InSAR Deformation Time Series Processed On-Demand in the Cloud
NASA Astrophysics Data System (ADS)
Horn, W. B.; Weeden, R.; Dimarchi, H.; Arko, S. A.; Hogenson, K.
2017-12-01
During this past year, ASF has developed a cloud-based on-demand processing system known as HyP3 (http://hyp3.asf.alaska.edu/), the Hybrid Pluggable Processing Pipeline, for Synthetic Aperture Radar (SAR) data. The system makes it easy for a user who doesn't have the time or inclination to install and use complex SAR processing software to leverage SAR data in their research or operations. One such processing algorithm is generation of a deformation time series product, which is a series of images representing ground displacements over time, which can be computed using a time series of interferometric SAR (InSAR) products. The set of software tools necessary to generate this useful product are difficult to install, configure, and use. Moreover, for a long time series with many images, the processing of just the interferograms can take days. Principally built by three undergraduate students at the ASF DAAC, the deformation time series processing relies the new Amazon Batch service, which enables processing of jobs with complex interconnected dependencies in a straightforward and efficient manner. In the case of generating a deformation time series product from a stack of single-look complex SAR images, the system uses Batch to serialize the up-front processing, interferogram generation, optional tropospheric correction, and deformation time series generation. The most time consuming portion is the interferogram generation, because even for a fairly small stack of images many interferograms need to be processed. By using AWS Batch, the interferograms are all generated in parallel; the entire process completes in hours rather than days. Additionally, the individual interferograms are saved in Amazon's cloud storage, so that when new data is acquired in the stack, an updated time series product can be generated with minimal addiitonal processing. This presentation will focus on the development techniques and enabling technologies that were used in developing the time series processing in the ASF HyP3 system. Data and process flow from job submission through to order completion will be shown, highlighting the benefits of the cloud for each step.
The examination of headache activity using time-series research designs.
Houle, Timothy T; Remble, Thomas A; Houle, Thomas A
2005-05-01
The majority of research conducted on headache has utilized cross-sectional designs which preclude the examination of dynamic factors and principally rely on group-level effects. The present article describes the application of an individual-oriented process model using time-series analytical techniques. The blending of a time-series approach with an interactive process model allows consideration of the relationships of intra-individual dynamic processes, while not precluding the researcher to examine inter-individual differences. The authors explore the nature of time-series data and present two necessary assumptions underlying the time-series approach. The concept of shock and its contribution to headache activity is also presented. The time-series approach is not without its problems and two such problems are specifically reported: autocorrelation and the distribution of daily observations. The article concludes with the presentation of several analytical techniques suited to examine the time-series interactive process model.
Simulation of time series by distorted Gaussian processes
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
1977-01-01
Distorted stationary Gaussian process can be used to provide computer-generated imitations of experimental time series. A method of analyzing a source time series and synthesizing an imitation is shown, and an example using X-band radiometer data is given.
Empirical method to measure stochasticity and multifractality in nonlinear time series
NASA Astrophysics Data System (ADS)
Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping
2013-12-01
An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.
A high-fidelity weather time series generator using the Markov Chain process on a piecewise level
NASA Astrophysics Data System (ADS)
Hersvik, K.; Endrerud, O.-E. V.
2017-12-01
A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.
Characteristics of the transmission of autoregressive sub-patterns in financial time series
NASA Astrophysics Data System (ADS)
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong
2014-09-01
There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.
Characteristics of the transmission of autoregressive sub-patterns in financial time series
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong
2014-01-01
There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors. PMID:25189200
Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.
Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias
2016-01-01
To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.
Highly comparative time-series analysis: the empirical structure of time series and their methods.
Fulcher, Ben D; Little, Max A; Jones, Nick S
2013-06-06
The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.
Highly comparative time-series analysis: the empirical structure of time series and their methods
Fulcher, Ben D.; Little, Max A.; Jones, Nick S.
2013-01-01
The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines. PMID:23554344
2009-12-18
cannot be detected with univariate techniques, but require multivariate analysis instead (Kamitani and Tong [2005]). Two other time series analysis ...learning for time series analysis . The historical record of DBNs can be traced back to Dean and Kanazawa [1988] and Dean and Wellman [1991], with...Rev. 8-98) Prescribed by ANSI Std Z39-18 Keywords: Hidden Process Models, probabilistic time series modeling, functional Magnetic Resonance Imaging
Defense Applications of Signal Processing
1999-08-27
class of multiscale autoregressive moving average (MARMA) processes. These are generalisations of ARMA models in time series analysis , and they contain...including the two theoretical sinusoidal components. Analysis of the amplitude and frequency time series provided some novel insight into the real...communication channels, underwater acoustic signals, radar systems , economic time series and biomedical signals [7]. The alpha stable (aS) distribution has
Modeling Geodetic Processes with Levy α-Stable Distribution and FARIMA
NASA Astrophysics Data System (ADS)
Montillet, Jean-Philippe; Yu, Kegen
2015-04-01
Over the last years the scientific community has been using the auto regressive moving average (ARMA) model in the modeling of the noise in global positioning system (GPS) time series (daily solution). This work starts with the investigation of the limit of the ARMA model which is widely used in signal processing when the measurement noise is white. Since a typical GPS time series consists of geophysical signals (e.g., seasonal signal) and stochastic processes (e.g., coloured and white noise), the ARMA model may be inappropriate. Therefore, the application of the fractional auto-regressive integrated moving average (FARIMA) model is investigated. The simulation results using simulated time series as well as real GPS time series from a few selected stations around Australia show that the FARIMA model fits the time series better than other models when the coloured noise is larger than the white noise. The second fold of this work focuses on fitting the GPS time series with the family of Levy α-stable distributions. Using this distribution, a hypothesis test is developed to eliminate effectively coarse outliers from GPS time series, achieving better performance than using the rule of thumb of n standard deviations (with n chosen empirically).
Process fault detection and nonlinear time series analysis for anomaly detection in safeguards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, T.L.; Mullen, M.F.; Wangen, L.E.
In this paper we discuss two advanced techniques, process fault detection and nonlinear time series analysis, and apply them to the analysis of vector-valued and single-valued time-series data. We investigate model-based process fault detection methods for analyzing simulated, multivariate, time-series data from a three-tank system. The model-predictions are compared with simulated measurements of the same variables to form residual vectors that are tested for the presence of faults (possible diversions in safeguards terminology). We evaluate two methods, testing all individual residuals with a univariate z-score and testing all variables simultaneously with the Mahalanobis distance, for their ability to detect lossmore » of material from two different leak scenarios from the three-tank system: a leak without and with replacement of the lost volume. Nonlinear time-series analysis tools were compared with the linear methods popularized by Box and Jenkins. We compare prediction results using three nonlinear and two linear modeling methods on each of six simulated time series: two nonlinear and four linear. The nonlinear methods performed better at predicting the nonlinear time series and did as well as the linear methods at predicting the linear values.« less
Time reversibility from visibility graphs of nonstationary processes
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Flanagan, Ryan
2015-08-01
Visibility algorithms are a family of methods to map time series into networks, with the aim of describing the structure of time series and their underlying dynamical properties in graph-theoretical terms. Here we explore some properties of both natural and horizontal visibility graphs associated to several nonstationary processes, and we pay particular attention to their capacity to assess time irreversibility. Nonstationary signals are (infinitely) irreversible by definition (independently of whether the process is Markovian or producing entropy at a positive rate), and thus the link between entropy production and time series irreversibility has only been explored in nonequilibrium stationary states. Here we show that the visibility formalism naturally induces a new working definition of time irreversibility, which allows us to quantify several degrees of irreversibility for stationary and nonstationary series, yielding finite values that can be used to efficiently assess the presence of memory and off-equilibrium dynamics in nonstationary processes without the need to differentiate or detrend them. We provide rigorous results complemented by extensive numerical simulations on several classes of stochastic processes.
NASA Astrophysics Data System (ADS)
Tóth, B.; Lillo, F.; Farmer, J. D.
2010-11-01
We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of a time series. The process is composed of consecutive patches of variable length. In each patch the process is described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated with a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non-stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galván, et al. [Phys. Rev. Lett. 87, 168105 (2001)]. We show that the new algorithm outperforms the original one for regime switching models of compound Poisson processes. As an application we use the algorithm to segment the time series of the inventory of market members of the London Stock Exchange and we observe that our method finds almost three times more patches than the original one.
GPS Position Time Series @ JPL
NASA Technical Reports Server (NTRS)
Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen
2013-01-01
Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis
NASA Astrophysics Data System (ADS)
Nakada, Tomohiro; Takadama, Keiki; Watanabe, Shigeyoshi
This paper proposes the classification method using Bayesian analytical method to classify the time series data in the international emissions trading market depend on the agent-based simulation and compares the case with Discrete Fourier transform analytical method. The purpose demonstrates the analytical methods mapping time series data such as market price. These analytical methods have revealed the following results: (1) the classification methods indicate the distance of mapping from the time series data, it is easier the understanding and inference than time series data; (2) these methods can analyze the uncertain time series data using the distance via agent-based simulation including stationary process and non-stationary process; and (3) Bayesian analytical method can show the 1% difference description of the emission reduction targets of agent.
Short Term Rain Prediction For Sustainability of Tanks in the Tropic Influenced by Shadow Rains
NASA Astrophysics Data System (ADS)
Suresh, S.
2007-07-01
Rainfall and flow prediction, adapting the Venkataraman single time series approach and Wiener multiple time series approach were conducted for Aralikottai tank system, and Kothamangalam tank system, Tamilnadu, India. The results indicated that the raw prediction of daily values is closer to actual values than trend identified predictions. The sister seasonal time series were more amenable for prediction than whole parent time series. Venkataraman single time approach was more suited for rainfall prediction. Wiener approach proved better for daily prediction of flow based on rainfall. The major conclusion is that the sister seasonal time series of rain and flow have their own identities even though they form part of the whole parent time series. Further studies with other tropical small watersheds are necessary to establish this unique characteristic of independent but not exclusive behavior of seasonal stationary stochastic processes as compared to parent non stationary stochastic processes.
Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory
2016-05-12
valued times series from a sample. (A practical algorithm to compute the estimator is a work in progress.) Third, finitely-valued spatial processes...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics; time series ; Markov chains; random...proved. Second, a statistical method is developed to estimate the memory depth of discrete- time and continuously-valued times series from a sample. (A
The Timeseries Toolbox - A Web Application to Enable Accessible, Reproducible Time Series Analysis
NASA Astrophysics Data System (ADS)
Veatch, W.; Friedman, D.; Baker, B.; Mueller, C.
2017-12-01
The vast majority of data analyzed by climate researchers are repeated observations of physical process or time series data. This data lends itself of a common set of statistical techniques and models designed to determine trends and variability (e.g., seasonality) of these repeated observations. Often, these same techniques and models can be applied to a wide variety of different time series data. The Timeseries Toolbox is a web application designed to standardize and streamline these common approaches to time series analysis and modeling with particular attention to hydrologic time series used in climate preparedness and resilience planning and design by the U. S. Army Corps of Engineers. The application performs much of the pre-processing of time series data necessary for more complex techniques (e.g. interpolation, aggregation). With this tool, users can upload any dataset that conforms to a standard template and immediately begin applying these techniques to analyze their time series data.
Research in Stochastic Processes.
1984-10-01
Handbook of Statistics, Volume 5: Time Series in Time Domain, E.J. Hannan, P.R. Krishnaiah and M.M. Rao, eds., North Holland, 1984, to appear. 5. J.A...designs for time series." S. Cambanis, Handbook of Statistics. Volume 5: Time Series in Time Domain, E.J. Hannan, P.R. Krishnaiah and M.M. Rao, eds... Krishnaiah and M.M. Rao, eds., North Holland, 1984, to appear. 59. "Ergodic properties of stationary stable processes." S. Cambanis, C.D. Hardin, and A
Clinical time series prediction: Toward a hierarchical dynamical system framework.
Liu, Zitao; Hauskrecht, Milos
2015-09-01
Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Cycles, scaling and crossover phenomenon in length of the day (LOD) time series
NASA Astrophysics Data System (ADS)
Telesca, Luciano
2007-06-01
The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.
Climate Prediction Center - Stratosphere: Polar Stratosphere and Ozone
depletion processes can occur. In addition, the latitudinal-time cross sections shows the thermal evolution UV Daily Dosage Estimate South Polar Vertical Ozone Profile Time Series of Size of S.H. Polar Vortex Time Series of Size of S.H. PSC Temperature Time Series of Size of N.H. Polar Vortex Time Series of
NASA Astrophysics Data System (ADS)
Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo
2017-04-01
In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.
Semi-autonomous remote sensing time series generation tool
NASA Astrophysics Data System (ADS)
Babu, Dinesh Kumar; Kaufmann, Christof; Schmidt, Marco; Dhams, Thorsten; Conrad, Christopher
2017-10-01
High spatial and temporal resolution data is vital for crop monitoring and phenology change detection. Due to the lack of satellite architecture and frequent cloud cover issues, availability of daily high spatial data is still far from reality. Remote sensing time series generation of high spatial and temporal data by data fusion seems to be a practical alternative. However, it is not an easy process, since it involves multiple steps and also requires multiple tools. In this paper, a framework of Geo Information System (GIS) based tool is presented for semi-autonomous time series generation. This tool will eliminate the difficulties by automating all the steps and enable the users to generate synthetic time series data with ease. Firstly, all the steps required for the time series generation process are identified and grouped into blocks based on their functionalities. Later two main frameworks are created, one to perform all the pre-processing steps on various satellite data and the other one to perform data fusion to generate time series. The two frameworks can be used individually to perform specific tasks or they could be combined to perform both the processes in one go. This tool can handle most of the known geo data formats currently available which makes it a generic tool for time series generation of various remote sensing satellite data. This tool is developed as a common platform with good interface which provides lot of functionalities to enable further development of more remote sensing applications. A detailed description on the capabilities and the advantages of the frameworks are given in this paper.
Complexity multiscale asynchrony measure and behavior for interacting financial dynamics
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Niu, Hongli
2016-08-01
A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.
NASA Astrophysics Data System (ADS)
Hermosilla, Txomin; Wulder, Michael A.; White, Joanne C.; Coops, Nicholas C.; Hobart, Geordie W.
2017-12-01
The use of time series satellite data allows for the temporally dense, systematic, transparent, and synoptic capture of land dynamics over time. Subsequent to the opening of the Landsat archive, several time series approaches for characterizing landscape change have been developed, often representing a particular analytical time window. The information richness and widespread utility of these time series data have created a need to maintain the currency of time series information via the addition of new data, as it becomes available. When an existing time series is temporally extended, it is critical that previously generated change information remains consistent, thereby not altering reported change statistics or science outcomes based on that change information. In this research, we investigate the impacts and implications of adding additional years to an existing 29-year annual Landsat time series for forest change. To do so, we undertook a spatially explicit comparison of the 29 overlapping years of a time series representing 1984-2012, with a time series representing 1984-2016. Surface reflectance values, and presence, year, and type of change were compared. We found that the addition of years to extend the time series had minimal effect on the annual surface reflectance composites, with slight band-specific differences (r ≥ 0.1) in the final years of the original time series being updated. The area of stand replacing disturbances and determination of change year are virtually unchanged for the overlapping period between the two time-series products. Over the overlapping temporal period (1984-2012), the total area of change differs by 0.53%, equating to an annual difference in change area of 0.019%. Overall, the spatial and temporal agreement of the changes detected by both time series was 96%. Further, our findings suggest that the entire pre-existing historic time series does not need to be re-processed during the update process. Critically, given the time series change detection and update approach followed here, science outcomes or reports representing one temporal epoch can be considered stable and will not be altered when a time series is updated with newly available data.
Clinical time series prediction: towards a hierarchical dynamical system framework
Liu, Zitao; Hauskrecht, Milos
2014-01-01
Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. PMID:25534671
Towards a study of synoptic-scale variability of the California current system
NASA Technical Reports Server (NTRS)
1985-01-01
A West Coast satellite time series advisory group was established to consider the scientific rationale for the development of complete west coast time series of imagery of sea surface temperature (as derived by the Advanced Very High Resolution Radiometer on the NOAA polar orbiter, and near-surface phytoplankton pigment concentrations (as derived by the Coastal Zone Color Scanner on Nimbus 7). The scientific and data processing requirements for such time series are also considered. It is determined that such time series are essential if a number of scientific questions regarding the synoptic-scale dynamics of the California Current System are to be addressed. These questions concern both biological and physical processes.
NASA Astrophysics Data System (ADS)
Osada, Y.; Ohta, Y.; Demachi, T.; Kido, M.; Fujimoto, H.; Azuma, R.; Hino, R.
2013-12-01
Large interplate earthquake repeatedly occurred in Japan Trench. Recently, the detail crustal deformation revealed by the nation-wide inland GPS network called as GEONET by GSI. However, the maximum displacement region for interplate earthquake is mainly located offshore region. GPS/Acoustic seafloor geodetic observation (hereafter GPS/A) is quite important and useful for understanding of shallower part of the interplate coupling between subducting and overriding plates. We typically conduct GPS/A in specific ocean area based on repeated campaign style using research vessel or buoy. Therefore, we cannot monitor the temporal variation of seafloor crustal deformation in real time. The one of technical issue on real time observation is kinematic GPS analysis because kinematic GPS analysis based on reference and rover data. If the precise kinematic GPS analysis will be possible in the offshore region, it should be promising method for real time GPS/A with USV (Unmanned Surface Vehicle) and a moored buoy. We assessed stability, precision and accuracy of StarFireTM global satellites based augmentation system. We primarily tested for StarFire in the static condition. In order to assess coordinate precision and accuracy, we compared 1Hz StarFire time series and post-processed precise point positioning (PPP) 1Hz time series by GIPSY-OASIS II processing software Ver. 6.1.2 with three difference product types (ultra-rapid, rapid, and final orbits). We also used difference interval clock information (30 and 300 seconds) for the post-processed PPP processing. The standard deviation of real time StarFire time series is less than 30 mm (horizontal components) and 60 mm (vertical component) based on 1 month continuous processing. We also assessed noise spectrum of the estimated time series by StarFire and post-processed GIPSY PPP results. We found that the noise spectrum of StarFire time series is similar pattern with GIPSY-OASIS II processing result based on JPL rapid orbit products with 300 seconds interval clock information. And we report stability, precision and accuracy of StarFire in the moving conditon.
A combinatorial filtering method for magnetotelluric time-series based on Hilbert-Huang transform
NASA Astrophysics Data System (ADS)
Cai, Jianhua
2014-11-01
Magnetotelluric (MT) time-series are often contaminated with noise from natural or man-made processes. A substantial improvement is possible when the time-series are presented as clean as possible for further processing. A combinatorial method is described for filtering of MT time-series based on the Hilbert-Huang transform that requires a minimum of human intervention and leaves good data sections unchanged. Good data sections are preserved because after empirical mode decomposition the data are analysed through hierarchies, morphological filtering, adaptive threshold and multi-point smoothing, allowing separation of noise from signals. The combinatorial method can be carried out without any assumption about the data distribution. Simulated data and the real measured MT time-series from three different regions, with noise caused by baseline drift, high frequency noise and power-line contribution, are processed to demonstrate the application of the proposed method. Results highlight the ability of the combinatorial method to pick out useful signals, and the noise is suppressed greatly so that their deleterious influence is eliminated for the MT transfer function estimation.
Application of the Allan Variance to Time Series Analysis in Astrometry and Geodesy: A Review.
Malkin, Zinovy
2016-04-01
The Allan variance (AVAR) was introduced 50 years ago as a statistical tool for assessing the frequency standards deviations. For the past decades, AVAR has increasingly been used in geodesy and astrometry to assess the noise characteristics in geodetic and astrometric time series. A specific feature of astrometric and geodetic measurements, as compared with clock measurements, is that they are generally associated with uncertainties; thus, an appropriate weighting should be applied during data analysis. In addition, some physically connected scalar time series naturally form series of multidimensional vectors. For example, three station coordinates time series X, Y, and Z can be combined to analyze 3-D station position variations. The classical AVAR is not intended for processing unevenly weighted and/or multidimensional data. Therefore, AVAR modifications, namely weighted AVAR (WAVAR), multidimensional AVAR (MAVAR), and weighted multidimensional AVAR (WMAVAR), were introduced to overcome these deficiencies. In this paper, a brief review is given of the experience of using AVAR and its modifications in processing astrogeodetic time series.
Analyzing a stochastic time series obeying a second-order differential equation.
Lehle, B; Peinke, J
2015-06-01
The stochastic properties of a Langevin-type Markov process can be extracted from a given time series by a Markov analysis. Also processes that obey a stochastically forced second-order differential equation can be analyzed this way by employing a particular embedding approach: To obtain a Markovian process in 2N dimensions from a non-Markovian signal in N dimensions, the system is described in a phase space that is extended by the temporal derivative of the signal. For a discrete time series, however, this derivative can only be calculated by a differencing scheme, which introduces an error. If the effects of this error are not accounted for, this leads to systematic errors in the estimation of the drift and diffusion functions of the process. In this paper we will analyze these errors and we will propose an approach that correctly accounts for them. This approach allows an accurate parameter estimation and, additionally, is able to cope with weak measurement noise, which may be superimposed to a given time series.
NASA Astrophysics Data System (ADS)
Abe, R.; Hamada, K.; Hirata, N.; Tamura, R.; Nishi, N.
2015-05-01
As well as the BIM of quality management in the construction industry, demand for quality management of the manufacturing process of the member is higher in shipbuilding field. The time series of three-dimensional deformation of the each process, and are accurately be grasped strongly demanded. In this study, we focused on the shipbuilding field, will be examined three-dimensional measurement method. The shipyard, since a large equipment and components are intricately arranged in a limited space, the installation of the measuring equipment and the target is limited. There is also the element to be measured is moved in each process, the establishment of the reference point for time series comparison is necessary to devise. In this paper will be discussed method for measuring the welding deformation in time series by using a total station. In particular, by using a plurality of measurement data obtained from this approach and evaluated the amount of deformation of each process.
Regenerating time series from ordinal networks.
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
Regenerating time series from ordinal networks
NASA Astrophysics Data System (ADS)
McCullough, Michael; Sakellariou, Konstantinos; Stemler, Thomas; Small, Michael
2017-03-01
Recently proposed ordinal networks not only afford novel methods of nonlinear time series analysis but also constitute stochastic approximations of the deterministic flow time series from which the network models are constructed. In this paper, we construct ordinal networks from discrete sampled continuous chaotic time series and then regenerate new time series by taking random walks on the ordinal network. We then investigate the extent to which the dynamics of the original time series are encoded in the ordinal networks and retained through the process of regenerating new time series by using several distinct quantitative approaches. First, we use recurrence quantification analysis on traditional recurrence plots and order recurrence plots to compare the temporal structure of the original time series with random walk surrogate time series. Second, we estimate the largest Lyapunov exponent from the original time series and investigate the extent to which this invariant measure can be estimated from the surrogate time series. Finally, estimates of correlation dimension are computed to compare the topological properties of the original and surrogate time series dynamics. Our findings show that ordinal networks constructed from univariate time series data constitute stochastic models which approximate important dynamical properties of the original systems.
A Multilevel Multiset Time-Series Model for Describing Complex Developmental Processes
Ma, Xin; Shen, Jianping
2017-01-01
The authors sought to develop an analytical platform where multiple sets of time series can be examined simultaneously. This multivariate platform capable of testing interaction effects among multiple sets of time series can be very useful in empirical research. The authors demonstrated that the multilevel framework can readily accommodate this analytical capacity. Given their intention to use the multilevel multiset time-series model to pursue complicated research purposes, their resulting model is relatively simple to specify, to run, and to interpret. These advantages make the adoption of their model relatively effortless as long as researchers have the basic knowledge and skills in working with multilevel growth modeling. With multiple potential extensions of their model, the establishment of this analytical platform for analysis of multiple sets of time series can inspire researchers to pursue far more advanced research designs to address complex developmental processes in reality. PMID:29881094
NASA Astrophysics Data System (ADS)
Spaans, K.; Hooper, A. J.
2017-12-01
The short revisit time and high data acquisition rates of current satellites have resulted in increased interest in the development of deformation monitoring and rapid disaster response capability, using InSAR. Fast, efficient data processing methodologies are required to deliver the timely results necessary for this, and also to limit computing resources required to process the large quantities of data being acquired. Contrary to volcano or earthquake applications, urban monitoring requires high resolution processing, in order to differentiate movements between buildings, or between buildings and the surrounding land. Here we present Rapid time series InSAR (RapidSAR), a method that can efficiently update high resolution time series of interferograms, and demonstrate its effectiveness over urban areas. The RapidSAR method estimates the coherence of pixels on an interferogram-by-interferogram basis. This allows for rapid ingestion of newly acquired images without the need to reprocess the earlier acquired part of the time series. The coherence estimate is based on ensembles of neighbouring pixels with similar amplitude behaviour through time, which are identified on an initial set of interferograms, and need be re-evaluated only occasionally. By taking into account scattering properties of points during coherence estimation, a high quality coherence estimate is achieved, allowing point selection at full resolution. The individual point selection maximizes the amount of information that can be extracted from each interferogram, as no selection compromise has to be reached between high and low coherence interferograms. In other words, points do not have to be coherent throughout the time series to contribute to the deformation time series. We demonstrate the effectiveness of our method over urban areas in the UK. We show how the algorithm successfully extracts high density time series from full resolution Sentinel-1 interferograms, and distinguish clearly between buildings and surrounding vegetation or streets. The fact that new interferograms can be processed separately from the remainder of the time series helps manage the high data volumes, both in space and time, generated by current missions.
Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie
2018-04-01
A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.
Interactive Digital Signal Processor
NASA Technical Reports Server (NTRS)
Mish, W. H.
1985-01-01
Interactive Digital Signal Processor, IDSP, consists of set of time series analysis "operators" based on various algorithms commonly used for digital signal analysis. Processing of digital signal time series to extract information usually achieved by applications of number of fairly standard operations. IDSP excellent teaching tool for demonstrating application for time series operators to artificially generated signals.
Providing web-based tools for time series access and analysis
NASA Astrophysics Data System (ADS)
Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane
2014-05-01
Time series information is widely used in environmental change analyses and is also an essential information for stakeholders and governmental agencies. However, a challenging issue is the processing of raw data and the execution of time series analysis. In most cases, data has to be found, downloaded, processed and even converted in the correct data format prior to executing time series analysis tools. Data has to be prepared to use it in different existing software packages. Several packages like TIMESAT (Jönnson & Eklundh, 2004) for phenological studies, BFAST (Verbesselt et al., 2010) for breakpoint detection, and GreenBrown (Forkel et al., 2013) for trend calculations are provided as open-source software and can be executed from the command line. This is needed if data pre-processing and time series analysis is being automated. To bring both parts, automated data access and data analysis, together, a web-based system was developed to provide access to satellite based time series data and access to above mentioned analysis tools. Users of the web portal are able to specify a point or a polygon and an available dataset (e.g., Vegetation Indices and Land Surface Temperature datasets from NASA MODIS). The data is then being processed and provided as a time series CSV file. Afterwards the user can select an analysis tool that is being executed on the server. The final data (CSV, plot images, GeoTIFFs) is visualized in the web portal and can be downloaded for further usage. As a first use case, we built up a complimentary web-based system with NASA MODIS products for Germany and parts of Siberia based on the Earth Observation Monitor (www.earth-observation-monitor.net). The aim of this work is to make time series analysis with existing tools as easy as possible that users can focus on the interpretation of the results. References: Jönnson, P. and L. Eklundh (2004). TIMESAT - a program for analysing time-series of satellite sensor data. Computers and Geosciences 30, 833-845. Verbesselt, J., R. Hyndman, G. Newnham and D. Culvenor (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114, 106-115. DOI: 10.1016/j.rse.2009.08.014 Forkel, M., N. Carvalhais, J. Verbesselt, M. Mahecha, C. Neigh and M. Reichstein (2013). Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology. Remote Sensing 5, 2113-2144.
NASA Astrophysics Data System (ADS)
Li, Jinyang; Shang, Pengjian
2018-07-01
Irreversibility is an important property of time series. In this paper, we propose the higher moments and multiscale Kullback-Leibler divergence to analyze time series irreversibility. The higher moments Kullback-Leibler divergence (HMKLD) can amplify irreversibility and make the irreversibility variation more obvious. Therefore, many time series whose irreversibility is hard to be found are also able to show the variations. We employ simulated data and financial stock data to test and verify this method, and find that HMKLD of stock data is growing in the form of fluctuations. As for multiscale Kullback-Leibler divergence (MKLD), it is very complex in the dynamic system, so that exploring the law of simulation and stock system is difficult. In conventional multiscale entropy method, the coarse-graining process is non-overlapping, however we apply a different coarse-graining process and obtain a surprising discovery. The result shows when the scales are 4 and 5, their entropy is nearly similar, which demonstrates MKLD is efficient to display characteristics of time series irreversibility.
Lara, Juan A; Lizcano, David; Pérez, Aurora; Valente, Juan P
2014-10-01
There are now domains where information is recorded over a period of time, leading to sequences of data known as time series. In many domains, like medicine, time series analysis requires to focus on certain regions of interest, known as events, rather than analyzing the whole time series. In this paper, we propose a framework for knowledge discovery in both one-dimensional and multidimensional time series containing events. We show how our approach can be used to classify medical time series by means of a process that identifies events in time series, generates time series reference models of representative events and compares two time series by analyzing the events they have in common. We have applied our framework on time series generated in the areas of electroencephalography (EEG) and stabilometry. Framework performance was evaluated in terms of classification accuracy, and the results confirmed that the proposed schema has potential for classifying EEG and stabilometric signals. The proposed framework is useful for discovering knowledge from medical time series containing events, such as stabilometric and electroencephalographic time series. These results would be equally applicable to other medical domains generating iconographic time series, such as, for example, electrocardiography (ECG). Copyright © 2014 Elsevier Inc. All rights reserved.
Microbial oceanography and the Hawaii Ocean Time-series programme.
Karl, David M; Church, Matthew J
2014-10-01
The Hawaii Ocean Time-series (HOT) programme has been tracking microbial and biogeochemical processes in the North Pacific Subtropical Gyre since October 1988. The near-monthly time series observations have revealed previously undocumented phenomena within a temporally dynamic ecosystem that is vulnerable to climate change. Novel microorganisms, genes and unexpected metabolic pathways have been discovered and are being integrated into our evolving ecological paradigms. Continued research, including higher-frequency observations and at-sea experimentation, will help to provide a comprehensive scientific understanding of microbial processes in the largest biome on Earth.
Dunea, Daniel; Pohoata, Alin; Iordache, Stefania
2015-07-01
The paper presents the screening of various feedforward neural networks (FANN) and wavelet-feedforward neural networks (WFANN) applied to time series of ground-level ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM10 and PM2.5 fractions) recorded at four monitoring stations located in various urban areas of Romania, to identify common configurations with optimal generalization performance. Two distinct model runs were performed as follows: data processing using hourly-recorded time series of airborne pollutants during cold months (O3, NO2, and PM10), when residential heating increases the local emissions, and data processing using 24-h daily averaged concentrations (PM2.5) recorded between 2009 and 2012. Dataset variability was assessed using statistical analysis. Time series were passed through various FANNs. Each time series was decomposed in four time-scale components using three-level wavelets, which have been passed also through FANN, and recomposed into a single time series. The agreement between observed and modelled output was evaluated based on the statistical significance (r coefficient and correlation between errors and data). Daubechies db3 wavelet-Rprop FANN (6-4-1) utilization gave positive results for O3 time series optimizing the exclusive use of the FANN for hourly-recorded time series. NO2 was difficult to model due to time series specificity, but wavelet integration improved FANN performances. Daubechies db3 wavelet did not improve the FANN outputs for PM10 time series. Both models (FANN/WFANN) overestimated PM2.5 forecasted values in the last quarter of time series. A potential improvement of the forecasted values could be the integration of a smoothing algorithm to adjust the PM2.5 model outputs.
A novel weight determination method for time series data aggregation
NASA Astrophysics Data System (ADS)
Xu, Paiheng; Zhang, Rong; Deng, Yong
2017-09-01
Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.
Using SAR satellite data time series for regional glacier mapping
NASA Astrophysics Data System (ADS)
Winsvold, Solveig H.; Kääb, Andreas; Nuth, Christopher; Andreassen, Liss M.; van Pelt, Ward J. J.; Schellenberger, Thomas
2018-03-01
With dense SAR satellite data time series it is possible to map surface and subsurface glacier properties that vary in time. On Sentinel-1A and RADARSAT-2 backscatter time series images over mainland Norway and Svalbard, we outline how to map glaciers using descriptive methods. We present five application scenarios. The first shows potential for tracking transient snow lines with SAR backscatter time series and correlates with both optical satellite images (Sentinel-2A and Landsat 8) and equilibrium line altitudes derived from in situ surface mass balance data. In the second application scenario, time series representation of glacier facies corresponding to SAR glacier zones shows potential for a more accurate delineation of the zones and how they change in time. The third application scenario investigates the firn evolution using dense SAR backscatter time series together with a coupled energy balance and multilayer firn model. We find strong correlation between backscatter signals with both the modeled firn air content and modeled wetness in the firn. In the fourth application scenario, we highlight how winter rain events can be detected in SAR time series, revealing important information about the area extent of internal accumulation. In the last application scenario, averaged summer SAR images were found to have potential in assisting the process of mapping glaciers outlines, especially in the presence of seasonal snow. Altogether we present examples of how to map glaciers and to further understand glaciological processes using the existing and future massive amount of multi-sensor time series data.
Robust extrema features for time-series data analysis.
Vemulapalli, Pramod K; Monga, Vishal; Brennan, Sean N
2013-06-01
The extraction of robust features for comparing and analyzing time series is a fundamentally important problem. Research efforts in this area encompass dimensionality reduction using popular signal analysis tools such as the discrete Fourier and wavelet transforms, various distance metrics, and the extraction of interest points from time series. Recently, extrema features for analysis of time-series data have assumed increasing significance because of their natural robustness under a variety of practical distortions, their economy of representation, and their computational benefits. Invariably, the process of encoding extrema features is preceded by filtering of the time series with an intuitively motivated filter (e.g., for smoothing), and subsequent thresholding to identify robust extrema. We define the properties of robustness, uniqueness, and cardinality as a means to identify the design choices available in each step of the feature generation process. Unlike existing methods, which utilize filters "inspired" from either domain knowledge or intuition, we explicitly optimize the filter based on training time series to optimize robustness of the extracted extrema features. We demonstrate further that the underlying filter optimization problem reduces to an eigenvalue problem and has a tractable solution. An encoding technique that enhances control over cardinality and uniqueness is also presented. Experimental results obtained for the problem of time series subsequence matching establish the merits of the proposed algorithm.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... month fee if they elect to subscribe to a service that provides real-time series information data. OCC... and processes to accommodate real-time feeds of Series Information data to Subscribers; however... these costs, OCC plans to charge a $250 per month fee to Subscribers receiving real-time Series...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-21
...-step calculation process to convert the time- series of costs and benefits into annualized values... costs and savings, for the time-series of costs and benefits using discount rates of three and seven... that the time-series of costs and benefits from which the annualized values were determined would be a...
A Computer Evolution in Teaching Undergraduate Time Series
ERIC Educational Resources Information Center
Hodgess, Erin M.
2004-01-01
In teaching undergraduate time series courses, we have used a mixture of various statistical packages. We have finally been able to teach all of the applied concepts within one statistical package; R. This article describes the process that we use to conduct a thorough analysis of a time series. An example with a data set is provided. We compare…
Multiresolution analysis of Bursa Malaysia KLCI time series
NASA Astrophysics Data System (ADS)
Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed
2017-05-01
In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.
On Digital Simulation of Multicorrelated Random Processes and Its Applications. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Sinha, A. K.
1973-01-01
Two methods are described to simulate, on a digital computer, a set of correlated, stationary, and Gaussian time series with zero mean from the given matrix of power spectral densities and cross spectral densities. The first method is based upon trigonometric series with random amplitudes and deterministic phase angles. The random amplitudes are generated by using a standard random number generator subroutine. An example is given which corresponds to three components of wind velocities at two different spatial locations for a total of six correlated time series. In the second method, the whole process is carried out using the Fast Fourier Transform approach. This method gives more accurate results and works about twenty times faster for a set of six correlated time series.
Westenbroek, Stephen M.; Doherty, John; Walker, John F.; Kelson, Victor A.; Hunt, Randall J.; Cera, Timothy B.
2012-01-01
The TSPROC (Time Series PROCessor) computer software uses a simple scripting language to process and analyze time series. It was developed primarily to assist in the calibration of environmental models. The software is designed to perform calculations on time-series data commonly associated with surface-water models, including calculation of flow volumes, transformation by means of basic arithmetic operations, and generation of seasonal and annual statistics and hydrologic indices. TSPROC can also be used to generate some of the key input files required to perform parameter optimization by means of the PEST (Parameter ESTimation) computer software. Through the use of TSPROC, the objective function for use in the model-calibration process can be focused on specific components of a hydrograph.
Mathematical Sciences Division 1992 Programs
1992-10-01
statistical theory that underlies modern signal analysis . There is a strong emphasis on stochastic processes and time series , particularly those which...include optimal resource planning and real- time scheduling of stochastic shop-floor processes. Scheduling systems will be developed that can adapt to...make forecasts for the length-of-service time series . Protocol analysis of these sessions will be used to idenify relevant contextual features and to
An introduction to chaotic and random time series analysis
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
The origin of chaotic behavior and the relation of chaos to randomness are explained. Two mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes; (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. Focus is placed on an important connection between the dynamical state space and an observable time series. These two results lead to a practical deconvolution technique combining standard random process modeling methods with new embedded techniques.
Trend time-series modeling and forecasting with neural networks.
Qi, Min; Zhang, G Peter
2008-05-01
Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.
Mobile Visualization and Analysis Tools for Spatial Time-Series Data
NASA Astrophysics Data System (ADS)
Eberle, J.; Hüttich, C.; Schmullius, C.
2013-12-01
The Siberian Earth System Science Cluster (SIB-ESS-C) provides access and analysis services for spatial time-series data build on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and climate data from meteorological stations. Until now a webportal for data access, visualization and analysis with standard-compliant web services was developed for SIB-ESS-C. As a further enhancement a mobile app was developed to provide an easy access to these time-series data for field campaigns. The app sends the current position from the GPS receiver and a specific dataset (like land surface temperature or vegetation indices) - selected by the user - to our SIB-ESS-C web service and gets the requested time-series data for the identified pixel back in real-time. The data is then being plotted directly in the app. Furthermore the user has possibilities to analyze the time-series data for breaking points and other phenological values. These processings are executed on demand of the user on our SIB-ESS-C web server and results are transfered to the app. Any processing can also be done at the SIB-ESS-C webportal. The aim of this work is to make spatial time-series data and analysis functions available for end users without the need of data processing. In this presentation the author gives an overview on this new mobile app, the functionalities, the technical infrastructure as well as technological issues (how the app was developed, our made experiences).
Fractional Brownian motion time-changed by gamma and inverse gamma process
NASA Astrophysics Data System (ADS)
Kumar, A.; Wyłomańska, A.; Połoczański, R.; Sundar, S.
2017-02-01
Many real time-series exhibit behavior adequate to long range dependent data. Additionally very often these time-series have constant time periods and also have characteristics similar to Gaussian processes although they are not Gaussian. Therefore there is need to consider new classes of systems to model these kinds of empirical behavior. Motivated by this fact in this paper we analyze two processes which exhibit long range dependence property and have additional interesting characteristics which may be observed in real phenomena. Both of them are constructed as the superposition of fractional Brownian motion (FBM) and other process. In the first case the internal process, which plays role of the time, is the gamma process while in the second case the internal process is its inverse. We present in detail their main properties paying main attention to the long range dependence property. Moreover, we show how to simulate these processes and estimate their parameters. We propose to use a novel method based on rescaled modified cumulative distribution function for estimation of parameters of the second considered process. This method is very useful in description of rounded data, like waiting times of subordinated processes delayed by inverse subordinators. By using the Monte Carlo method we show the effectiveness of proposed estimation procedures. Finally, we present the applications of proposed models to real time series.
Fluctuations in Wikipedia access-rate and edit-event data
NASA Astrophysics Data System (ADS)
Kämpf, Mirko; Tismer, Sebastian; Kantelhardt, Jan W.; Muchnik, Lev
2012-12-01
Internet-based social networks often reflect extreme events in nature and society by drastic increases in user activity. We study and compare the dynamics of the two major complex processes necessary for information spread via the online encyclopedia ‘Wikipedia’, i.e., article editing (information upload) and article access (information viewing) based on article edit-event time series and (hourly) user access-rate time series for all articles. Daily and weekly activity patterns occur in addition to fluctuations and bursting activity. The bursts (i.e., significant increases in activity for an extended period of time) are characterized by a power-law distribution of durations of increases and decreases. For describing the recurrence and clustering of bursts we investigate the statistics of the return intervals between them. We find stretched exponential distributions of return intervals in access-rate time series, while edit-event time series yield simple exponential distributions. To characterize the fluctuation behavior we apply detrended fluctuation analysis (DFA), finding that most article access-rate time series are characterized by strong long-term correlations with fluctuation exponents α≈0.9. The results indicate significant differences in the dynamics of information upload and access and help in understanding the complex process of collecting, processing, validating, and distributing information in self-organized social networks.
Genetic programming and serial processing for time series classification.
Alfaro-Cid, Eva; Sharman, Ken; Esparcia-Alcázar, Anna I
2014-01-01
This work describes an approach devised by the authors for time series classification. In our approach genetic programming is used in combination with a serial processing of data, where the last output is the result of the classification. The use of genetic programming for classification, although still a field where more research in needed, is not new. However, the application of genetic programming to classification tasks is normally done by considering the input data as a feature vector. That is, to the best of our knowledge, there are not examples in the genetic programming literature of approaches where the time series data are processed serially and the last output is considered as the classification result. The serial processing approach presented here fills a gap in the existing literature. This approach was tested in three different problems. Two of them are real world problems whose data were gathered for online or conference competitions. As there are published results of these two problems this gives us the chance to compare the performance of our approach against top performing methods. The serial processing of data in combination with genetic programming obtained competitive results in both competitions, showing its potential for solving time series classification problems. The main advantage of our serial processing approach is that it can easily handle very large datasets.
ERIC Educational Resources Information Center
Schmitz, Bernhard; Wiese, Bettina S.
2006-01-01
The present study combines a standardized diary approach with time-series analysis methods to investigate the process of self-regulated learning. Based on a process-focused adaptation of Zimmerman's (2000) learning model, an intervention (consisting of four weekly training sessions) to increase self-regulated learning was developed. The diaries…
Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI.
Koush, Yury; Zvyagintsev, Mikhail; Dyck, Miriam; Mathiak, Krystyna A; Mathiak, Klaus
2012-01-02
Real-time fMRI allows analysis and visualization of the brain activity online, i.e. within one repetition time. It can be used in neurofeedback applications where subjects attempt to control an activation level in a specified region of interest (ROI) of their brain. The signal derived from the ROI is contaminated with noise and artifacts, namely with physiological noise from breathing and heart beat, scanner drift, motion-related artifacts and measurement noise. We developed a Bayesian approach to reduce noise and to remove artifacts in real-time using a modified Kalman filter. The system performs several signal processing operations: subtraction of constant and low-frequency signal components, spike removal and signal smoothing. Quantitative feedback signal quality analysis was used to estimate the quality of the neurofeedback time series and performance of the applied signal processing on different ROIs. The signal-to-noise ratio (SNR) across the entire time series and the group event-related SNR (eSNR) were significantly higher for the processed time series in comparison to the raw data. Applied signal processing improved the t-statistic increasing the significance of blood oxygen level-dependent (BOLD) signal changes. Accordingly, the contrast-to-noise ratio (CNR) of the feedback time series was improved as well. In addition, the data revealed increase of localized self-control across feedback sessions. The new signal processing approach provided reliable neurofeedback, performed precise artifacts removal, reduced noise, and required minimal manual adjustments of parameters. Advanced and fast online signal processing algorithms considerably increased the quality as well as the information content of the control signal which in turn resulted in higher contingency in the neurofeedback loop. Copyright © 2011 Elsevier Inc. All rights reserved.
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy. PMID:29795600
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance.
Liu, Yongli; Chen, Jingli; Wu, Shuai; Liu, Zhizhong; Chao, Hao
2018-01-01
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of time series, in this paper, we introduce two incremental fuzzy clustering algorithms based on a Dynamic Time Warping (DTW) distance. For recruiting Single-Pass and Online patterns, our algorithms could handle large-scale time series data by splitting it into a set of chunks which are processed sequentially. Besides, our algorithms select DTW to measure distance of pair-wise time series and encourage higher clustering accuracy because DTW could determine an optimal match between any two time series by stretching or compressing segments of temporal data. Our new algorithms are compared to some existing prominent incremental fuzzy clustering algorithms on 12 benchmark time series datasets. The experimental results show that the proposed approaches could yield high quality clusters and were better than all the competitors in terms of clustering accuracy.
Remote Sensing Time Series Product Tool
NASA Technical Reports Server (NTRS)
Predos, Don; Ryan, Robert E.; Ross, Kenton W.
2006-01-01
The TSPT (Time Series Product Tool) software was custom-designed for NASA to rapidly create and display single-band and band-combination time series, such as NDVI (Normalized Difference Vegetation Index) images, for wide-area crop surveillance and for other time-critical applications. The TSPT, developed in MATLAB, allows users to create and display various MODIS (Moderate Resolution Imaging Spectroradiometer) or simulated VIIRS (Visible/Infrared Imager Radiometer Suite) products as single images, as time series plots at a selected location, or as temporally processed image videos. Manually creating these types of products is extremely labor intensive; however, the TSPT development tool makes the process simplified and efficient. MODIS is ideal for monitoring large crop areas because of its wide swath (2330 km), its relatively small ground sample distance (250 m), and its high temporal revisit time (twice daily). Furthermore, because MODIS imagery is acquired daily, rapid changes in vegetative health can potentially be detected. The new TSPT technology provides users with the ability to temporally process high-revisit-rate satellite imagery, such as that acquired from MODIS and from its successor, the VIIRS. The TSPT features the important capability of fusing data from both MODIS instruments onboard the Terra and Aqua satellites, which drastically improves cloud statistics. With the TSPT, MODIS metadata is used to find and optionally remove bad and suspect data. Noise removal and temporal processing techniques allow users to create low-noise time series plots and image videos and to select settings and thresholds that tailor particular output products. The TSPT GUI (graphical user interface) provides an interactive environment for crafting what-if scenarios by enabling a user to repeat product generation using different settings and thresholds. The TSPT Application Programming Interface provides more fine-tuned control of product generation, allowing experienced programmers to bypass the GUI and to create more user-specific output products, such as comparison time plots or images. This type of time series analysis tool for remotely sensed imagery could be the basis of a large-area vegetation surveillance system. The TSPT has been used to generate NDVI time series over growing seasons in California and Argentina and for hurricane events, such as Hurricane Katrina.
The promise of the state space approach to time series analysis for nursing research.
Levy, Janet A; Elser, Heather E; Knobel, Robin B
2012-01-01
Nursing research, particularly related to physiological development, often depends on the collection of time series data. The state space approach to time series analysis has great potential to answer exploratory questions relevant to physiological development but has not been used extensively in nursing. The aim of the study was to introduce the state space approach to time series analysis and demonstrate potential applicability to neonatal monitoring and physiology. We present a set of univariate state space models; each one describing a process that generates a variable of interest over time. Each model is presented algebraically and a realization of the process is presented graphically from simulated data. This is followed by a discussion of how the model has been or may be used in two nursing projects on neonatal physiological development. The defining feature of the state space approach is the decomposition of the series into components that are functions of time; specifically, slowly varying level, faster varying periodic, and irregular components. State space models potentially simulate developmental processes where a phenomenon emerges and disappears before stabilizing, where the periodic component may become more regular with time, or where the developmental trajectory of a phenomenon is irregular. The ultimate contribution of this approach to nursing science will require close collaboration and cross-disciplinary education between nurses and statisticians.
Quantifying memory in complex physiological time-series.
Shirazi, Amir H; Raoufy, Mohammad R; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R; Amodio, Piero; Jafari, G Reza; Montagnese, Sara; Mani, Ali R
2013-01-01
In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of "memory length" was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are 'forgotten' quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations.
Quantifying Memory in Complex Physiological Time-Series
Shirazi, Amir H.; Raoufy, Mohammad R.; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R.; Amodio, Piero; Jafari, G. Reza; Montagnese, Sara; Mani, Ali R.
2013-01-01
In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of “memory length” was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are ‘forgotten’ quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations. PMID:24039811
Markovic, Gabriela; Schult, Marie-Louise; Bartfai, Aniko; Elg, Mattias
2017-01-31
Progress in early cognitive recovery after acquired brain injury is uneven and unpredictable, and thus the evaluation of rehabilitation is complex. The use of time-series measurements is susceptible to statistical change due to process variation. To evaluate the feasibility of using a time-series method, statistical process control, in early cognitive rehabilitation. Participants were 27 patients with acquired brain injury undergoing interdisciplinary rehabilitation of attention within 4 months post-injury. The outcome measure, the Paced Auditory Serial Addition Test, was analysed using statistical process control. Statistical process control identifies if and when change occurs in the process according to 3 patterns: rapid, steady or stationary performers. The statistical process control method was adjusted, in terms of constructing the baseline and the total number of measurement points, in order to measure a process in change. Statistical process control methodology is feasible for use in early cognitive rehabilitation, since it provides information about change in a process, thus enabling adjustment of the individual treatment response. Together with the results indicating discernible subgroups that respond differently to rehabilitation, statistical process control could be a valid tool in clinical decision-making. This study is a starting-point in understanding the rehabilitation process using a real-time-measurements approach.
A simple and fast representation space for classifying complex time series
NASA Astrophysics Data System (ADS)
Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.
2017-03-01
In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.
Estimates of Zenith Total Delay trends from GPS reprocessing with autoregressive process
NASA Astrophysics Data System (ADS)
Klos, Anna; Hunegnaw, Addisu; Teferle, Felix Norman; Ebuy Abraha, Kibrom; Ahmed, Furqan; Bogusz, Janusz
2017-04-01
Nowadays, near real-time Zenith Total Delay (ZTD) estimates from Global Positioning System (GPS) observations are routinely assimilated into numerical weather prediction (NWP) models to improve the reliability of forecasts. On the other hand, ZTD time series derived from homogeneously re-processed GPS observations over long periods have the potential to improve our understanding of climate change on various temporal and spatial scales. With such time series only recently reaching somewhat adequate time spans, the application of GPS-derived ZTD estimates to climate monitoring is still to be developed further. In this research, we examine the character of noise in ZTD time series for 1995-2015 in order to estimate more realistic magnitudes of trend and its uncertainty than would be the case if the stochastic properties are not taken into account. Furthermore, the hourly sampled, homogeneously re-processed and carefully homogenized ZTD time series from over 700 globally distributed stations were classified into five major climate zones. We found that the amplitudes of annual signals reach values of 10-150 mm with minimum values for the polar and Alpine zones. The amplitudes of daily signals were estimated to be 0-12 mm with maximum values found for the dry zone. We examined seven different noise models for the residual ZTD time series after modelling all known periodicities. This identified a combination of white plus autoregressive process of fourth order to be optimal to match all changes in power of the ZTD data. When the stochastic properties are neglected, ie. a pure white noise model is employed, only 11 from 120 trends were insignificant. Using the optimum noise model more than half of the 120 examined trends became insignificant. We show that the uncertainty of ZTD trends is underestimated by a factor of 3-12 when the stochastic properties of the ZTD time series are ignored and we conclude that it is essential to properly model the noise characteristics of such time series when interpretations in terms of climate change are to be performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Mohammad; Salloum, Maher; Lee, Jina
2017-07-10
KARMA4 is a C++ library for autoregressive moving average (ARMA) modeling and forecasting of time-series data while incorporating both process and observation error. KARMA4 is designed for fitting and forecasting of time-series data for predictive purposes.
Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.
Komasi, Mehdi; Sharghi, Soroush
2016-01-01
Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.
