies show a significant influence of genetic factors on regular exercise behavior. This twin–sibling study aimed to unite these findings by demonstrating that exercise attitudes can be heritable themselves. Secondly, the genetic and environmental cross-trait correlations and the monozygotic (MZ) twin intrapair differences model were used to test whether the association between exercise attitudes and exercise behavior can be causal. Survey data were obtained from 5,095 twins and siblings (18–50 years). A genetic contribution was found for exercise behavior (50 % in males, 43 % in females) and for the six exercise attitude components derived from principal component analysis: perceived benefits (21, 27 %), lack of skills, support and/or resources (45, 48 %), time constraints (25, 30 %), lack of energy (34, 44 %), lack of enjoyment (47, 44 %), and embarrassment (42, 49 %). These components were predictive of leisure time exercise behavior (R2 = 28 %). Bivariate modeling further showed that all the genetic (0.36 <|rA| <0.80) and all but two unique environmental (0.00 <|rE| <0.27) correlations between exercise attitudes and exercise behavior were significantly different from zero, which is a necessary condition for the existence of a causal effect driving the association. The correlations between the MZ twins’ difference scores were in line with this finding. It is concluded that exercise attitudes and exercise behavior are heritable, that attitudes and behavior are partly correlated through pleiotropic genetic effects, but that the data are compatible with a causal association between exercise attitudes and behavior. PMID:24072598
A Multi-scale Cognitive Approach to Intrusion Detection and Response
2015-12-28
the behavior of the traffic on the network, either by using mathematical formulas or by replaying packet streams. As a result, simulators depend...large scale. Summary of the most important results We obtained a powerful machine, which has 768 cores and 1.25 TB memory . RBG has been...time. Each client is configured with 1GB memory , 10 GB disk space, and one 100M Ethernet interface. The server nodes include web servers
Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako
2016-11-01
To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3×10^{9} Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.
Burkey, Matthew D.; Ghimire, Lajina; Adhikari, Ramesh P.; Kohrt, Brandon A.; Jordans, Mark J. D.; Haroz, Emily; Wissow, Lawrence
2017-01-01
Systematic processes are needed to develop valid measurement instruments for disruptive behavior disorders (DBDs) in cross-cultural settings. We employed a four-step process in Nepal to identify and select items for a culturally valid assessment instrument: 1) We extracted items from validated scales and local free-list interviews. 2) Parents, teachers, and peers (n=30) rated the perceived relevance and importance of behavior problems. 3) Highly rated items were piloted with children (n=60) in Nepal. 4) We evaluated internal consistency of the final scale. We identified 49 symptoms from 11 scales, and 39 behavior problems from free-list interviews (n=72). After dropping items for low ratings of relevance and severity and for poor item-test correlation, low frequency, and/or poor acceptability in pilot testing, 16 items remained for the Disruptive Behavior International Scale—Nepali version (DBIS-N). The final scale had good internal consistency (α=0.86). A 4-step systematic approach to scale development including local participation yielded an internally consistent scale that included culturally relevant behavior problems. PMID:28093575
Elementary Metric Curriculum - Project T.I.M.E. (Timely Implementation of Metric Education). Part I.
ERIC Educational Resources Information Center
Community School District 18, Brooklyn, NY.
This is a teacher's manual for an ISS-based elementary school course in the metric system. Behavioral objectives and student activities are included. The topics covered include: (1) linear measurement; (2) metric-decimal relationships; (3) metric conversions; (4) geometry; (5) scale drawings; and (6) capacity. This is the first of a two-part…
Assessing a Top-Down Modeling Approach for Seasonal Scale Snow Sensitivity
NASA Astrophysics Data System (ADS)
Luce, C. H.; Lute, A.
