Sample records for time small coupling

  1. Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.

    PubMed

    Çakir, Yüksel

    2016-01-01

    Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.

  2. Stretched exponential dynamics of coupled logistic maps on a small-world network

    NASA Astrophysics Data System (ADS)

    Mahajan, Ashwini V.; Gade, Prashant M.

    2018-02-01

    We investigate the dynamic phase transition from partially or fully arrested state to spatiotemporal chaos in coupled logistic maps on a small-world network. Persistence of local variables in a coarse grained sense acts as an excellent order parameter to study this transition. We investigate the phase diagram by varying coupling strength and small-world rewiring probability p of nonlocal connections. The persistent region is a compact region bounded by two critical lines where band-merging crisis occurs. On one critical line, the persistent sites shows a nonexponential (stretched exponential) decay for all p while for another one, it shows crossover from nonexponential to exponential behavior as p → 1 . With an effectively antiferromagnetic coupling, coupling to two neighbors on either side leads to exchange frustration. Apart from exchange frustration, non-bipartite topology and nonlocal couplings in a small-world network could be a reason for anomalous relaxation. The distribution of trap times in asymptotic regime has a long tail as well. The dependence of temporal evolution of persistence on initial conditions is studied and a scaling form for persistence after waiting time is proposed. We present a simple possible model for this behavior.

  3. Time-reversing light pulses by adiabatic coupling modulation in coupled-resonator optical waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Martini, Rainer; Search, Christopher P.

    2012-12-01

    We introduce a mechanism to time reverse short optical pulses in coupled resonator optical waveguides (CROWs) by direct modulation of the coupling coefficients between microresonators. The coupling modulation is achieved using phase modulation of a Mach-Zehnder interferometer coupler. We demonstrate that by adiabatic modulation of the coupling between resonators we can time reverse or store light pulses with bandwidths up to a few hundred GHz. The large pulse bandwidths, small device footprint, robustness with respect to resonator losses, and easy tuning process of the coupling coefficients make this method more practical than previous proposals.

  4. Effects of spike-time-dependent plasticity on the stochastic resonance of small-world neuronal networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang, E-mail: jiangwang@tju.edu.cn

    2014-09-01

    The phenomenon of stochastic resonance in Newman-Watts small-world neuronal networks is investigated when the strength of synaptic connections between neurons is adaptively adjusted by spike-time-dependent plasticity (STDP). It is shown that irrespective of the synaptic connectivity is fixed or adaptive, the phenomenon of stochastic resonance occurs. The efficiency of network stochastic resonance can be largely enhanced by STDP in the coupling process. Particularly, the resonance for adaptive coupling can reach a much larger value than that for fixed one when the noise intensity is small or intermediate. STDP with dominant depression and small temporal window ratio is more efficient formore » the transmission of weak external signal in small-world neuronal networks. In addition, we demonstrate that the effect of stochastic resonance can be further improved via fine-tuning of the average coupling strength of the adaptive network. Furthermore, the small-world topology can significantly affect stochastic resonance of excitable neuronal networks. It is found that there exists an optimal probability of adding links by which the noise-induced transmission of weak periodic signal peaks.« less

  5. Ultrasonic sensor and method of use

    DOEpatents

    Condreva, Kenneth J.

    2001-01-01

    An ultrasonic sensor system and method of use for measuring transit time though a liquid sample, using one ultrasonic transducer coupled to a precision time interval counter. The timing circuit captures changes in transit time, representing small changes in the velocity of sound transmitted, over necessarily small time intervals (nanoseconds) and uses the transit time changes to identify the presence of non-conforming constituents in the sample.

  6. Synchronization of unidirectionally delay-coupled chaotic oscillators with memory

    NASA Astrophysics Data System (ADS)

    Jaimes-Reátegui, Rider; Vera-Ávila, Victor P.; Sevilla-Escoboza, Ricardo; Huerta-Cuéllar, Guillermo; Castañeda-Hernández, Carlos E.; Chiu-Zarate, Roger; Pisarchik, Alexander N.

    2016-11-01

    We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators' phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.

  7. Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling.

    PubMed

    Yao, Chenggui; Zhan, Meng; Shuai, Jianwei; Ma, Jun; Kurths, Jürgen

    2017-12-01

    It has been generally believed that both time delay and network structure could play a crucial role in determining collective dynamical behaviors in complex systems. In this work, we study the influence of coupling strength, time delay, and network topology on synchronization behavior in delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the coupling strength for complete synchronization in such networks strongly depends on the time delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity was numerically tested in several typical regular networks, such as different locally and globally coupled ones as well as in several complex networks, such as small-world and scale-free networks. Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is of key importance for the complete synchronization.

  8. Experiments with arbitrary networks in time-multiplexed delay systems

    NASA Astrophysics Data System (ADS)

    Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi

    2017-12-01

    We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.

  9. Very small IF resonator filters using reflection of shear horizontal wave at free edges of substrate.

    PubMed

    Kadota, Michio; Ago, Junya; Horiuchi, Hideya; Ikeura, Mamoru

    2002-09-01

    A shear horizontal (SH) wave has the characteristic of complete reflection at the free edges of a substrate with a large dielectric constant. A conventional surface acoustic wave (SAW) resonator filter requires reflectors consisting of numerous grating fingers on both sides of interdigital transducers (IDTs). On the contrary, it is considered that small-sized and low loss resonator filters without reflectors consisting of grating fingers can be realized by exploiting this characteristic of the SH wave or the Bleustein-Gulyaev-Shimizu (BGS) wave. There are two types of resonator filters: transversely coupled and longitudinally coupled. No transversely coupled filters (neither conventional nor edge-reflection) using the SH wave on a single-crystal substrate have been realized until now, because two transverse modes (symmetrical and asymmetrical modes) are not easily coupled. However, the authors have realized small low loss transversely coupled resonator filters in the range of 25 to 52 MHz using edge reflections of the BGS wave on piezoelectric ceramic (PZT: Pb(Zr,Ti)O3) substrates for the first time by developing methods by which the two transverse modes could be coupled. On the other hand, longitudinally coupled resonator filters using edge reflection of the SH or BGS wave always have large spurious responses because of the even modes in the out-of-band range, because the frequencies of even modes do not coincide with the nulls of the frequency spectra of the IDTs. Consequently, longitudinally coupled resonator filters using the edge reflection of the SH wave have not been realized. By developing a method of reducing the spurious responses without increasing of the insertion loss, the authors have realized small low loss longitudinally coupled resonator filters in the range of 40 to 190 MHz using edge reflection of BGS or SH waves on PZT or 36 degrees-rotated-Y X-propagation LiTaO3 substrates for the first time. Despite being intermediate frequency (IF) filters, their package (3 x 3 x 1.03 mm3) sizes are as small as those of radio frequency (RF) SAW filters.

  10. Local and global synchronization transitions induced by time delays in small-world neuronal networks with chemical synapses.

    PubMed

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile

    2015-02-01

    Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.

  11. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsedmore » light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.« less

  12. Examination of Cross-Scale Coupling During Auroral Events using RENU2 and ISINGLASS Sounding Rocket Data.

    NASA Astrophysics Data System (ADS)

    Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.

    2017-12-01

    The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.

  13. Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Guo, Xinmeng; Wang, Jiang

    2017-01-01

    The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.

  14. Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode.

    PubMed

    Kim, Guk-Hyun; Lee, Yong-Hee; Shinya, Akihiko; Notomi, Masaya

    2004-12-27

    Coupling characteristics between the single-cell hexapole mode and the triangular-lattice photonic crystal slab waveguide mode is studied by the finite-difference time-domain method. The single-cell hexapole mode has a high quality factor (Q) of 3.3Chi106 and a small modal volume of 1.18(lambda/n)3. Based on the symmetry, three representative types of coupling geometries (shoulder-couple, butt-couple and side-couple structures) are selected and tested. The coupling efficiency shows strong dependence on the transverse overlap of the cavity mode and the waveguide mode over the region of the waveguide. The shoulder-couple structure shows best coupling characteristics among three tested structures. For example, two shouldercouple waveguides and a hexapole cavity result in a high performance resonant-tunneling-filter with Q of 9.7Chi105 and transmittance of 0.48. In the side-couple structure, the coupling strength is much weaker than that of the shoulder-couple structure because of the poor spatial overlap between the mode profiles. In the direct-couple structure, the energy transfer from the cavity to the waveguide is prohibited because of the symmetry mismatch and no coupling is observed.

  15. Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy

    NASA Astrophysics Data System (ADS)

    Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.

    2018-01-01

    In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.

  16. Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soriano, Miguel C., E-mail: miguel@ifisc.uib-csic.es; Flunkert, Valentin; Fischer, Ingo

    2013-12-15

    We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delaymore » in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.« less

  17. Micro-Macro Coupling in Plasma Self-Organization Processes during Island Coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan Weigang; Lapenta, Giovanni; Centrum voor Plasma-Astrofysica, Departement Wiskunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven

    The collisionless island coalescence process is studied with particle-in-cell simulations, as an internal-driven magnetic self-organization scenario. The macroscopic relaxation time, corresponding to the total time required for the coalescence to complete, is found to depend crucially on the scale of the system. For small-scale systems, where the macroscopic scales and the dissipation scales are more tightly coupled, the relaxation time is independent of the strength of the internal driving force: the small-scale processes of magnetic reconnection adjust to the amount of the initial magnetic flux to be reconnected, indicating that at the microscopic scales reconnection is enslaved by the macroscopicmore » drive. However, for large-scale systems, where the micro-macro scale separation is larger, the relaxation time becomes dependent on the driving force.« less

  18. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu, E-mail: zhy@yangtze.hku.hk; Chen, GuanHua, E-mail: ghc@everest.hku.hk; Yam, ChiYung

    2015-04-28

    A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can bemore » suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.« less

  19. Small FDIRC designs

    DOE PAGES

    Dey, B.; Ratcliff, B.; Va’vra, J.

    2017-02-16

    In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less

  20. Small FDIRC designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, B.; Ratcliff, B.; Va’vra, J.

    In this article, we explore the angular resolution limits attainable in small FDIRC designs taking advantage of the new highly pixelated detectors that are now available. Since the basic FDIRC design concept attains its particle separation performance mostly in the angular domain as measured by two-dimensional pixels, this paper relies primarily on a pixel-based analysis, with additional chromatic corrections using the time domain, requiring single photon timing resolution at a level of 100–200 ps only. This approach differs from other modern DIRC design concepts such as TOP or TORCH detectors, whose separation performances rely more strongly on time-dependent analyses. Inmore » conclusion, we find excellent single photon resolution with a geometry where individual bars are coupled to a single plate, which is coupled in turn to a cylindrical lens focusing camera.« less

  1. An L-stable method for solving stiff hydrodynamics

    NASA Astrophysics Data System (ADS)

    Li, Shengtai

    2017-07-01

    We develop a new method for simulating the coupled dynamics of gas and multi-species dust grains. The dust grains are treated as pressure-less fluids and their coupling with gas is through stiff drag terms. If an explicit method is used, the numerical time step is subject to the stopping time of the dust particles, which can become extremely small for small grains. The previous semi-implicit method [1] uses second-order trapezoidal rule (TR) on the stiff drag terms and it works only for moderately small size of the dust particles. This is because TR method is only A-stable not L-stable. In this work, we use TR-BDF2 method [2] for the stiff terms in the coupled hydrodynamic equations. The L-stability of TR-BDF2 proves essential in treating a number of dust species. The combination of TR-BDF2 method with the explicit discretization of other hydro terms can solve a wide variety of stiff hydrodynamics equations accurately and efficiently. We have implemented our method in our LA-COMPASS (Los Alamos Computational Astrophysics Suite) package. We have applied the code to simulate some dusty proto-planetary disks and obtained very good match with astronomical observations.

  2. Conformist-contrarian interactions and amplitude dependence in the Kuramoto model

    NASA Astrophysics Data System (ADS)

    Lohe, M. A.

    2014-11-01

    We derive exact formulas for the frequency of synchronized oscillations in Kuramoto models with conformist-contrarian interactions, and determine necessary conditions for synchronization to occur. Numerical computations show that for certain parameters repulsive nodes behave as conformists, and that in other cases attractive nodes can display frustration, being neither conformist nor contrarian. The signs of repulsive couplings can be placed equivalently outside the sum, as proposed in Hong and Strogatz (2011 Phys. Rev. Lett. 106 054102), or inside the sum as in Hong and Strogatz (2012 Phys. Rev. E 85 056210), but the two models have different characteristics for small magnitudes of the coupling constants. In the latter case we show that the distributed coupling constants can be viewed as oscillator amplitudes which are constant in time, with the property that oscillators of small amplitude couple only weakly to connected nodes. Such models provide a means of investigating the effect of amplitude variations on synchronization properties.

  3. Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations

    PubMed Central

    Domínguez, Jorge Bouza; Bérubé-Lauzière, Yves

    2011-01-01

    We introduce a system of coupled time-dependent parabolic simplified spherical harmonic equations to model the propagation of both excitation and fluorescence light in biological tissues. We resort to a finite element approach to obtain the time-dependent profile of the excitation and the fluorescence light fields in the medium. We present results for cases involving two geometries in three-dimensions: a homogeneous cylinder with an embedded fluorescent inclusion and a realistically-shaped rodent with an embedded inclusion alike an organ filled with a fluorescent probe. For the cylindrical geometry, we show the differences in the time-dependent fluorescence response for a point-like, a spherical, and a spherically Gaussian distributed fluorescent inclusion. From our results, we conclude that the model is able to describe the time-dependent excitation and fluorescent light transfer in small geometries with high absorption coefficients and in nondiffusive domains, as may be found in small animal diffuse optical tomography (DOT) and fluorescence DOT imaging. PMID:21483606

  4. Synchronization control in multiplex networks of nonlinear multi-agent systems

    NASA Astrophysics Data System (ADS)

    He, Wangli; Xu, Zhiwei; Du, Wenli; Chen, Guanrong; Kubota, Naoyuki; Qian, Feng

    2017-12-01

    This paper is concerned with synchronization control of a multiplex network, in which two different kinds of relationships among agents coexist. Hybrid coupling, including continuous linear coupling and impulsive coupling, is proposed to model the coexisting distinguishable interactions. First, by adding impulsive controllers on a small portion of agents, local synchronization is analyzed by linearizing the error system at the desired trajectory. Then, global synchronization is studied based on the Lyapunov stability theory, where a time-varying coupling strength is involved. To further deal with the time-varying coupling strength, an adaptive updating law is introduced and a corresponding sufficient condition is obtained to ensure synchronization of the multiplex network towards the desired trajectory. Networks of Chua's circuits and other chaotic systems with double layers of interactions are simulated to verify the proposed method.

  5. Voltage control of ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Liu, Ming

    2016-05-01

    Voltage control of magnetism in multiferroics, where the ferromagnetism and ferroelectricity are simultaneously exhibiting, is of great importance to achieve compact, fast and energy efficient voltage controllable magnetic/microwave devices. Particularly, these devices are widely used in radar, aircraft, cell phones and satellites, where volume, response time and energy consumption is critical. Researchers realized electric field tuning of magnetic properties like magnetization, magnetic anisotropy and permeability in varied multiferroic heterostructures such as bulk, thin films and nanostructure by different magnetoelectric (ME) coupling mechanism: strain/stress, interfacial charge, spin-electromagnetic (EM) coupling and exchange coupling, etc. In this review, we focus on voltage control of ferromagnetic resonance (FMR) in multiferroics. ME coupling-induced FMR change is critical in microwave devices, where the electric field tuning of magnetic effective anisotropic field determines the tunability of the performance of microwave devices. Experimentally, FMR measurement technique is also an important method to determine the small effective magnetic field change in small amount of magnetic material precisely due to its high sensitivity and to reveal the deep science of multiferroics, especially, voltage control of magnetism in novel mechanisms like interfacial charge, spin-EM coupling and exchange coupling.

  6. Falling coupled oscillators and trigonometric sums

    NASA Astrophysics Data System (ADS)

    Holcombe, S. R.

    2018-02-01

    A method for evaluating finite trigonometric summations is applied to a system of N coupled oscillators under acceleration. Initial motion of the nth particle is shown to be of the order T^{2{n}+2} for small time T, and the end particle in the continuum limit is shown to initially remain stationary for the time it takes a wavefront to reach it. The average velocities of particles at the ends of the system are shown to take discrete values in a step-like manner.

  7. Cooling a magnetic nanoisland by spin-polarized currents.

    PubMed

    Brüggemann, J; Weiss, S; Nalbach, P; Thorwart, M

    2014-08-15

    We investigate cooling of a vibrational mode of a magnetic quantum dot by a spin-polarized tunneling charge current exploiting the magnetomechanical coupling. The spin-polarized current polarizes the magnetic nanoisland, thereby lowering its magnetic energy. At the same time, Ohmic heating increases the vibrational energy. A small magnetomechanical coupling then permits us to remove energy from the vibrational motion and cooling is possible. We find a reduction of the vibrational energy below 50% of its equilibrium value. The lowest vibration temperature is achieved for a weak electron-vibration coupling and a comparable magnetomechanical coupling. The cooling rate increases at first with the magnetomechanical coupling and then saturates.

  8. MSM/RD: Coupling Markov state models of molecular kinetics with reaction-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Dibak, Manuel; del Razo, Mauricio J.; De Sancho, David; Schütte, Christof; Noé, Frank

    2018-06-01

    Molecular dynamics (MD) simulations can model the interactions between macromolecules with high spatiotemporal resolution but at a high computational cost. By combining high-throughput MD with Markov state models (MSMs), it is now possible to obtain long time-scale behavior of small to intermediate biomolecules and complexes. To model the interactions of many molecules at large length scales, particle-based reaction-diffusion (RD) simulations are more suitable but lack molecular detail. Thus, coupling MSMs and RD simulations (MSM/RD) would be highly desirable, as they could efficiently produce simulations at large time and length scales, while still conserving the characteristic features of the interactions observed at atomic detail. While such a coupling seems straightforward, fundamental questions are still open: Which definition of MSM states is suitable? Which protocol to merge and split RD particles in an association/dissociation reaction will conserve the correct bimolecular kinetics and thermodynamics? In this paper, we make the first step toward MSM/RD by laying out a general theory of coupling and proposing a first implementation for association/dissociation of a protein with a small ligand (A + B ⇌ C). Applications on a toy model and CO diffusion into the heme cavity of myoglobin are reported.

  9. Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.

  10. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR).

    PubMed

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-04-23

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range.

  11. Angular Displacement and Velocity Sensors Based on Coplanar Waveguides (CPWs) Loaded with S-Shaped Split Ring Resonators (S-SRR)

    PubMed Central

    Naqui, Jordi; Coromina, Jan; Karami-Horestani, Ali; Fumeaux, Christophe; Martín, Ferran

    2015-01-01

    In this paper, angular displacement and angular velocity sensors based on coplanar waveguide (CPW) transmission lines and S-shaped split ring resonators (S-SRRs) are presented. The sensor consists of two parts, namely a CPW and an S-SRR, both lying on parallel planes. By this means, line-to-resonator magnetic coupling arises, the coupling level being dependent on the line-to-resonator relative angular orientation. The line-to-resonator coupling level is the key parameter responsible for modulating the amplitude of the frequency response seen between the CPW ports in the vicinity of the S-SRR fundamental resonance frequency. Specifically, an amplitude notch that can be visualized in the transmission coefficient is changed by the coupling strength, and it is characterized as the sensing variable. Thus, the relative angular orientation between the two parts is measured, when the S-SRR is attached to a rotating object. It follows that the rotation angle and speed can be inferred either by measuring the frequency response of the S-SRR-loaded line, or the response amplitude at a fixed frequency in the vicinity of resonance. It is in addition shown that the angular velocity can be accurately determined from the time-domain response of a carrier time-harmonic signal tuned at the S-SRR resonance frequency. The main advantage of the proposed device is its small size directly related to the small electrical size of the S-SRR, which allows for the design of compact angular displacement and velocity sensors at low frequencies. Despite the small size of the fabricated proof-of-concept prototype (electrically small structures do not usually reject signals efficiently), it exhibits good linearity (on a logarithmic scale), sensitivity and dynamic range. PMID:25915590

  12. Back in Time

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under a Jet Propulsion Laboratory SBIR (Small Business Innovative Research), Cambridge Research and Instrumentation Inc., developed a new class of filters for the construction of small, low-cost multispectral imagers. The VariSpec liquid crystal enables users to obtain multi-spectral, ultra-high resolution images using a monochrome CCD (charge coupled device) camera. Application areas include biomedical imaging, remote sensing, and machine vision.

  13. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less

  14. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf

    2016-04-01

    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  15. Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž

    2016-02-01

    We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.

  16. Parallel Quantum Circuit in a Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).

  17. Parallel Quantum Circuit in a Tunnel Junction

    PubMed Central

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-01-01

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262

  18. Parallel Quantum Circuit in a Tunnel Junction.

    PubMed

    Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian

    2016-07-25

    Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).

  19. Three-terminal graphene single-electron transistor fabricated using feedback-controlled electroburning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puczkarski, Paweł; Gehring, Pascal, E-mail: pascal.gehring@materials.ox.ac.uk; Lau, Chit S.

    2015-09-28

    We report room-temperature Coulomb blockade in a single layer graphene three-terminal single-electron transistor fabricated using feedback-controlled electroburning. The small separation between the side gate electrode and the graphene quantum dot results in a gate coupling up to 3 times larger compared to the value found for the back gate electrode. This allows for an effective tuning between the conductive and Coulomb blocked state using a small side gate voltage of about 1 V. The technique can potentially be used in the future to fabricate all-graphene based room temperature single-electron transistors or three terminal single molecule transistors with enhanced gate coupling.

  20. Magnetic switch coupling to synchronize magnetic modulators

    DOEpatents

    Reed, K.W.; Kiekel, P.

    1999-04-27

    Apparatus for synchronizing the output pulses from a pair of magnetic switches is disclosed. An electrically conductive loop is provided between the pair of switches with the loop having windings about the core of each of the magnetic switches. The magnetic coupling created by the loop removes voltage and timing variations between the outputs of the two magnetic switches caused by any of a variety of factors. The only remaining variation is a very small fixed timing offset caused by the geometry and length of the loop itself. 13 figs.

  1. In Vivo Quantification of Cell Coupling in Plants with Different Phloem-Loading Strategies[W][OA

    PubMed Central

    Liesche, Johannes; Schulz, Alexander

    2012-01-01

    Uptake of photoassimilates into the leaf phloem is the key step in carbon partitioning and phloem transport. Symplasmic and apoplasmic loading strategies have been defined in different plant taxa based on the abundance of plasmodesmata between mesophyll and phloem. For apoplasmic loading to occur, an absence of plasmodesmata is a sufficient but not a necessary criterion, as passage of molecules through plasmodesmata might well be blocked or restricted. Here, we present a noninvasive, whole-plant approach to test symplasmic coupling and quantify the intercellular flux of small molecules using photoactivation microscopy. Quantification of coupling between all cells along the prephloem pathways of the apoplasmic loader Vicia faba and Nicotiana tabacum showed, to our knowledge for the first time in vivo, that small solutes like sucrose can diffuse through plasmodesmata up to the phloem sieve element companion cell complex (SECCC). As expected, the SECCC was found to be symplasmically isolated for small solutes. In contrast, the prephloem pathway of the symplasmic loader Cucurbita maxima was found to be well coupled with the SECCC. Phloem loading in gymnosperms is not well understood, due to a profoundly different leaf anatomy and a scarcity of molecular data compared with angiosperms. A cell-coupling analysis for Pinus sylvestris showed high symplasmic coupling along the entire prephloem pathway, comprising at least seven cell border interfaces between mesophyll and sieve elements. Cell coupling together with measurements of leaf sap osmolality indicate a passive symplasmic loading type. Similarities and differences of this loading type with that of angiosperm trees are discussed. PMID:22422939

  2. Piloting relationship education for female same-sex couples: Results of a small randomized waitlist-control trial.

    PubMed

    Whitton, Sarah W; Scott, Shelby B; Dyar, Christina; Weitbrecht, Eliza M; Hutsell, David W; Kuryluk, Amanda D

    2017-10-01

    Relationship education represents a promising, nonstigmatizing approach to promoting the health and stability of same-sex couples. A new culturally sensitive adaptation of relationship education was developed specifically for female same-sex couples (The Strengthening Same-Sex Relationships Program, Female version; SSSR-F). SSSR-F includes adaptations of evidence-based strategies to build core relationship skills (e.g., communication skills training) as well as new content to address unique challenges faced by this population (e.g., discrimination; low social support). A small randomized waitlist-control trial (N = 37 couples) was conducted to evaluate program feasibility, acceptability, and efficacy. Three proximal outcomes targeted by SSSR-F (communication, perceived stress, social support) and 3 distal outcomes (global relationship satisfaction, instability, and confidence) were assessed at pre- and posttreatment and 3-month follow-up. Results of multilevel models accounting for nonindependence in dyadic data indicated statistically significant program effects on positive and negative couple communication, relationship satisfaction, and relationship confidence and small, nonsignificant program effects on stress, social support, and relationship instability. Analyses of follow-up data suggest maintenance of effects on the proximal but not the distal outcomes. Ratings of program satisfaction were high. Overall, findings support the feasibility, acceptability, and initial efficacy of SSSR-F, highlighting the potential value of culturally sensitive relationship education for same-sex couples. Continued efforts are needed to increase sustainability of program effects on global relationship quality over time. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. The Rapid Distortion of Two-Way Coupled Particle-Laden Turbulence

    NASA Astrophysics Data System (ADS)

    Kasbaoui, Mohamed; Koch, Donald; Desjardins, Olivier

    2017-11-01

    The modulation of sheared turbulence by dispersed particles is addressed in the two-way coupling regime. The preferential sampling of the straining regions of the flow by inertial particles in turbulence leads to the formation of clusters. These fast sedimenting particle structures cause the anisotropic alteration of turbulence at small scales in the direction of gravity. These effects are investigated in a revisited Rapid Distortion Theory (RDT), extended for two-way coupled particle-laden flows. To make the analysis tractable, we assume that particles have small but non-zero inertia. In the classical results for single-phase flows, the RDT assumption of fast shearing compared to the turbulence time scales leads to the distortion of ``frozen'' turbulence. In particle-laden turbulence, the coupling between the two phases remains strong even under fast shearing and leads to a dynamic modulation of the turbulence spectrum. Turbulence statistics obtained from RDT are compared with Euler-Lagrange simulations of homogeneously sheared particle-laden turbulence.

  4. Non-minimal derivative coupling gravity in cosmology

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin; Rangdee, Phongsaphat

    2015-11-01

    We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.

  5. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.

    PubMed

    O'Keeffe, Kevin P; Krapivsky, P L; Strogatz, Steven H

    2015-08-07

    We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.

  6. Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Fried, L; Glaesemann, K

    2006-06-20

    We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for speciesmore » coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved.« less

  7. A Novel, Real-Time, In Vivo Mouse Retinal Imaging System.

    PubMed

    Butler, Mark C; Sullivan, Jack M

    2015-11-01

    To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies.

  8. Preheating after multifield inflation with nonminimal couplings. III. Dynamical spacetime results

    NASA Astrophysics Data System (ADS)

    DeCross, Matthew P.; Kaiser, David I.; Prabhu, Anirudh; Prescod-Weinstein, Chanda; Sfakianakis, Evangelos I.

    2018-01-01

    This paper concludes our semianalytic study of preheating in inflationary models comprised of multiple scalar fields coupled nonminimally to gravity. Using the covariant framework of paper I in this series, we extend the rigid-spacetime results of paper II by considering both the expansion of the Universe during preheating, as well as the effect of the coupled metric perturbations on particle production. The adiabatic and isocurvature perturbations are governed by different effective masses that scale differently with the nonminimal couplings and evolve differently in time. The effective mass for the adiabatic modes is dominated by contributions from the coupled metric perturbations immediately after inflation. The metric perturbations contribute an oscillating tachyonic term that enhances an early period of significant particle production for the adiabatic modes, which ceases on a time scale governed by the nonminimal couplings ξI . The effective mass of the isocurvature perturbations, on the other hand, is dominated by contributions from the fields' potential and from the curvature of the field-space manifold (in the Einstein frame), the balance between which shifts on a time scale governed by ξI. As in papers I and II, we identify distinct behavior depending on whether the nonminimal couplings are small [ξI≲O (1 ) ], intermediate [ξI˜O (1 -10 ) ], or large (ξI≥100 ).

  9. Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jae Hyeok; Essig, Rouven; McDermott, Samuel D.

    We consider the constraints from Supernova 1987A on particles with small couplings to the Standard Model. We discuss a model with a fermion coupled to a dark photon, with various mass relations in the dark sector; millicharged particles; dark-sector fermions with inelastic transitions; the hadronic QCD axion; and an axion-like particle that couples to Standard Model fermions with couplings proportional to their mass. In the fermion cases, we develop a new diagnostic for assessing when such a particle is trapped at large mixing angles. Our bounds for a fermion coupled to a dark photon constrain small couplings and masses <200more » MeV, and do not decouple for low fermion masses. They exclude parameter space that is otherwise unconstrained by existing accelerator-based and direct-detection searches. In addition, our bounds are complementary to proposed laboratory searches for sub-GeV dark matter, and do not constrain several "thermal" benchmark-model targets. For a millicharged particle, we exclude charges between 10^(-9) to a few times 10^(-6) in units of the electron charge; this excludes parameter space to higher millicharges and masses than previous bounds. For the QCD axion and an axion-like particle, we apply several updated nuclear physics calculations and include the energy dependence of the optical depth to accurately account for energy loss at large couplings. We rule out a hadronic axion of mass between 0.1 and a few hundred eV, or equivalently bound the PQ scale between a few times 10^4 and 10^8 GeV, closing the hadronic axion window. For an axion-like particle, our bounds disfavor decay constants between a few times 10^5 GeV up to a few times 10^8 GeV. In all cases, our bounds differ from previous work by more than an order of magnitude across the entire parameter space. We also provide estimated systematic errors due to the uncertainties of the progenitor.« less

  10. The effect of electromagnetically induced transparency in a potassium nanocell

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Amiryan, A.; Leroy, C.; Vartanyan, T. A.; Sarkisyan, D.

    2017-07-01

    The effect of electromagnetically induced transparency (EIT) has been experimentally implemented for the first time for the (4 S 1/2-4 P 1/2-4 S 1/2) Λ-system of potassium atom levels in a nanocell with a 770-nm-thick column of atomic vapor. It is shown that, at such a small thickness of the vapor column, the EIT resonance can be observed only when the coupling-laser frequency is in exact resonance with the frequency of the corresponding atomic transition. The EIT resonance disappears even if the coupling-laser frequency differs slightly (by 50 MHz) from that of the corresponding atomic transition, which is due to the high thermal velocity of K atoms. The EIT resonance and related velocity selective optical pumping resonances caused by optical pumping (formed by the coupling) can be simultaneously recorded because of the small ( 462 MHz) hyperfine splitting of the lower 4 S 1/2 level.

  11. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  12. Combined effect of Piezo-viscous dependency and non- Newtonian couple stresses in Annular Plates Squeeze-Film characteristics

    NASA Astrophysics Data System (ADS)

    Hanumagowda, B. N.; Savitramma, G.; Salma, A.; Noorjahan

    2018-04-01

    In this article, the theoretical analysis of the combined study of non-Newtonian couple stresses with piezo-viscous dependency for annular plates squeeze film bearings have been carried out, with help of stokes micro continuum theory along with the exponential variation of viscosity with pressure. An approximate analytical solution is found using a small perturbation method. The solution for pressure and load capacity with distinct values of viscosity-pressure parameter are calculated and compared with iso-viscous couple stress and Newtonian lubricants and the results reveals that the effect of couple stresses and pressure-dependent viscosity variation enhances the load-carrying capacity and lengthens the squeeze film time.

  13. Effects of coupled dark energy on the Milky Way and its satellites

    NASA Astrophysics Data System (ADS)

    Penzo, Camilla; Macciò, Andrea V.; Baldi, Marco; Casarini, Luciano; Oñorbe, Jose; Dutton, Aaron A.

    2016-09-01

    We present the first numerical simulations in coupled dark energy cosmologies with high enough resolution to investigate the effects of the coupling on galactic and subgalactic scales. We choose two constant couplings and a time-varying coupling function and we run simulations of three Milky Way-sized haloes (˜1012 M⊙), a lower mass halo (6 × 1011 M⊙) and a dwarf galaxy halo (5 × 109 M⊙). We resolve each halo with several million dark matter particles. On all scales, the coupling causes lower halo concentrations and a reduced number of substructures with respect to Λ cold dark matter (ΛCDM). We show that the reduced concentrations are not due to different formation times. We ascribe them to the extra terms that appear in the equations describing the gravitational dynamics. On the scale of the Milky Way satellites, we show that the lower concentrations can help in reconciling observed and simulated rotation curves, but the coupling values necessary to have a significant difference from ΛCDM are outside the current observational constraints. On the other hand, if other modifications to the standard model allowing a higher coupling (e.g. massive neutrinos) are considered, coupled dark energy can become an interesting scenario to alleviate the small-scale issues of the ΛCDM model.

  14. Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods

    PubMed Central

    Cocco, Simona; Leibler, Stanislas; Monasson, Rémi

    2009-01-01

    Complexity of neural systems often makes impracticable explicit measurements of all interactions between their constituents. Inverse statistical physics approaches, which infer effective couplings between neurons from their spiking activity, have been so far hindered by their computational complexity. Here, we present 2 complementary, computationally efficient inverse algorithms based on the Ising and “leaky integrate-and-fire” models. We apply those algorithms to reanalyze multielectrode recordings in the salamander retina in darkness and under random visual stimulus. We find strong positive couplings between nearby ganglion cells common to both stimuli, whereas long-range couplings appear under random stimulus only. The uncertainty on the inferred couplings due to limitations in the recordings (duration, small area covered on the retina) is discussed. Our methods will allow real-time evaluation of couplings for large assemblies of neurons. PMID:19666487

  15. Quench dynamics of the interacting Bose gas in one dimension.

    PubMed

    Iyer, Deepak; Andrei, Natan

    2012-09-14

    We obtain an exact expression for the time evolution of the interacting Bose gas following a quench from a generic initial state using the Yudson representation for integrable systems. We study the time evolution of the density and noise correlation for a small number of bosons and their asymptotic behavior for any number. We show that for any value of the coupling, as long as it is repulsive, the system asymptotes towards a strongly repulsive gas, while for any value of an attractive coupling the long time behavior is dominated by the maximal bound state. This occurs independently of the initial state and can be viewed as an emerging "dynamic universality."

  16. A Novel, Real-Time, In Vivo Mouse Retinal Imaging System

    PubMed Central

    Butler, Mark C.; Sullivan, Jack M.

    2015-01-01

    Purpose To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Methods Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. Results The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. Conclusions A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies. PMID:26551329

  17. Small Animal Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Choi, WooJhon; Drexler, Wolfgang; Fujimoto, James G.

    Developing and validating new techniques and methods for small animal imaging is an important research area because there are many small animal models of retinal diseases such as diabetic retinopathy, age-related macular degeneration, and glaucoma [1-6]. Because the retina is a multilayered structure with distinct abnormalities occurring in different intraretinal layers at different stages of disease progression, there is a need for imaging techniques that enable visualization of these layers individually at different time points. Although postmortem histology and ultrastructural analysis can be performed for investigating microscopic changes in the retina in small animal models, this requires sacrificing animals, which makes repeated assessment of the same animal at different time points impossible and increases the number of animals required. Furthermore, some retinal processes such as neurovascular coupling cannot be fully characterized postmortem.

  18. Elucidating Molecular Motion through Structural and Dynamic Filters of Energy-Minimized Conformer Ensembles

    PubMed Central

    2015-01-01

    Complex RNA structures are constructed from helical segments connected by flexible loops that move spontaneously and in response to binding of small molecule ligands and proteins. Understanding the conformational variability of RNA requires the characterization of the coupled time evolution of interconnected flexible domains. To elucidate the collective molecular motions and explore the conformational landscape of the HIV-1 TAR RNA, we describe a new methodology that utilizes energy-minimized structures generated by the program “Fragment Assembly of RNA with Full-Atom Refinement (FARFAR)”. We apply structural filters in the form of experimental residual dipolar couplings (RDCs) to select a subset of discrete energy-minimized conformers and carry out principal component analyses (PCA) to corroborate the choice of the filtered subset. We use this subset of structures to calculate solution T1 and T1ρ relaxation times for 13C spins in multiple residues in different domains of the molecule using two simulation protocols that we previously published. We match the experimental T1 times to within 2% and the T1ρ times to within less than 10% for helical residues. These results introduce a protocol to construct viable dynamic trajectories for RNA molecules that accord well with experimental NMR data and support the notion that the motions of the helical portions of this small RNA can be described by a relatively small number of discrete conformations exchanging over time scales longer than 1 μs. PMID:24479561

  19. Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol

    2015-09-01

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.

  20. Spatiotemporal stick-slip phenomena in a coupled continuum-granular system

    NASA Astrophysics Data System (ADS)

    Ecke, Robert

    In sheared granular media, stick-slip behavior is ubiquitous, especially at very small shear rates and weak drive coupling. The resulting slips are characteristic of natural phenomena such as earthquakes and well as being a delicate probe of the collective dynamics of the granular system. In that spirit, we developed a laboratory experiment consisting of sheared elastic plates separated by a narrow gap filled with quasi-two-dimensional granular material (bi-dispersed nylon rods) . We directly determine the spatial and temporal distributions of strain displacements of the elastic continuum over 200 spatial points located adjacent to the gap. Slip events can be divided into large system-spanning events and spatially distributed smaller events. The small events have a probability distribution of event moment consistent with an M - 3 / 2 power law scaling and a Poisson distributed recurrence time distribution. Large events have a broad, log-normal moment distribution and a mean repetition time. As the applied normal force increases, there are fractionally more (less) large (small) events, and the large-event moment distribution broadens. The magnitude of the slip motion of the plates is well correlated with the root-mean-square displacements of the granular matter. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches. We further explore the high-speed dynamics of system events and also discuss the effective granular friction of the sheared layer. We find that large events result from stored elastic energy in the plates in this coupled granular-continuum system.

  1. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  2. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators.

    PubMed

    Premalatha, K; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  3. Solid-propellant rocket motor internal ballistic performance variation analysis, phase 2

    NASA Technical Reports Server (NTRS)

    Sforzini, R. H.; Foster, W. A., Jr.

    1976-01-01

    The Monte Carlo method was used to investigate thrust imbalance and its first time derivative throughtout the burning time of pairs of solid rocket motors firing in parallel. Results obtained compare favorably with Titan 3 C flight performance data. Statistical correlations of the thrust imbalance at various times with corresponding nominal trace slopes suggest several alternative methods of predicting thrust imbalance. The effect of circular-perforated grain deformation on internal ballistics is discussed, and a modified design analysis computer program which permits such an evaluation is presented. Comparisons with SRM firings indicate that grain deformation may account for a portion of the so-called scale factor on burning rate between large motors and strand burners or small ballistic test motors. Thermoelastic effects on burning rate are also investigated. Burning surface temperature is calculated by coupling the solid phase energy equation containing a strain rate term with a model of gas phase combustion zone using the Zeldovich-Novozhilov technique. Comparisons of solutions with and without the strain rate term indicate a small but possibly significant effect of the thermoelastic coupling.

  4. Highly efficient coupler for dielectric slot waveguides and hybrid plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Yu, Jiyao; Ohtera, Yasuo; Yamada, Hirohito

    2018-05-01

    A compact, highly efficient optical coupler for dielectric slot waveguides and hybrid plasmonic waveguides based on transition layers (air slot grooves) was investigated. The power-coupling efficiency of 75% for the direct coupling case increased to 90% following the insertion of an intermediate section. By performing time-averaged Poynting vector analysis, we successfully separated the factors of transmission, reflection, and radiation at the coupler interface. We found that the insertion of optimal air grooves into the coupler structure contributed to the improvement of coupling performance. The proposed compact structure is characterized by a high transmission efficiency, low reflection, small length, and broad-band spectrum response.

  5. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.

    PubMed

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V E; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski et al. [Phys. Rev. Lett. 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  6. Urinary metabolomic study of non-small cell lung carcinoma based on ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Wu, Qian; Wang, Yan; Gu, Xue; Zhou, Junyi; Zhang, Huiping; Lv, Wang; Chen, Zhe; Yan, Chao

    2014-07-01

    Metabolic profiles from human urine reveal the significant difference of carnitine and acylcarnitines levels between non-small cell lung carcinoma patients and healthy controls. Urine samples from cancer patients and healthy individuals were assayed in this metabolomic study using ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The data were normalized by the sum of all intensities and creatinine calibration, respectively, before orthogonal partial least squares discriminant analysis. Twenty differential metabolites were identified based on standard compounds or tandem mass spectrometry fragments. Among them, some medium-/long-chain acylcarnitines, for example, cis-3,4-methylene heptanoylcarnitine, were found to be downregulated while carnitine was upregulated in urine samples from the cancer group compared to the control group. Receiver operating characteristic analysis of the two groups showed that the area under curve for the combination of carnitine and 11 selected acylcarnitines was 0.958. This study suggests that the developed carnitine and acylcarnitines profiling method has the potential to be used for screening non-small cell lung carcinoma. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Meta-Analytic Study of Couple Interventions during the Transition to Parenthood

    ERIC Educational Resources Information Center

    Pinquart, Martin; Teubert, Daniela

    2010-01-01

    The present meta-analysis integrates results of 21 controlled couple-focused interventions with expectant and new parents. The interventions had, on average, small effects on couple communication (d = 0.28 standard deviation units) and psychological well-being (d = 0.21), as well as very small effects on couple adjustment (d = 0.09). Stronger…

  8. Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Bisadi, Zahra; Acerbi, Fabio; Fontana, Giorgio; Zorzi, Nicola; Piemonte, Claudio; Pucker, Georg; Pavesi, Lorenzo

    2018-02-01

    A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.