NASA Astrophysics Data System (ADS)
Hashiba, Hideki; Nakayama, Yasunori; Sugimura, Toshiro
The growth of major cities in Asia, as a consequence of economic development, is feared to have adverse influences on the natural environment of the surrounding areas. Comparison of land cover changes in major cities from the viewpoints of both spatial and time series is necessary to fully understand the characteristics of urban development in Asia. To accomplish this, multiple satellite remote sensing data were analyzed across a wide range and over a long term in this study. The process of transition of a major Asian city in Tokyo, Osaka, Beijing, Shanghai, and Hong Kong was analyzed from the characteristic changes of the vegetation index value and the land cover over about 40 years, from 1972 to 2010. Image data for LANDSAT/MSS, LAND-SAT/TM, ALOS/AVNIR-2, and ALOS/PRISM were obtained using a tandem time series. The ratio and state of detailed distribution of land cover were clarified by the classification processing. The time series clearly showed different change characteristics for each city and its surrounding natural environment of vegetation and forest etc. as a result of development processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Humberto E.; Simpson, Michael F.; Lin, Wen-Chiao
In this paper, we apply an advanced safeguards approach and associated methods for process monitoring to a hypothetical nuclear material processing system. The assessment regarding the state of the processing facility is conducted at a systemcentric level formulated in a hybrid framework. This utilizes architecture for integrating both time- and event-driven data and analysis for decision making. While the time-driven layers of the proposed architecture encompass more traditional process monitoring methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data and analysis. By integrating process- and operation-related information and methodologiesmore » within a unified framework, the task of anomaly detection is greatly improved. This is because decision-making can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. This available knowledge at both time series and discrete event layers can then be effectively used to synthesize observation solutions that optimally balance sensor and data processing requirements. The application of the proposed approach is then implemented on an illustrative monitored system based on pyroprocessing and results are discussed.« less
NASA Astrophysics Data System (ADS)
Eberle, J.; Hüttich, C.; Schmullius, C.
2014-12-01
Spatial time series data are freely available around the globe from earth observation satellites and meteorological stations for many years until now. They provide useful and important information to detect ongoing changes of the environment; but for end-users it is often too complex to extract this information out of the original time series datasets. This issue led to the development of the Earth Observation Monitor (EOM), an operational framework and research project to provide simple access, analysis and monitoring tools for global spatial time series data. A multi-source data processing middleware in the backend is linked to MODIS data from Land Processes Distributed Archive Center (LP DAAC) and Google Earth Engine as well as daily climate station data from NOAA National Climatic Data Center. OGC Web Processing Services are used to integrate datasets from linked data providers or external OGC-compliant interfaces to the EOM. Users can either use the web portal (webEOM) or the mobile application (mobileEOM) to execute these processing services and to retrieve the requested data for a given point or polygon in userfriendly file formats (CSV, GeoTiff). Beside providing just data access tools, users can also do further time series analyses like trend calculations, breakpoint detections or the derivation of phenological parameters from vegetation time series data. Furthermore data from climate stations can be aggregated over a given time interval. Calculated results can be visualized in the client and downloaded for offline usage. Automated monitoring and alerting of the time series data integrated by the user is provided by an OGC Sensor Observation Service with a coupled OGC Web Notification Service. Users can decide which datasets and parameters are monitored with a given filter expression (e.g., precipitation value higher than x millimeter per day, occurrence of a MODIS Fire point, detection of a time series anomaly). Datasets integrated in the SOS service are updated in near-realtime based on the linked data providers mentioned above. An alert is automatically pushed to the user if the new data meets the conditions of the registered filter expression. This monitoring service is available on the web portal with alerting by email and within the mobile app with alerting by email and push notification.
Moran, John L; Solomon, Patricia J
2013-05-24
Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Monthly mean raw mortality (at hospital discharge) time series, 1995-2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) "in-control" status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues.
Analyzing developmental processes on an individual level using nonstationary time series modeling.
Molenaar, Peter C M; Sinclair, Katerina O; Rovine, Michael J; Ram, Nilam; Corneal, Sherry E
2009-01-01
Individuals change over time, often in complex ways. Generally, studies of change over time have combined individuals into groups for analysis, which is inappropriate in most, if not all, studies of development. The authors explain how to identify appropriate levels of analysis (individual vs. group) and demonstrate how to estimate changes in developmental processes over time using a multivariate nonstationary time series model. They apply this model to describe the changing relationships between a biological son and father and a stepson and stepfather at the individual level. The authors also explain how to use an extended Kalman filter with iteration and smoothing estimator to capture how dynamics change over time. Finally, they suggest further applications of the multivariate nonstationary time series model and detail the next steps in the development of statistical models used to analyze individual-level data.
Improving GNSS time series for volcano monitoring: application to Canary Islands (Spain)
NASA Astrophysics Data System (ADS)
García-Cañada, Laura; Sevilla, Miguel J.; Pereda de Pablo, Jorge; Domínguez Cerdeña, Itahiza
2017-04-01
The number of permanent GNSS stations has increased significantly in recent years for different geodetic applications such as volcano monitoring, which require a high precision. Recently we have started to have coordinates time series long enough so that we can apply different analysis and filters that allow us to improve the GNSS coordinates results. Following this idea we have processed data from GNSS permanent stations used by the Spanish Instituto Geográfico Nacional (IGN) for volcano monitoring in Canary Islands to obtained time series by double difference processing method with Bernese v5.0 for the period 2007-2014. We have identified the characteristics of these time series and obtained models to estimate velocities with greater accuracy and more realistic uncertainties. In order to improve the results we have used two kinds of filters to improve the time series. The first, a spatial filter, has been computed using the series of residuals of all stations in the Canary Islands without an anomalous behaviour after removing a linear trend. This allows us to apply this filter to all sets of coordinates of the permanent stations reducing their dispersion. The second filter takes account of the temporal correlation in the coordinate time series for each station individually. A research about the evolution of the velocity depending on the series length has been carried out and it has demonstrated the need for using time series of at least four years. Therefore, in those stations with more than four years of data, we calculated the velocity and the characteristic parameters in order to have time series of residuals. This methodology has been applied to the GNSS data network in El Hierro (Canary Islands) during the 2011-2012 eruption and the subsequent magmatic intrusions (2012-2014). The results show that in the new series it is easier to detect anomalous behaviours in the coordinates, so they are most useful to detect crustal deformations in volcano monitoring.
NASA Astrophysics Data System (ADS)
Yuan, Y.; Meng, Y.; Chen, Y. X.; Jiang, C.; Yue, A. Z.
2018-04-01
In this study, we proposed a method to map urban encroachment onto farmland using satellite image time series (SITS) based on the hierarchical hidden Markov model (HHMM). In this method, the farmland change process is decomposed into three hierarchical levels, i.e., the land cover level, the vegetation phenology level, and the SITS level. Then a three-level HHMM is constructed to model the multi-level semantic structure of farmland change process. Once the HHMM is established, a change from farmland to built-up could be detected by inferring the underlying state sequence that is most likely to generate the input time series. The performance of the method is evaluated on MODIS time series in Beijing. Results on both simulated and real datasets demonstrate that our method improves the change detection accuracy compared with the HMM-based method.
Time Series in Education: The Analysis of Daily Attendance in Two High Schools
ERIC Educational Resources Information Center
Koopmans, Matthijs
2011-01-01
This presentation discusses the use of a time series approach to the analysis of daily attendance in two urban high schools over the course of one school year (2009-10). After establishing that the series for both schools were stationary, they were examined for moving average processes, autoregression, seasonal dependencies (weekly cycles),…
NASA Astrophysics Data System (ADS)
Bock, Y.; Fang, P.; Moore, A. W.; Kedar, S.; Liu, Z.; Owen, S. E.; Glasscoe, M. T.
2016-12-01
Detection of time-dependent crustal deformation relies on the availability of accurate surface displacements, proper time series analysis to correct for secular motion, coseismic and non-tectonic instrument offsets, periodic signatures at different frequencies, and a realistic estimate of uncertainties for the parameters of interest. As part of the NASA Solid Earth Science ESDR System (SESES) project, daily displacement time series are estimated for about 2500 stations, focused on tectonic plate boundaries and having a global distribution for accessing the terrestrial reference frame. The "combined" time series are optimally estimated from independent JPL GIPSY and SIO GAMIT solutions, using a consistent set of input epoch-date coordinates and metadata. The longest time series began in 1992; more than 30% of the stations have experienced one or more of 35 major earthquakes with significant postseismic deformation. Here we present three examples of time-dependent deformation that have been detected in the SESES displacement time series. (1) Postseismic deformation is a fundamental time-dependent signal that indicates a viscoelastic response of the crust/mantle lithosphere, afterslip, or poroelastic effects at different spatial and temporal scales. It is critical to identify and estimate the extent of postseismic deformation in both space and time not only for insight into the crustal deformation and earthquake cycles and their underlying physical processes, but also to reveal other time-dependent signals. We report on our database of characterized postseismic motions using a principal component analysis to isolate different postseismic processes. (2) Starting with the SESES combined time series and applying a time-dependent Kalman filter, we examine episodic tremor and slow slip (ETS) in the Cascadia subduction zone. We report on subtle slip details, allowing investigation of the spatiotemporal relationship between slow slip transients and tremor and their underlying physical mechanisms. (3) We present evolving strain dilatation and shear rates based on the SESES velocities for regional subnetworks as a metric for assigning earthquake probabilities and detection of possible time-dependent deformation related to underlying physical processes.
A perturbative approach for enhancing the performance of time series forecasting.
de Mattos Neto, Paulo S G; Ferreira, Tiago A E; Lima, Aranildo R; Vasconcelos, Germano C; Cavalcanti, George D C
2017-04-01
This paper proposes a method to perform time series prediction based on perturbation theory. The approach is based on continuously adjusting an initial forecasting model to asymptotically approximate a desired time series model. First, a predictive model generates an initial forecasting for a time series. Second, a residual time series is calculated as the difference between the original time series and the initial forecasting. If that residual series is not white noise, then it can be used to improve the accuracy of the initial model and a new predictive model is adjusted using residual series. The whole process is repeated until convergence or the residual series becomes white noise. The output of the method is then given by summing up the outputs of all trained predictive models in a perturbative sense. To test the method, an experimental investigation was conducted on six real world time series. A comparison was made with six other methods experimented and ten other results found in the literature. Results show that not only the performance of the initial model is significantly improved but also the proposed method outperforms the other results previously published. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cross-correlation of point series using a new method
NASA Technical Reports Server (NTRS)
Strothers, Richard B.
1994-01-01
Traditional methods of cross-correlation of two time series do not apply to point time series. Here, a new method, devised specifically for point series, utilizes a correlation measure that is based in the rms difference (or, alternatively, the median absolute difference) between nearest neightbors in overlapped segments of the two series. Error estimates for the observed locations of the points, as well as a systematic shift of one series with respect to the other to accommodate a constant, but unknown, lead or lag, are easily incorporated into the analysis using Monte Carlo techniques. A methodological restriction adopted here is that one series be treated as a template series against which the other, called the target series, is cross-correlated. To estimate a significance level for the correlation measure, the adopted alternative (null) hypothesis is that the target series arises from a homogeneous Poisson process. The new method is applied to cross-correlating the times of the greatest geomagnetic storms with the times of maximum in the undecennial solar activity cycle.
NASA Astrophysics Data System (ADS)
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui
2014-07-01
The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong; Ding, Yinghui
2014-07-01
The linear regression parameters between two time series can be different under different lengths of observation period. If we study the whole period by the sliding window of a short period, the change of the linear regression parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined by the combination of intervals of the linear regression parameters and the results of the significance testing under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges, and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the medium in the process of the transmission can be captured. The statistical results of weighted out-degree and betweenness centrality are mapped on timelines, which shows the features of the distribution of the results. Many measurements in different areas that involve two related time series variables could take advantage of this algorithm to characterize the dynamic relationships between the time series from a new perspective.
Time series modeling by a regression approach based on a latent process.
Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice
2009-01-01
Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.
Association mining of dependency between time series
NASA Astrophysics Data System (ADS)
Hafez, Alaaeldin
2001-03-01
Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.
NASA Astrophysics Data System (ADS)
Salmon, B. P.; Kleynhans, W.; Olivier, J. C.; van den Bergh, F.; Wessels, K. J.
2018-05-01
Humans are transforming land cover at an ever-increasing rate. Accurate geographical maps on land cover, especially rural and urban settlements are essential to planning sustainable development. Time series extracted from MODerate resolution Imaging Spectroradiometer (MODIS) land surface reflectance products have been used to differentiate land cover classes by analyzing the seasonal patterns in reflectance values. The proper fitting of a parametric model to these time series usually requires several adjustments to the regression method. To reduce the workload, a global setting of parameters is done to the regression method for a geographical area. In this work we have modified a meta-optimization approach to setting a regression method to extract the parameters on a per time series basis. The standard deviation of the model parameters and magnitude of residuals are used as scoring function. We successfully fitted a triply modulated model to the seasonal patterns of our study area using a non-linear extended Kalman filter (EKF). The approach uses temporal information which significantly reduces the processing time and storage requirements to process each time series. It also derives reliability metrics for each time series individually. The features extracted using the proposed method are classified with a support vector machine and the performance of the method is compared to the original approach on our ground truth data.
Reconstruction of the modified discrete Langevin equation from persistent time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czechowski, Zbigniew
The discrete Langevin-type equation, which can describe persistent processes, was introduced. The procedure of reconstruction of the equation from time series was proposed and tested on synthetic data, with short and long-tail distributions, generated by different Langevin equations. Corrections due to the finite sampling rates were derived. For an exemplary meteorological time series, an appropriate Langevin equation, which constitutes a stochastic macroscopic model of the phenomenon, was reconstructed.
A Time Series of Mean Global Sea Surface Temperature from the Along-Track Scanning Radiometers
NASA Astrophysics Data System (ADS)
Veal, Karen L.; Corlett, Gary; Remedios, John; Llewellyn-Jones, David
2010-12-01
A climate data set requires a long time series of consistently processed data with suitably long periods of overlap of different instruments which allows characterization of any inter-instrument biases. The data obtained from ESA's three Along-Track Scanning Radiometers (ATSRs) together comprise an 18 year record of SST with overlap periods of at least 6 months. The data from all three ATSRs has been consistently processed. These factors together with the stability of the instruments and the precision of the derived SST makes this data set eminently suitable for the construction of a time series of SST that complies with many of the GCOS requirements for a climate data set. A time series of global and regional average SST anomalies has been constructed from the ATSR version 2 data set. An analysis of the overlap periods of successive instruments was used to remove intra-series biases and align the series to a common reference. An ATSR climatology has been developed and has been used to calculate the SST anomalies. The ATSR-1 time series and the AATSR time series have been aligned to ATSR-2. The largest adjustment is ~0.2 K between ATSR-2 and AATSR which is suspected to be due to a shift of the 12 μm filter function for AATSR. An uncertainty of 0.06 K is assigned to the relative anomaly record that is derived from the dual three-channel night-time data. A relative uncertainty of 0.07 K is assigned to the dual night-time two-channel record, except in the ATSR-1 period (1994-1996) where it is larger.
NASA Astrophysics Data System (ADS)
Reimer, Janet J.; Cai, Wei-Jun; Xue, Liang; Vargas, Rodrigo; Noakes, Scott; Hu, Xinping; Signorini, Sergio R.; Mathis, Jeremy T.; Feely, Richard A.; Sutton, Adrienne J.; Sabine, Christopher; Musielewicz, Sylvia; Chen, Baoshan; Wanninkhof, Rik
2017-08-01
Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of the aforementioned parameters can be used to calculate the others. In this study at the Gray's Reef (GR) mooring in the South Atlantic Bight (SAB) we: examine the internal consistency of pCO2w from underway cruise, moored autonomous time series, and calculated from bottle samples (DIC-TA pairing); describe the seasonal to interannual pCO2w time series variability and air-sea flux (FCO2), as well as describe the potential sources of pCO2w variability; and determine the source/sink for atmospheric pCO2. Over the 8.5 years of GR mooring time series, mooring-underway and mooring-bottle calculated-pCO2w strongly correlate with r-values > 0.90. pCO2w and FCO2 time series follow seasonal thermal patterns; however, seasonal non-thermal processes, such as terrestrial export, net biological production, and air-sea exchange also influence variability. The linear slope of time series pCO2w increases by 5.2 ± 1.4 μatm y-1 with FCO2 increasing 51-70 mmol m-2 y-1. The net FCO2 sign can switch interannually with the magnitude varying greatly. Non-thermal pCO2w is also increasing over the time series, likely indicating that terrestrial export and net biological processes drive the long term pCO2w increase.
Studies in astronomical time series analysis: Modeling random processes in the time domain
NASA Technical Reports Server (NTRS)
Scargle, J. D.
1979-01-01
Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.
Multivariable Time Series Prediction for the Icing Process on Overhead Power Transmission Line
Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling
2014-01-01
The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653
NASA Astrophysics Data System (ADS)
Klos, Anna; Olivares, German; Teferle, Felix Norman; Bogusz, Janusz
2016-04-01
Station velocity uncertainties determined from a series of Global Navigation Satellite System (GNSS) position estimates depend on both the deterministic and stochastic models applied to the time series. While the deterministic model generally includes parameters for a linear and several periodic terms the stochastic model is a representation of the noise character of the time series in form of a power-law process. For both of these models the optimal model may vary from one time series to another while the models also depend, to some degree, on each other. In the past various power-law processes have been shown to fit the time series and the sources for the apparent temporally-correlated noise were attributed to, for example, mismodelling of satellites orbits, antenna phase centre variations, troposphere, Earth Orientation Parameters, mass loading effects and monument instabilities. Blewitt and Lavallée (2002) demonstrated how improperly modelled seasonal signals affected the estimates of station velocity uncertainties. However, in their study they assumed that the time series followed a white noise process with no consideration of additional temporally-correlated noise. Bos et al. (2010) empirically showed for a small number of stations that the noise character was much more important for the reliable estimation of station velocity uncertainties than the seasonal signals. In this presentation we pick up from Blewitt and Lavallée (2002) and Bos et al. (2010), and have derived formulas for the computation of the General Dilution of Precision (GDP) under presence of periodic signals and temporally-correlated noise in the time series. We show, based on simulated and real time series from globally distributed IGS (International GNSS Service) stations processed by the Jet Propulsion Laboratory (JPL), that periodic signals dominate the effect on the velocity uncertainties at short time scales while for those beyond four years, the type of noise becomes much more important. In other words, for time series long enough, the assumed periodic signals do not affect the velocity uncertainties as much as the assumed noise model. We calculated the GDP to be the ratio between two errors of velocity: without and with inclusion of seasonal terms of periods equal to one year and its overtones till 3rd. To all these cases power-law processes of white, flicker and random-walk noise were added separately. Few oscillations in GDP can be noticed for integer years, which arise from periodic terms added. Their amplitudes in GDP increase along with the increasing spectral index. Strong peaks of oscillations in GDP are indicated for short time scales, especially for random-walk processes. This means that badly monumented stations are affected the most. Local minima and maxima in GDP are also enlarged as the noise approaches random walk. We noticed that the semi-annual signal increased the local GDP minimum for white noise. This suggests that adding power-law noise to a deterministic model with annual term or adding a semi-annual term to white noise causes an increased velocity uncertainty even at the points, where determined velocity is not biased.
Entropic Analysis of Electromyography Time Series
NASA Astrophysics Data System (ADS)
Kaufman, Miron; Sung, Paul
2005-03-01
We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.
Using in-situ Glider Data to Improve the Interpretation of Time-Series Data in the San Pedro Channel
NASA Astrophysics Data System (ADS)
Teel, E.; Liu, X.; Seegers, B. N.; Ragan, M. A.; Jones, B. H.; Levine, N. M.
2016-02-01
Oceanic time-series have provided insight into biological, physical, and chemical processes and how these processes change over time. However, time-series data collected near coastal zones have not been used as broadly because of regional features that may prevent extrapolation of local results. Though these sites are inherently more affected by local processes, broadening the application of coastal data is crucial for improved modeling of processes such as total carbon drawdown and the development of oxygen minimum zones. Slocum gliders were deployed off the coast of Los Angeles from February to July of 2013 and 2014 providing high temporal and spatial resolution data of the San Pedro Channel (SPC), which includes the San Pedro Ocean Time Series (SPOT). The data were collapsed onto a standardized grid and primary and secondary characteristics of glider profiles were analyzed by principal component analysis to determine the processes impacting SPC and SPOT. The data fell into four categories: active upwelling, offshore intrusion, subsurface bloom, and surface bloom. Waters across the SPC were most similar to offshore water masses, even during the upwelling season when near-shore blooms are commonly observed. The SPOT site was found to be representative of the SPC 86% of the time, suggesting that the findings from SPOT are applicable for the entire SPC. Subsurface blooms were common in both years with co-located chlorophyll and particle maxima, and results suggested that these subsurface blooms contribute significantly to the local primary production. Satellite estimation of integrated chlorophyll was poor, possibly due to the prevalence of subsurface blooms and shallow optical depths during surface blooms. These results indicate that high resolution in-situ glider deployments can be used to determine the spatial domain of coastal time-series data, allowing for broader application of these datasets and greater integration into modeling efforts.
Wavelet analysis in ecology and epidemiology: impact of statistical tests
Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario
2014-01-01
Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the ‘beta-surrogate’ method. PMID:24284892
Wavelet analysis in ecology and epidemiology: impact of statistical tests.
Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario
2014-02-06
Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the 'beta-surrogate' method.
NASA Astrophysics Data System (ADS)
Gens, R.
2017-12-01
With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.
NASA Astrophysics Data System (ADS)
Caro Cuenca, Miguel; Esfahany, Sami Samiei; Hanssen, Ramon F.
2010-12-01
Persistent scatterer Radar Interferometry (PSI) can provide with a wealth of information on surface motion. These methods overcome the major limitations of the antecessor technique, interferometric SAR (InSAR), such as atmospheric disturbances, by detecting the scatterers which are slightly affected by noise. The time span that surface deformation processes are observed is limited by the satellite lifetime, which is usually less than 10 years. However most of deformation phenomena last longer. In order to fully monitor and comprehend the observed signal, acquisitions from different sensors can be merged. This is a complex task for one main reason. PSI methods provide with estimations that are relative in time to one of the acquisitions which is referred to as master or reference image. Therefore, time series acquired by different sensors will have different reference images and cannot be directly compared or joint unless they are set to the same time reference system. In global terms, the operation of translating from one to another reference systems consist of calculating a vertical offset, which is the total deformation that occurs between the two master times. To estimate this offset, different strategies can be applied, for example, using additional data such as leveling or GPS measurements. In this contribution we propose to use a least squares to merge PSI time series without any ancillary information. This method treats the time series individually, i.e. per PS, and requires some knowledge of the deformation signal, for example, if a polynomial would fairly describe the expected behavior. To test the proposed approach, we applied it to the southern Netherlands, where the surface is affected by ground water processes in abandoned mines. The time series were obtained after processing images provided by ERS1/2 and Envisat. The results were validated using in-situ water measurements, which show very high correlation with deformation time series.
[Local fractal analysis of noise-like time series by all permutations method for 1-115 min periods].
Panchelyuga, V A; Panchelyuga, M S
2015-01-01
Results of local fractal analysis of 329-per-day time series of 239Pu alpha-decay rate fluctuations by means of all permutations method (APM) are presented. The APM-analysis reveals in the time series some steady frequency set. The coincidence of the frequency set with the Earth natural oscillations was demonstrated. A short review of works by different authors who analyzed the time series of fluctuations in processes of different nature is given. We have shown that the periods observed in those works correspond to the periods revealed in our study. It points to a common mechanism of the phenomenon observed.
BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data
Gonçalves, Joana P; Madeira, Sara C; Oliveira, Arlindo L
2009-01-01
Background The ability to monitor changes in expression patterns over time, and to observe the emergence of coherent temporal responses using expression time series, is critical to advance our understanding of complex biological processes. Biclustering has been recognized as an effective method for discovering local temporal expression patterns and unraveling potential regulatory mechanisms. The general biclustering problem is NP-hard. In the case of time series this problem is tractable, and efficient algorithms can be used. However, there is still a need for specialized applications able to take advantage of the temporal properties inherent to expression time series, both from a computational and a biological perspective. Findings BiGGEsTS makes available state-of-the-art biclustering algorithms for analyzing expression time series. Gene Ontology (GO) annotations are used to assess the biological relevance of the biclusters. Methods for preprocessing expression time series and post-processing results are also included. The analysis is additionally supported by a visualization module capable of displaying informative representations of the data, including heatmaps, dendrograms, expression charts and graphs of enriched GO terms. Conclusion BiGGEsTS is a free open source graphical software tool for revealing local coexpression of genes in specific intervals of time, while integrating meaningful information on gene annotations. It is freely available at: . We present a case study on the discovery of transcriptional regulatory modules in the response of Saccharomyces cerevisiae to heat stress. PMID:19583847
An algorithm of Saxena-Easo on fuzzy time series forecasting
NASA Astrophysics Data System (ADS)
Ramadhani, L. C.; Anggraeni, D.; Kamsyakawuni, A.; Hadi, A. F.
2018-04-01
This paper presents a forecast model of Saxena-Easo fuzzy time series prediction to study the prediction of Indonesia inflation rate in 1970-2016. We use MATLAB software to compute this method. The algorithm of Saxena-Easo fuzzy time series doesn’t need stationarity like conventional forecasting method, capable of dealing with the value of time series which are linguistic and has the advantage of reducing the calculation, time and simplifying the calculation process. Generally it’s focus on percentage change as the universe discourse, interval partition and defuzzification. The result indicate that between the actual data and the forecast data are close enough with Root Mean Square Error (RMSE) = 1.5289.
Network structure of multivariate time series.
Lacasa, Lucas; Nicosia, Vincenzo; Latora, Vito
2015-10-21
Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory
Tao, Qing
2017-01-01
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM. PMID:29391864
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.
Yang, Haimin; Pan, Zhisong; Tao, Qing
2017-01-01
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
..., and (ii) terminate the opening process when away markets become crossed during the opening process. A new opening process for the affected series would commence at the time the Away Best Bid/Offer (``ABBO... PHLX XL system currently calculates the OQR without regard to away market(s) in the affected series...
Review of current GPS methodologies for producing accurate time series and their error sources
NASA Astrophysics Data System (ADS)
He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping
2017-05-01
The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e.g., subsidence of the highway bridge) to the detection of particular geophysical signals.
2013-01-01
Background Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Methods Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. Results The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. Conclusions The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues. PMID:23705957
Filter-based multiscale entropy analysis of complex physiological time series.
Xu, Yuesheng; Zhao, Liang
2013-08-01
Multiscale entropy (MSE) has been widely and successfully used in analyzing the complexity of physiological time series. We reinterpret the averaging process in MSE as filtering a time series by a filter of a piecewise constant type. From this viewpoint, we introduce filter-based multiscale entropy (FME), which filters a time series to generate multiple frequency components, and then we compute the blockwise entropy of the resulting components. By choosing filters adapted to the feature of a given time series, FME is able to better capture its multiscale information and to provide more flexibility for studying its complexity. Motivated by the heart rate turbulence theory, which suggests that the human heartbeat interval time series can be described in piecewise linear patterns, we propose piecewise linear filter multiscale entropy (PLFME) for the complexity analysis of the time series. Numerical results from PLFME are more robust to data of various lengths than those from MSE. The numerical performance of the adaptive piecewise constant filter multiscale entropy without prior information is comparable to that of PLFME, whose design takes prior information into account.
Characterization of time series via Rényi complexity-entropy curves
NASA Astrophysics Data System (ADS)
Jauregui, M.; Zunino, L.; Lenzi, E. K.; Mendes, R. S.; Ribeiro, H. V.
2018-05-01
One of the most useful tools for distinguishing between chaotic and stochastic time series is the so-called complexity-entropy causality plane. This diagram involves two complexity measures: the Shannon entropy and the statistical complexity. Recently, this idea has been generalized by considering the Tsallis monoparametric generalization of the Shannon entropy, yielding complexity-entropy curves. These curves have proven to enhance the discrimination among different time series related to stochastic and chaotic processes of numerical and experimental nature. Here we further explore these complexity-entropy curves in the context of the Rényi entropy, which is another monoparametric generalization of the Shannon entropy. By combining the Rényi entropy with the proper generalization of the statistical complexity, we associate a parametric curve (the Rényi complexity-entropy curve) with a given time series. We explore this approach in a series of numerical and experimental applications, demonstrating the usefulness of this new technique for time series analysis. We show that the Rényi complexity-entropy curves enable the differentiation among time series of chaotic, stochastic, and periodic nature. In particular, time series of stochastic nature are associated with curves displaying positive curvature in a neighborhood of their initial points, whereas curves related to chaotic phenomena have a negative curvature; finally, periodic time series are represented by vertical straight lines.
36 CFR 1225.12 - How are records schedules developed?
Code of Federal Regulations, 2010 CFR
2010-07-01
... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...
36 CFR 1225.12 - How are records schedules developed?
Code of Federal Regulations, 2011 CFR
2011-07-01
... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...
36 CFR 1225.12 - How are records schedules developed?
Code of Federal Regulations, 2012 CFR
2012-07-01
... activity to identify records series, systems, and nonrecord materials. (c) Determine the appropriate scope of the records schedule items, e.g., individual series/system component, work process, group of related work processes, or broad program area. (d) Evaluate the period of time the agency needs each...
Modified DTW for a quantitative estimation of the similarity between rainfall time series
NASA Astrophysics Data System (ADS)
Djallel Dilmi, Mohamed; Barthès, Laurent; Mallet, Cécile; Chazottes, Aymeric
2017-04-01
The Precipitations are due to complex meteorological phenomenon and can be described as intermittent process. The spatial and temporal variability of this phenomenon is significant and covers large scales. To analyze and model this variability and / or structure, several studies use a network of rain gauges providing several time series of precipitation measurements. To compare these different time series, the authors compute for each time series some parameters (PDF, rain peak intensity, occurrence, amount, duration, intensity …). However, and despite the calculation of these parameters, the comparison of the parameters between two series of measurements remains qualitative. Due to the advection processes, when different sensors of an observation network measure precipitation time series identical in terms of intermitency or intensities, there is a time lag between the different measured series. Analyzing and extracting relevant information on physical phenomena from these precipitation time series implies the development of automatic analytical methods capable of comparing two time series of precipitation measured by different sensors or at two different locations and thus quantifying the difference / similarity. The limits of the Euclidean distance to measure the similarity between the time series of precipitation have been well demonstrated and explained (eg the Euclidian distance is indeed very sensitive to the effects of phase shift : between two identical but slightly shifted time series, this distance is not negligible). To quantify and analysis these time lag, the correlation functions are well established, normalized and commonly used to measure the spatial dependences that are required by many applications. However, authors generally observed that there is always a considerable scatter of the inter-rain gauge correlation coefficients obtained from the individual pairs of rain gauges. Because of a substantial dispersion of estimated time lag, the interpretation of this inter-correlation is not straightforward. We propose here to use an improvement of the Euclidian distance which integrates the global complexity of the rainfall series. The Dynamic Time Wrapping (DTW) used in speech recognition allows matching two time series instantly different and provide the most probable time lag. However, the original formulation of the DTW suffers from some limitations. In particular, it is not adequate to the rain intermittency. In this study we present an adaptation of the DTW for the analysis of rainfall time series : we used time series from the "Météo France" rain gauge network observed between January 1st, 2007 and December 31st, 2015 on 25 stations located in the Île de France area. Then we analyze the results (eg. The distance, the relationship between the time lag detected by our methods and others measured parameters like speed and direction of the wind…) to show the ability of the proposed similarity to provide usefull information on the rain structure. The possibility of using this measure of similarity to define a quality indicator of a sensor integrated into an observation network is also envisaged.
A 16-year time series of 1 km AVHRR satellite data of the conterminous United States and Alaska
Eidenshink, Jeff
2006-01-01
The U.S. Geological Survey (USGS) has developed a 16-year time series of vegetation condition information for the conterminous United States and Alaska using 1 km Advanced Very High Resolution Radiometer (AVHRR) data. The AVHRR data have been processed using consistent methods that account for radiometric variability due to calibration uncertainty, the effects of the atmosphere on surface radiometric measurements obtained from wide field-of-view observations, and the geometric registration accuracy. The conterminous United States and Alaska data sets have an atmospheric correction for water vapor, ozone, and Rayleigh scattering and include a cloud mask derived using the Clouds from AVHRR (CLAVR) algorithm. In comparison with other AVHRR time series data sets, the conterminous United States and Alaska data are processed using similar techniques. The primary difference is that the conterminous United States and Alaska data are at 1 km resolution, while others are at 8 km resolution. The time series consists of weekly and biweekly maximum normalized difference vegetation index (NDVI) composites.
A new method for reconstruction of solar irradiance
NASA Astrophysics Data System (ADS)
Privalsky, Victor
2018-07-01
The purpose of this research is to show how time series should be reconstructed using an example with the data on total solar irradiation (TSI) of the Earth and on sunspot numbers (SSN) since 1749. The traditional approach through regression equation(s) is designed for time-invariant vectors of random variables and is not applicable to time series, which present random functions of time. The autoregressive reconstruction (ARR) method suggested here requires fitting a multivariate stochastic difference equation to the target/proxy time series. The reconstruction is done through the scalar equation for the target time series with the white noise term excluded. The time series approach is shown to provide a better reconstruction of TSI than the correlation/regression method. A reconstruction criterion is introduced which allows one to define in advance the achievable level of success in the reconstruction. The conclusion is that time series, including the total solar irradiance, cannot be reconstructed properly if the data are not treated as sample records of random processes and analyzed in both time and frequency domains.
Discovering time-lagged rules from microarray data using gene profile classifiers
2011-01-01
Background Gene regulatory networks have an essential role in every process of life. In this regard, the amount of genome-wide time series data is becoming increasingly available, providing the opportunity to discover the time-delayed gene regulatory networks that govern the majority of these molecular processes. Results This paper aims at reconstructing gene regulatory networks from multiple genome-wide microarray time series datasets. In this sense, a new model-free algorithm called GRNCOP2 (Gene Regulatory Network inference by Combinatorial OPtimization 2), which is a significant evolution of the GRNCOP algorithm, was developed using combinatorial optimization of gene profile classifiers. The method is capable of inferring potential time-delay relationships with any span of time between genes from various time series datasets given as input. The proposed algorithm was applied to time series data composed of twenty yeast genes that are highly relevant for the cell-cycle study, and the results were compared against several related approaches. The outcomes have shown that GRNCOP2 outperforms the contrasted methods in terms of the proposed metrics, and that the results are consistent with previous biological knowledge. Additionally, a genome-wide study on multiple publicly available time series data was performed. In this case, the experimentation has exhibited the soundness and scalability of the new method which inferred highly-related statistically-significant gene associations. Conclusions A novel method for inferring time-delayed gene regulatory networks from genome-wide time series datasets is proposed in this paper. The method was carefully validated with several publicly available data sets. The results have demonstrated that the algorithm constitutes a usable model-free approach capable of predicting meaningful relationships between genes, revealing the time-trends of gene regulation. PMID:21524308
Noise-assisted data processing with empirical mode decomposition in biomedical signals.
Karagiannis, Alexandros; Constantinou, Philip
2011-01-01
In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.
MIMO model of an interacting series process for Robust MPC via System Identification.
Wibowo, Tri Chandra S; Saad, Nordin
2010-07-01
This paper discusses the empirical modeling using system identification technique with a focus on an interacting series process. The study is carried out experimentally using a gaseous pilot plant as the process, in which the dynamic of such a plant exhibits the typical dynamic of an interacting series process. Three practical approaches are investigated and their performances are evaluated. The models developed are also examined in real-time implementation of a linear model predictive control. The selected model is able to reproduce the main dynamic characteristics of the plant in open-loop and produces zero steady-state errors in closed-loop control system. Several issues concerning the identification process and the construction of a MIMO state space model for a series interacting process are deliberated. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
2011-01-01
Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598
Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp
2011-08-18
Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.
NASA Astrophysics Data System (ADS)
Lindholm, D. M.; Wilson, A.
2010-12-01
The Laboratory for Atmospheric and Space Physics at the University of Colorado has developed an Open Source, OPeNDAP compliant, Java Servlet based, RESTful web service to serve time series data. In addition to handling OPeNDAP style requests and returning standard responses, existing modules for alternate output formats can be reused or customized. It is also simple to reuse or customize modules to directly read various native data sources and even to perform some processing on the server. The server is built around a common data model based on the Unidata Common Data Model (CDM) which merges the NetCDF, HDF, and OPeNDAP data models. The server framework features a modular architecture that supports pluggable Readers, Writers, and Filters via the common interface to the data, enabling a workflow that reads data from their native form, performs some processing on the server, and presents the results to the client in its preferred form. The service is currently being used operationally to serve time series data for the LASP Interactive Solar Irradiance Data Center (LISIRD, http://lasp.colorado.edu/lisird/) and as part of the Time Series Data Server (TSDS, http://tsds.net/). I will present the data model and how it enables reading, writing, and processing concerns to be separated into loosely coupled components. I will also share thoughts for evolving beyond the time series abstraction and providing a general purpose data service that can be orchestrated into larger workflows.
Integrated method for chaotic time series analysis
Hively, Lee M.; Ng, Esmond G.
1998-01-01
Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.
ERIC Educational Resources Information Center
Tataw, Oben Moses
2013-01-01
Interdisciplinary research in computer science requires the development of computational techniques for practical application in different domains. This usually requires careful integration of different areas of technical expertise. This dissertation presents image and time series analysis algorithms, with practical interdisciplinary applications…
Daily time series evapotranspiration maps for Oklahoma and Texas panhandle
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) is an important process in ecosystems’ water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. ...
Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying
2017-08-01
Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.
Linear and nonlinear trending and prediction for AVHRR time series data
NASA Technical Reports Server (NTRS)
Smid, J.; Volf, P.; Slama, M.; Palus, M.
1995-01-01
The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.
Time series behaviour of the number of Air Asia passengers: A distributional approach
NASA Astrophysics Data System (ADS)
Asrah, Norhaidah Mohd; Djauhari, Maman Abdurachman
2013-09-01
The common practice to time series analysis is by fitting a model and then further analysis is conducted on the residuals. However, if we know the distributional behavior of time series, the analyses in model identification, parameter estimation, and model checking are more straightforward. In this paper, we show that the number of Air Asia passengers can be represented as a geometric Brownian motion process. Therefore, instead of using the standard approach in model fitting, we use an appropriate transformation to come up with a stationary, normally distributed and even independent time series. An example in forecasting the number of Air Asia passengers will be given to illustrate the advantages of the method.
Coyle, R.T.; Barrett, J.M.
1982-05-04
Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.
Coyle, R. T.; Barrett, Joy M.
1984-01-01
Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.
van Mierlo, Pieter; Lie, Octavian; Staljanssens, Willeke; Coito, Ana; Vulliémoz, Serge
2018-04-26
We investigated the influence of processing steps in the estimation of multivariate directed functional connectivity during seizures recorded with intracranial EEG (iEEG) on seizure-onset zone (SOZ) localization. We studied the effect of (i) the number of nodes, (ii) time-series normalization, (iii) the choice of multivariate time-varying connectivity measure: Adaptive Directed Transfer Function (ADTF) or Adaptive Partial Directed Coherence (APDC) and (iv) graph theory measure: outdegree or shortest path length. First, simulations were performed to quantify the influence of the various processing steps on the accuracy to localize the SOZ. Afterwards, the SOZ was estimated from a 113-electrodes iEEG seizure recording and compared with the resection that rendered the patient seizure-free. The simulations revealed that ADTF is preferred over APDC to localize the SOZ from ictal iEEG recordings. Normalizing the time series before analysis resulted in an increase of 25-35% of correctly localized SOZ, while adding more nodes to the connectivity analysis led to a moderate decrease of 10%, when comparing 128 with 32 input nodes. The real-seizure connectivity estimates localized the SOZ inside the resection area using the ADTF coupled to outdegree or shortest path length. Our study showed that normalizing the time-series is an important pre-processing step, while adding nodes to the analysis did only marginally affect the SOZ localization. The study shows that directed multivariate Granger-based connectivity analysis is feasible with many input nodes (> 100) and that normalization of the time-series before connectivity analysis is preferred.
27 CFR 19.594 - Numbering of packages and cases in processing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... trade name, all series in use at that time shall be continued. However, for a change in proprietorship... spirits and denatured spirits shall, when filled, be consecutively numbered in a separate series by the proprietor commencing with “1” in each series of serial numbers, except that any series of such numbers in...
Enabling Web-Based Analysis of CUAHSI HIS Hydrologic Data Using R and Web Processing Services
NASA Astrophysics Data System (ADS)
Ames, D. P.; Kadlec, J.; Bayles, M.; Seul, M.; Hooper, R. P.; Cummings, B.
2015-12-01
The CUAHSI Hydrologic Information System (CUAHSI HIS) provides open access to a large number of hydrological time series observation and modeled data from many parts of the world. Several software tools have been designed to simplify searching and access to the CUAHSI HIS datasets. These software tools include: Desktop client software (HydroDesktop, HydroExcel), developer libraries (WaterML R Package, OWSLib, ulmo), and the new interactive search website, http://data.cuahsi.org. An issue with using the time series data from CUAHSI HIS for further analysis by hydrologists (for example for verification of hydrological and snowpack models) is the large heterogeneity of the time series data. The time series may be regular or irregular, contain missing data, have different time support, and be recorded in different units. R is a widely used computational environment for statistical analysis of time series and spatio-temporal data that can be used to assess fitness and perform scientific analyses on observation data. R includes the ability to record a data analysis in the form of a reusable script. The R script together with the input time series dataset can be shared with other users, making the analysis more reproducible. The major goal of this study is to examine the use of R as a Web Processing Service for transforming time series data from the CUAHSI HIS and sharing the results on the Internet within HydroShare. HydroShare is an online data repository and social network for sharing large hydrological data sets such as time series, raster datasets, and multi-dimensional data. It can be used as a permanent cloud storage space for saving the time series analysis results. We examine the issues associated with running R scripts online: including code validation, saving of outputs, reporting progress, and provenance management. An explicit goal is that the script which is run locally should produce exactly the same results as the script run on the Internet. Our design can be used as a model for other studies that need to run R scripts on the web.
Signatures of ecological processes in microbial community time series.
Faust, Karoline; Bauchinger, Franziska; Laroche, Béatrice; de Buyl, Sophie; Lahti, Leo; Washburne, Alex D; Gonze, Didier; Widder, Stefanie
2018-06-28
Growth rates, interactions between community members, stochasticity, and immigration are important drivers of microbial community dynamics. In sequencing data analysis, such as network construction and community model parameterization, we make implicit assumptions about the nature of these drivers and thereby restrict model outcome. Despite apparent risk of methodological bias, the validity of the assumptions is rarely tested, as comprehensive procedures are lacking. Here, we propose a classification scheme to determine the processes that gave rise to the observed time series and to enable better model selection. We implemented a three-step classification scheme in R that first determines whether dependence between successive time steps (temporal structure) is present in the time series and then assesses with a recently developed neutrality test whether interactions between species are required for the dynamics. If the first and second tests confirm the presence of temporal structure and interactions, then parameters for interaction models are estimated. To quantify the importance of temporal structure, we compute the noise-type profile of the community, which ranges from black in case of strong dependency to white in the absence of any dependency. We applied this scheme to simulated time series generated with the Dirichlet-multinomial (DM) distribution, Hubbell's neutral model, the generalized Lotka-Volterra model and its discrete variant (the Ricker model), and a self-organized instability model, as well as to human stool microbiota time series. The noise-type profiles for all but DM data clearly indicated distinctive structures. The neutrality test correctly classified all but DM and neutral time series as non-neutral. The procedure reliably identified time series for which interaction inference was suitable. Both tests were required, as we demonstrated that all structured time series, including those generated with the neutral model, achieved a moderate to high goodness of fit to the Ricker model. We present a fast and robust scheme to classify community structure and to assess the prevalence of interactions directly from microbial time series data. The procedure not only serves to determine ecological drivers of microbial dynamics, but also to guide selection of appropriate community models for prediction and follow-up analysis.
Identification of AR(I)MA processes for modelling temporal correlations of GPS observations
NASA Astrophysics Data System (ADS)
Luo, X.; Mayer, M.; Heck, B.
2009-04-01
In many geodetic applications observations of the Global Positioning System (GPS) are routinely processed by means of the least-squares method. However, this algorithm delivers reliable estimates of unknown parameters und realistic accuracy measures only if both the functional and stochastic models are appropriately defined within GPS data processing. One deficiency of the stochastic model used in many GPS software products consists in neglecting temporal correlations of GPS observations. In practice the knowledge of the temporal stochastic behaviour of GPS observations can be improved by analysing time series of residuals resulting from the least-squares evaluation. This paper presents an approach based on the theory of autoregressive (integrated) moving average (AR(I)MA) processes to model temporal correlations of GPS observations using time series of observation residuals. A practicable integration of AR(I)MA models in GPS data processing requires the determination of the order parameters of AR(I)MA processes at first. In case of GPS, the identification of AR(I)MA processes could be affected by various factors impacting GPS positioning results, e.g. baseline length, multipath effects, observation weighting, or weather variations. The influences of these factors on AR(I)MA identification are empirically analysed based on a large amount of representative residual time series resulting from differential GPS post-processing using 1-Hz observation data collected within the permanent SAPOS® (Satellite Positioning Service of the German State Survey) network. Both short and long time series are modelled by means of AR(I)MA processes. The final order parameters are determined based on the whole residual database; the corresponding empirical distribution functions illustrate that multipath and weather variations seem to affect the identification of AR(I)MA processes much more significantly than baseline length and observation weighting. Additionally, the modelling results of temporal correlations using high-order AR(I)MA processes are compared with those by means of first order autoregressive (AR(1)) processes and empirically estimated autocorrelation functions.
Phenological Parameters Estimation Tool
NASA Technical Reports Server (NTRS)
McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.
2010-01-01
The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE
A Nonlinear Dynamical Systems based Model for Stochastic Simulation of Streamflow
NASA Astrophysics Data System (ADS)
Erkyihun, S. T.; Rajagopalan, B.; Zagona, E. A.
2014-12-01
Traditional time series methods model the evolution of the underlying process as a linear or nonlinear function of the autocorrelation. These methods capture the distributional statistics but are incapable of providing insights into the dynamics of the process, the potential regimes, and predictability. This work develops a nonlinear dynamical model for stochastic simulation of streamflows. In this, first a wavelet spectral analysis is employed on the flow series to isolate dominant orthogonal quasi periodic timeseries components. The periodic bands are added denoting the 'signal' component of the time series and the residual being the 'noise' component. Next, the underlying nonlinear dynamics of this combined band time series is recovered. For this the univariate time series is embedded in a d-dimensional space with an appropriate lag T to recover the state space in which the dynamics unfolds. Predictability is assessed by quantifying the divergence of trajectories in the state space with time, as Lyapunov exponents. The nonlinear dynamics in conjunction with a K-nearest neighbor time resampling is used to simulate the combined band, to which the noise component is added to simulate the timeseries. We demonstrate this method by applying it to the data at Lees Ferry that comprises of both the paleo reconstructed and naturalized historic annual flow spanning 1490-2010. We identify interesting dynamics of the signal in the flow series and epochal behavior of predictability. These will be of immense use for water resources planning and management.
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.
Marken, John P; Halleran, Andrew D; Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C; Golino, Caroline A; Kemper, Peter; Saha, Margaret S
2016-01-01
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.
Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of a wastewater treatment facility along a river. Data was collected over 14-60 days, and several seasons. The power spectral densit...
Moving Average Models with Bivariate Exponential and Geometric Distributions.
1985-03-01
ordinary time series and of point processes. Developments in Statistics, Vol. 1, P.R. Krishnaiah , ed. Academic Press, New York. [9] Esary, J.D. and...valued and discrete - valued time series with ARMA correlation structure. Multivariate Analysis V, P.R. Krishnaiah , ed. North-Holland. 151-166. [28
NASA Astrophysics Data System (ADS)
Rowlands, G.; Kiyani, K. H.; Chapman, S. C.; Watkins, N. W.
2009-12-01
Quantitative analysis of solar wind fluctuations are often performed in the context of intermittent turbulence and center around methods to quantify statistical scaling, such as power spectra and structure functions which assume a stationary process. The solar wind exhibits large scale secular changes and so the question arises as to whether the timeseries of the fluctuations is non-stationary. One approach is to seek a local stationarity by parsing the time interval over which statistical analysis is performed. Hence, natural systems such as the solar wind unavoidably provide observations over restricted intervals. Consequently, due to a reduction of sample size leading to poorer estimates, a stationary stochastic process (time series) can yield anomalous time variation in the scaling exponents, suggestive of nonstationarity. The variance in the estimates of scaling exponents computed from an interval of N observations is known for finite variance processes to vary as ~1/N as N becomes large for certain statistical estimators; however, the convergence to this behavior will depend on the details of the process, and may be slow. We study the variation in the scaling of second-order moments of the time-series increments with N for a variety of synthetic and “real world” time series, and we find that in particular for heavy tailed processes, for realizable N, one is far from this ~1/N limiting behavior. We propose a semiempirical estimate for the minimum N needed to make a meaningful estimate of the scaling exponents for model stochastic processes and compare these with some “real world” time series from the solar wind. With fewer datapoints the stationary timeseries becomes indistinguishable from a nonstationary process and we illustrate this with nonstationary synthetic datasets. Reference article: K. H. Kiyani, S. C. Chapman and N. W. Watkins, Phys. Rev. E 79, 036109 (2009).
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1990-01-01
While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.
NASA Astrophysics Data System (ADS)
Campo, M. A.; Lopez, J. J.; Rebole, J. P.
2012-04-01
This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series were recorded every ten minutes and hourly, aggregated. Preliminary results show adequate simulation of the main features of rain. Main variables are well simulated for time series of ten minutes, also over one hour precipitation time series, which are those that generate higher rainfall hydrologic design. For coarse scales, less than one hour, rainfall durations are not appropriate under the simulation. A hypothesis may be an excessive number of simulated events, which causes further fragmentation of storms, resulting in an excess of rain "short" (less than 1 hour), and therefore also among rain events, compared with the ones that occur in the actual series.
Code of Federal Regulations, 2013 CFR
2013-07-01
... can be one release or a series of releases over a short time period due to a malfunction in the... or a series of devices. Examples include incinerators, carbon adsorption units, condensers, flares... do not occur simultaneously in a batch operation. A batch process consists of a series of batch...
High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets
NASA Astrophysics Data System (ADS)
Chen, Tai-Liang; Cheng, Ching-Hsue; Teoh, Hia-Jong
2008-02-01
Stock investors usually make their short-term investment decisions according to recent stock information such as the late market news, technical analysis reports, and price fluctuations. To reflect these short-term factors which impact stock price, this paper proposes a comprehensive fuzzy time-series, which factors linear relationships between recent periods of stock prices and fuzzy logical relationships (nonlinear relationships) mined from time-series into forecasting processes. In empirical analysis, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Heng Seng Index) are employed as experimental datasets, and four recent fuzzy time-series models, Chen’s (1996), Yu’s (2005), Cheng’s (2006) and Chen’s (2007), are used as comparison models. Besides, to compare with conventional statistic method, the method of least squares is utilized to estimate the auto-regressive models of the testing periods within the databases. From analysis results, the performance comparisons indicate that the multi-period adaptation model, proposed in this paper, can effectively improve the forecasting performance of conventional fuzzy time-series models which only factor fuzzy logical relationships in forecasting processes. From the empirical study, the traditional statistic method and the proposed model both reveal that stock price patterns in the Taiwan stock and Hong Kong stock markets are short-term.
NASA Astrophysics Data System (ADS)
Zhou, Ya-Tong; Fan, Yu; Chen, Zi-Yi; Sun, Jian-Cheng
2017-05-01
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expectation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHC-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval. SHC-EM outperforms the traditional variational learning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. Supported by the National Natural Science Foundation of China under Grant No 60972106, the China Postdoctoral Science Foundation under Grant No 2014M561053, the Humanity and Social Science Foundation of Ministry of Education of China under Grant No 15YJA630108, and the Hebei Province Natural Science Foundation under Grant No E2016202341.
Complex network approach to fractional time series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manshour, Pouya
In order to extract correlation information inherited in stochastic time series, the visibility graph algorithm has been recently proposed, by which a time series can be mapped onto a complex network. We demonstrate that the visibility algorithm is not an appropriate one to study the correlation aspects of a time series. We then employ the horizontal visibility algorithm, as a much simpler one, to map fractional processes onto complex networks. The degree distributions are shown to have parabolic exponential forms with Hurst dependent fitting parameter. Further, we take into account other topological properties such as maximum eigenvalue of the adjacencymore » matrix and the degree assortativity, and show that such topological quantities can also be used to predict the Hurst exponent, with an exception for anti-persistent fractional Gaussian noises. To solve this problem, we take into account the Spearman correlation coefficient between nodes' degrees and their corresponding data values in the original time series.« less
Directionality volatility in electroencephalogram time series
NASA Astrophysics Data System (ADS)
Mansor, Mahayaudin M.; Green, David A.; Metcalfe, Andrew V.