2017-12-01
Mechanistic snow models are commonly applied to assess changes to snowpacks in a warming climate. Such assessments involve a number of assumptions about details of weather at daily to sub-seasonal time scales. Models of season-scale behavior can provide contrast for evaluating behavior at time scales more in concordance with climate warming projections. Such top-down models, however, involve a degree of empiricism, with attendant caveats about the potential of a changing climate to affect calibrated relationships. We estimated the sensitivity of snowpacks from 497 Snowpack Telemetry (SNOTEL) stations in the western U.S. based on differences in climate between stations (spatial analog). We examined the sensitivity of April 1 snow water equivalent (SWE) and mean snow residence time (SRT) to variations in Nov-Mar precipitation and average Nov-Mar temperature using multivariate local-fit regressions. We tested the modeling approach using a leave-one-out cross-validation as well as targeted two-fold non-random cross-validations contrasting, for example, warm vs. cold years, dry vs. wet years, and north vs. south stations. Nash-Sutcliffe Efficiency (NSE) values for the validations were strong for April 1 SWE, ranging from 0.71 to 0.90, and still reasonable, but weaker, for SRT, in the range of 0.64 to 0.81. From these ranges, we exclude validations where the training data do not represent the range of target data. A likely reason for differences in validation between the two metrics is that the SWE model reflects the influence of conservation of mass while using temperature as an indicator of the season-scale energy balance; in contrast, SRT depends more strongly on the energy balance aspects of the problem. Model forms with lower numbers of parameters generally validated better than more complex model forms, with the caveat that pseudoreplication could encourage selection of more complex models when validation contrasts were weak. Overall, the split sample validations confirm transferability of the relationships in space and time contingent upon full representation of validation conditions in the calibration data set. The ability of the top-down space-for-time models to predict in new time periods and locations lends confidence to their application for assessments and for improving finer time scale models.
A model of interval timing by neural integration
Simen, Patrick; Balci, Fuat; deSouza, Laura; Cohen, Jonathan D.; Holmes, Philip
2011-01-01
We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes; that correlations among them can be largely cancelled by balancing excitation and inhibition; that neural populations can act as integrators; and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule’s predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior. PMID:21697374
Recurrence and interoccurrence behavior of self-organized complex phenomena
NASA Astrophysics Data System (ADS)
Abaimov, S. G.; Turcotte, D. L.; Shcherbakov, R.; Rundle, J. B.
2007-08-01
The sandpile, forest-fire and slider-block models are said to exhibit self-organized criticality. Associated natural phenomena include landslides, wildfires, and earthquakes. In all cases the frequency-size distributions are well approximated by power laws (fractals). Another important aspect of both the models and natural phenomena is the statistics of interval times. These statistics are particularly important for earthquakes. For earthquakes it is important to make a distinction between interoccurrence and recurrence times. Interoccurrence times are the interval times between earthquakes on all faults in a region whereas recurrence times are interval times between earthquakes on a single fault or fault segment. In many, but not all cases, interoccurrence time statistics are exponential (Poissonian) and the events occur randomly. However, the distribution of recurrence times are often Weibull to a good approximation. In this paper we study the interval statistics of slip events using a slider-block model. The behavior of this model is sensitive to the stiffness α of the system, α=kC/kL where kC is the spring constant of the connector springs and kL is the spring constant of the loader plate springs. For a soft system (small α) there are no system-wide events and interoccurrence time statistics of the larger events are Poissonian. For a stiff system (large α), system-wide events dominate the energy dissipation and the statistics of the recurrence times between these system-wide events satisfy the Weibull distribution to a good approximation. We argue that this applicability of the Weibull distribution is due to the power-law (scale invariant) behavior of the hazard function, i.e. the probability that the next event will occur at a time t0 after the last event has a power-law dependence on t0. The Weibull distribution is the only distribution that has a scale invariant hazard function. We further show that the onset of system-wide events is a well defined critical point. We find that the number of system-wide events NSWE satisfies the scaling relation NSWE ∝(α-αC)δ where αC is the critical value of the stiffness. The system-wide events represent a new phase for the slider-block system.
NASA Technical Reports Server (NTRS)
Barrett, Charles A.
1999-01-01
Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic (typical of isothermal oxidation), paralinear, linear, and mixed-linear kinetics.
NASA Astrophysics Data System (ADS)
Pal, Mayukha; Madhusudana Rao, P.; Manimaran, P.
2014-12-01
We apply the recently developed multifractal detrended cross-correlation analysis method to investigate the cross-correlation behavior and fractal nature between two non-stationary time series. We analyze the daily return price of gold, West Texas Intermediate and Brent crude oil, foreign exchange rate data, over a period of 18 years. The cross correlation has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, the existence of multifractal cross-correlation between all of these time series is found. We also found that the cross correlation between gold and oil prices possess uncorrelated behavior and the remaining bivariate time series possess persistent behavior. It was observed for five bivariate series that the cross-correlation exponents are less than the calculated average generalized Hurst exponents (GHE) for q<0 and greater than GHE when q>0 and for one bivariate series the cross-correlation exponent is greater than GHE for all q values.