  9. Terrestrial biogeochemical cycles: global interactions with the atmosphere and hydrology

    NASA Astrophysics Data System (ADS)

    Schimel, David S.; Kittel, Timothy G. F.; Parton, William J.

    1991-08-01

    Ecosystem scientists have developed a body of theory to predict the behaviour of biogeochemical cycles when exchanges with other ecosystems are small or prescribed. Recent environmental changes make it clear that linkages between ecosystems via atmospheric and hydrological transport have large effects on ecosystem dynamics when considered over time periods of a decade to a century, time scales relevant to contemporary humankind. Our ability to predict behaviour of ecosystems coupled by transport is limited by our ability (1) to extrapolate biotic function to large spatial scales and (2) to measure and model transport. We review developments in ecosystem theory, remote sensing, and geographical information systems (GIS) that support new efforts in spatial modeling. A paradigm has emerged to predict behaviour of ecosystems based on understanding responses to multiple resources (e.g., water, nutrients, light). Several ecosystem models couple primary production to decomposition and nutrient availability using the above paradigm. These models require a fairly small set of environmental variables to simulate spatial and temporal variation in rates of biogeochemical cycling. Simultaneously, techniques for inferring ecosystem behaviour from remotely measured canopy light interception are improving our ability to infer plant activity from satellite observations. Efforts have begun to couple models of transport in air and water to models of ecosystem function. Preliminary work indicates that coupling of transport and ecosystem processes alters the behaviour of earth system components (hydrology, terrestrial ecosystems, and the atmosphere) from that of an uncoupled mode.

  10. JPRS Report, East Europe.

    DTIC Science & Technology

    1991-03-12

    hotel expenses; one-time aid to newly married couples; JPRS-EER-91-030 12 March 1991 ECONOMIC 31 births; illnesses; deaths; accidents and disasters...what we often see in small boutiques or street booths, accounted for more than 11 percent of overall Polish imports. As known, in 1990 exports by

  11. Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors.

    PubMed

    Yu, Hongling; Ho, Tak-San; Rabitz, Herschel

    2018-05-09

    Optimal control simulations are performed for orientation and entanglement of two dipole-dipole coupled identical quantum rotors. The rotors at various fixed separations lie on a model non-interacting plane with an applied control field. It is shown that optimal control of orientation or entanglement represents two contrasting control scenarios. In particular, the maximally oriented state (MOS) of the two rotors has a zero entanglement entropy and is readily attainable at all rotor separations. Whereas, the contrasting maximally entangled state (MES) has a zero orientation expectation value and is most conveniently attainable at small separations where the dipole-dipole coupling is strong. It is demonstrated that the peak orientation expectation value attained by the MOS at large separations exhibits a long time revival pattern due to the small energy splittings arising form the extremely weak dipole-dipole coupling between the degenerate product states of the two free rotors. Moreover, it is found that the peak entanglement entropy value attained by the MES remains largely unchanged as the two rotors are transported to large separations after turning off the control field. Finally, optimal control simulations of transition dynamics between the MOS and the MES reveal the intricate interplay between orientation and entanglement.

  12. Co-rotational thermo-mechanically coupled multi-field framework and finite element for the large displacement analysis of multi-layered shape memory alloy beam-like structures

    NASA Astrophysics Data System (ADS)

    Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.

    2017-06-01

    A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.

  13. Asymptotics of the evolution semigroup associated with a scalar field in the presence of a non-linear electromagnetic field

    NASA Astrophysics Data System (ADS)

    Albeverio, Sergio; Tamura, Hiroshi

    2018-04-01

    We consider a model describing the coupling of a vector-valued and a scalar homogeneous Markovian random field over R4, interpreted as expressing the interaction between a charged scalar quantum field coupled with a nonlinear quantized electromagnetic field. Expectations of functionals of the random fields are expressed by Brownian bridges. Using this, together with Feynman-Kac-Itô type formulae and estimates on the small time and large time behaviour of Brownian functionals, we prove asymptotic upper and lower bounds on the kernel of the transition semigroup for our model. The upper bound gives faster than exponential decay for large distances of the corresponding resolvent (propagator).

  14. Coherent Coupled Qubits for Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  15. Dynamical Bayesian inference of time-evolving interactions: From a pair of coupled oscillators to networks of oscillators

    NASA Astrophysics Data System (ADS)

    Duggento, Andrea; Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2012-12-01

    Living systems have time-evolving interactions that, until recently, could not be identified accurately from recorded time series in the presence of noise. Stankovski [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.024101 109, 024101 (2012)] introduced a method based on dynamical Bayesian inference that facilitates the simultaneous detection of time-varying synchronization, directionality of influence, and coupling functions. It can distinguish unsynchronized dynamics from noise-induced phase slips. The method is based on phase dynamics, with Bayesian inference of the time-evolving parameters being achieved by shaping the prior densities to incorporate knowledge of previous samples. We now present the method in detail using numerically generated data, data from an analog electronic circuit, and cardiorespiratory data. We also generalize the method to encompass networks of interacting oscillators and thus demonstrate its applicability to small-scale networks.

  16. Documentation of a restart option for the U.S. Geological Survey coupled Groundwater and Surface-Water Flow (GSFLOW) model

    USGS Publications Warehouse

    Regan, R. Steve; Niswonger, Richard G.; Markstrom, Steven L.; Barlow, Paul M.

    2015-10-02

    The spin-up simulation should be run for a sufficient length of time necessary to establish antecedent conditions throughout a model domain. Each GSFLOW application can require different lengths of time to account for the hydrologic stresses to propagate through a coupled groundwater and surface-water system. Typically, groundwater hydrologic processes require many years to come into equilibrium with dynamic climate and other forcing (or stress) data, such as precipitation and well pumping, whereas runoff-dominated surface-water processes respond relatively quickly. Use of a spin-up simulation can substantially reduce execution-time requirements for applications where the time period of interest is small compared to the time for hydrologic memory; thus, use of the restart option can be an efficient strategy for forecast and calibration simulations that require multiple simulations starting from the same day.

  17. Within-couple specialisation in paid work: A long-term pattern? A dual trajectory approach to linking lives.

    PubMed

    Langner, Laura Antonia

    2015-06-01

    Research on the division of labour has mainly focussed on transitions between individuals' labour market states during the first years of parenthood. A common conclusion has been that couples specialize--women in unpaid and men in paid work--either due to gender ideologies or a comparative advantage in the labour market. But what happens later in life? The German Socio-Economic Panel now provides researchers with a continuous measure of working hours across decades of couples' lives, enabling a dual trajectory analysis to explore couples' long-term specialisation patterns. I focus on the career trajectories of West German couples, and specifically, due to the relatively low institutional and normative support for female employment during its members' early years, on the 1956-65 female birth cohort. Even in this setting and with a conservative estimate, a surprisingly small number of couples--only a fifth--adopt full specialisation in later life. A sizable proportion--a third--moves into dual full-time employment. This trend is even more common among highly educated couples: half of those couples move into dual full-time employment. I find that highly educated women are not only less likely to permanently specialise but also more likely to try working full-time, possibly because their partners' comparative advantages are lower. But despite high opportunity costs, 45% of highly educated parents never try to pursue a dual career either because of a satiation of material wants or because of low societal support for maternal employment. The latter phenomenon is further underscored by the finding that many couples' increase in working hours occurs only when a youngest child is a teenager. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A reanalysis of "Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons".

    PubMed

    Engelken, Rainer; Farkhooi, Farzad; Hansel, David; van Vreeswijk, Carl; Wolf, Fred

    2016-01-01

    Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, communicate via spikes and it is a theoretical challenge to obtain similar rate fluctuations in networks of spiking neuron models. A recent study investigated spiking balanced networks of leaky integrate and fire (LIF) neurons and compared their dynamics to a matched rate network with identical topology, where single unit input-output functions were chosen from isolated LIF neurons receiving Gaussian white noise input. A mathematical analogy between the chaotic instability in networks of rate units and the spiking network dynamics was proposed. Here we revisit the behavior of the spiking LIF networks and these matched rate networks. We find expected hallmarks of a chaotic instability in the rate network: For supercritical coupling strength near the transition point, the autocorrelation time diverges. For subcritical coupling strengths, we observe critical slowing down in response to small external perturbations. In the spiking network, we found in contrast that the timescale of the autocorrelations is insensitive to the coupling strength and that rate deviations resulting from small input perturbations rapidly decay. The decay speed even accelerates for increasing coupling strength. In conclusion, our reanalysis demonstrates fundamental differences between the behavior of pulse-coupled spiking LIF networks and rate networks with matched topology and input-output function. In particular there is no indication of a corresponding chaotic instability in the spiking network.

  19. Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2014-12-01

    We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high- and low-temperature components are the most localized ones.

  20. Intermediate couplings: NMR at the solids-liquids interface

    NASA Astrophysics Data System (ADS)

    Spence, Megan

    2006-03-01

    Anisotropic interactions like dipolar couplings and chemical shift anisotropy have long offered solid-state NMR spectroscopists valuable structural information. Recently, solution-state NMR structural studies have begun to exploit residual dipolar couplings of biological molecules in weakly anisotropic solutions. These residual couplings are about 0.1% of the coupling magnitudes observed in the solid state, allowing simple, high-resolution NMR spectra to be retained. In this work, we examine the membrane-associated opioid, leucine enkephalin (lenk), in which the ordering is ten times larger than that for residual dipolar coupling experiments, requiring a combination of solution-state and solid-state NMR techniques. We adapted conventional solid-state NMR techniques like adiabatic cross- polarization and REDOR for use with such a system, and measured small amide bond dipolar couplings in order to determine the orientation of the amide bonds (and therefore the peptide) with respect to the membrane surface. However, the couplings measured indicate large structural rearrangements on the surface and contradict the published structures obtained by NOESY constraints, a reminder that such methods are of limited use in the presence of large-scale dynamics.

  1. Slow wave contraction frequency plateaus in the small intestine are composed of discrete waves of interval increase associated with dislocations.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2018-06-03

    What is the central question of this study? What is the nature of slow wave driven contraction frequency gradients in the small intestine? What is the main finding and its importance? Frequency plateaus are composed of discrete waves of increased interval, each wave associated with a contraction dislocation. Smooth frequency gradients are generated by localised neural modulation of wave frequency, leading to functionally important wave turbulence. Both patterns are emergent properties of a network of coupled oscillators, the interstitial cells of Cajal. A gut-wide network of interstitial cells of Cajal (ICC) generate electrical oscillations (slow waves) that orchestrate waves of muscle contraction. In the small intestine there is a gradient in slow wave frequency from high at the duodenum to low at the terminal ileum. Time-averaged measurements of frequency have suggested either a smooth or stepped (plateaued) gradient. We measured individual contraction intervals from diameter maps of the mouse small intestine to create interval maps (IMaps). IMaps showed that each frequency plateau was composed of discrete waves of increased interval. Each interval wave originated at a terminating contraction wave, a "dislocation", at the plateau's proximal boundary. In a model chain of coupled phase oscillators, interval wave frequency increased as coupling decreased or as the natural frequency gradient or noise increased. Injuring the intestine at a proximal point to destroy coupling, suppressed distal steps which then reappeared with gap junction block by carbenoxolone. This lent further support to our previous hypothesis that lines of dislocations were fixed by points of low coupling strength. Dislocations induced by electrical field pulses in the intestine and by equivalent phase shift in the model, were associated with interval waves. When the enteric nervous system was active, IMaps showed a chaotic, turbulent pattern of interval change with no frequency steps or plateaus. This probably resulted from local, stochastic release of neurotransmitters. Plateaus, dislocations, interval waves and wave turbulence arise from a dynamic interplay between natural frequency and coupling in the ICC network. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. A family of compact high order coupled time-space unconditionally stable vertical advection schemes

    NASA Astrophysics Data System (ADS)

    Lemarié, Florian; Debreu, Laurent

    2016-04-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost.

  3. Longitudinal relations between constructive and destructive conflict and couples' sleep.

    PubMed

    El-Sheikh, Mona; Kelly, Ryan J; Koss, Kalsea J; Rauer, Amy J

    2015-06-01

    We examined longitudinal relations between interpartner constructive (negotiation) and destructive (psychological and physical aggression) conflict strategies and couples' sleep over 1 year. Toward explicating processes of effects, we assessed the intervening role of internalizing symptoms in associations between conflict tactics and couples' sleep. Participants were 135 cohabiting couples (M age = 37 years for women and 39 years for men). The sample included a large representation of couples exposed to economic adversity. Further, 68% were European American and the remainder were primarily African American. At Time 1 (T1), couples reported on their conflict and their mental health (depression, anxiety). At T1 and Time 2, sleep was examined objectively with actigraphs for 7 nights. Three sleep parameters were derived: efficiency, minutes, and latency. Actor-partner interdependence models indicated that husbands' use of constructive conflict forecasted increases in their own sleep efficiency as well as their own and their wives' sleep duration over time. Actor and partner effects emerged, and husbands' and wives' use of destructive conflict strategies generally predicted worsening of some sleep parameters over time. Several mediation and intervening effects were observed for destructive conflict strategies. Some of these relations reveal that destructive conflict is associated with internalizing symptoms, which in turn are associated with some sleep parameters longitudinally. These findings build on a small, albeit growing, literature linking sleep with marital functioning, and illustrate that consideration of relationship processes including constructive conflict holds promise for gaining a better understanding of factors that influence the sleep of men and women. (c) 2015 APA, all rights reserved).

  4. Long time stability of small-amplitude Breathers in a mixed FPU-KG model

    NASA Astrophysics Data System (ADS)

    Paleari, Simone; Penati, Tiziano

    2016-12-01

    In the limit of small couplings in the nearest neighbor interaction, and small total energy, we apply the resonant normal form result of a previous paper of ours to a finite but arbitrarily large mixed Fermi-Pasta-Ulam Klein-Gordon chain, i.e., with both linear and nonlinear terms in both the on-site and interaction potential, with periodic boundary conditions. An existence and orbital stability result for Breathers of such a normal form, which turns out to be a generalized discrete nonlinear Schrödinger model with exponentially decaying all neighbor interactions, is first proved. Exploiting such a result as an intermediate step, a long time stability theorem for the true Breathers of the KG and FPU-KG models, in the anti-continuous limit, is proven.

  5. Real-time decay of a highly excited charge carrier in the one-dimensional Holstein model

    NASA Astrophysics Data System (ADS)

    Dorfner, F.; Vidmar, L.; Brockt, C.; Jeckelmann, E.; Heidrich-Meisner, F.

    2015-03-01

    We study the real-time dynamics of a highly excited charge carrier coupled to quantum phonons via a Holstein-type electron-phonon coupling. This is a prototypical example for the nonequilibrium dynamics in an interacting many-body system where excess energy is transferred from electronic to phononic degrees of freedom. We use diagonalization in a limited functional space (LFS) to study the nonequilibrium dynamics on a finite one-dimensional chain. This method agrees with exact diagonalization and the time-evolving block-decimation method, in both the relaxation regime and the long-time stationary state, and among these three methods it is the most efficient and versatile one for this problem. We perform a comprehensive analysis of the time evolution by calculating the electron, phonon and electron-phonon coupling energies, and the electronic momentum distribution function. The numerical results are compared to analytical solutions for short times, for a small hopping amplitude and for a weak electron-phonon coupling. In the latter case, the relaxation dynamics obtained from the Boltzmann equation agrees very well with the LFS data. We also study the time dependence of the eigenstates of the single-site reduced density matrix, which defines the so-called optimal phonon modes. We discuss their structure in nonequilibrium and the distribution of their weights. Our analysis shows that the structure of optimal phonon modes contains very useful information for the interpretation of the numerical data.

  6. The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.

    2018-02-01

    The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.

  7. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    PubMed

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  8. Gauge theories with time dependent couplings and their cosmological duals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43; Das, Sumit R.

    2009-02-15

    We consider the N=4 super Yang-Mills theory in flat 3+1-dimensional space-time with a time dependent coupling constant which vanishes at t=0, like g{sub YM}{sup 2}=t{sup p}. In an analogous quantum mechanics toy model we find that the response is singular. The energy diverges at t=0, for a generic state. In addition, if p>1 the phase of the wave function has a wildly oscillating behavior, which does not allow it to be continued past t=0. A similar effect would make the gauge theory singular as well, though nontrivial effects of renormalization could tame this singularity and allow a smooth continuation beyondmore » t=0. The gravity dual in some cases is known to be a time dependent cosmology which exhibits a spacelike singularity at t=0. Our results, if applicable in the gauge theory for the case of the vanishing coupling, imply that the singularity is a genuine sickness and does not admit a meaningful continuation. When the coupling remains nonzero and becomes small at t=0, the curvature in the bulk becomes of order string scale. The gauge theory now admits a time evolution beyond this point. In this case, a finite amount of energy is produced which possibly thermalizes and leads to a black hole in the bulk.« less

  9. Percutaneous puncture of renal calyxes guided by a novel device coupled with ultrasound

    PubMed Central

    Chan, Chen Jen; Srougi, Victor; Tanno, Fabio Yoshiaki; Jordão, Ricardo Duarte; Srougi, Miguel

    2015-01-01

    ABSTRACT Purpose: To evaluate the efficiency of a novel device coupled with ultrassound for renal percutaneous puncture. Materials and Methods: After establishing hydronephrosis, ten pigs had three calyxes of each kidney punctured by the same urology resident, with and without the new device (“Punctiometer”). Time for procedure completion, number of attempts to reach the calyx, puncture precision and puncture complications were recorded in both groups and compared. Results: Puncture success on the first attempt was achieved in 25 punctures (83%) with the Punctiometer and in 13 punctures (43%) without the Punctiometer (p=0.011). The mean time required to perform three punctures in each kidney was 14.5 minutes with the Punctiometer and 22.4 minutes without the Punctiometer (p=0.025). The only complications noted were renal hematomas. In the Punctiometer group, all kidneys had small hematomas. In the no Punctiometer group 80% had small hematomas, 10% had a medium hematoma and 10% had a big hematoma. There was no difference in complications between both groups. Conclusions: The Punctiometer is an effective device to increase the likelihood of an accurate renal calyx puncture during PCNL, with a shorter time required to perform the procedure. PMID:26689521

  10. Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks

    NASA Astrophysics Data System (ADS)

    Rakshit, Sarbendu; Bera, Bidesh K.; Ghosh, Dibakar; Sinha, Sudeshna

    2018-05-01

    We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f . We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.

  11. Coupled photonic crystal micro-cavities with ultra-low threshold power for stimulated Raman scattering.

    PubMed

    Liu, Qiang; Ouyang, Zhengbiao; Albin, Sacharia

    2011-02-28

    We propose coupled cavities to realize a strong enhancement of the Raman scattering. Five sub cavities are embedded in the photonic crystals. Simulations through finite-difference time-domain (FDTD) method demonstrate that one cavity, which is used to propagate the pump beam at the optical-communication wavelength, has a Q factor as high as 
1.254×10⁸ and modal volume as small as 0.03 μm3 (0.3192(λ/n)3). These parameters result in ultra-small threshold lasing power~17.7 nW and 2.58 nW for Stokes and anti-Stokes respectively. The cavities are designed to support the required Stokes and anti-Stokes modal spacing in silicon. The proposed structure has the potential for sensor devices, especially for biological and medical diagnoses.

  12. A massively parallel computational approach to coupled thermoelastic/porous gas flow problems

    NASA Technical Reports Server (NTRS)

    Shia, David; Mcmanus, Hugh L.

    1995-01-01

    A new computational scheme for coupled thermoelastic/porous gas flow problems is presented. Heat transfer, gas flow, and dynamic thermoelastic governing equations are expressed in fully explicit form, and solved on a massively parallel computer. The transpiration cooling problem is used as an example problem. The numerical solutions have been verified by comparison to available analytical solutions. Transient temperature, pressure, and stress distributions have been obtained. Small spatial oscillations in pressure and stress have been observed, which would be impractical to predict with previously available schemes. Comparisons between serial and massively parallel versions of the scheme have also been made. The results indicate that for small scale problems the serial and parallel versions use practically the same amount of CPU time. However, as the problem size increases the parallel version becomes more efficient than the serial version.

  13. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.

    PubMed

    Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R

    2007-08-01

    We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic "worst case analysis". These couplings are among the smallest currently measured, and their determination in both isotropic and anisotropic media demands the highest measurement precision. The new approach yielded excellent quantitative agreement with values determined independently by the conventional 3D quantitative J NMR method (in cases where sample stability in oriented media permitted these measurements) but with a factor of 2-5 in time savings. The statistical measure of reliability, measuring the quality of each RDC value, offers valuable adjunct information even in cases where modest time savings may be realized.

  14. Temperature dependence of long coherence times of oxide charge qubits.

    PubMed

    Dey, A; Yarlagadda, S

    2018-02-22

    The ability to maintain coherence and control in a qubit is a major requirement for quantum computation. We show theoretically that long coherence times can be achieved at easily accessible temperatures (such as boiling point of liquid helium) in small (i.e., ~10 nanometers) charge qubits of oxide double quantum dots when only optical phonons are the source of decoherence. In the regime of strong electron-phonon coupling and in the non-adiabatic region, we employ a duality transformation to make the problem tractable and analyze the dynamics through a non-Markovian quantum master equation. We find that the system decoheres after a long time, despite the fact that no energy is exchanged with the bath. Detuning the dots to a fraction of the optical phonon energy, increasing the electron-phonon coupling, reducing the adiabaticity, or decreasing the temperature enhances the coherence time.

  15. Observation of inhibited electron-ion coupling in strongly heated graphite

    PubMed Central

    White, T. G.; Vorberger, J.; Brown, C. R. D.; Crowley, B. J. B.; Davis, P.; Glenzer, S. H.; Harris, J. W. O.; Hochhaus, D. C.; Le Pape, S.; Ma, T.; Murphy, C. D.; Neumayer, P.; Pattison, L. K.; Richardson, S.; Gericke, D. O.; Gregori, G.

    2012-01-01

    Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter. PMID:23189238

  16. Study on spin and optical polarization in a coupled InGaN/GaN quantum well and quantum dots structure.

    PubMed

    Yu, Jiadong; Wang, Lai; Di Yang; Zheng, Jiyuan; Xing, Yuchen; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-10-19

    The spin and optical polarization based on a coupled InGaN/GaN quantum well (QW) and quantum dots (QDs) structure is investigated. In this structure, spin-electrons can be temporarily stored in QW, and spin injection from the QW into QDs via spin-conserved tunneling is enabled. Spin relaxation can be suppressed owing to the small energy difference between the initial state in the QW and the final states in the QDs. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements are carried out on optical spin-injection and -detection. Owing to the coupled structure, spin-conserved tunneling mechanism plays a significant role in preventing spin relaxation process. As a result, a higher circular polarization degree (CPD) (~49.1%) is achieved compared with conventional single layer of QDs structure. Moreover, spin relaxation time is also extended to about 2.43 ns due to the weaker state-filling effect. This coupled structure is believed an appropriate candidate for realization of spin-polarized light source.

  17. Exploration of dynamical regimes of irradiated small protonated water clusters

    NASA Astrophysics Data System (ADS)

    Ndongmouo Taffoti, U. F.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.; Wang, Z. P.

    2010-05-01

    We explore from a theoretical perspective the dynamical response of small water clusters, (H2O)nH3O+ with n=1,2,3, to a short laser pulse for various frequencies, from infrared (IR) to ultra-violet (UV) and intensities (from 6×10^{13} W/cm^2 to 5×10^{14} W/cm^2). To that end, we use time-dependent local-density approximation for the electrons, coupled to molecular dynamics for the atomic cores (TDLDA-MD). The local-density approximation is augmented by a self-interaction correction (SIC) to allow for a correct description of electron emission. For IR frequencies, we see a direct coupling of the laser field to the very light H+ ions in the clusters. Resonant coupling (in the UV) and/or higher intensities lead to fast ionization with subsequent Coulomb explosion. The stability against Coulomb pressure increases with system size. Excitation to lower ionization stages induced strong ionic vibrations. The latter maintain a rather harmonic pattern in spite of the sizeable amplitudes (often 10% of the bond length).

  18. Relocation of Wyoming mine production blasts using calibration explosions

    USGS Publications Warehouse

    Finn, Carol A.; Kraft, Gordon D.; Sibol, Matthew S.; Jones, Ronald L.; Pulaski, Mark E.

    2001-01-01

    Given a set of well-recorded calibration events, it appears that the JHD methodology is a viable technique for improving locational accuracy of future small events where the location depends on arrival times from predominantly local and/or regional stations. In this specific case, the International Association of Seismology and the Physics of the Earth’s Interior (IASPEI) travel-time tables, coupled with JHDderived travel-time corrections, may obviate the need for an accurately known regional velocity structure in the Powder River Basin region.

  19. Temperature Control with Two Parallel Small Loop Heat Pipes for GLM Program

    NASA Technical Reports Server (NTRS)

    Khrustalev, Dmitry; Stouffer, Chuck; Ku, Jentung; Hamilton, Jon; Anderson, Mark

    2014-01-01

    The concept of temperature control of an electronic component using a single Loop Heat Pipe (LHP) is well established for Aerospace applications. Using two LHPs is often desirable for redundancy/reliability reasons or for increasing the overall heat source-sink thermal conductance. This effort elaborates on temperature controlling operation of a thermal system that includes two small ammonia LHPs thermally coupled together at the evaporator end as well as at the condenser end and operating "in parallel". A transient model of the LHP system was developed on the Thermal Desktop (TradeMark) platform to understand some fundamental details of such parallel operation of the two LHPs. Extensive thermal-vacuum testing was conducted with two thermally coupled LHPs operating simultaneously as well as with only one LHP operating at a time. This paper outlines the temperature control procedures for two LHPs operating simultaneously with widely varying sink temperatures. The test data obtained during the thermal-vacuum testing, with both LHPs running simultaneously in comparison with only one LHP operating at a time, are presented with detailed explanations.

  20. Small-angle solution scattering using the mixed-mode pixel array detector.

    PubMed

    Koerner, Lucas J; Gillilan, Richard E; Green, Katherine S; Wang, Suntao; Gruner, Sol M

    2011-03-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 10(7) 10 keV X-rays, a maximum flux rate of 10(8) X-rays pixel(-1) s(-1), and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.

  1. Small-angle solution scattering using the mixed-mode pixel array detector

    PubMed Central

    Koerner, Lucas J.; Gillilan, Richard E.; Green, Katherine S.; Wang, Suntao; Gruner, Sol M.

    2011-01-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 107 10 keV X-rays, a maximum flux rate of 108 X-rays pixel−1 s−1, and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements. PMID:21335900

  2. Time evolution of interhemispheric coupling in a model of focal neocortical epilepsy in mice

    NASA Astrophysics Data System (ADS)

    Vallone, F.; Vannini, E.; Cintio, A.; Caleo, M.; Di Garbo, A.

    2016-09-01

    Epilepsy is characterized by substantial network rearrangements leading to spontaneous seizures and little is known on how an epileptogenic focus impacts on neural activity in the contralateral hemisphere. Here, we used a model of unilateral epilepsy induced by injection of the synaptic blocker tetanus neurotoxin (TeNT) in the mouse primary visual cortex (V1). Local field potential (LFP) signals were simultaneously recorded from both hemispheres of each mouse in acute phase (peak of toxin action) and chronic condition (completion of TeNT effects). To characterize the neural electrical activities the corresponding LFP signals were analyzed with several methods of time series analysis. For the epileptic mice, the spectral analysis showed that TeNT determines a power redistribution among the different neurophysiological bands in both acute and chronic phases. Using linear and nonlinear interdependence measures in both time and frequency domains, it was found in the acute phase that TeNT injection promotes a reduction of the interhemispheric coupling for high frequencies (12 -30 Hz) and small time lag (<20 ms), whereas an increase of the coupling is present for low frequencies (0.5 -4 Hz) and long time lag (>40 ms). On the other hand, the chronic period is characterized by a partial or complete recovery of the interhemispheric interdependence level. Granger causality test and symbolic transfer entropy indicate a greater driving influence of the TeNT-injected side on activity in the contralateral hemisphere in the chronic phase. Lastly, based on experimental observations, we built a computational model of LFPs to investigate the role of the ipsilateral inhibition and exicitatory interhemispheric connections in the dampening of the interhemispheric coupling. The time evolution of the interhemispheric coupling in such a relevant model of epilepsy has been addressed here.

  3. Time evolution of interhemispheric coupling in a model of focal neocortical epilepsy in mice.

    PubMed

    Vallone, F; Vannini, E; Cintio, A; Caleo, M; Di Garbo, A

    2016-09-01

    Epilepsy is characterized by substantial network rearrangements leading to spontaneous seizures and little is known on how an epileptogenic focus impacts on neural activity in the contralateral hemisphere. Here, we used a model of unilateral epilepsy induced by injection of the synaptic blocker tetanus neurotoxin (TeNT) in the mouse primary visual cortex (V1). Local field potential (LFP) signals were simultaneously recorded from both hemispheres of each mouse in acute phase (peak of toxin action) and chronic condition (completion of TeNT effects). To characterize the neural electrical activities the corresponding LFP signals were analyzed with several methods of time series analysis. For the epileptic mice, the spectral analysis showed that TeNT determines a power redistribution among the different neurophysiological bands in both acute and chronic phases. Using linear and nonlinear interdependence measures in both time and frequency domains, it was found in the acute phase that TeNT injection promotes a reduction of the interhemispheric coupling for high frequencies (12-30 Hz) and small time lag (<20 ms), whereas an increase of the coupling is present for low frequencies (0.5-4 Hz) and long time lag (>40 ms). On the other hand, the chronic period is characterized by a partial or complete recovery of the interhemispheric interdependence level. Granger causality test and symbolic transfer entropy indicate a greater driving influence of the TeNT-injected side on activity in the contralateral hemisphere in the chronic phase. Lastly, based on experimental observations, we built a computational model of LFPs to investigate the role of the ipsilateral inhibition and exicitatory interhemispheric connections in the dampening of the interhemispheric coupling. The time evolution of the interhemispheric coupling in such a relevant model of epilepsy has been addressed here.

  4. Band selective small flip angle COSY: a simple experiment for the analyses of 1H NMR spectra of small chiral molecules.

    PubMed

    Prabhu, Uday Ramesh; Suryaprakash, N

    2008-12-01

    The NMR spectroscopic discrimination of enantiomers in the chiral liquid crystalline solvent is more often carried out using (2)H detection in its natural abundance. The employment of (1)H detection for such a purpose is severely hampered due to significant loss of resolution in addition to indistinguishable overlap of the spectra from the two enantiomers. This study demonstrates that the band selected small flip angle homonuclear correlation experiment is a simple and robust technique that provides unambiguous discrimination, very high spectral resolution, reduced multiplicity of transitions, relative signs of the couplings and enormous saving of instrument time.

  5. A free boundary problem for steady small plaques in the artery and their stability

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Hao, Wenrui; Hu, Bei

    2015-08-01

    Atherosclerosis is a leading cause of death in the United States and worldwide; it originates from a plaque which builds up in the artery. In this paper, we consider a simplified model of plaque growth involving LDL and HDL cholesterols, macrophages and foam cells, which satisfy a coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We prove that there exist small radially symmetric stationary plaques and establish a sharp condition that ensures their stability. We also determine necessary and sufficient conditions under which a small initial plaque will shrink and disappear, or persist for all times.

  6. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  7. Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system.

    PubMed

    Yamamoto, Seiichi

    2013-07-01

    The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems.

  8. What controls interplate coupling? Implications from abrupt change in coupling on the Pacific plate across a border between two overlying plates in the southernmost extent of the NE Japan subduction zone

    NASA Astrophysics Data System (ADS)

    Uchida, N.; Hasegawa, A.; Nakajima, J.; Matsuzawa, T.

    2008-12-01

    In the southernmost extent of the NE Japan subduction zone, the Pacific plate (PA) is subducting beneath two different tectonic plates - the North American plate (NA) to the north and the Philippine Sea plate (PH) to the south. The change of overlying plate for the PA provides a good opportunity to test the influence of the overlying plate on interplate coupling. In the present study, detailed location of the border between the PH and NA overlying the PA is estimated from slip vectors of the interplate events. Then we compared the interplate coupling coefficients between the two regions overlain by the two plates based on the small repeating earthquake data. Analysis of slip vectors of interplate events shows that the slip vectors abruptly change their slip angles off Kanto. This suggests that the location of the border between the two overlying plates is extending northwestward from the triple junction. The distribution of interplate coupling coefficient estimated from the cumulative slip of small repeating earthquakes reveals a distinct change from south (ca. 0.3) to north (ca. 0.7) across this border. This border corresponds to the southern limit of M > 7 earthquakes and intense seismicity along the Japan Trench, again indicating the stronger coupling to the north. We also investigated the structure of the overlying plates from seismic tomography using a large number of travel-time data obtained from the nationwide seismograph network. The results reveal a distinct low-velocity zone just above the PA in the region overlain by the PH, whereas there is no low-velocity zone in the region overlain by the NA. These observations imply that the overlying plate controls large-scale coupling at the plate interface. Acknowledgement: We used waveforms from the seismic networks of University of Tokyo in addition to the data from Tohoku University. Arrival time data for seismic tomography and earthquake relocation are provided by the Japan Metrological Agency.

  9. Parents’ time with a partner in a cross-national context: A comparison of the United States, Spain, and France

    PubMed Central

    Roman, Joan Garcia; Flood, Sarah M.; Genadek, Katie R.

    2017-01-01

    BACKGROUND Time shared with a partner is an indicator of marital well-being and couples want to spend time together. However, time with a partner depends on work and family arrangements as well as the policies, norms, and values that prevail in society. Contrary to time spent with children, couples’ shared time in cross-national context is relatively unstudied. Previous studies from specific countries show that dual-earner couples spend less time together and that parents spend less time alone together. OBJECTIVE The aim of our study is to investigate partnered parents’ shared time across countries to understand how social conditions, cultural norms, and policy contexts are related to the amount and nature of couples’ shared time. Specifically, we compare time with a partner in the US, France, and Spain. METHODS We use data from national time use surveys conducted in the US, France, and Spain. We leverage information about with whom activities are done to examine three types of time shared with a partner for parents with children under age 10: total time with a partner indicates the minutes per day spent in the presence of a partner; exclusive time corresponds to the minutes per day spent alone with a partner when no one else is present; and family time indicates the minutes per day spent with a partner and a child at the same time. RESULTS Our results show that American couples spend the least time together, and Spanish couples spend the most time together. Parents in France spend the most time alone together. The most striking difference across countries is in time with a partner and children, which is much higher among Spanish families. CONCLUSION Paid work constraints explain a small part of the differences in couples’ shared time that we observe between countries. Differences in couples’ shared time across countries seem to be related to social norms surrounding family and general time use. PMID:29416440

  10. Does Spike-Timing-Dependent Synaptic Plasticity Couple or Decouple Neurons Firing in Synchrony?

    PubMed Central

    Knoblauch, Andreas; Hauser, Florian; Gewaltig, Marc-Oliver; Körner, Edgar; Palm, Günther

    2012-01-01

    Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realistic STDP models that provide a more complete characterization of conditions when STDP leads to either coupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistently couples synchronized neurons if key model parameters are matched to physiological data: First, synaptic potentiation must be significantly stronger than synaptic depression for small (positive or negative) time lags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficiently imprecise, for example, within a time window of 5–10 ms instead of 1 ms. Third, axonal propagation delays should not be much larger than dendritic delays. Under these assumptions synchronized neurons will be strongly coupled leading to a dominance of bidirectional synaptic connections even for simple STDP models and low mean firing rates at the level of spontaneous activity. PMID:22936909

  11. Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?

    PubMed Central

    Li, Dong; Zhou, Changsong

    2011-01-01

    Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576

  12. Heterogeneity and nearest-neighbor coupling can explain small-worldness and wave properties in pancreatic islets

    NASA Astrophysics Data System (ADS)

    Cappon, Giacomo; Pedersen, Morten Gram

    2016-05-01

    Many multicellular systems consist of coupled cells that work as a syncytium. The pancreatic islet of Langerhans is a well-studied example of such a microorgan. The islets are responsible for secretion of glucose-regulating hormones, mainly glucagon and insulin, which are released in distinct pulses. In order to observe pulsatile insulin secretion from the β-cells within the islets, the cellular responses must be synchronized. It is now well established that gap junctions provide the electrical nearest-neighbor coupling that allows excitation waves to spread across islets to synchronize the β-cell population. Surprisingly, functional coupling analysis of calcium responses in β-cells shows small-world properties, i.e., a high degree of local coupling with a few long-range "short-cut" connections that reduce the average path-length greatly. Here, we investigate how such long-range functional coupling can appear as a result of heterogeneity, nearest-neighbor coupling, and wave propagation. Heterogeneity is also able to explain a set of experimentally observed synchronization and wave properties without introducing all-or-none cell coupling and percolation theory. Our theoretical results highlight how local biological coupling can give rise to functional small-world properties via heterogeneity and wave propagation.

  13. Out-of-time-order correlators in finite open systems

    NASA Astrophysics Data System (ADS)

    Syzranov, S. V.; Gorshkov, A. V.; Galitski, V.

    2018-04-01

    We study out-of-time-order correlators (OTOCs) of the form for a quantum system weakly coupled to a dissipative environment. Such an open system may serve as a model of, e.g., a small region in a disordered interacting medium coupled to the rest of this medium considered as an environment. We demonstrate that for a system with discrete energy levels the OTOC saturates exponentially ∝∑aie-t /τi+const to a constant value at t →∞ , in contrast with quantum-chaotic systems which exhibit exponential growth of OTOCs. Focusing on the case of a two-level system, we calculate microscopically the decay times τi and the value of the saturation constant. Because some OTOCs are immune to dephasing processes and some are not, such correlators may decay on two sets of parametrically different time scales related to inelastic transitions between the system levels and to pure dephasing processes, respectively. In the case of a classical environment, the evolution of the OTOC can be mapped onto the evolution of the density matrix of two systems coupled to the same dissipative environment.

  14. Bioorthogonal Chemical Imaging for Biomedicine

    NASA Astrophysics Data System (ADS)

    Min, Wei

    2017-06-01

    Innovations in light microscopy have tremendously revolutionized the way researchers study biological systems with subcellular resolution. Although fluorescence microscopy is currently the method of choice for cellular imaging, it faces fundamental limitations for studying the vast number of small biomolecules. This is because relatively bulky fluorescent labels could introduce considerable perturbation to or even completely alter the native functions of vital small biomolecules. Hence, despite their immense functional importance, these small biomolecules remain largely undetectable by fluorescence microscopy. To address this challenge, we have developed a bioorthogonal chemical imaging platform. By coupling stimulated Raman scattering (SRS) microscopy, an emerging nonlinear Raman microscopy technique, with tiny and Raman-active vibrational probes (e.g., alkynes, nitriles and stable isotopes including 2H and 13C), bioorthogonal chemical imaging exhibits superb sensitivity, specificity, multiplicity and biocompatibility for imaging small biomolecules in live systems including tissues and organisms. Exciting biomedical applications such as imaging fatty acid metabolism related to lipotoxicity, glucose uptake and metabolism, drug trafficking, protein synthesis, DNA replication, protein degradation, RNA synthesis and tumor metabolism will be presented. This bioorthogonal chemical imaging platform is compatible with live-cell biology, thus allowing real-time imaging of small-molecule dynamics. Moreover, further chemical and spectroscopic strategies allow for multicolor bioorthogonal chemical imaging, a valuable technique in the era of "omics". We envision that the coupling of SRS microscopy with vibrational probes would do for small biomolecules what fluorescence microscopy of fluorophores has done for larger molecular species, bringing small molecules under the illumination of modern light microscopy.

  15. Mass Protection via Translational Invariance

    NASA Astrophysics Data System (ADS)

    Alonso, José Luis; Cortés, José Luis; Boucaud, Philippe; Carmona, José Manuel; Polonyi, Janos; Sijs, Arjan Van Der

    We propose a way of protecting a Dirac fermion interacting with a scalar field from acquiring a mass from the vacuum. It is obtained through an implementation of translational symmetry when the theory is formulated with a momentum cutoff, which forbids the usual Yukawa term. We consider that this mechanism can help to understand the smallness of neutrino masses without a tuning of the Yukawa coupling. The prohibition of the Yukawa term for the neutrino forbids at the same time a gauge coupling between the right-handed electron and neutrino. We prove that this mechanism can be implemented on the lattice.

  16. A new mechanism of mass protection for fermions

    NASA Astrophysics Data System (ADS)

    Alonso, J. L.; Boucaud, Ph.; Carmona, J. M.; Cortés, J. L.; Polonyi, J.; van der Sijs, A. J.

    We present a way of protecting a Dirac fermion interacting with a scalar (Higgs) field from getting a mass from the vacuum. It is obtained through an implementation of translational symmetry when the theory is formulated with a momentum cutoff, which forbids the usual Yukawa term. We consider that this mechanism can help to understand the smallness of neutrino masses without a tuning of the Yukawa coupling. The prohibition of the Yukawa term for the neutrino forbids at the same time a gauge coupling between the right-handed electron and neutrino. We prove that this mechanism can be implemented on the lattice.