2016-06-01
We compare time series of electroencephalograms (EEGs) from healthy volunteers with EEGs from subjects diagnosed with epilepsy. The EEG time series from the healthy group are recorded during awake state with their eyes open and eyes closed, and the records from subjects with epilepsy are taken from three different recording regions of pre-surgical diagnosis: hippocampal, epileptogenic and seizure zone. The comparisons for these 5 categories are in terms of deviations from linear time series models with constant variance Gaussian white noise error inputs. One feature investigated is directionality, and how this can be modelled by either non-linear threshold autoregressive models or non-Gaussian errors. A second feature is volatility, which is modelled by Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) processes. Other features include the proportion of variability accounted for by time series models, and the skewness and the kurtosis of the residuals. The results suggest these comparisons may have diagnostic potential for epilepsy and provide early warning of seizures.
Conditional heteroscedasticity as a leading indicator of ecological regime shifts.
Seekell, David A; Carpenter, Stephen R; Pace, Michael L
2011-10-01
Regime shifts are massive, often irreversible, rearrangements of nonlinear ecological processes that occur when systems pass critical transition points. Ecological regime shifts sometimes have severe consequences for human well-being, including eutrophication in lakes, desertification, and species extinctions. Theoretical and laboratory evidence suggests that statistical anomalies may be detectable leading indicators of regime shifts in ecological time series, making it possible to foresee and potentially avert incipient regime shifts. Conditional heteroscedasticity is persistent variance characteristic of time series with clustered volatility. Here, we analyze conditional heteroscedasticity as a potential leading indicator of regime shifts in ecological time series. We evaluate conditional heteroscedasticity by using ecological models with and without four types of critical transition. On approaching transition points, all time series contain significant conditional heteroscedasticity. This signal is detected hundreds of time steps in advance of the regime shift. Time series without regime shifts do not have significant conditional heteroscedasticity. Because probability values are easily associated with tests for conditional heteroscedasticity, detection of false positives in time series without regime shifts is minimized. This property reduces the need for a reference system to compare with the perturbed system.
Inference for local autocorrelations in locally stationary models.
Zhao, Zhibiao
2015-04-01
For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.
Challenges in Extracting Information From Large Hydrogeophysical-monitoring Datasets
NASA Astrophysics Data System (ADS)
Day-Lewis, F. D.; Slater, L. D.; Johnson, T.
2012-12-01
Over the last decade, new automated geophysical data-acquisition systems have enabled collection of increasingly large and information-rich geophysical datasets. Concurrent advances in field instrumentation, web services, and high-performance computing have made real-time processing, inversion, and visualization of large three-dimensional tomographic datasets practical. Geophysical-monitoring datasets have provided high-resolution insights into diverse hydrologic processes including groundwater/surface-water exchange, infiltration, solute transport, and bioremediation. Despite the high information content of such datasets, extraction of quantitative or diagnostic hydrologic information is challenging. Visual inspection and interpretation for specific hydrologic processes is difficult for datasets that are large, complex, and (or) affected by forcings (e.g., seasonal variations) unrelated to the target hydrologic process. New strategies are needed to identify salient features in spatially distributed time-series data and to relate temporal changes in geophysical properties to hydrologic processes of interest while effectively filtering unrelated changes. Here, we review recent work using time-series and digital-signal-processing approaches in hydrogeophysics. Examples include applications of cross-correlation, spectral, and time-frequency (e.g., wavelet and Stockwell transforms) approaches to (1) identify salient features in large geophysical time series; (2) examine correlation or coherence between geophysical and hydrologic signals, even in the presence of non-stationarity; and (3) condense large datasets while preserving information of interest. Examples demonstrate analysis of large time-lapse electrical tomography and fiber-optic temperature datasets to extract information about groundwater/surface-water exchange and contaminant transport.
Modelling spatiotemporal change using multidimensional arrays Meng
NASA Astrophysics Data System (ADS)
Lu, Meng; Appel, Marius; Pebesma, Edzer
2017-04-01
The large variety of remote sensors, model simulations, and in-situ records provide great opportunities to model environmental change. The massive amount of high-dimensional data calls for methods to integrate data from various sources and to analyse spatiotemporal and thematic information jointly. An array is a collection of elements ordered and indexed in arbitrary dimensions, which naturally represent spatiotemporal phenomena that are identified by their geographic locations and recording time. In addition, array regridding (e.g., resampling, down-/up-scaling), dimension reduction, and spatiotemporal statistical algorithms are readily applicable to arrays. However, the role of arrays in big geoscientific data analysis has not been systematically studied: How can arrays discretise continuous spatiotemporal phenomena? How can arrays facilitate the extraction of multidimensional information? How can arrays provide a clean, scalable and reproducible change modelling process that is communicable between mathematicians, computer scientist, Earth system scientist and stakeholders? This study emphasises on detecting spatiotemporal change using satellite image time series. Current change detection methods using satellite image time series commonly analyse data in separate steps: 1) forming a vegetation index, 2) conducting time series analysis on each pixel, and 3) post-processing and mapping time series analysis results, which does not consider spatiotemporal correlations and ignores much of the spectral information. Multidimensional information can be better extracted by jointly considering spatial, spectral, and temporal information. To approach this goal, we use principal component analysis to extract multispectral information and spatial autoregressive models to account for spatial correlation in residual based time series structural change modelling. We also discuss the potential of multivariate non-parametric time series structural change methods, hierarchical modelling, and extreme event detection methods to model spatiotemporal change. We show how array operations can facilitate expressing these methods, and how the open-source array data management and analytics software SciDB and R can be used to scale the process and make it easily reproducible.
Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory
NASA Astrophysics Data System (ADS)
Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.
2011-10-01
The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Third, we analyze the non-homogeneous Poisson process with a generalized Pareto distribution as the intensity function.
Integrated method for chaotic time series analysis
Hively, L.M.; Ng, E.G.
1998-09-29
Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.
ERIC Educational Resources Information Center
Smallwood, Jonathan; McSpadden, Merrill; Luus, Bryan; Schooler, Joanthan
2008-01-01
Using principal component analysis, we examined whether structural properties in the time series of response time would identify different mental states during a continuous performance task. We examined whether it was possible to identify regular patterns which were present in blocks classified as lacking controlled processing, either…
PRESEE: An MDL/MML Algorithm to Time-Series Stream Segmenting
Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie
2013-01-01
Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream. PMID:23956693
PRESEE: an MDL/MML algorithm to time-series stream segmenting.
Xu, Kaikuo; Jiang, Yexi; Tang, Mingjie; Yuan, Changan; Tang, Changjie
2013-01-01
Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.
Minimum entropy density method for the time series analysis
NASA Astrophysics Data System (ADS)
Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae
2009-01-01
The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.
Development and Testing of Data Mining Algorithms for Earth Observation
NASA Technical Reports Server (NTRS)
Glymour, Clark
2005-01-01
The new algorithms developed under this project included a principled procedure for classification of objects, events or circumstances according to a target variable when a very large number of potential predictor variables is available but the number of cases that can be used for training a classifier is relatively small. These "high dimensional" problems require finding a minimal set of variables -called the Markov Blanket-- sufficient for predicting the value of the target variable. An algorithm, the Markov Blanket Fan Search, was developed, implemented and tested on both simulated and real data in conjunction with a graphical model classifier, which was also implemented. Another algorithm developed and implemented in TETRAD IV for time series elaborated on work by C. Granger and N. Swanson, which in turn exploited some of our earlier work. The algorithms in question learn a linear time series model from data. Given such a time series, the simultaneous residual covariances, after factoring out time dependencies, may provide information about causal processes that occur more rapidly than the time series representation allow, so called simultaneous or contemporaneous causal processes. Working with A. Monetta, a graduate student from Italy, we produced the correct statistics for estimating the contemporaneous causal structure from time series data using the TETRAD IV suite of algorithms. Two economists, David Bessler and Kevin Hoover, have independently published applications using TETRAD style algorithms to the same purpose. These implementations and algorithmic developments were separately used in two kinds of studies of climate data: Short time series of geographically proximate climate variables predicting agricultural effects in California, and longer duration climate measurements of temperature teleconnections.
Investigation of Cepstrum Analysis for Seismic/Acoustic Signal Sensor Range Determination.
1981-01-01
distorted by transmission through a linear system . For example, the effect of multipath and reverberation may be modeled in terms of a signal that is...called the short time averaged cepstrum. To derive some analytical expressions for short time average cepstrums we choose some functions of interest...linear process applied to the time series or any equivalent time function Repiod Period The amount of time required for one cycle of a time series Saphe
Prediction of flow dynamics using point processes
NASA Astrophysics Data System (ADS)
Hirata, Yoshito; Stemler, Thomas; Eroglu, Deniz; Marwan, Norbert
2018-01-01
Describing a time series parsimoniously is the first step to study the underlying dynamics. For a time-discrete system, a generating partition provides a compact description such that a time series and a symbolic sequence are one-to-one. But, for a time-continuous system, such a compact description does not have a solid basis. Here, we propose to describe a time-continuous time series using a local cross section and the times when the orbit crosses the local cross section. We show that if such a series of crossing times and some past observations are given, we can predict the system's dynamics with fine accuracy. This reconstructability neither depends strongly on the size nor the placement of the local cross section if we have a sufficiently long database. We demonstrate the proposed method using the Lorenz model as well as the actual measurement of wind speed.
Initial Results from Fitting Resolved Modes using HMI Intensity Observations
NASA Astrophysics Data System (ADS)
Korzennik, Sylvain G.
2017-08-01
The HMI project recently started processing the continuum intensity images following global helioseismology procedures similar to those used to process the velocity images. The spatial decomposition of these images has produced time series of spherical harmonic coefficients for degrees up to l=300, using a different apodization than the one used for velocity observations. The first 360 days of observations were processed and made available. I present initial results from fitting these time series using my state of the art fitting methodology and compare the derived mode characteristics to those estimated using co-eval velocity observations.
Studies in astronomical time series analysis. I - Modeling random processes in the time domain
NASA Technical Reports Server (NTRS)
Scargle, J. D.
1981-01-01
Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.
Strakova, Eva; Zikova, Alice; Vohradsky, Jiri
2014-01-01
A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.
Measurements of spatial population synchrony: influence of time series transformations.
Chevalier, Mathieu; Laffaille, Pascal; Ferdy, Jean-Baptiste; Grenouillet, Gaël
2015-09-01
Two mechanisms have been proposed to explain spatial population synchrony: dispersal among populations, and the spatial correlation of density-independent factors (the "Moran effect"). To identify which of these two mechanisms is driving spatial population synchrony, time series transformations (TSTs) of abundance data have been used to remove the signature of one mechanism, and highlight the effect of the other. However, several issues with TSTs remain, and to date no consensus has emerged about how population time series should be handled in synchrony studies. Here, by using 3131 time series involving 34 fish species found in French rivers, we computed several metrics commonly used in synchrony studies to determine whether a large-scale climatic factor (temperature) influenced fish population dynamics at the regional scale, and to test the effect of three commonly used TSTs (detrending, prewhitening and a combination of both) on these metrics. We also tested whether the influence of TSTs on time series and population synchrony levels was related to the features of the time series using both empirical and simulated time series. For several species, and regardless of the TST used, we evidenced a Moran effect on freshwater fish populations. However, these results were globally biased downward by TSTs which reduced our ability to detect significant signals. Depending on the species and the features of the time series, we found that TSTs could lead to contradictory results, regardless of the metric considered. Finally, we suggest guidelines on how population time series should be processed in synchrony studies.
Moran, John L; Solomon, Patricia J
2011-02-01
Time series analysis has seen limited application in the biomedical Literature. The utility of conventional and advanced time series estimators was explored for intensive care unit (ICU) outcome series. Monthly mean time series, 1993-2006, for hospital mortality, severity-of-illness score (APACHE III), ventilation fraction and patient type (medical and surgical), were generated from the Australia and New Zealand Intensive Care Society adult patient database. Analyses encompassed geographical seasonal mortality patterns, series structural time changes, mortality series volatility using autoregressive moving average and Generalized Autoregressive Conditional Heteroscedasticity models in which predicted variances are updated adaptively, and bivariate and multivariate (vector error correction models) cointegrating relationships between series. The mortality series exhibited marked seasonality, declining mortality trend and substantial autocorrelation beyond 24 lags. Mortality increased in winter months (July-August); the medical series featured annual cycling, whereas the surgical demonstrated long and short (3-4 months) cycling. Series structural breaks were apparent in January 1995 and December 2002. The covariance stationary first-differenced mortality series was consistent with a seasonal autoregressive moving average process; the observed conditional-variance volatility (1993-1995) and residual Autoregressive Conditional Heteroscedasticity effects entailed a Generalized Autoregressive Conditional Heteroscedasticity model, preferred by information criterion and mean model forecast performance. Bivariate cointegration, indicating long-term equilibrium relationships, was established between mortality and severity-of-illness scores at the database level and for categories of ICUs. Multivariate cointegration was demonstrated for {log APACHE III score, log ICU length of stay, ICU mortality and ventilation fraction}. A system approach to understanding series time-dependence may be established using conventional and advanced econometric time series estimators. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.
2018-05-01
Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.
Signal processing techniques were applied to high-resolution time series data obtained from conductivity loggers placed upstream and downstream of an oil and gas wastewater treatment facility along a river. Data was collected over 14-60 days. The power spectral density was us...
The Use of Computer-Assisted Identification of ARIMA Time-Series.
ERIC Educational Resources Information Center
Brown, Roger L.
This study was conducted to determine the effects of using various levels of tutorial statistical software for the tentative identification of nonseasonal ARIMA models, a statistical technique proposed by Box and Jenkins for the interpretation of time-series data. The Box-Jenkins approach is an iterative process encompassing several stages of…
Asymptotic scaling properties and estimation of the generalized Hurst exponents in financial data
NASA Astrophysics Data System (ADS)
Buonocore, R. J.; Aste, T.; Di Matteo, T.
2017-04-01
We propose a method to measure the Hurst exponents of financial time series. The scaling of the absolute moments against the aggregation horizon of real financial processes and of both uniscaling and multiscaling synthetic processes converges asymptotically towards linearity in log-log scale. In light of this we found appropriate a modification of the usual scaling equation via the introduction of a filter function. We devised a measurement procedure which takes into account the presence of the filter function without the need of directly estimating it. We verified that the method is unbiased within the errors by applying it to synthetic time series with known scaling properties. Finally we show an application to empirical financial time series where we fit the measured scaling exponents via a second or a fourth degree polynomial, which, because of theoretical constraints, have respectively only one and two degrees of freedom. We found that on our data set there is not clear preference between the second or fourth degree polynomial. Moreover the study of the filter functions of each time series shows common patterns of convergence depending on the momentum degree.
Schoellhamer, D.H.
2002-01-01
Singular spectrum analysis for time series with missing data (SSAM) was used to reconstruct components of a 6-yr time series of suspended-sediment concentration (SSC) from San Francisco Bay. Data were collected every 15 min and the time series contained missing values that primarily were due to sensor fouling. SSAM was applied in a sequential manner to calculate reconstructed components with time scales of variability that ranged from tidal to annual. Physical processes that controlled SSC and their contribution to the total variance of SSC were (1) diurnal, semidiurnal, and other higher frequency tidal constituents (24%), (2) semimonthly tidal cycles (21%), (3) monthly tidal cycles (19%), (4) semiannual tidal cycles (12%), and (5) annual pulses of sediment caused by freshwater inflow, deposition, and subsequent wind-wave resuspension (13%). Of the total variance 89% was explained and subtidal variability (65%) was greater than tidal variability (24%). Processes at subtidal time scales accounted for more variance of SSC than processes at tidal time scales because sediment accumulated in the water column and the supply of easily erodible bed sediment increased during periods of increased subtidal energy. This large range of time scales that each contained significant variability of SSC and associated contaminants can confound design of sampling programs and interpretation of resulting data.
Recurrent Neural Network Applications for Astronomical Time Series
NASA Astrophysics Data System (ADS)
Protopapas, Pavlos
2017-06-01
The benefits of good predictive models in astronomy lie in early event prediction systems and effective resource allocation. Current time series methods applicable to regular time series have not evolved to generalize for irregular time series. In this talk, I will describe two Recurrent Neural Network methods, Long Short-Term Memory (LSTM) and Echo State Networks (ESNs) for predicting irregular time series. Feature engineering along with a non-linear modeling proved to be an effective predictor. For noisy time series, the prediction is improved by training the network on error realizations using the error estimates from astronomical light curves. In addition to this, we propose a new neural network architecture to remove correlation from the residuals in order to improve prediction and compensate for the noisy data. Finally, I show how to set hyperparameters for a stable and performant solution correctly. In this work, we circumvent this obstacle by optimizing ESN hyperparameters using Bayesian optimization with Gaussian Process priors. This automates the tuning procedure, enabling users to employ the power of RNN without needing an in-depth understanding of the tuning procedure.
Anguera, A; Barreiro, J M; Lara, J A; Lizcano, D
2016-01-01
One of the major challenges in the medical domain today is how to exploit the huge amount of data that this field generates. To do this, approaches are required that are capable of discovering knowledge that is useful for decision making in the medical field. Time series are data types that are common in the medical domain and require specialized analysis techniques and tools, especially if the information of interest to specialists is concentrated within particular time series regions, known as events. This research followed the steps specified by the so-called knowledge discovery in databases (KDD) process to discover knowledge from medical time series derived from stabilometric (396 series) and electroencephalographic (200) patient electronic health records (EHR). The view offered in the paper is based on the experience gathered as part of the VIIP project. Knowledge discovery in medical time series has a number of difficulties and implications that are highlighted by illustrating the application of several techniques that cover the entire KDD process through two case studies. This paper illustrates the application of different knowledge discovery techniques for the purposes of classification within the above domains. The accuracy of this application for the two classes considered in each case is 99.86% and 98.11% for epilepsy diagnosis in the electroencephalography (EEG) domain and 99.4% and 99.1% for early-age sports talent classification in the stabilometry domain. The KDD techniques achieve better results than other traditional neural network-based classification techniques.
Li, Jia; Xia, Yunni; Luo, Xin
2014-01-01
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.
NASA Technical Reports Server (NTRS)
Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping
2012-01-01
Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.
Ferguson, Jake M; Ponciano, José M
2014-01-01
Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. PMID:24304946
Coil-to-coil physiological noise correlations and their impact on fMRI time-series SNR
Triantafyllou, C.; Polimeni, J. R.; Keil, B.; Wald, L. L.
2017-01-01
Purpose Physiological nuisance fluctuations (“physiological noise”) are a major contribution to the time-series Signal to Noise Ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR0), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. Theory and Methods We extend the theoretical relationship between tSNR and SNR0 to include a time-series noise covariance matrix Ψt, distinct from the thermal noise covariance matrix Ψ0, and compare its structure to Ψ0 and the signal coupling matrix SSH formed from the signal intensity vectors S. Results Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ0 or SSH. Conclusion Time-series noise covariances in array coils are found to differ from Ψ0 and more surprisingly, from the signal coupling matrix SSH. Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. PMID:26756964
Johnson, Timothy C.; Slater, Lee D.; Ntarlagiannis, Dimitris; Day-Lewis, Frederick D.; Elwaseif, Mehrez
2012-01-01
Time-lapse resistivity imaging is increasingly used to monitor hydrologic processes. Compared to conventional hydrologic measurements, surface time-lapse resistivity provides superior spatial coverage in two or three dimensions, potentially high-resolution information in time, and information in the absence of wells. However, interpretation of time-lapse electrical tomograms is complicated by the ever-increasing size and complexity of long-term, three-dimensional (3-D) time series conductivity data sets. Here we use 3-D surface time-lapse electrical imaging to monitor subsurface electrical conductivity variations associated with stage-driven groundwater-surface water interactions along a stretch of the Columbia River adjacent to the Hanford 300 near Richland, Washington, USA. We reduce the resulting 3-D conductivity time series using both time-series and time-frequency analyses to isolate a paleochannel causing enhanced groundwater-surface water interactions. Correlation analysis on the time-lapse imaging results concisely represents enhanced groundwater-surface water interactions within the paleochannel, and provides information concerning groundwater flow velocities. Time-frequency analysis using the Stockwell (S) transform provides additional information by identifying the stage periodicities driving groundwater-surface water interactions due to upstream dam operations, and identifying segments in time-frequency space when these interactions are most active. These results provide new insight into the distribution and timing of river water intrusion into the Hanford 300 Area, which has a governing influence on the behavior of a uranium plume left over from historical nuclear fuel processing operations.
Radon anomalies: When are they possible to be detected?
NASA Astrophysics Data System (ADS)
Passarelli, Luigi; Woith, Heiko; Seyis, Cemil; Nikkhoo, Mehdi; Donner, Reik
2017-04-01
Records of the Radon noble gas in different environments like soil, air, groundwater, rock, caves, and tunnels, typically display cyclic variations including diurnal (S1), semidiurnal (S2) and seasonal components. But there are also cases where theses cycles are absent. Interestingly, radon emission can also be affected by transient processes, which inhibit or enhance the radon carrying process at the surface. This results in transient changes in the radon emission rate, which are superimposed on the low and high frequency cycles. The complexity in the spectral contents of the radon time-series makes any statistical analysis aiming at understanding the physical driving processes a challenging task. In the past decades there have been several attempts to relate changes in radon emission rate with physical triggering processes such as earthquake occurrence. One of the problems in this type of investigation is to objectively detect anomalies in the radon time-series. In the present work, we propose a simple and objective statistical method for detecting changes in the radon emission rate time-series. The method uses non-parametric statistical tests (e.g., Kolmogorov-Smirnov) to compare empirical distributions of radon emission rate by sequentially applying various time window to the time-series. The statistical test indicates whether two empirical distributions of data originate from the same distribution at a desired significance level. We test the algorithm on synthetic data in order to explore the sensitivity of the statistical test to the sample size. We successively apply the test to six radon emission rate recordings from stations located around the Marmara Sea obtained within the MARsite project (MARsite has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 308417). We conclude that the test performs relatively well on identify transient changes in the radon emission rate, but the results are strongly dependent on the length of the time window and/or type of frequency filtering. More importantly, when raw time-series contain cyclic components (e.g. seasonal or diurnal variation), the quest of anomalies related to transients becomes meaningless. We conclude that an objective identification of transient changes can be performed only after filtering the raw time-series for the physically meaningful frequency content.
Systematic comparisons between PRISM version 1.0.0, BAP, and CSMIP ground-motion processing
Kalkan, Erol; Stephens, Christopher
2017-02-23
A series of benchmark tests was run by comparing results of the Processing and Review Interface for Strong Motion data (PRISM) software version 1.0.0 to Basic Strong-Motion Accelerogram Processing Software (BAP; Converse and Brady, 1992), and to California Strong Motion Instrumentation Program (CSMIP) processing (Shakal and others, 2003, 2004). These tests were performed by using the MatLAB implementation of PRISM, which is equivalent to its public release version in Java language. Systematic comparisons were made in time and frequency domains of records processed in PRISM and BAP, and in CSMIP, by using a set of representative input motions with varying resolutions, frequency content, and amplitudes. Although the details of strong-motion records vary among the processing procedures, there are only minor differences among the waveforms for each component and within the frequency passband common to these procedures. A comprehensive statistical evaluation considering more than 1,800 ground-motion components demonstrates that differences in peak amplitudes of acceleration, velocity, and displacement time series obtained from PRISM and CSMIP processing are equal to or less than 4 percent for 99 percent of the data, and equal to or less than 2 percent for 96 percent of the data. Other statistical measures, including the Euclidian distance (L2 norm) and the windowed root mean square level of processed time series, also indicate that both processing schemes produce statistically similar products.
Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kho Chia; Kane, Ibrahim Lawal; Rahman, Haliza Abd
In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parametermore » estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.« less
Estimation of stochastic volatility with long memory for index prices of FTSE Bursa Malaysia KLCI
NASA Astrophysics Data System (ADS)
Chen, Kho Chia; Bahar, Arifah; Kane, Ibrahim Lawal; Ting, Chee-Ming; Rahman, Haliza Abd
2015-02-01
In recent years, modeling in long memory properties or fractionally integrated processes in stochastic volatility has been applied in the financial time series. A time series with structural breaks can generate a strong persistence in the autocorrelation function, which is an observed behaviour of a long memory process. This paper considers the structural break of data in order to determine true long memory time series data. Unlike usual short memory models for log volatility, the fractional Ornstein-Uhlenbeck process is neither a Markovian process nor can it be easily transformed into a Markovian process. This makes the likelihood evaluation and parameter estimation for the long memory stochastic volatility (LMSV) model challenging tasks. The drift and volatility parameters of the fractional Ornstein-Unlenbeck model are estimated separately using the least square estimator (lse) and quadratic generalized variations (qgv) method respectively. Finally, the empirical distribution of unobserved volatility is estimated using the particle filtering with sequential important sampling-resampling (SIR) method. The mean square error (MSE) between the estimated and empirical volatility indicates that the performance of the model towards the index prices of FTSE Bursa Malaysia KLCI is fairly well.
Hashimoto, Tetsuo; Sanada, Yukihisa; Uezu, Yasuhiro
2004-05-01
A delayed coincidence method, time-interval analysis (TIA), has been applied to successive alpha- alpha decay events on the millisecond time-scale. Such decay events are part of the (220)Rn-->(216)Po ( T(1/2) 145 ms) (Th-series) and (219)Rn-->(215)Po ( T(1/2) 1.78 ms) (Ac-series). By using TIA in addition to measurement of (226)Ra (U-series) from alpha-spectrometry by liquid scintillation counting (LSC), two natural decay series could be identified and separated. The TIA detection efficiency was improved by using the pulse-shape discrimination technique (PSD) to reject beta-pulses, by solvent extraction of Ra combined with simple chemical separation, and by purging the scintillation solution with dry N(2) gas. The U- and Th-series together with the Ac-series were determined, respectively, from alpha spectra and TIA carried out immediately after Ra-extraction. Using the (221)Fr-->(217)At ( T(1/2) 32.3 ms) decay process as a tracer, overall yields were estimated from application of TIA to the (225)Ra (Np-decay series) at the time of maximum growth. The present method has proven useful for simultaneous determination of three radioactive decay series in environmental samples.
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series
Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C.; Golino, Caroline A.; Kemper, Peter; Saha, Margaret S.
2016-01-01
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features. PMID:27977764
NASA Astrophysics Data System (ADS)
Yamada, Masayoshi; Fukuzawa, Masayuki; Kitsunezuka, Yoshiki; Kishida, Jun; Nakamori, Nobuyuki; Kanamori, Hitoshi; Sakurai, Takashi; Kodama, Souichi
1995-05-01
In order to detect pulsation from a series of noisy ultrasound-echo moving images of a newborn baby's head for pediatric diagnosis, a digital image processing system capable of recording at the video rate and processing the recorded series of images was constructed. The time-sequence variations of each pixel value in a series of moving images were analyzed and then an algorithm based on Fourier transform was developed for the pulsation detection, noting that the pulsation associated with blood flow was periodically changed by heartbeat. Pulsation detection for pediatric diagnosis was successfully made from a series of noisy ultrasound-echo moving images of newborn baby's head by using the image processing system and the pulsation detection algorithm developed here.
NASA Astrophysics Data System (ADS)
Larnier, H.; Sailhac, P.; Chambodut, A.
2018-01-01
Atmospheric electromagnetic waves created by global lightning activity contain information about electrical processes of the inner and the outer Earth. Large signal-to-noise ratio events are particularly interesting because they convey information about electromagnetic properties along their path. We introduce a new methodology to automatically detect and characterize lightning-based waves using a time-frequency decomposition obtained through the application of continuous wavelet transform. We focus specifically on three types of sources, namely, atmospherics, slow tails and whistlers, that cover the frequency range 10 Hz to 10 kHz. Each wave has distinguishable characteristics in the time-frequency domain due to source shape and dispersion processes. Our methodology allows automatic detection of each type of event in the time-frequency decomposition thanks to their specific signature. Horizontal polarization attributes are also recovered in the time-frequency domain. This procedure is first applied to synthetic extremely low frequency time-series with different signal-to-noise ratios to test for robustness. We then apply it on real data: three stations of audio-magnetotelluric data acquired in Guadeloupe, oversea French territories. Most of analysed atmospherics and slow tails display linear polarization, whereas analysed whistlers are elliptically polarized. The diversity of lightning activity is finally analysed in an audio-magnetotelluric data processing framework, as used in subsurface prospecting, through estimation of the impedance response functions. We show that audio-magnetotelluric processing results depend mainly on the frequency content of electromagnetic waves observed in processed time-series, with an emphasis on the difference between morning and afternoon acquisition. Our new methodology based on the time-frequency signature of lightning-induced electromagnetic waves allows automatic detection and characterization of events in audio-magnetotelluric time-series, providing the means to assess quality of response functions obtained through processing.
Time irreversibility and intrinsics revealing of series with complex network approach
NASA Astrophysics Data System (ADS)
Xiong, Hui; Shang, Pengjian; Xia, Jianan; Wang, Jing
2018-06-01
In this work, we analyze time series on the basis of the visibility graph algorithm that maps the original series into a graph. By taking into account the all-round information carried by the signals, the time irreversibility and fractal behavior of series are evaluated from a complex network perspective, and considered signals are further classified from different aspects. The reliability of the proposed analysis is supported by numerical simulations on synthesized uncorrelated random noise, short-term correlated chaotic systems and long-term correlated fractal processes, and by the empirical analysis on daily closing prices of eleven worldwide stock indices. Obtained results suggest that finite size has a significant effect on the evaluation, and that there might be no direct relation between the time irreversibility and long-range correlation of series. Similarity and dissimilarity between stock indices are also indicated from respective regional and global perspectives, showing the existence of multiple features of underlying systems.
Time Series Discord Detection in Medical Data using a Parallel Relational Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodbridge, Diane; Rintoul, Mark Daniel; Wilson, Andrew T.
Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithmsmore » on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.« less
Time Series Discord Detection in Medical Data using a Parallel Relational Database [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodbridge, Diane; Wilson, Andrew T.; Rintoul, Mark Daniel
Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithmsmore » on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.« less
Fuchs, Erich; Gruber, Christian; Reitmaier, Tobias; Sick, Bernhard
2009-09-01
Neural networks are often used to process temporal information, i.e., any kind of information related to time series. In many cases, time series contain short-term and long-term trends or behavior. This paper presents a new approach to capture temporal information with various reference periods simultaneously. A least squares approximation of the time series with orthogonal polynomials will be used to describe short-term trends contained in a signal (average, increase, curvature, etc.). Long-term behavior will be modeled with the tapped delay lines of a time-delay neural network (TDNN). This network takes the coefficients of the orthogonal expansion of the approximating polynomial as inputs such considering short-term and long-term information efficiently. The advantages of the method will be demonstrated by means of artificial data and two real-world application examples, the prediction of the user number in a computer network and online tool wear classification in turning.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pressure relief device. This release can be one release or a series of releases over a short time period... reduces the mass of HAP emitted to the air. The equipment may consist of an individual device or a series... do not occur simultaneously in a batch operation. A batch process consists of a series of batch...
Code of Federal Regulations, 2012 CFR
2012-07-01
... can be one release or a series of releases over a short time period due to a malfunction in the... reduces the mass of HAP emitted to the air. The equipment may consist of an individual device or a series... do not occur simultaneously in a batch operation. A batch process consists of a series of batch...
Valdés, Julio J; Bonham-Carter, Graeme
2006-03-01
A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.
Rainfall disaggregation for urban hydrology: Effects of spatial consistence
NASA Astrophysics Data System (ADS)
Müller, Hannes; Haberlandt, Uwe
2015-04-01
For urban hydrology rainfall time series with a high temporal resolution are crucial. Observed time series of this kind are very short in most cases, so they cannot be used. On the contrary, time series with lower temporal resolution (daily measurements) exist for much longer periods. The objective is to derive time series with a long duration and a high resolution by disaggregating time series of the non-recording stations with information of time series of the recording stations. The multiplicative random cascade model is a well-known disaggregation model for daily time series. For urban hydrology it is often assumed, that a day consists of only 1280 minutes in total as starting point for the disaggregation process. We introduce a new variant for the cascade model, which is functional without this assumption and also outperforms the existing approach regarding time series characteristics like wet and dry spell duration, average intensity, fraction of dry intervals and extreme value representation. However, in both approaches rainfall time series of different stations are disaggregated without consideration of surrounding stations. This yields in unrealistic spatial patterns of rainfall. We apply a simulated annealing algorithm that has been used successfully for hourly values before. Relative diurnal cycles of the disaggregated time series are resampled to reproduce the spatial dependence of rainfall. To describe spatial dependence we use bivariate characteristics like probability of occurrence, continuity ratio and coefficient of correlation. Investigation area is a sewage system in Northern Germany. We show that the algorithm has the capability to improve spatial dependence. The influence of the chosen disaggregation routine and the spatial dependence on overflow occurrences and volumes of the sewage system will be analyzed.
Road safety forecasts in five European countries using structural time series models.
Antoniou, Constantinos; Papadimitriou, Eleonora; Yannis, George
2014-01-01
Modeling road safety development is a complex task and needs to consider both the quantifiable impact of specific parameters as well as the underlying trends that cannot always be measured or observed. The objective of this research is to apply structural time series models for obtaining reliable medium- to long-term forecasts of road traffic fatality risk using data from 5 countries with different characteristics from all over Europe (Cyprus, Greece, Hungary, Norway, and Switzerland). Two structural time series models are considered: (1) the local linear trend model and the (2) latent risk time series model. Furthermore, a structured decision tree for the selection of the applicable model for each situation (developed within the Road Safety Data, Collection, Transfer and Analysis [DaCoTA] research project, cofunded by the European Commission) is outlined. First, the fatality and exposure data that are used for the development of the models are presented and explored. Then, the modeling process is presented, including the model selection process, introduction of intervention variables, and development of mobility scenarios. The forecasts using the developed models appear to be realistic and within acceptable confidence intervals. The proposed methodology is proved to be very efficient for handling different cases of data availability and quality, providing an appropriate alternative from the family of structural time series models in each country. A concluding section providing perspectives and directions for future research is presented.
Time series regression studies in environmental epidemiology.
Bhaskaran, Krishnan; Gasparrini, Antonio; Hajat, Shakoor; Smeeth, Liam; Armstrong, Ben
2013-08-01
Time series regression studies have been widely used in environmental epidemiology, notably in investigating the short-term associations between exposures such as air pollution, weather variables or pollen, and health outcomes such as mortality, myocardial infarction or disease-specific hospital admissions. Typically, for both exposure and outcome, data are available at regular time intervals (e.g. daily pollution levels and daily mortality counts) and the aim is to explore short-term associations between them. In this article, we describe the general features of time series data, and we outline the analysis process, beginning with descriptive analysis, then focusing on issues in time series regression that differ from other regression methods: modelling short-term fluctuations in the presence of seasonal and long-term patterns, dealing with time varying confounding factors and modelling delayed ('lagged') associations between exposure and outcome. We finish with advice on model checking and sensitivity analysis, and some common extensions to the basic model.
Takayasu, Hideki; Takayasu, Misako
2017-01-01
We extend the concept of statistical symmetry as the invariance of a probability distribution under transformation to analyze binary sign time series data of price difference from the foreign exchange market. We model segments of the sign time series as Markov sequences and apply a local hypothesis test to evaluate the symmetries of independence and time reversion in different periods of the market. For the test, we derive the probability of a binary Markov process to generate a given set of number of symbol pairs. Using such analysis, we could not only segment the time series according the different behaviors but also characterize the segments in terms of statistical symmetries. As a particular result, we find that the foreign exchange market is essentially time reversible but this symmetry is broken when there is a strong external influence. PMID:28542208
Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence.
Zhang, Ran; Peng, Zhen; Wu, Lifeng; Yao, Beibei; Guan, Yong
2017-03-09
Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. However, these conventional fault diagnosis approaches suffer from the expertise of feature selection and they do not consider the temporal coherence of time series data. This paper proposes a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize raw time series sensor data without feature selection and signal processing. It also takes advantage of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data are used to test the classification accuracy of the DNN on local time series data. Finally, fault diagnosis considering temporal coherence with former time series data is implemented. Experimental results show that the classification accuracy of bearing faults can get 100%. The proposed fault diagnosis approach is effective in recognizing the type of bearing faults.
Fault Diagnosis from Raw Sensor Data Using Deep Neural Networks Considering Temporal Coherence
Zhang, Ran; Peng, Zhen; Wu, Lifeng; Yao, Beibei; Guan, Yong
2017-01-01
Intelligent condition monitoring and fault diagnosis by analyzing the sensor data can assure the safety of machinery. Conventional fault diagnosis and classification methods usually implement pretreatments to decrease noise and extract some time domain or frequency domain features from raw time series sensor data. Then, some classifiers are utilized to make diagnosis. However, these conventional fault diagnosis approaches suffer from the expertise of feature selection and they do not consider the temporal coherence of time series data. This paper proposes a fault diagnosis model based on Deep Neural Networks (DNN). The model can directly recognize raw time series sensor data without feature selection and signal processing. It also takes advantage of the temporal coherence of the data. Firstly, raw time series training data collected by sensors are used to train the DNN until the cost function of DNN gets the minimal value; Secondly, test data are used to test the classification accuracy of the DNN on local time series data. Finally, fault diagnosis considering temporal coherence with former time series data is implemented. Experimental results show that the classification accuracy of bearing faults can get 100%. The proposed fault diagnosis approach is effective in recognizing the type of bearing faults. PMID:28282936
ERIC Educational Resources Information Center
Tobias, Robert; Inauen, Jennifer
2010-01-01
Gathering time-series data of behaviors and psychological variables is important to understand, guide, and evaluate behavior-change campaigns and other change processes. However, repeated measurement can affect the phenomena investigated, particularly frequent face-to-face interviews, which are often the only option in developing countries. This…
ERIC Educational Resources Information Center
Ramamurthy, Karthikeyan Natesan; Hinnov, Linda A.; Spanias, Andreas S.
2014-01-01
Modern data collection in the Earth Sciences has propelled the need for understanding signal processing and time-series analysis techniques. However, there is an educational disconnect in the lack of instruction of time-series analysis techniques in many Earth Science academic departments. Furthermore, there are no platform-independent freeware…
Radioactive Decay: Audio Data Collection
ERIC Educational Resources Information Center
Struthers, Allan
2009-01-01
Many phenomena generate interesting audible time series. This data can be collected and processed using audio software. The free software package "Audacity" is used to demonstrate the process by recording, processing, and extracting click times from an inexpensive radiation detector. The high quality of the data is demonstrated with a simple…
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, T.; Franzke, C.; Gramacy, R. B.; Watkins, N. W.
2012-12-01
Recent studies have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average (ARFIMA) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d,with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series such as the Central England Temperature. Many physical processes, for example the Faraday time series from Antarctica, are highly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption. Specifically, we assume a symmetric α -stable distribution for the innovations. Such processes provide good, flexible, initial models for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance σ d of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
An improved portmanteau test for autocorrelated errors in interrupted time-series regression models.
Huitema, Bradley E; McKean, Joseph W
2007-08-01
A new portmanteau test for autocorrelation among the errors of interrupted time-series regression models is proposed. Simulation results demonstrate that the inferential properties of the proposed Q(H-M) test statistic are considerably more satisfactory than those of the well known Ljung-Box test and moderately better than those of the Box-Pierce test. These conclusions generally hold for a wide variety of autoregressive (AR), moving averages (MA), and ARMA error processes that are associated with time-series regression models of the form described in Huitema and McKean (2000a, 2000b).
Emerging properties of financial time series in the ``Game of Life''
NASA Astrophysics Data System (ADS)
Hernández-Montoya, A. R.; Coronel-Brizio, H. F.; Stevens-Ramírez, G. A.; Rodríguez-Achach, M.; Politi, M.; Scalas, E.
2011-12-01
We explore the spatial complexity of Conway’s “Game of Life,” a prototypical cellular automaton by means of a geometrical procedure generating a two-dimensional random walk from a bidimensional lattice with periodical boundaries. The one-dimensional projection of this process is analyzed and it turns out that some of its statistical properties resemble the so-called stylized facts observed in financial time series. The scope and meaning of this result are discussed from the viewpoint of complex systems. In particular, we stress how the supposed peculiarities of financial time series are, often, overrated in their importance.
Emerging properties of financial time series in the "Game of Life".
Hernández-Montoya, A R; Coronel-Brizio, H F; Stevens-Ramírez, G A; Rodríguez-Achach, M; Politi, M; Scalas, E
2011-12-01
We explore the spatial complexity of Conway's "Game of Life," a prototypical cellular automaton by means of a geometrical procedure generating a two-dimensional random walk from a bidimensional lattice with periodical boundaries. The one-dimensional projection of this process is analyzed and it turns out that some of its statistical properties resemble the so-called stylized facts observed in financial time series. The scope and meaning of this result are discussed from the viewpoint of complex systems. In particular, we stress how the supposed peculiarities of financial time series are, often, overrated in their importance.
PRISM software—Processing and review interface for strong-motion data
Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter
2017-11-28
Rapidly available and accurate ground-motion acceleration time series (seismic recordings) and derived data products are essential to quickly providing scientific and engineering analysis and advice after an earthquake. To meet this need, the U.S. Geological Survey National Strong Motion Project has developed a software package called PRISM (Processing and Review Interface for Strong-Motion data). PRISM automatically processes strong-motion acceleration records, producing compatible acceleration, velocity, and displacement time series; acceleration, velocity, and displacement response spectra; Fourier amplitude spectra; and standard earthquake-intensity measures. PRISM is intended to be used by strong-motion seismic networks, as well as by earthquake engineers and seismologists.
Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing
NASA Astrophysics Data System (ADS)
Bałdysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; KroszczyńSki, Krzysztof
2015-08-01
The GPS system can play an important role in activities related to the monitoring of climate. Long time series, coherent strategy, and very high quality of tropospheric parameter Zenith Tropospheric Delay (ZTD) estimated on the basis of GPS data analysis allows to investigate its usefulness for climate research as a direct GPS product. This paper presents results of analysis of 16-year time series derived from EUREF Permanent Network (EPN) reprocessing performed by the Military University of Technology. For 58 stations Lomb-Scargle periodograms were performed in order to obtain information about the oscillations in ZTD time series. Seasonal components and linear trend were estimated using Least Square Estimation (LSE) and Mann—Kendall trend test was used to confirm the presence of a linear trend designated by LSE method. In order to verify the impact of the length of time series on trend value, comparison between 16 and 18 years were performed.
Dynamical complexity of short and noisy time series. Compression-Complexity vs. Shannon entropy
NASA Astrophysics Data System (ADS)
Nagaraj, Nithin; Balasubramanian, Karthi
2017-07-01
Shannon entropy has been extensively used for characterizing complexity of time series arising from chaotic dynamical systems and stochastic processes such as Markov chains. However, for short and noisy time series, Shannon entropy performs poorly. Complexity measures which are based on lossless compression algorithms are a good substitute in such scenarios. We evaluate the performance of two such Compression-Complexity Measures namely Lempel-Ziv complexity (LZ) and Effort-To-Compress (ETC) on short time series from chaotic dynamical systems in the presence of noise. Both LZ and ETC outperform Shannon entropy (H) in accurately characterizing the dynamical complexity of such systems. For very short binary sequences (which arise in neuroscience applications), ETC has higher number of distinct complexity values than LZ and H, thus enabling a finer resolution. For two-state ergodic Markov chains, we empirically show that ETC converges to a steady state value faster than LZ. Compression-Complexity measures are promising for applications which involve short and noisy time series.
Memory and betweenness preference in temporal networks induced from time series
NASA Astrophysics Data System (ADS)
Weng, Tongfeng; Zhang, Jie; Small, Michael; Zheng, Rui; Hui, Pan
2017-02-01
We construct temporal networks from time series via unfolding the temporal information into an additional topological dimension of the networks. Thus, we are able to introduce memory entropy analysis to unravel the memory effect within the considered signal. We find distinct patterns in the entropy growth rate of the aggregate network at different memory scales for time series with different dynamics ranging from white noise, 1/f noise, autoregressive process, periodic to chaotic dynamics. Interestingly, for a chaotic time series, an exponential scaling emerges in the memory entropy analysis. We demonstrate that the memory exponent can successfully characterize bifurcation phenomenon, and differentiate the human cardiac system in healthy and pathological states. Moreover, we show that the betweenness preference analysis of these temporal networks can further characterize dynamical systems and separate distinct electrocardiogram recordings. Our work explores the memory effect and betweenness preference in temporal networks constructed from time series data, providing a new perspective to understand the underlying dynamical systems.
IDSP- INTERACTIVE DIGITAL SIGNAL PROCESSOR
NASA Technical Reports Server (NTRS)
Mish, W. H.
1994-01-01
The Interactive Digital Signal Processor, IDSP, consists of a set of time series analysis "operators" based on the various algorithms commonly used for digital signal analysis work. The processing of a digital time series to extract information is usually achieved by the application of a number of fairly standard operations. However, it is often desirable to "experiment" with various operations and combinations of operations to explore their effect on the results. IDSP is designed to provide an interactive and easy-to-use system for this type of digital time series analysis. The IDSP operators can be applied in any sensible order (even recursively), and can be applied to single time series or to simultaneous time series. IDSP is being used extensively to process data obtained from scientific instruments onboard spacecraft. It is also an excellent teaching tool for demonstrating the application of time series operators to artificially-generated signals. IDSP currently includes over 43 standard operators. Processing operators provide for Fourier transformation operations, design and application of digital filters, and Eigenvalue analysis. Additional support operators provide for data editing, display of information, graphical output, and batch operation. User-developed operators can be easily interfaced with the system to provide for expansion and experimentation. Each operator application generates one or more output files from an input file. The processing of a file can involve many operators in a complex application. IDSP maintains historical information as an integral part of each file so that the user can display the operator history of the file at any time during an interactive analysis. IDSP is written in VAX FORTRAN 77 for interactive or batch execution and has been implemented on a DEC VAX-11/780 operating under VMS. The IDSP system generates graphics output for a variety of graphics systems. The program requires the use of Versaplot and Template plotting routines and IMSL Math/Library routines. These software packages are not included in IDSP. The virtual memory requirement for the program is approximately 2.36 MB. The IDSP system was developed in 1982 and was last updated in 1986. Versaplot is a registered trademark of Versatec Inc. Template is a registered trademark of Template Graphics Software Inc. IMSL Math/Library is a registered trademark of IMSL Inc.
InSAR time series analysis of ALOS-2 ScanSAR data and its implications for NISAR
NASA Astrophysics Data System (ADS)
Liang, C.; Liu, Z.; Fielding, E. J.; Huang, M. H.; Burgmann, R.
2017-12-01
The JAXA's ALOS-2 mission was launched on May 24, 2014. It operates at L-band and can acquire data in multiple modes. ScanSAR is the main operational mode and has a 350 km swath, somewhat larger than the 250 km swath of the SweepSAR mode planned for the NASA-ISRO SAR (NISAR) mission. ALOS-2 has been acquiring a wealth of L-band InSAR data. These data are of particular value in areas of dense vegetation and high relief. The InSAR technical development for ALOS-2 also enables the preparation for the upcoming NISAR mission. We have been developing advanced InSAR processing techniques for ALOS-2 over the past two years. Here, we report the important issues for doing InSAR time series analysis using ALOS-2 ScanSAR data. First, we present ionospheric correction techniques for both regular ScanSAR InSAR and MAI (multiple aperture InSAR) ScanSAR InSAR. We demonstrate the large-scale ionospheric signals in the ScanSAR interferograms. They can be well mitigated by the correction techniques. Second, based on our technical development of burst-by-burst InSAR processing for ALOS-2 ScanSAR data, we find that the azimuth Frequency Modulation (FM) rate error is an important issue not only for MAI, but also for regular InSAR time series analysis. We identify phase errors caused by azimuth FM rate errors during the focusing process of ALOS-2 product. The consequence is mostly a range ramp in the InSAR time series result. This error exists in all of the time series results we have processed. We present the correction techniques for this error following a theoretical analysis. After corrections, we present high quality ALOS-2 ScanSAR InSAR time series results in a number of areas. The development for ALOS-2 can provide important implications for NISAR mission. For example, we find that in most cases the relative azimuth shift caused by ionosphere can be as large as 4 m in a large area imaged by ScanSAR. This azimuth shift is half of the 8 m azimuth resolution of the SweepSAR mode planned for NISAR, which implies that a good coregistration strategy for NISAR's SweepSAR mode is geometrical coregistration followed by MAI or spectral diversity analysis. Besides, our development also provides implications for the processing and system parameter requirements of NISAR, such as the accuracy requirement of azimuth FM rate and range timing.
Nonlinear Dynamics, Poor Data, and What to Make of Them?
NASA Astrophysics Data System (ADS)
Ghil, M.; Zaliapin, I. V.
2005-12-01
The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict variability in the geosciences. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this talk we will describe the connections between time series analysis and nonlinear dynamics, discuss signal-to-noise enhancement, and present some of the novel methods for spectral analysis. These fall into two broad categories: (i) methods that try to ferret out regularities of the time series; and (ii) methods aimed at describing the characteristics of irregular processes. The former include singular-spectrum analysis (SSA), the multi-taper method (MTM), and the maximum-entropy method (MEM). The various steps, as well as the advantages and disadvantages of these methods, will be illustrated by their application to several important climatic time series, such as the Southern Oscillation Index (SOI), paleoclimatic time series, and instrumental temperature time series. The SOI index captures major features of interannual climate variability and is used extensively in its prediction. The other time series cover interdecadal and millennial time scales. The second category includes the calculation of fractional dimension, leading Lyapunov exponents, and Hurst exponents. More recently, multi-trend analysis (MTA), binary-decomposition analysis (BDA), and related methods have attempted to describe the structure of time series that include both regular and irregular components. Within the time available, I will try to give a feeling for how these methods work, and how well.
Ferguson, Jake M; Ponciano, José M
2014-02-01
Predicting population extinction risk is a fundamental application of ecological theory to the practice of conservation biology. Here, we compared the prediction performance of a wide array of stochastic, population dynamics models against direct observations of the extinction process from an extensive experimental data set. By varying a series of biological and statistical assumptions in the proposed models, we were able to identify the assumptions that affected predictions about population extinction. We also show how certain autocorrelation structures can emerge due to interspecific interactions, and that accounting for the stochastic effect of these interactions can improve predictions of the extinction process. We conclude that it is possible to account for the stochastic effects of community interactions on extinction when using single-species time series. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Russian State Time and Earth Rotation Service: Observations, Eop Series, Prediction
NASA Astrophysics Data System (ADS)
Kaufman, M.; Pasynok, S.
2010-01-01
Russian State Time, Frequency and Earth Rotation Service provides the official EOP data and time for use in scientific, technical and metrological works in Russia. The observations of GLONASS and GPS on 30 stations in Russia, and also the Russian and worldwide observations data of VLBI (35 stations) and SLR (20 stations) are used now. To these three series of EOP the data calculated in two other Russian analysis centers are added: IAA (VLBI, GPS and SLR series) and MCC (SLR). Joint processing of these 7 series is carried out every day (the operational EOP data for the last day and the predicted values for 50 days). The EOP values are weekly refined and systematic errors of every individual series are corrected. The combined results become accessible on the VNIIFTRI server (ftp.imvp.ru) approximately at 6h UT daily.
Revision of Primary Series Maps
,
2000-01-01
In 1992, the U.S. Geological Survey (USGS) completed a 50-year effort to provide primary series map coverage of the United States. Many of these maps now need to be updated to reflect the construction of new roads and highways and other changes that have taken place over time. The USGS has formulated a graphic revision plan to help keep the primary series maps current. Primary series maps include 1:20,000-scale quadrangles of Puerto Rico, 1:24,000- or 1:25,000-scale quadrangles of the conterminous United States, Hawaii, and U.S. Territories, and 1:63,360-scale quadrangles of Alaska. The revision of primary series maps from new collection sources is accomplished using a variety of processes. The raster revision process combines the scanned content of paper maps with raster updating technologies. The vector revision process involves the automated plotting of updated vector files. Traditional processes use analog stereoplotters and manual scribing instruments on specially coated map separates. The ability to select from or combine these processes increases the efficiency of the National Mapping Division map revision program.
Complex-valued time-series correlation increases sensitivity in FMRI analysis.