A new method for discovering behavior patterns among animal movements
Wang, Y.; Luo, Ze; Takekawa, John Y.; Prosser, Diann J.; Xiong, Y.; Newman, S.; Xiao, X.; Batbayar, N.; Spragens, Kyle A.; Balachandran, S.; Yan, B.
2016-01-01
Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.
A new method for discovering behavior patterns among animal movements.
Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping
Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.
A new method for discovering behavior patterns among animal movements
Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping
2016-01-01
Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets. PMID:27217810
Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics
NASA Astrophysics Data System (ADS)
Beatrici, Carine P.; de Almeida, Rita M. C.; Brunnet, Leonardo G.
2017-03-01
Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as td /d +2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.
Seel, Ronald T.; Corrigan, John D.; Dijkers, Marcel P.; Barrett, Ryan S.; Bogner, Jennifer; Smout, Randall J.; Garmoe, William; Horn, Susan D.
2016-01-01
Objective To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Design Prospective, multicenter, longitudinal cohort study. Setting Acute TBI rehabilitation programs. Participants Patients (N=1946) receiving 138,555 therapy sessions. Interventions Not applicable. Main Outcome Measures Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). Results The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (P<.001). For patients who completed 2, 3, or 4 weeks of rehabilitation, differences in effort ratings (P<.001) were observed between 5 subgroups stratified by admission FIM cognitive scores and over time. In linear mixed-effects modeling, age and Comprehensive Severity Index brain injury severity score at admission, days from injury to rehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (P<.0001). Conclusions Patients' level of effort can be observed and reliably rated in the TBI inpatient rehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. PMID:26212400
A fully dynamic magneto-rheological fluid damper model
NASA Astrophysics Data System (ADS)
Jiang, Z.; Christenson, R. E.
2012-06-01
Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper.
A Case Study of the De Novo Evolution of a Complex Odometric Behavior in Digital Organisms
Grabowski, Laura M.; Bryson, David M.; Dyer, Fred C.; Pennock, Robert T.; Ofria, Charles
2013-01-01
Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital organisms–self-replicating computer programs that are subject to mutations and selection–evolved in different environments that required information about past experience for fitness-enhancing behavioral decisions. One population evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that produced this striking example of a complex behavior. PMID:23577113
Predictability and hierarchy in Drosophila behavior.
Berman, Gordon J; Bialek, William; Shaevitz, Joshua W
2016-10-18
Even the simplest of animals exhibit behavioral sequences with complex temporal dynamics. Prominent among the proposed organizing principles for these dynamics has been the idea of a hierarchy, wherein the movements an animal makes can be understood as a set of nested subclusters. Although this type of organization holds potential advantages in terms of motion control and neural circuitry, measurements demonstrating this for an animal's entire behavioral repertoire have been limited in scope and temporal complexity. Here, we use a recently developed unsupervised technique to discover and track the occurrence of all stereotyped behaviors performed by fruit flies moving in a shallow arena. Calculating the optimally predictive representation of the fly's future behaviors, we show that fly behavior exhibits multiple time scales and is organized into a hierarchical structure that is indicative of its underlying behavioral programs and its changing internal states.
Lagrangian Statistics and Intermittency in Gulf of Mexico.
Lin, Liru; Zhuang, Wei; Huang, Yongxiang
2017-12-12
Due to the nonlinear interaction between different flow patterns, for instance, ocean current, meso-scale eddies, waves, etc, the movement of ocean is extremely complex, where a multiscale statistics is then relevant. In this work, a high time-resolution velocity with a time step 15 minutes obtained by the Lagrangian drifter deployed in the Gulf of Mexico (GoM) from July 2012 to October 2012 is considered. The measured Lagrangian velocity correlation function shows a strong daily cycle due to the diurnal tidal cycle. The estimated Fourier power spectrum E(f) implies a dual-power-law behavior which is separated by the daily cycle. The corresponding scaling exponents are close to -1.75 and -2.75 respectively for the time scale larger (resp. 0.1 ≤ f ≤ 0.4 day -1 ) and smaller (resp. 2 ≤ f ≤ 8 day -1 ) than 1 day. A Hilbert-based approach is then applied to this data set to identify the possible multifractal property of the cascade process. The results show an intermittent dynamics for the time scale larger than 1 day, while a less intermittent dynamics for the time scale smaller than 1 day. It is speculated that the energy is partially injected via the diurnal tidal movement and then transferred to larger and small scales through a complex cascade process, which needs more studies in the near future.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Greenwald, R. A.; Oksavik, K.; Baker, J. B.