  17. Networked dynamical systems with linear coupling: synchronisation patterns, coherence and other behaviours.

    PubMed

    Judd, Kevin

    2013-12-01

    Many physical and biochemical systems are well modelled as a network of identical non-linear dynamical elements with linear coupling between them. An important question is how network structure affects chaotic dynamics, for example, by patterns of synchronisation and coherence. It is shown that small networks can be characterised precisely into patterns of exact synchronisation and large networks characterised by partial synchronisation at the local and global scale. Exact synchronisation modes are explained using tools of symmetry groups and invariance, and partial synchronisation is explained by finite-time shadowing of exact synchronisation modes.

  18. Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light.

    PubMed

    Didier, Nicolas; Kamal, Archana; Oliver, William D; Blais, Alexandre; Clerk, Aashish A

    2015-08-28

    We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics.

  19. Detection of high energy muons with sub-20 ps timing resolution using L(Y)SO crystals and SiPM readout

    NASA Astrophysics Data System (ADS)

    Benaglia, A.; Gundacker, S.; Lecoq, P.; Lucchini, M. T.; Para, A.; Pauwels, K.; Auffray, E.

    2016-09-01

    Precise timing capability will be a key aspect of particle detectors at future high energy colliders, as the time information can help in the reconstruction of physics events at the high collision rate expected there. Other than being used in detectors for PET, fast scintillating crystals coupled to compact Silicon Photomultipliers (SiPMs) constitute a versatile system that can be exploited to realize an ad-hoc timing device to be hosted in a larger high energy physics detector. In this paper, we present the timing performance of LYSO:Ce and LSO:Ce codoped 0.4% Ca crystals coupled to SiPMs, as measured with 150 GeV muons at the CERN SPS H2 extraction line. Small crystals, with lengths ranging from 5 mm up to 30 mm and transverse size of 2 × 2mm2 or 3 × 3mm2 , were exposed to a 150 GeV muon beam. SiPMs from two different companies (Hamamatsu and FBK) were used to detect the light produced in the crystals. The best coincidence time resolution value of (14.5 ± 0.5) ps , corresponding to a single-detector time resolution of about 10 ps, is demonstrated for 5 mm long LSO:Ce,Ca crystals coupled to FBK SiPMs, when time walk corrections are applied.

  20. Coupled π π , K K ¯ scattering in P -wave and the ρ resonance from lattice QCD

    DOE PAGES

    Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; ...

    2015-11-02

    In this study, we determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering inmore » $P$-wave, by calculating correlation functions using lattice QCD with light quark masses such that $$m_\\pi = 236$$ MeV in a cubic volume of $$\\sim (4 \\,\\mathrm{fm})^3$$. Variational analyses of large matrices of correlation functions computed using operator constructions resembling $$\\pi\\pi$$, $$K\\overline{K}$$ and $$q\\bar{q}$$, in several moving frames and several lattice irreducible representations, leads to discrete energy spectra from which scattering amplitudes are extracted. In the elastic $$\\pi\\pi$$ scattering region we obtain a detailed energy-dependence for the phase-shift, corresponding to a $$\\rho$$ resonance, and we extend the analysis into the coupled-channel $$K\\overline{K}$$ region for the first time, finding a small coupling between the channels.« less

  1. Baryogenesis in nonminimally coupled f (R ) theories

    NASA Astrophysics Data System (ADS)

    Ramos, M. P. L. P.; Páramos, J.

    2017-11-01

    We generalize the mechanism for gravitational baryogensis in the context of f (R ) theories of gravity, including a nonminimal coupling between curvature and matter. In these models, the baryon asymmetry is generated through an effective coupling between the Ricci scalar curvature and the net baryon current that dynamically breaks Charge conjugation, parity and time reversal (C P T ) invariance. We study the combinations of characteristic mass scales and exponents for both nontrivial functions present in the modified action functional and establish the allowed region for these parameters: we find that very small deviations from general relativity are consistent with the observed baryon asymmetry and lead to temperatures compatible with the subsequent formation of the primordial abundances of light elements. In particular, we show the viability of a power-law nonminimal coupling function f2(R )˜Rn with 0

  2. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers.

    PubMed

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  3. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers

    NASA Astrophysics Data System (ADS)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  4. Modal resonant dynamics of cables with a flexible support: A modulated diffraction problem

    NASA Astrophysics Data System (ADS)

    Guo, Tieding; Kang, Houjun; Wang, Lianhua; Liu, Qijian; Zhao, Yueyu

    2018-06-01

    Modal resonant dynamics of cables with a flexible support is defined as a modulated (wave) diffraction problem, and investigated by asymptotic expansions of the cable-support coupled system. The support-cable mass ratio, which is usually very large, turns out to be the key parameter for characterizing cable-support dynamic interactions. By treating the mass ratio's inverse as a small perturbation parameter and scaling the cable tension properly, both cable's modal resonant dynamics and the flexible support dynamics are asymptotically reduced by using multiple scale expansions, leading finally to a reduced cable-support coupled model (i.e., on a slow time scale). After numerical validations of the reduced coupled model, cable-support coupled responses and the flexible support induced coupling effects on the cable, are both fully investigated, based upon the reduced model. More explicitly, the dynamic effects on the cable's nonlinear frequency and force responses, caused by the support-cable mass ratio, the resonant detuning parameter and the support damping, are carefully evaluated.

  5. A New Family of Compact High Order Coupled Time-Space Unconditionally Stable Vertical Advection Schemes

    NASA Astrophysics Data System (ADS)

    Lemarié, F.; Debreu, L.

    2016-02-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost. To our knowledge no unconditionally stable scheme with such high order accuracy in time and space have been presented so far in the literature. Furthermore, we show how those schemes can be made monotonic without compromising their stability properties.

  6. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    NASA Technical Reports Server (NTRS)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  7. Analytical models for coupling reliability in identical two-magnet systems during slow reversals

    NASA Astrophysics Data System (ADS)

    Kani, Nickvash; Naeemi, Azad

    2017-12-01

    This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.

  8. Spontaneous repulsion in the A +B →0 reaction on coupled networks

    NASA Astrophysics Data System (ADS)

    Lazaridis, Filippos; Gross, Bnaya; Maragakis, Michael; Argyrakis, Panos; Bonamassa, Ivan; Havlin, Shlomo; Cohen, Reuven

    2018-04-01

    We study the transient dynamics of an A +B →0 process on a pair of randomly coupled networks, where reactants are initially separated. We find that, for sufficiently small fractions q of cross couplings, the concentration of A (or B ) particles decays linearly in a first stage and crosses over to a second linear decrease at a mixing time tx. By numerical and analytical arguments, we show that for symmetric and homogeneous structures tx∝(/q)log(/q) where is the mean degree of both networks. Being this behavior is in marked contrast with a purely diffusive process, where the mixing time would go simply like /q , we identify the logarithmic slowing down in tx to be the result of a spontaneous mechanism of repulsion between the reactants A and B due to the interactions taking place at the networks' interface. We show numerically how this spontaneous repulsion effect depends on the topology of the underlying networks.

  9. Delay decomposition approach to [Formula: see text] filtering analysis of genetic oscillator networks with time-varying delays.

    PubMed

    Revathi, V M; Balasubramaniam, P

    2016-04-01

    In this paper, the [Formula: see text] filtering problem is treated for N coupled genetic oscillator networks with time-varying delays and extrinsic molecular noises. Each individual genetic oscillator is a complex dynamical network that represents the genetic oscillations in terms of complicated biological functions with inner or outer couplings denote the biochemical interactions of mRNAs, proteins and other small molecules. Throughout the paper, first, by constructing appropriate delay decomposition dependent Lyapunov-Krasovskii functional combined with reciprocal convex approach, improved delay-dependent sufficient conditions are obtained to ensure the asymptotic stability of the filtering error system with a prescribed [Formula: see text] performance. Second, based on the above analysis, the existence of the designed [Formula: see text] filters are established in terms of linear matrix inequalities with Kronecker product. Finally, numerical examples including a coupled Goodwin oscillator model are inferred to illustrate the effectiveness and less conservatism of the proposed techniques.

  10. A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa

    2017-12-01

    In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.

  11. A Three-Wave Model of the Stratosphere with Coupled Dynamics, Radiation and Photochemistry. Appendix M

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Zhou, Shuntai; Ko, Malcolm K. W.; Sze, Nien-Dak; Salstein, David; Cady-Pereira, Karen

    1997-01-01

    A zonal mean chemistry transport model (2-D CTM) coupled with a semi-spectral dynamical model is used to simulate the distributions of trace gases in the present day atmosphere. The zonal-mean and eddy equations for the velocity and the geopotential height are solved in the semi-spectral dynamical model. The residual mean circulation is derived from these dynamical variables and used to advect the chemical species in the 2- D CTM. Based on a linearized wave transport equation, the eddy diffusion coefficients for chemical tracers are expressed in terms of the amplitude, frequency and growth rate of dynamical waves; local chemical loss rates; and a time constant parameterizing small scale mixing. The contributions to eddy flux are from the time varying wave amplitude (transient eddy), chemical reactions (chemical eddy) and small scale mixing. In spite of the high truncation in the dynamical module (only three longest waves are resolved), the model has simulated many observed characteristics of stratospheric dynamics and distribution of chemical species including ozone. Compared with the values commonly used in 2-D CTMs, the eddy diffusion coefficients for chemical species calculated in this model are smaller, especially in the subtropics. It is also found that the chemical eddy diffusion has only a small effects in determining the distribution of most slow species, including ozone in the stratosphere.

  12. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model

    NASA Astrophysics Data System (ADS)

    Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.

    2017-08-01

    The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.

  13. A practical strategy for the accurate measurement of residual dipolar couplings in strongly aligned small molecules

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Cohen, Ryan D.; Martin, Gary E.; Williamson, R. Thomas

    2018-06-01

    Accurate measurement of residual dipolar couplings (RDCs) requires an appropriate degree of alignment in order to optimize data quality. An overly weak alignment yields very small anisotropic data that are susceptible to measurement errors, whereas an overly strong alignment introduces extensive anisotropic effects that severely degrade spectral quality. The ideal alignment amplitude also depends on the specific pulse sequence used for the coupling measurement. In this work, we introduce a practical strategy for the accurate measurement of one-bond 13C-1H RDCs up to a range of ca. -300 to +300 Hz, corresponding to an alignment that is an order of magnitude stronger than typically employed for small molecule structural elucidation. This strong alignment was generated in the mesophase of the commercially available poly-γ-(benzyl-L-glutamate) polymer. The total coupling was measured by the simple and well-studied heteronuclear two-dimensional J-resolved experiment, which performs well in the presence of strong anisotropic effects. In order to unequivocally determine the sign of the total coupling and resolve ambiguities in assigning total couplings in the CH2 group, coupling measurements were conducted at an isotropic condition plus two anisotropic conditions of different alignment amplitudes. Most RDCs could be readily extracted from these measurements whereas more complicated spectral effects resulting from strong homonuclear coupling could be interpreted either theoretically or by simulation. Importantly, measurement of these very large RDCs actually offers significantly improved data quality and utility for the structure determination of small organic molecules.

  14. The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Tarry, Scott E.; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The aviation industry is an integral part of the world s economy. Travelers have consistently chosen aviation as their mode of transportation as it is reliable, time efficient and safe. The out- dated Hub and Spoke system, coupled with high demand, has led to delays, cancellations and gridlock. NASA is developing innovative solutions to these and other air transportation problems. This research is being conducted through partnerships with federal agencies, industry stakeholders, and academia, specifically the University of Nebraska at Omaha. Each collaborator is pursuing the NASA General Aviation Roadmap through their involvement in the expansion of the Small Aircraft Transportation System (SATS). SATS will utilize technologically advanced small aircraft to transport travelers to and from rural and isolated communities. Additionally, this system will provide a safe alternative to the hub and spoke system, giving more time to more people through high-speed mobility and increased accessibility.

  15. Near-realtime simulations of biolelectric activity in small mammalian hearts using graphical processing units

    PubMed Central

    Vigmond, Edward J.; Boyle, Patrick M.; Leon, L. Joshua; Plank, Gernot

    2014-01-01

    Simulations of cardiac bioelectric phenomena remain a significant challenge despite continual advancements in computational machinery. Spanning large temporal and spatial ranges demands millions of nodes to accurately depict geometry, and a comparable number of timesteps to capture dynamics. This study explores a new hardware computing paradigm, the graphics processing unit (GPU), to accelerate cardiac models, and analyzes results in the context of simulating a small mammalian heart in real time. The ODEs associated with membrane ionic flow were computed on traditional CPU and compared to GPU performance, for one to four parallel processing units. The scalability of solving the PDE responsible for tissue coupling was examined on a cluster using up to 128 cores. Results indicate that the GPU implementation was between 9 and 17 times faster than the CPU implementation and scaled similarly. Solving the PDE was still 160 times slower than real time. PMID:19964295

  16. Asymmetric noise-induced large fluctuations in coupled systems

    NASA Astrophysics Data System (ADS)

    Schwartz, Ira B.; Szwaykowska, Klimka; Carr, Thomas W.

    2017-10-01

    Networks of interacting, communicating subsystems are common in many fields, from ecology, biology, and epidemiology to engineering and robotics. In the presence of noise and uncertainty, interactions between the individual components can lead to unexpected complex system-wide behaviors. In this paper, we consider a generic model of two weakly coupled dynamical systems, and we show how noise in one part of the system is transmitted through the coupling interface. Working synergistically with the coupling, the noise on one system drives a large fluctuation in the other, even when there is no noise in the second system. Moreover, the large fluctuation happens while the first system exhibits only small random oscillations. Uncertainty effects are quantified by showing how characteristic time scales of noise-induced switching scale as a function of the coupling between the two coupled parts of the experiment. In addition, our results show that the probability of switching in the noise-free system scales inversely as the square of reduced noise intensity amplitude, rendering the virtual probability of switching an extremely rare event. Our results showing the interplay between transmitted noise and coupling are also confirmed through simulations, which agree quite well with analytic theory.

  17. Correlation induced localization of lattice trapped bosons coupled to a Bose–Einstein condensate

    NASA Astrophysics Data System (ADS)

    Keiler, Kevin; Krönke, Sven; Schmelcher, Peter

    2018-03-01

    We investigate the ground state properties of a lattice trapped bosonic system coupled to a Lieb–Liniger type gas. Our main goal is the description and in depth exploration and analysis of the two-species many-body quantum system including all relevant correlations beyond the standard mean-field approach. To achieve this, we use the multi-configuration time-dependent Hartree method for mixtures (ML-MCTDHX). Increasing the lattice depth and the interspecies interaction strength, the wave function undergoes a transition from an uncorrelated to a highly correlated state, which manifests itself in the localization of the lattice atoms in the latter regime. For small interspecies couplings, we identify the process responsible for this cross-over in a single-particle-like picture. Moreover, we give a full characterization of the wave function’s structure in both regimes, using Bloch and Wannier states of the lowest band, and we find an order parameter, which can be exploited as a corresponding experimental signature. To deepen the understanding, we use an effective Hamiltonian approach, which introduces an induced interaction and is valid for small interspecies interaction. We finally compare the ansatz of the effective Hamiltonian with the results of the ML-MCTDHX simulations.

  18. Indonesian couple’s pregnancy ambivalence and contraceptive use

    PubMed Central

    Barden-O'Fallon, Janine L.; Speizer, Ilene S.

    2013-01-01

    CONTEXT: Recognizing pregnancy ambivalence is important for family planning policy and programming efforts. Most studies on pregnancy ambivalence are based on data from women; using partner’s perceived pregnancy intentions whenever partners are considered. This study examines couple’s pregnancy ambivalence and the association with contraceptive use in Indonesia. METHOD: Matched couple data from the 2002-2003 Indonesia Demographic and Health Survey are used to examine contraceptive use, fertility desires, and responses to whether a pregnancy in the next few weeks would be a big problem, small problem or no problem. Inconsistent fertility desires and responses to the problem question are used to define ambivalence. Response patterns and concordance between partners is evaluated. Multivariate logistic regression analyses are used to assess whether couple’s pregnancy ambivalence is associated with contraceptive use. RESULTS: 71% of husbands and 54% of wives report that a pregnancy in the next few weeks would be “no problem.” Couple’s concordance on the problem question is 63% (kappa statistic = 0.26) among contraceptive users and 61% (0.24) among non-users. In the multivariate analysis, couples who were discordant on the problem question were 24% less likely to use contraception than were couples in which both partners agreed a pregnancy would be a big or small problem. Results were not statistically significant at p≥0.05 in a model with a disaggregated variable on couple’s discordance that identified which partner was ambivalent; this might be related to small cell sizes. Contraceptive use was also less likely for couples with discordant fertility desires. CONCLUSION: Husbands and wives influence each other’s fertility attitudes and family planning use. To improve effective contraceptive use and/or continuation, couple’s pregnancy attitudes should be taken into account at the time of screening and method selection. PMID:20403804

  19. Why do large and small scales couple in a turbulent boundary layer?

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.

    2011-11-01

    Correlation measurement, which is not definitive, suggests that large and small scales in a turbulent boundary layer (TBL) couple. A TBL is modeled as a jungle of interacting nonlinear oscillators to explore the origin of the coupling. These oscillators have the inherent property of self-sustainability, disturbance rejection, and of self-referential phase reset whereby several oscillators can phase align (or have constant phase difference between them) when an ``external'' impulse is applied. Consequently, these properties of a TBL are accounted for: self-sustainability, return of the wake component after a disturbance is removed, and the formation of the 18o large structures, which are composed of a sequential train of hairpin vortices. The nonlinear ordinary differential equations of the oscillators are solved using an analog circuit for rapid solution. The post-bifurcation limit cycles are determined. A small scale and a large scale are akin to two different oscillators. The state variables from the two disparate interacting oscillators are shown to couple and the small scales appear at certain regions of the phase of the large scale. The coupling is a consequence of the nonlinear oscillatory behavior. Although state planes exist where the disparate scales appear de-superposed, all scales in a TBL are in fact coupled and they cannot be monochromatically isolated.

  20. On the measurement of guided wavefields via air-coupled ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Michaels, Thomas E.

    2015-03-01

    Guided wavefields are now routinely measured with scanning laser vibrometers for both characterization of guided wave propagation and damage assessment. However, these measurements are usually time-consuming, particularly for imaging of large areas, primarily because of the degree of signal averaging required to reduce incoherent noise. A scanned air-coupled transducer is an alternative wavefield acquisition method that is based upon recording the very small amplitude pressure waves that leak into air from the out-of-plane motion of the guided wavefield. Air-coupled methods are attractive because they are not sensitive to small variations in surface optical reflectivity and special surface preparations are thus not necessary. In addition, not as much averaging is needed, making the acquisition process much faster. Unlike laser vibrometry, the recorded signals are not a direct measure of the wave motion, but experiments have shown that the acquired wavefields resemble those obtained from laser-based systems. For the work presented here, wavefield data were recorded with both methods for the same aluminum plate and composite panel specimens. Data are qualitatively compared in several domains to assess differences in temporal characteristics and modal content. Although signals are not identical, it is shown that the air-coupled transducer data exhibits similar modal content to that of the laser vibrometry data and may provide a reasonable alternative for some applications.

  1. Modular networks with delayed coupling: Synchronization and frequency control

    NASA Astrophysics Data System (ADS)

    Maslennikov, Oleg V.; Nekorkin, Vladimir I.

    2014-07-01

    We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.

  2. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors.

    PubMed

    Huang, Yin; Min, Changjun; Dastmalchi, Pouya; Veronis, Georgios

    2015-06-01

    We introduce slow-light enhanced subwavelength scale refractive index sensors which consist of a plasmonic metal-dielectric-metal (MDM) waveguide based slow-light system sandwiched between two conventional MDM waveguides. We first consider a MDM waveguide with small width structrue for comparison, and then consider two MDM waveguide based slow light systems: a MDM waveguide side-coupled to arrays of stub resonators system and a MDM waveguide side-coupled to arrays of double-stub resonators system. We find that, as the group velocity decreases, the sensitivity of the effective index of the waveguide mode to variations of the refractive index of the fluid filling the sensors as well as the sensitivities of the reflection and transmission coefficients of the waveguide mode increase. The sensing characteristics of the slow-light waveguide based sensor structures are systematically analyzed. We show that the slow-light enhanced sensors lead to not only 3.9 and 3.5 times enhancements in the refractive index sensitivity, and therefore in the minimum detectable refractive index change, but also to 2 and 3 times reductions in the required sensing length, respectively, compared to a sensor using a MDM waveguide with small width structure.

  3. Synaptic dynamics regulation in response to high frequency stimulation in neuronal networks

    NASA Astrophysics Data System (ADS)

    Su, Fei; Wang, Jiang; Li, Huiyan; Wei, Xile; Yu, Haitao; Deng, Bin

    2018-02-01

    High frequency stimulation (HFS) has confirmed its ability in modulating the pathological neural activities. However its detailed mechanism is unclear. This study aims to explore the effects of HFS on neuronal networks dynamics. First, the two-neuron FitzHugh-Nagumo (FHN) networks with static coupling strength and the small-world FHN networks with spike-time-dependent plasticity (STDP) modulated synaptic coupling strength are constructed. Then, the multi-scale method is used to transform the network models into equivalent averaged models, where the HFS intensity is modeled as the ratio between stimulation amplitude and frequency. Results show that in static two-neuron networks, there is still synaptic current projected to the postsynaptic neuron even if the presynaptic neuron is blocked by the HFS. In the small-world networks, the effects of the STDP adjusting rate parameter on the inactivation ratio and synchrony degree increase with the increase of HFS intensity. However, only when the HFS intensity becomes very large can the STDP time window parameter affect the inactivation ratio and synchrony index. Both simulation and numerical analysis demonstrate that the effects of HFS on neuronal network dynamics are realized through the adjustment of synaptic variable and conductance.

  4. Oscillating scalar fields in extended quintessence

    NASA Astrophysics Data System (ADS)

    Li, Dan; Pi, Shi; Scherrer, Robert J.

    2018-01-01

    We study a rapidly oscillating scalar field with potential V (ϕ )=k |ϕ |n nonminimally coupled to the Ricci scalar R via a term of the form (1 -8 π G0ξ ϕ2)R in the action. In the weak coupling limit, we calculate the effect of the nonminimal coupling on the time-averaged equation of state parameter γ =(p +ρ )/ρ . The change in ⟨γ ⟩ is always negative for n ≥2 and always positive for n <0.71 (which includes the case where the oscillating scalar field could serve as dark energy), while it can be either positive or negative for intermediate values of n . Constraints on the time variation of G force this change to be infinitesimally small at the present time whenever the scalar field dominates the expansion, but constraints in the early universe are not as stringent. The rapid oscillation induced in G also produces an additional contribution to the Friedman equation that behaves like an effective energy density with a stiff equation of state, but we show that, under reasonable assumptions, this effective energy density is always smaller than the density of the scalar field itself.

  5. Small Displacement Coupled Analysis of Concrete Gravity Dam Foundations: Static and Dynamic Conditions

    NASA Astrophysics Data System (ADS)

    Farinha, Maria Luísa Braga; Azevedo, Nuno Monteiro; Candeias, Mariline

    2017-02-01

    The explicit formulation of a small displacement model for the coupled hydro-mechanical analysis of concrete gravity dam foundations based on joint finite elements is presented. The proposed coupled model requires a thorough pre-processing stage in order to ensure that the interaction between the various blocks which represent both the rock mass foundation and the dam is always edge to edge. The mechanical part of the model, though limited to small displacements, has the advantage of allowing an accurate representation of the stress distribution along the interfaces, such as rock mass joints. The hydraulic part and the mechanical part of the model are fully compatible. The coupled model is validated using a real case of a dam in operation, by comparison of the results with those obtained with a large displacement discrete model. It is shown that it is possible to assess the sliding stability of concrete gravity dams using small displacement models under both static and dynamic conditions.

  6. Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity.

    PubMed

    Han, Fang; Wiercigroch, Marian; Fang, Jian-An; Wang, Zhijie

    2011-10-01

    Excitement and synchronization of electrically and chemically coupled Newman-Watts (NW) small-world neuronal networks with a short-term synaptic plasticity described by a modified Oja learning rule are investigated. For each type of neuronal network, the variation properties of synaptic weights are examined first. Then the effects of the learning rate, the coupling strength and the shortcut-adding probability on excitement and synchronization of the neuronal network are studied. It is shown that the synaptic learning suppresses the over-excitement, helps synchronization for the electrically coupled network but impairs synchronization for the chemically coupled one. Both the introduction of shortcuts and the increase of the coupling strength improve synchronization and they are helpful in increasing the excitement for the chemically coupled network, but have little effect on the excitement of the electrically coupled one.

  7. Land-atmosphere coupling manifested in warm-season observations on the U.S. southern great plains

    DOE PAGES

    Phillips, Thomas J.; Klein, Stephen A.

    2014-01-28

    This study examines several observational aspects of land-atmosphere coupling on daily average time scales during warm seasons of the years 1997 to 2008 at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) Central Facility site near Lamont, Oklahoma. Characteristics of the local land-atmosphere coupling are inferred by analyzing the covariability of selected land and atmospheric variables that include precipitation and soil moisture, surface air temperature, relative humidity, radiant and turbulent fluxes, as well as low-level cloud base height and fractional coverage. For both the energetic and hydrological aspects of this coupling, it is found that large-scalemore » atmospheric forcings predominate, with local feedbacks of the land on the atmosphere being comparatively small much of the time. The weak land feedbacks are manifested by 1) the inability of soil moisture to comprehensively impact the coupled land-atmosphere energetics, and 2) the limited recycling of local surface moisture under conditions where most of the rainfall derives from convective cells that originate at remote locations. There is some evidence, nevertheless, of the local land feedback becoming stronger as the soil dries out in the aftermath of precipitation events, or on days when the local boundary-layer clouds are influenced by thermal updrafts known to be associated with convection originating at the surface. Finally, we also discuss potential implications of these results for climate-model representation of regional land-atmosphere coupling.« less

  8. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  9. First-principles investigation of the dissociation and coupling of methane on small copper clusters: Interplay of collision dynamics and geometric and electronic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg

    Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barriermore » for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.« less

  10. Calculation of viscous effects on transonic flow for oscillating airfoils and comparisons with experiment

    NASA Technical Reports Server (NTRS)

    Howlett, James T.; Bland, Samuel R.

    1987-01-01

    A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.

  11. Strong electron-hole exchange in coherently coupled quantum dots.

    PubMed

    Fält, Stefan; Atatüre, Mete; Türeci, Hakan E; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac

    2008-03-14

    We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.

  12. Stability analysis and synchronization in discrete-time complex networks with delayed coupling

    NASA Astrophysics Data System (ADS)

    Cheng, Ranran; Peng, Mingshu; Yu, Weibin; Sun, Bo; Yu, Jinchen

    2013-12-01

    A new network of coupled maps is proposed in which the connections between units involve no delays but the intra-neural communication does, whereas in the work of Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], the focus is on information processing delayed by the inter-neural communication. We show that the synchronization of the network depends on not only the intrinsic dynamical features and inter-connection topology (characterized by the spectrum of the graph Laplacian) but also the delays and the coupling strength. There are two main findings: (i) the more neighbours, the easier to be synchronized; (ii) odd delays are easier to be synchronized than even ones. In addition, compared with those discussed by Atay et al. [Phys. Rev. Lett. 92, 144101 (2004)], our model has a better synchronizability for regular networks and small-world variants.

  13. Berry phase and Hannay's angle in a quantum-classical hybrid system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. D.; Wu, S. L.; Yi, X. X.

    2011-06-15

    The Berry phase, which was discovered more than two decades ago, provides very deep insight into the geometric structure of quantum mechanics. Its classical counterpart, Hannay's angle, is defined if closed curves of action variables return to the same curves in phase space after a time evolution. In this paper we study the Berry phase and Hannay's angle in a quantum-classical hybrid system under the Born-Oppenheimer approximation. By the term quantum-classical hybrid system, we mean a composite system consists of a quantum subsystem and a classical subsystem. The effects of subsystem-subsystem couplings on the Berry phase and Hannay's angle aremore » explored. The results show that the Berry phase has been changed sharply by the couplings, whereas the couplings have a small effect on the Hannay's angle.« less

  14. Dry coupling for whole-body small-animal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-04-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.

  15. Phase synchronization of bursting neurons in clustered small-world networks

    NASA Astrophysics Data System (ADS)

    Batista, C. A. S.; Lameu, E. L.; Batista, A. M.; Lopes, S. R.; Pereira, T.; Zamora-López, G.; Kurths, J.; Viana, R. L.

    2012-07-01

    We investigate the collective dynamics of bursting neurons on clustered networks. The clustered network model is composed of subnetworks, each of them presenting the so-called small-world property. This model can also be regarded as a network of networks. In each subnetwork a neuron is connected to other ones with regular as well as random connections, the latter with a given intracluster probability. Moreover, in a given subnetwork each neuron has an intercluster probability to be connected to the other subnetworks. The local neuron dynamics has two time scales (fast and slow) and is modeled by a two-dimensional map. In such small-world network the neuron parameters are chosen to be slightly different such that, if the coupling strength is large enough, there may be synchronization of the bursting (slow) activity. We give bounds for the critical coupling strength to obtain global burst synchronization in terms of the network structure, that is, the probabilities of intracluster and intercluster connections. We find that, as the heterogeneity in the network is reduced, the network global synchronizability is improved. We show that the transitions to global synchrony may be abrupt or smooth depending on the intercluster probability.

  16. Modeling the emissions of a dual fuel engine coupled with a biomass gasifier-supplementing the Wiebe function.

    PubMed

    Vakalis, Stergios; Caligiuri, Carlo; Moustakas, Konstantinos; Malamis, Dimitris; Renzi, Massimiliano; Baratieri, Marco

    2018-03-12

    There is a growing market demand for small-scale biomass gasifiers that is driven by the economic incentives and the legislative framework. Small-scale gasifiers produce a gaseous fuel, commonly referred to as producer gas, with relatively low heating value. Thus, the most common energy conversion systems that are coupled with small-scale gasifiers are internal combustion engines. In order to increase the electrical efficiency, the operators choose dual fuel engines and mix the producer gas with diesel. The Wiebe function has been a valuable tool for assessing the efficiency of dual fuel internal combustion engines. This study introduces a thermodynamic model that works in parallel with the Wiebe function and calculates the emissions of the engines. This "vis-à-vis" approach takes into consideration the actual conditions inside the cylinders-as they are returned by the Wiebe function-and calculates the final thermodynamic equilibrium of the flue gases mixture. This approach aims to enhance the operation of the dual fuel internal combustion engines by identifying the optimal operating conditions and-at the same time-advance pollution control and minimize the environmental impact.

  17. Experimental Acquisitions with ^125I on a Small Animal SPECT Device*

    NASA Astrophysics Data System (ADS)

    Knott, Kevin; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randolph

    2001-04-01

    We have performed single photon emission computed tomography (SPECT) studies on a small animal scanning system for which the detector employed position sensitive phototubes (125 mm dia. Hamamatsu R3292 and 18 x 18 mm Hamamatsu M-64) coupled to pixelated scintillators CsI(Tl) and CsI(Na) Phantom acquisitions were used to investigate the effects of angular sampling and scan time on reconstructed image quality and noise. Results from these studies will be described and extended to in vivo studies with small animals. *Supported in part by the Thomas F. and Kate Miller Jeffress Trust, the Department of Energy, The American Diabetes Association, The National Science Foundation, the Howard Hughes Foundation and the Virginia Commonwealth Health Research Board.

  18. Inflation from cosmological constant and nonminimally coupled scalar

    NASA Astrophysics Data System (ADS)

    Glavan, Dražen; Marunović, Anja; Prokopec, Tomislav

    2015-08-01

    We consider inflation in a universe with a positive cosmological constant and a nonminimally coupled scalar field, in which the field couples both quadratically and quartically to the Ricci scalar. When considered in the Einstein frame and when the nonminimal couplings are negative, the field starts in slow roll and inflation ends with an asymptotic value of the principal slow-roll parameter, ɛE=4 /3 . Graceful exit can be achieved by suitably (tightly) coupling the scalar field to matter, such that at late time the total energy density reaches the scaling of matter, ɛE=ɛm . Quite generically the model produces a red spectrum of scalar cosmological perturbations and a small amount of gravitational radiation. With a suitable choice of the nonminimal couplings, the spectral slope can be as large as ns≃0.955 , which is about one standard deviation away from the central value measured by the Planck satellite. The model can be ruled out by future measurements if any of the following is observed: (a) the spectral index of scalar perturbations is ns>0.960 ; (b) the amplitude of tensor perturbations is above about r ˜10-2 ; (c) the running of the spectral index of scalar perturbations is positive.

  19. 2Q NMR of 2H2O ordering at solid interfaces

    NASA Astrophysics Data System (ADS)

    Krivokhizhina, Tatiana V.; Wittebort, R. J.

    2014-06-01

    Solvent ordering at an interface can be studied by multiple-quantum NMR. Quantitative studies of 2H2O ordering require clean double-quantum (2Q) filtration and an analysis of 2Q buildup curves that accounts for relaxation and, if randomly oriented samples are used, the distribution of residual couplings. A pulse sequence with absorption mode detection is extended for separating coherences by order and measuring relaxation times such as the 2Q filtered T2. Coherence separation is used to verify 2Q filtration and the 2Q filtered T2 is required to extract the coupling from the 2Q buildup curve when it is unresolved. With our analysis, the coupling extracted from the buildup curve in 2H2O hydrated collagen was equivalent to the resolved coupling measured in the usual 1D experiment and the 2Q to 1Q signal ratio was in accord with theory. Application to buildup curves from 2H2O hydrated elastin, which has an unresolved coupling, revealed a large increase in the 2Q signal upon mechanical stretch that is due to an increase in the ordered water fraction while changes in the residual coupling and T2 are small.

  20. Quantum and spectral properties of the Labyrinth model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Yuki, E-mail: takahasy@math.uci.edu

    2016-06-15

    We consider the Labyrinth model, which is a two-dimensional quasicrystal model. We show that the spectrum of this model, which is known to be a product of two Cantor sets, is an interval for small values of the coupling constant. We also consider the density of states measure of the Labyrinth model and show that it is absolutely continuous with respect to Lebesgue measure for almost all values of coupling constants in the small coupling regime.

  1. Photonic ring resonator filters for astronomical OH suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  2. Photonic ring resonator filters for astronomical OH suppression

    DOE PAGES

    Ellis, S. C.; Kuhlmann, S.; Kuehn, K.; ...

    2017-01-01

    Ring resonators provide a means of filtering specific wavelengths from a waveguide, and optionally dropping the filtered wavelengths into a second waveguide. Both of these features are potentially useful for astronomical instruments. In this paper we focus on their use as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We derive the design requirements for ring resonators for OH suppression from theory and finite difference time domain simulations. We find that rings with small radii (< 10 μm) are required to provide an adequate free spectral range, leading to high index contrast materials suchmore » as Si and Si 3N 4. Critically coupled rings with high self-coupling coefficients should provide the necessary Q factors, suppression depth, and throughput for efficient OH suppression, but will require post-inscription tuning of the coupling and the resonant wavelengths. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.« less

  3. Clinical measurement of force systems upon activation of transpalatal arch in the treatment of unilateral crossbite.

    PubMed

    Yoshida, N; Koga, Y; Jost-Brinkmann, P G; Kobayashi, K

    2003-01-01

    in this study, forces and moments acting on the molars were theoretically determined by means of small-deflection analysis when an asymmetric third-order activation of the TPA was carried out. the transpalatal arch (TPA) is used to correct unilateral crossbites through the application of buccal root torque to the anchorage molar and lingual root torque to the contralateral molar in crossbite, combined with expansion. Unfortunately, the complex force systems created at the molars upon activation of the TPA cannot be easily estimated. our computations revealed that the vertical forces developed on the molars when both ends of the TPA are inserted into the lingual sheaths (two-couple system) is four-times greater than those when only one end is tied to the lingual sheath as a single-point contact (one-couple system). we propose a method of clinical estimation of the force system in a two-couple system by directly measuring the vertical force produced by the one-couple system.

  4. Optical loss analysis and parameter optimization for fan-shaped single-polarization grating coupler at wavelength of 1.3 µm band

    NASA Astrophysics Data System (ADS)

    Ushida, Jun; Tokushima, Masatoshi; Sobu, Yohei; Shimura, Daisuke; Yashiki, Kenichiro; Takahashi, Shigeki; Kurata, Kazuhiko

    2018-05-01

    Fan-shaped grating couplers (F-GCs) can be smaller than straight ones but are less efficient in general in coupling to single-mode fibers. To find a small F-GC with sufficiently high fiber-coupling characteristics, we numerically compared the dependencies of coupling efficiencies on wavelengths, the starting width of gratings, and misalignment distances among 25, 45, and 60° tapered angles of fan shape by using the three-dimensional finite-difference time domain method. A F-GC with a tapered angle of 25° exhibited the highest performances for all dependencies. The optical loss origins of F-GCs were discussed in terms of the electric field structures in them and scattering at the joint between the fan-shaped slab and channel waveguide. We fabricated an optimized 25° F-GC by using ArF photolithography, which almost exactly reproduced the optical coupling efficiency and radiation angle characteristics that were numerically expected.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.

    Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.

  6. Cut-loading: a useful tool for examining the extent of gap junction tracer coupling between retinal neurons.

    PubMed

    Choi, Hee Joo; Ribelayga, Christophe P; Mangel, Stuart C

    2012-01-12

    In addition to chemical synaptic transmission, neurons that are connected by gap junctions can also communicate rapidly via electrical synaptic transmission. Increasing evidence indicates that gap junctions not only permit electrical current flow and synchronous activity between interconnected or coupled cells, but that the strength or effectiveness of electrical communication between coupled cells can be modulated to a great extent(1,2). In addition, the large internal diameter (~1.2 nm) of many gap junction channels permits not only electric current flow, but also the diffusion of intracellular signaling molecules and small metabolites between interconnected cells, so that gap junctions may also mediate metabolic and chemical communication. The strength of gap junctional communication between neurons and its modulation by neurotransmitters and other factors can be studied by simultaneously electrically recording from coupled cells and by determining the extent of diffusion of tracer molecules, which are gap junction permeable, but not membrane permeable, following iontophoretic injection into single cells. However, these procedures can be extremely difficult to perform on neurons with small somata in intact neural tissue. Numerous studies on electrical synapses and the modulation of electrical communication have been conducted in the vertebrate retina, since each of the five retinal neuron types is electrically connected by gap junctions(3,4). Increasing evidence has shown that the circadian (24-hour) clock in the retina and changes in light stimulation regulate gap junction coupling(3-8). For example, recent work has demonstrated that the retinal circadian clock decreases gap junction coupling between rod and cone photoreceptor cells during the day by increasing dopamine D2 receptor activation, and dramatically increases rod-cone coupling at night by reducing D2 receptor activation(7,8). However, not only are these studies extremely difficult to perform on neurons with small somata in intact neural retinal tissue, but it can be difficult to adequately control the illumination conditions during the electrophysiological study of single retinal neurons to avoid light-induced changes in gap junction conductance. Here, we present a straightforward method of determining the extent of gap junction tracer coupling between retinal neurons under different illumination conditions and at different times of the day and night. This cut-loading technique is a modification of scrape loading(9-12), which is based on dye loading and diffusion through open gap junction channels. Scrape loading works well in cultured cells, but not in thick slices such as intact retinas. The cut-loading technique has been used to study photoreceptor coupling in intact fish and mammalian retinas(7, 8,13), and can be used to study coupling between other retinal neurons, as described here.

  7. Is thermodynamic irreversibility a consequence of the expansion of the Universe?

    NASA Astrophysics Data System (ADS)

    Osváth, Szabolcs

    2018-02-01

    This paper explains thermodynamic irreversibility by applying the expansion of the Universe to thermodynamic systems. The effect of metric expansion is immeasurably small on shorter scales than intergalactic distances. Multi-particle systems, however, are chaotic, and amplify any small disturbance exponentially. Metric expansion gives rise to time-asymmetric behaviour in thermodynamic systems in a short time (few nanoseconds in air, few ten picoseconds in water). In contrast to existing publications, this paper explains without any additional assumptions the rise of thermodynamic irreversibility from the underlying reversible mechanics of particles. Calculations for the special case which assumes FLRW metric, slow motions (v ≪ c) and approximates space locally by Euclidean space show that metric expansion causes entropy increase in isolated systems. The rise of time-asymmetry, however, is not affected by these assumptions. Any influence of the expansion of the Universe on the local metric causes a coupling between local mechanics and evolution of the Universe.

  8. Experimental, theoretical, and numerical studies of small scale combustion

    NASA Astrophysics Data System (ADS)

    Xu, Bo

    Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number to describe the competition between the mass transport in gas phase and the heat conduction in gas and solid phases was defined. Experimental observation and theoretical analysis suggested that the flame-wall coupling significantly increased the effective Lewis number and led to a new mechanism to promote the thermal diffusion instability. Due to the short flow residence time in small scale combustion, reactants, and oxidizers may not be able to be fully premixed before combustion. As such, non-premixed combustion plays an important role. Non-premixed mixing layer combustion within a constrained mesoscale channel was studied. Depending on the flow rate, it was found that there were two different flame regimes, an unsteady bimodal flame regime and a flame street regime with multiple stable triple flamelets. This multiple triple flame structure was identified experimentally for the first time. A scaling analytical model was developed to qualitatively explain the mechanism of flame streets. The effects of flow velocity, wall temperature, and Lewis number on the distance between flamelets and the diffusion flame length were also investigated. The results showed that the occurrence of flame street regimes was a combined effect of heat loss, curvature, diffusion, and dilution. To complete this thesis, experiments were conducted to measure the OH concentration using Planar Laser Induced Fluorescence (PLIF) in a confined mesoscale combustor. Some preliminary results have been obtained for the OH concentration of flamelets in a flame street. When the scale of the micro reactor is further reduced, the rarefied gas effect may become significant. In this thesis, a new concentration slip model to describe the rarefied gas effect on the species transport in microscale chemical reactors was obtained. The present model is general and recovers the existing models in the limiting cases. The analytical results showed the concentration slip was dominated by two different mechanisms, the surface reaction induced concentration slip (RIC) and the temperature slip induced concentration slip (TIC). It is found that the magnitude of RIC slip was proportional to the product of the Damkohler number and Knudsen number. The results showed the impact of reaction induced concentration slip (RIC slip) effects on catalytic reactions strongly depended on the Damkohler number, the Knudsen number, and the surface accommodation coefficient.