Kociuba, Mary C; Rowe, Daniel B
2016-07-01
To develop a linear matrix representation of correlation between complex-valued (CV) time-series in the temporal Fourier frequency domain, and demonstrate its increased sensitivity over correlation between magnitude-only (MO) time-series in functional MRI (fMRI) analysis. The standard in fMRI is to discard the phase before the statistical analysis of the data, despite evidence of task related change in the phase time-series. With a real-valued isomorphism representation of Fourier reconstruction, correlation is computed in the temporal frequency domain with CV time-series data, rather than with the standard of MO data. A MATLAB simulation compares the Fisher-z transform of MO and CV correlations for varying degrees of task related magnitude and phase amplitude change in the time-series. The increased sensitivity of the complex-valued Fourier representation of correlation is also demonstrated with experimental human data. Since the correlation description in the temporal frequency domain is represented as a summation of second order temporal frequencies, the correlation is easily divided into experimentally relevant frequency bands for each voxel's temporal frequency spectrum. The MO and CV correlations for the experimental human data are analyzed for four voxels of interest (VOIs) to show the framework with high and low contrast-to-noise ratios in the motor cortex and the supplementary motor cortex. The simulation demonstrates the increased strength of CV correlations over MO correlations for low magnitude contrast-to-noise time-series. In the experimental human data, the MO correlation maps are noisier than the CV maps, and it is more difficult to distinguish the motor cortex in the MO correlation maps after spatial processing. Including both magnitude and phase in the spatial correlation computations more accurately defines the correlated left and right motor cortices. Sensitivity in correlation analysis is important to preserve the signal of interest in fMRI data sets with high noise variance, and avoid excessive processing induced correlation. Copyright © 2016 Elsevier Inc. All rights reserved.
The detection of local irreversibility in time series based on segmentation
NASA Astrophysics Data System (ADS)
Teng, Yue; Shang, Pengjian
2018-06-01
We propose a strategy for the detection of local irreversibility in stationary time series based on multiple scale. The detection is beneficial to evaluate the displacement of irreversibility toward local skewness. By means of this method, we can availably discuss the local irreversible fluctuations of time series as the scale changes. The method was applied to simulated nonlinear signals generated by the ARFIMA process and logistic map to show how the irreversibility functions react to the increasing of the multiple scale. The method was applied also to series of financial markets i.e., American, Chinese and European markets. The local irreversibility for different markets demonstrate distinct characteristics. Simulations and real data support the need of exploring local irreversibility.
Time Series Decomposition into Oscillation Components and Phase Estimation.
Matsuda, Takeru; Komaki, Fumiyasu
2017-02-01
Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.
Triantafyllou, Christina; Polimeni, Jonathan R; Keil, Boris; Wald, Lawrence L
2016-12-01
Physiological nuisance fluctuations ("physiological noise") are a major contribution to the time-series signal-to-noise ratio (tSNR) of functional imaging. While thermal noise correlations between array coil elements have a well-characterized effect on the image Signal to Noise Ratio (SNR 0 ), the element-to-element covariance matrix of the time-series fluctuations has not yet been analyzed. We examine this effect with a goal of ultimately improving the combination of multichannel array data. We extend the theoretical relationship between tSNR and SNR 0 to include a time-series noise covariance matrix Ψ t , distinct from the thermal noise covariance matrix Ψ 0 , and compare its structure to Ψ 0 and the signal coupling matrix SS H formed from the signal intensity vectors S. Inclusion of the measured time-series noise covariance matrix into the model relating tSNR and SNR 0 improves the fit of experimental multichannel data and is shown to be distinct from Ψ 0 or SS H . Time-series noise covariances in array coils are found to differ from Ψ 0 and more surprisingly, from the signal coupling matrix SS H . Correct characterization of the time-series noise has implications for the analysis of time-series data and for improving the coil element combination process. Magn Reson Med 76:1708-1719, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Testing for nonlinearity in time series: The method of surrogate data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theiler, J.; Galdrikian, B.; Longtin, A.
1991-01-01
We describe a statistical approach for identifying nonlinearity in time series; in particular, we want to avoid claims of chaos when simpler models (such as linearly correlated noise) can explain the data. The method requires a careful statement of the null hypothesis which characterizes a candidate linear process, the generation of an ensemble of surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against themore » null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. We present algorithms for generating surrogate data under various null hypotheses, and we show the results of numerical experiments on artificial data using correlation dimension, Lyapunov exponent, and forecasting error as discriminating statistics. Finally, we consider a number of experimental time series -- including sunspots, electroencephalogram (EEG) signals, and fluid convection -- and evaluate the statistical significance of the evidence for nonlinear structure in each case. 56 refs., 8 figs.« less
A low free-parameter stochastic model of daily Forbush decrease indices
NASA Astrophysics Data System (ADS)
Patra, Sankar Narayan; Bhattacharya, Gautam; Panja, Subhash Chandra; Ghosh, Koushik
2014-01-01
Forbush decrease is a rapid decrease in the observed galactic cosmic ray intensity pattern occurring after a coronal mass ejection. In the present paper we have analyzed the daily Forbush decrease indices from January, 1967 to December, 2003 generated in IZMIRAN, Russia. First the entire indices have been smoothened and next we have made an attempt to fit a suitable stochastic model for the present time series by means of a necessary number of process parameters. The study reveals that the present time series is governed by a stationary autoregressive process of order 2 with a trace of white noise. Under the consideration of the present model we have shown that chaos is not expected in the present time series which opens up the possibility of validation of its forecasting (both short-term and long-term) as well as its multi-periodic behavior.
NASA Astrophysics Data System (ADS)
Godsey, S. E.; Kirchner, J. W.
2008-12-01
The mean residence time - the average time that it takes rainfall to reach the stream - is a basic parameter used to characterize catchment processes. Heterogeneities in these processes lead to a distribution of travel times around the mean residence time. By examining this travel time distribution, we can better predict catchment response to contamination events. A catchment system with shorter residence times or narrower distributions will respond quickly to contamination events, whereas systems with longer residence times or longer-tailed distributions will respond more slowly to those same contamination events. The travel time distribution of a catchment is typically inferred from time series of passive tracers (e.g., water isotopes or chloride) in precipitation and streamflow. Variations in the tracer concentration in streamflow are usually damped compared to those in precipitation, because precipitation inputs from different storms (with different tracer signatures) are mixed within the catchment. Mathematically, this mixing process is represented by the convolution of the travel time distribution and the precipitation tracer inputs to generate the stream tracer outputs. Because convolution in the time domain is equivalent to multiplication in the frequency domain, it is relatively straightforward to estimate the parameters of the travel time distribution in either domain. In the time domain, the parameters describing the travel time distribution are typically estimated by maximizing the goodness of fit between the modeled and measured tracer outputs. In the frequency domain, the travel time distribution parameters can be estimated by fitting a power-law curve to the ratio of precipitation spectral power to stream spectral power. Differences between the methods of parameter estimation in the time and frequency domain mean that these two methods may respond differently to variations in data quality, record length and sampling frequency. Here we evaluate how well these two methods of travel time parameter estimation respond to different sources of uncertainty and compare the methods to one another. We do this by generating synthetic tracer input time series of different lengths, and convolve these with specified travel-time distributions to generate synthetic output time series. We then sample both the input and output time series at various sampling intervals and corrupt the time series with realistic error structures. Using these 'corrupted' time series, we infer the apparent travel time distribution, and compare it to the known distribution that was used to generate the synthetic data in the first place. This analysis allows us to quantify how different record lengths, sampling intervals, and error structures in the tracer measurements affect the apparent mean residence time and the apparent shape of the travel time distribution.
Liu, Zitao; Hauskrecht, Milos
2017-11-01
Building of an accurate predictive model of clinical time series for a patient is critical for understanding of the patient condition, its dynamics, and optimal patient management. Unfortunately, this process is not straightforward. First, patient-specific variations are typically large and population-based models derived or learned from many different patients are often unable to support accurate predictions for each individual patient. Moreover, time series observed for one patient at any point in time may be too short and insufficient to learn a high-quality patient-specific model just from the patient's own data. To address these problems we propose, develop and experiment with a new adaptive forecasting framework for building multivariate clinical time series models for a patient and for supporting patient-specific predictions. The framework relies on the adaptive model switching approach that at any point in time selects the most promising time series model out of the pool of many possible models, and consequently, combines advantages of the population, patient-specific and short-term individualized predictive models. We demonstrate that the adaptive model switching framework is very promising approach to support personalized time series prediction, and that it is able to outperform predictions based on pure population and patient-specific models, as well as, other patient-specific model adaptation strategies.
2011-01-01
Background Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. Methods We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Results Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. Conclusions We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting. PMID:22023778
Kennedy, Curtis E; Turley, James P
2011-10-24
Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9) training models for various data subsets; and 10) measuring model performance characteristics in unseen data to estimate their external validity. We have proposed a ten step process that results in data sets that contain time series features and are suitable for predictive modeling by a number of methods. We illustrated the process through an example of cardiac arrest prediction in a pediatric intensive care setting.
NASA Astrophysics Data System (ADS)
Lyons, Mitchell B.; Roelfsema, Chris M.; Phinn, Stuart R.
2013-03-01
The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (≈200 km2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.
NASA Astrophysics Data System (ADS)
Benz, N.; Bartlow, N. M.
2017-12-01
The addition of borehole strainmeter (BSM) to cGPS time series inversions can yield more precise slip distributions at the subduction interface during episodic tremor and slip (ETS) events in the Cascadia subduction zone. Traditionally very noisy BSM data has not been easy to incorporate until recently, but developments in processing noise, re-orientation of strain components, removal of tidal, hydrologic, and atmospheric signals have made this additional source of data viable (Roeloffs, 2010). The major advantage with BSMs is their sensitivity to spatial derivatives in slip, which is valuable for investigating the ETS nucleation process and stress changes on the plate interface due to ETS. Taking advantage of this, we simultaneously invert PBO GPS and cleaned BSM time series with the Network Inversion Filter (Segall and Matthews, 1997) for slip distribution and slip rate during selected Cascadia ETS events. Stress distributions are also calculated for the plate interface using these inversion results to estimate the amount of stress change during an ETS event. These calculations are performed with and without the utilization of BSM time series, highlighting the role of BSM data in constraining slip and stress.
NASA Astrophysics Data System (ADS)
Aliotta, M. A.; Cassisi, C.; Prestifilippo, M.; Cannata, A.; Montalto, P.; Patanè, D.
2014-12-01
During the last years, volcanic activity at Mt. Etna was often characterized by cyclic occurrences of fountains. In the period between January 2011 and June 2013, 38 episodes of lava fountains has been observed. Automatic recognition of the volcano's states related to lava fountain episodes (Quiet, Pre-Fountaining, Fountaining, Post-Fountaining) is very useful for monitoring purposes. We discovered that such states are strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded in the summit area. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we tried to model the system generating its sampled values (assuming to be a Markov process and assuming that RMS time series is a stochastic process), by using Hidden Markov models (HMMs), that are a powerful tool for modeling any time-varying series. HMMs analysis seeks to discover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by SAX (Symbolic Aggregate approXimation) technique. SAX is able to map RMS time series values with discrete literal emissions. Our experiments showed how to predict volcano states by means of SAX and HMMs.
Reconstruction of network topology using status-time-series data
NASA Astrophysics Data System (ADS)
Pandey, Pradumn Kumar; Badarla, Venkataramana
2018-01-01
Uncovering the heterogeneous connection pattern of a networked system from the available status-time-series (STS) data of a dynamical process on the network is of great interest in network science and known as a reverse engineering problem. Dynamical processes on a network are affected by the structure of the network. The dependency between the diffusion dynamics and structure of the network can be utilized to retrieve the connection pattern from the diffusion data. Information of the network structure can help to devise the control of dynamics on the network. In this paper, we consider the problem of network reconstruction from the available status-time-series (STS) data using matrix analysis. The proposed method of network reconstruction from the STS data is tested successfully under susceptible-infected-susceptible (SIS) diffusion dynamics on real-world and computer-generated benchmark networks. High accuracy and efficiency of the proposed reconstruction procedure from the status-time-series data define the novelty of the method. Our proposed method outperforms compressed sensing theory (CST) based method of network reconstruction using STS data. Further, the same procedure of network reconstruction is applied to the weighted networks. The ordering of the edges in the weighted networks is identified with high accuracy.
Occurrence analysis of daily rainfalls by using non-homogeneous Poissonian processes
NASA Astrophysics Data System (ADS)
Sirangelo, B.; Ferrari, E.; de Luca, D. L.
2009-09-01
In recent years several temporally homogeneous stochastic models have been applied to describe the rainfall process. In particular stochastic analysis of daily rainfall time series may contribute to explain the statistic features of the temporal variability related to the phenomenon. Due to the evident periodicity of the physical process, these models have to be used only to short temporal intervals in which occurrences and intensities of rainfalls can be considered reliably homogeneous. To this aim, occurrences of daily rainfalls can be considered as a stationary stochastic process in monthly periods. In this context point process models are widely used for at-site analysis of daily rainfall occurrence; they are continuous time series models, and are able to explain intermittent feature of rainfalls and simulate interstorm periods. With a different approach, periodic features of daily rainfalls can be interpreted by using a temporally non-homogeneous stochastic model characterized by parameters expressed as continuous functions in the time. In this case, great attention has to be paid to the parsimony of the models, as regards the number of parameters and the bias introduced into the generation of synthetic series, and to the influence of threshold values in extracting peak storm database from recorded daily rainfall heights. In this work, a stochastic model based on a non-homogeneous Poisson process, characterized by a time-dependent intensity of rainfall occurrence, is employed to explain seasonal effects of daily rainfalls exceeding prefixed threshold values. In particular, variation of rainfall occurrence intensity ? (t) is modelled by using Fourier series analysis, in which the non-homogeneous process is transformed into a homogeneous and unit one through a proper transformation of time domain, and the choice of the minimum number of harmonics is evaluated applying available statistical tests. The procedure is applied to a dataset of rain gauges located in different geographical zones of Mediterranean area. Time series have been selected on the basis of the availability of at least 50 years in the time period 1921-1985, chosen as calibration period, and of all the years of observation in the subsequent validation period 1986-2005, whose daily rainfall occurrence process variability is under hypothesis. Firstly, for each time series and for each fixed threshold value, parameters estimation of the non-homogeneous Poisson model is carried out, referred to calibration period. As second step, in order to test the hypothesis that daily rainfall occurrence process preserves the same behaviour in more recent time periods, the intensity distribution evaluated for calibration period is also adopted for the validation period. Starting from this and using a Monte Carlo approach, 1000 synthetic generations of daily rainfall occurrences, of length equal to validation period, have been carried out, and for each simulation sample ?(t) has been evaluated. This procedure is adopted because of the complexity of determining analytical statistical confidence limits referred to the sample intensity ?(t). Finally, sample intensity, theoretical function of the calibration period and 95% statistical band, evaluated by Monte Carlo approach, are matching, together with considering, for each threshold value, the mean square error (MSE) between the theoretical ?(t) and the sample one of recorded data, and his correspondent 95% one tail statistical band, estimated from the MSE values between the sample ?(t) of each synthetic series and the theoretical one. The results obtained may be very useful in the context of the identification and calibration of stochastic rainfall models based on historical precipitation data. Further applications of the non-homogeneous Poisson model will concern the joint analyses of the storm occurrence process with the rainfall height marks, interpreted by using a temporally homogeneous model in proper sub-year intervals.
Data Rescue for precipitation station network in Slovak Republic
NASA Astrophysics Data System (ADS)
Fasko, Pavel; Bochníček, Oliver; Švec, Marek; Paľušová, Zuzana; Markovič, Ladislav
2016-04-01
Transparency of archive catalogues presents very important task for the data saving. It helps to the further activities e.g. digitalization and homogenization. For the time being visualization of time series continuation in precipitation stations (approximately 1250 stations) is under way in Slovak Republic since the beginning of observation (meteorological stations gradually began to operate during the second half of the 19th century in Slovakia). Visualization is joined with the activities like verification and accessibility of the data mentioned in the archive catalogue, station localization according to the historical annual books, conversion of coordinates into x-JTSK, y-JTSK and hydrological catchment assignment. Clustering of precipitation stations at the specific hydrological catchment in the map and visualization of the data duration (line graph) will lead to the effective assignment of corresponding precipitation stations for the prolongation of time series. This process should be followed by the process of turn or trend detection and homogenization. The risks and problems at verification of records from archive catalogues, their digitalization, repairs and the way of visualization will be seen in poster. During the searching process of the historical and often short time series, we realized the importance of mainly those stations, located in the middle and higher altitudes. They might be used as replacement for up to now quoted fictive points used at the construction of precipitation maps. Supplementing and enhancing the time series of individual stations will enable to follow changes in precipitation totals during the certain period as well as area totals for individual catchments in various time periods appreciated mainly by hydrologists and agro-climatologists.
Identification of varying time scales in sediment transport using the Hilbert-Huang Transform method
NASA Astrophysics Data System (ADS)
Kuai, Ken Z.; Tsai, Christina W.
2012-02-01
SummarySediment transport processes vary at a variety of time scales - from seconds, hours, days to months and years. Multiple time scales exist in the system of flow, sediment transport and bed elevation change processes. As such, identification and selection of appropriate time scales for flow and sediment processes can assist in formulating a system of flow and sediment governing equations representative of the dynamic interaction of flow and particles at the desired details. Recognizing the importance of different varying time scales in the fluvial processes of sediment transport, we introduce the Hilbert-Huang Transform method (HHT) to the field of sediment transport for the time scale analysis. The HHT uses the Empirical Mode Decomposition (EMD) method to decompose a time series into a collection of the Intrinsic Mode Functions (IMFs), and uses the Hilbert Spectral Analysis (HSA) to obtain instantaneous frequency data. The EMD extracts the variability of data with different time scales, and improves the analysis of data series. The HSA can display the succession of time varying time scales, which cannot be captured by the often-used Fast Fourier Transform (FFT) method. This study is one of the earlier attempts to introduce the state-of-the-art technique for the multiple time sales analysis of sediment transport processes. Three practical applications of the HHT method for data analysis of both suspended sediment and bedload transport time series are presented. The analysis results show the strong impact of flood waves on the variations of flow and sediment time scales at a large sampling time scale, as well as the impact of flow turbulence on those time scales at a smaller sampling time scale. Our analysis reveals that the existence of multiple time scales in sediment transport processes may be attributed to the fractal nature in sediment transport. It can be demonstrated by the HHT analysis that the bedload motion time scale is better represented by the ratio of the water depth to the settling velocity, h/ w. In the final part, HHT results are compared with an available time scale formula in literature.
Reliability Prediction of Ontology-Based Service Compositions Using Petri Net and Time Series Models
Li, Jia; Xia, Yunni; Luo, Xin
2014-01-01
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy. PMID:24688429
On the maximum-entropy/autoregressive modeling of time series
NASA Technical Reports Server (NTRS)
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
NASA Astrophysics Data System (ADS)
Donges, J. F.; Schleussner, C.-F.; Siegmund, J. F.; Donner, R. V.
2016-05-01
Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.
NASA Astrophysics Data System (ADS)
Cohen-Waeber, J.; Bürgmann, R.; Chaussard, E.; Giannico, C.; Ferretti, A.
2018-02-01
Long-term landslide deformation is disruptive and costly in urbanized environments. We rely on TerraSAR-X satellite images (2009-2014) and an improved data processing algorithm (SqueeSAR™) to produce an exceptionally dense Interferometric Synthetic Aperture Radar ground deformation time series for the San Francisco East Bay Hills. Independent and principal component analyses of the time series reveal four distinct spatial and temporal surface deformation patterns in the area around Blakemont landslide, which we relate to different geomechanical processes. Two components of time-dependent landslide deformation isolate continuous motion and motion driven by precipitation-modulated pore pressure changes controlled by annual seasonal cycles and multiyear drought conditions. Two components capturing more widespread seasonal deformation separate precipitation-modulated soil swelling from annual cycles that may be related to groundwater level changes and thermal expansion of buildings. High-resolution characterization of landslide response to precipitation is a first step toward improved hazard forecasting.
Optical signal processing using photonic reservoir computing
NASA Astrophysics Data System (ADS)
Salehi, Mohammad Reza; Dehyadegari, Louiza
2014-10-01
As a new approach to recognition and classification problems, photonic reservoir computing has such advantages as parallel information processing, power efficient and high speed. In this paper, a photonic structure has been proposed for reservoir computing which is investigated using a simple, yet, non-partial noisy time series prediction task. This study includes the application of a suitable topology with self-feedbacks in a network of SOA's - which lends the system a strong memory - and leads to adjusting adequate parameters resulting in perfect recognition accuracy (100%) for noise-free time series, which shows a 3% improvement over previous results. For the classification of noisy time series, the rate of accuracy showed a 4% increase and amounted to 96%. Furthermore, an analytical approach was suggested to solve rate equations which led to a substantial decrease in the simulation time, which is an important parameter in classification of large signals such as speech recognition, and better results came up compared with previous works.
[Image processing system of visual prostheses based on digital signal processor DM642].
Xie, Chengcheng; Lu, Yanyu; Gu, Yun; Wang, Jing; Chai, Xinyu
2011-09-01
This paper employed a DSP platform to create the real-time and portable image processing system, and introduced a series of commonly used algorithms for visual prostheses. The results of performance evaluation revealed that this platform could afford image processing algorithms to be executed in real time.
Yu, Hwa-Lung; Lin, Yuan-Chien; Kuo, Yi-Ming
2015-09-01
Understanding the temporal dynamics and interactions of particulate matter (PM) concentration and composition is important for air quality control. This paper applied a dynamic factor analysis method (DFA) to reveal the underlying mechanisms of nonstationary variations in twelve ambient concentrations of aerosols and gaseous pollutants, and the associations with meteorological factors. This approach can consider the uncertainties and temporal dependences of time series data. The common trends of the yearlong and three selected diurnal variations were obtained to characterize the dominant processes occurring in general and specific scenarios in Taipei during 2009 (i.e., during Asian dust storm (ADS) events, rainfall, and under normal conditions). The results revealed the two distinct yearlong NOx transformation processes, and demonstrated that traffic emissions and photochemical reactions both critically influence diurnal variation, depending upon meteorological conditions. During an ADS event, transboundary transport and distinct weather conditions both influenced the temporal pattern of identified common trends. This study shows the DFA method can effectively extract meaningful latent processes of time series data and provide insights of the dominant associations and interactions in the complex air pollution processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Functional linear models to test for differences in prairie wetland hydraulic gradients
Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.
2010-01-01
Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.
Adventures in Modern Time Series Analysis: From the Sun to the Crab Nebula and Beyond
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey
2014-01-01
With the generation of long, precise, and finely sampled time series the Age of Digital Astronomy is uncovering and elucidating energetic dynamical processes throughout the Universe. Fulfilling these opportunities requires data effective analysis techniques rapidly and automatically implementing advanced concepts. The Time Series Explorer, under development in collaboration with Tom Loredo, provides tools ranging from simple but optimal histograms to time and frequency domain analysis for arbitrary data modes with any time sampling. Much of this development owes its existence to Joe Bredekamp and the encouragement he provided over several decades. Sample results for solar chromospheric activity, gamma-ray activity in the Crab Nebula, active galactic nuclei and gamma-ray bursts will be displayed.
GIAnT - Generic InSAR Analysis Toolbox
NASA Astrophysics Data System (ADS)
Agram, P.; Jolivet, R.; Riel, B. V.; Simons, M.; Doin, M.; Lasserre, C.; Hetland, E. A.
2012-12-01
We present a computing framework for studying the spatio-temporal evolution of ground deformation from interferometric synthetic aperture radar (InSAR) data. Several open-source tools including Repeat Orbit Interferometry PACkage (ROI-PAC) and InSAR Scientific Computing Environment (ISCE) from NASA-JPL, and Delft Object-oriented Repeat Interferometric Software (DORIS), have enabled scientists to generate individual interferograms from raw radar data with relative ease. Numerous computational techniques and algorithms that reduce phase information from multiple interferograms to a deformation time-series have been developed and verified over the past decade. However, the sharing and direct comparison of products from multiple processing approaches has been hindered by - 1) absence of simple standards for sharing of estimated time-series products, 2) use of proprietary software tools with license restrictions and 3) the closed source nature of the exact implementation of many of these algorithms. We have developed this computing framework to address all of the above issues. We attempt to take the first steps towards creating a community software repository for InSAR time-series analysis. To date, we have implemented the short baseline subset algorithm (SBAS), NSBAS and multi-scale interferometric time-series (MInTS) in this framework and the associated source code is included in the GIAnT distribution. A number of the associated routines have been optimized for performance and scalability with large data sets. Some of the new features in our processing framework are - 1) the use of daily solutions from continuous GPS stations to correct for orbit errors, 2) the use of meteorological data sets to estimate the tropospheric delay screen and 3) a data-driven bootstrapping approach to estimate the uncertainties associated with estimated time-series products. We are currently working on incorporating tidal load corrections for individual interferograms and propagation of noise covariance models through the processing chain for robust estimation of uncertainties in the deformation estimates. We will demonstrate the ease of use of our framework with results ranging from regional scale analysis around Long Valley, CA and Parkfield, CA to continental scale analysis in Western South America. We will also present preliminary results from a new time-series approach that simultaneously estimates deformation over the complete spatial domain at all time epochs on a distributed computing platform. GIAnT has been developed entirely using open source tools and uses Python as the underlying platform. We build on the extensive numerical (NumPy) and scientific (SciPy) computing Python libraries to develop an object-oriented, flexible and modular framework for time-series InSAR applications. The toolbox is currently configured to work with outputs from ROI-PAC, ISCE and DORIS, but can easily be extended to support products from other SAR/InSAR processors. The toolbox libraries include support for hierarchical data format (HDF5) memory mapped files, parallel processing with Python's multi-processing module and support for many convex optimization solvers like CSDP, CVXOPT etc. An extensive set of routines to deal with ASCII and XML files has also been included for controlling the processing parameters.
Modeling Polio Data Using the First Order Non-Negative Integer-Valued Autoregressive, INAR(1), Model
NASA Astrophysics Data System (ADS)
Vazifedan, Turaj; Shitan, Mahendran
Time series data may consists of counts, such as the number of road accidents, the number of patients in a certain hospital, the number of customers waiting for service at a certain time and etc. When the value of the observations are large it is usual to use Gaussian Autoregressive Moving Average (ARMA) process to model the time series. However if the observed counts are small, it is not appropriate to use ARMA process to model the observed phenomenon. In such cases we need to model the time series data by using Non-Negative Integer valued Autoregressive (INAR) process. The modeling of counts data is based on the binomial thinning operator. In this paper we illustrate the modeling of counts data using the monthly number of Poliomyelitis data in United States between January 1970 until December 1983. We applied the AR(1), Poisson regression model and INAR(1) model and the suitability of these models were assessed by using the Index of Agreement(I.A.). We found that INAR(1) model is more appropriate in the sense it had a better I.A. and it is natural since the data are counts.
NASA Astrophysics Data System (ADS)
Wright, Ashley J.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.
2017-08-01
Floods are devastating natural hazards. To provide accurate, precise, and timely flood forecasts, there is a need to understand the uncertainties associated within an entire rainfall time series, even when rainfall was not observed. The estimation of an entire rainfall time series and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of entire rainfall input time series to be considered when estimating model parameters, and provides the ability to improve rainfall estimates from poorly gauged catchments. Current methods to estimate entire rainfall time series from streamflow records are unable to adequately invert complex nonlinear hydrologic systems. This study aims to explore the use of wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia, it is shown that model parameter distributions and an entire rainfall time series can be estimated. Including rainfall in the estimation process improves streamflow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall time series, inclusive of days when none was observed. It is shown that the choice of wavelet can have a considerable impact on the robustness of the inversion. Combining the use of a likelihood function that considers rainfall and streamflow errors with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.
NASA Astrophysics Data System (ADS)
Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan
Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.
The application of complex network time series analysis in turbulent heated jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A.
In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topologicalmore » properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.« less
The application of complex network time series analysis in turbulent heated jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charakopoulos, A. K.; Karakasidis, T. E., E-mail: thkarak@uth.gr; Liakopoulos, A.
2014-06-15
In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topologicalmore » properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics.« less
NASA Astrophysics Data System (ADS)
Massah, Mozhdeh; Kantz, Holger
2016-04-01
As we have one and only one earth and no replicas, climate characteristics are usually computed as time averages from a single time series. For understanding climate variability, it is essential to understand how close a single time average will typically be to an ensemble average. To answer this question, we study large deviation probabilities (LDP) of stochastic processes and characterize them by their dependence on the time window. In contrast to iid variables for which there exists an analytical expression for the rate function, the correlated variables such as auto-regressive (short memory) and auto-regressive fractionally integrated moving average (long memory) processes, have not an analytical LDP. We study LDP for these processes, in order to see how correlation affects this probability in comparison to iid data. Although short range correlations lead to a simple correction of sample size, long range correlations lead to a sub-exponential decay of LDP and hence to a very slow convergence of time averages. This effect is demonstrated for a 120 year long time series of daily temperature anomalies measured in Potsdam (Germany).
Scaling properties of Polish rain series
NASA Astrophysics Data System (ADS)
Licznar, P.
2009-04-01
Scaling properties as well as multifractal nature of precipitation time series have not been studied for local Polish conditions until recently due to lack of long series of high-resolution data. The first Polish study of precipitation time series scaling phenomena was made on the base of pluviograph data from the Wroclaw University of Environmental and Life Sciences meteorological station located at the south-western part of the country. The 38 annual rainfall records from years 1962-2004 were converted into digital format and transformed into a standard format of 5-minute time series. The scaling properties and multifractal character of this material were studied by means of several different techniques: power spectral density analysis, functional box-counting, probability distribution/multiple scaling and trace moment methods. The result proved the general scaling character of time series at the range of time scales ranging form 5 minutes up to at least 24 hours. At the same time some characteristic breaks at scaling behavior were recognized. It is believed that the breaks were artificial and arising from the pluviograph rain gauge measuring precision limitations. Especially strong limitations at the precision of low-intensity precipitations recording by pluviograph rain gauge were found to be the main reason for artificial break at energy spectra, as was reported by other authors before. The analysis of co-dimension and moments scaling functions showed the signs of the first-order multifractal phase transition. Such behavior is typical for dressed multifractal processes that are observed by spatial or temporal averaging on scales larger than the inner-scale of those processes. The fractal dimension of rainfall process support derived from codimension and moments scaling functions geometry analysis was found to be 0.45. The same fractal dimension estimated by means of the functional box-counting method was equal to 0.58. At the final part of the study implementation of double trace moment method allowed for estimation of local universal multifractal rainfall parameters (α=0.69; C1=0.34; H=-0.01). The research proved the fractal character of rainfall process support and multifractal character of the rainfall intensity values variability among analyzed time series. It is believed that scaling of local Wroclaw's rainfalls for timescales at the range from 24 hours up to 5 minutes opens the door for future research concerning for example random cascades implementation for daily precipitation totals disaggregation for smaller time intervals. The results of such a random cascades functioning in a form of 5 minute artificial rainfall scenarios could be of great practical usability for needs of urban hydrology, and design and hydrodynamic modeling of storm water and combined sewage conveyance systems.
Sea change: Charting the course for biogeochemical ocean time-series research in a new millennium
NASA Astrophysics Data System (ADS)
Church, Matthew J.; Lomas, Michael W.; Muller-Karger, Frank
2013-09-01
Ocean time-series provide vital information needed for assessing ecosystem change. This paper summarizes the historical context, major program objectives, and future research priorities for three contemporary ocean time-series programs: The Hawaii Ocean Time-series (HOT), the Bermuda Atlantic Time-series Study (BATS), and the CARIACO Ocean Time-Series. These three programs operate in physically and biogeochemically distinct regions of the world's oceans, with HOT and BATS located in the open-ocean waters of the subtropical North Pacific and North Atlantic, respectively, and CARIACO situated in the anoxic Cariaco Basin of the tropical Atlantic. All three programs sustain near-monthly shipboard occupations of their field sampling sites, with HOT and BATS beginning in 1988, and CARIACO initiated in 1996. The resulting data provide some of the only multi-disciplinary, decadal-scale determinations of time-varying ecosystem change in the global ocean. Facilitated by a scoping workshop (September 2010) sponsored by the Ocean Carbon Biogeochemistry (OCB) program, leaders of these time-series programs sought community input on existing program strengths and for future research directions. Themes that emerged from these discussions included: 1. Shipboard time-series programs are key to informing our understanding of the connectivity between changes in ocean-climate and biogeochemistry 2. The scientific and logistical support provided by shipboard time-series programs forms the backbone for numerous research and education programs. Future studies should be encouraged that seek mechanistic understanding of ecological interactions underlying the biogeochemical dynamics at these sites. 3. Detecting time-varying trends in ocean properties and processes requires consistent, high-quality measurements. Time-series must carefully document analytical procedures and, where possible, trace the accuracy of analyses to certified standards and internal reference materials. 4. Leveraged implementation, testing, and validation of autonomous and remote observing technologies at time-series sites provide new insights into spatiotemporal variability underlying ecosystem changes. 5. The value of existing time-series data for formulating and validating ecosystem models should be promoted. In summary, the scientific underpinnings of ocean time-series programs remain as strong and important today as when these programs were initiated. The emerging data inform our knowledge of the ocean's biogeochemistry and ecology, and improve our predictive capacity about planetary change.
Signal processing of anthropometric data
NASA Astrophysics Data System (ADS)
Zimmermann, W. J.
1983-09-01
The Anthropometric Measurements Laboratory has accumulated a large body of data from a number of previous experiments. The data is very noisy, therefore it requires the application of some signal processing schemes. Moreover, it was not regarded as time series measurements but as positional information; hence, the data is stored as coordinate points as defined by the motion of the human body. The accumulated data defines two groups or classes. Some of the data was collected from an experiment designed to measure the flexibility of the limbs, referred to as radial movement. The remaining data was collected from experiments designed to determine the surface of the reach envelope. An interactive signal processing package was designed and implemented. Since the data does not include time this package does not include a time series element. Presently the results is restricted to processing data obtained from those experiments designed to measure flexibility.
Signal processing of anthropometric data
NASA Technical Reports Server (NTRS)
Zimmermann, W. J.
1983-01-01
The Anthropometric Measurements Laboratory has accumulated a large body of data from a number of previous experiments. The data is very noisy, therefore it requires the application of some signal processing schemes. Moreover, it was not regarded as time series measurements but as positional information; hence, the data is stored as coordinate points as defined by the motion of the human body. The accumulated data defines two groups or classes. Some of the data was collected from an experiment designed to measure the flexibility of the limbs, referred to as radial movement. The remaining data was collected from experiments designed to determine the surface of the reach envelope. An interactive signal processing package was designed and implemented. Since the data does not include time this package does not include a time series element. Presently the results is restricted to processing data obtained from those experiments designed to measure flexibility.
Long-term persistence of solar activity
NASA Technical Reports Server (NTRS)
Ruzmaikin, Alexander; Feynman, Joan; Robinson, Paul
1994-01-01
We examine the question of whether or not the non-periodic variations in solar activity are caused by a white-noise, random process. The Hurst exponent, which characterizes the persistence of a time series, is evaluated for the series of C-14 data for the time interval from about 6000 BC to 1950 AD. We find a constant Hurst exponent, suggesting that solar activity in the frequency range from 100 to 3000 years includes an important continuum component in addition to the well-known periodic variations. The value we calculate, H approximately 0.8, is significantly larger than the value of 0.5 that would correspond to variations produced by a white-noise process. This value is in good agreement with the results for the monthly sunspot data reported elsewhere, indicating that the physics that produces the continuum is a correlated random process and that it is the same type of process over a wide range of time interval lengths.
IDCDACS: IDC's Distributed Application Control System
NASA Astrophysics Data System (ADS)
Ertl, Martin; Boresch, Alexander; Kianička, Ján; Sudakov, Alexander; Tomuta, Elena
2015-04-01
The Preparatory Commission for the CTBTO is an international organization based in Vienna, Austria. Its mission is to establish a global verification regime to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), which bans all nuclear explosions. For this purpose time series data from a global network of seismic, hydro-acoustic and infrasound (SHI) sensors are transmitted to the International Data Centre (IDC) in Vienna in near-real-time, where it is processed to locate events that may be nuclear explosions. We newly designed the distributed application control system that glues together the various components of the automatic waveform data processing system at the IDC (IDCDACS). Our highly-scalable solution preserves the existing architecture of the IDC processing system that proved successful over many years of operational use, but replaces proprietary components with open-source solutions and custom developed software. Existing code was refactored and extended to obtain a reusable software framework that is flexibly adaptable to different types of processing workflows. Automatic data processing is organized in series of self-contained processing steps, each series being referred to as a processing pipeline. Pipelines process data by time intervals, i.e. the time-series data received from monitoring stations is organized in segments based on the time when the data was recorded. So-called data monitor applications queue the data for processing in each pipeline based on specific conditions, e.g. data availability, elapsed time or completion states of preceding processing pipelines. IDCDACS consists of a configurable number of distributed monitoring and controlling processes, a message broker and a relational database. All processes communicate through message queues hosted on the message broker. Persistent state information is stored in the database. A configurable processing controller instantiates and monitors all data processing applications. Due to decoupling by message queues the system is highly versatile and failure tolerant. The implementation utilizes the RabbitMQ open-source messaging platform that is based upon the Advanced Message Queuing Protocol (AMQP), an on-the-wire protocol (like HTML) and open industry standard. IDCDACS uses high availability capabilities provided by RabbitMQ and is equipped with failure recovery features to survive network and server outages. It is implemented in C and Python and is operated in a Linux environment at the IDC. Although IDCDACS was specifically designed for the existing IDC processing system its architecture is generic and reusable for different automatic processing workflows, e.g. similar to those described in (Olivieri et al. 2012, Kværna et al. 2012). Major advantages are its independence of the specific data processing applications used and the possibility to reconfigure IDCDACS for different types of processing, data and trigger logic. A possible future development would be to use the IDCDACS framework for different scientific domains, e.g. for processing of Earth observation satellite data extending the one-dimensional time-series intervals to spatio-temporal data cubes. REFERENCES Olivieri M., J. Clinton (2012) An almost fair comparison between Earthworm and SeisComp3, Seismological Research Letters, 83(4), 720-727. Kværna, T., S. J. Gibbons, D. B. Harris, D. A. Dodge (2012) Adapting pipeline architectures to track developing aftershock sequences and recurrent explosions, Proceedings of the 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, 776-785.
Trend analysis of Arctic sea ice extent
NASA Astrophysics Data System (ADS)
Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição
2009-04-01
The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.
Large-deviation probabilities for correlated Gaussian processes and intermittent dynamical systems
NASA Astrophysics Data System (ADS)
Massah, Mozhdeh; Nicol, Matthew; Kantz, Holger
2018-05-01
In its classical version, the theory of large deviations makes quantitative statements about the probability of outliers when estimating time averages, if time series data are identically independently distributed. We study large-deviation probabilities (LDPs) for time averages in short- and long-range correlated Gaussian processes and show that long-range correlations lead to subexponential decay of LDPs. A particular deterministic intermittent map can, depending on a control parameter, also generate long-range correlated time series. We illustrate numerically, in agreement with the mathematical literature, that this type of intermittency leads to a power law decay of LDPs. The power law decay holds irrespective of whether the correlation time is finite or infinite, and hence irrespective of whether the central limit theorem applies or not.
Online Time Series Analysis of Land Products over Asia Monsoon Region via Giovanni
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2011-01-01
Time series analysis is critical to the study of land cover/land use changes and climate. Time series studies at local-to-regional scales require higher spatial resolution, such as 1km or less, data. MODIS land products of 250m to 1km resolution enable such studies. However, such MODIS land data files are distributed in 10ox10o tiles, due to large data volumes. Conducting a time series study requires downloading all tiles that include the study area for the time period of interest, and mosaicking the tiles spatially. This can be an extremely time-consuming process. In support of the Monsoon Asia Integrated Regional Study (MAIRS) program, NASA GES DISC (Goddard Earth Sciences Data and Information Services Center) has processed MODIS land products at 1 km resolution over the Asia monsoon region (0o-60oN, 60o-150oE) with a common data structure and format. The processed data have been integrated into the Giovanni system (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) that enables users to explore, analyze, and download data over an area and time period of interest easily. Currently, the following regional MODIS land products are available in Giovanni: 8-day 1km land surface temperature and active fire, monthly 1km vegetation index, and yearly 0.05o, 500m land cover types. More data will be added in the near future. By combining atmospheric and oceanic data products in the Giovanni system, it is possible to do further analyses of environmental and climate changes associated with the land, ocean, and atmosphere. This presentation demonstrates exploring land products in the Giovanni system with sample case scenarios.
Kinetics analysis and quantitative calculations for the successive radioactive decay process
NASA Astrophysics Data System (ADS)
Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang
2015-01-01
The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.
The application of time series models to cloud field morphology analysis
NASA Technical Reports Server (NTRS)
Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.
1987-01-01
A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.
Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.
2014-04-14
To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less
Reconstruction method for data protection in telemedicine systems
NASA Astrophysics Data System (ADS)
Buldakova, T. I.; Suyatinov, S. I.
2015-03-01
In the report the approach to protection of transmitted data by creation of pair symmetric keys for the sensor and the receiver is offered. Since biosignals are unique for each person, their corresponding processing allows to receive necessary information for creation of cryptographic keys. Processing is based on reconstruction of the mathematical model generating time series that are diagnostically equivalent to initial biosignals. Information about the model is transmitted to the receiver, where the restoration of physiological time series is performed using the reconstructed model. Thus, information about structure and parameters of biosystem model received in the reconstruction process can be used not only for its diagnostics, but also for protection of transmitted data in telemedicine complexes.
Pearson correlation estimation for irregularly sampled time series
NASA Astrophysics Data System (ADS)
Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.
2012-04-01
Many applications in the geosciences call for the joint and objective analysis of irregular time series. For automated processing, robust measures of linear and nonlinear association are needed. Up to now, the standard approach would have been to reconstruct the time series on a regular grid, using linear or spline interpolation. Interpolation, however, comes with systematic side-effects, as it increases the auto-correlation in the time series. We have searched for the best method to estimate Pearson correlation for irregular time series, i.e. the one with the lowest estimation bias and variance. We adapted a kernel-based approach, using Gaussian weights. Pearson correlation is calculated, in principle, as a mean over products of previously centralized observations. In the regularly sampled case, observations in both time series were observed at the same time and thus the allocation of measurement values into pairs of products is straightforward. In the irregularly sampled case, however, measurements were not necessarily observed at the same time. Now, the key idea of the kernel-based method is to calculate weighted means of products, with the weight depending on the time separation between the observations. If the lagged correlation function is desired, the weights depend on the absolute difference between observation time separation and the estimation lag. To assess the applicability of the approach we used extensive simulations to determine the extent of interpolation side-effects with increasing irregularity of time series. We compared different approaches, based on (linear) interpolation, the Lomb-Scargle Fourier Transform, the sinc kernel and the Gaussian kernel. We investigated the role of kernel bandwidth and signal-to-noise ratio in the simulations. We found that the Gaussian kernel approach offers significant advantages and low Root-Mean Square Errors for regular, slightly irregular and very irregular time series. We therefore conclude that it is a good (linear) similarity measure that is appropriate for irregular time series with skewed inter-sampling time distributions.
Rabl, Ari
2006-02-01
Information on life expectancy change is of great concern for policy makers, as evidenced by the discussions of the so-called "harvesting" issue (i.e. the question being, how large a loss each death corresponds to in the mortality results of time series studies). Whereas most epidemiological studies of air pollution mortality have been formulated in terms of mortality risk, this paper shows that a formulation in terms of life expectancy change is mathematically equivalent, but offers several advantages: it automatically takes into account the constraint that everybody dies exactly once, regardless of pollution; it provides a unified framework for time series, intervention studies and cohort studies; and in time series and intervention studies, it yields the life expectancy change directly as a time integral of the observed mortality rate. Results are presented for life expectancy change in time series studies. Determination of the corresponding total number of attributable deaths (as opposed to the number of observed deaths) is shown to be problematic. The time variation of mortality after a change in exposure is shown to depend on the processes by which the body can repair air pollution damage, in particular on their time constants. Hypothetical results are presented for repair models that are plausible in view of the available intervention studies of air pollution and of smoking cessation. If these repair models can also be assumed for acute effects, the results of cohort studies are compatible with those of time series. The proposed life expectancy framework provides information on the life expectancy change in time series studies, and it clarifies the relation between the results of time series, intervention, and cohort studies.
On demand processing of climate station sensor data
NASA Astrophysics Data System (ADS)
Wöllauer, Stephan; Forteva, Spaska; Nauss, Thomas
2015-04-01
Large sets of climate stations with several sensors produce big amounts of finegrained time series data. To gain value of this data, further processing and aggregation is needed. We present a flexible system to process the raw data on demand. Several aspects need to be considered to process the raw data in a way that scientists can use the processed data conveniently for their specific research interests. First of all, it is not feasible to pre-process the data in advance because of the great variety of ways it can be processed. Therefore, in this approach only the raw measurement data is archived in a database. When a scientist requires some time series, the system processes the required raw data according to the user-defined request. Based on the type of measurement sensor, some data validation is needed, because the climate station sensors may produce erroneous data. Currently, three validation methods are integrated in the on demand processing system and are optionally selectable. The most basic validation method checks if measurement values are within a predefined range of possible values. For example, it may be assumed that an air temperature sensor measures values within a range of -40 °C to +60 °C. Values outside of this range are considered as a measurement error by this validation method and consequently rejected. An other validation method checks for outliers in the stream of measurement values by defining a maximum change rate between subsequent measurement values. The third validation method compares measurement data to the average values of neighboring stations and rejects measurement values with a high variance. These quality checks are optional, because especially extreme climatic values may be valid but rejected by some quality check method. An other important task is the preparation of measurement data in terms of time. The observed stations measure values in intervals of minutes to hours. Often scientists need a coarser temporal resolution (days, months, years). Therefore, the interval of time aggregation is selectable for the processing. For some use cases it is desirable that the resulting time series are as continuous as possible. To meet these requirements, the processing system includes techniques to fill gaps of missing values by interpolating measurement values with data from adjacent stations using available contemporaneous measurements from the respective stations as training datasets. Alongside processing of sensor values, we created interactive visualization techniques to get a quick overview of a big amount of archived time series data.
NASA Astrophysics Data System (ADS)
De Dreuzy, J. R.; Marçais, J.; Moatar, F.; Minaudo, C.; Courtois, Q.; Thomas, Z.; Longuevergne, L.; Pinay, G.
2017-12-01
Integration of hydrological and biogeochemical processes led to emerging patterns at the catchment scale. Monitoring in rivers reflects the aggregation of these effects. While discharge time series have been measured for decades, high frequency water quality monitoring in rivers now provides prominent measurements to characterize the interplay between hydrological and biogeochemical processes, especially to infer the processes that happen in the heterogeneous subsurface. However, we still lack frameworks to relate observed patterns to specific processes, because of the "organized complexity" of hydrological systems. Indeed, it is unclear what controls, for example, patterns in concentration-discharge (C/Q) relationships due to non-linear processes and hysteresis effects. Here we develop a non-intensive process-based model to test how the integration of different landforms (i.e. geological heterogeneities and structures, topographical features) with different biogeochemical reactivity assumptions (e.g. reactive zone locations) can shape the overall water quality time series. With numerical experiments, we investigate typical patterns in high frequency C/Q relationships. In headwater basins, we found that typical hysteretic patterns in C/Q relationships observed in data time series can be attributed to differences in water and solute locations stored across the hillslope. At the catchment scale though, these effects tend to average out by integrating contrasted hillslopes' landforms. Together these results suggest that information contained in headwater water quality monitoring can be used to understand how hydrochemical processes determine downstream conditions.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wang, Jun
2017-09-01
In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.
Multivariate multiscale entropy of financial markets
NASA Astrophysics Data System (ADS)
Lu, Yunfan; Wang, Jun
2017-11-01
In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.
Multivariable nonlinear analysis of foreign exchange rates
NASA Astrophysics Data System (ADS)
Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo
2003-05-01
We analyze the multivariable time series of foreign exchange rates. These are price movements that have often been analyzed, and dealing time intervals and spreads between bid and ask prices. Considering dealing time intervals as event timing such as neurons’ firings, we use raster plots (RPs) and peri-stimulus time histograms (PSTHs) which are popular methods in the field of neurophysiology. Introducing special processings to obtaining RPs and PSTHs time histograms for analyzing exchange rates time series, we discover that there exists dynamical interaction among three variables. We also find that adopting multivariables leads to improvements of prediction accuracy.
NASA Astrophysics Data System (ADS)
Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine
2015-04-01
Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a.s.l.). Higher order autoregressive processes are important in the isotope time series analysis. Our results show that the widely used trend analysis with only the first order autocorrelation adjustment may not adequately take account of the high order autocorrelated processes in the stable isotope series. The investigated time series analysis method including higher autocorrelation and external climate variable adjustments is shown to be a better alternative.
Inflow forecasting model construction with stochastic time series for coordinated dam operation
NASA Astrophysics Data System (ADS)
Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.
2014-12-01
Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
Code of Federal Regulations, 2011 CFR
2011-01-01
... test) during a specific series of interactions, including the pretest interview, the use of the polygraph instrument to collect physiological data from the examinee while presenting a series of tests, the... a CI evaluation each time the selection process occurs. Regular and routine means access by...
Code of Federal Regulations, 2012 CFR
2012-01-01
... test) during a specific series of interactions, including the pretest interview, the use of the polygraph instrument to collect physiological data from the examinee while presenting a series of tests, the... a CI evaluation each time the selection process occurs. Regular and routine means access by...
Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo
2014-07-01
Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Stifter, Cynthia A.; Rovine, Michael
2015-01-01
The focus of the present longitudinal study, to examine mother-infant interaction during the administration of immunizations at 2 and 6?months of age, used hidden Markov modelling, a time series approach that produces latent states to describe how mothers and infants work together to bring the infant to a soothed state. Results revealed a…
Scott L. Powell; Warren B. Cohen; Sean P. Healey; Robert E. Kennedy; Gretchen G. Moisen; Kenneth B. Pierce; Janet L. Ohmann
2010-01-01
Spatially and temporally explicit knowledge of biomass dynamics at broad scales is critical to understanding how forest disturbance and regrowth processes influence carbon dynamics. We modeled live, aboveground tree biomass using Forest Inventory and Analysis (FIA) field data and applied the models to 20+ year time-series of Landsat satellite imagery to...
Comparison Groups in Short Interrupted Time-Series: An Illustration Evaluating No Child Left Behind
ERIC Educational Resources Information Center
Wong, Manyee; Cook, Thomas D.; Steiner, Peter M.
2009-01-01
Interrupted time-series (ITS) are often used to assess the causal effect of a planned or even unplanned shock introduced into an on-going process. The pre-intervention slope is supposed to index the causal counterfactual, and deviations from it in mean, slope or variance are used to indicate an effect. However, a secure causal inference is only…
Kerlin, Aaron M; Lindsley, Tara A
2008-08-15
Time-lapse imaging of living neurons both in vivo and in vitro has revealed that the growth of axons and dendrites is highly dynamic and characterized by alternating periods of extension and retraction. These growth dynamics are associated with important features of neuronal development and are differentially affected by experimental treatments, but the underlying cellular mechanisms are poorly understood. NeuroRhythmics was developed to semi-automate specific quantitative tasks involved in analysis of two-dimensional time-series images of processes that exhibit saltatory elongation. This software provides detailed information on periods of growth and nongrowth that it identifies by transitions in elongation (i.e. initiation time, average rate, duration) and information regarding the overall pattern of saltatory growth (i.e. time of pattern onset, frequency of transitions, relative time spent in a state of growth vs. nongrowth). Plots and numeric output are readily imported into other applications. The user has the option to specify criteria for identifying transitions in growth behavior, which extends the potential application of the software to neurons of different types or developmental stage and to other time-series phenomena that exhibit saltatory dynamics. NeuroRhythmics will facilitate mechanistic studies of periodic axonal and dendritic growth in neurons.
Faes, Luca; Nollo, Giandomenico; Porta, Alberto
2012-03-01
The complexity of the short-term cardiovascular control prompts for the introduction of multivariate (MV) nonlinear time series analysis methods to assess directional interactions reflecting the underlying regulatory mechanisms. This study introduces a new approach for the detection of nonlinear Granger causality in MV time series, based on embedding the series by a sequential, non-uniform procedure, and on estimating the information flow from one series to another by means of the corrected conditional entropy. The approach is validated on short realizations of linear stochastic and nonlinear deterministic processes, and then evaluated on heart period, systolic arterial pressure and respiration variability series measured from healthy humans in the resting supine position and in the upright position after head-up tilt. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.