2007-12-01
The electric fields at high latitudes are often modeled as a static pattern in the absence of variation in solar wind parameters or geomagnetic disturbance. However, temporal variability in the local electric fields on time scales of minutes for stable conditions has been reported and characterized statistically as an intrinsic property amounting to turbulence. We describe the results of applying a new technique to SuperDARN HF radar observations of ionospheric plasma convection at middle and high latitudes that gives views of the variability of the electric fields at sub-second time scales. We address the question of whether there is a limit to the temporal scale of the electric field variability and consider whether the turbulence on minute time scales is due to organized but unresolved behavior. The basis of the measurements is the ability to record raw samples from the individual multipulse sequences that are transmitted during the standard 3 or 6-second SuperDARN integration period; a backscattering volume is then effectively sampled at a cadence of 200 ms. The returns from the individual sequences are often sufficiently well-ordered to permit a sequence-by-sequence characterization of the electric field and backscattered power. We attempt a statistical characterization of the variability at these heretofore inaccessible time scales and consider how variability is influenced by solar wind and magentospheric factors.
A scale-free systems theory of motivation and addiction.
Chambers, R Andrew; Bickel, Warren K; Potenza, Marc N
2007-01-01
Scale-free organizations, characterized by uneven distributions of linkages between nodal elements, describe the structure and function of many life-based complex systems developing under evolutionary pressures. We explore motivated behavior as a scale-free map toward a comprehensive translational theory of addiction. Motivational and behavioral repertoires are reframed as link and nodal element sets, respectively, comprising a scale-free structure. These sets are generated by semi-independent information-processing streams within cortical-striatal circuits that cooperatively provide decision-making and sequential processing functions necessary for traversing maps of motivational links connecting behavioral nodes. Dopamine modulation of cortical-striatal plasticity serves a central-hierarchical mechanism for survival-adaptive sculpting and development of motivational-behavioral repertoires by guiding a scale-free design. Drug-induced dopamine activity promotes drug taking as a highly connected behavioral hub at the expense of natural-adaptive motivational links and behavioral nodes. Conceptualizing addiction as pathological alteration of scale-free motivational-behavioral repertoires unifies neurobiological, neurocomputational and behavioral research while addressing addiction vulnerability in adolescence and psychiatric illness. This model may inform integrative research in defining more effective prevention and treatment strategies for addiction.
A Scale-Free Systems Theory of Motivation and Addiction
Bickel, Warren K.; Potenza, Marc N.
2007-01-01
Scale-free organizations, characterized by uneven distributions of linkages between nodal elements, describe the structure and function of many life-based complex systems developing under evolutionary pressures. We explore motivated behavior as a scale-free map toward a comprehensive translational theory of addiction. Motivational and behavioral repertoires are reframed as link and nodal element sets, respectively, comprising a scale-free structure. These sets are generated by semi-independent information-processing streams within cortical-striatal circuits that cooperatively provide decision-making and sequential processing functions necessary for traversing maps of motivational links connecting behavioral nodes. Dopamine modulation of cortical-striatal plasticity serves a central-hierarchical mechanism for survival-adaptive sculpting and development of motivational-behavioral repertoires by guiding a scale-free design. Drug-induced dopamine activity promotes drug-taking as a highly connected behavioral hub at the expense of natural-adaptive motivational links and behavioral nodes. Conceptualizing addiction as pathological alteration of scale-free motivational-behavioral repertoires unifies neurobiological, neurocomputational and behavioral research while addressing addiction vulnerability in adolescence and psychiatric illness. This model may inform integrative research in defining more effective prevention and treatment strategies for addiction. PMID:17574673
Implementation of the Agitated Behavior Scale in the Electronic Health Record.