  9. Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: Experimental study

    NASA Astrophysics Data System (ADS)

    Bunyan, Jonathan; Moore, Keegan J.; Mojahed, Alireza; Fronk, Matthew D.; Leamy, Michael; Tawfick, Sameh; Vakakis, Alexander F.

    2018-05-01

    In linear time-invariant systems acoustic reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and it can be broken only by odd external biases, nonlinearities, or time-dependent properties. Recently it was shown that one-dimensional lattices composed of a finite number of identical nonlinear cells with internal scale hierarchy and asymmetry exhibit nonreciprocity both locally and globally. Considering a single cell composed of a large scale nonlinearly coupled to a small scale, local dynamic nonreciprocity corresponds to vibration energy transfer from the large to the small scale, but absence of energy transfer (and localization) from the small to the large scale. This has been recently proven both theoretically and experimentally. Then, considering the entire lattice, global acoustic nonreciprocity has been recently proven theoretically, corresponding to preferential energy transfer within the lattice under transient excitation applied at one of its boundaries, and absence of similar energy transfer (and localization) when the excitation is applied at its other boundary. This work provides experimental validation of the global acoustic nonreciprocity with a one-dimensional asymmetric lattice composed of three cells, with each cell incorporating nonlinearly coupled large and small scales. Due to the intentional asymmetry of the lattice, low impulsive excitations applied to one of its boundaries result in wave transmission through the lattice, whereas when the same excitations are applied to the other end, they lead in energy localization at the boundary and absence of wave transmission. This global nonreciprocity depends critically on energy (i.e., the intensity of the applied impulses), and reduced-order models recover the nonreciprocal acoustics and clarify the nonlinear mechanism generating nonreciprocity in this system.

  10. A small amount of mini-charged dark matter could cool the baryons in the early Universe.

    PubMed

    Muñoz, Julian B; Loeb, Abraham

    2018-05-01

    The dynamics of our Universe is strongly influenced by pervasive-albeit elusive-dark matter, with a total mass about five times the mass of all the baryons 1,2 . Despite this, its origin and composition remain a mystery. All evidence for dark matter relies on its gravitational pull on baryons, and thus such evidence does not require any non-gravitational coupling between baryons and dark matter. Nonetheless, some small coupling would explain the comparable cosmic abundances of dark matter and baryons 3 , as well as solving structure-formation puzzles in the pure cold-dark-matter models 4 . A vast array of observations has been unable to find conclusive evidence for any non-gravitational interactions of baryons with dark matter 5-9 . Recent observations by the EDGES collaboration, however, suggest that during the cosmic dawn, roughly 200 million years after the Big Bang, the baryonic temperature was half of its expected value 10 . This observation is difficult to reconcile with the standard cosmological model but could be explained if baryons are cooled down by interactions with dark matter, as expected if their interaction rate grows steeply at low velocities 11 . Here we report that if a small fraction-less than one per cent-of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1-100 times the electron mass, then the data 10 from the EDGES experiment can be explained while remaining consistent with all other observations. We also show that the entirety of the dark matter cannot have a mini-charge.

  11. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Mclaskey, G.

    2017-12-01

    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  12. Small bowel capsule endoscopy in 2007: Indications, risks and limitations

    PubMed Central

    Rondonotti, Emanuele; Villa, Federica; Mulder, Chris JJ; Jacobs, Maarten AJM; de Franchis, Roberto

    2007-01-01

    Capsule endoscopy has revoluzionized the study of the small bowel by providing a reliable method to evaluate, endoscopically, the entire small bowel. In the last six years several papers have been published exploring the possible role of this examination in different clinical conditions. At the present time capsule endoscopy is generally recommended as a third examination, after negative bidirectional endoscopy, in patients with obscure gastrointestinal bleeding. A growing body of evidence suggests also an important role for this examination in other clinical conditions such as Crohn’s disease, celiac disease, small bowel polyposis syndromes or small bowel tumors. The main complication of this examination is the retention of the device at the site of a previously unknown small bowel stricture. However there are also some other open issues mainly due to technical limitations of this tool (which is not driven from remote control, is unable to take biopsies, to insufflate air, to suck fluids or debris and sometimes to correctly size and locate lesions).The recently developed double balloon enteroscope, owing to its capability to explore a large part of the small bowel and to take targeted biopsies, although being invasive and time consuming, can overcome some limitations of capsule endoscopy. At the present time, in the majority of clinical conditions (i.e. obscure GI bleeding), the winning strategy seems to be to couple these two techniques to explore the small bowel in a painless, safe and complete way (with capsule endoscopy) and to define and treat the lesions identified (with double balloon enteroscopy). PMID:18069752

  13. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes.

    PubMed

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J; Thayne, Iain G; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-25

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130  μeV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  14. Two-Photon Rabi Splitting in a Coupled System of a Nanocavity and Exciton Complexes

    NASA Astrophysics Data System (ADS)

    Qian, Chenjiang; Wu, Shiyao; Song, Feilong; Peng, Kai; Xie, Xin; Yang, Jingnan; Xiao, Shan; Steer, Matthew J.; Thayne, Iain G.; Tang, Chengchun; Zuo, Zhanchun; Jin, Kuijuan; Gu, Changzhi; Xu, Xiulai

    2018-05-01

    Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 μ eV . Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

  15. Emergence of synchronization induced by the interplay between two prisoner's dilemma games with volunteering in small-world networks

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Qin, Shao-Meng; Yu, Lianchun; Zhang, Shengli

    2008-03-01

    We studied synchronization between prisoner’s dilemma games with voluntary participation in two Newman-Watts small-world networks. It was found that there are three kinds of synchronization: partial phase synchronization, total phase synchronization, and complete synchronization, for varied coupling factors. Besides, two games can reach complete synchronization for the large enough coupling factor. We also discussed the effect of the coupling factor on the amplitude of oscillation of cooperator density.

  16. Computational model of electrically coupled, intrinsically distinct pacemaker neurons.

    PubMed

    Soto-Treviño, Cristina; Rabbah, Pascale; Marder, Eve; Nadim, Farzan

    2005-07-01

    Electrical coupling between neurons with similar properties is often studied. Nonetheless, the role of electrical coupling between neurons with widely different intrinsic properties also occurs, but is less well understood. Inspired by the pacemaker group of the crustacean pyloric network, we developed a multicompartment, conductance-based model of a small network of intrinsically distinct, electrically coupled neurons. In the pyloric network, a small intrinsically bursting neuron, through gap junctions, drives 2 larger, tonically spiking neurons to reliably burst in-phase with it. Each model neuron has 2 compartments, one responsible for spike generation and the other for producing a slow, large-amplitude oscillation. We illustrate how these compartments interact and determine the dynamics of the model neurons. Our model captures the dynamic oscillation range measured from the isolated and coupled biological neurons. At the network level, we explore the range of coupling strengths for which synchronous bursting oscillations are possible. The spatial segregation of ionic currents significantly enhances the ability of the 2 neurons to burst synchronously, and the oscillation range of the model pacemaker network depends not only on the strength of the electrical synapse but also on the identity of the neuron receiving inputs. We also compare the activity of the electrically coupled, distinct neurons with that of a network of coupled identical bursting neurons. For small to moderate coupling strengths, the network of identical elements, when receiving asymmetrical inputs, can have a smaller dynamic range of oscillation than that of its constituent neurons in isolation.

  17. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  18. Emergent patterns in interacting neuronal sub-populations

    NASA Astrophysics Data System (ADS)

    Kamal, Neeraj Kumar; Sinha, Sudeshna

    2015-05-01

    We investigate an ensemble of coupled model neurons, consisting of groups of varying sizes and intrinsic dynamics, ranging from periodic to chaotic, where the inter-group coupling interaction is effectively like a dynamic signal from a different sub-population. We observe that the minority group can significantly influence the majority group. For instance, when a small chaotic group is coupled to a large periodic group, the chaotic group de-synchronizes. However, counter-intuitively, when a small periodic group couples strongly to a large chaotic group, it leads to complete synchronization in the majority chaotic population, which also spikes at the frequency of the small periodic group. It then appears that the small group of periodic neurons can act like a pacemaker for the whole network. Further, we report the existence of varied clustering patterns, ranging from sets of synchronized clusters to anti-phase clusters, governed by the interplay of the relative sizes and dynamics of the sub-populations. So these results have relevance in understanding how a group can influence the synchrony of another group of dynamically different elements, reminiscent of event-related synchronization/de-synchronization in complex networks.

  19. Bright-dark and dark-dark solitons in coupled nonlinear Schrödinger equation with P T -symmetric potentials

    NASA Astrophysics Data System (ADS)

    Nath, Debraj; Gao, Yali; Babu Mareeswaran, R.; Kanna, T.; Roy, Barnana

    2017-12-01

    We explore different nonlinear coherent structures, namely, bright-dark (BD) and dark-dark (DD) solitons in a coupled nonlinear Schrödinger/Gross-Pitaevskii equation with defocusing/repulsive nonlinearity coefficients featuring parity-time ( P T )-symmetric potentials. Especially, for two choices of P T -symmetric potentials, we obtain the exact solutions for BD and DD solitons. We perform the linear stability analysis of the obtained coherent structures. The results of this linear stability analysis are well corroborated by direct numerical simulation incorporating small random noise. It has been found that there exists a parameter regime which can support stable BD and DD solitons.

  20. All-optical electron spin quantum computer with ancilla bits for operations in each coupled-dot cell

    NASA Astrophysics Data System (ADS)

    Ohshima, Toshio

    2000-12-01

    A cellular quantum computer with a spin qubit and ancilla bits in each cell is proposed. The whole circuit works only with the help of external optical pulse sequences. In the operation, some of the ancilla bits are activated, and autonomous single-and two-qubit operations are made. In the sleep mode of a cell, the decoherence of the qubit is negligibly small. Since only two cells at most are active at once, the coherence can be maintained for a sufficiently long time for practical purposes. A device structure using a coupled-quantum-dot array with possible operation and measurement schemes is also proposed.

  1. Wave-packet approach to transport properties of carrier coupled with intermolecular and intramolecular vibrations of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Ishii, Hiroyuki; Honma, Keisuke; Kobayashi, Nobuhiko; Hirose, Kenji

    2012-06-01

    We present a methodology to study the charge-transport properties of organic semiconductors by the time-dependent wave-packet diffusion method, taking the polaron effects into account. As an example, we investigate the transport properties of single-crystal pentacene organic semiconductors coupled with inter- and intramolecular vibrations within the mixed Holstein and Peierls model, which describes both hopping and bandlike transport behaviors due to small and large polaron formations. Taking into account static disorders, which inevitably exist in the molecular crystals, we present the temperature dependence of charge-transport properties in competition among the thermal fluctuation of molecular motions, the polaron formation, and the static disorders.

  2. Superconducting and Normal State Properties of OsB2*

    NASA Astrophysics Data System (ADS)

    Singh, Yogesh; Niazi, A.; Zong, X.; Suh, B. J.; Vannette, M. W.; Prozorov, R.; Johnston, D. C.

    2007-03-01

    OsB2 is a layered superhard metallic material that was found to superconduct below Tc= 2.1 K.^1 We report the first detailed measurements of the static and dynamic magnetic susceptibilities χ, electrical resistivity, heat capacity Cp, penetration depth, and ^11B NMR on OsB2 to characterize its superconducting and normal state properties. The results confirm that OsB2 is a bulk superconductor below Tc= 2.1 K@. Its properties can be described by a close to weak-coupling s-wave BCS model with an electron-phonon coupling constant λ= 0.4--0.5, δ(0)/(kBTc) 1.9, a small Ginzburg-Landau parameter κ of order 5 or less, and a small zero-temperature critical magnetic field of roughly 500 Oe. The ^11B NMR measurements in the normal state show a nuclear spin-lattice relaxation time T1= 2.1 s at room temperature and a Korringa law with T1T = 610 s.K at lower T, and a correspondingly small T-independent Knight shift. These results indicate a small s character of the conduction electron wave function at the B site at the Fermi level. Our results will be compared to corresponding data for MgB2.1. J. K. Vandenberg et al., Mater. Res. Bull. 10, 889 (1975).^*Supported by the USDOE under Contract No. W-7405-Eng-82. Permanent address: Dept. Phys., The Catholic Univ. Korea.

  3. Downscaling ocean conditions: Experiments with a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Katavouta, A.; Thompson, K. R.

    2013-12-01

    The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.

  4. A scenario for inflationary magnetogenesis without strong coupling problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasinato, Gianmassimo; Institute of Cosmology and Gravitation, University of Portsmouth,Portsmouth, PO1 3FX

    2015-03-23

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesismore » potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.« less

  5. A scenario for inflationary magnetogenesis without strong coupling problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasinato, Gianmassimo, E-mail: gianmassimo.tasinato@port.ac.uk

    2015-03-01

    Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesismore » potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.« less

  6. Coupled orbit-attitude dynamics and relative state estimation of spacecraft near small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel

    2016-04-01

    The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose properties are not well known.

  7. Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules.

    PubMed

    Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei

    2017-04-21

    Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds.

  8. Nanomaterials as Assisted Matrix of Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for the Analysis of Small Molecules

    PubMed Central

    Lu, Minghua; Yang, Xueqing; Yang, Yixin; Qin, Peige; Wu, Xiuru; Cai, Zongwei

    2017-01-01

    Matrix-assisted laser desorption/ionization (MALDI), a soft ionization method, coupling with time-of-flight mass spectrometry (TOF MS) has become an indispensible tool for analyzing macromolecules, such as peptides, proteins, nucleic acids and polymers. However, the application of MALDI for the analysis of small molecules (<700 Da) has become the great challenge because of the interference from the conventional matrix in low mass region. To overcome this drawback, more attention has been paid to explore interference-free methods in the past decade. The technique of applying nanomaterials as matrix of laser desorption/ionization (LDI), also called nanomaterial-assisted laser desorption/ionization (nanomaterial-assisted LDI), has attracted considerable attention in the analysis of low-molecular weight compounds in TOF MS. This review mainly summarized the applications of different types of nanomaterials including carbon-based, metal-based and metal-organic frameworks as assisted matrices for LDI in the analysis of small biological molecules, environmental pollutants and other low-molecular weight compounds. PMID:28430138

  9. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine

    NASA Astrophysics Data System (ADS)

    Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-12-01

    Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.

  10. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  11. Importance-sampling computation of statistical properties of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Gupta, Shamik; Leitão, Jorge C.; Altmann, Eduardo G.

    2017-07-01

    We introduce and implement an importance-sampling Monte Carlo algorithm to study systems of globally coupled oscillators. Our computational method efficiently obtains estimates of the tails of the distribution of various measures of dynamical trajectories corresponding to states occurring with (exponentially) small probabilities. We demonstrate the general validity of our results by applying the method to two contrasting cases: the driven-dissipative Kuramoto model, a paradigm in the study of spontaneous synchronization; and the conservative Hamiltonian mean-field model, a prototypical system of long-range interactions. We present results for the distribution of the finite-time Lyapunov exponent and a time-averaged order parameter. Among other features, our results show most notably that the distributions exhibit a vanishing standard deviation but a skewness that is increasing in magnitude with the number of oscillators, implying that nontrivial asymmetries and states yielding rare or atypical values of the observables persist even for a large number of oscillators.

  12. Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Molina, C.; Pani, Paolo; Cardoso, Vitor; Gualtieri, Leonardo

    2010-06-01

    Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun for Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.

  13. Reorientations, relaxations, metastabilities, and multidomains of skyrmion lattices

    NASA Astrophysics Data System (ADS)

    Bannenberg, L. J.; Qian, F.; Dalgliesh, R. M.; Martin, N.; Chaboussant, G.; Schmidt, M.; Schlagel, D. L.; Lograsso, T. A.; Wilhelm, H.; Pappas, C.

    2017-11-01

    Magnetic skyrmions are nanosized topologically protected spin textures with particlelike properties. They can form lattices perpendicular to the magnetic field, and the orientation of these skyrmion lattices with respect to the crystallographic lattice is governed by spin-orbit coupling. By performing small-angle neutron scattering measurements, we investigate the coupling between the crystallographic and skyrmion lattices in both Cu2OSeO3 and the archetype chiral magnet MnSi. The results reveal that the orientation of the skyrmion lattice is primarily determined by the magnetic field direction with respect to the crystallographic lattice. In addition, it is also influenced by the magnetic history of the sample, which can induce metastable lattices. Kinetic measurements show that these metastable skyrmion lattices may or may not relax to their equilibrium positions under macroscopic relaxation times. Furthermore, multidomain lattices may form when two or more equivalent crystallographic directions are favored by spin-orbit coupling and oriented perpendicular to the magnetic field.

  14. Warm natural inflation

    NASA Astrophysics Data System (ADS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2012-04-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflaton with radiation, while at the same time, not de-stabilising the flatness of the inflaton potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this Letter we show that if the inflaton and other light fields are pseudo-Nambu-Goldstone bosons then the radiative corrections to the potential are suppressed and the thermal corrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfil the contrary requirements of an inflaton potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflaton field with other light fields. We construct a warm inflation model which gives the observed CMB-anisotropy amplitude and spectral index where the symmetry breaking is at the GUT scale.

  15. Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina, C.; Pani, Paolo; Cardoso, Vitor

    2010-06-15

    Dynamical Chern-Simons gravity is an extension of general relativity in which the gravitational field is coupled to a scalar field through a parity-violating Chern-Simons term. In this framework, we study perturbations of spherically symmetric black hole spacetimes, assuming that the background scalar field vanishes. Our results suggest that these spacetimes are stable, and small perturbations die away as a ringdown. However, in contrast to standard general relativity, the gravitational waveforms are also driven by the scalar field. Thus, the gravitational oscillation modes of black holes carry imprints of the coupling to the scalar field. This is a smoking gun formore » Chern-Simons theory and could be tested with gravitational-wave detectors, such as LIGO or LISA. For negative values of the coupling constant, ghosts are known to arise, and we explicitly verify their appearance numerically. Our results are validated using both time evolution and frequency domain methods.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannenberg, L. J.; Qian, F.; Dalgliesh, R. M.

    Magnetic skyrmions are nanosized topologically protected spin textures with particlelike properties. They can form lattices perpendicular to the magnetic field, and the orientation of these skyrmion lattices with respect to the crystallographic lattice is governed by spin-orbit coupling. By performing small-angle neutron scattering measurements, we investigate the coupling between the crystallographic and skyrmion lattices in both Cu 2OSeO 3 and the archetype chiral magnet MnSi. The results reveal that the orientation of the skyrmion lattice is primarily determined by the magnetic field direction with respect to the crystallographic lattice. In addition, it is also influenced by the magnetic history ofmore » the sample, which can induce metastable lattices. Kinetic measurements show that these metastable skyrmion lattices may or may not relax to their equilibrium positions under macroscopic relaxation times. Moreover, multidomain lattices may form when two or more equivalent crystallographic directions are favored by spin-orbit coupling and oriented perpendicular to the magnetic field.« less

  17. Pornography use: who uses it and how it is associated with couple outcomes.

    PubMed

    Poulsen, Franklin O; Busby, Dean M; Galovan, Adam M

    2013-01-01

    Very little is known about how pornography use is related to the quality of committed relationships. This study examined associations among pornography use, the meaning people attach to its use, sexual quality, and relationship satisfaction. It also looked at factors that discriminate between those who use pornography and those who do not. Participants were couples (N = 617 couples) who were either married or cohabiting at the time the data were gathered. Overall results from this study indicated substantial gender differences in terms of use profiles, as well as pornography's association with relationship factors. Specifically, male pornography use was negatively associated with both male and female sexual quality, whereas female pornography use was positively associated with female sexual quality. The study also found that meaning explained a relatively small part of the relationship between pornography use and sexual quality.

  18. Spin-vibronic quantum dynamics for ultrafast excited-state processes.

    PubMed

    Eng, Julien; Gourlaouen, Christophe; Gindensperger, Etienne; Daniel, Chantal

    2015-03-17

    Ultrafast intersystem crossing (ISC) processes coupled to nuclear relaxation and solvation dynamics play a central role in the photophysics and photochemistry of a wide range of transition metal complexes. These phenomena occurring within a few hundred femtoseconds are investigated experimentally by ultrafast picosecond and femtosecond transient absorption or luminescence spectroscopies, and optical laser pump-X-ray probe techniques using picosecond and femtosecond X-ray pulses. The interpretation of ultrafast structural changes, time-resolved spectra, quantum yields, and time scales of elementary processes or transient lifetimes needs robust theoretical tools combining state-of-the-art quantum chemistry and developments in quantum dynamics for solving the electronic and nuclear problems. Multimode molecular dynamics beyond the Born-Oppenheimer approximation has been successfully applied to many small polyatomic systems. Its application to large molecules containing a transition metal atom is still a challenge because of the nuclear dimensionality of the problem, the high density of electronic excited states, and the spin-orbit coupling effects. Rhenium(I) α-diimine carbonyl complexes, [Re(L)(CO)3(N,N)](n+) are thermally and photochemically robust and highly flexible synthetically. Structural variations of the N,N and L ligands affect the spectroscopy, the photophysics, and the photochemistry of these chromophores easily incorporated into a complex environment. Visible light absorption opens the route to a wide range of applications such as sensors, probes, or emissive labels for imaging biomolecules. Halide complexes [Re(X)(CO)3(bpy)] (X = Cl, Br, or I; bpy = 2,2'-bipyridine) exhibit complex electronic structure and large spin-orbit effects that do not correlate with the heavy atom effects. Indeed, the (1)MLCT → (3)MLCT intersystem crossing (ISC) kinetics is slower than in [Ru(bpy)3](2+) or [Fe(bpy)3](2+) despite the presence of a third-row transition metal. Counterintuitively, singlet excited-state lifetime increases on going from Cl (85 fs) to Br (128 fs) and to I (152 fs). Moreover, correlation between the Re-X stretching mode and the rate of ISC is observed. In this Account, we emphasize on the role of spin-vibronic coupling on the mechanism of ultrafast ISC put in evidence in [Re(Br)(CO)3(bpy)]. For this purpose, we have developed a model Hamiltonian for solving an 11 electronic excited states multimode problem including vibronic and SO coupling within the linear vibronic coupling (LVC) approximation and the assumption of harmonic potentials. The presence of a central metal atom coupled to rigid ligands, such as α-diimine, ensures nuclear motion of small amplitudes and a priori justifies the use of the LVC model. The simulation of the ultrafast dynamics by wavepacket propagations using the multiconfiguration time-dependent Hartree (MCTDH) method is based on density functional theory (DFT), and its time-dependent extension to excited states (TD-DFT) electronic structure data. We believe that the interplay between time-resolved experiments and these pioneering simulations covering the first picoseconds and including spin-vibronic coupling will promote a number of quantum dynamical studies that will contribute to a better understanding of ultrafast processes in a wide range of organic and inorganic chromophores easily incorporated in biosystems or supramolecular devices for specific functions.

  19. Multiscale models and stochastic simulation methods for computing rare but key binding events in cell biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerrier, C.; Holcman, D., E-mail: david.holcman@ens.fr; Mathematical Institute, Oxford OX2 6GG, Newton Institute

    The main difficulty in simulating diffusion processes at a molecular level in cell microdomains is due to the multiple scales involving nano- to micrometers. Few to many particles have to be simulated and simultaneously tracked while there are exploring a large portion of the space for binding small targets, such as buffers or active sites. Bridging the small and large spatial scales is achieved by rare events representing Brownian particles finding small targets and characterized by long-time distribution. These rare events are the bottleneck of numerical simulations. A naive stochastic simulation requires running many Brownian particles together, which is computationallymore » greedy and inefficient. Solving the associated partial differential equations is also difficult due to the time dependent boundary conditions, narrow passages and mixed boundary conditions at small windows. We present here two reduced modeling approaches for a fast computation of diffusing fluxes in microdomains. The first approach is based on a Markov mass-action law equations coupled to a Markov chain. The second is a Gillespie's method based on the narrow escape theory for coarse-graining the geometry of the domain into Poissonian rates. The main application concerns diffusion in cellular biology, where we compute as an example the distribution of arrival times of calcium ions to small hidden targets to trigger vesicular release.« less

  20. Self-acceleration in scalar-bimetric theories

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Valageas, Patrick

    2018-05-01

    We describe scalar-bimetric theories where the dynamics of the Universe are governed by two separate metrics, each with an Einstein-Hilbert term. In this setting, the baryonic and dark matter components of the Universe couple to metrics which are constructed as functions of these two gravitational metrics. More precisely, the two metrics coupled to matter are obtained by a linear combination of their vierbeins, with scalar-dependent coefficients. The scalar field, contrary to dark-energy models, does not have a potential of which the role is to mimic a late-time cosmological constant. The late-time acceleration of the expansion of the Universe can be easily obtained at the background level in these models by appropriately choosing the coupling functions appearing in the decomposition of the vierbeins for the baryonic and dark matter metrics. We explicitly show how the concordance model can be retrieved with negligible scalar kinetic energy. This requires the scalar coupling functions to show variations of order unity during the accelerated expansion era. This leads in turn to deviations of order unity for the effective Newton constants and a fifth force that is of the same order as Newtonian gravity, with peculiar features. The baryonic and dark matter self-gravities are amplified although the gravitational force between baryons and dark matter is reduced and even becomes repulsive at low redshift. This slows down the growth of baryonic density perturbations on cosmological scales, while dark matter perturbations are enhanced. These scalar-bimetric theories have a perturbative cutoff scale of the order of 1 AU, which prevents a precise comparison with Solar System data. On the other hand, we can deduce strong requirements on putative UV completions by analyzing the stringent constraints in the Solar System. Hence, in our local environment, the upper bound on the time evolution of Newton's constant requires an efficient screening mechanism that both damps the fifth force on small scales and decouples the local value of Newton constant from its cosmological value. This cannot be achieved by a quasistatic chameleon mechanism and requires going beyond the quasistatic regime and probably using derivative screenings, such as Kmouflage or Vainshtein screening, on small scales.

  1. AFRL Combustion Science Branch Research Activities and Capabilities

    DTIC Science & Technology

    2003-03-01

    a wide variety of partners that include other DoD organizations, NASA, DoE, . engine companies , universities, small businesses, and on-site...Dynamics with Chemistry (CFDC) code (Katta et aI., 1994) known as UNICORN (UNsteady Ignition and COmbustion with ReactioNs). UNICORN is a time- dependent...simulate a variety of dynamic flames (Roquemore and Katta, 1998). From its conception, the development of UNICORN has been strongly coupled with

  2. Comparing Effects of Cluster-Coupled Patterns on Opinion Dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Si, Xia-Meng; Zhang, Yan-Chao

    2012-07-01

    Community structure is another important feature besides small-world and scale-free property of complex networks. Communities can be coupled through specific fixed links between nodes, or occasional encounter behavior. We introduce a model for opinion evolution with multiple cluster-coupled patterns, in which the interconnectivity denotes the coupled degree of communities by fixed links, and encounter frequency controls the coupled degree of communities by encounter behaviors. Considering the complicated cognitive system of people, the CODA (continuous opinions and discrete actions) update rules are used to mimic how people update their decisions after interacting with someone. It is shown that, large interconnectivity and encounter frequency both can promote consensus, reduce competition between communities and propagate some opinion successfully across the whole population. Encounter frequency is better than interconnectivity at facilitating the consensus of decisions. When the degree of social cohesion is same, small interconnectivity has better effects on lessening the competence between communities than small encounter frequency does, while large encounter frequency can make the greater degree of agreement across the whole populations than large interconnectivity can.

  3. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance,more » we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.« less

  4. Properties of the new high Tc materials - An analysis based on fermiology

    NASA Astrophysics Data System (ADS)

    Kresin, V. Z.; Deutscher, G.; Wolf, S. A.

    1989-03-01

    A small value of the Fermi energy, E(f), in the new Tc oxides and its consequences are the subject of this study. It is shown that the small value of Ef allows separation of the electronic contribution to the heat capacity in the high-temperature region between E(f)kB and theta(D) to determine the value of the electron-phonon coupling constant lambda. The linear temperature dependence of the normal resistance is mainly due to a large anisotropy of the system. A small value of E(f) allows the lattice contribution to the thermal conductivity to play a dominant role. A strong electron-phonon coupling is manifested in the increase of the thermal conductivity in the region T lower than Tc, and the appearance of such coupling is also connected with a small value of E(f).

  5. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less

  6. Superconducting Qubit (transmon) coupled to Surface Acoustic Waves (SAWs)

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Johansson, Göran

    We work on a hybrid system, which couples the transmon in circuit QED to the propagating mechanical modes of Surface Acoustic Waves (SAWs). This is an analogue of circuit QED system but replacing the microwave photons by SAW phonons. We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. We show that the giant atom can generate entangled phonon pairs, which may have applications in quantum communication. L.G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  7. Piezoelectric coupling in a field-effect transistor with a nanohybrid channel of ZnO nanorods grown vertically on graphene.

    PubMed

    Quang Dang, Vinh; Kim, Do-Il; Thai Duy, Le; Kim, Bo-Yeong; Hwang, Byeong-Ung; Jang, Mi; Shin, Kyung-Sik; Kim, Sang-Woo; Lee, Nae-Eung

    2014-12-21

    Piezoelectric coupling phenomena in a graphene field-effect transistor (GFET) with a nano-hybrid channel of chemical-vapor-deposited Gr (CVD Gr) and vertically aligned ZnO nanorods (NRs) under mechanical pressurization were investigated. Transfer characteristics of the hybrid channel GFET clearly indicated that the piezoelectric effect of ZnO NRs under static or dynamic pressure modulated the channel conductivity (σ) and caused a positive shift of 0.25% per kPa in the Dirac point. However, the GFET without ZnO NRs showed no change in either σ or the Dirac point. Analysis of the Dirac point shifts indicated transfer of electrons from the CVD Gr to ZnO NRs due to modulation of their interfacial barrier height under pressure. High responsiveness of the hybrid channel device with fast response and recovery times was evident in the time-dependent behavior at a small gate bias. In addition, the hybrid channel FET could be gated by mechanical pressurization only. Therefore, a piezoelectric-coupled hybrid channel GFET can be used as a pressure-sensing device with low power consumption and a fast response time. Hybridization of piezoelectric 1D nanomaterials with a 2D semiconducting channel in FETs enables a new design for future nanodevices.

  8. Dissipative versus dispersive coupling in quantum optomechanics: Squeezing ability and stability

    NASA Astrophysics Data System (ADS)

    Tagantsev, A. K.; Sokolov, I. V.; Polzik, E. S.

    2018-06-01

    The generation of squeezed light and the optomechanical instability of a dissipative type of opto-mechanical coupling are theoretically addressed for a cavity with the input mirror serving as a mechanical oscillator or for an equivalent system. The problem is treated analytically for the case of resonance excitation or small detunings, mainly focusing on the bad-cavity limit. A qualitative difference between the dissipative and purely dispersive coupling is reported. In particular, it is shown that, for the purely dissipative coupling in the bad-cavity regime, the backaction is strongly reduced and the squeezing ability of the system is strongly suppressed, in contrast to the case of purely dispersive coupling. It is also shown that, for small detunings, stability diagrams for the cases of the purely dispersive and dissipative couplings are qualitatively identical to within the change of the sign of detuning. The results obtained are compared with those from the recent theoretical publications.

  9. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  10. The limited role of galaxy mergers in driving stellar mass growth over cosmic time

    NASA Astrophysics Data System (ADS)

    Martin, G.; Kaviraj, S.; Devriendt, J. E. G.; Dubois, Y.; Laigle, C.; Pichon, C.

    2017-11-01

    A key unresolved question is the role that galaxy mergers play in driving stellar mass growth over cosmic time. Recent observational work hints at the possibility that the overall contribution of 'major' mergers (mass ratios ≳ 1 : 4) to cosmic stellar mass growth may be small, because they enhance star formation rates by relatively small amounts at high redshift, when much of today's stellar mass was assembled. However, the heterogeneity and relatively small size of today's data sets, coupled with the difficulty in identifying genuine mergers, makes it challenging to empirically quantify the merger contribution to stellar mass growth. Here, we use Horizon-AGN, a cosmological hydrodynamical simulation, to comprehensively quantify the contribution of mergers to the star formation budget over the lifetime of the Universe. We show that (1) both major and minor mergers enhance star formation to similar amounts, (2) the fraction of star formation directly attributable to merging is small at all redshifts (e.g. ∼35 and ∼20 per cent at z ∼ 3 and z ∼ 1, respectively) and (3) only ∼25 per cent of today's stellar mass is directly attributable to galaxy mergers over cosmic time. Our results suggest that smooth accretion, not merging, is the dominant driver of stellar mass growth over the lifetime of the Universe.

  11. Induced high-order resonance linewidth shrinking with multiple coupled resonators in silicon-organic hybrid slotted two-dimensional photonic crystals for reduced optical switching power in bistable devices

    NASA Astrophysics Data System (ADS)

    Hoang, Thu Trang; Ngo, Quang Minh; Vu, Dinh Lam; Le, Khai Q.; Nguyen, Truong Khang; Nguyen, Hieu P. T.

    2018-01-01

    Shrinking the linewidth of resonances induced by multiple coupled resonators is comprehensively analyzed using the coupled-mode theory (CMT) in time. Two types of coupled resonators under investigation are coupled resonator optical waveguides (CROWs) and side-coupled resonators with waveguide (SCREW). We examine the main parameters influencing on the spectral response such as the number of resonators (n) and the phase shift (φ) between two adjacent resonators. For the CROWs geometry consisting of n coupled resonators, we observe the quality (Q) factor of the right- and left-most resonant lineshapes increases n times larger than that of a single resonator. For the SCREW geometry, relying on the phase shift, sharp, and asymmetric resonant lineshape of the high Q factor a narrow linewidth of the spectral response could be achieved. We employ the finite-difference time-domain (FDTD) method to design and simulate two proposed resonators for practical applications. The proposed coupled resonators in silicon-on-insulator (SOI) slotted two-dimensional (2-D) photonic crystals (PhCs) filled and covered with a low refractive index organic material. Slotted PhC waveguides and cavities are designed to enhance the electromagnetic intensity and to confine the light into small cross-sectional area with low refractive index so that efficient optical devices could be achieved. A good agreement between the theoretical CMT analysis and the FDTD simulation is shown as an evidence for our accurate investigation. All-optical switches based on the CROWs in the SOI slotted 2-D PhC waveguide that are filled and covered by a nonlinear organic cladding to overcome the limitations of its well-known intrinsic properties are also presented. From the calculations, we introduce a dependency of the normalized linewidth of the right-most resonance and its switching power of the all-optical switches on number of resonator, n. This result might provide a guideline for all-optical signal processing on a silicon PhC chip design.

  12. Comprehensive quantitative analysis of Chinese patent drug YinHuang drop pill by ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry.

    PubMed

    Wong, Tin-Long; An, Ya-Qi; Yan, Bing-Chao; Yue, Rui-Qi; Zhang, Tian-Bo; Ho, Hing-Man; Ren, Tian-Jing; Fung, Hau-Yee; Ma, Dik-Lung; Leung, Chung-Hang; Liu, Zhong-Liang; Pu, Jian-Xin; Han, Quan-Bin; Sun, Han-Dong

    2016-06-05

    YinHuang drop pill (YHDP) is a new preparation, derived from the traditional YinHuang (YH) decoction. Since drop pills are one of the newly developed forms of Chinese patent drugs, not much research has been done regarding the quality and efficacy. This study aims to establish a comprehensive quantitative analysis of the chemical profile of YHDP. ultra high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to identify 34 non-sugar small molecules including 15 flavonoids, 9 phenolic acids, 5 saponins, 1 iridoid, and 4 iridoid glycosides in YHDP samples, and 26 of them were quantitatively determined. Sugar composition of YHDP in terms of fructose, glucose and sucrose was examined via a high performance liquid chromatography-evaporative light scattering detector on an amide column (HPLC-NH2P-ELSD). Macromolecules were examined by high performance gel permeation chromatography coupled with ELSD (HPGPC-ELSD). The content of the drop pill's skeleton component PEG-4000 was also quantified via ultra-high performance liquid chromatography coupled with charged aerosol detector (UHPLC-CAD). The results showed that up to 73% (w/w) of YHDP could be quantitatively determined. Small molecules accounted for approximately 5%, PEG-4000 represented 68%, while no sugars or macromolecules were found. Furthermore, YHDP showed no significant differences in terms of daily dosage, compared to YinHuang granules and YinHuang oral liquid; however, it has a higher small molecules content compared to YinHuang lozenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Exploiting One-Dimensional Exciton-Phonon Coupling for Tunable and Efficient Single-Photon Generation with a Carbon Nanotube.

    PubMed

    Jeantet, A; Chassagneux, Y; Claude, T; Roussignol, P; Lauret, J S; Reichel, J; Voisin, C

    2017-07-12

    Condensed-matter emitters offer enriched cavity quantum electrodynamical effects due to the coupling to external degrees of freedom. In the case of carbon nanotubes, a very peculiar coupling between localized excitons and the one-dimensional acoustic phonon modes can be achieved, which gives rise to pronounced phonon wings in the luminescence spectrum. By coupling an individual nanotube to a tunable optical microcavity, we show that this peculiar exciton-phonon coupling is a valuable resource to enlarge the tuning range of the single-photon source while keeping an excellent exciton-photon coupling efficiency and spectral purity. Using the unique flexibility of our scanning fiber cavity, we are able to measure the efficiency spectrum of the very same nanotube in the Purcell regime for several mode volumes. Whereas this efficiency spectrum looks very much like the free-space luminescence spectrum when the Purcell factor is small (large mode volume), we show that the deformation of this spectrum at lower mode volumes can be traced back to the strength of the exciton-photon coupling. It shows an enhanced efficiency on the red wing that arises from the asymmetry of the incoherent energy exchange processes between the exciton and the cavity. This allows us to obtain a tuning range up to several hundred times the spectral width of the source.

  14. Spin Wave Theory in Two-Dimensional Coupled Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Shimahara, Hiroshi

    2018-04-01

    We apply spin wave theory to two-dimensional coupled antiferromagnets. In particular, we primarily examine a system that consists of small spins coupled by a strong exchange interaction J1, large spins coupled by a weak exchange interaction J2, and an anisotropic exchange interaction J12 between the small and large spins. This system is an effective model of the organic antiferromagnet λ-(BETS)2FeCl4 in its insulating phase, in which intriguing magnetic phenomena have been observed, where the small and large spins correspond to π electrons and 3d spins, respectively. BETS stands for bis(ethylenedithio)tetraselenafulvalene. We obtain the antiferromagnetic transition temperature TN and the sublattice magnetizations m(T) and M(T) of the small and large spins, respectively, as functions of the temperature T. When T increases, m(T) is constant with a slight decrease below TN, even where M(T) decreases significantly. When J1 ≫ J12 and J2 = 0, an analytical expression for TN is derived. The estimated value of TN and the behaviors of m(T) and M(T) agree with the observations of λ-(BETS)2FeCl4.

  15. The CESM Large Ensemble Project: Inspiring New Ideas and Understanding

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Deser, C.

    2016-12-01

    While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920-2100) 40+ times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 2000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Examples of scientists and stakeholders that are using the CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change will be highlighted the presentation.

  16. Room-temperature cavity quantum electrodynamics with strongly coupled Dicke states

    NASA Astrophysics Data System (ADS)

    Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN.; Kay, Christopher W. M.

    2017-09-01

    The strong coupling regime is essential for efficient transfer of excitations between states in different quantum systems on timescales shorter than their lifetimes. The coupling of single spins to microwave photons is very weak but can be enhanced by increasing the local density of states by reducing the magnetic mode volume of the cavity. In practice, it is difficult to achieve both small cavity mode volume and low cavity decay rate, so superconducting metals are often employed at cryogenic temperatures. For an ensembles of N spins, the spin-photon coupling can be enhanced by √{N } through collective spin excitations known as Dicke states. For sufficiently large N the collective spin-photon coupling can exceed both the spin decoherence and cavity decay rates, making the strong-coupling regime accessible. Here we demonstrate strong coupling and cavity quantum electrodynamics in a solid-state system at room-temperature. We generate an inverted spin-ensemble with N 1015 by photo-exciting pentacene molecules into spin-triplet states with spin dephasing time T2* 3 μs. When coupled to a 1.45 GHz TE01δ mode supported by a high Purcell factor strontium titanate dielectric cavity (Vm 0.25 cm3, Q 8,500), we observe Rabi oscillations in the microwave emission from collective Dicke states and a 1.8 MHz normal-mode splitting of the resultant collective spin-photon polariton. We also observe a cavity protection effect at the onset of the strong-coupling regime which decreases the polariton decay rate as the collective coupling increases.