2012-04-01
The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 years, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterise the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. Shortly after the publication of this method an eruption in the island of El Hierro took place for the first time in historical times, supporting our method and contributing towards the validation of our results.
The Version 8.6 SBUV Ozone Data Record: An Overview
NASA Technical Reports Server (NTRS)
McPeters, Richard D.; Bhartia, P. K.; Haffner, D.; Labow, Gordon J.; Flynn, Larry
2013-01-01
Under a NASA program to produce long-term data records from instruments on multiple satellites, data from a series of nine Solar Backscatter Ultraviolet (SBUV and SBUV2) instruments have been re-processed to create a coherent ozone time series. Data from the BUV instrument on Nimbus 4, SBUV on Nimbus 7, and SBUV2 instruments on NOAA 9, 11, 14, 16, 17, 18, and 19 covering the period 1970-1972 and 1979-2011 were used to create a long-term data set. The goal is an ozone Earth Science Data Record - a consistent, calibrated ozone time series that can be used for trend analyses and other studies. In order to create this ozone data set, the radiances were adjusted and used to re-process the entire data records for each of the nine instruments. Inter-instrument comparisons during periods of overlap as well as comparisons with data from other satellite and ground-based instruments were used to evaluate the consistency of the record and make calibration adjustments as needed. Additional improvements in this version 8.6 processing included the use of the Brion, Daumont, and Malicet ozone cross sections, and a cloud-height climatology derived from Aura OMI measurements. Validation of the re-processed ozone shows that total column ozone is consistent with the Brewer Dobson network to within about 1 for the new time series. Comparisons with MLS, SAGE, sondes, and lidar show that ozone at individual levels in the stratosphere is generally consistent to within 5 percent.
Detecting the sampling rate through observations
NASA Astrophysics Data System (ADS)
Shoji, Isao
2018-09-01
This paper proposes a method to detect the sampling rate of discrete time series of diffusion processes. Using the maximum likelihood estimates of the parameters of a diffusion process, we establish a criterion based on the Kullback-Leibler divergence and thereby estimate the sampling rate. Simulation studies are conducted to check whether the method can detect the sampling rates from data and their results show a good performance in the detection. In addition, the method is applied to a financial time series sampled on daily basis and shows the detected sampling rate is different from the conventional rates.
Understanding the source of multifractality in financial markets
NASA Astrophysics Data System (ADS)
Barunik, Jozef; Aste, Tomaso; Di Matteo, T.; Liu, Ruipeng
2012-09-01
In this paper, we use the generalized Hurst exponent approach to study the multi-scaling behavior of different financial time series. We show that this approach is robust and powerful in detecting different types of multi-scaling. We observe a puzzling phenomenon where an apparent increase in multifractality is measured in time series generated from shuffled returns, where all time-correlations are destroyed, while the return distributions are conserved. This effect is robust and it is reproduced in several real financial data including stock market indices, exchange rates and interest rates. In order to understand the origin of this effect we investigate different simulated time series by means of the Markov switching multifractal model, autoregressive fractionally integrated moving average processes with stable innovations, fractional Brownian motion and Levy flights. Overall we conclude that the multifractality observed in financial time series is mainly a consequence of the characteristic fat-tailed distribution of the returns and time-correlations have the effect to decrease the measured multifractality.
A comparison of the stochastic and machine learning approaches in hydrologic time series forecasting
NASA Astrophysics Data System (ADS)
Kim, T.; Joo, K.; Seo, J.; Heo, J. H.
2016-12-01
Hydrologic time series forecasting is an essential task in water resources management and it becomes more difficult due to the complexity of runoff process. Traditional stochastic models such as ARIMA family has been used as a standard approach in time series modeling and forecasting of hydrological variables. Due to the nonlinearity in hydrologic time series data, machine learning approaches has been studied with the advantage of discovering relevant features in a nonlinear relation among variables. This study aims to compare the predictability between the traditional stochastic model and the machine learning approach. Seasonal ARIMA model was used as the traditional time series model, and Random Forest model which consists of decision tree and ensemble method using multiple predictor approach was applied as the machine learning approach. In the application, monthly inflow data from 1986 to 2015 of Chungju dam in South Korea were used for modeling and forecasting. In order to evaluate the performances of the used models, one step ahead and multi-step ahead forecasting was applied. Root mean squared error and mean absolute error of two models were compared.
NASA Astrophysics Data System (ADS)
Loredo, Thomas; Budavari, Tamas; Scargle, Jeffrey D.
2018-01-01
This presentation provides an overview of open-source software packages addressing two challenging classes of astrostatistics problems. (1) CUDAHM is a C++ framework for hierarchical Bayesian modeling of cosmic populations, leveraging graphics processing units (GPUs) to enable applying this computationally challenging paradigm to large datasets. CUDAHM is motivated by measurement error problems in astronomy, where density estimation and linear and nonlinear regression must be addressed for populations of thousands to millions of objects whose features are measured with possibly complex uncertainties, potentially including selection effects. An example calculation demonstrates accurate GPU-accelerated luminosity function estimation for simulated populations of $10^6$ objects in about two hours using a single NVIDIA Tesla K40c GPU. (2) Time Series Explorer (TSE) is a collection of software in Python and MATLAB for exploratory analysis and statistical modeling of astronomical time series. It comprises a library of stand-alone functions and classes, as well as an application environment for interactive exploration of times series data. The presentation will summarize key capabilities of this emerging project, including new algorithms for analysis of irregularly-sampled time series.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.
Nonlinear time-series analysis of current signal in cathodic contact glow discharge electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allagui, Anis, E-mail: aallagui@sharjah.ac.ae; Abdelkareem, Mohammad Ali; Rojas, Andrea Espinel
In the standard two-electrode configuration employed in electrolytic process, when the control dc voltage is brought to a critical value, the system undergoes a transition from conventional electrolysis to contact glow discharge electrolysis (CGDE), which has also been referred to as liquid-submerged micro-plasma, glow discharge plasma electrolysis, electrode effect, electrolytic plasma, etc. The light-emitting process is associated with the development of an irregular and erratic current time-series which has been arbitrarily labelled as “random,” and thus dissuaded further research in this direction. Here, we examine the current time-series signals measured in cathodic CGDE configuration in a concentrated KOH solution atmore » different dc bias voltages greater than the critical voltage. We show that the signals are, in fact, not random according to the NIST SP. 800-22 test suite definition. We also demonstrate that post-processing low-pass filtered sequences requires less time than the native as-measured sequences, suggesting a superposition of low frequency chaotic fluctuations and high frequency behaviors (which may be produced by more than one possible source of entropy). Using an array of nonlinear time-series analyses for dynamical systems, i.e., the computation of largest Lyapunov exponents and correlation dimensions, and re-construction of phase portraits, we found that low-pass filtered datasets undergo a transition from quasi-periodic to chaotic to quasi-hyper-chaotic behavior, and back again to chaos when the voltage controlling-parameter is increased. The high frequency part of the signals is discussed in terms of highly nonlinear turbulent motion developed around the working electrode.« less
AnClim and ProClimDB software for data quality control and homogenization of time series
NASA Astrophysics Data System (ADS)
Stepanek, Petr
2015-04-01
During the last decade, a software package consisting of AnClim, ProClimDB and LoadData for processing (mainly climatological) data has been created. This software offers a complex solution for processing of climatological time series, starting from loading the data from a central database (e.g. Oracle, software LoadData), through data duality control and homogenization to time series analysis, extreme value evaluations and RCM outputs verification and correction (ProClimDB and AnClim software). The detection of inhomogeneities is carried out on a monthly scale through the application of AnClim, or newly by R functions called from ProClimDB, while quality control, the preparation of reference series and the correction of found breaks is carried out by the ProClimDB software. The software combines many statistical tests, types of reference series and time scales (monthly, seasonal and annual, daily and sub-daily ones). These can be used to create an "ensemble" of solutions, which may be more reliable than any single method. AnClim software is suitable for educational purposes: e.g. for students getting acquainted with methods used in climatology. Built-in graphical tools and comparison of various statistical tests help in better understanding of a given method. ProClimDB is, on the contrary, tool aimed for processing of large climatological datasets. Recently, functions from R may be used within the software making it more efficient in data processing and capable of easy inclusion of new methods (when available under R). An example of usage is easy comparison of methods for correction of inhomogeneities in daily data (HOM of Paul Della-Marta, SPLIDHOM method of Olivier Mestre, DAP - own method, QM of Xiaolan Wang and others). The software is available together with further information on www.climahom.eu . Acknowledgement: this work was partially funded by the project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248.
NASA Astrophysics Data System (ADS)
Eberle, J.; Schmullius, C.
2017-12-01
Increasing archives of global satellite data present a new challenge to handle multi-source satellite data in a user-friendly way. Any user is confronted with different data formats and data access services. In addition the handling of time-series data is complex as an automated processing and execution of data processing steps is needed to supply the user with the desired product for a specific area of interest. In order to simplify the access to data archives of various satellite missions and to facilitate the subsequent processing, a regional data and processing middleware has been developed. The aim of this system is to provide standardized and web-based interfaces to multi-source time-series data for individual regions on Earth. For further use and analysis uniform data formats and data access services are provided. Interfaces to data archives of the sensor MODIS (NASA) as well as the satellites Landsat (USGS) and Sentinel (ESA) have been integrated in the middleware. Various scientific algorithms, such as the calculation of trends and breakpoints of time-series data, can be carried out on the preprocessed data on the basis of uniform data management. Jupyter Notebooks are linked to the data and further processing can be conducted directly on the server using Python and the statistical language R. In addition to accessing EO data, the middleware is also used as an intermediary between the user and external databases (e.g., Flickr, YouTube). Standardized web services as specified by OGC are provided for all tools of the middleware. Currently, the use of cloud services is being researched to bring algorithms to the data. As a thematic example, an operational monitoring of vegetation phenology is being implemented on the basis of various optical satellite data and validation data from the German Weather Service. Other examples demonstrate the monitoring of wetlands focusing on automated discovery and access of Landsat and Sentinel data for local areas.
A geodetic matched-filter search for slow slip with application to the Mexico subduction zone
NASA Astrophysics Data System (ADS)
Rousset, B.; Campillo, M.; Lasserre, C.; Frank, W.; Cotte, N.; Walpersdorf, A.; Socquet, A.; Kostoglodov, V.
2017-12-01
Since the discovery of slow slip events, many methods have been successfully applied to model obvious transient events in geodetic time series, such as the widely used network strain filter. Independent seismological observations of tremors or low frequency earthquakes and repeating earthquakes provide evidence of low amplitude slow deformation but do not always coincide with clear occurrences of transient signals in geodetic time series. Here, we aim to extract the signal corresponding to slow slips hidden in the noise of GPS time series, without using information from independent datasets. We first build a library of synthetic slow slip event templates by assembling a source function with Green's functions for a discretized fault. We then correlate the templates with post-processed GPS time series. Once the events have been detected in time, we estimate their duration T and magnitude Mw by modelling a weighted stack of GPS time series. An analysis of synthetic time series shows that this method is able to resolve the correct timing, location, T and Mw of events larger than Mw 6.0 in the context of the Mexico subduction zone. Applied on a real data set of 29 GPS time series in the Guerrero area from 2005 to 2014, this technique allows us to detect 28 transient events from Mw 6.3 to 7.2 with durations that range from 3 to 39 days. These events have a dominant recurrence time of 40 days and are mainly located at the down dip edges of the Mw > 7.5 SSEs.
2017-10-01
networks of the brain responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased...4 For each subject, the rsFMRI voxel time-series were temporally shifted to account for differences in slice acquisition times...responsible for visual processing, mood regulation, motor coordination, sensory processing, and language command, but increased connectivity in
MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS. (1) Quality control
NASA Astrophysics Data System (ADS)
Peña-Angulo, Dhais; Cortesi, Nicola; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; González-Hidalgo, José Carlos
2014-05-01
The HIDROCAES project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is focused on the high resolution in the Spanish continental land of the warming processes during the 1951-2010. To do that the Department of Geography (University of Zaragoza, Spain), the Hydrometeorological Service (Brno Division, Chezck Republic) and the ISAC-CNR (Bologna, Italy) are developing the new dataset MOTEDAS (MOnthly TEmperature DAtabase of Spain), from which we present a collection of poster to show (1) the general structure of dataset and quality control; (2) the analyses of spatial correlation of monthly mean values of maximum (Tmax) and minimum (Tmin temperature; (3) the reconstruction processes of series and high resolution grid developing; (4) the first initial results of trend analyses of annual, seasonal and monthly range mean values. MOTEDAS has been created after exhaustive analyses and quality control of the original digitalized data of the Spanish National Meteorological Agency (Agencia Estatal de Meteorología, AEMET). Quality control was applied without any prior reconstruction, i.e. on original series. Then, from the total amount of series stored at AEMet archives (more than 4680) we selected only those series with at least 10 years of data (i.e. 120 months, 3066 series) to apply a quality control and reconstruction processes (see Poster MOTEDAS 3). Length of series was Tmin, upper and lower thresholds of absolute data, etc), and by comparison with reference series (see Poster MOTEDAS 3, about reconstruction). Anomalous data were considered when difference between Candidate and Reference series were higher than three times the interquartile distance. The total amount of monthly suspicious data recognized and discarded at the end of this analyses was 7832 data for Tmin, and 8063 for Tmax data; they represent less than 0,8% of original total monthly data, for both Tmax and Tmin. No spatial pattern was detected in the suspicious data; month by month Tmin shows maximum detection in summer months, while Tmax does not show any monthly pattern. Secondly, the homogeneity analyses was performed on the list of series free of anomalous data by using an arrays of test (SNHT, Bivariate, T de Student and Pettit) after new reference series calculated with data free of anomalous. The tests were applied at monthly, seasonal and annual scale (i.e. 17 times per method). Statistical inhomogeneity detections were accepted as follows: Three annual detections (monthly, seasonal, annual) must be found in SNHT or Bivariate test. The total amount of detections by the four tests was greater than 5% of the total possible detection per year. Before any correction we examined the Candidate and reference series chart. Proclim and Anclim software were used during all the processes The total amount of series affected by inhomogeneities was 1013 (Tmax) and 1011 (Tmin), i.e. 1/3 of original series was considered as inhomogeneous. We notice that identified inhomogeneous series in Tmax and Tmin usually do not coincide. This apparently small amount of series compared with previous work could be originated because of the mean length of series is around 15-20 years. References. Stepánek P. 2008a. AnClim - software for time series analysis (for Windows 95/NT). Department of Geography, Faculty of Natural Sciences, MU, Brno, 1.47 B. Stepánek P.. 2008b. ProClimDB - Software for Processing Climatological Datasets. CHMI, Regional office, Brno.
NASA Astrophysics Data System (ADS)
Gajda, Janusz; Wyłomańska, Agnieszka; Zimroz, Radosław
2016-12-01
Many real data exhibit behavior adequate to subdiffusion processes. Very often it is manifested by so-called ;trapping events;. The visible evidence of subdiffusion we observe not only in financial time series but also in technical data. In this paper we propose a model which can be used for description of such kind of data. The model is based on the continuous time autoregressive time series with stable noise delayed by the infinitely divisible inverse subordinator. The proposed system can be applied to real datasets with short-time dependence, visible jumps and mentioned periods of stagnation. In this paper we extend the theoretical considerations in analysis of subordinated processes and propose a new model that exhibits mentioned properties. We concentrate on the main characteristics of the examined subordinated process expressed mainly in the language of the measures of dependence which are main tools used in statistical investigation of real data. We present also the simulation procedure of the considered system and indicate how to estimate its parameters. The theoretical results we illustrate by the analysis of real technical data.
Models and signal processing for an implanted ethanol bio-sensor.
Han, Jae-Joon; Doerschuk, Peter C; Gelfand, Saul B; O'Connor, Sean J
2008-02-01
The understanding of drinking patterns leading to alcoholism has been hindered by an inability to unobtrusively measure ethanol consumption over periods of weeks to months in the community environment. An implantable ethanol sensor is under development using microelectromechanical systems technology. For safety and user acceptability issues, the sensor will be implanted subcutaneously and, therefore, measure peripheral-tissue ethanol concentration. Determining ethanol consumption and kinetics in other compartments from the time course of peripheral-tissue ethanol concentration requires sophisticated signal processing based on detailed descriptions of the relevant physiology. A statistical signal processing system based on detailed models of the physiology and using extended Kalman filtering and dynamic programming tools is described which can estimate the time series of ethanol concentration in blood, liver, and peripheral tissue and the time series of ethanol consumption based on peripheral-tissue ethanol concentration measurements.
Characterizing time series via complexity-entropy curves
NASA Astrophysics Data System (ADS)
Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K.
2017-06-01
The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q -complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.
Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang
2014-10-01
Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Doin, Marie-Pierre; Lodge, Felicity; Guillaso, Stephane; Jolivet, Romain; Lasserre, Cecile; Ducret, Gabriel; Grandin, Raphael; Pathier, Erwan; Pinel, Virginie
2012-01-01
We assemble a processing chain that handles InSAR computation from raw data to time series analysis. A large part of the chain (from raw data to geocoded unwrapped interferograms) is based on ROI PAC modules (Rosen et al., 2004), with original routines rearranged and combined with new routines to process in series and in a common radar geometry all SAR images and interferograms. A new feature of the software is the range-dependent spectral filtering to improve coherence in interferograms with long spatial baselines. Additional components include a module to estimate and remove digital elevation model errors before unwrapping, a module to mitigate the effects of the atmospheric phase delay and remove residual orbit errors, and a module to construct the phase change time series from small baseline interferograms (Berardino et al. 2002). This paper describes the main elements of the processing chain and presents an example of application of the software using a data set from the ENVISAT mission covering the Etna volcano.
Demanuele, Charmaine; Bähner, Florian; Plichta, Michael M; Kirsch, Peter; Tost, Heike; Meyer-Lindenberg, Andreas; Durstewitz, Daniel
2015-01-01
Multivariate pattern analysis can reveal new information from neuroimaging data to illuminate human cognition and its disturbances. Here, we develop a methodological approach, based on multivariate statistical/machine learning and time series analysis, to discern cognitive processing stages from functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) time series. We apply this method to data recorded from a group of healthy adults whilst performing a virtual reality version of the delayed win-shift radial arm maze (RAM) task. This task has been frequently used to study working memory and decision making in rodents. Using linear classifiers and multivariate test statistics in conjunction with time series bootstraps, we show that different cognitive stages of the task, as defined by the experimenter, namely, the encoding/retrieval, choice, reward and delay stages, can be statistically discriminated from the BOLD time series in brain areas relevant for decision making and working memory. Discrimination of these task stages was significantly reduced during poor behavioral performance in dorsolateral prefrontal cortex (DLPFC), but not in the primary visual cortex (V1). Experimenter-defined dissection of time series into class labels based on task structure was confirmed by an unsupervised, bottom-up approach based on Hidden Markov Models. Furthermore, we show that different groupings of recorded time points into cognitive event classes can be used to test hypotheses about the specific cognitive role of a given brain region during task execution. We found that whilst the DLPFC strongly differentiated between task stages associated with different memory loads, but not between different visual-spatial aspects, the reverse was true for V1. Our methodology illustrates how different aspects of cognitive information processing during one and the same task can be separated and attributed to specific brain regions based on information contained in multivariate patterns of voxel activity.
Evolution of the Sunspot Number and Solar Wind B Time Series
NASA Astrophysics Data System (ADS)
Cliver, Edward W.; Herbst, Konstantin
2018-03-01
The past two decades have witnessed significant changes in our knowledge of long-term solar and solar wind activity. The sunspot number time series (1700-present) developed by Rudolf Wolf during the second half of the 19th century was revised and extended by the group sunspot number series (1610-1995) of Hoyt and Schatten during the 1990s. The group sunspot number is significantly lower than the Wolf series before ˜1885. An effort from 2011-2015 to understand and remove differences between these two series via a series of workshops had the unintended consequence of prompting several alternative constructions of the sunspot number. Thus it has been necessary to expand and extend the sunspot number reconciliation process. On the solar wind side, after a decade of controversy, an ISSI International Team used geomagnetic and sunspot data to obtain a high-confidence time series of the solar wind magnetic field strength (B) from 1750-present that can be compared with two independent long-term (> ˜600 year) series of annual B-values based on cosmogenic nuclides. In this paper, we trace the twists and turns leading to our current understanding of long-term solar and solar wind activity.
Maa, Peter S.
1978-01-01
A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.
An evaluation of Dynamic TOPMODEL for low flow simulation
NASA Astrophysics Data System (ADS)
Coxon, G.; Freer, J. E.; Quinn, N.; Woods, R. A.; Wagener, T.; Howden, N. J. K.
2015-12-01
Hydrological models are essential tools for drought risk management, often providing input to water resource system models, aiding our understanding of low flow processes within catchments and providing low flow predictions. However, simulating low flows and droughts is challenging as hydrological systems often demonstrate threshold effects in connectivity, non-linear groundwater contributions and a greater influence of water resource system elements during low flow periods. These dynamic processes are typically not well represented in commonly used hydrological models due to data and model limitations. Furthermore, calibrated or behavioural models may not be effectively evaluated during more extreme drought periods. A better understanding of the processes that occur during low flows and how these are represented within models is thus required if we want to be able to provide robust and reliable predictions of future drought events. In this study, we assess the performance of dynamic TOPMODEL for low flow simulation. Dynamic TOPMODEL was applied to a number of UK catchments in the Thames region using time series of observed rainfall and potential evapotranspiration data that captured multiple historic droughts over a period of several years. The model performance was assessed against the observed discharge time series using a limits of acceptability framework, which included uncertainty in the discharge time series. We evaluate the models against multiple signatures of catchment low-flow behaviour and investigate differences in model performance between catchments, model diagnostics and for different low flow periods. We also considered the impact of surface water and groundwater abstractions and discharges on the observed discharge time series and how this affected the model evaluation. From analysing the model performance, we suggest future improvements to Dynamic TOPMODEL to improve the representation of low flow processes within the model structure.
NASA Astrophysics Data System (ADS)
Baldysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; Kroszczynski, Krzysztof; Araszkiewicz, Andrzej
2015-04-01
In recent years, the GNSS system began to play an increasingly important role in the research related to the climate monitoring. Based on the GPS system, which has the longest operational capability in comparison with other systems, and a common computational strategy applied to all observations, long and homogeneous ZTD (Zenith Tropospheric Delay) time series were derived. This paper presents results of analysis of 16-year ZTD time series obtained from the EPN (EUREF Permanent Network) reprocessing performed by the Military University of Technology. To maintain the uniformity of data, analyzed period of time (1998-2013) is exactly the same for all stations - observations carried out before 1998 were removed from time series and observations processed using different strategy were recalculated according to the MUT LAC approach. For all 16-year time series (59 stations) Lomb-Scargle periodograms were created to obtain information about the oscillations in ZTD time series. Due to strong annual oscillations which disturb the character of oscillations with smaller amplitude and thus hinder their investigation, Lomb-Scargle periodograms for time series with the deleted annual oscillations were created in order to verify presence of semi-annual, ter-annual and quarto-annual oscillations. Linear trend and seasonal components were estimated using LSE (Least Square Estimation) and Mann-Kendall trend test were used to confirm the presence of linear trend designated by LSE method. In order to verify the effect of the length of time series on the estimated size of the linear trend, comparison between two different length of ZTD time series was performed. To carry out a comparative analysis, 30 stations which have been operating since 1996 were selected. For these stations two periods of time were analyzed: shortened 16-year (1998-2013) and full 18-year (1996-2013). For some stations an additional two years of observations have significant impact on changing the size of linear trend - only for 4 stations the size of linear trend was exactly the same for two periods of time. In one case, the nature of the trend has changed from negative (16-year time series) for positive (18-year time series). The average value of a linear trends for 16-year time series is 1,5 mm/decade, but their spatial distribution is not uniform. The average value of linear trends for all 18-year time series is 2,0 mm/decade, with better spatial distribution and smaller discrepancies.
Measurement of cardiac output from dynamic pulmonary circulation time CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Seonghwan, E-mail: Seonghwan.Yee@Beaumont.edu; Scalzetti, Ernest M.
Purpose: To introduce a method of estimating cardiac output from the dynamic pulmonary circulation time CT that is primarily used to determine the optimal time window of CT pulmonary angiography (CTPA). Methods: Dynamic pulmonary circulation time CT series, acquired for eight patients, were retrospectively analyzed. The dynamic CT series was acquired, prior to the main CTPA, in cine mode (1 frame/s) for a single slice at the level of the main pulmonary artery covering the cross sections of ascending aorta (AA) and descending aorta (DA) during the infusion of iodinated contrast. The time series of contrast changes obtained for DA,more » which is the downstream of AA, was assumed to be related to the time series for AA by the convolution with a delay function. The delay time constant in the delay function, representing the average time interval between the cross sections of AA and DA, was determined by least square error fitting between the convoluted AA time series and the DA time series. The cardiac output was then calculated by dividing the volume of the aortic arch between the cross sections of AA and DA (estimated from the single slice CT image) by the average time interval, and multiplying the result by a correction factor. Results: The mean cardiac output value for the six patients was 5.11 (l/min) (with a standard deviation of 1.57 l/min), which is in good agreement with the literature value; the data for the other two patients were too noisy for processing. Conclusions: The dynamic single-slice pulmonary circulation time CT series also can be used to estimate cardiac output.« less
A discrete wavelet spectrum approach for identifying non-monotonic trends in hydroclimate data
NASA Astrophysics Data System (ADS)
Sang, Yan-Fang; Sun, Fubao; Singh, Vijay P.; Xie, Ping; Sun, Jian
2018-01-01
The hydroclimatic process is changing non-monotonically and identifying its trends is a great challenge. Building on the discrete wavelet transform theory, we developed a discrete wavelet spectrum (DWS) approach for identifying non-monotonic trends in hydroclimate time series and evaluating their statistical significance. After validating the DWS approach using two typical synthetic time series, we examined annual temperature and potential evaporation over China from 1961-2013 and found that the DWS approach detected both the warming
and the warming hiatus
in temperature, and the reversed changes in potential evaporation. Further, the identified non-monotonic trends showed stable significance when the time series was longer than 30 years or so (i.e. the widely defined climate
timescale). The significance of trends in potential evaporation measured at 150 stations in China, with an obvious non-monotonic trend, was underestimated and was not detected by the Mann-Kendall test. Comparatively, the DWS approach overcame the problem and detected those significant non-monotonic trends at 380 stations, which helped understand and interpret the spatiotemporal variability in the hydroclimatic process. Our results suggest that non-monotonic trends of hydroclimate time series and their significance should be carefully identified, and the DWS approach proposed has the potential for wide use in the hydrological and climate sciences.
Coastline detection with time series of SAR images
NASA Astrophysics Data System (ADS)
Ao, Dongyang; Dumitru, Octavian; Schwarz, Gottfried; Datcu, Mihai
2017-10-01
For maritime remote sensing, coastline detection is a vital task. With continuous coastline detection results from satellite image time series, the actual shoreline, the sea level, and environmental parameters can be observed to support coastal management and disaster warning. Established coastline detection methods are often based on SAR images and wellknown image processing approaches. These methods involve a lot of complicated data processing, which is a big challenge for remote sensing time series. Additionally, a number of SAR satellites operating with polarimetric capabilities have been launched in recent years, and many investigations of target characteristics in radar polarization have been performed. In this paper, a fast and efficient coastline detection method is proposed which comprises three steps. First, we calculate a modified correlation coefficient of two SAR images of different polarization. This coefficient differs from the traditional computation where normalization is needed. Through this modified approach, the separation between sea and land becomes more prominent. Second, we set a histogram-based threshold to distinguish between sea and land within the given image. The histogram is derived from the statistical distribution of the polarized SAR image pixel amplitudes. Third, we extract continuous coastlines using a Canny image edge detector that is rather immune to speckle noise. Finally, the individual coastlines derived from time series of .SAR images can be checked for changes.
Search for Correlated Fluctuations in the Beta+ Decay of Na-22
NASA Astrophysics Data System (ADS)
Silverman, M. P.; Strange, W.
2008-10-01
Claims for a ``cosmogenic'' force that correlates otherwise independent stochastic events have been made for at least 10 years, based largely on visual inspection of time series of histograms whose shapes were interpreted as suggestive of recurrent patterns with semi-diurnal, diurnal, and monthly periods. Building on our earlier work to test randomness of different nuclear decay processes, we have searched for correlations in the time-series of coincident positron-electron annihilations deriving from beta+ decay of Na-22. Disintegrations were counted within a narrow time window over a period of 7 days, leading to a time series of more than 1 million events. Statistical tests were performed on the raw time series, its correlation function, and its Fourier transform to search for cyclic correlations indicative of quantum-mechanical violating deviations from Poisson statistics. The time series was then partitioned into a sequence of 167 ``bags'' each of 8192 events. A histogram was made of the events of each bag, where contiguous frequency classes differed by a single count. The chronological sequence of histograms was then tested for correlations within classes. In all cases the results of the tests were in accord with statistical control, giving no evidence of correlated fluctuations.
Modeling BAS Dysregulation in Bipolar Disorder.
Hamaker, Ellen L; Grasman, Raoul P P P; Kamphuis, Jan Henk
2016-08-01
Time series analysis is a technique that can be used to analyze the data from a single subject and has great potential to investigate clinically relevant processes like affect regulation. This article uses time series models to investigate the assumed dysregulation of affect that is associated with bipolar disorder. By formulating a number of alternative models that capture different kinds of theoretically predicted dysregulation, and by comparing these in both bipolar patients and controls, we aim to illustrate the heuristic potential this method of analysis has for clinical psychology. We argue that, not only can time series analysis elucidate specific maladaptive dynamics associated with psychopathology, it may also be clinically applied in symptom monitoring and the evaluation of therapeutic interventions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Code of Federal Regulations, 2012 CFR
2012-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Code of Federal Regulations, 2010 CFR
2010-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Code of Federal Regulations, 2014 CFR
2014-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Code of Federal Regulations, 2013 CFR
2013-07-01
... washing process which is designed and operated at all times such that the product is saturated with water. ... series of idlers and routed around a pulley at each end. Bucket elevator means a conveying device of... (screens) in series, and retaining oversize material on the mesh surfaces (screens). Grizzly feeders...
Toward a comprehensive landscape vegetation monitoring framework
NASA Astrophysics Data System (ADS)
Kennedy, Robert; Hughes, Joseph; Neeti, Neeti; Larrue, Tara; Gregory, Matthew; Roberts, Heather; Ohmann, Janet; Kane, Van; Kane, Jonathan; Hooper, Sam; Nelson, Peder; Cohen, Warren; Yang, Zhiqiang
2016-04-01
Blossoming Earth observation resources provide great opportunity to better understand land vegetation dynamics, but also require new techniques and frameworks to exploit their potential. Here, I describe several parallel projects that leverage time-series Landsat imagery to describe vegetation dynamics at regional and continental scales. At the core of these projects are the LandTrendr algorithms, which distill time-series earth observation data into periods of consistent long or short-duration dynamics. In one approach, we built an integrated, empirical framework to blend these algorithmically-processed time-series data with field data and lidar data to ascribe yearly change in forest biomass across the US states of Washington, Oregon, and California. In a separate project, we expanded from forest-only monitoring to full landscape land cover monitoring over the same regional scale, including both categorical class labels and continuous-field estimates. In these and other projects, we apply machine-learning approaches to ascribe all changes in vegetation to driving processes such as harvest, fire, urbanization, etc., allowing full description of both disturbance and recovery processes and drivers. Finally, we are moving toward extension of these same techniques to continental and eventually global scales using Google Earth Engine. Taken together, these approaches provide one framework for describing and understanding processes of change in vegetation communities at broad scales.
"Observation Obscurer" - Time Series Viewer, Editor and Processor
NASA Astrophysics Data System (ADS)
Andronov, I. L.
The program is described, which contains a set of subroutines suitable for East viewing and interactive filtering and processing of regularly and irregularly spaced time series. Being a 32-bit DOS application, it may be used as a default fast viewer/editor of time series in any compute shell ("commander") or in Windows. It allows to view the data in the "time" or "phase" mode, to remove ("obscure") or filter outstanding bad points; to make scale transformations and smoothing using few methods (e.g. mean with phase binning, determination of the statistically opti- mal number of phase bins; "running parabola" (Andronov, 1997, As. Ap. Suppl, 125, 207) fit and to make time series analysis using some methods, e.g. correlation, autocorrelation and histogram analysis: determination of extrema etc. Some features have been developed specially for variable star observers, e.g. the barycentric correction, the creation and fast analysis of "OC" diagrams etc. The manual for "hot keys" is presented. The computer code was compiled with a 32-bit Free Pascal (www.freepascal.org).
Li, Shuying; Zhuang, Jun; Shen, Shifei
2017-07-01
In recent years, various types of terrorist attacks occurred, causing worldwide catastrophes. According to the Global Terrorism Database (GTD), among all attack tactics, bombing attacks happened most frequently, followed by armed assaults. In this article, a model for analyzing and forecasting the conditional probability of bombing attacks (CPBAs) based on time-series methods is developed. In addition, intervention analysis is used to analyze the sudden increase in the time-series process. The results show that the CPBA increased dramatically at the end of 2011. During that time, the CPBA increased by 16.0% in a two-month period to reach the peak value, but still stays 9.0% greater than the predicted level after the temporary effect gradually decays. By contrast, no significant fluctuation can be found in the conditional probability process of armed assault. It can be inferred that some social unrest, such as America's troop withdrawal from Afghanistan and Iraq, could have led to the increase of the CPBA in Afghanistan, Iraq, and Pakistan. The integrated time-series and intervention model is used to forecast the monthly CPBA in 2014 and through 2064. The average relative error compared with the real data in 2014 is 3.5%. The model is also applied to the total number of attacks recorded by the GTD between 2004 and 2014. © 2016 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Dutrieux, Loïc P.; Jakovac, Catarina C.; Latifah, Siti H.; Kooistra, Lammert
2016-05-01
We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The Breaks For Additive Season and Trend (BFAST) framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used for a selected study area, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in land use regimes. In order to further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil (state of Amazonas). Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after land abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation approach. We validated the number of cultivation cycles predicted by the method against in-situ information collected from farmers interviews, resulting in a Normalized Residual Mean Squared Error (NRMSE) of 0.25. Overall the method performed well, producing maps with coherent spatial patterns. We identified various sources of error in the approach, including low data availability in the 90s and sub-object mixture of land uses. We conclude that the method holds great promise for land use history mapping in the tropics and beyond.
NASA Astrophysics Data System (ADS)
Dutrieux, L.; Jakovac, C. C.; Siti, L. H.; Kooistra, L.
2015-12-01
We developed a method to reconstruct land use history from Landsat images time-series. The method uses a breakpoint detection framework derived from the econometrics field and applicable to time-series regression models. The BFAST framework is used for defining the time-series regression models which may contain trend and phenology, hence appropriately modelling vegetation intra and inter-annual dynamics. All available Landsat data are used, and the time-series are partitioned into segments delimited by breakpoints. Segments can be associated to land use regimes, while the breakpoints then correspond to shifts in regimes. To further characterize these shifts, we classified the unlabelled breakpoints returned by the algorithm into their corresponding processes. We used a Random Forest classifier, trained from a set of visually interpreted time-series profiles to infer the processes and assign labels to the breakpoints. The whole approach was applied to quantifying the number of cultivation cycles in a swidden agriculture system in Brazil. Number and frequency of cultivation cycles is of particular ecological relevance in these systems since they largely affect the capacity of the forest to regenerate after abandonment. We applied the method to a Landsat time-series of Normalized Difference Moisture Index (NDMI) spanning the 1984-2015 period and derived from it the number of cultivation cycles during that period at the individual field scale level. Agricultural fields boundaries used to apply the method were derived using a multi-temporal segmentation. We validated the number of cultivation cycles predicted against in-situ information collected from farmers interviews, resulting in a Normalized RMSE of 0.25. Overall the method performed well, producing maps with coherent patterns. We identified various sources of error in the approach, including low data availability in the 90s and sub-object mixture of land uses. We conclude that the method holds great promise for land use history mapping in the tropics and beyond. Spatial and temporal patterns were further analysed with an ecological perspective in a follow-up study. Results show that changes in land use patterns such as land use intensification and reduced agricultural expansion reflect the socio-economic transformations that occurred in the region
NASA Astrophysics Data System (ADS)
Sultana, Tahmina; Takagi, Hiroaki; Morimatsu, Miki; Teramoto, Hiroshi; Li, Chun-Biu; Sako, Yasushi; Komatsuzaki, Tamiki
2013-12-01
We present a novel scheme to extract a multiscale state space network (SSN) from single-molecule time series. The multiscale SSN is a type of hidden Markov model that takes into account both multiple states buried in the measurement and memory effects in the process of the observable whenever they exist. Most biological systems function in a nonstationary manner across multiple timescales. Combined with a recently established nonlinear time series analysis based on information theory, a simple scheme is proposed to deal with the properties of multiscale and nonstationarity for a discrete time series. We derived an explicit analytical expression of the autocorrelation function in terms of the SSN. To demonstrate the potential of our scheme, we investigated single-molecule time series of dissociation and association kinetics between epidermal growth factor receptor (EGFR) on the plasma membrane and its adaptor protein Ash/Grb2 (Grb2) in an in vitro reconstituted system. We found that our formula successfully reproduces their autocorrelation function for a wide range of timescales (up to 3 s), and the underlying SSNs change their topographical structure as a function of the timescale; while the corresponding SSN is simple at the short timescale (0.033-0.1 s), the SSN at the longer timescales (0.1 s to ˜3 s) becomes rather complex in order to capture multiscale nonstationary kinetics emerging at longer timescales. It is also found that visiting the unbound form of the EGFR-Grb2 system approximately resets all information of history or memory of the process.
NASA Astrophysics Data System (ADS)
Socquet, Anne; Déprez, Aline; Cotte, Nathalie; Maubant, Louise; Walpersdorf, Andrea; Bato, Mary Grace
2017-04-01
We present here a new pan-European velocity field, obtained by processing 500+ cGPS stations in double difference, in the framework of the implementation phase of the European Plate Observing System (EPOS) project. This prototype solution spans the 2000-2016 period, and includes data from RING, NOA, RENAG and European Permanent Network (EPN) cGPS netwprks. The data set is first split into daily sub-networks (between 8 and 14 sub-networks). The sub-networks consist in about 40 stations, with 2 overlapping stations. For each day and for each sub-network, the GAMIT processing is conducted independently. Once each sub-network achieves satisfactory results, a daily combination is performed in order to produce SINEX files. The Chi square value associated with the combination allows us to evaluate its quality. Eventually, a multi year combination generates position time series for each station. Each time series is visualized and the jumps associated with material change (antenna or receiver) are estimated and corrected. This procedure allows us to generate daily solutions and position time series for all stations. The associated "interseismic" velocity field has then been estimated using a times series analysis using MIDAS software, and compared to another independent estimate obtained by Kalman filtering with globk software. In addition to this velocity field we made a specific zoom on Italy and present a strain rate map as well as time series showing co- and post- seismic movements associated with the 2016 Amatrice and Norcia earthquakes.
Evaluation of the significance of abrupt changes in precipitation and runoff process in China
NASA Astrophysics Data System (ADS)
Xie, Ping; Wu, Ziyi; Sang, Yan-Fang; Gu, Haiting; Zhao, Yuxi; Singh, Vijay P.
2018-05-01
Abrupt changes are an important manifestation of hydrological variability. How to accurately detect the abrupt changes in hydrological time series and evaluate their significance is an important issue, but methods for dealing with them effectively are lacking. In this study, we propose an approach to evaluate the significance of abrupt changes in time series at five levels: no, weak, moderate, strong, and dramatic. The approach was based on an index of correlation coefficient calculated for the original time series and its abrupt change component. A bigger value of correlation coefficient reflects a higher significance level of abrupt change. Results of Monte-Carlo experiments verified the reliability of the proposed approach, and also indicated the great influence of statistical characteristics of time series on the significance level of abrupt change. The approach was derived from the relationship between correlation coefficient index and abrupt change, and can estimate and grade the significance levels of abrupt changes in hydrological time series. Application of the proposed approach to ten major watersheds in China showed that abrupt changes mainly occurred in five watersheds in northern China, which have arid or semi-arid climate and severe shortages of water resources. Runoff processes in northern China were more sensitive to precipitation change than those in southern China. Although annual precipitation and surface water resources amount (SWRA) exhibited a harmonious relationship in most watersheds, abrupt changes in the latter were more significant. Compared with abrupt changes in annual precipitation, human activities contributed much more to the abrupt changes in the corresponding SWRA, except for the Northwest Inland River watershed.
Safe and effective nursing shift handover with NURSEPASS: An interrupted time series.
Smeulers, Marian; Dolman, Christine D; Atema, Danielle; van Dieren, Susan; Maaskant, Jolanda M; Vermeulen, Hester
2016-11-01
Implementation of a locally developed evidence based nursing shift handover blueprint with a bedside-safety-check to determine the effect size on quality of handover. A mixed methods design with: (1) an interrupted time series analysis to determine the effect on handover quality in six domains; (2) descriptive statistics to analyze the intercepted discrepancies by the bedside-safety-check; (3) evaluation sessions to gather experiences with the new handover process. We observed a continued trend of improvement in handover quality and a significant improvement in two domains of handover: organization/efficiency and contents. The bedside-safety-check successfully identified discrepancies on drains, intravenous medications, bandages or general condition and was highly appreciated. Use of the nursing shift handover blueprint showed promising results on effectiveness as well as on feasibility and acceptability. However, to enable long term measurement on effectiveness, evaluation with large scale interrupted times series or statistical process control is needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Potential and Pitfalls of High-Rate GPS
NASA Astrophysics Data System (ADS)
Smalley, R.
2008-12-01
With completion of the Plate Boundary Observatory (PBO), we are poised to capture a dense sampling of strong motion displacement time series from significant earthquakes in western North America with High-Rate GPS (HRGPS) data collected at 1 and 5 Hz. These data will provide displacement time series at potentially zero epicentral distance that, if valid, have great potential to contribute to understanding earthquake rupture processes. The caveat relates to whether or not the data are aliased: is the sampling rate fast enough to accurately capture the displacement's temporal history? Using strong motion recordings in the immediate epicentral area of several 6.77.5 events, which can be reasonably expected in the PBO footprint, even the 5 Hz data may be aliased. Some sort of anti-alias processing, currently not applied, will therefore necessary at the closest stations to guarantee the veracity of the displacement time series. We discuss several solutions based on a-priori knowledge of the expected ground motion and practicality of implementation.
Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Zhong, Ning; Li, Kuncheng
2014-08-01
Neural correlate of human inductive reasoning process is still unclear. Number series and letter series completion are two typical inductive reasoning tasks, and with a common core component of rule induction. Previous studies have demonstrated that different strategies are adopted in number series and letter series completion tasks; even the underlying rules are identical. In the present study, we examined cortical activation as a function of two different reasoning strategies for solving series completion tasks. The retrieval strategy, used in number series completion tasks, involves direct retrieving of arithmetic knowledge to get the relations between items. The procedural strategy, used in letter series completion tasks, requires counting a certain number of times to detect the relations linking two items. The two strategies require essentially the equivalent cognitive processes, but have different working memory demands (the procedural strategy incurs greater demands). The procedural strategy produced significant greater activity in areas involved in memory retrieval (dorsolateral prefrontal cortex, DLPFC) and mental representation/maintenance (posterior parietal cortex, PPC). An ACT-R model of the tasks successfully predicted behavioral performance and BOLD responses. The present findings support a general-purpose dual-process theory of inductive reasoning regarding the cognitive architecture. Copyright © 2014 Elsevier B.V. All rights reserved.
Ocean time-series near Bermuda: Hydrostation S and the US JGOFS Bermuda Atlantic time-series study
NASA Technical Reports Server (NTRS)
Michaels, Anthony F.; Knap, Anthony H.
1992-01-01
Bermuda is the site of two ocean time-series programs. At Hydrostation S, the ongoing biweekly profiles of temperature, salinity and oxygen now span 37 years. This is one of the longest open-ocean time-series data sets and provides a view of decadal scale variability in ocean processes. In 1988, the U.S. JGOFS Bermuda Atlantic Time-series Study began a wide range of measurements at a frequency of 14-18 cruises each year to understand temporal variability in ocean biogeochemistry. On each cruise, the data range from chemical analyses of discrete water samples to data from electronic packages of hydrographic and optics sensors. In addition, a range of biological and geochemical rate measurements are conducted that integrate over time-periods of minutes to days. This sampling strategy yields a reasonable resolution of the major seasonal patterns and of decadal scale variability. The Sargasso Sea also has a variety of episodic production events on scales of days to weeks and these are only poorly resolved. In addition, there is a substantial amount of mesoscale variability in this region and some of the perceived temporal patterns are caused by the intersection of the biweekly sampling with the natural spatial variability. In the Bermuda time-series programs, we have added a series of additional cruises to begin to assess these other sources of variation and their impacts on the interpretation of the main time-series record. However, the adequate resolution of higher frequency temporal patterns will probably require the introduction of new sampling strategies and some emerging technologies such as biogeochemical moorings and autonomous underwater vehicles.
NASA Astrophysics Data System (ADS)
Almog, Assaf; Garlaschelli, Diego
2014-09-01
The dynamics of complex systems, from financial markets to the brain, can be monitored in terms of multiple time series of activity of the constituent units, such as stocks or neurons, respectively. While the main focus of time series analysis is on the magnitude of temporal increments, a significant piece of information is encoded into the binary projection (i.e. the sign) of such increments. In this paper we provide further evidence of this by showing strong nonlinear relations between binary and non-binary properties of financial time series. These relations are a novel quantification of the fact that extreme price increments occur more often when most stocks move in the same direction. We then introduce an information-theoretic approach to the analysis of the binary signature of single and multiple time series. Through the definition of maximum-entropy ensembles of binary matrices and their mapping to spin models in statistical physics, we quantify the information encoded into the simplest binary properties of real time series and identify the most informative property given a set of measurements. Our formalism is able to accurately replicate, and mathematically characterize, the observed binary/non-binary relations. We also obtain a phase diagram allowing us to identify, based only on the instantaneous aggregate return of a set of multiple time series, a regime where the so-called ‘market mode’ has an optimal interpretation in terms of collective (endogenous) effects, a regime where it is parsimoniously explained by pure noise, and a regime where it can be regarded as a combination of endogenous and exogenous factors. Our approach allows us to connect spin models, simple stochastic processes, and ensembles of time series inferred from partial information.
Early warning by near-real time disturbance monitoring (Invited)
NASA Astrophysics Data System (ADS)
Verbesselt, J.; Zeileis, A.; Herold, M.
2013-12-01
Near real-time monitoring of ecosystem disturbances is critical for rapidly assessing and addressing impacts on carbon dynamics, biodiversity, and socio-ecological processes. Satellite remote sensing enables cost-effective and accurate monitoring at frequent time steps over large areas. Yet, generic methods to detect disturbances within newly captured satellite images are lacking. We propose a multi-purpose time-series-based disturbance detection approach that identifies and models stable historical variation to enable change detection within newly acquired data. Satellite image time series of vegetation greenness provide a global record of terrestrial vegetation productivity over the past decades. Here, we assess and demonstrate the method by applying it to (1) real-world satellite greenness image time series between February 2000 and July 2011 covering Somalia to detect drought-related vegetation disturbances (2) landsat image time series to detect forest disturbances. First, results illustrate that disturbances are successfully detected in near real-time while being robust to seasonality and noise. Second, major drought-related disturbance corresponding with most drought-stressed regions in Somalia are detected from mid-2010 onwards. Third, the method can be applied to landsat image time series having a lower temporal data density. Furthermore the method can analyze in-situ or satellite data time series of biophysical indicators from local to global scale since it is fast, does not depend on thresholds and does not require time series gap filling. While the data and methods used are appropriate for proof-of-concept development of global scale disturbance monitoring, specific applications (e.g., drought or deforestation monitoring) mandates integration within an operational monitoring framework. Furthermore, the real-time monitoring method is implemented in open-source environment and is freely available in the BFAST package for R software. Information illustrating how to apply the method on satellite image time series are available at http://bfast.R-Forge.R-project.org/ and the example section of the bfastmonitor() function within the BFAST package.
Correlation and Stacking of Relative Paleointensity and Oxygen Isotope Data
NASA Astrophysics Data System (ADS)
Lurcock, P. C.; Channell, J. E.; Lee, D.
2012-12-01
The transformation of a depth-series into a time-series is routinely implemented in the geological sciences. This transformation often involves correlation of a depth-series to an astronomically calibrated time-series. Eyeball tie-points with linear interpolation are still regularly used, although these have the disadvantages of being non-repeatable and not based on firm correlation criteria. Two automated correlation methods are compared: the simulated annealing algorithm (Huybers and Wunsch, 2004) and the Match protocol (Lisiecki and Lisiecki, 2002). Simulated annealing seeks to minimize energy (cross-correlation) as "temperature" is slowly decreased. The Match protocol divides records into intervals, applies penalty functions that constrain accumulation rates, and minimizes the sum of the squares of the differences between two series while maintaining the data sequence in each series. Paired relative paleointensity (RPI) and oxygen isotope records, such as those from IODP Site U1308 and/or reference stacks such as LR04 and PISO, are warped using known warping functions, and then the un-warped and warped time-series are correlated to evaluate the efficiency of the correlation methods. Correlations are performed in tandem to simultaneously optimize RPI and oxygen isotope data. Noise spectra are introduced at differing levels to determine correlation efficiency as noise levels change. A third potential method, known as dynamic time warping, involves minimizing the sum of distances between correlated point pairs across the whole series. A "cost matrix" between the two series is analyzed to find a least-cost path through the matrix. This least-cost path is used to nonlinearly map the time/depth of one record onto the depth/time of another. Dynamic time warping can be expanded to more than two dimensions and used to stack multiple time-series. This procedure can improve on arithmetic stacks, which often lose coherent high-frequency content during the stacking process.
Inferring the relative resilience of alternative states
Angeler, David G.; Allen, Craig R.; Rojo, Carmen; Alvarez-Cobelas, Miguel; Rodrigo, Maria A.; Sanchez-Carrillo, Salvador
2013-01-01
Ecological systems may occur in alternative states that differ in ecological structures, functions and processes. Resilience is the measure of disturbance an ecological system can absorb before changing states. However, how the intrinsic structures and processes of systems that characterize their states affects their resilience remains unclear. We analyzed time series of phytoplankton communities at three sites in a floodplain in central Spain to assess the dominant frequencies or “temporal scales” in community dynamics and compared the patterns between a wet and a dry alternative state. The identified frequencies and cross-scale structures are expected to arise from positive feedbacks that are thought to reinforce processes in alternative states of ecological systems and regulate emergent phenomena such as resilience. Our analyses show a higher species richness and diversity but lower evenness in the dry state. Time series modeling revealed a decrease in the importance of short-term variability in the communities, suggesting that community dynamics slowed down in the dry relative to the wet state. The number of temporal scales at which community dynamics manifested, and the explanatory power of time series models, was lower in the dry state. The higher diversity, reduced number of temporal scales and the lower explanatory power of time series models suggest that species dynamics tended to be more stochastic in the dry state. From a resilience perspective our results highlight a paradox: increasing species richness may not necessarily enhance resilience. The loss of cross-scale structure (i.e. the lower number of temporal scales) in community dynamics across sites suggests that resilience erodes during drought. Phytoplankton communities in the dry state are therefore likely less resilient than in the wet state. Our case study demonstrates the potential of time series modeling to assess attributes that mediate resilience. The approach is useful for assessing resilience of alternative states across ecological and other complex systems.
Derivation of GNSS derived station velocities for a surface deformation model in the Austrian region
NASA Astrophysics Data System (ADS)
Umnig, Elke; Weber, Robert; Maras, Jadre; Brückl, Ewald
2016-04-01
This contribution deals with the first comprehensive analysis of GNSS derived surface velocities computed within an observation network of about 100 stations covering the whole Austrian territory and parts of the neighbouring countries. Coordinate time series are available now, spanning a period of 5 years (2010.0-2015.0) for one focus area in East Austria and one and a half year (2013.5-2015.0) for the remaining part of the tracking network. In principle the data series are stemming from two different GNSS campaigns. The former was set up to investigate intra plate tectonic movements within the framework of the project ALPAACT (seismological and geodetic monitoring of ALpine-PAnnonian ACtive Tectonics), the latter was designed to support a number of various requests, e.g. derivation of GNSS derived water vapour fields, but also to expand the foresaid tectonic studies. In addition the activities within the ALPAACT project supplement the educational initiative SHOOLS & QUAKES, where scholars contribute to seismological research. For the whole period of the processed coordinate time series daily solutions have been computed by means of the Bernese software. The processed coordinate time series are tied to the global reference frame ITRF2000 as well as to the frame ITRF2008. Due to the transition of the reference from ITRF2000 to ITRF2008 within the processing period, but also due to updates of the Bernese software from version 5.0 to 5.2 the time series were initially not fully consistent and have to be re-aligned to a common frame. So the goal of this investigation is to derive a nationwide consistent horizontal motion field on base of GNSS reference station data within the ITRF2008 frame, but also with respect to the Eurasian plate. In this presentation we focus on the set-up of the coordinate time series and on the problem of frame alignment. Special attention is also paid to the separation into linear and periodic motion signals, originating from tectonic or non-tectonic sources.
Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.
Federico, Alejandro; Kaufmann, Guillermo H
2007-04-10
We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.
Analysis of brain patterns using temporal measures
Georgopoulos, Apostolos
2015-08-11
A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.
Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance
Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin
2016-01-01
Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837
A univariate model of river water nitrate time series
NASA Astrophysics Data System (ADS)
Worrall, F.; Burt, T. P.
1999-01-01
Four time series were taken from three catchments in the North and South of England. The sites chosen included two in predominantly agricultural catchments, one at the tidal limit and one downstream of a sewage treatment works. A time series model was constructed for each of these series as a means of decomposing the elements controlling river water nitrate concentrations and to assess whether this approach could provide a simple management tool for protecting water abstractions. Autoregressive (AR) modelling of the detrended and deseasoned time series showed a "memory effect". This memory effect expressed itself as an increase in the winter-summer difference in nitrate levels that was dependent upon the nitrate concentration 12 or 6 months previously. Autoregressive moving average (ARMA) modelling showed that one of the series contained seasonal, non-stationary elements that appeared as an increasing trend in the winter-summer difference. The ARMA model was used to predict nitrate levels and predictions were tested against data held back from the model construction process - predictions gave average percentage errors of less than 10%. Empirical modelling can therefore provide a simple, efficient method for constructing management models for downstream water abstraction.
A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall
NASA Astrophysics Data System (ADS)
Lombardo, F.; Volpi, E.; Koutsoyiannis, D.; Serinaldi, F.
2017-06-01
Generating fine-scale time series of intermittent rainfall that are fully consistent with any given coarse-scale totals is a key and open issue in many hydrological problems. We propose a stationary disaggregation method that simulates rainfall time series with given dependence structure, wet/dry probability, and marginal distribution at a target finer (lower-level) time scale, preserving full consistency with variables at a parent coarser (higher-level) time scale. We account for the intermittent character of rainfall at fine time scales by merging a discrete stochastic representation of intermittency and a continuous one of rainfall depths. This approach yields a unique and parsimonious mathematical framework providing general analytical formulations of mean, variance, and autocorrelation function (ACF) for a mixed-type stochastic process in terms of mean, variance, and ACFs of both continuous and discrete components, respectively. To achieve the full consistency between variables at finer and coarser time scales in terms of marginal distribution and coarse-scale totals, the generated lower-level series are adjusted according to a procedure that does not affect the stochastic structure implied by the original model. To assess model performance, we study rainfall process as intermittent with both independent and dependent occurrences, where dependence is quantified by the probability that two consecutive time intervals are dry. In either case, we provide analytical formulations of main statistics of our mixed-type disaggregation model and show their clear accordance with Monte Carlo simulations. An application to rainfall time series from real world is shown as a proof of concept.
Single-Site, Results-Level Evaluation of Quality Awareness Training.
ERIC Educational Resources Information Center
Murray, Brian; Raffaele, Gary C.
1997-01-01
An interrupted time-series design pooling 6 12-year series evaluated the long-term effects of a quality training intervention in a factory. Training positively affected quality of goods and dollar utility. Production process was an important contextual factor in assessing the effect size of the intervention. (SK)
Characterization of autoregressive processes using entropic quantifiers
NASA Astrophysics Data System (ADS)
Traversaro, Francisco; Redelico, Francisco O.
2018-01-01
The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.
Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen
2017-09-25
In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.
Nonlinear analysis of dynamic signature
NASA Astrophysics Data System (ADS)
Rashidi, S.; Fallah, A.; Towhidkhah, F.
2013-12-01
Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.
NASA Astrophysics Data System (ADS)
Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.
2013-12-01
The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/
Jung, Inuk; Jo, Kyuri; Kang, Hyejin; Ahn, Hongryul; Yu, Youngjae; Kim, Sun
2017-12-01
Identifying biologically meaningful gene expression patterns from time series gene expression data is important to understand the underlying biological mechanisms. To identify significantly perturbed gene sets between different phenotypes, analysis of time series transcriptome data requires consideration of time and sample dimensions. Thus, the analysis of such time series data seeks to search gene sets that exhibit similar or different expression patterns between two or more sample conditions, constituting the three-dimensional data, i.e. gene-time-condition. Computational complexity for analyzing such data is very high, compared to the already difficult NP-hard two dimensional biclustering algorithms. Because of this challenge, traditional time series clustering algorithms are designed to capture co-expressed genes with similar expression pattern in two sample conditions. We present a triclustering algorithm, TimesVector, specifically designed for clustering three-dimensional time series data to capture distinctively similar or different gene expression patterns between two or more sample conditions. TimesVector identifies clusters with distinctive expression patterns in three steps: (i) dimension reduction and clustering of time-condition concatenated vectors, (ii) post-processing clusters for detecting similar and distinct expression patterns and (iii) rescuing genes from unclassified clusters. Using four sets of time series gene expression data, generated by both microarray and high throughput sequencing platforms, we demonstrated that TimesVector successfully detected biologically meaningful clusters of high quality. TimesVector improved the clustering quality compared to existing triclustering tools and only TimesVector detected clusters with differential expression patterns across conditions successfully. The TimesVector software is available at http://biohealth.snu.ac.kr/software/TimesVector/. sunkim.bioinfo@snu.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Robust, automatic GPS station velocities and velocity time series
NASA Astrophysics Data System (ADS)
Blewitt, G.; Kreemer, C.; Hammond, W. C.
2014-12-01
Automation in GPS coordinate time series analysis makes results more objective and reproducible, but not necessarily as robust as the human eye to detect problems. Moreover, it is not a realistic option to manually scan our current load of >20,000 time series per day. This motivates us to find an automatic way to estimate station velocities that is robust to outliers, discontinuities, seasonality, and noise characteristics (e.g., heteroscedasticity). Here we present a non-parametric method based on the Theil-Sen estimator, defined as the median of velocities vij=(xj-xi)/(tj-ti) computed between all pairs (i, j). Theil-Sen estimators produce statistically identical solutions to ordinary least squares for normally distributed data, but they can tolerate up to 29% of data being problematic. To mitigate seasonality, our proposed estimator only uses pairs approximately separated by an integer number of years (N-δt)<(tj-ti )<(N+δt), where δt is chosen to be small enough to capture seasonality, yet large enough to reduce random error. We fix N=1 to maximally protect against discontinuities. In addition to estimating an overall velocity, we also use these pairs to estimate velocity time series. To test our methods, we process real data sets that have already been used with velocities published in the NA12 reference frame. Accuracy can be tested by the scatter of horizontal velocities in the North American plate interior, which is known to be stable to ~0.3 mm/yr. This presents new opportunities for time series interpretation. For example, the pattern of velocity variations at the interannual scale can help separate tectonic from hydrological processes. Without any step detection, velocity estimates prove to be robust for stations affected by the Mw7.2 2010 El Mayor-Cucapah earthquake, and velocity time series show a clear change after the earthquake, without any of the usual parametric constraints, such as relaxation of postseismic velocities to their preseismic values.
NASA Astrophysics Data System (ADS)
Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.
2016-12-01
This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.
NASA Technical Reports Server (NTRS)
Butler, C. M.; Hogge, J. E.
1978-01-01
Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.
Chang, Li-Chiu; Chen, Pin-An; Chang, Fi-John
2012-08-01
A reliable forecast of future events possesses great value. The main purpose of this paper is to propose an innovative learning technique for reinforcing the accuracy of two-step-ahead (2SA) forecasts. The real-time recurrent learning (RTRL) algorithm for recurrent neural networks (RNNs) can effectively model the dynamics of complex processes and has been used successfully in one-step-ahead forecasts for various time series. A reinforced RTRL algorithm for 2SA forecasts using RNNs is proposed in this paper, and its performance is investigated by two famous benchmark time series and a streamflow during flood events in Taiwan. Results demonstrate that the proposed reinforced 2SA RTRL algorithm for RNNs can adequately forecast the benchmark (theoretical) time series, significantly improve the accuracy of flood forecasts, and effectively reduce time-lag effects.
ERIC Educational Resources Information Center
Huitema, Bradley E.; McKean, Joseph W.
2007-01-01
Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…
Automated smoother for the numerical decoupling of dynamics models.
Vilela, Marco; Borges, Carlos C H; Vinga, Susana; Vasconcelos, Ana Tereza R; Santos, Helena; Voit, Eberhard O; Almeida, Jonas S
2007-08-21
Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST) offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN), which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of mechanistic model descriptions from multivariate experimental time series.
NASA Astrophysics Data System (ADS)
Lee, Minsuk; Won, Youngjae; Park, Byungjun; Lee, Seungrag
2017-02-01
Not only static characteristics but also dynamic characteristics of the red blood cell (RBC) contains useful information for the blood diagnosis. Quantitative phase imaging (QPI) can capture sample images with subnanometer scale depth resolution and millisecond scale temporal resolution. Various researches have been used QPI for the RBC diagnosis, and recently many researches has been developed to decrease the process time of RBC information extraction using QPI by the parallel computing algorithm, however previous studies are interested in the static parameters such as morphology of the cells or simple dynamic parameters such as root mean square (RMS) of the membrane fluctuations. Previously, we presented a practical blood test method using the time series correlation analysis of RBC membrane flickering with QPI. However, this method has shown that there is a limit to the clinical application because of the long computation time. In this study, we present an accelerated time series correlation analysis of RBC membrane flickering using the parallel computing algorithm. This method showed consistent fractal scaling exponent results of the surrounding medium and the normal RBC with our previous research.
Children's Well-Being during Parents' Marital Disruption Process: A Pooled Time-Series Analysis.
ERIC Educational Resources Information Center
Sun, Yongmin; Li, Yuanzhang
2002-01-01
Examines the extent to which parents' marital disruption process affects children's academic performance and well-being both before and after parental divorce. Compared with peers in intact families, children of divorce faired less well. Discusses how family resources mediate detrimental effects over time. Similar results are noted for girls and…
On the time-homogeneous Ornstein-Uhlenbeck process in the foreign exchange rates
NASA Astrophysics Data System (ADS)
da Fonseca, Regina C. B.; Matsushita, Raul Y.; de Castro, Márcio T.; Figueiredo, Annibal
2015-10-01
Since Gaussianity and stationarity assumptions cannot be fulfilled by financial data, the time-homogeneous Ornstein-Uhlenbeck (THOU) process was introduced as a candidate model to describe time series of financial returns [1]. It is an Ornstein-Uhlenbeck (OU) process in which these assumptions are replaced by linearity and time-homogeneity. We employ the OU and THOU processes to analyze daily foreign exchange rates against the US dollar. We confirm that the OU process does not fit the data, while in most cases the first four cumulants patterns from data can be described by the THOU process. However, there are some exceptions in which the data do not follow linearity or time-homogeneity assumptions.
Modeling turbidity and flow at daily steps in karst using ARIMA/ARFIMA-GARCH error models
NASA Astrophysics Data System (ADS)
Massei, N.
2013-12-01
Hydrological and physico-chemical variations recorded at karst springs usually reflect highly non-linear processes and the corresponding time series are then very often also highly non-linear. Among others, turbidity, as an important parameter regarding water quality and management, is a very complex response of karst systems to rain events, involving direct transfer of particles from point-source recharge as well as resuspension of particles previously deposited and stored within the system. For those reasons, turbidity modeling has not been well taken in karst hydrological models so far. Most of the time, the modeling approaches would involve stochastic linear models such ARIMA-type models and their derivatives (ARMA, ARMAX, ARIMAX, ARFIMA...). Yet, linear models usually fail to represent well the whole (stochastic) process variability, and their residuals still contain useful information that can be used to either understand the whole variability or to enhance short-term predictability and forecasting. Model residuals are actually not i.i.d., which can be identified by the fact that squared residuals still present clear and significant serial correlation. Indeed, high (low) amplitudes are followed in time by high (low) amplitudes, which can be seen on residuals time series as periods of time during which amplitudes are higher (lower) then the mean amplitude. This is known as the ARCH effet (AutoRegressive Conditional Heteroskedasticity), and the corresponding non-linear process affecting residuals of a linear model can be modeled using ARCH or generalized ARCH (GARCH) non-linear modeling, which approaches are very well known in econometrics. Here we investigated the capability of ARIMA-GARCH error models to represent a ~20-yr daily turbidity time series recorded at a karst spring used for water supply of the city of Le Havre (Upper Normandy, France). ARIMA and ARFIMA models were used to represent the mean behavior of the time series and the residuals clearly appeared to present a pronounced ARCH effect, as confirmed by Ljung-Box and McLeod-Li tests. We then identified and fitted GARCH models to the residuals of ARIMA and ARFIMA models in order to model the conditional variance and volatility of the turbidity time series. The results eventually showed that serial correlation was succesfully removed in the last standardized residuals of the GARCH model, and hence that the ARIMA-GARCH error model appeared consistent for modeling such time series. The approach finally improved short-term (e.g a few steps-ahead) turbidity forecasting.
NASA Astrophysics Data System (ADS)
Iannacone, J.; Berti, M.; Allievi, J.; Del Conte, S.; Corsini, A.
2013-12-01
Space borne InSAR has proven to be very valuable for landslides detection. In particular, extremely slow landslides (Cruden and Varnes, 1996) can be now clearly identified, thanks to the millimetric precision reached by recent multi-interferometric algorithms. The typical approach in radar interpretation for landslides mapping is based on average annual velocity of the deformation which is calculated over the entire times series. The Hotspot and Cluster Analysis (Lu et al., 2012) and the PSI-based matrix approach (Cigna et al., 2013) are examples of landslides mapping techniques based on average annual velocities. However, slope movements can be affected by non-linear deformation trends, (i.e. reactivation of dormant landslides, deceleration due to natural or man-made slope stabilization, seasonal activity, etc). Therefore, analyzing deformation time series is crucial in order to fully characterize slope dynamics. While this is relatively simple to be carried out manually when dealing with small dataset, the time series analysis over regional scale dataset requires automated classification procedures. Berti et al. (2013) developed an automatic procedure for the analysis of InSAR time series based on a sequence of statistical tests. The analysis allows to classify the time series into six distinctive target trends (0=uncorrelated; 1=linear; 2=quadratic; 3=bilinear; 4=discontinuous without constant velocity; 5=discontinuous with change in velocity) which are likely to represent different slope processes. The analysis also provides a series of descriptive parameters which can be used to characterize the temporal changes of ground motion. All the classification algorithms were integrated into a Graphical User Interface called PSTime. We investigated an area of about 2000 km2 in the Northern Apennines of Italy by using SqueeSAR™ algorithm (Ferretti et al., 2011). Two Radarsat-1 data stack, comprising of 112 scenes in descending orbit and 124 scenes in ascending orbit, were processed. The time coverage lasts from April 2003 to November 2012, with an average temporal frequency of 1 scene/month. Radar interpretation has been carried out by considering average annual velocities as well as acceleration/deceleration trends evidenced by PSTime. Altogether, from ascending and descending geometries respectively, this approach allowed detecting of 115 and 112 potential landslides on the basis of average displacement rate and 77 and 79 landslides on the basis of acceleration trends. In conclusion, time series analysis resulted to be very valuable for landslide mapping. In particular it highlighted areas with marked acceleration in a specific period in time while still being affected by low average annual velocity over the entire analysis period. On the other hand, even in areas with high average annual velocity, time series analysis was of primary importance to characterize the slope dynamics in terms of acceleration events.
Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool
NASA Technical Reports Server (NTRS)
McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall
2008-01-01
The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify a variety of plant phenomena and improve monitoring capabilities.
A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan
2015-07-17
Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.
A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan
2015-01-01
Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283
NASA Astrophysics Data System (ADS)
Rehfeld, Kira; Goswami, Bedartha; Marwan, Norbert; Breitenbach, Sebastian; Kurths, Jürgen
2013-04-01
Statistical analysis of dependencies amongst paleoclimate data helps to infer on the climatic processes they reflect. Three key challenges have to be addressed, however: the datasets are heterogeneous in time (i) and space (ii), and furthermore time itself is a variable that needs to be reconstructed, which (iii) introduces additional uncertainties. To address these issues in a flexible way we developed the paleoclimate network framework, inspired by the increasing application of complex networks in climate research. Nodes in the paleoclimate network represent a paleoclimate archive, and an associated time series. Links between these nodes are assigned, if these time series are significantly similar. Therefore, the base of the paleoclimate network is formed by linear and nonlinear estimators for Pearson correlation, mutual information and event synchronization, which quantify similarity from irregularly sampled time series. Age uncertainties are propagated into the final network analysis using time series ensembles which reflect the uncertainty. We discuss how spatial heterogeneity influences the results obtained from network measures, and demonstrate the power of the approach by inferring teleconnection variability of the Asian summer monsoon for the past 1000 years.
NASA Astrophysics Data System (ADS)
Zhao, Yongguang; Li, Chuanrong; Ma, Lingling; Tang, Lingli; Wang, Ning; Zhou, Chuncheng; Qian, Yonggang
2017-10-01
Time series of satellite reflectance data have been widely used to characterize environmental phenomena, describe trends in vegetation dynamics and study climate change. However, several sensors with wide spatial coverage and high observation frequency are usually designed to have large field of view (FOV), which cause variations in the sun-targetsensor geometry in time-series reflectance data. In this study, on the basis of semiempirical kernel-driven BRDF model, a new semi-empirical model was proposed to normalize the sun-target-sensor geometry of remote sensing image. To evaluate the proposed model, bidirectional reflectance under different canopy growth conditions simulated by Discrete Anisotropic Radiative Transfer (DART) model were used. The semi-empirical model was first fitted by using all simulated bidirectional reflectance. Experimental result showed a good fit between the bidirectional reflectance estimated by the proposed model and the simulated value. Then, MODIS time-series reflectance data was normalized to a common sun-target-sensor geometry by the proposed model. The experimental results showed the proposed model yielded good fits between the observed and estimated values. The noise-like fluctuations in time-series reflectance data was also reduced after the sun-target-sensor normalization process.
McKenna, Thomas M; Bawa, Gagandeep; Kumar, Kamal; Reifman, Jaques
2007-04-01
The physiology analysis system (PAS) was developed as a resource to support the efficient warehousing, management, and analysis of physiology data, particularly, continuous time-series data that may be extensive, of variable quality, and distributed across many files. The PAS incorporates time-series data collected by many types of data-acquisition devices, and it is designed to free users from data management burdens. This Web-based system allows both discrete (attribute) and time-series (ordered) data to be manipulated, visualized, and analyzed via a client's Web browser. All processes occur on a server, so that the client does not have to download data or any application programs, and the PAS is independent of the client's computer operating system. The PAS contains a library of functions, written in different computer languages that the client can add to and use to perform specific data operations. Functions from the library are sequentially inserted into a function chain-based logical structure to construct sophisticated data operators from simple function building blocks, affording ad hoc query and analysis of time-series data. These features support advanced mining of physiology data.
Dynamic Black-Level Correction and Artifact Flagging for Kepler Pixel Time Series
NASA Technical Reports Server (NTRS)
Kolodziejczak, J. J.; Clarke, B. D.; Caldwell, D. A.
2011-01-01
Methods applied to the calibration stage of Kepler pipeline data processing [1] (CAL) do not currently use all of the information available to identify and correct several instrument-induced artifacts. These include time-varying crosstalk from the fine guidance sensor (FGS) clock signals, and manifestations of drifting moire pattern as locally correlated nonstationary noise, and rolling bands in the images which find their way into the time series [2], [3]. As the Kepler Mission continues to improve the fidelity of its science data products, we are evaluating the benefits of adding pipeline steps to more completely model and dynamically correct the FGS crosstalk, then use the residuals from these model fits to detect and flag spatial regions and time intervals of strong time-varying black-level which may complicate later processing or lead to misinterpretation of instrument behavior as stellar activity.
NASA Astrophysics Data System (ADS)
Wu, Xiaoping; Abbondanza, Claudio; Altamimi, Zuheir; Chin, T. Mike; Collilieux, Xavier; Gross, Richard S.; Heflin, Michael B.; Jiang, Yan; Parker, Jay W.
2015-05-01
The current International Terrestrial Reference Frame is based on a piecewise linear site motion model and realized by reference epoch coordinates and velocities for a global set of stations. Although linear motions due to tectonic plates and glacial isostatic adjustment dominate geodetic signals, at today's millimeter precisions, nonlinear motions due to earthquakes, volcanic activities, ice mass losses, sea level rise, hydrological changes, and other processes become significant. Monitoring these (sometimes rapid) changes desires consistent and precise realization of the terrestrial reference frame (TRF) quasi-instantaneously. Here, we use a Kalman filter and smoother approach to combine time series from four space geodetic techniques to realize an experimental TRF through weekly time series of geocentric coordinates. In addition to secular, periodic, and stochastic components for station coordinates, the Kalman filter state variables also include daily Earth orientation parameters and transformation parameters from input data frames to the combined TRF. Local tie measurements among colocated stations are used at their known or nominal epochs of observation, with comotion constraints applied to almost all colocated stations. The filter/smoother approach unifies different geodetic time series in a single geocentric frame. Fragmented and multitechnique tracking records at colocation sites are bridged together to form longer and coherent motion time series. While the time series approach to TRF reflects the reality of a changing Earth more closely than the linear approximation model, the filter/smoother is computationally powerful and flexible to facilitate incorporation of other data types and more advanced characterization of stochastic behavior of geodetic time series.
Ranking streamflow model performance based on Information theory metrics
NASA Astrophysics Data System (ADS)
Martinez, Gonzalo; Pachepsky, Yakov; Pan, Feng; Wagener, Thorsten; Nicholson, Thomas
2016-04-01
The accuracy-based model performance metrics not necessarily reflect the qualitative correspondence between simulated and measured streamflow time series. The objective of this work was to use the information theory-based metrics to see whether they can be used as complementary tool for hydrologic model evaluation and selection. We simulated 10-year streamflow time series in five watersheds located in Texas, North Carolina, Mississippi, and West Virginia. Eight model of different complexity were applied. The information-theory based metrics were obtained after representing the time series as strings of symbols where different symbols corresponded to different quantiles of the probability distribution of streamflow. The symbol alphabet was used. Three metrics were computed for those strings - mean information gain that measures the randomness of the signal, effective measure complexity that characterizes predictability and fluctuation complexity that characterizes the presence of a pattern in the signal. The observed streamflow time series has smaller information content and larger complexity metrics than the precipitation time series. Watersheds served as information filters and and streamflow time series were less random and more complex than the ones of precipitation. This is reflected the fact that the watershed acts as the information filter in the hydrologic conversion process from precipitation to streamflow. The Nash Sutcliffe efficiency metric increased as the complexity of models increased, but in many cases several model had this efficiency values not statistically significant from each other. In such cases, ranking models by the closeness of the information-theory based parameters in simulated and measured streamflow time series can provide an additional criterion for the evaluation of hydrologic model performance.
NASA Astrophysics Data System (ADS)
Chen, Yonghong; Bressler, Steven L.; Knuth, Kevin H.; Truccolo, Wilson A.; Ding, Mingzhou
2006-06-01
In this article we consider the stochastic modeling of neurobiological time series from cognitive experiments. Our starting point is the variable-signal-plus-ongoing-activity model. From this model a differentially variable component analysis strategy is developed from a Bayesian perspective to estimate event-related signals on a single trial basis. After subtracting out the event-related signal from recorded single trial time series, the residual ongoing activity is treated as a piecewise stationary stochastic process and analyzed by an adaptive multivariate autoregressive modeling strategy which yields power, coherence, and Granger causality spectra. Results from applying these methods to local field potential recordings from monkeys performing cognitive tasks are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saaban, Azizan; Zainudin, Lutfi; Bakar, Mohd Nazari Abu
This paper intends to reveal the ability of the linear interpolation method to predict missing values in solar radiation time series. Reliable dataset is equally tends to complete time series observed dataset. The absence or presence of radiation data alters long-term variation of solar radiation measurement values. Based on that change, the opportunities to provide bias output result for modelling and the validation process is higher. The completeness of the observed variable dataset has significantly important for data analysis. Occurrence the lack of continual and unreliable time series solar radiation data widely spread and become the main problematic issue. However,more » the limited number of research quantity that has carried out to emphasize and gives full attention to estimate missing values in the solar radiation dataset.« less
Tobias, Robert; Inauen, Jennifer
2010-10-01
Gathering time-series data of behaviors and psychological variables is important to understand, guide, and evaluate behavior-change campaigns and other change processes. However, repeated measurement can affect the phenomena investigated, particularly frequent face-to-face interviews, which are often the only option in developing countries. This article presents three intervention control studies to investigate this issue. Daily diaries in Cuba did not affect behavior or attitudes for persons with intervention but reduced attitudes for persons without intervention. Reactivity of face-to-face interviews in Bolivia was negligible if applied weekly, but strong if applied twice per week. The article concludes with recommendations for gathering time-series data in developing countries.
NASA Astrophysics Data System (ADS)
Behling, Robert; Milewski, Robert; Chabrillat, Sabine
2018-06-01
This paper proposes the remote sensing time series approach WLMO (Water-Land MOnitor) to monitor spatiotemporal shoreline changes. The approach uses a hierarchical classification system based on temporal MNDWI-trajectories with the goal to accommodate typical uncertainties in remote sensing shoreline extraction techniques such as existence of clouds and geometric mismatches between images. Applied to a dense Landsat time series between 1984 and 2014 for the two Namibian coastal lagoons at Walvis Bay and Sandwich Harbour the WLMO was able to identify detailed accretion and erosion progressions at the sand spits forming these lagoons. For both lagoons a northward expansion of the sand spits of up to 1000 m was identified, which corresponds well with the prevailing northwards directed ocean current and wind processes that are responsible for the material transport along the shore. At Walvis Bay we could also show that in the 30 years of analysis the sand spit's width has decreased by more than a half from 750 m in 1984-360 m in 2014. This ongoing cross-shore erosion process is a severe risk for future sand spit breaching, which would expose parts of the lagoon and the city to the open ocean. One of the major advantages of WLMO is the opportunity to analyze detailed spatiotemporal shoreline changes. Thus, it could be shown that the observed long-term accretion and erosion processes underwent great variations over time and cannot a priori be assumed as linear processes. Such detailed spatiotemporal process patterns are a prerequisite to improve the understanding of the processes forming the Namibian shorelines. Moreover, the approach has also the potential to be used in other coastal areas, because the focus on MNDWI-trajectories allows the transfer to many multispectral satellite sensors (e.g. Sentinel-2, ASTER) available worldwide.
Automated Bayesian model development for frequency detection in biological time series.
Granqvist, Emma; Oldroyd, Giles E D; Morris, Richard J
2011-06-24
A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure.
Automated Bayesian model development for frequency detection in biological time series
2011-01-01
Background A first step in building a mathematical model of a biological system is often the analysis of the temporal behaviour of key quantities. Mathematical relationships between the time and frequency domain, such as Fourier Transforms and wavelets, are commonly used to extract information about the underlying signal from a given time series. This one-to-one mapping from time points to frequencies inherently assumes that both domains contain the complete knowledge of the system. However, for truncated, noisy time series with background trends this unique mapping breaks down and the question reduces to an inference problem of identifying the most probable frequencies. Results In this paper we build on the method of Bayesian Spectrum Analysis and demonstrate its advantages over conventional methods by applying it to a number of test cases, including two types of biological time series. Firstly, oscillations of calcium in plant root cells in response to microbial symbionts are non-stationary and noisy, posing challenges to data analysis. Secondly, circadian rhythms in gene expression measured over only two cycles highlights the problem of time series with limited length. The results show that the Bayesian frequency detection approach can provide useful results in specific areas where Fourier analysis can be uninformative or misleading. We demonstrate further benefits of the Bayesian approach for time series analysis, such as direct comparison of different hypotheses, inherent estimation of noise levels and parameter precision, and a flexible framework for modelling the data without pre-processing. Conclusions Modelling in systems biology often builds on the study of time-dependent phenomena. Fourier Transforms are a convenient tool for analysing the frequency domain of time series. However, there are well-known limitations of this method, such as the introduction of spurious frequencies when handling short and noisy time series, and the requirement for uniformly sampled data. Biological time series often deviate significantly from the requirements of optimality for Fourier transformation. In this paper we present an alternative approach based on Bayesian inference. We show the value of placing spectral analysis in the framework of Bayesian inference and demonstrate how model comparison can automate this procedure. PMID:21702910
NASA Astrophysics Data System (ADS)
Coburn, C. A.; Qin, Y.; Zhang, J.; Staenz, K.
2015-12-01
Food security is one of the most pressing issues facing humankind. Recent estimates predict that over one billion people don't have enough food to meet their basic nutritional needs. The ability of remote sensing tools to monitor and model crop production and predict crop yield is essential for providing governments and farmers with vital information to ensure food security. Google Earth Engine (GEE) is a cloud computing platform, which integrates storage and processing algorithms for massive remotely sensed imagery and vector data sets. By providing the capabilities of storing and analyzing the data sets, it provides an ideal platform for the development of advanced analytic tools for extracting key variables used in regional and national food security systems. With the high performance computing and storing capabilities of GEE, a cloud-computing based system for near real-time crop land monitoring was developed using multi-source remotely sensed data over large areas. The system is able to process and visualize the MODIS time series NDVI profile in conjunction with Landsat 8 image segmentation for crop monitoring. With multi-temporal Landsat 8 imagery, the crop fields are extracted using the image segmentation algorithm developed by Baatz et al.[1]. The MODIS time series NDVI data are modeled by TIMESAT [2], a software package developed for analyzing time series of satellite data. The seasonality of MODIS time series data, for example, the start date of the growing season, length of growing season, and NDVI peak at a field-level are obtained for evaluating the crop-growth conditions. The system fuses MODIS time series NDVI data and Landsat 8 imagery to provide information of near real-time crop-growth conditions through the visualization of MODIS NDVI time series and comparison of multi-year NDVI profiles. Stakeholders, i.e., farmers and government officers, are able to obtain crop-growth information at crop-field level online. This unique utilization of GEE in combination with advanced analytic and extraction techniques provides a vital remote sensing tool for decision makers and scientists with a high-degree of flexibility to adapt to different uses.
NASA Astrophysics Data System (ADS)
Cherednichenko, A. V.; Cherednichenko, A. V.; Cherednichenko, V. S.
2018-01-01
It is shown that a significant connection exists between the most important harmonics, extracted in the process of harmonic analysis of time series of precipitation in the catchment area of rivers and the amount of runoff. This allowed us to predict the size of the flow for a period of up to 20 years, assuming that the main parameters of the harmonics are preserved at the predicted time interval. The results of such a forecast for three river basins of Kazakhstan are presented.
1980-12-05
classification procedures that are common in speech processing. The anesthesia level classification by EEG time series population screening problem example is in...formance. The use of the KL number type metric in NN rule classification, in a delete-one subj ect ’s EE-at-a-time KL-NN and KL- kNN classification of the...17 individual labeled EEG sample population using KL-NN and KL- kNN rules. The results obtained are shown in Table 1. The entries in the table indicate
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, Timothy; Watkins, Nicholas; Franzke, Christian; Gramacy, Robert
2013-04-01
Recent studies [e.g. the Antarctic study of Franzke, J. Climate, 2010] have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. As we briefly review, the LRD idea originated at the same time as H-selfsimilarity, so it is often not realised that a model does not have to be H-self similar to show LRD [e.g. Watkins, GRL Frontiers, 2013]. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average ARFIMA(p,d,q) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d, with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series. Many physical processes, for example the Faraday Antarctic time series, are significantly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption, assuming an alpha-stable distribution for the innovations, and performing joint inference on d and alpha. Such a modified FARIMA(p,d,q) process is a flexible, initial model for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
Beyond linear methods of data analysis: time series analysis and its applications in renal research.
Gupta, Ashwani K; Udrea, Andreea
2013-01-01
Analysis of temporal trends in medicine is needed to understand normal physiology and to study the evolution of disease processes. It is also useful for monitoring response to drugs and interventions, and for accountability and tracking of health care resources. In this review, we discuss what makes time series analysis unique for the purposes of renal research and its limitations. We also introduce nonlinear time series analysis methods and provide examples where these have advantages over linear methods. We review areas where these computational methods have found applications in nephrology ranging from basic physiology to health services research. Some examples include noninvasive assessment of autonomic function in patients with chronic kidney disease, dialysis-dependent renal failure and renal transplantation. Time series models and analysis methods have been utilized in the characterization of mechanisms of renal autoregulation and to identify the interaction between different rhythms of nephron pressure flow regulation. They have also been used in the study of trends in health care delivery. Time series are everywhere in nephrology and analyzing them can lead to valuable knowledge discovery. The study of time trends of vital signs, laboratory parameters and the health status of patients is inherent to our everyday clinical practice, yet formal models and methods for time series analysis are not fully utilized. With this review, we hope to familiarize the reader with these techniques in order to assist in their proper use where appropriate.
Complex effusive events at Kilauea as documented by the GOES satellite and remote video cameras
Harris, A.J.L.; Thornber, C.R.
1999-01-01
GOES provides thermal data for all of the Hawaiian volcanoes once every 15 min. We show how volcanic radiance time series produced from this data stream can be used as a simple measure of effusive activity. Two types of radiance trends in these time series can be used to monitor effusive activity: (a) Gradual variations in radiance reveal steady flow-field extension and tube development. (b) Discrete spikes correlate with short bursts of activity, such as lava fountaining or lava-lake overflows. We are confident that any effusive event covering more than 10,000 m2 of ground in less than 60 min will be unambiguously detectable using this approach. We demonstrate this capability using GOES, video camera and ground-based observational data for the current eruption of Kilauea volcano (Hawai'i). A GOES radiance time series was constructed from 3987 images between 19 June and 12 August 1997. This time series displayed 24 radiance spikes elevated more than two standard deviations above the mean; 19 of these are correlated with video-recorded short-burst effusive events. Less ambiguous events are interpreted, assessed and related to specific volcanic events by simultaneous use of permanently recording video camera data and ground-observer reports. The GOES radiance time series are automatically processed on data reception and made available in near-real-time, so such time series can contribute to three main monitoring functions: (a) automatically alerting major effusive events; (b) event confirmation and assessment; and (c) establishing effusive event chronology.
Cathodoluminescence | Materials Science | NREL
image, the time to acquire the entire spectrum series is about five minutes. When the acquisition is ) processes the spectrum series to reconstruct images of the photon emission (energy resolved) or to extract : Mapping of the photon energy and full-width-half maximum of selected transitions ASCII output Quantitative
Multifractal analysis of time series generated by discrete Ito equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telesca, Luciano; Czechowski, Zbigniew; Lovallo, Michele
2015-06-15
In this study, we show that discrete Ito equations with short-tail Gaussian marginal distribution function generate multifractal time series. The multifractality is due to the nonlinear correlations, which are hidden in Markov processes and are generated by the interrelation between the drift and the multiplicative stochastic forces in the Ito equation. A link between the range of the generalized Hurst exponents and the mean of the squares of all averaged net forces is suggested.
Statistical tests for power-law cross-correlated processes
NASA Astrophysics Data System (ADS)
Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H. Eugene
2011-12-01
For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T,n), where T is the total length of the time series and n the window size. For ρDCCA(T,n), we numerically calculated the Cauchy inequality -1≤ρDCCA(T,n)≤1. Here we derive -1≤ρDCCA(T,n)≤1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the cross-correlations become statistically significant. For overlapping windows we numerically determine—and for nonoverlapping windows we derive—that the standard deviation of ρDCCA(T,n) tends with increasing T to 1/T. Using ρDCCA(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.
2011-01-01
Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model. PMID:21762503
Investigation of a long time series of CO2 from a tall tower using WRF-SPA
NASA Astrophysics Data System (ADS)
Smallman, Luke; Williams, Mathew; Moncrieff, John B.
2013-04-01
Atmospheric observations from tall towers are an important source of information about CO2 exchange at the regional scale. Here, we have used a forward running model, WRF-SPA, to generate a time series of CO2 at a tall tower for comparison with observations from Scotland over multiple years (2006-2008). We use this comparison to infer strength and distribution of sources and sinks of carbon and ecosystem process information at the seasonal scale. The specific aim of this research is to combine a high resolution (6 km) forward running meteorological model (WRF) with a modified version of a mechanistic ecosystem model (SPA). SPA provides surface fluxes calculated from coupled energy, hydrological and carbon cycles. This closely coupled representation of the biosphere provides realistic surface exchanges to drive mixing within the planetary boundary layer. The combined model is used to investigate the sources and sinks of CO2 and to explore which land surfaces contribute to a time series of hourly observations of atmospheric CO2 at a tall tower, Angus, Scotland. In addition to comparing the modelled CO2 time series to observations, modelled ecosystem specific (i.e. forest, cropland, grassland) CO2 tracers (e.g., assimilation and respiration) have been compared to the modelled land surface assimilation to investigate how representative tall tower observations are of land surface processes. WRF-SPA modelled CO2 time series compares well to observations (R2 = 0.67, rmse = 3.4 ppm, bias = 0.58 ppm). Through comparison of model-observation residuals, we have found evidence that non-cropped components of agricultural land (e.g., hedgerows and forest patches) likely contribute a significant and observable impact on regional carbon balance.
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
NASA Astrophysics Data System (ADS)
Wang, Na; Li, Dong; Wang, Qiwen
2012-12-01
The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government policies in China on the changes of dynamics of GDP and the three industries adjustment. The work in our paper provides a new way to understand the dynamics of economic development.
Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes
NASA Astrophysics Data System (ADS)
Barucca, Paolo
2014-12-01
We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high- and low-temperature components are the most localized ones.
Adaptive Sensing of Time Series with Application to Remote Exploration
NASA Technical Reports Server (NTRS)
Thompson, David R.; Cabrol, Nathalie A.; Furlong, Michael; Hardgrove, Craig; Low, Bryan K. H.; Moersch, Jeffrey; Wettergreen, David
2013-01-01
We address the problem of adaptive informationoptimal data collection in time series. Here a remote sensor or explorer agent throttles its sampling rate in order to track anomalous events while obeying constraints on time and power. This problem is challenging because the agent has limited visibility -- all collected datapoints lie in the past, but its resource allocation decisions require predicting far into the future. Our solution is to continually fit a Gaussian process model to the latest data and optimize the sampling plan on line to maximize information gain. We compare the performance characteristics of stationary and nonstationary Gaussian process models. We also describe an application based on geologic analysis during planetary rover exploration. Here adaptive sampling can improve coverage of localized anomalies and potentially benefit mission science yield of long autonomous traverses.
Geophysical parameters from the analysis of laser ranging to Starlette
NASA Technical Reports Server (NTRS)
Schutz, B. E.; Shum, C. K.; Tapley, B. D.
1991-01-01
The University of Texas Center for Space Research (UT/CSR) research efforts covering the time period from August 1, 1990 through January 31, 1991 have concentrated on the following areas: (1) Laser Data Processing (more than 15 years of Starlette data (1975-90) have been processed and cataloged); (2) Seasonal Variation of Zonal Tides (observed Starlette time series has been compared with meteorological data-derived time series); (3) Ocean Tide Solutions . (error analysis has been performed using Starlette and other tide solutions); and (4) Lunar Deceleration (formulation to compute theoretical lunar deceleration has been verified and applied to several tidal solutions). Concise descriptions of research achievement for each of the above areas are given. Copies of abstracts for some of the publications and conference presentations are included in the appendices.
NASA Astrophysics Data System (ADS)
Ramírez-Rojas, A.; Flores-Marquez, L. E.
2009-12-01
The short-time prediction of seismic phenomena is currently an important problem in the scientific community. In particular, the electromagnetic processes associated with seismic events take in great interest since the VAN method was implemented. The most important features of this methodology are the seismic electrical signals (SES) observed prior to strong earthquakes. SES has been observed in the electromagnetic series linked to EQs in Greece, Japan and Mexico. By mean of the so-called natural time domain, introduced by Varotsos et al. (2001), they could characterize signals of dichotomic nature observed in different systems, like SES and ionic current fluctuations in membrane channels. In this work we analyze SES observed in geoelectric time series monitored in Guerrero, México. Our analysis concern with two strong earthquakes occurred, on October 24, 1993 (M=6.6) and September 14, 1995 (M=7.3). The time series of the first one displayed a seismic electric signal six days before the main shock and for the second case the time series displayed dichotomous-like fluctuations some months before the EQ. In this work we present the first results of the analysis in natural time domain for the two cases which seems to be agreeing with the results reported by Varotsos. P. Varotsos, N. Sarlis, and E. Skordas, Practica of the Athens Academy 76, 388 (2001).
Parallel photonic information processing at gigabyte per second data rates using transient states
NASA Astrophysics Data System (ADS)
Brunner, Daniel; Soriano, Miguel C.; Mirasso, Claudio R.; Fischer, Ingo
2013-01-01
The increasing demands on information processing require novel computational concepts and true parallelism. Nevertheless, hardware realizations of unconventional computing approaches never exceeded a marginal existence. While the application of optics in super-computing receives reawakened interest, new concepts, partly neuro-inspired, are being considered and developed. Here we experimentally demonstrate the potential of a simple photonic architecture to process information at unprecedented data rates, implementing a learning-based approach. A semiconductor laser subject to delayed self-feedback and optical data injection is employed to solve computationally hard tasks. We demonstrate simultaneous spoken digit and speaker recognition and chaotic time-series prediction at data rates beyond 1Gbyte/s. We identify all digits with very low classification errors and perform chaotic time-series prediction with 10% error. Our approach bridges the areas of photonic information processing, cognitive and information science.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
NASA Astrophysics Data System (ADS)
Schultz, Michael; Verbesselt, Jan; Herold, Martin; Avitabile, Valerio
2013-10-01
Researchers who use remotely sensed data can spend half of their total effort analysing prior data. If this data preprocessing does not match the application, this time spent on data analysis can increase considerably and can lead to inaccuracies. Despite the existence of a number of methods for pre-processing Landsat time series, each method has shortcomings, particularly for mapping forest changes under varying illumination, data availability and atmospheric conditions. Based on the requirements of mapping forest changes as defined by the United Nations (UN) Reducing Emissions from Forest Degradation and Deforestation (REDD) program, the accurate reporting of the spatio-temporal properties of these changes is necessary. We compared the impact of three fundamentally different radiometric preprocessing techniques Moderate Resolution Atmospheric TRANsmission (MODTRAN), Second Simulation of a Satellite Signal in the Solar Spectrum (6S) and simple Dark Object Subtraction (DOS) on mapping forest changes using Landsat time series data. A modification of Breaks For Additive Season and Trend (BFAST) monitor was used to jointly map the spatial and temporal agreement of forest changes at test sites in Ethiopia and Viet Nam. The suitability of the pre-processing methods for the occurring forest change drivers was assessed using recently captured Ground Truth and high resolution data (1000 points). A method for creating robust generic forest maps used for the sampling design is presented. An assessment of error sources has been performed identifying haze as a major source for time series analysis commission error.
Application of time-variable process noise in terrestrial reference frames determined from VLBI data
NASA Astrophysics Data System (ADS)
Soja, Benedikt; Gross, Richard S.; Abbondanza, Claudio; Chin, Toshio M.; Heflin, Michael B.; Parker, Jay W.; Wu, Xiaoping; Balidakis, Kyriakos; Nilsson, Tobias; Glaser, Susanne; Karbon, Maria; Heinkelmann, Robert; Schuh, Harald
2018-05-01
In recent years, Kalman filtering has emerged as a suitable technique to determine terrestrial reference frames (TRFs), a prime example being JTRF2014. The time series approach allows variations of station coordinates that are neither reduced by observational corrections nor considered in the functional model to be taken into account. These variations are primarily due to non-tidal geophysical loading effects that are not reduced according to the current IERS Conventions (2010). It is standard practice that the process noise models applied in Kalman filter TRF solutions are derived from time series of loading displacements and account for station dependent differences. So far, it has been assumed that the parameters of these process noise models are constant over time. However, due to the presence of seasonal and irregular variations, this assumption does not truly reflect reality. In this study, we derive a station coordinate process noise model allowing for such temporal variations. This process noise model and one that is a parameterized version of the former are applied in the computation of TRF solutions based on very long baseline interferometry data. In comparison with a solution based on a constant process noise model, we find that the station coordinates are affected at the millimeter level.
On pads and filters: Processing strong-motion data
Boore, D.M.
2005-01-01
Processing of strong-motion data in many cases can be as straightforward as filtering the acceleration time series and integrating to obtain velocity and displacement. To avoid the introduction of spurious low-frequency noise in quantities derived from the filtered accelerations, however, care must be taken to append zero pads of adequate length to the beginning and end of the segment of recorded data. These padded sections of the filtered acceleration need to be retained when deriving velocities, displacements, Fourier spectra, and response spectra. In addition, these padded and filtered sections should also be included in the time series used in the dynamic analysis of structures and soils to ensure compatibility with the filtered accelerations.
Asymmetry in power-law magnitude correlations.
Podobnik, Boris; Horvatić, Davor; Tenenbaum, Joel N; Stanley, H Eugene
2009-07-01
Time series of increments can be created in a number of different ways from a variety of physical phenomena. For example, in the phenomenon of volatility clustering-well-known in finance-magnitudes of adjacent increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with respect to an increment's sign: the magnitude of |x_{i}| depends on the sign of the previous increment x_{i-1} . Here we define a model-independent test to measure the statistical significance of any observed asymmetry. We propose a simple stochastic process characterized by a an asymmetry parameter lambda and a method for estimating lambda . We illustrate both the test and process by analyzing physiological data.
A tool for NDVI time series extraction from wide-swath remotely sensed images
NASA Astrophysics Data System (ADS)
Li, Zhishan; Shi, Runhe; Zhou, Cong
2015-09-01
Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.
Park, Chihyun; Yun, So Jeong; Ryu, Sung Jin; Lee, Soyoung; Lee, Young-Sam; Yoon, Youngmi; Park, Sang Chul
2017-03-15
Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies have indicated that senescence is a multi-step evolving process related to important complex biological processes. Most studies analyzed only the genes and their functions representing each senescence phase without considering gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism inferred by affected genes and their interaction underlying the senescence process. We suggested a novel computational approach to identify an integrative network which profiles an underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the selected genes were integrated with protein-protein interactions to construct time point specific network. From these constructed networks, the conserved edges across time point were extracted for the common network and statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result, it was confirmed that the difference of average perturbation scores of common networks at both two time points could explain the phenotypic alteration. We also performed functional enrichment on the common network and identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle specific common network played an important role in replicative senescence as a key regulator. Heretofore, the network analysis from time series gene expression data has been focused on what topological structure was changed over time point. Conversely, we focused on the conserved structure but its context was changed in course of time and showed it was available to explain the phenotypic changes. We expect that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches.
Low Streamflow Forcasting using Minimum Relative Entropy
NASA Astrophysics Data System (ADS)
Cui, H.; Singh, V. P.
2013-12-01
Minimum relative entropy spectral analysis is derived in this study, and applied to forecast streamflow time series. Proposed method extends the autocorrelation in the manner that the relative entropy of underlying process is minimized so that time series data can be forecasted. Different prior estimation, such as uniform, exponential and Gaussian assumption, is taken to estimate the spectral density depending on the autocorrelation structure. Seasonal and nonseasonal low streamflow series obtained from Colorado River (Texas) under draught condition is successfully forecasted using proposed method. Minimum relative entropy determines spectral of low streamflow series with higher resolution than conventional method. Forecasted streamflow is compared to the prediction using Burg's maximum entropy spectral analysis (MESA) and Configurational entropy. The advantage and disadvantage of each method in forecasting low streamflow is discussed.
Measuring the self-similarity exponent in Lévy stable processes of financial time series
NASA Astrophysics Data System (ADS)
Fernández-Martínez, M.; Sánchez-Granero, M. A.; Trinidad Segovia, J. E.
2013-11-01
Geometric method-based procedures, which will be called GM algorithms herein, were introduced in [M.A. Sánchez Granero, J.E. Trinidad Segovia, J. García Pérez, Some comments on Hurst exponent and the long memory processes on capital markets, Phys. A 387 (2008) 5543-5551], to efficiently calculate the self-similarity exponent of a time series. In that paper, the authors showed empirically that these algorithms, based on a geometrical approach, are more accurate than the classical algorithms, especially with short length time series. The authors checked that GM algorithms are good when working with (fractional) Brownian motions. Moreover, in [J.E. Trinidad Segovia, M. Fernández-Martínez, M.A. Sánchez-Granero, A note on geometric method-based procedures to calculate the Hurst exponent, Phys. A 391 (2012) 2209-2214], a mathematical background for the validity of such procedures to estimate the self-similarity index of any random process with stationary and self-affine increments was provided. In particular, they proved theoretically that GM algorithms are also valid to explore long-memory in (fractional) Lévy stable motions. In this paper, we prove empirically by Monte Carlo simulation that GM algorithms are able to calculate accurately the self-similarity index in Lévy stable motions and find empirical evidence that they are more precise than the absolute value exponent (denoted by AVE onwards) and the multifractal detrended fluctuation analysis (MF-DFA) algorithms, especially with a short length time series. We also compare them with the generalized Hurst exponent (GHE) algorithm and conclude that both GM2 and GHE algorithms are the most accurate to study financial series. In addition to that, we provide empirical evidence, based on the accuracy of GM algorithms to estimate the self-similarity index in Lévy motions, that the evolution of the stocks of some international market indices, such as U.S. Small Cap and Nasdaq100, cannot be modelized by means of a Brownian motion.
Hensman, James; Lawrence, Neil D; Rattray, Magnus
2013-08-20
Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.
Detecting dynamic causal inference in nonlinear two-phase fracture flow
NASA Astrophysics Data System (ADS)
Faybishenko, Boris
2017-08-01
Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.
Dou, Chao
2016-01-01
The storage volume of internet data center is one of the classical time series. It is very valuable to predict the storage volume of a data center for the business value. However, the storage volume series from a data center is always “dirty,” which contains the noise, missing data, and outliers, so it is necessary to extract the main trend of storage volume series for the future prediction processing. In this paper, we propose an irregular sampling estimation method to extract the main trend of the time series, in which the Kalman filter is used to remove the “dirty” data; then the cubic spline interpolation and average method are used to reconstruct the main trend. The developed method is applied in the storage volume series of internet data center. The experiment results show that the developed method can estimate the main trend of storage volume series accurately and make great contribution to predict the future volume value. PMID:28090205
Miao, Beibei; Dou, Chao; Jin, Xuebo
2016-01-01
The storage volume of internet data center is one of the classical time series. It is very valuable to predict the storage volume of a data center for the business value. However, the storage volume series from a data center is always "dirty," which contains the noise, missing data, and outliers, so it is necessary to extract the main trend of storage volume series for the future prediction processing. In this paper, we propose an irregular sampling estimation method to extract the main trend of the time series, in which the Kalman filter is used to remove the "dirty" data; then the cubic spline interpolation and average method are used to reconstruct the main trend. The developed method is applied in the storage volume series of internet data center. The experiment results show that the developed method can estimate the main trend of storage volume series accurately and make great contribution to predict the future volume value. .
NASA Technical Reports Server (NTRS)
Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe
2012-01-01
Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived from this study agree well with an existing urban extent polygon data set that was previously developed independently. The overall mapping accuracy was estimated at about 92.5% with 3% commission error and 12% omission error for the impervious type from all images regardless of image quality and initial spatial resolution.
Time-series analysis of the barriers for admission into a spinal rehabilitation unit.
New, P W; Akram, M
2016-02-01
This is a prospective open-cohort case series. The objective of this study was to assess changes over time in the duration of key acute hospital process barriers for patients with spinal cord damage (SCD) from admission until transfer into spinal rehabilitation unit (SRU) or other destinations. The study was conducted in Acute hospitals, Victoria, Australia (2006-2013). Duration of the following discrete sequential processes was measured: acute hospital admission until referral to SRU, referral until SRU assessment, SRU assessment until ready for SRU transfer and ready for transfer until SRU admission. Time-series analysis was performed using a generalised additive model (GAM). Seasonality of non-traumatic spinal cord dysfunction (SCDys) was examined. GAM analysis shows that the waiting time for admission into SRU was significantly (P<0.001) longer for patients who were female, who had tetraplegia, who were motor complete, had a pelvic pressure ulcer and who were referred from another health network. Age had a non-linear effect on the duration of waiting for transfer from acute hospital to SRU and both the acute hospital and SRU length of stay (LOS). The duration patients spent waiting for SRU admission increased over the study period. There was an increase in the number of referrals over the study period and an increase in the number of patients accepted but not admitted into the SRU. There was no notable seasonal influence on the referral of patients with SCDys. Time-series analysis provides additional insights into changes in the waiting times for SRU admission and the LOS in hospital for patients with SCD.