Wilson, Helen John; Dasgupta, Kritis; Michael, Kathleen
The purpose of the study was to implement an Agitated Behavior Scale through an electronic health record and to evaluate the usability of the scale in a brain injury unit at a rehabilitation hospital. A quality improvement project was conducted in the brain injury unit at a large rehabilitation hospital with registered nurses as participants using convenience sampling. The project consisted of three phases and included education, implementation of the scale in the electronic health record, and administration of the survey questionnaire, which utilized the system usability scale. The Agitated Behavior Scale was found to be usable, and there was 92.2% compliance with the use of the electronic Electronic Agitated Behavior Scale. The Agitated Behavior Scale was effectively implemented in the electronic health record and was found to be usable in the assessment of agitation. Utilization of the scale through the electronic health record on a daily basis will allow for an early identification of agitation in patients with traumatic brain injury and enable prompt interventions to manage agitation.
Large fluctuations in anti-coordination games on scale-free graphs
NASA Astrophysics Data System (ADS)
Sabsovich, Daniel; Mobilia, Mauro; Assaf, Michael
2017-05-01
We study the influence of the complex topology of scale-free graphs on the dynamics of anti-coordination games (e.g. snowdrift games). These reference models are characterized by the coexistence (evolutionary stable mixed strategy) of two competing species, say ‘cooperators’ and ‘defectors’, and, in finite systems, by metastability and large-fluctuation-driven fixation. In this work, we use extensive computer simulations and an effective diffusion approximation (in the weak selection limit) to determine under which circumstances, depending on the individual-based update rules, the topology drastically affects the long-time behavior of anti-coordination games. In particular, we compute the variance of the number of cooperators in the metastable state and the mean fixation time when the dynamics is implemented according to the voter model (death-first/birth-second process) and the link dynamics (birth/death or death/birth at random). For the voter update rule, we show that the scale-free topology effectively renormalizes the population size and as a result the statistics of observables depend on the network’s degree distribution. In contrast, such a renormalization does not occur with the link dynamics update rule and we recover the same behavior as on complete graphs.
Callan, Judith A; Dunbar-Jacob, Jacqueline; Sereika, Susan M; Stone, Clement; Fasiczka, Amy; Jarrett, Robin B; Thase, Michael E
2012-01-01
We conducted a two-phase study to develop and evaluate the psychometric properties of an instrument to identify barriers to Cognitive Behavioral Therapy (CBT) homework completion in a depressed sample. In Phase I, we developed an item pool by interviewing 20 depressed patients and 20 CBT therapists. In Phase II, we created and administered a draft instrument to 56 people with depression. Exploratory Factor Analysis revealed a 2-factor oblique solution of "Patient Factors" and "Therapy/Task Factors." Internal consistency coefficients ranged from .80 to .95. Temporal stability was demonstrated through Pearson correlations of .72 (for the therapist/task subscale) to .95 (for the patient subscale) over periods of time that ranged from 2 days to 3 weeks. The patient subscale was able to satisfactorily classify patients (75 to 79 %) with low and high adherence at both sessions. Specificity was .66 at both time points. Sensitivity was .80 at sessions B and .77 at session C. There were no consistent predictors of assignment compliance when measured by the Assignment Compliance Rating Scale (Primakoff, Epstein, & Covi, 1986). The Rating Scale and subscale scores did, however, correlate significantly with assignment non-compliance (.32 to .46).
Callan, Judith A.; Dunbar-Jacob, Jacqueline; Sereika, Susan M.; Stone, Clement; Fasiczka, Amy; Jarrett, Robin B.; Thase, Michael E.
2013-01-01
We conducted a two-phase study to develop and evaluate the psychometric properties of an instrument to identify barriers to Cognitive Behavioral Therapy (CBT) homework completion in a depressed sample. In Phase I, we developed an item pool by interviewing 20 depressed patients and 20 CBT therapists. In Phase II, we created and administered a draft instrument to 56 people with depression. Exploratory Factor Analysis revealed a 2-factor oblique solution of “Patient Factors” and “Therapy/Task Factors.” Internal consistency coefficients ranged from .80 to .95. Temporal stability was demonstrated through Pearson correlations of .72 (for the therapist/task subscale) to .95 (for the patient subscale) over periods of time that ranged from 2 days to 3 weeks. The patient subscale was able to satisfactorily classify patients (75 to 79 %) with low and high adherence at both sessions. Specificity was .66 at both time points. Sensitivity was .80 at sessions B and .77 at session C. There were no consistent predictors of assignment compliance when measured by the Assignment Compliance Rating Scale (Primakoff, Epstein, & Covi, 1986). The Rating Scale and subscale scores did, however, correlate significantly with assignment non-compliance (.32 to .46). PMID:24049556
A scalable, fully implicit algorithm for the reduced two-field low-β extended MHD model
Chacon, Luis; Stanier, Adam John
2016-12-01
Here, we demonstrate a scalable fully implicit algorithm for the two-field low-β extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton–Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm ismore » shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 × 4096 mesh, we demonstrate a wall-clock-time speedup of ~6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement.« less
NASA Astrophysics Data System (ADS)
Kushima, A.; Eapen, J.; Li, Ju; Yip, S.; Zhu, T.