  17. Ultra-small single-negative electric metamaterials for electromagnetic coupling reduction of microstrip antenna array.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Qi, Mei-Qing; Zeng, Hui-Yong

    2012-09-24

    We report initially the design, fabrication and measurement of using waveguided electric metamaterials (MTM) in the design of closely-spaced microtrip antenna arrays with mutual coupling reduction. The complementary spiral ring resonators (CSRs) which exhibit single negative resonant permittivity around 3.5GHz are used as the basic electric MTM element. For verification, two CSRs with two and three concentric rings are considered, respectively. By properly arranging these well engineered waveguided MTMs between two H-plane coupled patch antennas, both numerical and measured results indicate that more than 8.4 dB mutual coupling reduction is obtained. The mechanism has been studied from a physical insight. The electric MTM element is electrically small, enabling the resultant antenna array to exhibit a small separation (λo/8 at the operating wavelength) and thus a high directivity. The proposed strategy opens an avenue to new types of antenna with super performances and can be generalized for other electric resonators.

  18. Baryon currents in QCD with compact dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucini, B.; Patella, A.; Istituto Nazionale Fisica Nucleare Sezione di Pisa, Largo Pontecorvo 3, 56126 Pisa

    2007-06-15

    On a compact space with nontrivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal, and parity. We show at one loop in perturbation theory that a physical signature for this phenomenon is a nonzero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.

  19. Multiphase chemistry in a microphysical radiation fog model—A numerical study

    NASA Astrophysics Data System (ADS)

    Bott, Andreas; Carmichael, Gregory R.

    A microphysical radiation fog model is coupled with a detailed chemistry module to simulate chemical reactions in the gas phase and in fog water during a radiation fog event. In the chemical part of the model the microphysical particle spectrum is subdivided into three size classes corresponding to non-activated aerosol particles, small and large fog droplets. Chemical reactions in the liquid phase are separately calculated in the small and in the large droplet size class. The impact of the chemical constitution of activated aerosols on fogwater chemistry is considered in the model simulations. The mass transfer of chemical species between the gas phase and the two liquid phases is treated in detail by solving the corresponding coupled differential equation system. The model also accounts for concentration changes of gas-phase and aqueous-phase chemical species which are induced by turbulence, gravitational settling and by evaporation/condensation processes. Numerical results demonstrate that fogwater chemistry is strongly controlled by dynamic processes, i.e. the vertical growth of the fog, turbulent mixing processes and the gravitational settling of the particles. The concentrations of aqueous-phase chemical species are different in the two droplet size classes. Reactands with lower water solubility are mainly found in the large droplet size class because the characteristic time for their mass transfer from the gas phase into the liquid phase is essentially longer than the characteristic time for the formation of large fog droplets. Species with high water solubility are rapidly transferred into the small fog droplets and are then washed out by wet deposition before these particles grow further to form large droplets. Thus, the concentrations of the major ions (NO 3-, NH 4+) are much higher in small than in large droplets, yielding distinctly lower pH values of the small particles. In the present study the reaction of sulfur with H 2O 2 and the Fe(III)-catalysed autoxidation of S(IV) are the major S(VI) producing mechanisms in fog water. Most of the time the sulfur oxidation rates are higher in the large than in the small droplets. Fogwater deposition by gravitational settling occurs mainly in the large droplet size class. However, since in the small droplets the concentrations of chemical species with very good water solubility are relatively high, in both droplet size classes the total wet deposition of these reactands is of the same order of magnitude.

  20. Pulse-coupled neural network implementation in FPGA

    NASA Astrophysics Data System (ADS)

    Waldemark, Joakim T. A.; Lindblad, Thomas; Lindsey, Clark S.; Waldemark, Karina E.; Oberg, Johnny; Millberg, Mikael

    1998-03-01

    Pulse Coupled Neural Networks (PCNN) are biologically inspired neural networks, mainly based on studies of the visual cortex of small mammals. The PCNN is very well suited as a pre- processor for image processing, particularly in connection with object isolation, edge detection and segmentation. Several implementations of PCNN on von Neumann computers, as well as on special parallel processing hardware devices (e.g. SIMD), exist. However, these implementations are not as flexible as required for many applications. Here we present an implementation in Field Programmable Gate Arrays (FPGA) together with a performance analysis. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications. The latter may include advanced on-line image analysis with close to real-time performance.

  1. Resummed tree heptagon

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    2018-04-01

    The form factor program for the regularized space-time S-matrix in planar maximally supersymmetric gauge theory, known as the pentagon operator product expansion, is formulated in terms of flux-tube excitations propagating on a dual two-dimensional world-sheet, whose dynamics is known exactly as a function of 't Hooft coupling. Both MHV and non-MHV amplitudes are described in a uniform, systematic fashion within this framework, with the difference between the two encoded in coupling-dependent helicity form factors expressed via Zhukowski variables. The nontrivial SU(4) tensor structure of flux-tube transitions is coupling independent and is known for any number of charged excitations from solutions of a system of Watson and Mirror equations. This description allows one to resum the infinite series of form factors and recover the space-time S-matrix exactly in kinematical variables at a given order of perturbation series. Recently, this was done for the hexagon. Presently, we successfully perform resummation for the seven-leg tree NMHV amplitude. To this end, we construct the flux-tube integrands of the fifteen independent Grassmann component of the heptagon with an infinite number of small fermion-antifermion pairs accounted for in NMHV two-channel conformal blocks.

  2. Variational Methods For Sloshing Problems With Surface Tension

    NASA Astrophysics Data System (ADS)

    Tan, Chee Han; Carlson, Max; Hohenegger, Christel; Osting, Braxton

    2016-11-01

    We consider the sloshing problem for an incompressible, inviscid, irrotational fluid in a container, including effects due to surface tension on the free surface. We restrict ourselves to a constant contact angle and we seek time-harmonic solutions of the linearized problem, which describes the time-evolution of the fluid due to a small initial disturbance of the surface at rest. As opposed to the zero surface tension case, where the problem reduces to a partial differential equation for the velocity potential, we obtain a coupled system for the velocity potential and the free surface displacement. We derive a new variational formulation of the coupled problem and establish the existence of solutions using the direct method from the Calculus of Variations. In the limit of zero surface tension, we recover the variational formulation of the classical Steklov eigenvalue problem, as derived by B. A. Troesch. For the particular case of an axially symmetric container, we propose a finite element numerical method for computing the sloshing modes of the coupled system. The scheme is implemented in FEniCS and we obtain a qualitative description of the effect of surface tension on the sloshing modes.

  3. Weak Nonlinearity Effects in TG and EAW Modes

    NASA Astrophysics Data System (ADS)

    Ashourvan, Arash; Dubin, Daniel H. E.

    2013-10-01

    We have studied the nonlinear coupling of Trivelpiece-Gould modes as well as EAW modes, in a cylindrically symmetric plasma with average density n0 and periodic boundary conditions at the axial ends of plasma. For Trivelpiece-Gould modes, the cold fluid formalism gives the slow time evolution of mode amplitudes due to nonlinear couplings. For EAW modes, the Vlasov-Poisson formalism is required. We analyze the coupling between mode mz = 2 with frequency ω2 and mode mz = 1 with frequency ω1, with initial density perturbations n2 (0) >>n1 (0) . For small detuning Δω ≡ 2ω1 -ω2 <<ω1n2 (0) /n0 , mode amplitude n1 grows exponentially in time due to resonant parametric interaction with mode mz = 2 , at a rate Γ which is linearly propotional to n2 (0) . For Δω >>ω1n2 (0) /n0 , mode amplitude n1 oscillates about its initial value, with frequency Δω and amplitude n1(2) ~n2 (0) n1 (0) . In both cases the theory is consistent with experiments. Work supported by PHY-0903877, DE-SC0002451, DE-SC0008693.

  4. A hydrodynamic model for granular material flows including segregation effects

    NASA Astrophysics Data System (ADS)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  5. OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads

    NASA Astrophysics Data System (ADS)

    Kosakowski, G.; Kulik, D. A.; Shao, H.

    2012-04-01

    OpenGeoSys-GEMS is a generic purpose reactive transport code based on the operator splitting approach. The code couples the Finite-Element groundwater flow and multi-species transport modules of the OpenGeoSys (OGS) project (http://www.ufz.de/index.php?en=18345) with the GEM-Selektor research package to model thermodynamic equilibrium of aquatic (geo)chemical systems utilizing the Gibbs Energy Minimization approach (http://gems.web.psi.ch/). The combination of OGS and the GEM-Selektor kernel (GEMS3K) is highly flexible due to the object-oriented modular code structures and the well defined (memory based) data exchange modules. Like other reactive transport codes, the practical applicability of OGS-GEMS is often hampered by the long calculation time and large memory requirements. • For realistic geochemical systems which might include dozens of mineral phases and several (non-ideal) solid solutions the time needed to solve the chemical system with GEMS3K may increase exceptionally. • The codes are coupled in a sequential non-iterative loop. In order to keep the accuracy, the time step size is restricted. In combination with a fine spatial discretization the time step size may become very small which increases calculation times drastically even for small 1D problems. • The current version of OGS is not optimized for memory use and the MPI version of OGS does not distribute data between nodes. Even for moderately small 2D problems the number of MPI processes that fit into memory of up-to-date workstations or HPC hardware is limited. One strategy to overcome the above mentioned restrictions of OGS-GEMS is to parallelize the coupled code. For OGS a parallelized version already exists. It is based on a domain decomposition method implemented with MPI and provides a parallel solver for fluid and mass transport processes. In the coupled code, after solving fluid flow and solute transport, geochemical calculations are done in form of a central loop over all finite element nodes with calls to GEMS3K and consecutive calculations of changed material parameters. In a first step the existing MPI implementation was utilized to parallelize this loop. Calculations were split between the MPI processes and afterwards data was synchronized by using MPI communication routines. Furthermore, multi-threaded calculation of the loop was implemented with help of the boost thread library (http://www.boost.org). This implementation provides a flexible environment to distribute calculations between several threads. For each MPI process at least one and up to several dozens of worker threads are spawned. These threads do not replicate the complete OGS-GEM data structure and use only a limited amount of memory. Calculation of the central geochemical loop is shared between all threads. Synchronization between the threads is done by barrier commands. The overall number of local threads times MPI processes should match the number of available computing nodes. The combination of multi-threading and MPI provides an effective and flexible environment to speed up OGS-GEMS calculations while limiting the required memory use. Test calculations on different hardware show that for certain types of applications tremendous speedups are possible.

  6. The scientific targets of the SCOPE mission

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Saito, Y.; Tsuda, Y.; Shinohara, I.; Kojima, H.

    Future Japanese magnetospheric mission "SCOPE" is now under study (planned to be launched in 2012). The main purpose of this mission is to investigate the dynamic behaviors of plasmas in the Earth's magnetosphere from the view-point of cross-scale coupling. Dynamical collisionless space plasma phenomena, be they large scale as a whole, are chracterized by coupling over various time and spatial scales. The best example would be the magnetic reconnection process, which is a large scale energy conversion process but has a small key region at the heart of its engine. Inside the key region, electron scale dynamics plays the key role in liberating the frozen-in constraint, by which reconnection is allowed to proceed. The SCOPE mission is composed of one large mother satellite and four small daughter satellites. The mother spacecraft will be equiped with the electron detector that has 10 msec time resolution so that scales down to the electron's will be resolved. Three of the four daughter satellites surround the mother satellite 3-dimensionally with the mutual distances between several km and several thousand km, which are varied during the mission. Plasma measurements on these spacecrafts will have 1 sec resolution and will provide information on meso-scale plasma structure. The fourth daughter satellite stays near the mother satellite with the distance less than 100km. By correlation between the two plasma wave instruments on the daughter and the mother spacecrafts, propagation of the waves and the information on the electron scale dynamics will be obtained. By this strategy, both meso- and micro-scale information on dynamics are obtained, that will enable us to investigate the physics of the space plasma from the cross-scale coupling point of view.

  7. Development of a Through Tubing (Microhole) Artificial Lift System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steve Bodden

    2006-09-30

    The goal of this project was to develop a small diameter pump system capable of being deployed through existing production tubing strings in oil/gas wells. The pump system would then pump water up an inner tubing string (likely coil tubing) and allow gas to flow in the annulus between the coil tubing and production tubing. Accomplishing this would allow wells that are currently loaded up (unable to flow at high enough rates to lift the fluid out of the wellbore) to continue to produce additional gas/oil reserves. The project was unable to complete a working test system due to unforeseen complexities in coupling the system components together in part due to the small diameter. Although several of the individual components were sourced and secured, coupling them together and getting electricity to the motor proved technically more difficult than expected. Thus, the project is no longer active due primarily to the complications realized in coupling the components and the difficulties in getting electricity to the submersible motor in a slimhole system. The other problem in finishing this project was the lack of financial resources. When the grant was first applied for it was expected that it would be awarded in early 2004. Since the grant was not actually awarded until the end of August 2004, GPS had basically run out ofmore » $$ and the principle developer (Steve Bodden) had to find a full time job which began in late July 2004. When the grant was finally awarded in late August, it was still hoped that the project could proceed as a part time development but with less financial exposure to the partners in GPS. This became very problematic as it still had many technical obstacles to overcome to get it to the stage of prototype testing.« less

  8. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification.

    PubMed

    Yao, Yongpeng; Li, Shanshan; Cao, Jiaqian; Liu, Weiwei; Fan, Keqiang; Xiang, Wensheng; Yang, Keqian; Kong, Deming; Wang, Weishan

    2018-05-08

    Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.

  9. Development of very small-diameter, inductively coupled magnetized plasma device

    NASA Astrophysics Data System (ADS)

    Kuwahara, D.; Mishio, A.; Nakagawa, T.; Shinohara, S.

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (˜1019 m-3) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ˜1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  10. Development of very small-diameter, inductively coupled magnetized plasma device.

    PubMed

    Kuwahara, D; Mishio, A; Nakagawa, T; Shinohara, S

    2013-10-01

    In order to miniaturize a high-density, inductively coupled magnetized plasma or helicon plasma to be applied to, e.g., an industrial application and an electric propulsion field, small helicon device has been developed. The specifications of this device along with the experimental results are described. We have succeeded in generating high-density (~10(19) m(-3)) plasmas using quartz tubes with very small diameters of 10 and 20 mm, with a radio frequency power ~1200 and 700 W, respectively, in the presence of the magnetic field less than 1 kG.

  11. Incense and joss stick making in small household factories, Thailand.

    PubMed

    Siripanich, S; Siriwong, W; Keawrueang, P; Borjan, M; Robson, M

    2014-07-01

    Incense and joss stick are generally used in the world. Most products were made in small household factories. There are many environmental and occupational hazards in these factories. To evaluate the workplace environmental and occupational hazards in small household incense and joss stick factories in Roi-Et, Thailand. Nine small household factories in rural areas of Roi-Et, Thailand, were studied. Dust concentration and small aerosol particles were counted through real time exposure monitoring. The inductively coupled plasma optical emission spectrometry (ICP-OES) was used for quantitative measurement of heavy metal residue in incense products. Several heavy metals were found in dissolved dye and joss sticks. Those included barium, manganese, and lead. Rolling and shaking processes produced the highest concentration of dust and aerosols. Only 3.9% of female workers used personal protection equipment. Dust and chemicals were major threats in small household incense and joss stick factories in Thailand. Increasing awareness towards using personal protection equipment and emphasis on elimination of environmental workplace hazards should be considered to help the workers of this industry.

  12. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    PubMed

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  13. An electron fixed target experiment to search for a new vector boson A' decaying to e +e -

    DOE PAGES

    Rouven Essig; Schuster, Philip; Toro, Natalia; ...

    2011-02-02

    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10 –8 α to electrons (α' = e 2/4π) in the mass range 65 MeV < m A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiationmore » off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e +e - spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to α'/α one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.« less

  14. Effects of Langmuir Turbulence on Reactive Tracers in the Upper Ocean

    NASA Astrophysics Data System (ADS)

    Smith, K.; Hamlington, P.; Niemeyer, K.; Fox-Kemper, B.; Lovenduski, N. S.

    2017-12-01

    Reactive tracers such as carbonate chemical species play important roles in the oceanic carbon cycle, allowing the ocean to hold 60 times more carbon than the atmosphere. However, uncertainties in regional ocean sinks for anthropogenic CO2 are still relatively high. Many carbonate species are non-conserved, flux across the air-sea interface, and react on time scales similar to those of ocean turbulent processes, such as small-scale wave-driven Langmuir turbulence. All of this complexity gives rise to heterogeneous tracer distributions that are not fully understood and can greatly affect the rate at which CO2 fluxes across the air-sea interface. In order to more accurately model the biogeochemistry of the ocean in Earth system models (ESMs), a better understanding of the fundamental interactions between these reactive tracers and relevant turbulent processes is required. Research on reacting flows in other contexts has shown that the most significant tracer-flow couplings occur when coherent structures in the flow have timescales that rival reaction time scales. Langmuir turbulence, a 3D, small-scale, wave-driven process, has length and time scales on the order of O(1-100m) and O(1-10min), respectively. Once CO2 transfers across the air-sea interface, it reacts with seawater in a series of reactions whose rate limiting steps have time scales of 10-25s. This similarity in scales warrants further examination into interactions between these small-scale physical and chemical processes. In this presentation, large eddy simulations are used to examine the evolution of reactive tracers in the presence of realistic upper ocean wave- and shear-driven turbulence. The reactive tracers examined are those specifically involved in non-biological carbonate chemistry. The strength of Langmuir turbulence is varied in order to determine a relationship between the degree of enhancement (or reduction) of carbon that is fluxed across the air-sea interface due to the presence of Langmuir turbulence. By examining different reaction chemistry and surface forcing scenarios, the coupled turbulence-reactive tracer dynamics are connected with spatial and statistical properties of the resulting tracer fields. These results, along with implications for development of reduced order reactive tracer models, are discussed.

  15. High-Resolution and Frequency, Printed Miniature Magnetic Probes

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian

    2013-10-01

    Eagle Harbor Technologies, Inc. (EHT) is developing a technique to significantly reduce the cost and development time of producing magnetic field diagnostics. EHT is designing probes that can be printed on flexible PCBs thereby allowing for extremely small coils to be produced while essentially eliminating the time to wind the coils. The coil size can be extremely small when coupled with the EHT Hybrid Integrator, which is capable of high bandwidth measurements over short and long pulse durations. This integrator is currently being commercialized with the support of a DOE SBIR. Additionally, the flexible PCBs allow probes to be attached to complex surface and/or probes that have a complex 3D structure to be designed and fabricated. During the Phase I, EHT will design and construct magnetic field probes on flexible PCBs, which will be tested at the University of Washington's HIT-SI experiment and in EHT's material science plasma reactor. Funding provided by DOE SBIR/STTR Program.

  16. Transient, Small-Scale Field-Aligned Currents in the Plasma Sheet Boundary Layer During Storm Time Substorms

    NASA Technical Reports Server (NTRS)

    Nakamura, R.; Sergeev, V. A.; Baumjohann, W.; Plaschke, F.; Magnes, W.; Fischer, D.; Varsani, A.; Schmid, D.; Nakamura, T. K. M.; Russell, C. T.; hide

    2016-01-01

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the Separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward earth ward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  17. Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms.

    PubMed

    Nakamura, R; Sergeev, V A; Baumjohann, W; Plaschke, F; Magnes, W; Fischer, D; Varsani, A; Schmid, D; Nakamura, T K M; Russell, C T; Strangeway, R J; Leinweber, H K; Le, G; Bromund, K R; Pollock, C J; Giles, B L; Dorelli, J C; Gershman, D J; Paterson, W; Avanov, L A; Fuselier, S A; Genestreti, K; Burch, J L; Torbert, R B; Chutter, M; Argall, M R; Anderson, B J; Lindqvist, P-A; Marklund, G T; Khotyaintsev, Y V; Mauk, B H; Cohen, I J; Baker, D N; Jaynes, A N; Ergun, R E; Singer, H J; Slavin, J A; Kepko, E L; Moore, T E; Lavraud, B; Coffey, V; Saito, Y

    2016-05-28

    We report on field-aligned current observations by the four Magnetospheric Multiscale (MMS) spacecraft near the plasma sheet boundary layer (PSBL) during two major substorms on 23 June 2015. Small-scale field-aligned currents were found embedded in fluctuating PSBL flux tubes near the separatrix region. We resolve, for the first time, short-lived earthward (downward) intense field-aligned current sheets with thicknesses of a few tens of kilometers, which are well below the ion scale, on flux tubes moving equatorward/earthward during outward plasma sheet expansion. They coincide with upward field-aligned electron beams with energies of a few hundred eV. These electrons are most likely due to acceleration associated with a reconnection jet or high-energy ion beam-produced disturbances. The observations highlight coupling of multiscale processes in PSBL as a consequence of magnetotail reconnection.

  18. An automatic, stagnation point based algorithm for the delineation of Wellhead Protection Areas

    NASA Astrophysics Data System (ADS)

    Tosco, Tiziana; Sethi, Rajandrea; di Molfetta, Antonio

    2008-07-01

    Time-related capture areas are usually delineated using the backward particle tracking method, releasing circles of equally spaced particles around each well. In this way, an accurate delineation often requires both a very high number of particles and a manual capture zone encirclement. The aim of this work was to propose an Automatic Protection Area (APA) delineation algorithm, which can be coupled with any model of flow and particle tracking. The computational time is here reduced, thanks to the use of a limited number of nonequally spaced particles. The particle starting positions are determined coupling forward particle tracking from the stagnation point, and backward particle tracking from the pumping well. The pathlines are postprocessed for a completely automatic delineation of closed perimeters of time-related capture zones. The APA algorithm was tested for a two-dimensional geometry, in homogeneous and nonhomogeneous aquifers, steady state flow conditions, single and multiple wells. Results show that the APA algorithm is robust and able to automatically and accurately reconstruct protection areas with a very small number of particles, also in complex scenarios.

  19. Real-time diamagnetic flux measurements on ASDEX Upgrade.

    PubMed

    Giannone, L; Geiger, B; Bilato, R; Maraschek, M; Odstrčil, T; Fischer, R; Fuchs, J C; McCarthy, P J; Mertens, V; Schuhbeck, K H

    2016-05-01

    Real-time diamagnetic flux measurements are now available on ASDEX Upgrade. In contrast to the majority of diamagnetic flux measurements on other tokamaks, no analog summation of signals is necessary for measuring the change in toroidal flux or for removing contributions arising from unwanted coupling to the plasma and poloidal field coil currents. To achieve the highest possible sensitivity, the diamagnetic measurement and compensation coil integrators are triggered shortly before plasma initiation when the toroidal field coil current is close to its maximum. In this way, the integration time can be chosen to measure only the small changes in flux due to the presence of plasma. Two identical plasma discharges with positive and negative magnetic field have shown that the alignment error with respect to the plasma current is negligible. The measured diamagnetic flux is compared to that predicted by TRANSP simulations. The poloidal beta inferred from the diamagnetic flux measurement is compared to the values calculated from magnetic equilibrium reconstruction codes. The diamagnetic flux measurement and TRANSP simulation can be used together to estimate the coupled power in discharges with dominant ion cyclotron resonance heating.

  20. Particle model of a cylindrical inductively coupled ion source

    NASA Astrophysics Data System (ADS)

    Ippolito, N. D.; Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.

    2017-08-01

    In spite of the wide use of RF sources, a complete understanding of the mechanisms regulating the RF-coupling of the plasma is still lacking so self-consistent simulations of the involved physics are highly desirable. For this reason we are developing a 2.5D fully kinetic Particle-In-Cell Monte-Carlo-Collision (PIC-MCC) model of a cylindrical ICP-RF source, keeping the time step of the simulation small enough to resolve the plasma frequency scale. The grid cell dimension is now about seven times larger than the average Debye length, because of the large computational demand of the code. It will be scaled down in the next phase of the development of the code. The filling gas is Xenon, in order to minimize the time lost by the MCC collision module in the first stage of development of the code. The results presented here are preliminary, with the code already showing a good robustness. The final goal will be the modeling of the NIO1 (Negative Ion Optimization phase 1) source, operating in Padua at Consorzio RFX.

  1. Longitudinal Relations Between Constructive and Destructive Conflict and Couples’ Sleep

    PubMed Central

    El-Sheikh, Mona; Koss, Kalsea J.; Kelly, Ryan J.; Rauer, Amy J.

    2016-01-01

    We examined longitudinal relations between interpartner constructive (negotiation) and destructive (psychological and physical aggression) conflict strategies and couples’ sleep over 1 year. Toward explicating processes of effects, we assessed the intervening role of internalizing symptoms in associations between conflict tactics and couples’ sleep. Participants were 135 cohabiting couples (M age = 37 years for women and 39 years for men). The sample included a large representation of couples exposed to economic adversity. Further, 68% were European American and the remainder were primarily African American. At Time 1 (T1), couples reported on their conflict and their mental health (depression, anxiety). At T1 and Time 2, sleep was examined objectively with actigraphs for 7 nights. Three sleep parameters were derived: efficiency, minutes, and latency. Actor–partner interdependence models indicated that husbands’ use of constructive conflict forecasted increases in their own sleep efficiency as well as their own and their wives’ sleep duration over time. Actor and partner effects emerged, and husbands’ and wives’ use of destructive conflict strategies generally predicted worsening of some sleep parameters over time. Several mediation and intervening effects were observed for destructive conflict strategies. Some of these relations reveal that destructive conflict is associated with internalizing symptoms, which in turn are associated with some sleep parameters longitudinally. These findings build on a small, albeit growing, literature linking sleep with marital functioning, and illustrate that consideration of relationship processes including constructive conflict holds promise for gaining a better understanding of factors that influence the sleep of men and women. PMID:25915089

  2. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells.

    PubMed

    Ges, Igor A; Brindley, Rebecca L; Currie, Kevin P M; Baudenbacher, Franz J

    2013-12-07

    Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped "cell traps", each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion/repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time.

  3. On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    NASA Astrophysics Data System (ADS)

    Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin

    2017-12-01

    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.

  4. Computational study of the shock driven instability of a multiphase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan; Morgan, Brandon E.

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.

  5. Modeling Ballistic Current Flow in Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Experiments have shown carbon nanotubes (CNT) to be almost perfect conductors at small applied biases. The features of the CNT band structure, large velocity of the crossing subbands and the small number of modes that an electron close to the band center / Fermi energy can scatter into, are the reasons for the near perfect small bias conductance. We show that the CNT band structure does not help at large applied biases - electrons injected into the non crossing subbands can either be Bragg reflected or undergo Zener-type tunneling. This limits the current carrying capacity of CNT. We point out that the current carrying capacity of semiconductor quantum wires in the ballistic limit is different, owing to its band structure. The second aspect addressed is the relationship of nanotube chirality in determining the physics of metal-nanotube coupling. We show that a metallic-zigzag nanotube couples better than an armchair nanotube to a metal contact. This arises because in the case of armchair nanotubes, while the pi band couples well, the pi* band does not couple well to the metal. In the case of zigzag nanotube both crossing modes couple reasonably well to the metal. Many factors such as the role of curvature, strain and defects will play a role in determining the suitability of nanotubes as nanowires. From the limited view point of metal-nanotube coupling, we feel that metallic-zigzag nanotubes are preferable to armchair nanotubes.

  6. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity

    NASA Astrophysics Data System (ADS)

    Leiser, Randolph J.; Rotstein, Horacio G.

    2017-08-01

    Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.

  7. Holographic Methods Of Dynamic Particulate Measurements ¬â€?Current Status

    NASA Astrophysics Data System (ADS)

    Thompson, Brian J.

    1983-03-01

    The field of holographic particulate measurements continues to be very active with many new applications in such diverse fields as bubble chamber recording and contaminant measurements in small vials. The methods have also been extended to measure velocity distributions of particles within a volume, particularly by the application of subsequent image processing methods. These techniques could be coupled with hybrid systems to become near real time. The current status of these more recent developments is reviewed.

  8. An efficient numerical solution of the transient storage equations for solute transport in small streams

    USGS Publications Warehouse

    Runkel, Robert L.; Chapra, Steven C.

    1993-01-01

    Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.

  9. Two continuous coupled assays for ornithine-δ-aminotransferase.

    PubMed

    Juncosa, Jose I; Lee, Hyunbeom; Silverman, Richard B

    2013-09-15

    We have developed two new continuous coupled assays for ornithine-δ-aminotransferase (OAT) that are more sensitive than previous methods, measure activity in real time, and can be carried out in multiwell plates for convenience and high throughput. The first assay is based on the reduction of Δ(1)-pyrroline-5-carboxylate (P5C), generated from ornithine by OAT, using human pyrroline 5-carboxylate reductase 1 (PYCR1), which results in the concomitant oxidation of NADH (nicotinamide adenine dinucleotide, reduced form) to NAD⁺ (nicotinamide adenine dinucleotide, oxidized form). This procedure was found to be three times more sensitive than previous methods and is suitable for the study of small molecules as inhibitors or inactivators of OAT or as a method to determine OAT activity in unknown samples. The second method involves the detection of L-glutamate, produced during the regeneration of the cofactor pyridoxal 5'-phosphate (PLP) of OAT by an unamplified modification of the commercially available Amplex Red L-glutamate detection kit (Life Technologies). This assay is recommended for the determination of the substrate activity of small molecules against OAT; measuring the transformation of L-ornithine at high concentrations by this assay is complicated by the fact that it also acts as a substrate for the L-glutamate oxidase (GluOx) reporter enzyme. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Sports teams as complex adaptive systems: manipulating player numbers shapes behaviours during football small-sided games.

    PubMed

    Silva, Pedro; Vilar, Luís; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2016-01-01

    Small-sided and conditioned games (SSCGs) in sport have been modelled as complex adaptive systems. Research has shown that the relative space per player (RSP) formulated in SSCGs can impact on emergent tactical behaviours. In this study we adopted a systems orientation to analyse how different RSP values, obtained through manipulations of player numbers, influenced four measures of interpersonal coordination observed during performance in SSCGs. For this purpose we calculated positional data (GPS 15 Hz) from ten U-15 football players performing in three SSCGs varying in player numbers (3v3, 4v4 and 5v5). Key measures of SSCG system behaviours included values of (1) players' dispersion, (2) teams' separateness, (3) coupling strength and time delays between participants' emerging movements, respectively. Results showed that values of participants' dispersion increased, but the teams' separateness remained identical across treatments. Coupling strength and time delay also showed consistent values across SSCGs. These results exemplified how complex adaptive systems, like football teams, can harness inherent degeneracy to maintain similar team spatial-temporal relations with opponents through changes in inter-individual coordination modes (i.e., players' dispersion). The results imply that different team behaviours might emerge at different ratios of field dimension/player numbers. Therefore, sport pedagogists should carefully evaluate the effects of changing RSP in SSCGs as a way of promoting increased or decreased pressure on players.

  11. Small-scale (flash) flood early warning in the light of operational requirements: opportunities and limits with regard to user demands, driving data, and hydrologic modeling techniques

    NASA Astrophysics Data System (ADS)

    Philipp, Andy; Kerl, Florian; Büttner, Uwe; Metzkes, Christine; Singer, Thomas; Wagner, Michael; Schütze, Niels

    2016-05-01

    In recent years, the Free State of Saxony (Eastern Germany) was repeatedly hit by both extensive riverine flooding, as well as flash flood events, emerging foremost from convective heavy rainfall. Especially after a couple of small-scale, yet disastrous events in 2010, preconditions, drivers, and methods for deriving flash flood related early warning products are investigated. This is to clarify the feasibility and the limits of envisaged early warning procedures for small catchments, hit by flashy heavy rain events. Early warning about potentially flash flood prone situations (i.e., with a suitable lead time with regard to required reaction-time needs of the stakeholders involved in flood risk management) needs to take into account not only hydrological, but also meteorological, as well as communication issues. Therefore, we propose a threefold methodology to identify potential benefits and limitations in a real-world warning/reaction context. First, the user demands (with respect to desired/required warning products, preparation times, etc.) are investigated. Second, focusing on small catchments of some hundred square kilometers, two quantitative precipitation forecasts are verified. Third, considering the user needs, as well as the input parameter uncertainty (i.e., foremost emerging from an uncertain QPF), a feasible, yet robust hydrological modeling approach is proposed on the basis of pilot studies, employing deterministic, data-driven, and simple scoring methods.

  12. Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology

    NASA Astrophysics Data System (ADS)

    Boaretto, B. R. R.; Budzinski, R. C.; Prado, T. L.; Kurths, J.; Lopes, S. R.

    2018-05-01

    It is known that neural networks under small-world topology can present anomalous synchronization and nonstationary behavior for weak coupling regimes. Here, we propose methods to suppress the anomalous synchronization and also to diminish the nonstationary behavior occurring in weakly coupled neural network under small-world topology. We consider a network of 2000 thermally sensitive identical neurons, based on the model of Hodgkin-Huxley in a small-world topology, with the probability of adding non local connection equal to p = 0 . 001. Based on experimental protocols to suppress anomalous synchronization, as well as nonstationary behavior of the neural network dynamics, we make use of (i) external stimulus (pulsed current); (ii) biologic parameters changing (neuron membrane conductance changes); and (iii) body temperature changes. Quantification analysis to evaluate phase synchronization makes use of the Kuramoto's order parameter, while recurrence quantification analysis, particularly the determinism, computed over the easily accessible mean field of network, the local field potential (LFP), is used to evaluate nonstationary states. We show that the methods proposed can control the anomalous synchronization and nonstationarity occurring for weak coupling parameter without any effect on the individual neuron dynamics, neither in the expected asymptotic synchronized states occurring for large values of the coupling parameter.

  13. High-performance liquid chromatography with diode array detection coupled to electrospray time-of-flight and ion-trap tandem mass spectrometry to identify phenolic compounds from a lemon verbena extract.

    PubMed

    Quirantes-Piné, R; Funes, L; Micol, V; Segura-Carretero, A; Fernández-Gutiérrez, A

    2009-07-10

    High-performance liquid chromatography with diode array and electrospray ionization mass spectrometric detection was used to carry out the comprehensive characterization of a lemon verbena extract with demonstrated antioxidant and antiinflammatory activity. Two different MS techniques have been coupled to HPLC: on one hand, time-of-flight mass spectrometry, and on the other hand, tandem mass spectrometry on an ion-trap. The use of a small particle size C18 column (1.8 microm) provided a great resolution and made possible the separation of several isomers. The UV-visible spectrophotometry was used to delimit the class of phenolic compound and the accurate mass measurements on time-of-flight spectrometer enabled to identify the compounds present in the extract. Finally, the fragmentation pattern obtained in MS-MS experiments confirmed the proposed structures. This procedure was able to determine many well-known phenolic compounds present in lemon verbena such as verbascoside and its derivatives, diglucuronide derivatives of apigenin and luteolin, and eukovoside. Also gardoside, verbasoside, cistanoside F, theveside, campneoside I, chrysoeriol-7-diglucuronide, forsythoside A and acacetin-7-diglucuronide were found for the first time in lemon verbena.

  14. Scale size-dependent characteristics of the nightside aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.

    2017-02-01

    We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.

  15. Resin comparison and fast automated stepwise conventional synthesis of human SDF-1alpha.

    PubMed

    Patel, Hirendra; Chantell, Christina A; Fuentes, German; Menakuru, Mahendra; Park, Jae H

    2008-12-01

    Human SDF-1alpha contains 68 amino acids and is a member of the chemokine family of peptides. This long peptide was synthesized stepwise using classical conditions in 101 h. The reaction times were then reduced to deprotection times of 2 x 2 min and coupling times of 2 x 2.5 min, resulting in a total synthesis time of 22 h. The effect of different resins, resin substitutions and deprotection reagents on the crude peptide purities was compared. A small portion of crude peptide was purified using an RP-HPLC column and the mass of the final product was confirmed with MALDI-TOF mass spectrometry. Copyright 2008 European Peptide Society and John Wiley & Sons, Ltd.

  16. SAW properties in quartz-like α-GeO2 single crystal

    NASA Astrophysics Data System (ADS)

    Taziev, R. M.

    2018-05-01

    The paper investigates numerically the properties of surface acoustic waves (SAW) in a new α-GeO2 single crystal of trigonal crystal symmetry (32). It is shown that the SAW has a maximum value of electromechanical coupling coefficient ≈0.14% on Z+120°, X –cut of a crystal with a zero power flow deflection angle. For the case of Z+140°X+25°-cut, the SAW electromechanical coupling coefficient equals 0.17 %, but the power flow deflection angle is not zero. Calculations are made of the frequency dependence of the conductance of SAW interdigital transducers (IDT), which electrode number equals 100 and wavelength is 20 microns on Z+120°,X –cut crystal. The excitations of bulk acoustic waves are absent in this cut case. Leaky acoustic wave, generated by IDT on Z+120°,X –cut of crystal, has a small electromechanical coupling coefficient, which is 4 times less than that for SAW.

  17. Improved Limits for Higgs-Portal Dark Matter from LHC Searches.

    PubMed

    Hoferichter, Martin; Klos, Philipp; Menéndez, Javier; Schwenk, Achim

    2017-11-03

    Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the standard model fields via the Higgs boson. While these searches complement dark matter direct-detection experiments, a comparison of the two limits depends on the coupling of the Higgs boson to the nucleons forming the direct-detection nuclear target, typically parametrized in a single quantity f_{N}. We evaluate f_{N} using recent phenomenological and lattice-QCD calculations, and include for the first time the coupling of the Higgs boson to two nucleons via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes the two-nucleon contribution anomalously small. Our results, summarized as f_{N}=0.308(18), show that the uncertainty of the Higgs-nucleon coupling has been vastly overestimated in the past. The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting experimental searches.

  18. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    NASA Astrophysics Data System (ADS)

    Lyutorovich, N.; Tselyaev, V.; Speth, J.; Krewald, S.; Grümmer, F.; Reinhard, P.-G.

    2015-10-01

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree-Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  19. Reorientations, relaxations, metastabilities, and multidomains of skyrmion lattices

    DOE PAGES

    Bannenberg, L. J.; Qian, F.; Dalgliesh, R. M.; ...

    2017-11-13

    Magnetic skyrmions are nanosized topologically protected spin textures with particlelike properties. They can form lattices perpendicular to the magnetic field, and the orientation of these skyrmion lattices with respect to the crystallographic lattice is governed by spin-orbit coupling. By performing small-angle neutron scattering measurements, we investigate the coupling between the crystallographic and skyrmion lattices in both Cu 2OSeO 3 and the archetype chiral magnet MnSi. The results reveal that the orientation of the skyrmion lattice is primarily determined by the magnetic field direction with respect to the crystallographic lattice. In addition, it is also influenced by the magnetic history ofmore » the sample, which can induce metastable lattices. Kinetic measurements show that these metastable skyrmion lattices may or may not relax to their equilibrium positions under macroscopic relaxation times. Moreover, multidomain lattices may form when two or more equivalent crystallographic directions are favored by spin-orbit coupling and oriented perpendicular to the magnetic field.« less

  20. Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings

    DOE PAGES

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; ...

    2016-01-14

    A scaled quantum computer with donor spins in silicon would benefit from a viable semiconductor framework and a strong inherent decoupling of the qubits from the noisy environment. Coupling neighboring spins via the natural exchange interaction according to current designs requires gate control structures with extremely small length scales. In this work, we present a silicon architecture where bismuth donors with long coherence times are coupled to electrons that can shuttle between adjacent quantum dots, thus relaxing the pitch requirements and allowing space between donors for classical control devices. An adiabatic SWAP operation within each donor/dot pair solves the scalabilitymore » issues intrinsic to exchange-based two-qubit gates, as it does not rely on subnanometer precision in donor placement and is robust against noise in the control fields. In conclusion, we use this SWAP together with well established global microwave Rabi pulses and parallel electron shuttling to construct a surface code that needs minimal, feasible local control.« less

  1. Patients' attitudes to their embryos and their destiny: social conditioning?

    PubMed

    de Lacey, Sheryl

    2007-02-01

    The clinical management of embryo storage and disposal is dynamic and subject to changes in the cultural context such as public debate and the implementation of public policy. Studies of the decisions made by patient couples for their embryos, and trends in decision-making over time and in relation to issues arising in the cultural context are rare. Studies of the attitudes that patient couples have towards their frozen embryos have largely focused on measuring patients' intentions in relation to publicly contentious outcomes. A small but expanding number of interview studies are illuminating the meaning that couples attribute to frozen embryos and how this influences decisions for their destiny. This chapter maps both quantitative and qualitative studies of patients' attitudes and decisions illuminating similarities and contradictions in study findings, and ultimately highlights the range of attitudes in patients, clinics and the community towards what is evidently a difficult and morally challenging decision to end the storage of frozen embryos.

  2. Influence of a depletion interaction on dynamical heterogeneity in a dense quasi-two-dimensional colloid liquid.

    PubMed

    Ho, Hau My; Cui, Bianxiao; Repel, Stephen; Lin, Binhua; Rice, Stuart A

    2004-11-01

    We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid. (c) 2004 American Institute of Physics.

  3. Determination of dioxin-like polychlorinated biphenyls in 1 mL whole blood using programmable temperature vaporization large volume injection coupled to gas chromatogram and high-resolution mass spectrometry.