Mutual information estimation for irregularly sampled time series
NASA Astrophysics Data System (ADS)
Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.
2012-04-01
For the automated, objective and joint analysis of time series, similarity measures are crucial. Used in the analysis of climate records, they allow for a complimentary, unbiased view onto sparse datasets. The irregular sampling of many of these time series, however, makes it necessary to either perform signal reconstruction (e.g. interpolation) or to develop and use adapted measures. Standard linear interpolation comes with an inevitable loss of information and bias effects. We have recently developed a Gaussian kernel-based correlation algorithm with which the interpolation error can be substantially lowered, but this would not work should the functional relationship in a bivariate setting be non-linear. We therefore propose an algorithm to estimate lagged auto and cross mutual information from irregularly sampled time series. We have extended the standard and adaptive binning histogram estimators and use Gaussian distributed weights in the estimation of the (joint) probabilities. To test our method we have simulated linear and nonlinear auto-regressive processes with Gamma-distributed inter-sampling intervals. We have then performed a sensitivity analysis for the estimation of actual coupling length, the lag of coupling and the decorrelation time in the synthetic time series and contrast our results to the performance of a signal reconstruction scheme. Finally we applied our estimator to speleothem records. We compare the estimated memory (or decorrelation time) to that from a least-squares estimator based on fitting an auto-regressive process of order 1. The calculated (cross) mutual information results are compared for the different estimators (standard or adaptive binning) and contrasted with results from signal reconstruction. We find that the kernel-based estimator has a significantly lower root mean square error and less systematic sampling bias than the interpolation-based method. It is possible that these encouraging results could be further improved by using non-histogram mutual information estimators, like k-Nearest Neighbor or Kernel-Density estimators, but for short (<1000 points) and irregularly sampled datasets the proposed algorithm is already a great improvement.
Coronal Mass Ejection Data Clustering and Visualization of Decision Trees
NASA Astrophysics Data System (ADS)
Ma, Ruizhe; Angryk, Rafal A.; Riley, Pete; Filali Boubrahimi, Soukaina
2018-05-01
Coronal mass ejections (CMEs) can be categorized as either “magnetic clouds” (MCs) or non-MCs. Features such as a large magnetic field, low plasma-beta, and low proton temperature suggest that a CME event is also an MC event; however, so far there is neither a definitive method nor an automatic process to distinguish the two. Human labeling is time-consuming, and results can fluctuate owing to the imprecise definition of such events. In this study, we approach the problem of MC and non-MC distinction from a time series data analysis perspective and show how clustering can shed some light on this problem. Although many algorithms exist for traditional data clustering in the Euclidean space, they are not well suited for time series data. Problems such as inadequate distance measure, inaccurate cluster center description, and lack of intuitive cluster representations need to be addressed for effective time series clustering. Our data analysis in this work is twofold: clustering and visualization. For clustering we compared the results from the popular hierarchical agglomerative clustering technique to a distance density clustering heuristic we developed previously for time series data clustering. In both cases, dynamic time warping will be used for similarity measure. For classification as well as visualization, we use decision trees to aggregate single-dimensional clustering results to form a multidimensional time series decision tree, with averaged time series to present each decision. In this study, we achieved modest accuracy and, more importantly, an intuitive interpretation of how different parameters contribute to an MC event.
TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis
NASA Astrophysics Data System (ADS)
Tsai, L. C.; Macalalad, Ernest P.; Liu, C. H.
2014-10-01
As described in a previous paper, a three-dimensional ionospheric electron density (Ne) model has been constructed from vertical Ne profiles retrieved from the FormoSat3/Constellation Observing System for Meteorology, Ionosphere, and Climate GPS radio occultation measurements and worldwide ionosonde foF2 and foE data and named the TaiWan Ionospheric Model (TWIM). The TWIM exhibits vertically fitted α-Chapman-type layers with distinct F2, F1, E, and D layers, and surface spherical harmonic approaches for the fitted layer parameters including peak density, peak density height, and scale height. To improve the TWIM into a real-time model, we have developed a time series autoregressive model to forecast short-term TWIM coefficients. The time series of TWIM coefficients are considered as realizations of stationary stochastic processes within a processing window of 30 days. These autocorrelation coefficients are used to derive the autoregressive parameters and then forecast the TWIM coefficients, based on the least squares method and Lagrange multiplier technique. The forecast root-mean-square relative TWIM coefficient errors are generally <30% for 1 day predictions. The forecast TWIM values of foE and foF2 values are also compared and evaluated using worldwide ionosonde data.
Influence of ionospheric disturbances onto long-baseline relative positioning in kinematic mode
NASA Astrophysics Data System (ADS)
Wezka, Kinga; Herrera, Ivan; Cokrlic, Marija; Galas, Roman
2013-04-01
Ionospheric disturbances are fast and random variabilities in the ionosphere and they are difficult to detect and model. Some strong disturbances can cause, among others, interruption of GNSS signal or even lead to loss of signal lock. These phenomena are especially harmful for kinematic real-time applications, where the system availability is one of the most important parameters influencing positioning reliability. Our investigations were conducted using long time series of GNSS observations gathered at high latitude, where ionospheric disturbances more frequently occur. Selected processing strategy was used to monitor ionospheric signatures in time series of the coordinates. Quality of the data of input and of the processing results were examined and described by a set of proposed parameters. Variations in the coordinates were compared with available information about the state of ionosphere derived from Neustrelitz TEC Model (NTCM) and with the time series of raw observations. Some selected parameters were also calculated with the "iono-tools" module of the TUB-NavSolutions software developed by the Precise Navigation and Positioning Group at Technische Universitaet Berlin. The paper presents very first results of evaluation of the robustness of positioning algorithms with respect to ionospheric anomalies using the NTCM model and our calculated ionospheric parameters.
Sugano, Mitsutoshi; Shimada, Masashi; Moriyoshi, Miho; Kitagawa, Kiyoki; Nakashima, Hiromi; Wada, Hideo; Yanagihara, Katsunori; Fujisawa, Shinya; Yonekawa, Osamu; Honda, Takayuki
2012-05-01
Routine laboratory data are discussed by time series analysis in reversed clinicopathological conferences (R-CPC) at Shinshu University School of Medicine. We can identify fine changes in the laboratory data and the importance of negative data (without any changes) using time series analysis. Routine laboratory tests can be performed repeatedly and relatively cheaply, and time series analysis can be performed. The examination process of routine laboratory data in the R-CPC is almost the same as the process of taking physical findings. Firstly, general findings are checked and then the state of each organ is examined. Although routine laboratory data are cheap, we can obtain much more information about a patient's state than from physical examinations. In this R-CPC, several specialists in the various fields of laboratory medicine discussed the routine laboratory data of a patient, and we tried to understand the detailed state of the patient. R-CPC is an educational method to examine laboratory data and we, reconfirmed the usefulness of R-CPC to elucidate the clinical state of the patient.
Predicting Physical Time Series Using Dynamic Ridge Polynomial Neural Networks
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques. PMID:25157950
Earth's Surface Displacements from the GPS Time Series
NASA Astrophysics Data System (ADS)
Haritonova, D.; Balodis, J.; Janpaule, I.; Morozova, K.
2015-11-01
The GPS observations of both Latvian permanent GNSS networks - EUPOS®-Riga and LatPos, have been collected for a period of 8 years - from 2007 to 2014. Local surface displacements have been derived from the obtained coordinate time series eliminating different impact sources. The Bernese software is used for data processing. The EUREF Permanent Network (EPN) stations in the surroundings of Latvia are selected as fiducial stations. The results have shown a positive tendency of vertical displacements in the western part of Latvia - station heights are increasing, and negative velocities are observed in the central and eastern parts. Station vertical velocities are ranging in diapason of 4 mm/year. In the case of horizontal displacements, site velocities are up to 1 mm/year and mostly oriented to the south. The comparison of the obtained results with data from the deformation model NKG_RF03vel has been made. Additionally, the purpose of this study is to analyse GPS time series obtained using two different data processing strategies: Precise Point Positioning (PPP) and estimation of station coordinates relatively to the positions of fiducial stations also known as Differential GNSS.
Predicting physical time series using dynamic ridge polynomial neural networks.
Al-Jumeily, Dhiya; Ghazali, Rozaida; Hussain, Abir
2014-01-01
Forecasting naturally occurring phenomena is a common problem in many domains of science, and this has been addressed and investigated by many scientists. The importance of time series prediction stems from the fact that it has wide range of applications, including control systems, engineering processes, environmental systems and economics. From the knowledge of some aspects of the previous behaviour of the system, the aim of the prediction process is to determine or predict its future behaviour. In this paper, we consider a novel application of a higher order polynomial neural network architecture called Dynamic Ridge Polynomial Neural Network that combines the properties of higher order and recurrent neural networks for the prediction of physical time series. In this study, four types of signals have been used, which are; The Lorenz attractor, mean value of the AE index, sunspot number, and heat wave temperature. The simulation results showed good improvements in terms of the signal to noise ratio in comparison to a number of higher order and feedforward neural networks in comparison to the benchmarked techniques.
NASA Astrophysics Data System (ADS)
Antonik, Piotr; Haelterman, Marc; Massar, Serge
2017-05-01
Reservoir computing is a bioinspired computing paradigm for processing time-dependent signals. Its hardware implementations have received much attention because of their simplicity and remarkable performance on a series of benchmark tasks. In previous experiments, the output was uncoupled from the system and, in most cases, simply computed off-line on a postprocessing computer. However, numerical investigations have shown that feeding the output back into the reservoir opens the possibility of long-horizon time-series forecasting. Here, we present a photonic reservoir computer with output feedback, and we demonstrate its capacity to generate periodic time series and to emulate chaotic systems. We study in detail the effect of experimental noise on system performance. In the case of chaotic systems, we introduce several metrics, based on standard signal-processing techniques, to evaluate the quality of the emulation. Our work significantly enlarges the range of tasks that can be solved by hardware reservoir computers and, therefore, the range of applications they could potentially tackle. It also raises interesting questions in nonlinear dynamics and chaos theory.
NASA Astrophysics Data System (ADS)
Zhang, G.; Ganguly, S.; Saatchi, S. S.; Hagen, S. C.; Harris, N.; Yu, Y.; Nemani, R. R.
2013-12-01
Spatial and temporal patterns of forest disturbance and regrowth processes are key for understanding aboveground terrestrial vegetation biomass and carbon stocks at regional-to-continental scales. The NASA Carbon Monitoring System (CMS) program seeks key input datasets, especially information related to impacts due to natural/man-made disturbances in forested landscapes of Conterminous U.S. (CONUS), that would reduce uncertainties in current carbon stock estimation and emission models. This study provides a end-to-end forest disturbance detection framework based on pixel time series analysis from MODIS (Moderate Resolution Imaging Spectroradiometer) and Landsat surface spectral reflectance data. We applied the BFAST (Breaks for Additive Seasonal and Trend) algorithm to the Normalized Difference Vegetation Index (NDVI) data for the time period from 2000 to 2011. A harmonic seasonal model was implemented in BFAST to decompose the time series to seasonal and interannual trend components in order to detect abrupt changes in magnitude and direction of these components. To apply the BFAST for whole CONUS, we built a parallel computing setup for processing massive time-series data using the high performance computing facility of the NASA Earth Exchange (NEX). In the implementation process, we extracted the dominant deforestation events from the magnitude of abrupt changes in both seasonal and interannual components, and estimated dates for corresponding deforestation events. We estimated the recovery rate for deforested regions through regression models developed between NDVI values and time since disturbance for all pixels. A similar implementation of the BFAST algorithm was performed over selected Landsat scenes (all Landsat cloud free data was used to generate NDVI from atmospherically corrected spectral reflectances) to demonstrate the spatial coherence in retrieval layers between MODIS and Landsat. In future, the application of this largely parallel disturbance detection setup will facilitate large scale processing and wall-to-wall mapping of forest disturbance and regrowth of Landsat data for the whole of CONUS. This exercise will aid in improving the present capabilities of the NASA CMS effort in reducing uncertainties in national-level estimates of biomass and carbon stocks.
GRASS GIS: The first Open Source Temporal GIS
NASA Astrophysics Data System (ADS)
Gebbert, Sören; Leppelt, Thomas
2015-04-01
GRASS GIS is a full featured, general purpose Open Source geographic information system (GIS) with raster, 3D raster and vector processing support[1]. Recently, time was introduced as a new dimension that transformed GRASS GIS into the first Open Source temporal GIS with comprehensive spatio-temporal analysis, processing and visualization capabilities[2]. New spatio-temporal data types were introduced in GRASS GIS version 7, to manage raster, 3D raster and vector time series. These new data types are called space time datasets. They are designed to efficiently handle hundreds of thousands of time stamped raster, 3D raster and vector map layers of any size. Time stamps can be defined as time intervals or time instances in Gregorian calendar time or relative time. Space time datasets are simplifying the processing and analysis of large time series in GRASS GIS, since these new data types are used as input and output parameter in temporal modules. The handling of space time datasets is therefore equal to the handling of raster, 3D raster and vector map layers in GRASS GIS. A new dedicated Python library, the GRASS GIS Temporal Framework, was designed to implement the spatio-temporal data types and their management. The framework provides the functionality to efficiently handle hundreds of thousands of time stamped map layers and their spatio-temporal topological relations. The framework supports reasoning based on the temporal granularity of space time datasets as well as their temporal topology. It was designed in conjunction with the PyGRASS [3] library to support parallel processing of large datasets, that has a long tradition in GRASS GIS [4,5]. We will present a subset of more than 40 temporal modules that were implemented based on the GRASS GIS Temporal Framework, PyGRASS and the GRASS GIS Python scripting library. These modules provide a comprehensive temporal GIS tool set. The functionality range from space time dataset and time stamped map layer management over temporal aggregation, temporal accumulation, spatio-temporal statistics, spatio-temporal sampling, temporal algebra, temporal topology analysis, time series animation and temporal topology visualization to time series import and export capabilities with support for NetCDF and VTK data formats. We will present several temporal modules that support parallel processing of raster and 3D raster time series. [1] GRASS GIS Open Source Approaches in Spatial Data Handling In Open Source Approaches in Spatial Data Handling, Vol. 2 (2008), pp. 171-199, doi:10.1007/978-3-540-74831-19 by M. Neteler, D. Beaudette, P. Cavallini, L. Lami, J. Cepicky edited by G. Brent Hall, Michael G. Leahy [2] Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environ. Model. Softw. 53, 1-12. [3] Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS Intl Journal of Geo-Information 2, 201-219. [4] Löwe, P., Klump, J., Thaler, J. (2012): The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster, (Geophysical Research Abstracts Vol. 14, EGU2012-4491, 2012), General Assembly European Geosciences Union (Vienna, Austria 2012). [5] Akhter, S., Aida, K., Chemin, Y., 2010. "GRASS GIS on High Performance Computing with MPI, OpenMP and Ninf-G Programming Framework". ISPRS Conference, Kyoto, 9-12 August 2010
Estimating short-run and long-run interaction mechanisms in interictal state.
Ozkaya, Ata; Korürek, Mehmet
2010-04-01
We address the issue of analyzing electroencephalogram (EEG) from seizure patients in order to test, model and determine the statistical properties that distinguish between EEG states (interictal, pre-ictal, ictal) by introducing a new class of time series analysis methods. In the present study: firstly, we employ statistical methods to determine the non-stationary behavior of focal interictal epileptiform series within very short time intervals; secondly, for such intervals that are deemed non-stationary we suggest the concept of Autoregressive Integrated Moving Average (ARIMA) process modelling, well known in time series analysis. We finally address the queries of causal relationships between epileptic states and between brain areas during epileptiform activity. We estimate the interaction between different EEG series (channels) in short time intervals by performing Granger-causality analysis and also estimate such interaction in long time intervals by employing Cointegration analysis, both analysis methods are well-known in econometrics. Here we find: first, that the causal relationship between neuronal assemblies can be identified according to the duration and the direction of their possible mutual influences; second, that although the estimated bidirectional causality in short time intervals yields that the neuronal ensembles positively affect each other, in long time intervals neither of them is affected (increasing amplitudes) from this relationship. Moreover, Cointegration analysis of the EEG series enables us to identify whether there is a causal link from the interictal state to ictal state.
A 40 Year Time Series of SBUV Observations: the Version 8.6 Processing
NASA Technical Reports Server (NTRS)
McPeters, Richard; Bhartia, P. K.; Flynn, L.
2012-01-01
Under a NASA program to produce long term data records from instruments on multiple satellites (MEaSUREs), data from a series of eight SBUV and SBUV 12 instruments have been reprocessed to create a 40 year long ozone time series. Data from the Nimbus 4 BUV, Nimbus 7 SBUV, and SBUV/2 instruments on NOAA 9, 11, 14, 16, 17, and 18 were used covering the period 1970 to 1972 and 1979 to the present. In past analyses an ozone time series was created from these instruments by adjusting ozone itself, instrument by instrument, for consistency during overlap periods. In the version 8.6 processing adjustments were made to the radiance calibration of each instrument to maintain a consistent calibration over the entire time series. Data for all eight instruments were then reprocessed using the adjusted radiances. Reprocessing is necessary to produce an accurate latitude dependence. Other improvements incorporated in version 8.6 included the use of the ozone cross sections of Brion, Daumont, and Malicet, and the use of a cloud height climatology derived from Aura OMI measurements. The new cross sections have a more accurate temperature dependence than the cross sections previously used. The OMI-based cloud heights account for the penetration of UV into the upper layers of clouds. The consistency of the version 8.6 time series was evaluated by intra-instrument comparisons during overlap periods, comparisons with ground-based instruments, and comparisons with measurements made by instruments on other satellites such as SAGE II and UARS MLS. These comparisons show that for the instruments on NOAA 16, 17 and 18, the instrument calibrations were remarkably stable and consistent from instrument to instrument. The data record from the Nimbus 7 SBUV was also very stable, and SAGE and ground-based comparisons show that the' calibration was consistent with measurements made years laterby the NOAA 16 instrument. The calibrations of the SBUV/2 instruments on NOAA 9, 11, and 14 were more of a problem. The rapidly drifting orbits of these satellites resulted in relative time and altitude dependent differences that are significant. Despite these problems, total column ozone appears to be consistent to better than 1% over the entire time series, while the ozone vertical distribution is consistent to approximately 5%.
NASA Astrophysics Data System (ADS)
Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.
2012-12-01
In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by non-stationarity either of the system input (climatic variability) and/or the complexity of catchment storage characteristics. The statistical model is also capable of reproducing short (event) and longer-term (inter-event) and wet and dry dynamical "hydrological states". These reflect the non-linear transport mechanisms of flow pathways induced by transient climatic and hydrological variables and modified by catchment characteristics. We conclude that MSARMs are a powerful tool to analyze the temporal dynamics of hydrological data, allowing for explicit integration of non-stationary, non-linear and non-Normal characteristics.
Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?
NASA Astrophysics Data System (ADS)
Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.
2017-12-01
The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.
Noise analysis of GPS time series in Taiwan
NASA Astrophysics Data System (ADS)
Lee, You-Chia; Chang, Wu-Lung
2017-04-01
Global positioning system (GPS) usually used for researches of plate tectonics and crustal deformation. In most studies, GPS time series considered only time-independent noises (white noise), but time-dependent noises (flicker noise, random walk noise) which were found by nearly twenty years are also important to the precision of data. The rate uncertainties of stations will be underestimated if the GPS time series are assumed only time-independent noise. Therefore studying the noise properties of GPS time series is necessary in order to realize the precision and reliability of velocity estimates. The lengths of our GPS time series are from over 500 stations around Taiwan with time spans longer than 2.5 years up to 20 years. The GPS stations include different monument types such as deep drill braced, roof, metal tripod, and concrete pier, and the most common type in Taiwan is the metal tripod. We investigated the noise properties of continuous GPS time series by using the spectral index and amplitude of the power law noise. During the process we first remove the data outliers, and then estimate linear trend, size of offsets, and seasonal signals, and finally the amplitudes of the power-law and white noise are estimated simultaneously. Our preliminary results show that the noise amplitudes of the north component are smaller than that of the other two components, and the largest amplitudes are in the vertical. We also find that the amplitudes of white noise and power-law noises are positively correlated in three components. Comparisons of noise amplitudes of different monument types in Taiwan reveal that the deep drill braced monuments have smaller data uncertainties and therefore are more stable than other monuments.
Wet tropospheric delays forecast based on Vienna Mapping Function time series analysis
NASA Astrophysics Data System (ADS)
Rzepecka, Zofia; Kalita, Jakub
2016-04-01
It is well known that the dry part of the zenith tropospheric delay (ZTD) is much easier to model than the wet part (ZTW). The aim of the research is applying stochastic modeling and prediction of ZTW using time series analysis tools. Application of time series analysis enables closer understanding of ZTW behavior as well as short-term prediction of future ZTW values. The ZTW data used for the studies were obtained from the GGOS service hold by Vienna technical University. The resolution of the data is six hours. ZTW for the years 2010 -2013 were adopted for the study. The International GNSS Service (IGS) permanent stations LAMA and GOPE, located in mid-latitudes, were admitted for the investigations. Initially the seasonal part was separated and modeled using periodic signals and frequency analysis. The prominent annual and semi-annual signals were removed using sines and consines functions. The autocorrelation of the resulting signal is significant for several days (20-30 samples). The residuals of this fitting were further analyzed and modeled with ARIMA processes. For both the stations optimal ARMA processes based on several criterions were obtained. On this basis predicted ZTW values were computed for one day ahead, leaving the white process residuals. Accuracy of the prediction can be estimated at about 3 cm.
Disease management with ARIMA model in time series.
Sato, Renato Cesar
2013-01-01
The evaluation of infectious and noninfectious disease management can be done through the use of a time series analysis. In this study, we expect to measure the results and prevent intervention effects on the disease. Clinical studies have benefited from the use of these techniques, particularly for the wide applicability of the ARIMA model. This study briefly presents the process of using the ARIMA model. This analytical tool offers a great contribution for researchers and healthcare managers in the evaluation of healthcare interventions in specific populations.
What does the structure of its visibility graph tell us about the nature of the time series?
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Donner, Reik V.
2017-04-01
Visibility graphs are a recently introduced method to construct complex network representations based upon univariate time series in order to study their dynamical characteristics [1]. In the last years, this approach has been successfully applied to studying a considerable variety of geoscientific research questions and data sets, including non-trivial temporal patterns in complex earthquake catalogs [2] or time-reversibility in climate time series [3]. It has been shown that several characteristic features of the thus constructed networks differ between stochastic and deterministic (possibly chaotic) processes, which is, however, relatively hard to exploit in the case of real-world applications. In this study, we propose studying two new measures related with the network complexity of visibility graphs constructed from time series, one being a special type of network entropy [4] and the other a recently introduced measure of the heterogeneity of the network's degree distribution [5]. For paradigmatic model systems exhibiting bifurcation sequences between regular and chaotic dynamics, both properties clearly trace the transitions between both types of regimes and exhibit marked quantitative differences for regular and chaotic dynamics. Moreover, for dynamical systems with a small amount of additive noise, the considered properties demonstrate gradual changes prior to the bifurcation point. This finding appears closely related to the subsequent loss of stability of the current state known to lead to a critical slowing down as the transition point is approaches. In this spirit, both considered visibility graph characteristics provide alternative tracers of dynamical early warning signals consistent with classical indicators. Our results demonstrate that measures of visibility graph complexity (i) provide a potentially useful means to tracing changes in the dynamical patterns encoded in a univariate time series that originate from increasing autocorrelation and (ii) allow to systematically distinguish regular from deterministic-chaotic dynamics. We demonstrate the application of our method for different model systems as well as selected paleoclimate time series from the North Atlantic region. Notably, visibility graph based methods are particularly suited for studying the latter type of geoscientific data, since they do not impose intrinsic restrictions or assumptions on the nature of the time series under investigation in terms of noise process, linearity and sampling homogeneity. [1] Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." Proceedings of the National Academy of Sciences 105.13 (2008): 4972-4975. [2] Telesca, Luciano, and Michele Lovallo. "Analysis of seismic sequences by using the method of visibility graph." EPL (Europhysics Letters) 97.5 (2012): 50002. [3] Donges, Jonathan F., Reik V. Donner, and Jürgen Kurths. "Testing time series irreversibility using complex network methods." EPL (Europhysics Letters) 102.1 (2013): 10004. [4] Small, Michael. "Complex networks from time series: capturing dynamics." 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing (2013): 2509-2512. [5] Jacob, Rinku, K.P. Harikrishnan, Ranjeev Misra, and G. Ambika. "Measure for degree heterogeneity in complex networks and its application to recurrence network analysis." arXiv preprint 1605.06607 (2016).
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
2016-05-01
Detrended fluctuation analysis (DFA) is used to examine long-range dependence in variations and volatilities of American treasury bills (TB) during periods of low and high movements in TB rates. Volatility series are estimated by generalized autoregressive conditional heteroskedasticity (GARCH) model under Gaussian, Student, and the generalized error distribution (GED) assumptions. The DFA-based Hurst exponents from 3-month, 6-month, and 1-year TB data indicates that in general the dynamics of the TB variations process is characterized by persistence during stable time period (before 2008 international financial crisis) and anti-persistence during unstable time period (post-2008 international financial crisis). For volatility series, it is found that; for stable period; 3-month volatility process is more likely random, 6-month volatility process is anti-persistent, and 1-year volatility process is persistent. For unstable period, estimation results show that the generating process is persistent for all maturities and for all distributional assumptions.
Licorice Production and Manufacturing: All-Sorts of Practical Applications for Statistics
ERIC Educational Resources Information Center
Watson, Jane; Skalicky, Jane; Fitzallen, Noleine; Wright, Suzie
2009-01-01
Among the practical applications of statistics is the collection of data from manufacturing processes. Often collected in the form of a time series, data collected from a series of measurements show the variation in those measurements, such as mass of a product manufactured. Limits are set for quality control and if these are exceeded then a…
A High-Resolution Record of Holocene Climate Variability from a Western Canadian Coastal Inlet
NASA Astrophysics Data System (ADS)
Dallimore, A.; Thomson, R. E.; Enkin, R. J.; Kulikov, E. A.; Bertram, M. A.; Wright, C. A.; Southon, J. R.; Barrie, J. V.; Baker, J.; Pienitz, R.; Calvert, S. E.; Chang, A. S.; Pedersen, T. F.
2004-12-01
Conditions within the Pacific Ocean have a major effect on the climate of northwestern North America. High resolution records of present and past northeast Pacific climate are revealed in our multi-disciplinary study of annually laminated marine sediments from anoxic coastal inlets of British Columbia. Past climate conditions for the entire Holocene are recorded in the sediment record contained in a 40 meter, annually laminated marine sediment core taken in Effingham Inlet, on the west coast of Vancouver Island, British Columbia, from the French ship the Marion Dufresne, as part of the international IMAGES program. By combining our eight year continuous instrument record of modern coastal ocean dynamics and climate with high-resolution analysis of depositional processes, we have been able to develop proxy measurements of past climatic and oceanographic changes on annual to millennial time scales. Results indicate that regional climate has oscillated on a variety of time scales throughout the Holocene. At times, climatic change has been dramatically rapid. We are also developing digital methods for statistical time-series analyses of physical sediment properties through the Holocene in order to obtain a more objective quantitative approach for detecting cyclicity in our data. Results of the time series analysis of lamination thickness reveals statistically significant spectral peaks of climate scale variability at established decadal to century time scales. These in turn may be related to solar cycles and quasi-cyclical ocean processes such as the Pacific Decadal Oscillation. However, the annually laminated time series are periodically interrupted by massive mud intervals which are related to bottom currents and at times paleo-seismic events, illustrating the need for a full understanding of modern oceanographic and sedimentation processes, so an accurate proxy record of past climate can be established.
Rodríguez-Arias, Miquel Angel; Rodó, Xavier
2004-03-01
Here we describe a practical, step-by-step primer to scale-dependent correlation (SDC) analysis. The analysis of transitory processes is an important but often neglected topic in ecological studies because only a few statistical techniques appear to detect temporary features accurately enough. We introduce here the SDC analysis, a statistical and graphical method to study transitory processes at any temporal or spatial scale. SDC analysis, thanks to the combination of conventional procedures and simple well-known statistical techniques, becomes an improved time-domain analogue of wavelet analysis. We use several simple synthetic series to describe the method, a more complex example, full of transitory features, to compare SDC and wavelet analysis, and finally we analyze some selected ecological series to illustrate the methodology. The SDC analysis of time series of copepod abundances in the North Sea indicates that ENSO primarily is the main climatic driver of short-term changes in population dynamics. SDC also uncovers some long-term, unexpected features in the population. Similarly, the SDC analysis of Nicholson's blowflies data locates where the proposed models fail and provides new insights about the mechanism that drives the apparent vanishing of the population cycle during the second half of the series.
Light-weight Parallel Python Tools for Earth System Modeling Workflows
NASA Astrophysics Data System (ADS)
Mickelson, S. A.; Paul, K.; Xu, H.; Dennis, J.; Brown, D. I.
2015-12-01
With the growth in computing power over the last 30 years, earth system modeling codes have become increasingly data-intensive. As an example, it is expected that the data required for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR6) will increase by more than 10x to an expected 25PB per climate model. Faced with this daunting challenge, developers of the Community Earth System Model (CESM) have chosen to change the format of their data for long-term storage from time-slice to time-series, in order to reduce the required download bandwidth needed for later analysis and post-processing by climate scientists. Hence, efficient tools are required to (1) perform the transformation of the data from time-slice to time-series format and to (2) compute climatology statistics, needed for many diagnostic computations, on the resulting time-series data. To address the first of these two challenges, we have developed a parallel Python tool for converting time-slice model output to time-series format. To address the second of these challenges, we have developed a parallel Python tool to perform fast time-averaging of time-series data. These tools are designed to be light-weight, be easy to install, have very few dependencies, and can be easily inserted into the Earth system modeling workflow with negligible disruption. In this work, we present the motivation, approach, and testing results of these two light-weight parallel Python tools, as well as our plans for future research and development.
Estimating Perturbation and Meta-Stability in the Daily Attendance Rates of Six Small High Schools
NASA Astrophysics Data System (ADS)
Koopmans, Matthijs
This paper discusses the daily attendance rates in six small high schools over a ten-year period and evaluates how stable those rates are. “Stability” is approached from two vantage points: pulse models are fitted to estimate the impact of sudden perturbations and their reverberation through the series, and Autoregressive Fractionally Integrated Moving Average (ARFIMA) techniques are used to detect dependencies over the long range of the series. The analyses are meant to (1) exemplify the utility of time series approaches in educational research, which lacks a time series tradition, (2) discuss some time series features that seem to be particular to daily attendance rate trajectories such as the distinct downward pull coming from extreme observations, and (3) present an analytical approach to handle the important yet distinct patterns of variability that can be found in these data. The analysis also illustrates why the assumption of stability that underlies the habitual reporting of weekly, monthly and yearly averages in the educational literature is questionable, as it reveals dynamical processes (perturbation, meta-stability) that remain hidden in such summaries.
Miranian, A; Abdollahzade, M
2013-02-01
Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.
Anomalous scaling of stochastic processes and the Moses effect
NASA Astrophysics Data System (ADS)
Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.
2017-04-01
The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.
Anomalous scaling of stochastic processes and the Moses effect.
Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H
2017-04-01
The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.
Simulation of Ground Winds Time Series for the NASA Crew Launch Vehicle (CLV)
NASA Technical Reports Server (NTRS)
Adelfang, Stanley I.
2008-01-01
Simulation of wind time series based on power spectrum density (PSD) and spectral coherence models for ground wind turbulence is described. The wind models, originally developed for the Shuttle program, are based on wind measurements at the NASA 150-m meteorological tower at Cape Canaveral, FL. The current application is for the design and/or protection of the CLV from wind effects during on-pad exposure during periods from as long as days prior to launch, to seconds or minutes just prior to launch and seconds after launch. The evaluation of vehicle response to wind will influence the design and operation of constraint systems for support of the on-pad vehicle. Longitudinal and lateral wind component time series are simulated at critical vehicle locations. The PSD model for wind turbulence is a function of mean wind speed, elevation and temporal frequency. Integration of the PSD equation over a selected frequency range yields the variance of the time series to be simulated. The square root of the PSD defines a low-pass filter that is applied to adjust the components of the Fast Fourier Transform (FFT) of Gaussian white noise. The first simulated time series near the top of the launch vehicle is the inverse transform of the adjusted FFT. Simulation of the wind component time series at the nearest adjacent location (and all other succeeding next nearest locations) is based on a model for the coherence between winds at two locations as a function of frequency and separation distance, where the adjacent locations are separated vertically and/or horizontally. The coherence function is used to calculate a coherence weighted FFT of the wind at the next nearest location, given the FFT of the simulated time series at the previous location and the essentially incoherent FFT of the wind at the selected location derived a priori from the PSD model. The simulated time series at each adjacent location is the inverse Fourier transform of the coherence weighted FFT. For a selected design case, the equations, the process and the simulated time series at multiple vehicle stations are presented.
Sleep-Dependent Memory Consolidation and Reconsolidation
Stickgold, Robert; Walker, Matthew P.
2009-01-01
Molecular, cellular, and systems-level processes convert initial, labile memory representations into more permanent ones, available for continued reactivation and recall over extended periods of time. These processes of memory consolidation and reconsolidation are not all-or-none phenomena, but rather a continuing series of biological adjustments that enhance both the efficiency and utility of stored memories over time. In this chapter, we review the role of sleep in supporting these disparate but related processes. PMID:17470412
NASA Astrophysics Data System (ADS)
Di Piazza, A.; Cordano, E.; Eccel, E.
2012-04-01
The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices selected from the list recommended by the World Meteorological Organization Commission for Climatology (WMO-CCL) and the Research Programme on Climate Variability and Predictability (CLIVAR) project's Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Each index was applied to both observed (and processed) data and to synthetic time series produced by the Weather Generator, over the thirty year reference period 1981-2010, in order to validate the procedure. Climate projections were statistically downscaled for a selection of sites for the two 30-year periods 2021-2050 and 2071-2099 of the European project "Ensembles" multi-model output (scenario A1B). The use of several climatic indices strengthens the trend analysis of both the generated synthetic series and future climate projections.
Plazas-Nossa, Leonardo; Torres, Andrés
2014-01-01
The objective of this work is to introduce a forecasting method for UV-Vis spectrometry time series that combines principal component analysis (PCA) and discrete Fourier transform (DFT), and to compare the results obtained with those obtained by using DFT. Three time series for three different study sites were used: (i) Salitre wastewater treatment plant (WWTP) in Bogotá; (ii) Gibraltar pumping station in Bogotá; and (iii) San Fernando WWTP in Itagüí (in the south part of Medellín). Each of these time series had an equal number of samples (1051). In general terms, the results obtained are hardly generalizable, as they seem to be highly dependent on specific water system dynamics; however, some trends can be outlined: (i) for UV range, DFT and PCA/DFT forecasting accuracy were almost the same; (ii) for visible range, the PCA/DFT forecasting procedure proposed gives systematically lower forecasting errors and variability than those obtained with the DFT procedure; and (iii) for short forecasting times the PCA/DFT procedure proposed is more suitable than the DFT procedure, according to processing times obtained.
Xu, Jingping; Lightsom, Fran; Noble, Marlene A.; Denham, Charles
2002-01-01
During the past several years, the sediment transport group in the Coastal and Marine Geology Program (CMGP) of the U. S. Geological Survey has made major revisions to its methodology of processing, analyzing, and maintaining the variety of oceanographic time-series data. First, CMGP completed the transition of the its oceanographic time-series database to a self-documenting NetCDF (Rew et al., 1997) data format. Second, CMGP’s oceanographic data variety and complexity have been greatly expanded from traditional 2-dimensional, single-point time-series measurements (e.g., Electro-magnetic current meters, transmissometers) to more advanced 3-dimensional and profiling time-series measurements due to many new acquisitions of modern instruments such as Acoustic Doppler Current Profiler (RDI, 1996), Acoustic Doppler Velocitimeter, Pulse-Coherence Acoustic Doppler Profiler (SonTek, 2001), Acoustic Bacscatter Sensor (Aquatec, 1001001001001001001). In order to accommodate the NetCDF format of data from the new instruments, a software package of processing, analyzing, and visualizing time-series oceanographic data was developed. It is named CMGTooL. The CMGTooL package contains two basic components: a user-friendly GUI for NetCDF file analysis, processing and manipulation; and a data analyzing program library. Most of the routines in the library are stand-alone programs suitable for batch processing. CMGTooL is written in MATLAB computing language (The Mathworks, 1997), therefore users must have MATLAB installed on their computer in order to use this software package. In addition, MATLAB’s Signal Processing Toolbox is also required by some CMGTooL’s routines. Like most MATLAB programs, all CMGTooL codes are compatible with different computing platforms including PC, MAC, and UNIX machines (Note: CMGTooL has been tested on different platforms that run MATLAB 5.2 (Release 10) or lower versions. Some of the commands related to MAC may not be compatible with later releases of MATLAB). The GUI and some of the library routines call low-level NetCDF file I/O, variable and attribute functions. These NetCDF exclusive functions are supported by a MATLAB toolbox named NetCDF, created by Dr. Charles Denham . This toolbox has to be installed in order to use the CMGTooL GUI. The CMGTooL GUI calls several routines that were initially developed by others. The authors would like to acknowledge the following scientists for their ideas and codes: Dr. Rich Signell (USGS), Dr. Chris Sherwood (USGS), and Dr. Bob Beardsley (WHOI). Many special terms that carry special meanings in either MATLAB or the NetCDF Toolbox are used in this manual. Users are encouraged to read the documents of MATLAB and NetCDF for references.
PRISM, Processing and Review Interface for Strong Motion Data Software
NASA Astrophysics Data System (ADS)
Kalkan, E.; Jones, J. M.; Stephens, C. D.; Ng, P.
2016-12-01
A continually increasing number of high-quality digital strong-motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the U.S., calls for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. PRISM automates the processing of strong-motion records by providing batch-processing capabilities. The PRISM software is platform-independent (coded in Java), open-source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a graphical user interface (GUI) for manual review and processing. To facilitate the use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and GUI components) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X and Windows. PRISM was designed to be flexible and extensible in order to accommodate implementation of new processing techniques. Input to PRISM currently is limited to data files in the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) V0 format, so that all retrieved acceleration time series need to be converted to this format. Output products include COSMOS V1, V2 and V3 files as: (i) raw acceleration time series in physical units with mean removed (V1), (ii) baseline-corrected and filtered acceleration, velocity, and displacement time series (V2), and (iii) response spectra, Fourier amplitude spectra and common earthquake-engineering intensity measures (V3). A thorough description of the record processing features supported by PRISM is presented with examples and validation results. All computing features have been thoroughly tested.
New Ground Truth Capability from InSAR Time Series Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckley, S; Vincent, P; Yang, D
2005-07-13
We demonstrate that next-generation interferometric synthetic aperture radar (InSAR) processing techniques applied to existing data provide rich InSAR ground truth content for exploitation in seismic source identification. InSAR time series analyses utilize tens of interferograms and can be implemented in different ways. In one such approach, conventional InSAR displacement maps are inverted in a final post-processing step. Alternatively, computationally intensive data reduction can be performed with specialized InSAR processing algorithms. The typical final result of these approaches is a synthesized set of cumulative displacement maps. Examples from our recent work demonstrate that these InSAR processing techniques can provide appealing newmore » ground truth capabilities. We construct movies showing the areal and temporal evolution of deformation associated with previous nuclear tests. In other analyses, we extract time histories of centimeter-scale surface displacement associated with tunneling. The potential exists to identify millimeter per year surface movements when sufficient data exists for InSAR techniques to isolate and remove phase signatures associated with digital elevation model errors and the atmosphere.« less
NASA Astrophysics Data System (ADS)
Cannas, Barbara; Fanni, Alessandra; Murari, Andrea; Pisano, Fabio; Contributors, JET
2018-02-01
In this paper, the dynamic characteristics of type-I ELM time-series from the JET tokamak, the world’s largest magnetic confinement plasma physics experiment, have been investigated. The dynamic analysis has been focused on the detection of nonlinear structure in D α radiation time series. Firstly, the method of surrogate data has been applied to evaluate the statistical significance of the null hypothesis of static nonlinear distortion of an underlying Gaussian linear process. Several nonlinear statistics have been evaluated, such us the time delayed mutual information, the correlation dimension and the maximal Lyapunov exponent. The obtained results allow us to reject the null hypothesis, giving evidence of underlying nonlinear dynamics. Moreover, no evidence of low-dimensional chaos has been found; indeed, the analysed time series are better characterized by the power law sensitivity to initial conditions which can suggest a motion at the ‘edge of chaos’, at the border between chaotic and regular non-chaotic dynamics. This uncertainty makes it necessary to further investigate about the nature of the nonlinear dynamics. For this purpose, a second surrogate test to distinguish chaotic orbits from pseudo-periodic orbits has been applied. In this case, we cannot reject the null hypothesis which means that the ELM time series is possibly pseudo-periodic. In order to reproduce pseudo-periodic dynamical properties, a periodic state-of-the-art model, proposed to reproduce the ELM cycle, has been corrupted by a dynamical noise, obtaining time series qualitatively in agreement with experimental time series.
Tracking signal test to monitor an intelligent time series forecasting model
NASA Astrophysics Data System (ADS)
Deng, Yan; Jaraiedi, Majid; Iskander, Wafik H.
2004-03-01
Extensive research has been conducted on the subject of Intelligent Time Series forecasting, including many variations on the use of neural networks. However, investigation of model adequacy over time, after the training processes is completed, remains to be fully explored. In this paper we demonstrate a how a smoothed error tracking signals test can be incorporated into a neuro-fuzzy model to monitor the forecasting process and as a statistical measure for keeping the forecasting model up-to-date. The proposed monitoring procedure is effective in the detection of nonrandom changes, due to model inadequacy or lack of unbiasedness in the estimation of model parameters and deviations from the existing patterns. This powerful detection device will result in improved forecast accuracy in the long run. An example data set has been used to demonstrate the application of the proposed method.
Characterization of time dynamical evolution of electroencephalographic epileptic records
NASA Astrophysics Data System (ADS)
Rosso, Osvaldo A.; Mairal, María. Liliana
2002-09-01
Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of the brain dynamics. The processing of information by the brain is reflected in dynamical changes of the electrical activity in time, frequency, and space. Therefore, the concomitant studies require methods capable of describing the qualitative variation of the signal in both time and frequency. The entropy defined from the wavelet functions is a measure of the order/disorder degree present in a time series. In consequence, this entropy evaluates over EEG time series gives information about the underlying dynamical process in the brain, more specifically of the synchrony of the group cells involved in the different neural responses. The total wavelet entropy results independent of the signal energy and becomes a good tool for detecting dynamical changes in the system behavior. In addition the total wavelet entropy has advantages over the Lyapunov exponents, because it is parameter free and independent of the stationarity of the time series. In this work we compared the results of the time evolution of the chaoticity (Lyapunov exponent as a function of time) with the corresponding time evolution of the total wavelet entropy in two different EEG records, one provide by depth electrodes and other by scalp ones.
NASA Astrophysics Data System (ADS)
Esquível, Manuel L.; Fernandes, José Moniz; Guerreiro, Gracinda R.
2016-06-01
We introduce a schematic formalism for the time evolution of a random population entering some set of classes and such that each member of the population evolves among these classes according to a scheme based on a Markov chain model. We consider that the flow of incoming members is modeled by a time series and we detail the time series structure of the elements in each of the classes. We present a practical application to data from a credit portfolio of a Cape Verdian bank; after modeling the entering population in two different ways - namely as an ARIMA process and as a deterministic sigmoid type trend plus a SARMA process for the residues - we simulate the behavior of the population and compare the results. We get that the second method is more accurate in describing the behavior of the populations when compared to the observed values in a direct simulation of the Markov chain.
Introduction to multifractal detrended fluctuation analysis in matlab.
Ihlen, Espen A F
2012-01-01
Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra.
Introduction to Multifractal Detrended Fluctuation Analysis in Matlab
Ihlen, Espen A. F.
2012-01-01
Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra. PMID:22675302
Unraveling chaotic attractors by complex networks and measurements of stock market complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Hongduo; Li, Ying, E-mail: mnsliy@mail.sysu.edu.cn
2014-03-15
We present a novel method for measuring the complexity of a time series by unraveling a chaotic attractor modeled on complex networks. The complexity index R, which can potentially be exploited for prediction, has a similar meaning to the Kolmogorov complexity (calculated from the Lempel–Ziv complexity), and is an appropriate measure of a series' complexity. The proposed method is used to research the complexity of the world's major capital markets. None of these markets are completely random, and they have different degrees of complexity, both over the entire length of their time series and at a level of detail. However,more » developing markets differ significantly from mature markets. Specifically, the complexity of mature stock markets is stronger and more stable over time, whereas developing markets exhibit relatively low and unstable complexity over certain time periods, implying a stronger long-term price memory process.« less
Functional clustering of time series gene expression data by Granger causality
2012-01-01
Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425
The Process-Centered School: Sustaining a Renaissance Community.
ERIC Educational Resources Information Center
Costa, Arthur L., Ed.; Liebmann, Rosemarie M., Ed.
The time has come to shift the focus from the "what" of knowledge (content) to the "how" of learning (processes). This book is the third in a series of three books in the Process as Content trilogy. The book offers suggestions and strategies for educators beginning the journey of transferring education into a process-oriented paradigm. The book…
Separation of components from a scale mixture of Gaussian white noises
NASA Astrophysics Data System (ADS)
Vamoş, Călin; Crăciun, Maria
2010-05-01
The time evolution of a physical quantity associated with a thermodynamic system whose equilibrium fluctuations are modulated in amplitude by a slowly varying phenomenon can be modeled as the product of a Gaussian white noise {Zt} and a stochastic process with strictly positive values {Vt} referred to as volatility. The probability density function (pdf) of the process Xt=VtZt is a scale mixture of Gaussian white noises expressed as a time average of Gaussian distributions weighted by the pdf of the volatility. The separation of the two components of {Xt} can be achieved by imposing the condition that the absolute values of the estimated white noise be uncorrelated. We apply this method to the time series of the returns of the daily S&P500 index, which has also been analyzed by means of the superstatistics method that imposes the condition that the estimated white noise be Gaussian. The advantage of our method is that this financial time series is processed without partitioning or removal of the extreme events and the estimated white noise becomes almost Gaussian only as result of the uncorrelation condition.
Brown, Michael J; Kor, Daryl J; Curry, Timothy B; Marmor, Yariv; Rohleder, Thomas R
2015-01-01
Transfer of intensive care unit (ICU) patients to the operating room (OR) is a resource-intensive, time-consuming process that often results in patient throughput inefficiencies, deficiencies in information transfer, and suboptimal nurse to patient ratios. This study evaluates the implementation of a coordinated patient transport system (CPTS) designed to address these issues. Using data from 1,557 patient transfers covering the 2006-2010 period, interrupted time series and before and after designs were used to analyze the effect of implementing a CPTS at Mayo Clinic, Rochester. Using a segmented regression for the interrupted time series, on-time OR start time deviations were found to be significantly lower after the implementation of CPTS (p < .0001). The implementation resulted in a fourfold improvement in on-time OR starts (p < .01) while significantly reducing idle OR time (p < .01). A coordinated patient transfer process for moving patient from ICUs to ORs can significantly improve OR efficiency, reduce nonvalue added time, and ensure quality of care by preserving appropriate care provider to patient ratios.
NASA Astrophysics Data System (ADS)
Pohle, Ina; Niebisch, Michael; Müller, Hannes; Schümberg, Sabine; Zha, Tingting; Maurer, Thomas; Hinz, Christoph
2018-07-01
To simulate the impacts of within-storm rainfall variabilities on fast hydrological processes, long precipitation time series with high temporal resolution are required. Due to limited availability of observed data such time series are typically obtained from stochastic models. However, most existing rainfall models are limited in their ability to conserve rainfall event statistics which are relevant for hydrological processes. Poisson rectangular pulse models are widely applied to generate long time series of alternating precipitation events durations and mean intensities as well as interstorm period durations. Multiplicative microcanonical random cascade (MRC) models are used to disaggregate precipitation time series from coarse to fine temporal resolution. To overcome the inconsistencies between the temporal structure of the Poisson rectangular pulse model and the MRC model, we developed a new coupling approach by introducing two modifications to the MRC model. These modifications comprise (a) a modified cascade model ("constrained cascade") which preserves the event durations generated by the Poisson rectangular model by constraining the first and last interval of a precipitation event to contain precipitation and (b) continuous sigmoid functions of the multiplicative weights to consider the scale-dependency in the disaggregation of precipitation events of different durations. The constrained cascade model was evaluated in its ability to disaggregate observed precipitation events in comparison to existing MRC models. For that, we used a 20-year record of hourly precipitation at six stations across Germany. The constrained cascade model showed a pronounced better agreement with the observed data in terms of both the temporal pattern of the precipitation time series (e.g. the dry and wet spell durations and autocorrelations) and event characteristics (e.g. intra-event intermittency and intensity fluctuation within events). The constrained cascade model also slightly outperformed the other MRC models with respect to the intensity-frequency relationship. To assess the performance of the coupled Poisson rectangular pulse and constrained cascade model, precipitation events were stochastically generated by the Poisson rectangular pulse model and then disaggregated by the constrained cascade model. We found that the coupled model performs satisfactorily in terms of the temporal pattern of the precipitation time series, event characteristics and the intensity-frequency relationship.
LAI, FAPAR and FCOVER products derived from AVHRR long time series: principles and evaluation
NASA Astrophysics Data System (ADS)
Verger, A.; Baret, F.; Weiss, M.; Lacaze, R.; Makhmara, H.; Pacholczyk, P.; Smets, B.; Kandasamy, S.; Vermote, E.
2012-04-01
Continuous and long term global monitoring of the terrestrial biosphere has draught an intense interest in the recent years in the context of climate and global change. Developing methodologies for generating historical data records from data collected with different satellite sensors over the past three decades by taking benefits from the improvements identified in the processing of the new generation sensors is a new central issue in remote sensing community. In this context, the Bio-geophysical Parameters (BioPar) service within Geoland2 project (http://www.geoland2.eu) aims at developing pre-operational infrastructures for providing global land products both in near real time and off-line mode with long time series. In this contribution, we describe the principles of the GEOLAND algorithm for generating long term datasets of three key biophysical variables, leaf area index (LAI), Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) and cover fraction (FCOVER), that play a key role in several processes, including photosynthesis, respiration and transpiration. LAI, FAPAR and FCOVER are produced globally from AVHRR Long Term Data Record (LTDR) for the 1981-2000 period at 0.05° spatial resolution and 10 days temporal sampling frequency. The proposed algorithm aims to ensure robustness of the derived long time series and consistency with the ones developed in the recent years, and particularly with GEOLAND products derived from VEGETATION sensor. The approach is based on the capacity of neural networks to learn a particular biophysical product (GEOLAND) from reflectances from another sensor (AVHRR normalized reflectances in the red and near infrared bands). Outliers due to possible cloud contamination or residual atmospheric correction are iteratively eliminated. Prior information based on the climatology is used to get more robust estimates. A specific gap filing and smoothing procedure was applied to generate continuous and smooth time series of decadal products. Finally, quality assessment information as well as tentative quantitative uncertainties were proposed. The comparison of the resulting AVHRR LTDR products with actual GEOLAND series derived from VEGETATION demonstrates that they are very consistent, providing continuous time series of global observations of LAI, FAPAR and FCOVER for the last 30-year period, with continuation after 2011.
Nonlinear Prediction Model for Hydrologic Time Series Based on Wavelet Decomposition
NASA Astrophysics Data System (ADS)
Kwon, H.; Khalil, A.; Brown, C.; Lall, U.; Ahn, H.; Moon, Y.