2011-08-01
Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.
Interactive, graphical processing unitbased evaluation of evacuation scenarios at the state scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perumalla, Kalyan S; Aaby, Brandon G; Yoginath, Srikanth B
2011-01-01
In large-scale scenarios, transportation modeling and simulation is severely constrained by simulation time. For example, few real- time simulators scale to evacuation traffic scenarios at the level of an entire state, such as Louisiana (approximately 1 million links) or Florida (2.5 million links). New simulation approaches are needed to overcome severe computational demands of conventional (microscopic or mesoscopic) modeling techniques. Here, a new modeling and execution methodology is explored that holds the potential to provide a tradeoff among the level of behavioral detail, the scale of transportation network, and real-time execution capabilities. A novel, field-based modeling technique and its implementationmore » on graphical processing units are presented. Although additional research with input from domain experts is needed for refining and validating the models, the techniques reported here afford interactive experience at very large scales of multi-million road segments. Illustrative experiments on a few state-scale net- works are described based on an implementation of this approach in a software system called GARFIELD. Current modeling cap- abilities and implementation limitations are described, along with possible use cases and future research.« less
Mueller, Astrid; Mueller, Ulrike; Silbermann, Andrea; Reinecker, Hans; Bleich, Stefan; Mitchell, James E; de Zwaan, Martina
2008-07-01
The purpose of this study was to conduct a randomized trial comparing the efficacy of a group cognitive-behavioral therapy (CBT) intervention designed for the treatment of compulsive buying disorder to a waiting list control (WLC) group. Thirty-one patients with compulsive buying problems according to the criteria developed by McElroy et al. were assigned to receive active treatment (12 weekly sessions and 6-month follow-up) and 29 to the WLC group. The treatment was specifically aimed at interrupting and controlling the problematic buying behavior, establishing healthy purchasing patterns, restructuring maladaptive thoughts and negative feelings associated with shopping and buying, and developing healthy coping skills. Primary outcome measures were the Compulsive Buying Scale (CBS), the Yale-Brown Obsessive Compulsive Scale-Shopping Version (YBOCS-SV), and the German Compulsive Buying Scale (G-CBS). Secondary outcome measures were the Symptom Checklist-90-Revised (SCL-90-R), the Barratt Impulsiveness Scale (BIS-11), and the Saving Inventory-Revised (SI-R). The study was completed between November 2003 and May 2007 at the University Hospital of Erlangen, Bavaria, Germany. Multivariate analysis revealed significant differences between the CBT and the WLC groups on the primary outcome variables (outcome-by-time-by-group effect, Pillai's trace, F = 6.960, df = 1, p = .002). The improvement was maintained during the 6-month follow-up. The treatment did not affect other psychopathology, e.g., compulsive hoarding, impulsivity, or SCL-90-R scores. We found that lower numbers of visited group therapy sessions and higher pretreatment hoarding traits as measured with the SI-R total score were significant predictors for nonresponse. The results suggest that a disorder-specific cognitive-behavioral intervention can significantly impact compulsive buying behavior.