    PubMed

    Shen, Haitao; Guan, Rongfa; Li, Jingguang; Zhang, Lei; Ren, Yiping; Xu, Xiaomin; Song, Yang; Zhao, Yunfeng; Han, Jianlong; Wu, Yongning

    2013-03-12

    A sensitive method based on programmable temperature vaporization large volume injection coupled to gas chromatogram and high-resolution mass spectrometry (PTV-GC-HRMS) has been developed for the determination of ultra trace levels of dioxin-like polychlorinated biphenyls (DL PCBs) in small amounts of human blood. Blood samples (1mL) were first extracted by column extraction and then purified with column chromatorgraphies. Final extracts (20μL) were introduced to the PTV injector under the solvent vent mode and detected by GC-HRMS (SIM mode). PTV parameters were observed by changing one factor at a time (practical conditions: vent flow: 50mLmin(-1), vent pressure: 0kPa and vent time: 0.1min), recoveries of most PCB congeners ranged from 55.1% to 108%, and method detection limits were in the range of 0.11-1.63pgg(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  4. High-efficiency power transfer for silicon-based photonic devices

    NASA Astrophysics Data System (ADS)

    Son, Gyeongho; Yu, Kyoungsik

    2018-02-01

    We demonstrate an efficient coupling of guided light of 1550 nm from a standard single-mode optical fiber to a silicon waveguide using the finite-difference time-domain method and propose a fabrication method of tapered optical fibers for efficient power transfer to silicon-based photonic integrated circuits. Adiabatically-varying fiber core diameters with a small tapering angle can be obtained using the tube etching method with hydrofluoric acid and standard single-mode fibers covered by plastic jackets. The optical power transmission of the fundamental HE11 and TE-like modes between the fiber tapers and the inversely-tapered silicon waveguides was calculated with the finite-difference time-domain method to be more than 99% at a wavelength of 1550 nm. The proposed method for adiabatic fiber tapering can be applied in quantum optics, silicon-based photonic integrated circuits, and nanophotonics. Furthermore, efficient coupling within the telecommunication C-band is a promising approach for quantum networks in the future.

  5. Global excitation of wave phenomena in a dissipative multiconstituent medium. III - Response characteristics for different sources in the earth's thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.

    1987-01-01

    A linear trasnfer function model of the earth's thermosphere which includes the electric field momentum source is used to study the differences in the response characteristics for Joule heating and momentum coupling in the thermosphere. It is found that, for Joule/particle heating, the temperature and density perturbations contain a relatively large trapped component which has the property of a low-pass filter, with slow decay after the source is turned off. The decay time is sensitive to the altitude of energy deposition and is significantly reduced as the source peak moves from 125 to 150 km. For electric field momentum coupling, the trapped components in the temperature and density perturbations are relatively small. In the curl field of the velocity, however, the trapped component dominates, but compared with the temperature and density its decay time is much shorter. Outside the source region the form of excitation is of secondary importance for the generation of the various propagating gravity wave modes.

  6. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.

    PubMed

    Fischer, Niels; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V; Stark, Holger

    2010-07-15

    The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.

  7. Characteristics of Capacity Coupled Discharge in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Sasaki, Tadahiro; Omukai, Reina; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya; Mase, Hiroshi; Sato, Noriyoshi

    This paper describes characteristics of capacity coupled discharge in atmospheric pressure air with focusing influence of gap length of point-to-plane electrode configuration on input power into the discharge. The discharge can be quenched in short time duration by inserting a small capacitance capacitor between the electrode and the ground. We employed a needle electrode and a coaxial cable as the quenching capacitor. The discharge was successfully quenched within 25 ns in duration according to 9.4 pF in a capacitance of the quenching capacitor. The discharge was classified as two modes; a spark mode and a corona mode. At the spark mode, the power consumed in the discharge plasma was almost 10 times as large as that of a conventional dielectric barrier discharge. At the corona mode, the consumed energy was almost same value with that of the dielectric barrier discharge. A velocity of the discharge development was obtained to be 3×105 m/s by an optical measurement.

  8. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    PubMed

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. The Dependence of Portevin-Le Châtelier Effect on the γ' Precipitates in a Wrought Ni-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Xinguang; Han, Guoming; Cui, Chuanyong; Guan, Shuai; Jin, Tao; Sun, Xiaofeng; Hu, Zhuangqi

    2016-12-01

    The dependence of Portevin-Le Châtelier (PLC) effect on the γ' precipitates of the Nimonic 263 alloy in different microstructural conditions has been studied by analyzing the parameters of the tensile curves and the deformation mechanisms. It is shown that the γ' precipitates with different sizes, edge-to-edge interprecipitate distance, and areal number density are obtained by altering the aging time. It is demonstrated that when the mean size of the γ' precipitates is less than 28 nm (aging less than 25 hours), the deformation mechanisms are dominated by APB-coupled a/2<101> dislocations shearing the small γ' precipitates and the slip bands continuously cutting the γ and γ' phases. When the γ' size is between 28 and 45 nm (aging time between 25 and 50 hours), the deformation mechanism is controlled by the APB-coupled a/2<101> dislocations shearing the small γ' precipitates, the a/6<112> Shockley partial dislocation continuously shearing the γ and γ' phases combined with matrix dislocations by-passing the γ' precipitates; If the γ' size over 45 nm (aging time more than 50 hours), Orowan by-passing becomes the main deformation mechanism. Moreover, with increasing the aging time, the critical plastic strain for the onset of the PLC effect increases and reaches a maximum after aging for 50 hours, and then gradually decreases. At last, the dependence of critical plastic strain on the deformation mechanisms is well explained by the elementary incremental strain (γ). The precipitation process of the γ' phase can directly influence the PLC effect by changing the interactions among solutes atoms, mobile dislocations, and forest dislocations.

  10. Probabilistic hydrological nowcasting using radar based nowcasting techniques and distributed hydrological models: application in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Poletti, Maria Laura; Pignone, Flavio; Rebora, Nicola; Silvestro, Francesco

    2017-04-01

    The exposure of the urban areas to flash-floods is particularly significant to Mediterranean coastal cities, generally densely-inhabited. Severe rainfall events often associated to intense and organized thunderstorms produced, during the last century, flash-floods and landslides causing serious damages to urban areas and in the worst events led to human losses. The temporal scale of these events has been observed strictly linked to the size of the catchments involved: in the Mediterranean area a great number of catchments that pass through coastal cities have a small drainage area (less than 100 km2) and a corresponding hydrologic response timescale in the order of a few hours. A suitable nowcasting chain is essential for the on time forecast of this kind of events. In fact meteorological forecast systems are unable to predict precipitation at the scale of these events, small both at spatial (few km) and temporal (hourly) scales. Nowcasting models, covering the time interval of the following two hours starting from the observation try to extend the predictability limits of the forecasting models in support of real-time flood alert system operations. This work aims to present the use of hydrological models coupled with nowcasting techniques. The nowcasting model PhaSt furnishes an ensemble of equi-probable future precipitation scenarios on time horizons of 1-3 h starting from the most recent radar observations. The coupling of the nowcasting model PhaSt with the hydrological model Continuum allows to forecast the flood with a few hours in advance. In this way it is possible to generate different discharge prediction for the following hours and associated return period maps: these maps can be used as a support in the decisional process for the warning system.

  11. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer

    PubMed Central

    2012-01-01

    Background G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. Methods The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Results Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. Conclusion The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression. PMID:23273253

  12. Power of Ultra Performance Liquid Chromatography/Electrospray Ionization-MS Reconstructed Ion Chromatograms in the Characterization of Small Differences in Polymer Microstructure.

    PubMed

    Epping, Ruben; Panne, Ulrich; Falkenhagen, Jana

    2018-03-06

    From simple homopolymers to functionalized, 3-dimensional structured copolymers, the complexity of polymeric materials has become more and more sophisticated. With new applications, for instance, in the semiconductor or pharmaceutical industry, the requirements for the characterization have risen with the complexity of the used polymers. For each additional distribution, an additional dimension in analysis is needed. Small, often isomeric heterogeneities in topology or microstructure can usually not be simply separated chromatographically or distinguished by any common detector but affect the properties of materials significantly. For a drug delivery system, for example, the degree of branching and branching distribution is crucial for the formation of micelles. Instead of a complicated, time-consuming, and/or expensive 2D-chromatography or ion mobility spectrometry (IMS) method, that also has its limitations, in this work, a simple approach using size exclusion chromatography (SEC) coupled with electrospray ionization (ESI) mass spectrometry is proposed. The online coupling allows the analysis of reconstructed ion chromatograms (RICs) of each degree of polymerization. While a complete separation often cannot be achieved, the derived retention times and peak widths lead to information on the existence and dispersity of heterogeneities. Although some microstructural heterogeneities like short chain branching can for large polymers be characterized with methods such as light scattering, for oligomers where the heterogeneities just start to form and their influence is at the maximum, they are inaccessible with these methods. It is also shown that with a proper calibration even quantitative information can be obtained. This method is suitable to detect small differences in, e.g., branching, 3D-structure, monomer sequence, or tacticity and could potentially be used in routine analysis to quickly determine deviations.

  13. Enhanced expression of G-protein coupled estrogen receptor (GPER/GPR30) in lung cancer.

    PubMed

    Jala, Venkatakrishna Rao; Radde, Brandie N; Haribabu, Bodduluri; Klinge, Carolyn M

    2012-12-28

    G-protein-coupled estrogen receptor (GPER/GPR30) was reported to bind 17β-estradiol (E2), tamoxifen, and ICI 182,780 (fulvestrant) and promotes activation of epidermal growth factor receptor (EGFR)-mediated signaling in breast, endometrial and thyroid cancer cells. Although lung adenocarcinomas express estrogen receptors α and β (ERα and ERβ), the expression of GPER in lung cancer has not been investigated. The purpose of this study was to examine the expression of GPER in lung cancer. The expression patterns of GPER in various lung cancer lines and lung tumors were investigated using standard quantitative real time PCR (at mRNA levels), Western blot and immunohistochemistry (IHC) methods (at protein levels). The expression of GPER was scored and the pairwise comparisons (cancer vs adjacent tissues as well as cancer vs normal lung tissues) were performed. Analysis by real-time PCR and Western blotting revealed a significantly higher expression of GPER at both mRNA and protein levels in human non small cell lung cancer cell (NSCLC) lines relative to immortalized normal lung bronchial epithelial cells (HBECs). The virally immortalized human small airway epithelial cell line HPL1D showed higher expression than HBECs and similar expression to NSCLC cells. Immunohistochemical analysis of tissue sections of murine lung adenomas as well as human lung adenocarcinomas, squamous cell carcinomas and non-small cell lung carcinomas showed consistently higher expression of GPER in the tumor relative to the surrounding non-tumor tissue. The results from this study demonstrate increased GPER expression in lung cancer cells and tumors compared to normal lung. Further evaluation of the function and regulation of GPER will be necessary to determine if GPER is a marker of lung cancer progression.

  14. Coherent nonlinear coupling between a long-wavelength mode and small-scale turbulence in the TEXT tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, H.Y.W.; Rypdal, K.; Ritz, C.P.

    1993-04-26

    Bispectral analysis of Langmuir probe data indicates that coherent nonlinear coupling, in addition to the noncoherent turbulent interactions, exists in the edge plasma of the tokamak TEXT. Not all the modes involved reside within the spectral region of the usual broadband turbulence. At a major resonant surface the small-scale turbulent activity interacts [ital coherently] with a localized long-wavelength mode; a signature of regular or coherent structure. By the observed coupling to the transport related turbulence, the long-wavelength mode can influence plasma confinement indirectly. These observations signify the influence of low-order resonant surfaces on the edge turbulence in tokamaks.

  15. Reinforcement Learning for Weakly-Coupled MDPs and an Application to Planetary Rover Control

    NASA Technical Reports Server (NTRS)

    Bernstein, Daniel S.; Zilberstein, Shlomo

    2003-01-01

    Weakly-coupled Markov decision processes can be decomposed into subprocesses that interact only through a small set of bottleneck states. We study a hierarchical reinforcement learning algorithm designed to take advantage of this particular type of decomposability. To test our algorithm, we use a decision-making problem faced by autonomous planetary rovers. In this problem, a Mars rover must decide which activities to perform and when to traverse between science sites in order to make the best use of its limited resources. In our experiments, the hierarchical algorithm performs better than Q-learning in the early stages of learning, but unlike Q-learning it converges to a suboptimal policy. This suggests that it may be advantageous to use the hierarchical algorithm when training time is limited.

  16. Suitability of ARES for simulating tactical burst EMP environments. Topical report, 15 January-1 April 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holst, D.W.

    The possibility of using the ARES to evaluate source region coupling in tactical systems is discussed. A 'tactical' source region is defined and the environment at the inner edge of this source region is determined for a 50 kt burst at a range of 1.2 km. The time and amplitude characteristics of the ARES pulse are compared with those from the selected environment. Coupling of the ARES and the source region fields into a short monopole antenna and small loop are compared. These objects are representative of those found in tactical systems. Based upon these results suggestions are made formore » augmenting and supplementing testing in the ARES to obtain responses representative of the source region.« less

  17. Twofold Transition in PT-symmetric Coupled Oscillators

    DTIC Science & Technology

    2013-12-26

    theoretical model exhibits two PT transitions depending on the size of the coupling parameter . For small , the PT symmetry is broken and the system is...small , the PT symmetry is broken and the system is not in equilibrium, but when becomes sufficiently large, the system undergoes a transition to...an equilibrium phase in which the PT symmetry is unbroken. For very large , the system undergoes a second transition and is no longer in

  18. Very low scale Coleman-Weinberg inflation with nonminimal coupling

    NASA Astrophysics Data System (ADS)

    Kaneta, Kunio; Seto, Osamu; Takahashi, Ryo

    2018-03-01

    We study viable small-field Coleman-Weinberg (CW) inflation models with the help of nonminimal coupling to gravity. The simplest small-field CW inflation model (with a low-scale potential minimum) is incompatible with the cosmological constraint on the scalar spectral index. However, there are possibilities to make the model realistic. First, we revisit the CW inflation model supplemented with a linear potential term. We next consider the CW inflation model with a logarithmic nonminimal coupling and illustrate that the model can open a new viable parameter space that includes the model with a linear potential term. We also show parameter spaces where the Hubble scale during the inflation can be as small as 10-4 GeV , 1 GeV, 1 04 GeV , and 1 08 GeV for the number of e -folds of 40, 45, 50, and 55, respectively, with other cosmological constraints being satisfied.

  19. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction.

    PubMed

    Woerly, Eric M; Roy, Jahnabi; Burke, Martin D

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  20. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction

    NASA Astrophysics Data System (ADS)

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  1. Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huen, T.

    1987-07-01

    A solid state light control system was designed and fabricated for use with hydrodiagnostic streak cameras of the electro-optic type. With its use, the film containing the streak images will have on it two time scales simultaneously exposed with the signal. This allows timing and cross timing. The latter is achieved with exposure modulation marking onto the time tick marks. The purpose of using two time scales will be discussed. The design is based on a microcomputer, resulting in a compact and easy to use instrument. The light source is a small red light emitting diode. Time marking can bemore » programmed in steps of 0.1 microseconds, with a range of 255 steps. The time accuracy is based on a precision 100 MHz quartz crystal, giving a divided down 10 MHz system frequency. The light is guided by two small 100 micron diameter optical fibers, which facilitates light coupling onto the input slit of an electro-optic streak camera. Three distinct groups of exposure modulation of the time tick marks can be independently set anywhere onto the streak duration. This system has been successfully used in Fabry-Perot laser velocimeters for over four years in our Laboratory. The microcomputer control section is also being used in providing optical fids to mechanical rotor cameras.« less

  2. Nonlinear flight dynamics and stability of hovering model insects

    PubMed Central

    Liang, Bin; Sun, Mao

    2013-01-01

    Current analyses on insect dynamic flight stability are based on linear theory and limited to small disturbance motions. However, insects' aerial environment is filled with swirling eddies and wind gusts, and large disturbances are common. Here, we numerically solve the equations of motion coupled with the Navier–Stokes equations to simulate the large disturbance motions and analyse the nonlinear flight dynamics of hovering model insects. We consider two representative model insects, a model hawkmoth (large size, low wingbeat frequency) and a model dronefly (small size, high wingbeat frequency). For small and large initial disturbances, the disturbance motion grows with time, and the insects tumble and never return to the equilibrium state; the hovering flight is inherently (passively) unstable. The instability is caused by a pitch moment produced by forward/backward motion and/or a roll moment produced by side motion of the insect. PMID:23697714

  3. Small but mighty: Dark matter substructures

    NASA Astrophysics Data System (ADS)

    Cyr-Racine, Francis-Yan; Keeton, Charles; Moustakas, Leonidas

    2018-01-01

    The fundamental properties of dark matter, such as its mass, self-interaction, and coupling to other particles, can have a major impact on the evolution of cosmological density fluctuations on small length scales. Strong gravitational lenses have long been recognized as powerful tools to study the dark matter distribution on these small subgalactic scales. In this talk, we discuss how gravitationally lensed quasars and extended lensed arcs could be used to probe non minimal dark matter models. We comment on the possibilities enabled by precise astrometry, deep imaging, and time delays to extract information about mass substructures inside lens galaxies. To this end, we introduce a new lensing statistics that allows for a robust diagnostic of the presence of perturbations caused by substructures. We determine which properties of mass substructures are most readily constrained by lensing data and forecast the constraining power of current and future observations.

  4. MICROSCOPE limits for new long-range forces and implications for unified theories

    NASA Astrophysics Data System (ADS)

    Fayet, Pierre

    2018-03-01

    Many theories beyond the standard model involve an extra U (1 ) gauge group. The resulting gauge boson U , in general mixed with the Z and the photon, may be massless or very light and very weakly coupled. It may be viewed as a generalized dark photon interacting with matter through a linear combination [ɛQQ +ɛBB +ɛLL ]e , involving B -L in a grand-unified theory, presumably through B -L -.61 Q , inducing effectively a very small repulsive force between neutrons. This new force, if long-ranged, may manifest through apparent violations of the equivalence principle. They are approximately proportional to ɛB+ɛL/2 , times a combination involving mostly ɛL. New forces coupled to B -L or L should lead to nearly opposite values of the Eötvös parameter δ , and to almost the same limits for ɛB -L or ɛL, as long as no indication for δ ≠0 is found. We derive new limits from the first results of the MICROSCOPE experiment testing the equivalence principle in space. A long-range force coupled to [ɛQQ +ɛB -L(B -L )]e or [ɛQQ +ɛLL ]e should verify |ɛB -L| or |ɛL|<.8 10-24 , and a force coupled to [ɛQQ +ɛBB ]e , |ɛB|<5 10-24. We also discuss, within supersymmetric theories, how such extremely small gauge couplings g " , typically ≲10-24, may be related to a correspondingly large ξ " D " term associated with a huge initial vacuum energy density, ∝1 /g "2 . The corresponding hierarchy between energy scales, by a factor ∝1 /√{g " }≳1012 , involves a very large scale ˜ 1016 GeV , that may be associated with inflation, or supersymmetry breaking with a very heavy gravitino, leading to possible values of δ within the experimentally accessible range.

  5. Lithium cluster anions: photoelectron spectroscopy and ab initio calculations.

    PubMed

    Alexandrova, Anastassia N; Boldyrev, Alexander I; Li, Xiang; Sarkas, Harry W; Hendricks, Jay H; Arnold, Susan T; Bowen, Kit H

    2011-01-28

    Structural and energetic properties of small, deceptively simple anionic clusters of lithium, Li(n)(-), n = 3-7, were determined using a combination of anion photoelectron spectroscopy and ab initio calculations. The most stable isomers of each of these anions, the ones most likely to contribute to the photoelectron spectra, were found using the gradient embedded genetic algorithm program. Subsequently, state-of-the-art ab initio techniques, including time-dependent density functional theory, coupled cluster, and multireference configurational interactions methods, were employed to interpret the experimental spectra.

  6. Ultracompact Minihalos as Probes of Inflationary Cosmology.

    PubMed

    Aslanyan, Grigor; Price, Layne C; Adams, Jenni; Bringmann, Torsten; Clark, Hamish A; Easther, Richard; Lewis, Geraint F; Scott, Pat

    2016-09-30

    Cosmological inflation generates primordial density perturbations on all scales, including those far too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact minihalos of dark matter can form well before standard structure formation, if the perturbations have sufficient amplitude. Minihalos affect pulsar timing data and are potentially bright sources of gamma rays. The resulting constraints significantly extend the observable window of inflation in the presence of cold dark matter, coupling two of the key problems in modern cosmology.

  7. Universe without dark energy: Cosmic acceleration from dark matter-baryon interactions

    NASA Astrophysics Data System (ADS)

    Berezhiani, Lasha; Khoury, Justin; Wang, Junpu

    2017-06-01

    Cosmic acceleration is widely believed to require either a source of negative pressure (i.e., dark energy), or a modification of gravity, which necessarily implies new degrees of freedom beyond those of Einstein gravity. In this paper we present a third possibility, using only dark matter (DM) and ordinary matter. The mechanism relies on the coupling between dark matter and ordinary matter through an effective metric. Dark matter couples to an Einstein-frame metric, and experiences a matter-dominated, decelerating cosmology up to the present time. Ordinary matter couples to an effective metric that depends also on the DM density, in such a way that it experiences late-time acceleration. Linear density perturbations are stable and propagate with arbitrarily small sound speed, at least in the case of "pressure" coupling. Assuming a simple parametrization of the effective metric, we show that our model can successfully match a set of basic cosmological observables, including luminosity distance, baryon acoustic oscillation measurements, angular-diameter distance to last scattering, etc. For the growth history of density perturbations, we find an intriguing connection between the growth factor and the Hubble constant. To get a growth history similar to the Λ CDM prediction, our model predicts a higher H0, closer to the value preferred by direct estimates. On the flip side, we tend to overpredict the growth of structures whenever H0 is comparable to the Planck preferred value. The model also tends to predict larger redshift-space distortions at low redshift than Λ CDM .

  8. Optimization of chitosan nanoparticles for colon tumors using experimental design methodology.

    PubMed

    Jain, Anekant; Jain, Sanjay K

    2016-12-01

    Purpose Colon-specific drug delivery systems (CDDS) can improve the bio-availability of drugs through the oral route. A novel formulation for oral administration using ligand coupled chitosan nanoparticles bearing 5-Flurouracil (5FU) encapsulated in enteric coated pellets has been investigated for CDDS. Method The effect of polymer concentration, drug concentration, stirring time and stirring speed on the encapsulation efficiency, and size of nanoparticles were evaluated. The best (or optimum) formulation was obtained by response surface methodology. Using the experimental data, analysis of variance has been carried out to evolve linear empirical models. Using a new methodology, polynomial models have been evolved and the parametric analysis has been carried out. In order to target nanoparticles to the hyaluronic acid (HA) receptors present on colon tumors, HA coupled nanoparticles were tested for their efficacy in vivo. The HA coupled nanoparticles were encapsulated in pellets and were enteric coated to release the drug in the colon. Results Drug release studies under conditions of mimicking stomach to colon transit have shown that the drug was protected from being released in the physiological environment of the stomach and small intestine. The relatively high local drug concentration with prolonged exposure time provides a potential to enhance anti-tumor efficacy with low systemic toxicity for the treatment of colon cancer. Conclusions Conclusively, HA coupled nanoparticles can be considered as the potential candidate for targeted drug delivery and are anticipated to be promising in the treatment of colorectal cancer.

  9. An Evaluation of a Program to Help Dual-Earner Couples Share the Second Shift.

    ERIC Educational Resources Information Center

    Hawkins, Alan J.; And Others

    1994-01-01

    Used both traditional scientific and feminist methodologies to evaluate effectiveness of family life education program designed to help dual-earner couples (n=14 couples) share domestic labor. Both quantitative and qualitative data suggest that program produced small increases in husbands' involvement in both housework and child care and large…

  10. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling.

    PubMed

    Wang, Zhifan; Hu, Shu; Wang, Fan; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis set without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.

  11. Equation-of-motion coupled-cluster method for doubly ionized states with spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhifan; Hu, Shu; Guo, Jingwei

    2015-04-14

    In this work, we report implementation of the equation-of-motion coupled-cluster method for doubly ionized states (EOM-DIP-CC) with spin-orbit coupling (SOC) using a closed-shell reference. Double ionization potentials (DIPs) are calculated in the space spanned by 2h and 3h1p determinants with the EOM-DIP-CC approach at the CC singles and doubles level (CCSD). Time-reversal symmetry together with spatial symmetry is exploited to reduce computational effort. To circumvent the problem of unstable dianion references when diffuse basis functions are included, nuclear charges are scaled. Effect of this stabilization potential on DIPs is estimated based on results from calculations using a small basis setmore » without diffuse basis functions. DIPs and excitation energies of some low-lying states for a series of open-shell atoms and molecules containing heavy elements with two unpaired electrons have been calculated with the EOM-DIP-CCSD approach. Results show that this approach is able to afford a reliable description on SOC splitting. Furthermore, the EOM-DIP-CCSD approach is shown to provide reasonable excitation energies for systems with a dianion reference when diffuse basis functions are not employed.« less

  12. How Can I Lose Weight Safely?

    MedlinePlus

    ... people find that eating a couple of small snacks throughout the day helps them to make healthy choices at meals. Stick a couple of healthy snacks (carrot sticks, whole-grain pretzels, or a piece ...

  13. Development of a high-sensitivity BGO well counter for small animal PET studies.

    PubMed

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun

    2012-01-01

    In quantitative measurements of small animal PET studies, blood sampling is limited due to the small amounts of blood such animals can provide. In addition, injection doses are quite limited. In this situation, a high-sensitivity well counter would be useful for reducing the amount of the blood sample needed from small animals. Bismuth germinate (BGO) has a high stopping power for high-energy gamma rays compared to NaI(Tl), which is commonly used for conventional well counters. We have developed a BGO well counter and have tested it for blood-sampling measurements in small animals. The BGO well counter uses a square BGO block (59 × 59 × 50 mm) with a square open space (27 × 27 × 34 mm) in the center of the block. The BGO block was optically coupled to a 59-mm square-shaped photomultiplier tube (PMT). Signals from the PMT were digitally processed for the integration and energy window setting. The results showed that the energy spectrum of the BGO well counter measured with a Na-22 point source provided counts that were about 6 times higher for a 1022-keV (511 keV × 2) gamma peak than the spectrum of a 2-in. NaI(Tl) well counter. The relative sensitivity of the developed BGO well counter was 3.4 times higher than that of a NaI(Tl) well counter. The time activity curve of arterial blood was obtained successfully with the BGO well counter for a F-18-FDG study on rat. The BGO well counter will contribute to reducing the amount of sampled blood and to improving the throughput of quantitative measurements in small animal PET studies.

  14. COUPLED SPIN AND SHAPE EVOLUTION OF SMALL RUBBLE-PILE ASTEROIDS: SELF-LIMITATION OF THE YORP EFFECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotto-Figueroa, Desireé; Statler, Thomas S.; Richardson, Derek C.

    2015-04-10

    We present the first self-consistent simulations of the coupled spin-shape evolution of small gravitational aggregates under the influence of the YORP effect. Because of YORP’s sensitivity to surface topography, even small centrifugally driven reconfigurations of aggregates can alter the YORP torque dramatically, resulting in spin evolution that can differ qualitatively from the rigid-body prediction. One-third of our simulations follow a simple evolution described as a modified YORP cycle. Two-thirds exhibit one or more of three distinct behaviors—stochastic YORP, self-governed YORP, and stagnating YORP—which together result in YORP self-limitation. Self-limitation confines rotation rates of evolving aggregates to far narrower ranges thanmore » those expected in the classical YORP cycle, greatly prolonging the times over which objects can preserve their sense of rotation. Simulated objects are initially randomly packed, disordered aggregates of identical spheres in rotating equilibrium, with low internal angles of friction. Their shape evolution is characterized by rearrangement of the entire body, including the deep interior. They do not evolve to axisymmetric top shapes with equatorial ridges. Mass loss occurs in one-third of the simulations, typically in small amounts from the ends of a prolate-triaxial body. We conjecture that YORP self-limitation may inhibit formation of top-shapes, binaries, or both, by restricting the amount of angular momentum that can be imparted to a deformable body. Stochastic YORP, in particular, will affect the evolution of collisional families whose orbits drift apart under the influence of Yarkovsky forces, in observable ways.« less

  15. Impact of the coupling effect and the configuration on a compact rectenna array

    NASA Astrophysics Data System (ADS)

    Rivière, J.; Douyere, A.; Luk, J. D. Lan Sun

    2014-10-01

    This paper proposes an experimental study of the coupling effect of a rectenna array. The rectifying antenna consists of a compact and efficient rectifying circuit in a series topology, coupled with a small metamaterial-inspired antenna. The measurements are investigated in the X plane on the rectenna array's behavior, with series and parallel DC- combining configuration of two and three spaced rectennas from 3 cm to 10 cm. This study shows that the maximum efficiency is reached for the series configuration, with a resistive load of 10 kQ. The optimal distance is not significant for series or parallel configuration. Then, a comparison between a rectenna array with non-optimal mutual coupling and a more traditional patch rectenna is performed. Finally, a practical application is tested to demonstrate the effectiveness of such small rectenna array.

  16. Using Wavelets and Information Theory to Characterize the Direction, Strength, and Time Scale of Interaction between Environmental Drivers and Greenhouse Gas Exchange in Managed Wetlands of Northern California

    NASA Astrophysics Data System (ADS)

    Sturtevant, C. S.; Ruddell, B. L.; Knox, S. H.; Verfaillie, J. G.; Matthes, J. H.; Oikawa, P. Y.; Baldocchi, D. D.

    2014-12-01

    Restoring agricultural areas to wetlands in the Sacramento-San Joaquin River Delta of California can help reverse subsidence and reduce greenhouse gas (GHG) emissions. Predicting outcomes and developing best practices of wetland management therefore requires a robust understanding of the sensitivity of GHG exchange in these ecosystems to factors such as management and meteorology. However, wetlands can exhibit complex, overlapping, and asynchronous couplings between site characteristics, environmental drivers and GHG exchange. In this research we demonstrate the use of wavelets and information theory (process networks) as sophisticated tools to disentangle and characterize ecosystem couplings to CO2 and CH4 exchange (measured by eddy covariance) in two restored Delta wetlands. Using wavelets we isolated processes acting at different time scales, then used process networks to determine the direction, strength, and lag properties of ecosystem couplings. We found that despite differences in age, architecture and management, CO2 exchange at both wetlands was most sensitive to similar meteorological factors such as radiation and temperature up to a time scale of several days. At the monthly timescale, however, the effect of a more variable water table management in one wetland became dominant, revealing a reduction in net CO2 uptake during long term water table drawdowns. The analysis of CH4 exchange in this wetland revealed a more sensitive and complex coupling with water table. CH4 exchange was sensitive to relatively small, multi-day shifts in water table and displayed a lagged response to larger, longer shifts. With these methods we were able to disentangle the effects of management from meteorology and better understand the sensitivities of GHG exchange. Our results provide important insights for modeling efforts and management practices.

  17. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals

    PubMed Central

    Lucas, Andrew; Davison, Richard A.

    2016-01-01

    We present a theory of thermoelectric transport in weakly disordered Weyl semimetals where the electron–electron scattering time is faster than the electron–impurity scattering time. Our hydrodynamic theory consists of relativistic fluids at each Weyl node, coupled together by perturbatively small intervalley scattering, and long-range Coulomb interactions. The conductivity matrix of our theory is Onsager reciprocal and positive semidefinite. In addition to the usual axial anomaly, we account for the effects of a distinct, axial–gravitational anomaly expected to be present in Weyl semimetals. Negative thermal magnetoresistance is a sharp, experimentally accessible signature of this axial–gravitational anomaly, even beyond the hydrodynamic limit. PMID:27512042

  18. XTRAN2L - A PROGRAM FOR SOLVING THE GENERAL-FREQUENCY UNSTEADY TWO-DIMENSIONAL TRANSONIC SMALL-DISTURBANCE EQUATIONS

    NASA Technical Reports Server (NTRS)

    Seidel, D. A.

    1994-01-01

    The Program for Solving the General-Frequency Unsteady Two-Dimensional Transonic Small-Disturbance Equation, XTRAN2L, is used to calculate time-accurate, finite-difference solutions of the nonlinear, small-disturbance potential equation for two- dimensional transonic flow about airfoils. The code can treat forced harmonic, pulse, or aeroelastic transient type motions. XTRAN2L uses a transonic small-disturbance equation that incorporates a time accurate finite-difference scheme. Airfoil flow tangency boundary conditions are defined to include airfoil contour, chord deformation, nondimensional plunge displacement, pitch, and trailing edge control surface deflection. Forced harmonic motion can be based on: 1) coefficients of harmonics based on information from each quarter period of the last cycle of harmonic motion; or 2) Fourier analyses of the last cycle of motion. Pulse motion (an alternate to forced harmonic motion) in which the airfoil is given a small prescribed pulse in a given mode of motion, and the aerodynamic transients are calculated. An aeroelastic transient capability is available within XTRAN2L, wherein the structural equations of motion are coupled with the aerodynamic solution procedure for simultaneous time-integration. The wake is represented as a slit downstream of the airfoil trailing edge. XTRAN2L includes nonreflecting farfield boundary conditions. XTRAN2L was developed on a CDC CYBER mainframe running under NOS 2.4. It is written in FORTRAN 5 and uses overlays to minimize storage requirements. The program requires 120K of memory in overlayed form. XTRAN2L was developed in 1987.

  19. Focusing of ferroelectret air-coupled ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  20. Computer simulations of stimulus dependent state switching in basic circuits of bursting neurons

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail; Huerta, Ramón; Bazhenov, Maxim; Kozlov, Alexander K.; Abarbanel, Henry D. I.

    1998-11-01

    We investigate the ability of oscillating neural circuits to switch between different states of oscillation in two basic neural circuits. We model two quite distinct small neural circuits. The first circuit is based on invertebrate central pattern generator (CPG) studies [A. I. Selverston and M. Moulins, The Crustacean Stomatogastric System (Springer-Verlag, Berlin, 1987)] and is composed of two neurons coupled via both gap junction and inhibitory synapses. The second consists of coupled pairs of interconnected thalamocortical relay and thalamic reticular neurons with both inhibitory and excitatory synaptic coupling. The latter is an elementary unit of the thalamic networks passing sensory information to the cerebral cortex [M. Steriade, D. A. McCormick, and T. J. Sejnowski, Science 262, 679 (1993)]. Both circuits have contradictory coupling between symmetric parts. The thalamocortical model has excitatory and inhibitory connections and the CPG has reciprocal inhibitory and electrical coupling. We describe the dynamics of the individual neurons in these circuits by conductance based ordinary differential equations of Hodgkin-Huxley type [J. Physiol. (London) 117, 500 (1952)]. Both model circuits exhibit bistability and hysteresis in a wide region of coupling strengths. The two main modes of behavior are in-phase and out-of-phase oscillations of the symmetric parts of the network. We investigate the response of these circuits, while they are operating in bistable regimes, to externally imposed excitatory spike trains with varying interspike timing and small amplitude pulses. These are meant to represent spike trains received by the basic circuits from sensory neurons. Circuits operating in a bistable region are sensitive to the frequency of these excitatory inputs. Frequency variations lead to changes from in-phase to out-of-phase coordination or vice versa. The signaling information contained in a spike train driving the network can place the circuit into one or another state depending on the interspike interval and this happens within a few spikes. These states are maintained by the basic circuit after the input signal is ended. When a new signal of the correct frequency enters the circuit, it can be switched to another state with the same ease.

  1. Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Pogue, Brian W.; Springett, Roger; Leussler, Christoph; Mazurkewitz, Peter; Tuttle, Stephen B.; Gibbs-Strauss, Summer L.; Jiang, Shudong S.; Dehghani, Hamid; Paulsen, Keith D.

    2008-06-01

    A multichannel spectrally resolved optical tomography system to image molecular targets in small animals from within a clinical MRI is described. Long source/detector fibers operate in contact mode and couple light from the tissue surface in the magnet bore to 16 spectrometers, each containing two optical gratings optimized for the near infrared wavelength range. High sensitivity, cooled charge coupled devices connected to each spectrograph provide detection of the spectrally resolved signal, with exposure times that are automated for acquisition at each fiber. The design allows spectral fitting of the remission light, thereby separating the fluorescence signal from the nonspecific background, which improves the accuracy and sensitivity when imaging low fluorophore concentrations. Images of fluorescence yield are recovered using a nonlinear reconstruction approach based on the diffusion approximation of photon propagation in tissue. The tissue morphology derived from the MR images serves as an imaging template to guide the optical reconstruction algorithm. Sensitivity studies show that recovered values of indocyanine green fluorescence yield are linear to concentrations of 1nM in a 70mm diameter homogeneous phantom, and detection is feasible to near 10pM. Phantom data also demonstrate imaging capabilities of imperfect fluorophore uptake in tissue volumes of clinically relevant sizes. A unique rodent MR coil provides optical fiber access for simultaneous optical and MR data acquisition of small animals. A pilot murine study using an orthotopic glioma tumor model demonstrates optical-MRI imaging of an epidermal growth factor receptor targeted fluorescent probe in vivo.

  2. Conformal Aspects of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, S

    2003-11-19

    Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1more » GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.« less

  3. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells

    PubMed Central

    Ges, Igor A.; Brindley, Rebecca L.; Currie, Kevin P.M.; Baudenbacher, Franz J.

    2013-01-01

    Release of neurotransmitters and hormones by calcium-regulated exocytosis is a fundamental cellular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. As such, there is significant interest in targeting neurosecretion for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistic insight coupled with increased experimental throughput. Here, we report a simple, inexpensive, reusable, microfluidic device designed to analyze catecholamine secretion from small populations of adrenal chromaffin cells in real time, an important neuroendocrine component of the sympathetic nervous system and versatile neurosecretory model. The device is fabricated by replica molding of polydimethylsiloxane (PDMS) using patterned photoresist on silicon wafer as the master. Microfluidic inlet channels lead to an array of U-shaped “cell traps”, each capable of immobilizing single or small groups of chromaffin cells. The bottom of the device is a glass slide with patterned thin film platinum electrodes used for electrochemical detection of catecholamines in real time. We demonstrate reliable loading of the device with small populations of chromaffin cells, and perfusion / repetitive stimulation with physiologically relevant secretagogues (carbachol, PACAP, KCl) using the microfluidic network. Evoked catecholamine secretion was reproducible over multiple rounds of stimulation, and graded as expected to different concentrations of secretagogue or removal of extracellular calcium. Overall, we show this microfluidic device can be used to implement complex stimulation paradigms and analyze the amount and kinetics of catecholamine secretion from small populations of neuroendocrine cells in real time. PMID:24126415

  4. Design optimization and performance characteristics of a photovoltaic microirrigation system for use in developing countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlin, R. W.

    1979-07-10

    Tens of millions of the world's poorest farmers currently subsist on small farms below two hectares in size. The increasing cost of animal irrigation coupled with decreasing farm size and the lack of a utility grid or acceptable alternate power sources is causing interest in the use of solar photovoltaics for these very small (subkilowatt) water pumping systems. The attractive combinations of system components (array, pump, motor, storage and controls) have been identified and their interactions characterized in order to optimize overall system efficiency. Computer simulations as well as component tests were made of systems utilizing flat-plate and low-concentration arrays,more » direct-coupled and electronic-impedance-matching controls, fixed and incremental (once or twice a day) tracking, dc and ac motors, and positive-displacement, centrifugal and vertical turbine pumps. The results of these analyses and tests are presented, including water volume pumped as a function of time of day and year, for the locations of Orissa, India and Cairo, Egypt. Finally, a description and operational data are given for a prototype unit that was developed as a result of the previous analyses and tests.« less

  5. Nonuniversal Z' couplings in B decays

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hung; Hatanaka, Hisaki

    2006-04-01

    We study the impacts of the nonuniversal Z' model, providing flavor-changing neutral current at tree level, on the branching ratios (BRs), CP asymmetries (CPAs), and polarization fractions of B decays. We find that, for satisfying the current data, the new left- and right-handed couplings have to be included at the same time. The new introduced effective interactions not only could effectively explain the puzzle of small longitudinal polarization in B→K*ϕ decays, but also provide a solution to the small CPA of B±→π0K±. We also find that the favorable CPA of B±→π0K± is opposite in sign to the standard model; meanwhile, the CPA of Bd→π0K has to be smaller than -10%. In addition, by using the values of parameters which are constrained by B→πK, we find that the favorable ranges of BRs, CPAs, longitudinal polarizations, and perpendicular transverse polarizations for (B±→ρ±K*,Bd→ρ∓K*±) are (17.1±3.9,10.0±2.0)×10-6, (3±5,21±7)%, (0.66±0.10,0.44±0.08), and (0.14±0.10,0.25±0.09), respectively.

  6. Statistical Comparisons of Meso- and Small-Scale Field-Aligned Currents with Auroral Electron Acceleration Mechanisms from FAST Observations

    NASA Astrophysics Data System (ADS)

    Dombeck, J. P.; Cattell, C. A.; Prasad, N.; Sakher, A.; Hanson, E.; McFadden, J. P.; Strangeway, R. J.

    2016-12-01

    Field-aligned currents (FACs) provide a fundamental driver and means of Magnetosphere-Ionosphere (M-I) coupling. These currents need to be supported by local physics along the entire field line generally with quasi-static potential structures, but also supporting the time-evolution of the structures and currents, producing Alfvén waves and Alfvénic electron acceleration. In regions of upward current, precipitating auroral electrons are accelerated earthward. These processes can result in ion outflow, changes in ionospheric conductivity, and affect the particle distributions on the field line, affecting the M-I coupling processes supporting the individual FACs and potentially the entire FAC system. The FAST mission was well suited to study both the FACs and the electron auroral acceleration processes. We present the results of the comparisons between meso- and small-scale FACs determined from FAST using the method of Peria, et al., 2000, and our FAST auroral acceleration mechanism study when such identification is possible for the entire ˜13 year FAST mission. We also present the latest results of the electron energy (and number) flux ionospheric input based on acceleration mechanism (and FAC characteristics) from our FAST auroral acceleration mechanism study.

  7. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry.

    PubMed

    Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan

    2017-09-29

    Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Reconstruction of ensembles of coupled time-delay systems from time series.