2005-12-01
Traditionally forecasting and characterizations of hydrologic systems is performed utilizing many techniques. Stochastic linear methods such as AR and ARIMA and nonlinear ones such as statistical learning theory based tools have been extensively used. The common difficulty to all methods is the determination of sufficient and necessary information and predictors for a successful prediction. Relationships between hydrologic variables are often highly nonlinear and interrelated across the temporal scale. A new hybrid approach is proposed for the simulation of hydrologic time series combining both the wavelet transform and the nonlinear model. The present model employs some merits of wavelet transform and nonlinear time series model. The Wavelet Transform is adopted to decompose a hydrologic nonlinear process into a set of mono-component signals, which are simulated by nonlinear model. The hybrid methodology is formulated in a manner to improve the accuracy of a long term forecasting. The proposed hybrid model yields much better results in terms of capturing and reproducing the time-frequency properties of the system at hand. Prediction results are promising when compared to traditional univariate time series models. An application of the plausibility of the proposed methodology is provided and the results conclude that wavelet based time series model can be utilized for simulating and forecasting of hydrologic variable reasonably well. This will ultimately serve the purpose of integrated water resources planning and management.
Huang, Xin; Zeng, Jun; Zhou, Lina; Hu, Chunxiu; Yin, Peiyuan; Lin, Xiaohui
2016-08-31
Time-series metabolomics studies can provide insight into the dynamics of disease development and facilitate the discovery of prospective biomarkers. To improve the performance of early risk identification, a new strategy for analyzing time-series data based on dynamic networks (ATSD-DN) in a systematic time dimension is proposed. In ATSD-DN, the non-overlapping ratio was applied to measure the changes in feature ratios during the process of disease development and to construct dynamic networks. Dynamic concentration analysis and network topological structure analysis were performed to extract early warning information. This strategy was applied to the study of time-series lipidomics data from a stepwise hepatocarcinogenesis rat model. A ratio of lyso-phosphatidylcholine (LPC) 18:1/free fatty acid (FFA) 20:5 was identified as the potential biomarker for hepatocellular carcinoma (HCC). It can be used to classify HCC and non-HCC rats, and the area under the curve values in the discovery and external validation sets were 0.980 and 0.972, respectively. This strategy was also compared with a weighted relative difference accumulation algorithm (wRDA), multivariate empirical Bayes statistics (MEBA) and support vector machine-recursive feature elimination (SVM-RFE). The better performance of ATSD-DN suggests its potential for a more complete presentation of time-series changes and effective extraction of early warning information.
NASA Astrophysics Data System (ADS)
Huang, Xin; Zeng, Jun; Zhou, Lina; Hu, Chunxiu; Yin, Peiyuan; Lin, Xiaohui
2016-08-01
Time-series metabolomics studies can provide insight into the dynamics of disease development and facilitate the discovery of prospective biomarkers. To improve the performance of early risk identification, a new strategy for analyzing time-series data based on dynamic networks (ATSD-DN) in a systematic time dimension is proposed. In ATSD-DN, the non-overlapping ratio was applied to measure the changes in feature ratios during the process of disease development and to construct dynamic networks. Dynamic concentration analysis and network topological structure analysis were performed to extract early warning information. This strategy was applied to the study of time-series lipidomics data from a stepwise hepatocarcinogenesis rat model. A ratio of lyso-phosphatidylcholine (LPC) 18:1/free fatty acid (FFA) 20:5 was identified as the potential biomarker for hepatocellular carcinoma (HCC). It can be used to classify HCC and non-HCC rats, and the area under the curve values in the discovery and external validation sets were 0.980 and 0.972, respectively. This strategy was also compared with a weighted relative difference accumulation algorithm (wRDA), multivariate empirical Bayes statistics (MEBA) and support vector machine-recursive feature elimination (SVM-RFE). The better performance of ATSD-DN suggests its potential for a more complete presentation of time-series changes and effective extraction of early warning information.
Analysis and Forecasting of Shoreline Position
NASA Astrophysics Data System (ADS)
Barton, C. C.; Tebbens, S. F.
2007-12-01
Analysis of historical shoreline positions on sandy coasts, in the geologic record, and study of sea-level rise curves reveals that the dynamics of the underlying processes produce temporal/spatial signals that exhibit power scaling and are therefore self-affine fractals. Self-affine time series signals can be quantified over many orders of magnitude in time and space in terms of persistence, a measure of the degree of correlation between adjacent values in the stochastic portion of a time series. Fractal statistics developed for self-affine time series are used to forecast a probability envelope bounding future shoreline positions. The envelope provides the standard deviation as a function of three variables: persistence, a constant equal to the value of the power spectral density when 1/period equals 1, and the number of time increments. The persistence of a twenty-year time series of the mean-high-water (MHW) shoreline positions was measured for four profiles surveyed at Duck, NC at the Field Research Facility (FRF) by the U.S. Army Corps of Engineers. The four MHW shoreline time series signals are self-affine with persistence ranging between 0.8 and 0.9, which indicates that the shoreline position time series is weakly persistent (where zero is uncorrelated), and has highly varying trends for all time intervals sampled. Forecasts of a probability envelope for future MHW positions are made for the 20 years of record and beyond to 50 years from the start of the data records. The forecasts describe the twenty-year data sets well and indicate that within a 96% confidence envelope, future decadal MHW shoreline excursions should be within 14.6 m of the position at the start of data collection. This is a stable-oscillatory shoreline. The forecasting method introduced here includes the stochastic portion of the time series while the traditional method of predicting shoreline change reduces the time series to a linear trend line fit to historic shoreline positions and extrapolated linearly to forecast future positions with a linearly increasing mean that breaks the confidence envelope eight years into the future and continues to increase. The traditional method is a poor representation of the observed shoreline position time series and is a poor basis for extrapolating future shoreline positions.
Detection of early postseismic deformation from high-rate GNSS time series
NASA Astrophysics Data System (ADS)
Twardzik, C.; Vergnolle, M.; Avallone, A.; Sladen, A.
2017-12-01
Postseismic processes after an earthquake contribute to the redistribution of stresses in addition to that induced by the coseismic rupture. With the exception of very few studies (e.g., Miyazaki and Larson, 2008), most postseismic analyses only start one or two days following the mainshock. This leaves a critical part of postseismic phase unexplored, from a few minutes up to a few hours after the earthquake. In this study, we use kinematic precise point positioning (K-PPP) to analyze continuous GNSS data in order to obtain 30s position time series. These time series provide information on the surface displacements a soon as the dynamic response of the earthquake is over. Our first analysis focuses on the 2016 Pedernales, Ecuador, earthquake (Mw7.8). Using spectral analysis, we show that the typical logarithmic postseismic displacement trend can be detected as early as one to six hours after the earthquake depending on the station location and the level of noise. This analysis also allows to estimate the bias on the coseismic offsets usually based on daily pre- and post- earthquake positions. We use the early postseismic time series to test whether rate-and-state friction laws, traditionally used to explain postseismic processes days after the earthquake, still hold right after the mainshock. This study is being extended to two other subduction earthquakes: the 2010 Maule, Chile, earthquake (Mw8.8) and the 2015 Illapel, Chile, earthquake (Mw8.2).
Analyzing time-ordered event data with missed observations.
Dokter, Adriaan M; van Loon, E Emiel; Fokkema, Wimke; Lameris, Thomas K; Nolet, Bart A; van der Jeugd, Henk P
2017-09-01
A common problem with observational datasets is that not all events of interest may be detected. For example, observing animals in the wild can difficult when animals move, hide, or cannot be closely approached. We consider time series of events recorded in conditions where events are occasionally missed by observers or observational devices. These time series are not restricted to behavioral protocols, but can be any cyclic or recurring process where discrete outcomes are observed. Undetected events cause biased inferences on the process of interest, and statistical analyses are needed that can identify and correct the compromised detection processes. Missed observations in time series lead to observed time intervals between events at multiples of the true inter-event time, which conveys information on their detection probability. We derive the theoretical probability density function for observed intervals between events that includes a probability of missed detection. Methodology and software tools are provided for analysis of event data with potential observation bias and its removal. The methodology was applied to simulation data and a case study of defecation rate estimation in geese, which is commonly used to estimate their digestive throughput and energetic uptake, or to calculate goose usage of a feeding site from dropping density. Simulations indicate that at a moderate chance to miss arrival events ( p = 0.3), uncorrected arrival intervals were biased upward by up to a factor 3, while parameter values corrected for missed observations were within 1% of their true simulated value. A field case study shows that not accounting for missed observations leads to substantial underestimates of the true defecation rate in geese, and spurious rate differences between sites, which are introduced by differences in observational conditions. These results show that the derived methodology can be used to effectively remove observational biases in time-ordered event data.
NASA Astrophysics Data System (ADS)
Klos, A.; Bogusz, J.; Moreaux, G.
2017-12-01
This research focuses on the investigation of the deterministic and stochastic parts of the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) weekly coordinate time series from the IDS contribution to the ITRF2014A set of 90 stations was divided into three groups depending on when the data was collected at an individual station. To reliably describe the DORIS time series, we employed a mathematical model that included the long-term nonlinear signal, linear trend, seasonal oscillations (these three sum up to produce the Polynomial Trend Model) and a stochastic part, all being resolved with Maximum Likelihood Estimation (MLE). We proved that the values of the parameters delivered for DORIS data are strictly correlated with the time span of the observations, meaning that the most recent data are the most reliable ones. Not only did the seasonal amplitudes decrease over the years, but also, and most importantly, the noise level and its type changed significantly. We examined five different noise models to be applied to the stochastic part of the DORIS time series: a pure white noise (WN), a pure power-law noise (PL), a combination of white and power-law noise (WNPL), an autoregressive process of first order (AR(1)) and a Generalized Gauss Markov model (GGM). From our study it arises that the PL process may be chosen as the preferred one for most of the DORIS data. Moreover, the preferred noise model has changed through the years from AR(1) to pure PL with few stations characterized by a positive spectral index.
Computer models of social processes: the case of migration.
Beshers, J M
1967-06-01
The demographic model is a program for representing births, deaths, migration, and social mobility as social processes in a non-stationary stochastic process (Markovian). Transition probabilities for each age group are stored and then retrieved at the next appearance of that age cohort. In this way new transition probabilities can be calculated as a function of the old transition probabilities and of two successive distribution vectors.Transition probabilities can be calculated to represent effects of the whole age-by-state distribution at any given time period, too. Such effects as saturation or queuing may be represented by a market mechanism; for example, migration between metropolitan areas can be represented as depending upon job supplies and labor markets. Within metropolitan areas, migration can be represented as invasion and succession processes with tipping points (acceleration curves), and the market device has been extended to represent this phenomenon.Thus, the demographic model makes possible the representation of alternative classes of models of demographic processes. With each class of model one can deduce implied time series (varying parame-terswithin the class) and the output of the several classes can be compared to each other and to outside criteria, such as empirical time series.
Monitoring vegetation phenology using MODIS
Zhang, Xiayong; Friedl, Mark A.; Schaaf, Crystal B.; Strahler, Alan H.; Hodges, John C.F.; Gao, Feng; Reed, Bradley C.; Huete, Alfredo
2003-01-01
Accurate measurements of regional to global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Since the mid-1980s, satellite data have been used to study these processes. In this paper, a new methodology to monitor global vegetation phenology from time series of satellite data is presented. The method uses series of piecewise logistic functions, which are fit to remotely sensed vegetation index (VI) data, to represent intra-annual vegetation dynamics. Using this approach, transition dates for vegetation activity within annual time series of VI data can be determined from satellite data. The method allows vegetation dynamics to be monitored at large scales in a fashion that it is ecologically meaningful and does not require pre-smoothing of data or the use of user-defined thresholds. Preliminary results based on an annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) data for the northeastern United States demonstrate that the method is able to monitor vegetation phenology with good success.
A time series model: First-order integer-valued autoregressive (INAR(1))
NASA Astrophysics Data System (ADS)
Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.
2017-07-01
Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, Qiu; Xin, Wu; Qiming, Xiong
2017-06-01
In the process of vegetation remote sensing information extraction, the problem of phenological features and low performance of remote sensing analysis algorithm is not considered. To solve this problem, the method of remote sensing vegetation information based on EVI time-series and the classification of decision-tree of multi-source branch similarity is promoted. Firstly, to improve the time-series stability of recognition accuracy, the seasonal feature of vegetation is extracted based on the fitting span range of time-series. Secondly, the decision-tree similarity is distinguished by adaptive selection path or probability parameter of component prediction. As an index, it is to evaluate the degree of task association, decide whether to perform migration of multi-source decision tree, and ensure the speed of migration. Finally, the accuracy of classification and recognition of pests and diseases can reach 87%--98% of commercial forest in Dalbergia hainanensis, which is significantly better than that of MODIS coverage accuracy of 80%--96% in this area. Therefore, the validity of the proposed method can be verified.
NASA Astrophysics Data System (ADS)
Gudmundsson, Lukas; Do, Hong Xuan; Leonard, Michael; Westra, Seth
2018-04-01
This is Part 2 of a two-paper series presenting the Global Streamflow Indices and Metadata Archive (GSIM), which is a collection of daily streamflow observations at more than 30 000 stations around the world. While Part 1 (Do et al., 2018a) describes the data collection process as well as the generation of auxiliary catchment data (e.g. catchment boundary, land cover, mean climate), Part 2 introduces a set of quality controlled time-series indices representing (i) the water balance, (ii) the seasonal cycle, (iii) low flows and (iv) floods. To this end we first consider the quality of individual daily records using a combination of quality flags from data providers and automated screening methods. Subsequently, streamflow time-series indices are computed for yearly, seasonal and monthly resolution. The paper provides a generalized assessment of the homogeneity of all generated streamflow time-series indices, which can be used to select time series that are suitable for a specific task. The newly generated global set of streamflow time-series indices is made freely available with an digital object identifier at https://doi.pangaea.de/10.1594/PANGAEA.887470 and is expected to foster global freshwater research, by acting as a ground truth for model validation or as a basis for assessing the role of human impacts on the terrestrial water cycle. It is hoped that a renewed interest in streamflow data at the global scale will foster efforts in the systematic assessment of data quality and provide momentum to overcome administrative barriers that lead to inconsistencies in global collections of relevant hydrological observations.
Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick
2018-01-01
When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
Status of CSR RL06 GRACE reprocessing and preliminary results
NASA Astrophysics Data System (ADS)
Save, H.
2017-12-01
The GRACE project plans to re-processes the GRACE mission data in order to be consistent with the first gravity products released by the GRACE-FO project. The RL06 reprocessing will harmonize the GRACE time-series with the first release of GRACE-FO. This paper catalogues the changes in the upcoming RL06 release and discusses the quality improvements as compared to the current RL05 release. The processing and parameterization changes as compared to the current release are also discussed. This paper discusses the evolution of the quality of the GRACE solutions and characterize the errors over the past few years. The possible challenges associated with connecting the GRACE time series with that from GRACE-FO are also discussed.
Tree-ring width reveals the preparation of the 1974 Mt. Etna eruption
Seiler, Ruedi; Houlié, Nicolas; Cherubini, Paolo
2017-01-01
Reduced near-infrared reflectance observed in September 1973 in Skylab images of the western flank of Mt. Etna has been interpreted as an eruption precursor of the January 1974 eruption. Until now, it has been unclear when this signal started, whether it was sustained and which process(es) could have caused it. By analyzing tree-ring width time-series, we show that the reduced near-infrared precursory signal cannot be linked to a reduction in annual tree growth in the area. However, comparing the tree-ring width time-series with both remote sensing observations and volcano-seismic activity enables us to discuss the starting date of the pre-eruptive period of the 1974 eruption. PMID:28266610
Time since maximum of Brownian motion and asymmetric Lévy processes
NASA Astrophysics Data System (ADS)
Martin, R. J.; Kearney, M. J.
2018-07-01
Motivated by recent studies of record statistics in relation to strongly correlated time series, we consider explicitly the drawdown time of a Lévy process, which is defined as the time since it last achieved its running maximum when observed over a fixed time period . We show that the density function of this drawdown time, in the case of a completely asymmetric jump process, may be factored as a function of t multiplied by a function of T ‑ t. This extends a known result for the case of pure Brownian motion. We state the factors explicitly for the cases of exponential down-jumps with drift, and for the downward inverse Gaussian Lévy process with drift.
NASA Astrophysics Data System (ADS)
Genty, Dominique; Massault, Marc
1999-05-01
Twenty-two AMS 14C measurements have been made on a modern stalagmite from SW France in order to reconstruct the 14C activity history of the calcite deposit. Annual growth laminae provides a chronology up to 1919 A.D. Results show that the stalagmite 14C activity time series is sensitive to modern atmosphere 14C activity changes such as those produced by the nuclear weapon tests. The comparison between the two 14C time series shows that the stalagmite time series is damped: its amplitude variation between pre-bomb and post-bomb values is 75% less and the time delay between the two time series peaks is 16 years ±3. A model is developed using atmosphere 14C and 13C data, fractionation processes and three soil organic matter components whose mean turnover rates are different. The linear correlation coefficient between modeled and measured activities is 0.99. These results, combined with two other stalagmite 14C time series already published and compared with local vegetation and climate, demonstrate that most of the carbon transfer dynamics are controlled in the soil by soil organic matter degradation rates. Where vegetation produces debris whose degradation is slow, the fraction of old carbon injected in the system increases, the observed 14C time series is much more damped and lag time longer than that observed under grassland sites. The same mixing model applied on the 13C shows a good agreement ( R2 = 0.78) between modeled and measured stalagmite δ 13C and demonstrates that the Suess Effect due to fossil fuel combustion in the atmosphere is recorded in the stalagmite but with a damped effect due to SOM degradation rate. The different sources of dead carbon in the seepage water are calculated and discussed.
New insights into soil temperature time series modeling: linear or nonlinear?
NASA Astrophysics Data System (ADS)
Bonakdari, Hossein; Moeeni, Hamid; Ebtehaj, Isa; Zeynoddin, Mohammad; Mahoammadian, Abdolmajid; Gharabaghi, Bahram
2018-03-01
Soil temperature (ST) is an important dynamic parameter, whose prediction is a major research topic in various fields including agriculture because ST has a critical role in hydrological processes at the soil surface. In this study, a new linear methodology is proposed based on stochastic methods for modeling daily soil temperature (DST). With this approach, the ST series components are determined to carry out modeling and spectral analysis. The results of this process are compared with two linear methods based on seasonal standardization and seasonal differencing in terms of four DST series. The series used in this study were measured at two stations, Champaign and Springfield, at depths of 10 and 20 cm. The results indicate that in all ST series reviewed, the periodic term is the most robust among all components. According to a comparison of the three methods applied to analyze the various series components, it appears that spectral analysis combined with stochastic methods outperformed the seasonal standardization and seasonal differencing methods. In addition to comparing the proposed methodology with linear methods, the ST modeling results were compared with the two nonlinear methods in two forms: considering hydrological variables (HV) as input variables and DST modeling as a time series. In a previous study at the mentioned sites, Kim and Singh Theor Appl Climatol 118:465-479, (2014) applied the popular Multilayer Perceptron (MLP) neural network and Adaptive Neuro-Fuzzy Inference System (ANFIS) nonlinear methods and considered HV as input variables. The comparison results signify that the relative error projected in estimating DST by the proposed methodology was about 6%, while this value with MLP and ANFIS was over 15%. Moreover, MLP and ANFIS models were employed for DST time series modeling. Due to these models' relatively inferior performance to the proposed methodology, two hybrid models were implemented: the weights and membership function of MLP and ANFIS (respectively) were optimized with the particle swarm optimization (PSO) algorithm in conjunction with the wavelet transform and nonlinear methods (Wavelet-MLP & Wavelet-ANFIS). A comparison of the proposed methodology with individual and hybrid nonlinear models in predicting DST time series indicates the lowest Akaike Information Criterion (AIC) index value, which considers model simplicity and accuracy simultaneously at different depths and stations. The methodology presented in this study can thus serve as an excellent alternative to complex nonlinear methods that are normally employed to examine DST.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
... Mexico stocks of gag and greater amberjack will consist of two workshops and a series of webinars: a Data Workshop, an Assessment process conducted via webinars, and a Review Workshop. This series of workshops and.... eastern time, will last approximately four hours, and will be conducted using GoToWebinar. Participants...
Hazard function theory for nonstationary natural hazards
NASA Astrophysics Data System (ADS)
Read, L.; Vogel, R. M.
2015-12-01
Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.; ...
2016-10-20
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sippel, Sebastian; Lange, Holger; Mahecha, Miguel D.
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observedmore » and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. Here we demonstrate that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics.« less
Sippel, Sebastian; Mahecha, Miguel D.; Hauhs, Michael; Bodesheim, Paul; Kaminski, Thomas; Gans, Fabian; Rosso, Osvaldo A.
2016-01-01
Data analysis and model-data comparisons in the environmental sciences require diagnostic measures that quantify time series dynamics and structure, and are robust to noise in observational data. This paper investigates the temporal dynamics of environmental time series using measures quantifying their information content and complexity. The measures are used to classify natural processes on one hand, and to compare models with observations on the other. The present analysis focuses on the global carbon cycle as an area of research in which model-data integration and comparisons are key to improving our understanding of natural phenomena. We investigate the dynamics of observed and simulated time series of Gross Primary Productivity (GPP), a key variable in terrestrial ecosystems that quantifies ecosystem carbon uptake. However, the dynamics, patterns and magnitudes of GPP time series, both observed and simulated, vary substantially on different temporal and spatial scales. We demonstrate here that information content and complexity, or Information Theory Quantifiers (ITQ) for short, serve as robust and efficient data-analytical and model benchmarking tools for evaluating the temporal structure and dynamical properties of simulated or observed time series at various spatial scales. At continental scale, we compare GPP time series simulated with two models and an observations-based product. This analysis reveals qualitative differences between model evaluation based on ITQ compared to traditional model performance metrics, indicating that good model performance in terms of absolute or relative error does not imply that the dynamics of the observations is captured well. Furthermore, we show, using an ensemble of site-scale measurements obtained from the FLUXNET archive in the Mediterranean, that model-data or model-model mismatches as indicated by ITQ can be attributed to and interpreted as differences in the temporal structure of the respective ecological time series. At global scale, our understanding of C fluxes relies on the use of consistently applied land models. Here, we use ITQ to evaluate model structure: The measures are largely insensitive to climatic scenarios, land use and atmospheric gas concentrations used to drive them, but clearly separate the structure of 13 different land models taken from the CMIP5 archive and an observations-based product. In conclusion, diagnostic measures of this kind provide data-analytical tools that distinguish different types of natural processes based solely on their dynamics, and are thus highly suitable for environmental science applications such as model structural diagnostics. PMID:27764187
NASA Astrophysics Data System (ADS)
Sorge, J.; Williams-Jones, G.; Wright, R.; Varley, N. R.
2010-12-01
Satellite imagery is playing an increasingly prominent role in volcanology as it allows for consistent monitoring of remote, dangerous, and/or under-monitored volcanoes. One such system is Volcán de Colima (Mexico), a persistently active andesitic stratovolcano. Its characteristic and hazardous activity includes lava dome growth, pyroclastic flows, explosions, and Plinian to Subplinian eruptions, which have historically occurred at the end of Volcán de Colima’s eruptive cycle. Despite the availability of large amounts of historical satellite imagery, methods to process and interpret these images over long time periods are limited. Furthermore, while time-series InSAR data from a previous study (December 2002 to August 2006) detected an overall subsidence between 1 and 3 km from the summit, there is insufficient temporal resolution to unambiguously constrain the source processes. To address this issue, a semi-automated process for time-based characterization of persistent volcanic activity at Volcán de Colima has been developed using a combination of MODIS and GOES satellite imagery to identify thermal anomalies on the volcano edifice. This satellite time-series data is then combined with available geodetic data, a detailed eruption history, and other geophysical time-series data (e.g., seismicity, explosions/day, effusion rate, environmental data, etc.) and examined for possible correlations and recurring patterns in the multiple data sets to investigate potential trigger mechanisms responsible for the changes in volcanic activity. GOES and MODIS images are available from 2000 to present at a temporal resolution of one image every 30 minutes and up to four images per day, respectively, creating a data set of approximately 180,000 images. Thermal anomalies over Volcán de Colima are identified in both night- and day-time images by applying a time-series approach to the analysis of MODIS data. Detection of false anomalies, caused by non-volcanic heat sources such as fires or solar heating (in the daytime images), is mitigated by adjusting the MODIS detection thresholds, through comparison of daytime versus nighttime results, and by observing the spatial distribution of the anomalies on the edifice. Conversely, anomalies may not be detected due to cloud cover; clouds absorb thermal radiation limiting or preventing the ability of the satellite to measure thermal events; therefore, the anomaly data is supplemented with a cloud cover time-series data set. Fast Fourier and Wavelet transforms are then applied to the continuous, uninterrupted intervals of satellite observation to compare and correlate with the multiple time-series data sets. The result is the characterization of the behavior of an individual volcano, based on an extended time period. This volcano specific, comprehensive characterization can then be used as a predictive tool in the real-time monitoring of volcanic activity.
Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes
Manning, Cerys; Rattray, Magnus
2017-01-01
Multiple biological processes are driven by oscillatory gene expression at different time scales. Pulsatile dynamics are thought to be widespread, and single-cell live imaging of gene expression has lead to a surge of dynamic, possibly oscillatory, data for different gene networks. However, the regulation of gene expression at the level of an individual cell involves reactions between finite numbers of molecules, and this can result in inherent randomness in expression dynamics, which blurs the boundaries between aperiodic fluctuations and noisy oscillators. This underlies a new challenge to the experimentalist because neither intuition nor pre-existing methods work well for identifying oscillatory activity in noisy biological time series. Thus, there is an acute need for an objective statistical method for classifying whether an experimentally derived noisy time series is periodic. Here, we present a new data analysis method that combines mechanistic stochastic modelling with the powerful methods of non-parametric regression with Gaussian processes. Our method can distinguish oscillatory gene expression from random fluctuations of non-oscillatory expression in single-cell time series, despite peak-to-peak variability in period and amplitude of single-cell oscillations. We show that our method outperforms the Lomb-Scargle periodogram in successfully classifying cells as oscillatory or non-oscillatory in data simulated from a simple genetic oscillator model and in experimental data. Analysis of bioluminescent live-cell imaging shows a significantly greater number of oscillatory cells when luciferase is driven by a Hes1 promoter (10/19), which has previously been reported to oscillate, than the constitutive MoMuLV 5’ LTR (MMLV) promoter (0/25). The method can be applied to data from any gene network to both quantify the proportion of oscillating cells within a population and to measure the period and quality of oscillations. It is publicly available as a MATLAB package. PMID:28493880
GPS data exploration for seismologists and geodesists
NASA Astrophysics Data System (ADS)
Webb, F.; Bock, Y.; Kedar, S.; Dong, D.; Jamason, P.; Chang, R.; Prawirodirdjo, L.; MacLeod, I.; Wadsworth, G.
2007-12-01
Over the past decade, GPS and seismic networks spanning the western US plate boundaries have produced vast amounts of data that need to be made accessible to both the geodesy and seismology communities. Unlike seismic data, raw geodetic data requires significant processing before geophysical interpretations can be made. This requires the generation of data-products (time series, velocities and strain maps) and dissemination strategies to bridge these differences and assure efficient use of data across traditionally separate communities. "GPS DATA PRODUCTS FOR SOLID EARTH SCIENCE" (GDPSES) is a multi-year NASA funded project, designed to produce and deliver high quality GPS time series, velocities, and strain fields, derived from multiple GPS networks along the western US plate boundary, and to make these products easily accessible to geophysicists. Our GPS product dissemination is through modern web-based IT methodology. Product browsing is facilitated through a web tool known as GPS Explorer and continuous streams of GPS time series are provided using web services to the seismic archive, where it can be accessed by seismologists using traditional seismic data viewing and manipulation tools. GPS-Explorer enables users to efficiently browse several layers of data products from raw data through time series, velocities and strain by providing the user with a web interface, which seamlessly interacts with a continuously updated database of these data products through the use of web-services. The current archive contains GDPSES data products beginning in 1995, and includes observations from GPS stations in EarthScope's Plate Boundary Observatory (PBO), as well as from real-time real-time CGPS stations. The generic, standards-based approach used in this project enables GDPSES to seamlessly expand indefinitely to include other space-time-dependent data products from additional GPS networks. The prototype GPS-Explorer provides users with a personalized working environment in which the user may zoom in and access subsets of the data via web services. It provides users with a variety of interactive web tools interconnected in a portlet environment to explore and save datasets of interest to return to at a later date. At the same time the GPS time series are also made available through the seismic data archive, where the GPS networks are treated as regular seismic networks, whose data is made available in data formats used by seismic utilities such as SEED readers and SAC. A key challenge, stemming from the fundamental differences between seismic and geodetic time series, is the representation of reprocessed of GPS data in the seismic archive. As GPS processing algorithms evolve and their accuracy increases, a periodic complete recreation of the the GPS time series archive is necessary.
Exploratory Causal Analysis in Bivariate Time Series Data
NASA Astrophysics Data System (ADS)
McCracken, James M.
Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments and data analysis techniques are required for identifying causal information and relationships directly from observational data. This need has lead to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. In this thesis, the existing time series causality method of CCM is extended by introducing a new method called pairwise asymmetric inference (PAI). It is found that CCM may provide counter-intuitive causal inferences for simple dynamics with strong intuitive notions of causality, and the CCM causal inference can be a function of physical parameters that are seemingly unrelated to the existence of a driving relationship in the system. For example, a CCM causal inference might alternate between ''voltage drives current'' and ''current drives voltage'' as the frequency of the voltage signal is changed in a series circuit with a single resistor and inductor. PAI is introduced to address both of these limitations. Many of the current approaches in the times series causality literature are not computationally straightforward to apply, do not follow directly from assumptions of probabilistic causality, depend on assumed models for the time series generating process, or rely on embedding procedures. A new approach, called causal leaning, is introduced in this work to avoid these issues. The leaning is found to provide causal inferences that agree with intuition for both simple systems and more complicated empirical examples, including space weather data sets. The leaning may provide a clearer interpretation of the results than those from existing time series causality tools. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in times series data sets, but little research exists of how these tools compare to each other in practice. This work introduces and defines exploratory causal analysis (ECA) to address this issue along with the concept of data causality in the taxonomy of causal studies introduced in this work. The motivation is to provide a framework for exploring potential causal structures in time series data sets. ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.
Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference
Hines, Keegan E.; Bankston, John R.; Aldrich, Richard W.
2015-01-01
The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data. PMID:25650922
Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Cao, Jie; Liu, Xiaohui
2013-12-01
In this paper, the expectation maximization (EM) algorithm is applied to the modeling of the nano-gold immunochromatographic assay (nano-GICA) via available time series of the measured signal intensities of the test and control lines. The model for the nano-GICA is developed as the stochastic dynamic model that consists of a first-order autoregressive stochastic dynamic process and a noisy measurement. By using the EM algorithm, the model parameters, the actual signal intensities of the test and control lines, as well as the noise intensity can be identified simultaneously. Three different time series data sets concerning the target concentrations are employed to demonstrate the effectiveness of the introduced algorithm. Several indices are also proposed to evaluate the inferred models. It is shown that the model fits the data very well.
Estimating monotonic rates from biological data using local linear regression.
Olito, Colin; White, Craig R; Marshall, Dustin J; Barneche, Diego R
2017-03-01
Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research and is applicable to a wide variety of research disciplines in the biological sciences. © 2017. Published by The Company of Biologists Ltd.
Time series analysis of ozone data in Isfahan
NASA Astrophysics Data System (ADS)
Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.
2008-07-01
Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.
A Surrogate Technique for Investigating Deterministic Dynamics in Discrete Human Movement.
Taylor, Paul G; Small, Michael; Lee, Kwee-Yum; Landeo, Raul; O'Meara, Damien M; Millett, Emma L
2016-10-01
Entropy is an effective tool for investigation of human movement variability. However, before applying entropy, it can be beneficial to employ analyses to confirm that observed data are not solely the result of stochastic processes. This can be achieved by contrasting observed data with that produced using surrogate methods. Unlike continuous movement, no appropriate method has been applied to discrete human movement. This article proposes a novel surrogate method for discrete movement data, outlining the processes for determining its critical values. The proposed technique reliably generated surrogates for discrete joint angle time series, destroying fine-scale dynamics of the observed signal, while maintaining macro structural characteristics. Comparison of entropy estimates indicated observed signals had greater regularity than surrogates and were not only the result of stochastic but also deterministic processes. The proposed surrogate method is both a valid and reliable technique to investigate determinism in other discrete human movement time series.
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics.
Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo; Laufs, Helmut; Lacasa, Lucas
2018-02-23
We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.
Trends and Patterns in a New Time Series of Natural and Anthropogenic Methane Emissions, 1980-2000
NASA Astrophysics Data System (ADS)
Matthews, E.; Bruhwiler, L.; Themelis, N. J.
2007-12-01
We report on a new time series of methane (CH4) emissions from anthropogenic and natural sources developed for a multi-decadal methane modeling study (see following presentation by Bruhwiler et al.). The emission series extends from 1980 through the early 2000s with annual emissions for all countries has several features distinct from the source histories based on IPCC methods typically employed in modeling the global methane cycle. Fossil fuel emissions rely on 7 fuel-process emission combinations and minimize reliance on highly-uncertain emission factors. Emissions from ruminant animals employ regional profiles of bovine populations that account for the influence of variable age- and size-demographics on emissions and are ~15% lower than other estimates. Waste-related emissions are developed using an approach that avoids using of data-poor emission factors and accounts for impacts of recycling and thermal treatment of waste on diverting material from landfills and CH4 capture at landfill facilities. Emissions from irrigated rice use rice-harvest areas under 3 water-management systems and a new historical data set that analyzes multiple sources for trends in water management since 1980. A time series of emissions from natural wetlands was developed by applying a multiple-regression model derived from full process-based model of Walter with analyzed meteorology from the ERA-40 reanalysis.
SeaWiFS long-term solar diffuser reflectance trend analysis
NASA Astrophysics Data System (ADS)
Eplee, Robert E., Jr.; Patt, Frederick S.; Barnes, Robert A.; McClain, Charles R.
2006-08-01
The NASA Ocean Biology Processing Group's Calibration and Validation (Cal/Val) Team implemented daily solar calibrations of SeaWiFS to look for step-function changes in the instrument response and has used these calibrations to supplement the monthly lunar calibrations in monitoring the radiometric stability of SeaWiFS during its first year of on-orbit operations. The Team has undertaken an analysis of the mission-long solar calibration time series, with the lunar-derived radiometric corrections over time applied, to assess the long-term degradation of the solar diffuser reflectance over nine years on orbit. The SeaWiFS diffuser is an aluminum plate coated with YB71 paint. The bidirectional reflectance distribution function of the diffuser was not fully characterized before launch, so the Cal/Val Team has implemented a regression of the solar incidence angles and the drift in the node of the satellite's orbit against the diffuser time series to correct for solar incidence angle effects. An exponential function with a time constant of 200 days yields the best fit to the diffuser time series. The decrease in diffuser reflectance over the mission is wavelength-dependent, ranging from 9% in the blue (412 nm) to 5% in the red and near infrared (670-865 nm). The degradation of diffuser reflctance is similar to that observed for SeaWiFS radiometric response itself from lunar calibration time series for bands 1-5 (412-555 nm), though the magnitude of the change is four times larger for the diffuser. Evidently, the same optical degradation process has affected both the telescope optics and the solar diffuser in the blue and green. The Cal/Val Team has developed a methodology for computing the signal-to-noise ratio (SNR) for SeaWiFS on orbit from the diffuser time series. The on-orbit change in the SNR for each band over the nine-year mission is less than 7%. The on-orbit performance of the SeaWiFS solar diffuser should offer insight into the long-term on-orbit performance of solar diffusers on other instruments, such as MODIS, VIIRS, and ABI.
NASA Astrophysics Data System (ADS)
Forootan, Ehsan; Kusche, Jürgen
2016-04-01
Geodetic/geophysical observations, such as the time series of global terrestrial water storage change or sea level and temperature change, represent samples of physical processes and therefore contain information about complex physical interactionswith many inherent time scales. Extracting relevant information from these samples, for example quantifying the seasonality of a physical process or its variability due to large-scale ocean-atmosphere interactions, is not possible by rendering simple time series approaches. In the last decades, decomposition techniques have found increasing interest for extracting patterns from geophysical observations. Traditionally, principal component analysis (PCA) and more recently independent component analysis (ICA) are common techniques to extract statistical orthogonal (uncorrelated) and independent modes that represent the maximum variance of observations, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the auto-covariance matrix or diagonalizing higher (than two)-order statistical tensors from centered time series. However, the stationary assumption is obviously not justifiable for many geophysical and climate variables even after removing cyclic components e.g., the seasonal cycles. In this paper, we present a new decomposition method, the complex independent component analysis (CICA, Forootan, PhD-2014), which can be applied to extract to non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA (Forootan and Kusche, JoG-2012), where we (i) define a new complex data set using a Hilbert transformation. The complex time series contain the observed values in their real part, and the temporal rate of variability in their imaginary part. (ii) An ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex data set in (i). (iii) Dominant non-stationary patterns are recognized as independent complex patterns that can be used to represent the space and time amplitude and phase propagations. We present the results of CICA on simulated and real cases e.g., for quantifying the impact of large-scale ocean-atmosphere interaction on global mass changes. Forootan (PhD-2014) Statistical signal decomposition techniques for analyzing time-variable satellite gravimetry data, PhD Thesis, University of Bonn, http://hss.ulb.uni-bonn.de/2014/3766/3766.htm Forootan and Kusche (JoG-2012) Separation of global time-variable gravity signals into maximally independent components, Journal of Geodesy 86 (7), 477-497, doi: 10.1007/s00190-011-0532-5
Basic Auditory Processing and Developmental Dyslexia in Chinese
ERIC Educational Resources Information Center
Wang, Hsiao-Lan Sharon; Huss, Martina; Hamalainen, Jarmo A.; Goswami, Usha
2012-01-01
The present study explores the relationship between basic auditory processing of sound rise time, frequency, duration and intensity, phonological skills (onset-rime and tone awareness, sound blending, RAN, and phonological memory) and reading disability in Chinese. A series of psychometric, literacy, phonological, auditory, and character…
Sirleo, Luigi; Innocenti, Massimo; Innocenti, Matteo; Civinini, Roberto; Carulli, Christian; Matassi, Fabrizio
2018-02-01
To evaluate the feedback from post-operative three-dimensional computed tomography (3D-CT) on femoral tunnel placement in the learning process, to obtain an anatomic anterior cruciate ligament (ACL) reconstruction. A series of 60 consecutive patients undergoing primary ACL reconstruction using autologous hamstrings single-bundle outside-in technique were prospectively included in the study. ACL reconstructions were performed by the same trainee-surgeon during his learning phase of anatomic ACL femoral tunnel placement. A CT scan with dedicated tunnel study was performed in all patients within 48 h after surgery. The data obtained from the CT scan were processed into a three-dimensional surface model, and a true medial view of the lateral femoral condyle was used for the femoral tunnel placement analysis. Two independent examiners analysed the tunnel placements. The centre of femoral tunnel was measured using a quadrant method as described by Bernard and Hertel. The coordinates measured were compared with anatomic coordinates values described in the literature [deep-to-shallow distance (X-axis) 28.5%; high-to-low distance (Y-axis) 35.2%]. Tunnel placement was evaluated in terms of accuracy and precision. After each ACL reconstruction, results were shown to the surgeon to receive an instant feedback in order to achieve accurate correction and improve tunnel placement for the next surgery. Complications and arthroscopic time were also recorded. Results were divided into three consecutive series (1, 2, 3) of 20 patients each. A trend to placing femoral tunnel slightly shallow in deep-to-shallow distance and slightly high in high-to-low distance was observed in the first and the second series. A progressive improvement in tunnel position was recorded from the first to second series and from the second to the third series. Both accuracy (+52.4%) and precision (+55.7%) increased from the first to the third series (p < 0.001). Arthroscopic time decreased from a mean of 105 min in the first series to 57 min in the third series (p < 0.001). After 50 ACL reconstructions, a satisfactory anatomic femoral tunnel was reached. Feedback from post-operative 3D-CT is effective in the learning process to improve accuracy and precision of femoral tunnel placement in order to obtain anatomic ACL reconstruction and helps to reduce also arthroscopic time and learning curve. For clinical relevance, trainee-surgeons should use feedback from post-operative 3DCT to learn anatomic ACL femoral tunnel placement and apply it appropriately. Consecutive case series, Level IV.
Application of dynamic topic models to toxicogenomics data.
Lee, Mikyung; Liu, Zhichao; Huang, Ruili; Tong, Weida
2016-10-06
All biological processes are inherently dynamic. Biological systems evolve transiently or sustainably according to sequential time points after perturbation by environment insults, drugs and chemicals. Investigating the temporal behavior of molecular events has been an important subject to understand the underlying mechanisms governing the biological system in response to, such as, drug treatment. The intrinsic complexity of time series data requires appropriate computational algorithms for data interpretation. In this study, we propose, for the first time, the application of dynamic topic models (DTM) for analyzing time-series gene expression data. A large time-series toxicogenomics dataset was studied. It contains over 3144 microarrays of gene expression data corresponding to rat livers treated with 131 compounds (most are drugs) at two doses (control and high dose) in a repeated schedule containing four separate time points (4-, 8-, 15- and 29-day). We analyzed, with DTM, the topics (consisting of a set of genes) and their biological interpretations over these four time points. We identified hidden patterns embedded in this time-series gene expression profiles. From the topic distribution for compound-time condition, a number of drugs were successfully clustered by their shared mode-of-action such as PPARɑ agonists and COX inhibitors. The biological meaning underlying each topic was interpreted using diverse sources of information such as functional analysis of the pathways and therapeutic uses of the drugs. Additionally, we found that sample clusters produced by DTM are much more coherent in terms of functional categories when compared to traditional clustering algorithms. We demonstrated that DTM, a text mining technique, can be a powerful computational approach for clustering time-series gene expression profiles with the probabilistic representation of their dynamic features along sequential time frames. The method offers an alternative way for uncovering hidden patterns embedded in time series gene expression profiles to gain enhanced understanding of dynamic behavior of gene regulation in the biological system.
Modeling species invasions in Ecopath with Ecosim: an evaluation using Laurentian Great Lakes models
Langseth, Brian J.; Rogers, Mark; Zhang, Hongyan
2012-01-01
Invasive species affect the structure and processes of ecosystems they invade. Invasive species have been particularly relevant to the Laurentian Great Lakes, where they have played a part in both historical and recent changes to Great Lakes food webs and the fisheries supported therein. There is increased interest in understanding the effects of ecosystem changes on fisheries within the Great Lakes, and ecosystem models provide an essential tool from which this understanding can take place. A commonly used model for exploring fisheries management questions within an ecosystem context is the Ecopath with Ecosim (EwE) modeling software. Incorporating invasive species into EwE models is a challenging process, and descriptions and comparisons of methods for modeling species invasions are lacking. We compared four methods for incorporating invasive species into EwE models for both Lake Huron and Lake Michigan based on the ability of each to reproduce patterns in observed data time series. The methods differed in whether invasive species biomass was forced in the model, the initial level of invasive species biomass at the beginning of time dynamic simulations, and the approach to cause invasive species biomass to increase at the time of invasion. The overall process of species invasion could be reproduced by all methods, but fits to observed time series varied among the methods and models considered. We recommend forcing invasive species biomass when model objectives are to understand ecosystem impacts in the past and when time series of invasive species biomass are available. Among methods where invasive species time series were not forced, mediating the strength of predator–prey interactions performed best for the Lake Huron model, but worse for the Lake Michigan model. Starting invasive species biomass at high values and then artificially removing biomass until the time of invasion performed well for both models, but was more complex than starting invasive species biomass at low values. In general, for understanding the effect of invasive species on future fisheries management actions, we recommend initiating invasive species biomass at low levels based on the greater simplicity and realism of the method compared to others.
Using wavelets to decompose the time frequency effects of monetary policy
NASA Astrophysics Data System (ADS)
Aguiar-Conraria, Luís; Azevedo, Nuno; Soares, Maria Joana
2008-05-01
Central banks have different objectives in the short and long run. Governments operate simultaneously at different timescales. Many economic processes are the result of the actions of several agents, who have different term objectives. Therefore, a macroeconomic time series is a combination of components operating on different frequencies. Several questions about economic time series are connected to the understanding of the behavior of key variables at different frequencies over time, but this type of information is difficult to uncover using pure time-domain or pure frequency-domain methods. To our knowledge, for the first time in an economic setup, we use cross-wavelet tools to show that the relation between monetary policy variables and macroeconomic variables has changed and evolved with time. These changes are not homogeneous across the different frequencies.
Cloud masking and removal in remote sensing image time series
NASA Astrophysics Data System (ADS)
Gómez-Chova, Luis; Amorós-López, Julia; Mateo-García, Gonzalo; Muñoz-Marí, Jordi; Camps-Valls, Gustau
2017-01-01
Automatic cloud masking of Earth observation images is one of the first required steps in optical remote sensing data processing since the operational use and product generation from satellite image time series might be hampered by undetected clouds. The high temporal revisit of current and forthcoming missions and the scarcity of labeled data force us to cast cloud screening as an unsupervised change detection problem in the temporal domain. We introduce a cloud screening method based on detecting abrupt changes along the time dimension. The main assumption is that image time series follow smooth variations over land (background) and abrupt changes will be mainly due to the presence of clouds. The method estimates the background surface changes using the information in the time series. In particular, we propose linear and nonlinear least squares regression algorithms that minimize both the prediction and the estimation error simultaneously. Then, significant differences in the image of interest with respect to the estimated background are identified as clouds. The use of kernel methods allows the generalization of the algorithm to account for higher-order (nonlinear) feature relations. After the proposed cloud masking and cloud removal, cloud-free time series at high spatial resolution can be used to obtain a better monitoring of land cover dynamics and to generate more elaborated products. The method is tested in a dataset with 5-day revisit time series from SPOT-4 at high resolution and with Landsat-8 time series. Experimental results show that the proposed method yields more accurate cloud masks when confronted with state-of-the-art approaches typically used in operational settings. In addition, the algorithm has been implemented in the Google Earth Engine platform, which allows us to access the full Landsat-8 catalog and work in a parallel distributed platform to extend its applicability to a global planetary scale.
NASA Satellite Data for Seagrass Health Modeling and Monitoring
NASA Technical Reports Server (NTRS)
Spiering, Bruce A.; Underwood, Lauren; Ross, Kenton
2011-01-01
Time series derived information for coastal waters will be used to provide input data for the Fong and Harwell model. The current MODIS land mask limits where the model can be applied; this project will: a) Apply MODIS data with resolution higher than the standard products (250-m vs. 1-km). b) Seek to refine the land mask. c) Explore nearby areas to use as proxies for time series directly over the beds. Novel processing approaches will be leveraged from other NASA projects and customized as inputs for seagrass productivity modeling
A Bayesian nonparametric approach to dynamical noise reduction
NASA Astrophysics Data System (ADS)
Kaloudis, Konstantinos; Hatjispyros, Spyridon J.
2018-06-01
We propose a Bayesian nonparametric approach for the noise reduction of a given chaotic time series contaminated by dynamical noise, based on Markov Chain Monte Carlo methods. The underlying unknown noise process (possibly) exhibits heavy tailed behavior. We introduce the Dynamic Noise Reduction Replicator model with which we reconstruct the unknown dynamic equations and in parallel we replicate the dynamics under reduced noise level dynamical perturbations. The dynamic noise reduction procedure is demonstrated specifically in the case of polynomial maps. Simulations based on synthetic time series are presented.
Disentangling Time-series Spectra with Gaussian Processes: Applications to Radial Velocity Analysis
NASA Astrophysics Data System (ADS)
Czekala, Ian; Mandel, Kaisey S.; Andrews, Sean M.; Dittmann, Jason A.; Ghosh, Sujit K.; Montet, Benjamin T.; Newton, Elisabeth R.
2017-05-01
Measurements of radial velocity variations from the spectroscopic monitoring of stars and their companions are essential for a broad swath of astrophysics; these measurements provide access to the fundamental physical properties that dictate all phases of stellar evolution and facilitate the quantitative study of planetary systems. The conversion of those measurements into both constraints on the orbital architecture and individual component spectra can be a serious challenge, however, especially for extreme flux ratio systems and observations with relatively low sensitivity. Gaussian processes define sampling distributions of flexible, continuous functions that are well-motivated for modeling stellar spectra, enabling proficient searches for companion lines in time-series spectra. We introduce a new technique for spectral disentangling, where the posterior distributions of the orbital parameters and intrinsic, rest-frame stellar spectra are explored simultaneously without needing to invoke cross-correlation templates. To demonstrate its potential, this technique is deployed on red-optical time-series spectra of the mid-M-dwarf binary LP661-13. We report orbital parameters with improved precision compared to traditional radial velocity analysis and successfully reconstruct the primary and secondary spectra. We discuss potential applications for other stellar and exoplanet radial velocity techniques and extensions to time-variable spectra. The code used in this analysis is freely available as an open-source Python package.
Managing distribution changes in time series prediction
NASA Astrophysics Data System (ADS)
Matias, J. M.; Gonzalez-Manteiga, W.; Taboada, J.; Ordonez, C.
2006-07-01
When a problem is modeled statistically, a single distribution model is usually postulated that is assumed to be valid for the entire space. Nonetheless, this practice may be somewhat unrealistic in certain application areas, in which the conditions of the process that generates the data may change; as far as we are aware, however, no techniques have been developed to tackle this problem.This article proposes a technique for modeling and predicting this change in time series with a view to improving estimates and predictions. The technique is applied, among other models, to the hypernormal distribution recently proposed. When tested on real data from a range of stock market indices the technique produces better results that when a single distribution model is assumed to be valid for the entire period of time studied.Moreover, when a global model is postulated, it is highly recommended to select the hypernormal distribution parameter in the same likelihood maximization process.
Sentinel 2 products and data quality status
NASA Astrophysics Data System (ADS)
Clerc, Sebastien; Gascon, Ferran; Bouzinac, Catherine; Touli-Lebreton, Dimitra; Francesconi, Benjamin; Lafrance, Bruno; Louis, Jerome; Alhammoud, Bahjat; Massera, Stephane; Pflug, Bringfried; Viallefont, Francoise; Pessiot, Laetitia
2017-04-01
Since July 2015, Sentinel-2A provides high-quality multi-spectral images with 10 m spatial resolution. With the launch of Sentinel-2B scheduled for early March 2017, the mission will create a consistent time series with a revisit time of 5 days. The consistency of the time series is ensured by some specific performance requirements such as multi-temporal spatial co-registration and radiometric stability, routinely monitored by the Sentinel-2 Mission Performance Centre (S2MPC). The products also provide a rich set of metadata and auxiliary data to support higher-level processing. This presentation will focus on the current status of the Sentinel-2 L1C and L2A products, including dissemination and product format aspects. Up-to-date mission performance estimations will be presented. Finally we will provide an outlook on the future evolutions: commissioning tasks for Sentinel-2B, geometric refinement, product format and processing improvements.
Evaluation of CryoSat-2 Measurements for the Monitoring of Large River Water Levels
NASA Astrophysics Data System (ADS)
Bercher, Nicolas; Calmant, Stephane; Picot, Nicolas; Seyler, Frederique; Fleury, Sara
2013-09-01
In this study, and maybe for the first time, we explore the ability of CryoSat-2 satellite to monitor the water level of large rivers. We focus on a section of 500 km of the Madeira river (Amazon basin), around the town of Manicore, cf. Fig.1.Due to the drifting orbit of the mission, the usual concept of "virtual station" vanishes and data are to be extracted within polygons that delineate the riverbeds. This results in spatio-temporal time series of the river water level, expressed as a function of both space (distance to the ocean) and time.We use Cryosat-2 low resolution mode (LRM) data processed with an Ice2 retracker, i.e., the content of the upcoming IOP/GOP ocean product from ESA [1]. For this study, we use demonstration samples (year 2011 on our validation area), processed by the so-called Cryosat Processing Prototype developed by CNES in the framework of the Sentinel-3 Project from ESA [5] [4]. At the time of this study, the product came with no corrections ("solid earth tide", atmosphere, etc.), .Validation is performed on (1) river water level pseudo time series and (2) river pseudo profile. An overview of the spatio-temporal time series is also given in 2D and 3D plots. Despite the lack of geophysical corrections, results are really promising (Std 0.51 m) and are challenging those obtained by Envisat (Std 0.43 m) and Jason-2 (Std 0.47 m) on nearby virtual stations.We also demonstrate the potential of the CryoSat-2 and the appropriateness of its drifting orbit to map rivers topography and derive water levels "at anytime and anywhere" , a major topic of interest regarding hydrological propagation models and the preparation of the SWOT mission.