Faber, Scott; Zinn, Gregory M; Boggess, Andrew; Fahrenholz, Timothy; Kern, John C; Kingston, H M Skip
2015-03-19
An emerging paradigm suggests children with autism display a unique pattern of environmental, genetic, and epigenetic triggers that make them susceptible to developing dysfunctional heavy metal and chemical detoxification systems. These abnormalities could be caused by alterations in the methylation, sulfation, and metalloprotein pathways. This study sought to evaluate the physiological and behavioral effects of children with autism sleeping in an International Organization for Standardization Class 5 cleanroom. Ten children with autism, ages 3-12, slept in a cleanroom for two weeks to evaluate changes in toxin levels, oxidative stress, immune dysregulation, and behavior. Before and after the children slept in the cleanroom, samples of blood and hair and rating scale scores were obtained to assess these changes. Five children significantly lowered their concentration of oxidized glutathione, a biomarker of oxidative stress. The younger cohort, age 5 and under, showed significantly greater mean decreases in two markers of immune dysregulation, CD3% and CD4%, than the older cohort. Changes in serum magnesium, influencing neuronal regulation, correlated negatively while changes in serum iron, affecting oxygenation of tissues, correlated positively with age. Changes in serum benzene and PCB 28 concentrations showed significant negative correlations with age. The younger children demonstrated significant improvements on behavioral rating scales compared to the older children. In a younger pair of identical twins, one twin showed significantly greater improvements in 4 out of 5 markers of oxidative stress, which corresponded with better overall behavioral rating scale scores than the other twin. Younger children who slept in the cleanroom altered elemental levels, decreased immune dysregulation, and improved behavioral rating scales, suggesting that their detoxification metabolism was briefly enhanced. The older children displayed a worsening in behavioral rating scale performance, which may have been caused by the mobilization of toxins from their tissues. The interpretation of this exploratory study is limited by lack of a control group and small sample size. The changes in physiology and behavior noted suggest that performance of larger, prospective controlled studies of exposure to nighttime or 24 hour cleanroom conditions for longer time periods may be useful for understanding detoxification in children with autism. Clinical Trial Registration Number NCT02195401 (Obtained July 18, 2014).
Using Rasch Rating Scale Methodology to Examine a Behavioral Screener for Preschoolers at Risk
ERIC Educational Resources Information Center
DiStefano, Christine; Greer, Fred W.; Kamphaus, R. W.; Brown, William H.
2014-01-01
A screening instrument used to identify young children at risk for behavioral and emotional difficulties, the Behavioral and Emotional Screening System Teacher Rating Scale-Preschool was examined. The Rasch Rating Scale Method was used to provide additional information about psychometric properties of items, respondents, and the response scale.…
Perceived Coach Attitudes and Behaviors Scale: Development and Validation Study
ERIC Educational Resources Information Center
Üzüm, Hanifi; Karli, Ünal; Yildiz, Nuh Osman
2018-01-01
The purpose of the study was to develop a scale, which will serve to determine how attitudes and behaviors of the coaches are perceived by the athletes. The scale, named as "Perceived Coach Attitudes and Behaviors Scale" (PCABS) was developed through various processes including exploratory and confirmatory factor analysis. Following the…
NASA Astrophysics Data System (ADS)
Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra
2017-11-01
A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.
Takeuchi, Yuichi; Hori, Michio; Tada, Shinya; Oda, Yoichi
2016-01-01
The scale-eating cichlid Perissodus microlepis with asymmetric mouth is an attractive model of behavioral laterality: each adult tears off scales from prey fishes’ left or right flanks according to the direction in which its mouth is skewed. To investigate the development of behavioral laterality and mouth asymmetry, we analyzed stomach contents and lower jaw-bone asymmetry of various-sized P. microlepis (22≤SL<115mm) sampled in Lake Tanganyika. The shapes of the pored scales found in each specimen’s stomach indicated its attack side preference. Early-juvenile specimens (SL<45mm) feeding mainly on zooplankton exhibited slight but significant mouth asymmetry. As the fish acquired scale-eating (45mm≤SL), attack side preference was gradually strengthened, as was mouth asymmetry. Among size-matched individuals, those with more skewed mouths ate more scales. These findings show that behavioral laterality in scale-eating P. microlepis is established in association with development of mouth asymmetry which precedes the behavioral acquisition, and that this synergistic interaction between physical and behavioral literalities may contribute to efficient scale-eating. PMID:26808293
Consumption and foraging behaviors for common stimulants (nicotine, caffeine).
Phillips, James G; Currie, Jonathan; Ogeil, Rowan P
2016-01-01
Models are needed to understand the emerging capability to track consumers' movements. Therefore, we examined the use of legal and readily available stimulants that vary in their addictive potential (nicotine, caffeine). One hundred sixty-six participants answered the Kessler Psychological Distress Scale (K10), the Severity of Dependence Scale for nicotine and caffeine, and reported the number of times and locations stimulants were purchased and used. On average, nicotine dependent individuals made their purchases from 2 locations, while caffeine dependent individuals consumed caffeine at 2 locations, but some people exhibited a greater range and intensity of use. Stimulant foraging behavior could be described by power laws, and is exacerbated by dependency. The finding has implications for attempts to control substance use.