    PubMed

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  9. IR detection and energy harvesting using antenna coupled MIM tunnel diodes

    NASA Astrophysics Data System (ADS)

    Yesilkoy, Filiz

    The infrared (IR) spectrum lies between the microwave and optical frequency ranges, which are well suited for communication and energy harvesting purposes, respectively. The long wavelength IR (LWIR) spectrum, corresponding to wavelengths from 8microm to 15microm, includes the thermal radiation emitted by objects at room temperature and the Earth's terrestrial radiation. Therefore, LWIR detectors are very appealing for thermal imaging purposes. Thermal detectors developed so far either demand cryogenic operation for fast detection, or they rely on the accumulation of thermal energy in their mass and subsequent measurable changes in material properties. Therefore, they are relatively slow. Quantum detectors allow for tunable and instantaneous detection but are expensive and require complex processes for fabrication. Bolometer detectors are simple and cheap but do not allow for tunability or for rapid detection. Harvesting the LWIR radiation energy sourced by the Earth's heating/cooling cycle is very important for the development of mobile energy resources. While speed is not as significant an issue here, conversion efficiency is an eminent problem for cheap, large area energy transduction. This dissertation addresses the development of tunable, fast, and low cost wave detectors that can operate at room temperature and, when produced in large array format, can harvest Earth's terrestrial radiation energy. This dissertation demonstrates the design, fabrication and testing of Antenna Coupled Metal-Insulator-Metal (ACMIM) tunnel diodes optimized for 10microm wavelength radiation detection. ACMIM tunnel diodes operate as electromagnetic wave detectors: the incident radiation is coupled by an antenna and converted into a 30 terahertz signal that is rectified by a fast tunneling MIM diode. For efficient IR radiation coupling, the antenna geometry and its critical dimensions are studied using a commercial finite-element based multi-physics simulation tool, and the half-wave dipole-like bow-tie antennas are fabricated using simulation-optimized geometries. The major challenge of this work is designing and fabricating MIM diodes and coupled antennas with internal capacitances and resistances small enough to allow response in the desired frequency range (˜30 THz) and yet capable of efficiently coupling to the incident radiation. It is crucial to keep the RC time constant of the tunnel junction small to achieve the requisite cut-off frequency and adequate rectification efficiency. Moreover, a low junction resistance is necessary to load the coupled AC power across the MIM junction. For energy harvesting applications, the device has to operate without an external bias, which requires asymmetry at the zero bias operation point. To address these requirements, the MIM tunnel junction is established so that one electrode has a field enhancing sharp tip (cathode) and the other is a rectangular patch. This asymmetric geometry not only offers asymmetric current-voltage behavior at the zero bias point, but also it decouples the junction resistance and capacitance by concentrating the charge transport in a small volume around the tip. Various fabrication methods are developed in order to create small junction area (= low parasitic capacitance), low junction resistance (= effective power coupling through antenna), asymmetry (= zero bias operation), high fabrication yield and low cost ACMIM tunnel diodes. High resolution fabrication needs are accomplished by electron beam lithography and nano-accuracy in the junction area is achieved by employing dose modifying proximity effect correction and critical alignment methods. Our Ni/NiOx/Ni ACMIM diodes with an optimized insulation layer created with O2 plasma oxidation are the most successful devices presented to date. A novel fabrication technique called "strain assisted self lift-off process" is used to achieve small junction area devices without relying on lithographic resolution. This technique eliminates the rival parasitic capacitance issue of today's ACMIM tunnel diodes and does not rely on extreme-high resolution lithography technologies.

  10. Towards Measurement of the Time-resolved Heat Release of Protein Conformation Dynamics

    NASA Technical Reports Server (NTRS)

    Puchalla, Jason; Adamek, Daniel; Austin, Robert

    2004-01-01

    We present a way to observe time-resolved heat release using a laminar flow diffusional mixer coupled with a highly sensitive infrared camera which measures the temperature change of the solvent. There are significant benefits to the use of laminar flow mixers for time-resolved calorimetry: (1) The thermal signal can be made position and time- stationary to allow for signal integration; (2) Extremely small volumes (nl/s) of sample are required for a measurement; (3) The same mixing environment can be observed spectroscopically to obtain state occupation information; (4) The mixer allows one to do out of equilibrium dynamic studies. The hope is that these measurements will allow us probe the non-equilibrium thermodynamics as a protein moves along a free energy trajectory from one state to another.

  11. Dynamic functional-structural coupling within acute functional state change phases: Evidence from a depression recognition study.

    PubMed

    Bi, Kun; Hua, Lingling; Wei, Maobin; Qin, Jiaolong; Lu, Qing; Yao, Zhijian

    2016-02-01

    Dynamic functional-structural connectivity (FC-SC) coupling might reflect the flexibility by which SC relates to functional connectivity (FC). However, during the dynamic acute state change phases of FC, the relationship between FC and SC may be distinctive and embody the abnormality inherent in depression. This study investigated the depression-related inter-network FC-SC coupling within particular dynamic acute state change phases of FC. Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data were collected from 26 depressive patients (13 women) and 26 age-matched controls (13 women). We constructed functional brain networks based on MEG data and structural networks from DTI data. The dynamic connectivity regression algorithm was used to identify the state change points of a time series of inter-network FC. The time period of FC that contained change points were partitioned into types of dynamic phases (acute rising phase, acute falling phase,acute rising and falling phase and abrupt FC variation phase) to explore the inter-network FC-SC coupling. The selected FC-SC couplings were then fed into the support vector machine (SVM) for depression recognition. The best discrimination accuracy was 82.7% (P=0.0069) with FC-SC couplings, particularly in the acute rising phase of FC. Within the FC phases of interest, the significant discriminative network pair was related to the salience network vs ventral attention network (SN-VAN) (P=0.0126) during the early rising phase (70-170ms). This study suffers from a small sample size, and the individual acute length of the state change phases was not considered. The increased values of significant discriminative vectors of FC-SC coupling in depression suggested that the capacity to process negative emotion might be more directly related to the SC abnormally and be indicative of more stringent and less dynamic brain function in SN-VAN, especially in the acute rising phase of FC. We demonstrated that depressive brain dysfunctions could be better characterized by reduced FC-SC coupling flexibility in this particular phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Small Satellite Constellations for Geospace Sciences

    NASA Astrophysics Data System (ADS)

    Spence, H. E.

    2016-12-01

    The recent National Academy of Sciences Solar and Space Physics Decadal Survey (DS) identified community-consensus science priorities for the decade spanning 2013 - 2022. In this talk, we discuss the ways by which small satellite constellations are already and may soon accelerate progress toward achieving many of these science targets. The DS outlined four overarching science goals: (1) determine the origins of the Sun's activity and predict the variations in the space environment; (2) determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs; (3) determine the interaction of the Sun with the solar system and the interstellar medium; and, (4) discover and characterize fundamental processes that occur both within the heliosphere and throughout the universe. These DS science goals provide the context for key science challenges in the three connected parts of the system that encompass all of solar and space physics, herein referred to as geospace: the Sun and heliosphere; the coupled solar wind-magnetosphere system; and, the coupled atmosphere-ionosphere-magnetosphere system. The DS further presented the role that small satellites play in resolving many of these science challenges, with a particular emphasis on the role that constellations of small satellites will play. While once considered by many as being "futuristic" or even "unrealizable", constellations of small satellites are already making important contributions to geospace science and with the promise for more to come. Using the DS as a guidepost, in this presentation, we outline representative small satellite constellation missions alread underway, some in development, and others notionally proposed over the next several years that employ small satellite constellations to tackle large science imperatives. Finally, we give examples of key small satellite technologies in development that will potentially enable great scientific return with comparatively low investments in small satellite missions.

  13. Small inlet optical panel and a method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David

    2001-01-01

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and to the second plurality, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  14. The on-line coupled atmospheric chemistry model system MECO(n) - Part 5: Expanding the Multi-Model-Driver (MMD v2.0) for 2-way data exchange including data interpolation via GRID (v1.0)

    NASA Astrophysics Data System (ADS)

    Kerkweg, Astrid; Hofmann, Christiane; Jöckel, Patrick; Mertens, Mariano; Pante, Gregor

    2018-03-01

    As part of the Modular Earth Submodel System (MESSy), the Multi-Model-Driver (MMD v1.0) was developed to couple online the regional Consortium for Small-scale Modeling (COSMO) model into a driving model, which can be either the regional COSMO model or the global European Centre Hamburg general circulation model (ECHAM) (see Part 2 of the model documentation). The coupled system is called MECO(n), i.e., MESSy-fied ECHAM and COSMO models nested n times. In this article, which is part of the model documentation of the MECO(n) system, the second generation of MMD is introduced. MMD comprises the message-passing infrastructure required for the parallel execution (multiple programme multiple data, MPMD) of different models and the communication of the individual model instances, i.e. between the driving and the driven models. Initially, the MMD library was developed for a one-way coupling between the global chemistry-climate ECHAM/MESSy atmospheric chemistry (EMAC) model and an arbitrary number of (optionally cascaded) instances of the regional chemistry-climate model COSMO/MESSy. Thus, MMD (v1.0) provided only functions for unidirectional data transfer, i.e. from the larger-scale to the smaller-scale models.Soon, extended applications requiring data transfer from the small-scale model back to the larger-scale model became of interest. For instance, the original fields of the larger-scale model can directly be compared to the upscaled small-scale fields to analyse the improvements gained through the small-scale calculations, after the results are upscaled. Moreover, the fields originating from the two different models might be fed into the same diagnostic tool, e.g. the online calculation of the radiative forcing calculated consistently with the same radiation scheme. Last but not least, enabling the two-way data transfer between two models is the first important step on the way to a fully dynamical and chemical two-way coupling of the various model instances.In MMD (v1.0), interpolation between the base model grids is performed via the COSMO preprocessing tool INT2LM, which was implemented into the MMD submodel for online interpolation, specifically for mapping onto the rotated COSMO grid. A more flexible algorithm is required for the backward mapping. Thus, MMD (v2.0) uses the new MESSy submodel GRID for the generalised definition of arbitrary grids and for the transformation of data between them.In this article, we explain the basics of the MMD expansion and the newly developed generic MESSy submodel GRID (v1.0) and show some examples of the abovementioned applications.

  15. Approximation-Based Discrete-Time Adaptive Position Tracking Control for Interior Permanent Magnet Synchronous Motors.

    PubMed

    Yu, Jinpeng; Shi, Peng; Yu, Haisheng; Chen, Bing; Lin, Chong

    2015-07-01

    This paper considers the problem of discrete-time adaptive position tracking control for a interior permanent magnet synchronous motor (IPMSM) based on fuzzy-approximation. Fuzzy logic systems are used to approximate the nonlinearities of the discrete-time IPMSM drive system which is derived by direct discretization using Euler method, and a discrete-time fuzzy position tracking controller is designed via backstepping approach. In contrast to existing results, the advantage of the scheme is that the number of the adjustable parameters is reduced to two only and the problem of coupling nonlinearity can be overcome. It is shown that the proposed discrete-time fuzzy controller can guarantee the tracking error converges to a small neighborhood of the origin and all the signals are bounded. Simulation results illustrate the effectiveness and the potentials of the theoretic results obtained.

  16. Inductively coupled rf coils for examinations of small animals and objects in standard whole-body MR scanners.

    PubMed

    Graf, Hansjörg; Martirosian, Petros; Schick, Fritz; Grieser, Marco; Bellemann, Matthias E

    2003-06-01

    Inductively coupled solenoid coils fitting to objects in the size of mice or rats were developed to adapt modem whole-body MR scanners featuring sufficient gradient strength for animal examinations with high spatial resolution. Homogenous receiver characteristics is achievable over almost the whole inner region of the solenoid coils. The SNR can be increased by a factor 2 to 6 with the adapting coils for examinations using the head coil as connected receiver. Standard sequences on clinical 1.5 T scanners can be applied with adapted transmitter voltages. For example, a SNR value of about 30 is achievable in a mouse liver after 10 minutes measuring time using a 2-D spin echo imaging sequence and a size of 0.3 x 0.3 x 0.8 mm3 for the picture elements.

  17. Mathematical foundations of hybrid data assimilation from a synchronization perspective

    NASA Astrophysics Data System (ADS)

    Penny, Stephen G.

    2017-12-01

    The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.

  18. Predictability of weather and climate in a coupled ocean-atmosphere model: A dynamical systems approach. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.

    1989-01-01

    A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.

  19. Nonlinear evolution and final fate of (charged) superradiant instability

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Bosch, Pablo; Lehner, Luis

    2016-03-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field, coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordstrom-AdS black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeateadly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  20. 11Li Breakup on 208 at energies around the Coulomb barrier.

    PubMed

    Fernández-García, J P; Cubero, M; Rodríguez-Gallardo, M; Acosta, L; Alcorta, M; Alvarez, M A G; Borge, M J G; Buchmann, L; Diget, C A; Falou, H A; Fulton, B R; Fynbo, H O U; Galaviz, D; Gómez-Camacho, J; Kanungo, R; Lay, J A; Madurga, M; Martel, I; Moro, A M; Mukha, I; Nilsson, T; Sánchez-Benítez, A M; Shotter, A; Tengblad, O; Walden, P

    2013-04-05

    The inclusive breakup for the (11)Li + (208)Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of (9)Li following the (11)Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbation theory of Coulomb excitation it is shown that the breakup probability data measured at small angles can be used to extract effective breakup energy as well as the slope of B(E1) distribution close to the threshold. Four-body continuum-discretized coupled-channels calculations, including both nuclear and Coulomb couplings between the target and projectile to all orders, reproduce the measured inclusive breakup cross sections and support the presence of a dipole resonance in the (11)Li continuum at low excitation energy.

  1. Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Linda Yu; Friesner, Richard A.; Murphy, Robert B.

    1997-07-01

    Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. As an example of the power of the method, we calculate the electronic coupling between two bacteriochlorophyll molecules in various intermolecular geometries. Only a single self-consistent field (SCF) calculation on each of the monomers is needed to generate coupling matrix elements for all of the molecular pairs. The largest calculations performed, utilizing 1778 basis functions, required ˜14 h on an IBM 390 workstation. This is considerably less cpu time than would be necessitated with a supermolecule adiabatic state calculation and a conventional electronic structure code.

  2. Mathematical foundations of hybrid data assimilation from a synchronization perspective.

    PubMed

    Penny, Stephen G

    2017-12-01

    The state-of-the-art data assimilation methods used today in operational weather prediction centers around the world can be classified as generalized one-way coupled impulsive synchronization. This classification permits the investigation of hybrid data assimilation methods, which combine dynamic error estimates of the system state with long time-averaged (climatological) error estimates, from a synchronization perspective. Illustrative results show how dynamically informed formulations of the coupling matrix (via an Ensemble Kalman Filter, EnKF) can lead to synchronization when observing networks are sparse and how hybrid methods can lead to synchronization when those dynamic formulations are inadequate (due to small ensemble sizes). A large-scale application with a global ocean general circulation model is also presented. Results indicate that the hybrid methods also have useful applications in generalized synchronization, in particular, for correcting systematic model errors.

  3. Health behaviour change interventions for couples: A systematic review.

    PubMed

    Arden-Close, Emily; McGrath, Nuala

    2017-05-01

    Partners are a significant influence on individuals' health, and concordance in health behaviours increases over time in couples. Several theories suggest that couple-focused interventions for health behaviour change may therefore be more effective than individual interventions. A systematic review of health behaviour change interventions for couples was conducted. Systematic search methods identified randomized controlled trials (RCTs) and non-randomized interventions of health behaviour change for couples with at least one member at risk of a chronic physical illness, published from 1990-2014. We identified 14 studies, targeting the following health behaviours: cancer prevention (6), obesity (1), diet (2), smoking in pregnancy (2), physical activity (1) and multiple health behaviours (2). In four out of seven trials couple-focused interventions were more effective than usual care. Of four RCTs comparing a couple-focused intervention to an individual intervention, two found that the couple-focused intervention was more effective. The studies were heterogeneous, and included participants at risk of a variety of illnesses. In many cases the intervention was compared to usual care for an individual or an individual-focused intervention, which meant the impact of the couplebased content could not be isolated. Three arm studies could determine whether any added benefits of couple-focused interventions are due to adding the partner or specific content of couple-focused interventions. Statement of contribution What is already known on this subject? Health behaviours and health behaviour change are more often concordant across couples than between individuals in the general population. Couple-focused interventions for chronic conditions are more effective than individual interventions or usual care (Martire, Schulz, Helgeson, Small, & Saghafi, ). What does this study add? Identified studies targeted a variety of health behaviours, with few studies in any one area. Further assessment of the effectiveness of couple-focused versus individual interventions for those at risk is needed. Three-arm study designs are needed to determine benefits of targeting couples versus couple-focused intervention content. © 2017 The Authors. British Journal of Health Psychology published by John Wiley & Sons Ltd on behalf of the British Psychological Society.

  4. Some remarks on nonminimal coupling of the inflaton

    NASA Astrophysics Data System (ADS)

    Mahajan, Namit

    2014-08-01

    The nonminimal coupling of the inflaton is known to alleviate the smallness of the quartic coupling λ in the chaotic inflation with ϕ4 potential. A large ξ is required to obtain the cosmic microwave background (CMB) power spectrum while a small value 1/6 seems to be preferred from spectral index. There are issues related to conformal transformations, choice of frame and natural value(s) of ξ for a given potential. We revisit some of these issues and invoke field theoretic arguments (which exist in different context and have not been employed previously in the context of inflation) in order to address the same. A rather strong and general conclusion reached, based on the requirements of renormalizability and finiteness of specific matrix elements in a quantum theory, is that it is generically not possible to eliminate the nonminimal coupling by going from the Jordan to the Einstein frame via conformal transformations. We also comment on Higgs inflation.

  5. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    NASA Astrophysics Data System (ADS)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very similar and therefore cancel when calculating the difference to determine 1DCC values.

  6. Thiolated silicone oil: Synthesis, gelling and mucoadhesive properties

    PubMed Central

    Partenhauser, Alexandra; Laffleur, Flavia; Rohrer, Julia; Bernkop-Schnürch, Andreas

    2015-01-01

    The aim of this study was the development of novel thiolated silicone oils and their evaluation with regard to gelling and mucoadhesive properties. A thiol coupling of 220 ± 14 and 127 ± 33 μmol/g polymer for 3-mercaptopropionic acid (MPA)- and cysteine-coupled silicone oil was determined, respectively. The dynamic viscosity of MPA–silicone raised significantly (p < 0.000001) after oxidation with iodine to a maximum of 523-fold within 1 h. During tensile studies, MPA–silicone showed both the highest results for total work of adhesion (TWA) and maximum detachment force (MDF) with a 3.8- and 3.4-fold increase, respectively, compared to the control. As far as the residence time on small intestinal mucosa is concerned, both silicone conjugates were detectable in almost the same quantities for up to 8 h with 56.9 ± 3.3 and 47.8 ± 8.9% of the initially applied conjugated silicone oil. Thiolated silicone oils can be regarded superior in comparison to commonly used silicone oils due to a prolonged retention time in the small intestine as site of action. Gelling and mucoadhesive features are advantageous for antiflatulent as well as mucoprotective biomaterials. Thus, these novel thiomers seem promising for an upgrade of currently available products for the treatment of dyspepsia, reflux oesophagitis and even inflammatory bowel diseases such as ulcerative colitis or Crohn’s disease. PMID:25660565

  7. Coupled multipolar interactions in small-particle metallic clusters.

    PubMed

    Pustovit, Vitaly N; Sotelo, Juan A; Niklasson, Gunnar A

    2002-03-01

    We propose a new formalism for computing the optical properties of small clusters of particles. It is a generalization of the coupled dipole-dipole particle-interaction model and allows one in principle to take into account all multipolar interactions in the long-wavelength limit. The method is illustrated by computations of the optical properties of N = 6 particle clusters for different multipolar approximations. We examine the effect of separation between particles and compare the optical spectra with the discrete-dipole approximation and the generalized Mie theory.

  8. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    PubMed

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules using a linear-to-cyclized strategy, in which Csp(3) boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform has been automated. The synthesis of 14 distinct classes of small molecules, including pharmaceuticals, materials components, and polycyclic natural products, has been achieved using this new synthesis machine. It is anticipated that the scope of small molecules accessible by this platform will continue to expand via further developments in building block synthesis, Csp(3) cross-coupling methodologies, and cyclization strategies. Achieving these goals will enable the more generalized synthesis of small molecules and thereby help shift the rate-limiting step in small molecule science from synthesis to function.

  9. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure.

    PubMed

    Epp, Tyler; Svecova, Dagmar; Cha, Young-Jin

    2018-03-29

    Structural Health Monitoring (SHM) has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN) application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC) structures.

  10. Semi-Automated Air-Coupled Impact-Echo Method for Large-Scale Parkade Structure

    PubMed Central

    Epp, Tyler; Svecova, Dagmar; Cha, Young-Jin

    2018-01-01

    Structural Health Monitoring (SHM) has moved to data-dense systems, utilizing numerous sensor types to monitor infrastructure, such as bridges and dams, more regularly. One of the issues faced in this endeavour is the scale of the inspected structures and the time it takes to carry out testing. Installing automated systems that can provide measurements in a timely manner is one way of overcoming these obstacles. This study proposes an Artificial Neural Network (ANN) application that determines intact and damaged locations from a small training sample of impact-echo data, using air-coupled microphones from a reinforced concrete beam in lab conditions and data collected from a field experiment in a parking garage. The impact-echo testing in the field is carried out in a semi-autonomous manner to expedite the front end of the in situ damage detection testing. The use of an ANN removes the need for a user-defined cutoff value for the classification of intact and damaged locations when a least-square distance approach is used. It is postulated that this may contribute significantly to testing time reduction when monitoring large-scale civil Reinforced Concrete (RC) structures. PMID:29596332

  11. A Flavorful Factoring of the Strong CP Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Howe, Kiel

    Motivated by the intimate connection between the strong CP problem and the flavor structure of the Standard Model, we present a flavor model that revives and extends the classicmore » $${m_u=0}$$ solution to the strong CP problem. QCD is embedded into a $$SU(3)_1\\times SU(3)_2 \\times SU(3)_3$$ gauge group, with each generation of quarks charged under the respective $SU(3)$. The non-zero value of the up-quark Yukawa coupling (along with the strange quark and bottom-quark Yukawas) is generated by contributions from small instantons at a new scale $$M \\gg \\Lambda_{QCD}$$. The Higgsing of $$SU(3)^3\\to SU(3)_c$$ allows dimension-5 operators that generate the Standard Model flavor structure and can be completed in a simple renormalizable theory. The smallness of the third generation mixing angles can naturally emerge in this picture, and is connected to the smallness of threshold corrections to $$\\bar\\theta$$. Remarkably, $$\\bar\\theta$$ is essentially fixed by the measured quark masses and mixings, and is estimated to be close to the current experimental bound and well within reach of the next generation of neutron and proton EDM experiments.« less

  12. Relationship Between Tobacco Retailers' Point-of-Sale Marketing and the Density of Same-Sex Couples, 97 U.S. Counties, 2012.

    PubMed

    Lee, Joseph G L; Goldstein, Adam O; Pan, William K; Ribisl, Kurt M

    2015-07-28

    The reasons for higher rates of smoking among lesbian, gay, and bisexual (LGB) people than among heterosexual people are not well known. Research on internal migration and neighborhood selection suggests that LGB people are more likely to live in neighborhoods where the tobacco industry has historically targeted their marketing efforts (lower income, more racial/ethnic diversity). We used multi-level models to assess the relationship between the rate of same-sex couples per 1000 coupled households and 2012 marketing characteristics of tobacco retailers (n = 2231) in 1696 census tracts in 97 U.S. counties. We found no evidence of tobacco marketing at retailers differing by same-sex couple rates in census tracts with the exception of three findings in the opposite direction of our hypotheses: a small, significant positive relationship for the rate of same-sex male couples and the price of Newport Green (mentholated) cigarettes. For male and female same-sex couples, we also found a small negative relationship between tobacco advertisements and same-sex household rate. Tobacco retailers' tobacco marketing characteristics do not differ substantially by the rate of same-sex couples in their neighborhood in ways that would promote LGB health disparities. Further work is needed to determine if these patterns are similar for non-partnered LGB people.

  13. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    NASA Astrophysics Data System (ADS)

    Yan, Yingying; Lin, Jintai; Chen, Jinxuan; Hu, Lu

    2016-02-01

    Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3), but these processes are not captured by current global chemical transport models (CTMs) and chemistry-climate models that are limited by coarse horizontal resolutions (100-500 km, typically 200 km). These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5° long. × 2° lat.) and its three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs) from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from the World Data Centre for Greenhouse Gases (WDCGG), the United States National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory Global Monitoring Division (GMD), the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP), and the United States Environmental Protection Agency Air Quality System (AQS)), aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC)) and satellite measurements (two Ozone Monitoring Instrument (OMI) products). The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3 with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled system reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO (for remote areas) and MOZAIC (for polluted regions) data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5 %, annual mean), bringing them closer to the OMI data in all seasons. Additionally, the two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5 % with improved estimates of methyl chloroform and methane lifetimes. Simulation improvements are more significant in the Northern Hemisphere, and are mainly driven by improved representation of spatial inhomogeneity in chemistry/emissions. Within the nested domains, the two-way coupled simulation reduces surface ozone biases relative to typical GEOS-Chem one-way nested simulations, due to much improved LBCs. The bias reduction is 1-7 times the bias reduction from the global to the one-way nested simulation. Improving model representations of small-scale processes is important for understanding the global and regional tropospheric chemistry.

  14. Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats

    NASA Astrophysics Data System (ADS)

    Stalter, S.; Yelash, L.; Emamy, N.; Statt, A.; Hanke, M.; Lukáčová-Medvid'ová, M.; Virnau, P.

    2018-03-01

    Heterogeneous multiscale methods (HMM) combine molecular accuracy of particle-based simulations with the computational efficiency of continuum descriptions to model flow in soft matter liquids. In these schemes, molecular simulations typically pose a computational bottleneck, which we investigate in detail in this study. We find that it is preferable to simulate many small systems as opposed to a few large systems, and that a choice of a simple isokinetic thermostat is typically sufficient while thermostats such as Lowe-Andersen allow for simulations at elevated viscosity. We discuss suitable choices for time steps and finite-size effects which arise in the limit of very small simulation boxes. We also argue that if colloidal systems are considered as opposed to atomistic systems, the gap between microscopic and macroscopic simulations regarding time and length scales is significantly smaller. We propose a novel reduced-order technique for the coupling to the macroscopic solver, which allows us to approximate a non-linear stress-strain relation efficiently and thus further reduce computational effort of microscopic simulations.

  15. SiO2 Hole Etching Using Perfluorocarbon Alternative Gas with Small Global Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Ooka, Masahiro; Yokoyama, Shin

    2004-06-01

    The etching of contact holes of 0.1 μm size in SiO2 is achieved using, for the first time, cyclic (c-)C5F8 with a small greenhouse effect in the pulse-modulated inductively coupled plasma. The shape of the cross section of the contact hole is as good as that etched using conventional c-C4F8. It is confirmed that Kr mixing instead of Ar in the plasma does not change the etching characteristics, although lowering of the electron temperature is expected which reduces the plasma-induced damage. Pulse modulation of the plasma is found to improve the etching selectivity of SiO2 with respect to Si. Langmuir probe measurement of the plasma suggests that the improvement of the etching selectivity is due to the deposition of fluorocarbon film triggered by lowering of the electron temperature when the off time of the radio frequency (rf) power is extended.

  16. Deformations of a pre-stretched elastic membrane driven by non-uniform electroosmotic flow

    NASA Astrophysics Data System (ADS)

    Bercovici, Moran; Boyko, Evgeniy; Gat, Amir

    2016-11-01

    We study viscous-elastic dynamics of fluid confined between a rigid plate and a pre-stretched elastic membrane subjected to non-uniform electroosmotic flow, and focus on the case of a finite-size membrane clamped at its boundaries. Considering small deformations of a strongly pre-stretched membrane, and applying the lubrication approximation for the flow, we derive a linearized leading-order non-homogenous 4th order diffusion equation governing the deformation and pressure fields. We derive a time-dependent Green's function for a rectangular domain, and use it to obtain several basic solutions for the cases of constant and time varying electric fields. In addition, defining an asymptotic expansion where the small parameter is the ratio of the induced to prescribed tension, we obtain a set of four one-way coupled equations providing a first order correction for the deformation field. Funded by the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme, Grant agreement No. 678734 (MetamorphChip).

  17. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction

    PubMed Central

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-01-01

    The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233

  18. Coupling of Large Amplitude Inversion with Other States

    NASA Astrophysics Data System (ADS)

    Pearson, John; Yu, Shanshan

    2016-06-01

    The coupling of a large amplitude motion with a small amplitude vibration remains one of the least well characterized problems in molecular physics. Molecular inversion poses a few unique and not intuitively obvious challenges to the large amplitude motion problem. In spite of several decades of theoretical work numerous challenges in calculation of transition frequencies and more importantly intensities persist. The most challenging aspect of this problem is that the inversion coordinate is a unique function of the overall vibrational state including both the large and small amplitude modes. As a result, the r-axis system and the meaning of the K-quantum number in the rotational basis set are unique to each vibrational state of large or small amplitude motion. This unfortunate reality has profound consequences to calculation of intensities and the coupling of nearly degenerate vibrational states. The case of NH3 inversion and inversion through a plane of symmetry in alcohols will be examined to find a general path forward.

  19. Wigner time delay and spin-orbit activated confinement resonances

    NASA Astrophysics Data System (ADS)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  20. Estimation of coupling between time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. D.; Ponomarenko, V. I.

    2005-07-01

    We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.

  1. Small core fiber coupled 60-W laser diode

    NASA Astrophysics Data System (ADS)

    Fernie, Douglas P.; Mannonen, Ilkka; Raven, Anthony L.

    1995-05-01

    Semiconductor laser diodes are compact, efficient and reliable sources of laser light and 25 W fiber coupled systems developed by Diomed have been in clinical use for over three years. For certain applications, particularly in the treatment of benign prostatic hyperplasia and flexible endoscopy, higher powers are desirable. In these applications the use of flexible optical fibers of no more than 600 micrometers core diameter is essential for compatibility with most commercial delivery fibers and instrumentation. A high power 60 W diode laser system for driving these small core fibers has been developed. The design requirements for medical applications are analyzed and system performance and results of use in gastroenterology and urology with small core fibers will be presented.

  2. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations

    PubMed Central

    Marino, Kristen A.; Filizola, Marta

    2017-01-01

    An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important—albeit static—pictures of how small molecules or peptides interact with their receptors. These high-resolution structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches. PMID:29188572

  3. Investigating Small-Molecule Ligand Binding to G Protein-Coupled Receptors with Biased or Unbiased Molecular Dynamics Simulations.

    PubMed

    Marino, Kristen A; Filizola, Marta

    2018-01-01

    An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important-albeit static-pictures of how small molecules or peptides interact with their receptors. These high-resolution structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches.

  4. An Open-Source Automated Peptide Synthesizer Based on Arduino and Python.

    PubMed

    Gali, Hariprasad

    2017-10-01

    The development of the first open-source automated peptide synthesizer, PepSy, using Arduino UNO and readily available components is reported. PepSy was primarily designed to synthesize small peptides in a relatively small scale (<100 µmol). Scripts to operate PepSy in a fully automatic or manual mode were written in Python. Fully automatic script includes functions to carry out resin swelling, resin washing, single coupling, double coupling, Fmoc deprotection, ivDde deprotection, on-resin oxidation, end capping, and amino acid/reagent line cleaning. Several small peptides and peptide conjugates were successfully synthesized on PepSy with reasonably good yields and purity depending on the complexity of the peptide.

  5. An investigation of multi-rate sound decay under strongly non-diffuse conditions: The crypt of the Cathedral of Cadiz

    NASA Astrophysics Data System (ADS)

    Martellotta, Francesco; Álvarez-Morales, Lidia; Girón, Sara; Zamarreño, Teófilo

    2018-05-01

    Multi-rate sound decays are often found and studied in complex systems of coupled volumes where diffuse field conditions generally apply, although the openings connecting different sub-spaces are by themselves potential causes of non-diffuse behaviour. However, in presence of spaces in which curved surfaces clearly prevent diffuse field behaviour from being established, things become more complex and require more sophisticated tools (or, better, combinations of them) to be fully understood. As an example of such complexity, the crypt of the Cathedral of Cadiz is a relatively small space characterised by a central vaulted rotunda, with five radial galleries with flat and low ceiling. In addition, the crypt is connected to the main cathedral volume by means of several small openings. Acoustic measurements carried out in the crypt pointed out the existence of at least two decay processes combined, in some points, with flutter echoes. Application of conventional methods of analysis pointed out the existence of significant differences between early decay time and reverberation time, but was inconclusive in explaining the origin of the observed phenomena. The use of more robust Bayesian analysis permitted the conclusion that the late decay appearing in the crypt had a different rate than that observed in the cathedral, thus excluding the explanation based on acoustic coupling of different volumes. Finally, processing impulse responses collected by means of a B-format microphone to obtain directional intensity maps demonstrated that the late decay was originated from the rotunda where a repetitive reflection pattern appeared between the floor and the dome causing both flutter echoes and a longer reverberation time.

  6. Collective dynamics of 'small-world' networks.

    PubMed

    Watts, D J; Strogatz, S H

    1998-06-04

    Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks, spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes. Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation. The neural network of the worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world networks. Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices.

  7. Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    He, Wenhan

    Current state-of-the-art organic solar cells (OSCs) adopt the strategy of using conjugated polymers or small molecules as donors and fullerene derivatives as acceptors in their active layers. Regarding to the donors of interest, the conjugated polymers and small molecules coupled with heavy metals have been less explored compared to their counterparts. Among various transition metal complexes applied, Pt(II) complexes are unique because of their intrinsic square planar geometries and ability to serve as building blocks for conjugated systems. Furthermore, the heavy metal Pt facilitates the formation of triplet excitons with longer life times through spin-orbital coupling which are of benefit for the OSCs application. However, in order to obtain low bandgap polymers, people are intended to use chromophores with long conjugated length, nevertheless such design will inevitably dilute the spin-orbital coupling effect and finally influence the formation of triplet excitons. Furthermore, the majority of Pt-containing conjugated systems reported so far shared a common feature-- they all possessed "dumbbell" shaped structures and were amorphous, leading to poor device performance. In addition, there were few examples reporting the capture of the triplet excitons by the fullerene acceptors in the OSCs since there is a mismatch between the triplet energy state (T1) of the Pt-containing compounds and the LUMO level of fullerene acceptors. As a result, these three intrinsic problems will impede the further development of such a field. In order to solve these problems, I originally designed and synthesized three novel compounds with unique proprieties named as Bodipy-Pt, Pt-SM and C60+SDS-. Specifically, Bodipy has the advantages of compact size, easy to synthesis and high fluorescence quantum yield which can effectively solve the problem of long conjugated length. While in terms of second problem, the new Pt-SM possessed a "roller-wheel" structural design with increased crystallinity through slip-stack packing; the solar cell efficiency of this compound out-performed all existing Pt-containing materials in organic solar cells. I have further studied the photophysical behavior of the molecule through time-resolved transient absorption spectroscopy as well as DFT calculation. Finally, because of its ionic nature, the LUMO level of C60+SDS- is lower than that of PCBM which serves as a common fullerene acceptor applied in the organic solar cell. Above all, through the measurement of time-resolved transient absorption, I have confirmed the C60+SDS - can capture the triplet exciton of Pt-SM through dynamic quenching since the life-time of triplet exciton has decreased after adding C60 +SDS- solution.

  8. Spacecraft Leak Location Using Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Reusser, R. S.; Chimenti, D. E.; Holland, S. D.; Roberts, R. A.

    2010-02-01

    Guided ultrasonic waves, generated by air escaping through a small hole, have been measured with an 8×8 piezoelectric phased-array detector. Rapid location of air leaks in a spacecraft skin, caused by high-speed collisions with small objects, is essential for astronaut survival. Cross correlation of all 64 elements, one pair at a time, on a diced PZT disc combined with synthetic aperture analysis determines the dominant direction of wave propagation. The leak location is triangulated by combining data from two or more detector. To optimize the frequency band selection for the most robust direction finding, noise-field measurements of a plate with integral stiffeners have been performed using laser Doppler velocimetry. We compare optical and acoustic measurements to analyze the influence of the PZT array detector and its mechanical coupling to the plate.

  9. Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gibson, Garth Alan

    1990-01-01

    During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.

  10. Sagnac-interferometer-based fresnel flow probe.

    PubMed

    Tselikov, A; Blake, J

    1998-10-01

    We used a near-diffraction-limited flow or light-wave-interaction pipe to produce a Sagnac-interferometer-based Fresnel drag fluid flowmeter capable of detecting extremely small flow rates. An optimized design of the pipe along with the use of a state-of-the-art Sagnac interferometer results in a minimum-detectable water flow rate of 2.4 nl/s [1 drop/(5 h)]. The flowmeter's capability of measuring the water consumption by a small plant in real time has been demonstrated. We then designed an automated alignment system that finds and maintains the optimum fiber-coupling regime, which makes the applications of the Fresnel-drag-based flowmeters practical, especially if the length of the interaction pipe is long. Finally, we have applied the automatic alignment technique to an air flowmeter.

  11. Polariton devices and quantum fluids

    NASA Astrophysics Data System (ADS)

    Ballarini, D.; De Giorgi, M.; Lerario, G.; Cannavale, A.; Cancellieri, E.; Bramati, A.; Gigli, G.; Laussy, F.; Sanvitto, D.

    2014-02-01

    Exciton-polaritons, composite particles resulting from the strong coupling between excitons and photons, have shown the capability to undergo condensation into a macroscopically coherent quantum state, demonstrating strong non-linearities and unique propagation properties. These strongly-coupled light-matter particles are promising candidates for the realization of semiconductor all-optical devices with fast time response and small energy consumption. Recently, quantum fluids of polaritons have been used to demonstrate the possibility to implement optical functionalities as spin switches, transistors or memories, but also to provide a channel for the transmission of information inside integrated circuits. In this context, the possibility to extend the range of light-matter interaction up to room temperature becomes of crucial importance. One of the most intriguing promises is to use organic Frenkel excitons, which, thanks to their huge oscillator strength, not only sustain the polariton picture at room temperature, but also bring the system into the unexplored regime of ultra-strong coupling. The combination of these materials with ad-hoc designed structures may allow the control of the propagation properties of polaritons, paving the way towards their implementation of the polariton functionalities in actual devices for opto-electronic applications.

  12. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br; Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the fullmore » synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.« less

  13. Monte Carlo and discrete-ordinate simulations of spectral radiances in a coupled air-tissue system.

    PubMed

    Hestenes, Kjersti; Nielsen, Kristian P; Zhao, Lu; Stamnes, Jakob J; Stamnes, Knut

    2007-04-20

    We perform a detailed comparison study of Monte Carlo (MC) simulations and discrete-ordinate radiative-transfer (DISORT) calculations of spectral radiances in a 1D coupled air-tissue (CAT) system consisting of horizontal plane-parallel layers. The MC and DISORT models have the same physical basis, including coupling between the air and the tissue, and we use the same air and tissue input parameters for both codes. We find excellent agreement between radiances obtained with the two codes, both above and in the tissue. Our tests cover typical optical properties of skin tissue at the 280, 540, and 650 nm wavelengths. The normalized volume scattering function for internal structures in the skin is represented by the one-parameter Henyey-Greenstein function for large particles and the Rayleigh scattering function for small particles. The CAT-DISORT code is found to be approximately 1000 times faster than the CAT-MC code. We also show that the spectral radiance field is strongly dependent on the inherent optical properties of the skin tissue.

  14. Characterization and comparison of Fumonisin B(1)-protein conjugates by six methods.

    PubMed

    Wang, Ying; He, Cheng-Hua; Zheng, Hao; Zhang, Hai-Bin

    2012-01-01

    In order to generate an antibody against a small hapten molecule, the hapten is cross-linked with carrier protein to make it immunogenic. In this study, the hapten (Fumonisin B(1), FB(1)) was coupled to ovalbumin (OVA) and bovine serum albumin (BSA), respectively by a short cross-linker reagent (glutaraldehyde, GA). To develop a technique for detecting the conjugation, the hapten-protein conjugates (FB(1)-OVA and FB(1)-BSA) were characterized thoroughly by ultraviolet (UV) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), respectively. The molecular weights of FB(1)-BSA and FB(1)-OVA were 74,355.301 Da and 48,009.212 Da, respectively determined by the method of MALDI-TOF-MS. The molecular coupling ratios were 11 and 5 in FB(1)-BSA and FB(1)-OVA, respectively. In this experiment, MALDI-TOF-MS was selected as the most efficient method to evaluate the cross-linking effect and calculate the molecular coupling ratio.

  15. Generation of longitudinal vibrations in piano strings: From physics to sound synthesis

    NASA Astrophysics Data System (ADS)

    Bank, Balázs; Sujbert, László

    2005-04-01

    Longitudinal vibration of piano strings greatly contributes to the distinctive character of low piano notes. In this paper a simplified modal model is developed, which describes the generation of phantom partials and longitudinal free modes jointly. The model is based on the simplification that the coupling from the transverse vibration to the longitudinal polarization is unidirectional. The modal formulation makes it possible to predict the prominent components of longitudinal vibration as a function of transverse modal frequencies. This provides a qualitative insight into the generation of longitudinal vibration, while the model is still capable of explaining the empirical results of earlier works. The semi-quantitative agreement with measurement results implies that the main source of phantom partials is the transverse to longitudinal coupling, while the string termination and the longitudinal to transverse coupling have only small influence. The results suggest that the longitudinal component of the tone can be treated as a quasi-harmonic spectrum with formantlike peaks at the longitudinal modal frequencies. The model is further simplified and applied for the real-time synthesis of piano sound with convincing sonic results. .