Partner choice cooperation in prisoner's dilemma
NASA Astrophysics Data System (ADS)
Wang, Qi; Xu, Zhaojin; Zhang, Lianzhong
2017-12-01
In this paper, we investigated the cooperative behavior in prisoner's dilemma when the individual behaviors and interaction structures could coevolve. Here, we study the model that the individuals can imitate the strategy of their neighbors and rewire their social ties throughout evolution, based exclusively on a fitness comparison. We find that the cooperation can be achieved if the time scale of network adaptation is large enough, even when the social dilemma strength is very strong. Detailed investigation shows that the presence or absence of the network adaptation has a profound impact on the collective behavior in the system.
Large trench-parallel gravity variations predict seismogenic behavior in subduction zones.
Song, Teh-Ru Alex; Simons, Mark
2003-08-01
We demonstrate that great earthquakes occur predominantly in regions with a strongly negative trench-parallel gravity anomaly (TPGA), whereas regions with strongly positive TPGA are relatively aseismic. These observations suggest that, over time scales up to at least 1 million years, spatial variations of seismogenic behavior within a given subduction zone are stationary and linked to the geological structure of the fore-arc. The correlations we observe are consistent with a model in which spatial variations in frictional properties on the plate interface control trench-parellel variations in fore-arc topography, gravity, and seismogenic behavior.
Developmental process emerges from extended brain-body-behavior networks
Byrge, Lisa; Sporns, Olaf; Smith, Linda B.
2014-01-01
Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251
Generalizing the dynamic field theory of spatial cognition across real and developmental time scales
Simmering, Vanessa R.; Spencer, John P.; Schutte, Anne R.
2008-01-01
Within cognitive neuroscience, computational models are designed to provide insights into the organization of behavior while adhering to neural principles. These models should provide sufficient specificity to generate novel predictions while maintaining the generality needed to capture behavior across tasks and/or time scales. This paper presents one such model, the Dynamic Field Theory (DFT) of spatial cognition, showing new simulations that provide a demonstration proof that the theory generalizes across developmental changes in performance in four tasks—the Piagetian A-not-B task, a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination task. Model simulations demonstrate that the DFT can accomplish both specificity—generating novel, testable predictions—and generality—spanning multiple tasks across development with a relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and time scales with no modification to its basic structure and with a strong commitment to neural principles. The only change necessary to capture development in the model was an increase in the precision of the tuning of receptive fields as well as an increase in the precision of local excitatory interactions among neurons in the model. These small quantitative changes were sufficient to move the model through a set of quantitative and qualitative behavioral changes that span the age range from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned in the literature, the challenges on the horizon for our framework, and how a dynamic field approach can yield new insights into development from a computational cognitive neuroscience perspective. PMID:17716632
Limbers, Christine; Young, Danielle; Jernigan, Stephanie; Bryant, William; Stephen, Matt
2017-01-01
Behavioral rating scales represent one potential method for screening of cognitive functioning in routine clinical care. It is not yet known if objective performance based measures and behavioral rating scales of cognitive functioning completed by parents yield similar information in pediatric endocrinology patients. The purpose of the present study was to evaluate the associations between performance-based measures and behavioral rating scales of memory and attention/concentration completed by parents of pediatric patients with Type 1 Diabetes or obesity. The sample consisted of 73 pediatric patients with Type 1 Diabetes or obesity (BMI > 95th percentile) ages 6-16 years (mean age = 12.29 years) referred to an outpatient pediatric endocrinology clinic. Youth were administered the Wide Range Assessment of Memory and Learning (WRAML-2). Parents completed the Child Behavior Checklist (CBCL) and the PedsQL Cognitive Functioning Scale. Pearson's Product Moment Correlations were examined among the performance-based measures and behavioral rating scales. All intercorrelations between the performance-based measures and behavioral rating scales completed by parents were in the small range. The only statistically significant (P < 0.05) and approaching medium correlation was between the PedsQL Cognitive Functioning Scale and WRAML-2 Verbal Memory Index (r = 0.28). On behavioral rating scales and performance-based measures of visual memory and attention/concentration, our sample exhibited greater difficulties than healthy youth from previously published data (P < 0.05). One possible explanation for our findings is that behavioral rating scales of attention/concentration and memory completed by parents measure different aspects of cognitive functioning than performance based measures in pediatric patients with Type 1 Diabetes or obesity.