  16. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation.

    PubMed

    Fang, Mingliang; Ivanisevic, Julijana; Benton, H Paul; Johnson, Caroline H; Patti, Gary J; Hoang, Linh T; Uritboonthai, Winnie; Kurczy, Michael E; Siuzdak, Gary

    2015-11-03

    Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.

  17. Low-scale seesaw and the CP violation in neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Penedo, J. T.; Petcov, S. T.; Yanagida, Tsutomu T.

    2018-04-01

    We consider a version of the low-scale type I seesaw mechanism for generating small neutrino masses, as an alternative to the standard seesaw scenario. It involves two right-handed (RH) neutrinos ν1R and ν2R having a Majorana mass term with mass M, which conserves the lepton charge L. The RH neutrino ν2R has lepton-charge conserving Yukawa couplings gℓ2 to the lepton and Higgs doublet fields, while small lepton-charge breaking effects are assumed to induce tiny lepton-charge violating Yukawa couplings gℓ1 for ν1R, l = e , μ , τ. In this approach the smallness of neutrino masses is related to the smallness of the Yukawa coupling of ν1R and not to the large value of M: the RH neutrinos can have masses in the few GeV to a few TeV range. The Yukawa couplings |gℓ2 | can be much larger than |gℓ1 |, of the order |gℓ2 | ∼10-4-10-2, leading to interesting low-energy phenomenology. We consider a specific realisation of this scenario within the Froggatt-Nielsen approach to fermion masses. In this model the Dirac CP violation phase δ is predicted to have approximately one of the values δ ≃ π / 4 , 3 π / 4, or 5 π / 4 , 7 π / 4, or to lie in a narrow interval around one of these values. The low-energy phenomenology of the considered low-scale seesaw scenario of neutrino mass generation is also briefly discussed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yung-Ting; Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan 10617, Taiwan; Liu, Shun-Wei

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7 cd/A and maximum power efficiency of 8.39 lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less lightmore » than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7 cd/A and 8.39 lm/W to 23 cd/A and 13.2 lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.« less

  19. Simulations of Eurasian winter temperature trends in coupled and uncoupled CFSv2

    NASA Astrophysics Data System (ADS)

    Collow, Thomas W.; Wang, Wanqiu; Kumar, Arun

    2018-01-01

    Conflicting results have been presented regarding the link between Arctic sea-ice loss and midlatitude cooling, particularly over Eurasia. This study analyzes uncoupled (atmosphere-only) and coupled (ocean-atmosphere) simulations by the Climate Forecast System, version 2 (CFSv2), to examine this linkage during the Northern Hemisphere winter, focusing on the simulation of the observed surface cooling trend over Eurasia during the last three decades. The uncoupled simulations are Atmospheric Model Intercomparison Project (AMIP) runs forced with mean seasonal cycles of sea surface temperature (SST) and sea ice, using combinations of SST and sea ice from different time periods to assess the role that each plays individually, and to assess the role of atmospheric internal variability. Coupled runs are used to further investigate the role of internal variability via the analysis of initialized predictions and the evolution of the forecast with lead time. The AMIP simulations show a mean warming response over Eurasia due to SST changes, but little response to changes in sea ice. Individual runs simulate cooler periods over Eurasia, and this is shown to be concurrent with a stronger Siberian high and warming over Greenland. No substantial differences in the variability of Eurasian surface temperatures are found between the different model configurations. In the coupled runs, the region of significant warming over Eurasia is small at short leads, but increases at longer leads. It is concluded that, although the models have some capability in highlighting the temperature variability over Eurasia, the observed cooling may still be a consequence of internal variability.

  20. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.

    PubMed

    Harrison, Jonathan U; Yates, Christian A

    2016-09-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.

  1. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics

    PubMed Central

    Yates, Christian A.

    2016-01-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction–diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. PMID:27628171

  2. Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Tetzlaff, Doerthe; Buttle, Jim; Laudon, Hjalmar; McDonnell, Jeff; McGuire, Kevin; Seibert, Jan; Soulsby, Chris; Shanley, Jamie

    2013-10-01

    The higher midlatitudes of the northern hemisphere are particularly sensitive to change due to the important role the 0°C isotherm plays in the phase of precipitation and intermediate storage as snow. An international intercatchment comparison program called North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. Here eight North-Watch catchments located in Sweden (Krycklan), Scotland (Girnock and Strontian), the United States (Sleepers River, Hubbard Brook, and HJ Andrews), and Canada (Dorset and Wolf Creek) with 10 continuous years of daily precipitation and runoff data were selected to assess daily to seasonal coupling of precipitation (P) and runoff (Q) using wavelet coherency, and to explore the patterns and scales of variability in streamflow using color maps. Wavelet coherency revealed that P and Q were decoupled in catchments with cold winters, yet were strongly coupled during and immediately following the spring snowmelt freshet. In all catchments, coupling at shorter time scales occurred during wet periods when the catchment was responsive and storage deficits were small. At longer time scales, coupling reflected coherence between seasonal cycles, being enhanced at sites with enhanced seasonality in P. Color maps were applied as an alternative method to identify patterns and scales of flow variability. Seasonal versus transient flow variability was identified along with the persistence of that variability on influencing the flow regime. While exploratory in nature, this intercomparison exercise highlights the importance of climate and the 0°C isotherm on the functioning of northern catchments.

  3. Tunable, Electrically Small, Inductively Coupled Antenna for Transportable Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Esser, Benedikt; Mauch, Daniel; Dickens, James; Mankowski, John; Neuber, Andreas

    2018-04-01

    An electrically small antenna is evaluated for use as the principle radiating element in a mobile ionospheric heating array. Consisting of a small loop antenna inductively coupled to a capacitively loaded loop, the electrically small antenna provides high efficiency with the capability of being tuned within the range of ionospheric heating. At a factor 60 smaller in area than a High-Frequency Active Auroral Research Program element, this antenna provides a compact, efficient radiating element for mobile ionospheric heating. A prototype antenna at 10 MHz was built to study large-scale feasibility and possible use with photoconductive semiconductor switch-based drivers. Based on the experimental study, the design has been extrapolated to a small 6 × 4 array of antennas. At a total power input of 16.1 MW this array is predicted to provide 3.6-GW effective radiated power typically required for ionospheric heating. Array cross talk is addressed, including effects upon individual antenna port parameters. Tuning within the range of ionospheric heating, 3-10 MHz, is made possible without the use of lossy dielectrics through a large capacitive area suited to tune the antenna. Considerations for high power operation across the band are provided including a method of driving the antenna with a simple switcher requiring no radio frequency cabling. Source matching may be improved via adjustment of the coupling between small loop antenna and capacitively loaded loop improving |S11| from -1 to -21 dB at 3 MHz.

  4. Field experiment and numerical simulation of coupling non-Darcy flow caused by curtain and pumping well in foundation pit dewatering

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiu; Liu, Xiaotian; Wu, Yuanbin; Liu, Shaoli; Wu, Lingao; Lou, Rongxiang; Lu, Jiansheng; Yin, Yao

    2017-06-01

    High-velocity non-Darcy flow produced larger drawdown than Darcy flow under the same pumping rate. When the non-Darcy flow caused by curtain met non-Darcy flow caused by pumping wells, superposition and amplification effect occurred in the coupling area, the non-Darcy flow was defined as coupling non-Darcy flow. The coupling non-Darcy flow can be produced and controlled using different combination of curtain and pumping wells in foundation pit dewatering to obtain the maximum drawdown using the minimum pumping rate. The Qianjiang Century City Station foundation pit of Hangzhou subway, China, was selected as background. Field experiments were performed to observe the coupling non-Darcy flow in round gravel. A generalized conceptual model was established to study the coupling effect under different combination of curtain and pumping wells. Numerical simulations of the coupling non-Darcy flow in foundation pit dewatering were carried out based on the Forchheimer equation. The non-Darcy flow area and flow velocity were influenced by the coupling effect. Short filter tube, large pumping rate, small horizontal distance between filter tube and diaphragm wall, and small vertical distance between the filter tube and confined aquifer roof effectively strengthened the coupling effect and obtained a large drawdown. The pumping wells installed close to a curtain was an intentional choice designed to create coupling non-Darcy flow and obtain the maximize drawdown. It can be used in the dewatering of a long and narrow foundation pit, such as a subway foundation pit.

  5. Interdependencies and Causalities in Coupled Financial Networks.

    PubMed

    Vodenska, Irena; Aoyama, Hideaki; Fujiwara, Yoshi; Iyetomi, Hiroshi; Arai, Yuta

    2016-01-01

    We explore the foreign exchange and stock market networks for 48 countries from 1999 to 2012 and propose a model, based on complex Hilbert principal component analysis, for extracting significant lead-lag relationships between these markets. The global set of countries, including large and small countries in Europe, the Americas, Asia, and the Middle East, is contrasted with the limited scopes of targets, e.g., G5, G7 or the emerging Asian countries, adopted by previous works. We construct a coupled synchronization network, perform community analysis, and identify formation of four distinct network communities that are relatively stable over time. In addition to investigating the entire period, we divide the time period into into "mild crisis," (1999-2002), "calm," (2003-2006) and "severe crisis" (2007-2012) sub-periods and find that the severe crisis period behavior dominates the dynamics in the foreign exchange-equity synchronization network. We observe that in general the foreign exchange market has predictive power for the global stock market performances. In addition, the United States, German and Mexican markets have forecasting power for the performances of other global equity markets.

  6. Value of in vivo electrophysiological measurements to evaluate canine small bowel autotransplants.

    PubMed Central

    Meijssen, M A; Heineman, E; de Bruin, R W; Veeze, H J; Bijman, J; de Jonge, H R; ten Kate, F J; Marquet, R L; Molenaar, J C

    1991-01-01

    This study aimed to develop a non-invasive method for in vivo measurement of the transepithelial potential difference in the canine small bowel and to evaluate this parameter in small bowel autotransplants. In group 0 (control group, n = 4), two intestinal loops were created without disturbing their vascular, neural, and lymphatic supplies. In group I (successful autotransplants, n = 11), two heterotopic small bowel loops were constructed. Long term functional sequelae of vascular, neural, and lymphatic division were studied. Group II (n = 6) consisted of dogs with unsuccessful autotransplants suffering thrombosis of the vascular anastomosis, which resulted in ischaemic small bowel autografts. In group I, values of spontaneous transepithelial potential difference, an index of base line active electrolyte transport, were significantly lower compared with group 0 (p less than 0.05), probably as a result of denervation of the autotransplants. Both theophylline and glucose stimulated potential difference responses, measuring cyclic adenosine monophosphate mediated chloride secretion and sodium coupled glucose absorption respectively, showed negative luminal values in group I at all time points after transplantation. These transepithelial potential difference responses diminished progressively with time. From day 21 onwards both theophylline and glucose stimulated potential difference responses were significantly less than the corresponding responses at day seven (p less than 0.05). Morphometric analysis showed that the reduction of transepithelial potential difference responses preceded degenerative mucosal changes in the heterotopic small bowel autografts. In group II, potential difference responses to theophylline and glucose showed positive luminal values (p<0.01 v group I), probably as a result of passive potassium effusion from necrotic enterocytes. Images Figure 3 PMID:1752464

  7. Quantitative analysis of small molecule-nucleic acid interactions with a biosensor surface and surface plasmon resonance detection.

    PubMed

    Liu, Yang; Wilson, W David

    2010-01-01

    Surface plasmon resonance (SPR) technology with biosensor surfaces has become a widely-used tool for the study of nucleic acid interactions without any labeling requirements. The method provides simultaneous kinetic and equilibrium characterization of the interactions of biomolecules as well as small molecule-biopolymer binding. SPR monitors molecular interactions in real time and provides significant advantages over optical or calorimetic methods for systems with strong binding coupled to small spectroscopic signals and/or reaction heats. A detailed and practical guide for nucleic acid interaction analysis using SPR-biosensor methods is presented. Details of the SPR technology and basic fundamentals are described with recommendations on the preparation of the SPR instrument, sensor chips, and samples, as well as extensive information on experimental design, quantitative and qualitative data analysis and presentation. A specific example of the interaction of a minor-groove-binding agent with DNA is evaluated by both kinetic and steady-state SPR methods to illustrate the technique. Since the molecules that bind cooperatively to specific DNA sequences are attractive for many applications, a cooperative small molecule-DNA interaction is also presented.

  8. Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience.

    PubMed

    Kim, Sally A; Schwille, Petra

    2003-10-01

    Based on time-averaging fluctuation analysis of small fluorescent molecular ensembles in equilibrium, fluorescence correlation spectroscopy has recently been applied to investigate processes in the intracellular milieu. The exquisite sensitivity of fluorescence correlation spectroscopy provides access to a multitude of measurement parameters (rates of diffusion, local concentration, states of aggregation and molecular interactions) in real time with fast temporal and high spatial resolution. The introduction of dual-color cross-correlation, imaging, two-photon excitation, and coincidence analysis coupled with fluorescence correlation spectroscopy has expanded the utility of the technique to encompass a wide range of promising applications in living cells that may provide unprecedented insight into understanding the molecular mechanisms of intracellular neurobiological processes.

  9. Wireless powering and data telemetry for biomedical implants.

    PubMed

    Young, Darrin J

    2009-01-01

    Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.

  10. Current and future bioanalytical approaches for stroke assessment.

    PubMed

    Pullagurla, Swathi R; Baird, Alison E; Adamski, Mateusz G; Soper, Steven A

    2015-01-01

    Efforts are underway to develop novel platforms for stroke diagnosis to meet the criteria for effective treatment within the narrow time window mandated by the FDA-approved therapeutic (<3 h). Blood-based biomarkers could be used for rapid stroke diagnosis and coupled with new analytical tools, could serve as an attractive platform for managing stroke-related diseases. In this review, we will discuss the physiological processes associated with stroke and current diagnostic tools as well as their associated shortcomings. We will then review information on blood-based biomarkers and various detection technologies. In particular, point of care testing that permits small blood volumes required for the analysis and rapid turn-around time measurements of multiple markers will be presented.

  11. Temperature, ordering, and equilibrium with time-dependent confining forces

    PubMed Central

    Schiffer, J. P.; Drewsen, M.; Hangst, J. S.; Hornekær, L.

    2000-01-01

    The concepts of temperature and equilibrium are not well defined in systems of particles with time-varying external forces. An example is a radio frequency ion trap, with the ions laser cooled into an ordered solid, characteristic of sub-mK temperatures, whereas the kinetic energies associated with the fast coherent motion in the trap are up to 7 orders of magnitude higher. Simulations with 1,000 ions reach equilibrium between the degrees of freedom when only aperiodic displacements (secular motion) are considered. The coupling of the periodic driven motion associated with the confinement to the nonperiodic random motion of the ions is very small at low temperatures and increases quadratically with temperature. PMID:10995471

  12. Using Coupled Groundwater-Surface Water Models to Simulate Eco-Regional Differences in Climate Change Impacts on Hydrological Drought Regimes in British Columbia

    NASA Astrophysics Data System (ADS)

    Dierauer, J. R.; Allen, D. M.

    2016-12-01

    Climate change is expected to lead to an increase in extremes, including daily maximum temperatures, heat waves, and meteorological droughts, which will likely result in shifts in the hydrological drought regime (i.e. the frequency, timing, duration, and severity of drought events). While many studies have used hydrologic models to simulate climate change impacts on water resources, only a small portion of these studies have analyzed impacts on low flows and/or hydrological drought. This study is the first to use a fully coupled groundwater-surface water (gw-sw) model to study climate change impacts on hydrological drought. Generic catchment-scale gw-sw models were created for each of the six major eco-regions in British Columbia using the MIKE-SHE/MIKE-11 modelling code. Daily precipitation and temperature time series downscaled using bias-correction spatial disaggregation for the simulated period of 1950-2100 were obtained from the Pacific Climate Institute Consortium (PCIC). Streamflow and groundwater drought events were identified from the simulated time series for each catchment model using the moving window quantile threshold. The frequency, timing, duration, and severity of drought events were compared between the reference period (1961-2000) and two future time periods (2031-2060, 2071-2100). Results show how hydrological drought regimes across the different British Columbia eco-regions will be impacted by climate change.

  13. Narcissism and Newlywed Marriage: Partner Characteristics and Marital Trajectories

    PubMed Central

    Lavner, Justin A.; Lamkin, Joanna; Miller, Joshua D.; Campbell, W. Keith; Karney, Benjamin R.

    2015-01-01

    Despite narcissism’s relation with interpersonal dysfunction, surprisingly little empirical research has been devoted to understanding narcissism’s effect on intimate relationships in general or marital relationships in particular. The current study addressed this gap using longitudinal data from a community sample of 146 newlywed couples assessed 6 times over the first four years of marriage. First, we examined partner characteristics associated with higher levels of narcissism to determine the degree to which couples were matched on narcissism and related traits. Second, we examined how narcissism predicted the trajectory of marital quality over time, testing narcissism’s association with initial levels of relationship functioning (the intercept) and changes in relationship functioning (the slope). Results indicated a small degree of homophily but otherwise no clear pattern of partner characteristics for individuals higher in narcissism. Hierarchical linear modeling indicated that wives’ total narcissism and entitlement/ exploitativeness scores predicted the slope of marital quality over time, including steeper declines in marital satisfaction and steeper increases in marital problems. Husbands’ narcissism scores generally had few effects on their own marital quality or that of their wives. These findings are notable in indicating that the effects of personality characteristics on marital functioning may take some time to manifest themselves, even if they were present from early in the marriage. Future research into the mediating psychological and interpersonal processes that link wives’ narcissism with poorer marital functioning over time would be valuable. PMID:26098378

  14. Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling.

    PubMed

    Forcisi, Sara; Moritz, Franco; Kanawati, Basem; Tziotis, Dimitrios; Lehmann, Rainer; Schmitt-Kopplin, Philippe

    2013-05-31

    The present review gives an introduction into the concept of metabolomics and provides an overview of the analytical tools applied in non-targeted metabolomics with a focus on liquid chromatography (LC). LC is a powerful analytical tool in the study of complex sample matrices. A further development and configuration employing Ultra-High Pressure Liquid Chromatography (UHPLC) is optimized to provide the largest known liquid chromatographic resolution and peak capacity. Reasonably UHPLC plays an important role in separation and consequent metabolite identification of complex molecular mixtures such as bio-fluids. The most sensitive detectors for these purposes are mass spectrometers. Almost any mass analyzer can be optimized to identify and quantify small pre-defined sets of targets; however, the number of analytes in metabolomics is far greater. Optimized protocols for quantification of large sets of targets may be rendered inapplicable. Results on small target set analyses on different sample matrices are easily comparable with each other. In non-targeted metabolomics there is almost no analytical method which is applicable to all different matrices due to limitations pertaining to mass analyzers and chromatographic tools. The specifications of the most important interfaces and mass analyzers are discussed. We additionally provide an exemplary application in order to demonstrate the level of complexity which remains intractable up to date. The potential of coupling a high field Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ICR-FT/MS), the mass analyzer with the largest known mass resolving power, to UHPLC is given with an example of one human pre-treated plasma sample. This experimental example illustrates one way of overcoming the necessity of faster scanning rates in the coupling with UHPLC. The experiment enabled the extraction of thousands of features (analytical signals). A small subset of this compositional space could be mapped into a mass difference network whose topology shows specificity toward putative metabolite classes and retention time. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Resonant Perturbation Theory of Decoherence and Relaxation of Quantum Bits

    DOE PAGES

    Merkli, M.; Berman, G. P.; Sigal, I. M.

    2010-01-01

    We describe our recenmore » t results on the resonant perturbation theory of decoherence and relaxation for quantum systems with many qubits. The approach represents a rigorous analysis of the phenomenon of decoherence and relaxation for general N -level systems coupled to reservoirs of bosonic fields. We derive a representation of the reduced dynamics valid for all times t ≥ 0 and for small but fixed interaction strength. Our approach does not involve master equation approximations and applies to a wide variety of systems which are not explicitly solvable.« less

  16. A very sensitive ion collection device for plasma-laser characterization.

    PubMed

    Cavallaro, S; Torrisi, L; Cutroneo, M; Amato, A; Sarta, F; Wen, L

    2012-06-01

    In this paper a very sensitive ion collection device, for diagnostic of laser ablated-target plasma, is described. It allows for reducing down to few microvolts the signal threshold at digital scope input. A standard ion collector is coupled to a transimpedance amplifier, specially designed, which increases data acquisition sensitivity by a gain ≈1100 and does not introduce any significant distortion of input signal. By time integration of current intensity, an amount of charge as small as 2.7 × 10(-2) pC can be detected for photopeak events.

  17. Chemical Sensing Using Fiber Cavity Ring-Down Spectroscopy

    PubMed Central

    Waechter, Helen; Litman, Jessica; Cheung, Adrienne H.; Barnes, Jack A.; Loock, Hans-Peter

    2010-01-01

    Waveguide-based cavity ring-down spectroscopy (CRD) can be used for quantitative measurements of chemical concentrations in small amounts of liquid, in gases or in films. The change in ring-down time can be correlated to analyte concentration when using fiber optic sensing elements that change their attenuation in dependence of either sample absorption or refractive index. Two types of fiber cavities, i.e., fiber loops and fiber strands containing reflective elements, are distinguished. Both types of cavities were coupled to a variety of chemical sensor elements, which are discussed and compared. PMID:22294895

  18. Homologous and Homologous like Microwave Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Trevisan, R. H.; Sawant, H. S.; Kalman, B.; Gesztelyi, L.

    1990-11-01

    ABSTRACT. Solar radio observations at 1.6 GHz were carried out in the month of July, 1985 by using 13.7 m diameter Itapetinga antenna with time resolution of 3 ms. Homologous Bursts, with total duration of about couple of seconds and repeated by some seconds were observed associated with Homologous H- flares. These H- flares were having periodicities of about 40 min. Observed long periodicities were attributed to oscillation of prominences, and small periods were attributed to removal of plasma from the field interaction zone. Also observed are "Homologous-Like" bursts. These bursts are double peak bursts with same time profile repeating in time. In addition to this, the ratio of the total duration of the bursts to time difference in the peaks of bursts remain constant. Morphological studies of these bursts have been presented. Keq tuoit : SUN-BURSTS - SUN-FLARE

  19. Measurement of the energy and time resolution of a undoped CsI + MPPC array for the Mu2e experiment

    DOE PAGES

    Atanova, O.; Cordelli, M.; Corradi, G.; ...

    2017-02-13

    This paper describes the measurements of energy and time response and resolution of a 3 x 3 array made of undoped CsI crystals coupled to large area Hamamatsu Multi Pixel Photon Counters. The measurements have been performed using the electron beam of the Beam Test Facility in Frascati (Rome, Italy) in the energy range 80-120 MeV. The measured energy resolution, estimated with the FWHM, at 100 MeV is 16.4%. This resolution is dominated by the energy leakage due to the small dimensions of the prototype. The time is reconstructed by fitting the leading edge of the digitized signals and applyingmore » a digital constant fraction discrimination technique. A time resolution of about 110 ps at 100 MeV is achieved.« less

  20. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Matinelli, L.

    1994-01-01

    The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.

  1. Field Effect Transistor in Nanoscale

    DTIC Science & Technology

    2017-04-26

    analogues) and BxCyNz (Napathalene analogues with x+y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations...analogues with x +y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations. Interestingly, various types of non-linear...Small molecules (such as benzene), double quantum dots (like GaAs-based QDs) which are coupled weakly to metallic electrodes have shown their

  2. An ensemble Kalman filter with a high-resolution atmosphere-ocean coupled model for tropical cyclone forecasts

    NASA Astrophysics Data System (ADS)

    Kunii, M.; Ito, K.; Wada, A.

    2015-12-01

    An ensemble Kalman filter (EnKF) using a regional mesoscale atmosphere-ocean coupled model was developed to represent the uncertainties of sea surface temperature (SST) in ensemble data assimilation strategies. The system was evaluated through data assimilation cycle experiments over a one-month period from July to August 2014, during which a tropical cyclone as well as severe rainfall events occurred. The results showed that the data assimilation cycle with the coupled model could reproduce SST distributions realistically even without updating SST and salinity during the data assimilation cycle. Therefore, atmospheric variables and radiation applied as a forcing to ocean models can control oceanic variables to some extent in the current data assimilation configuration. However, investigations of the forecast error covariance estimated in EnKF revealed that the correlation between atmospheric and oceanic variables could possibly lead to less flow-dependent error covariance for atmospheric variables owing to the difference in the time scales between atmospheric and oceanic variables. A verification of the analyses showed positive impacts of applying the ocean model to EnKF on precipitation forecasts. The use of EnKF with the coupled model system captured intensity changes of a tropical cyclone better than it did with an uncoupled atmosphere model, even though the impact on the track forecast was negligibly small.

  3. Chimeralike states in a network of oscillators under attractive and repulsive global coupling.

    PubMed

    Mishra, Arindam; Hens, Chittaranjan; Bose, Mridul; Roy, Prodyot K; Dana, Syamal K

    2015-12-01

    We report chimeralike states in an ensemble of oscillators using a type of global coupling consisting of two components: attractive and repulsive mean-field feedback. We identify the existence of two types of chimeralike states in a bistable Liénard system; in one type, both the coherent and the incoherent populations are in chaotic states (which we refer to as chaos-chaos chimeralike states) and, in another type, the incoherent population is in periodic state while the coherent population has irregular small oscillation. We find a metastable state in a parameter regime of the Liénard system where the coherent and noncoherent states migrate in time from one to another subpopulation. The relative size of the incoherent subpopulation, in the chimeralike states, remains almost stable with increasing size of the network. The generality of the coupling configuration in the origin of the chimeralike states is tested, using a second example of bistable system, the van der Pol-Duffing oscillator where the chimeralike states emerge as weakly chaotic in the coherent subpopulation and chaotic in the incoherent subpopulation. Furthermore, we apply the coupling, in a simplified form, to form a network of the chaotic Rössler system where both the noncoherent and the coherent subpopulations show chaotic dynamics.

  4. Dynamics of Coupled Electron-Boson Systems with the Multiple Davydov D1 Ansatz and the Generalized Coherent State.

    PubMed

    Chen, Lipeng; Borrelli, Raffaele; Zhao, Yang

    2017-11-22

    The dynamics of a coupled electron-boson system is investigated by employing a multitude of the Davydov D 1 trial states, also known as the multi-D 1 Ansatz, and a second trial state based on a superposition of the time-dependent generalized coherent state (GCS Ansatz). The two Ansätze are applied to study population dynamics in the spin-boson model and the Holstein molecular crystal model, and a detailed comparison with numerically exact results obtained by the (multilayer) multiconfiguration time-dependent Hartree method and the hierarchy equations of motion approach is drawn. It is found that the two methodologies proposed here have significantly improved over that with the single D 1 Ansatz, yielding quantitatively accurate results even in the critical cases of large energy biases and large transfer integrals. The two methodologies provide new effective tools for accurate, efficient simulation of many-body quantum dynamics thanks to a relatively small number of parameters which characterize the electron-nuclear wave functions. The wave-function-based approaches are capable of tracking explicitly detailed bosonic dynamics, which is absent by construct in approaches based on the reduced density matrix. The efficiency and flexibility of our methods are also advantages as compared with numerically exact approaches such as QUAPI and HEOM, especially at low temperatures and in the strong coupling regime.

  5. Spin properties of black phosphorus and phosphorene, and their prospects for spincalorics

    NASA Astrophysics Data System (ADS)

    Kurpas, Marcin; Gmitra, Martin; Fabian, Jaroslav

    2018-05-01

    Semiconducting black phosphorus attracts a lot of attention due to its extraordinary electronic properties. Its application to spincalorics requires the knowledge about the spin and thermal properties. Here, we describe first principles calculations of the spin–orbit coupling and spin scattering in phosphorene and bulk black phosphorus. We find that the intrinsic spin–orbit coupling is of the order of 20 meV for the valence and conduction band, both for phosphorene and bulk black phosphorus, and induces spin mixing with the probability b2 ≈ 10-5 –10‑4. A strong anisotropy of b 2 is observed. The calculated Elliott–Yafet spin relaxation times reach nanoseconds for realistic values of the momentum relaxation times. The extrinsic spin–orbit coupling, enabling the D’yakonov–Perel’ spin relaxation mechanism, is studied for phosphorene by application of a transverse electric field. We observe a strong anisotropy of the extrinsic effects for the valence band and much weaker for the conduction band. It is shown, that for small enough electric fields the spin relaxation is dominated by the Elliott–Yafet mechanism, while the D’yakonov–Perel’ matters for higher electric fields. Our theoretical results stay in a good agreement with the experimental findings, and indicates that long spin lifetimes in black phosphorus and phosphorene makes them prospective materials for spincalorics and spintronics.

  6. Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2015-11-01

    We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.

  7. Small Body Hopper Mobility Concepts

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Gernhardt, Michael L.; Lee, Dave E.; Crues, E. Zack; Dexter, Dan E.; Abercromby, Andrew F. J.; Chappell, Steve P.; Nguyen, Hung T.

    2015-01-01

    A propellant-saving hopper mobility system was studied that could help facilitate the exploration of small bodies such as Phobos for long-duration human missions. The NASA Evolvable Mars Campaign (EMC) has proposed a mission to the moons of Mars as a transitional step for eventual Mars surface exploration. While a Mars transit habitat would be parked in High-Mars Orbit (HMO), crew members would visit the surface of Phobos multiple times for up to 14 days duration (up to 50 days at a time with logistics support). This paper describes a small body surface mobility concept that is capable of transporting a small, two-person Pressurized Exploration Vehicle (PEV) cabin to various sites of interest in the low-gravity environment. Using stored kinetic energy between bounces, a propellant-saving hopper mobility system can release the energy to vector the vehicle away from the surface in a specified direction. Alternatively, the stored energy can be retained for later use while the vehicle is stationary in respect to the surface. The hopper actuation was modeled using a variety of launch velocities, and the hopper mobility was evaluated using NASA Exploration Systems Simulations (NExSyS) for transit between surface sites of interest. A hopper system with linear electromagnetic motors and mechanical spring actuators coupled with Control Moment Gyroscope (CMG) for attitude control will use renewable electrical power, resulting in a significant propellant savings.

  8. Thermoelectric devices and applications for the same

    DOEpatents

    DeSteese, John G [Kennewick, WA; Olsen, Larry C [Richland, WA; Martin, Peter M [Kennewick, WA

    2010-12-14

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  9. Thermoelectric devices and applications for the same

    DOEpatents

    Olsen, Larry C.; DeSteese, John G.; Martin, Peter M.; Johnston, John W.; Peters, Timothy J.

    2016-03-08

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  10. Coupling the Solar-Wind/IMF to the Ionosphere through the High Latitude Cusps

    NASA Technical Reports Server (NTRS)

    Maynard, Nelson C.

    2003-01-01

    Magnetic merging is a primary means for coupling energy from the solar wind into the magnetosphere-ionosphere system. The location and nature of the process remain as open questions. By correlating measurements form diverse locations and using large-scale MHD models to put the measurements in context, it is possible to constrain out interpretations of the global and meso-scale dynamics of magnetic merging. Recent evidence demonstrates that merging often occurs at high latitudes in the vicinity of the cusps. The location is in part controlled by the clock angle in the interplanetary magnetic field (IMF) Y-Z plane. In fact, B(sub Y) bifurcated the cusp relative to source regions. The newly opened field lines may couple to the ionosphere at MLT locations of as much as 3 hr away from local noon. On the other side of noon the cusp may be connected to merging sites in the opposite hemisphere. In face, the small convection cell is generally driven by opposite hemisphere merging. B(sub X) controls the timing of the interaction and merging sites in each hemisphere, which may respond to planar features in the IMF at different times. Correlation times are variable and are controlled by the dynamics of the tilt of the interplanetary electric field phase plane. The orientation of the phase plane may change significantly on time scales of tens of minutes. Merging is temporally variable and may be occurring at multiple sites simultaneously. Accelerated electrons from the merging process excite optical signatures at the foot of the newly opened field lines. All-sky photometer observations of 557.7 nm emissions in the cusp region provide a "television picture" of the merging process and may be used to infer the temporal and spatial variability of merging, tied to variations in the IMF.

  11. Exploring cogging free magnetic gears

    NASA Astrophysics Data System (ADS)

    Borgers, Stefan; Völkel, Simeon; Schöpf, Wolfgang; Rehberg, Ingo

    2018-06-01

    The coupling of two rotating spherical magnets is investigated experimentally, with particular emphasis on those motions in which the driven magnet follows the driving one with a uniform angular speed, which is a feature of the so called cogging free couplings. The experiment makes use of standard equipment and digital image processing. The theory for these couplings is based on fundamental dipole-dipole interactions with analytically accessible solutions. Technical applications of this kind of coupling are foreseeable particularly for small machines, an advantage which also comes in handy for classroom demonstrations of this feature of the fundamental concept of dipole-dipole coupling.

  12. Scalar-tensor theory of gravitation with negative coupling constant

    NASA Technical Reports Server (NTRS)

    Smalley, L. L.; Eby, P. B.

    1976-01-01

    The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.

  13. Transitions between refrigeration regions in extremely short quantum cycles

    NASA Astrophysics Data System (ADS)

    Feldmann, Tova; Kosloff, Ronnie

    2016-05-01

    The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent.

  14. Spectral characteristics of time resolved magnonic spin Seebeck effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etesami, S. R.; Chotorlishvili, L.; Berakdar, J.

    2015-09-28

    Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic insulator yttrium iron garnet concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans [Phys. Rev. B 90, 064421 (2014)]. Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert equation also including magnons back-action on thermal bath, whilemore » the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics.« less

  15. Motor potential profile and a robust method for extracting it from time series of motor positions.

    PubMed

    Wang, Hongyun

    2006-10-21

    Molecular motors are small, and, as a result, motor operation is dominated by high-viscous friction and large thermal fluctuations from the surrounding fluid environment. The small size has hindered, in many ways, the studies of physical mechanisms of molecular motors. For a macroscopic motor, it is possible to observe/record experimentally the internal operation details of the motor. This is not yet possible for molecular motors. The chemical reaction in a molecular motor has many occupancy states, each having a different effect on the motor motion. The overall effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The potential profile reveals how the motor force changes with position in a motor step, which may lead to insights into how the chemical reaction is coupled to force generation. In this article, we propose a mathematical formulation and a robust method for constructing motor potential profiles from time series of motor positions measured in single molecule experiments. Numerical examples based on simulated data are shown to demonstrate the method. Interestingly, it is the small size of molecular motors (negligible inertia) that makes it possible to recover the potential profile from time series of motor positions. For a macroscopic motor, the variation of driving force within a cycle is smoothed out by the large inertia.

  16. Coherent strong field interactions between a nanomagnet and a photonic cavity

    NASA Astrophysics Data System (ADS)

    Soykal, Oney Orhunc

    Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ˜ 1 mm radius with a nanomagnet of ˜ 100 nm radius and ferromagnet resonance frequency of ˜ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.

  17. Experimental realization of quantum teleportation from a photon to the vibration modes of a millimeter-sized diamond

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyuan; Hou, Panyu; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is of great importance to various quantum technologies, and has been realized between light beams, trapped atoms, superconducting qubits, and defect spins in solids. Here we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. In our experiment, the ultrafast laser technology provides the key tool for fast processing and detection of quantum states within its short life time in macroscopic objects consisting of many strongly interacting atoms that are coupled to the environment, and finally we demonstrate an average teleportation fidelity (90 . 6 +/- 1 . 0) % , clearly exceeding the classical limit of 2/3. Quantum control of the optomechanical coupling may provide efficient ways for realization of transduction of quantum signals, processing of quantum information, and sensing of small mechanical vibrations. Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, PR China.

  18. Analyzing Carbohydrate-Protein Interaction Based on Single Plasmonic Nanoparticle by Conventional Dark Field Microscopy.

    PubMed

    Jin, Hong-Ying; Li, Da-Wei; Zhang, Na; Gu, Zhen; Long, Yi-Tao

    2015-06-10

    We demonstrated a practical method to analyze carbohydrate-protein interaction based on single plasmonic nanoparticles by conventional dark field microscopy (DFM). Protein concanavalin A (ConA) was modified on large sized gold nanoparticles (AuNPs), and dextran was conjugated on small sized AuNPs. As the interaction between ConA and dextran resulted in two kinds of gold nanoparticles coupled together, which caused coupling of plasmonic oscillations, apparent color changes (from green to yellow) of the single AuNPs were observed through DFM. Then, the color information was instantly transformed into a statistic peak wavelength distribution in less than 1 min by a self-developed statistical program (nanoparticleAnalysis). In addition, the interaction between ConA and dextran was proved with biospecific recognition. This approach is high-throughput and real-time, and is a convenient method to analyze carbohydrate-protein interaction at the single nanoparticle level efficiently.

  19. Personality Trait Similarity Between Spouses in Four Cultures

    PubMed Central

    Martin, Thomas A.; H⊆ebí ková, Martina; Urbánek, Tomáš; Boomsma, Dorret I.; Willemsen, Gonneke; Costa, Paul T.

    2008-01-01

    We examined patterns of trait similarity (assortative mating) in married couples in four cultures, using both self-reports and spouse ratings on versions of the Revised NEO Personality Inventory. There was evidence of a subtle but pervasive perceived contrast bias in the spouse rating data. However, there was strong agreement across methods of assessment and moderate agreement across cultures in the pattern of results. Most assortment effects were small, but correlations exceeding .40 were seen for a subset of traits, chiefly from the Openness and Agreeableness domains. Except in Russia, where more positive assortment was seen for younger couples, comparisons of younger and older cohorts showed little systematic difference. This suggested that mate selection, rather than convergence over time, accounted for similarity. Future research on personality similarity in dyads can utilize different designs, but should assess personality at both domain and the facet levels. PMID:18665894

  20. Electrohydrodynamic simulation of an electrospray in a colloid thruster

    NASA Astrophysics Data System (ADS)

    Jugroot, Manish; Forget, Martin; Malardier-Jugroot, Cecile

    2012-02-01

    A precise understanding of electrosprays is highly interesting as the complexity of micro-technology (such as nano-material processing, spacecraft propulsion and mass-spectrometers) systems increases. A multi-component CFD-based model coupling fluid dynamics, charged species dynamics and electric field is developed. The simulations describe the charged fluid interface with emphasis on the Taylor cone formation and cone-jet transition under the effect of a electric field. The goal is to recapture this transition from a rounded liquid interface into a Taylor cone from an initial uniform distribution, without making assumptions on the behaviour, geometry or charge distribution of the system. The time evolution of the interface highlights the close interaction among space charge, coulombic forces and the surface tension, which appear as governing and competing processes in the transition. The results from the coupled formalism provide valuable insights on the physical phenomena and will be applied to a colloid thruster for small spacecrafts.

  1. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability

    NASA Astrophysics Data System (ADS)

    Bosch, Pablo; Green, Stephen R.; Lehner, Luis

    2016-04-01

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  2. Non-intrusive high voltage measurement using slab coupled optical sensors

    NASA Astrophysics Data System (ADS)

    Stan, Nikola; Chadderdon, Spencer; Selfridge, Richard H.; Schultz, Stephen M.

    2014-03-01

    We present an optical fiber non-intrusive sensor for measuring high voltage transients. The sensor converts the unknown voltage to electric field, which is then measured using slab-coupled optical fiber sensor (SCOS). Since everything in the sensor except the electrodes is made of dielectric materials and due to the small field sensor size, the sensor is minimally perturbing to the measured voltage. We present the details of the sensor design, which eliminates arcing and minimizes local dielectric breakdown using Teflon blocks and insulation of the whole structure with transformer oil. The structure has a capacitance of less than 3pF and resistance greater than 10 GΩ. We show the measurement of 66.5 kV pulse with a 32.6μs time constant. The measurement matches the expected value of 67.8 kV with less than 2% error.

  3. CACA-TOCSY with alternate 13C–12C labeling: a 13Cα direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification

    PubMed Central

    Takeuchi, Koh; Frueh, Dominique P.; Sun, Zhen-Yu J.; Hiller, Sebastian

    2010-01-01

    We present a 13C direct detection CACA-TOCSY experiment for samples with alternate 13C–12C labeling. It provides inter-residue correlations between 13Cα resonances of residue i and adjacent Cαs at positions i − 1 and i + 1. Furthermore, longer mixing times yield correlations to Cα nuclei separated by more than one residue. The experiment also provides Cα-to-sidechain correlations, some amino acid type identifications and estimates for ψ dihedral angles. The power of the experiment derives from the alternate 13C–12C labeling with [1,3-13C] glycerol or [2-13C] glycerol, which allows utilizing the small scalar 3JCC couplings that are masked by strong 1JCC couplings in uniformly 13C labeled samples. PMID:20383561

  4. CACA-TOCSY with alternate 13C-12C labeling: a 13Calpha direct detection experiment for mainchain resonance assignment, dihedral angle information, and amino acid type identification.

    PubMed

    Takeuchi, Koh; Frueh, Dominique P; Sun, Zhen-Yu J; Hiller, Sebastian; Wagner, Gerhard

    2010-05-01

    We present a (13)C direct detection CACA-TOCSY experiment for samples with alternate (13)C-(12)C labeling. It provides inter-residue correlations between (13)C(alpha) resonances of residue i and adjacent C(alpha)s at positions i - 1 and i + 1. Furthermore, longer mixing times yield correlations to C(alpha) nuclei separated by more than one residue. The experiment also provides C(alpha)-to-sidechain correlations, some amino acid type identifications and estimates for psi dihedral angles. The power of the experiment derives from the alternate (13)C-(12)C labeling with [1,3-(13)C] glycerol or [2-(13)C] glycerol, which allows utilizing the small scalar (3)J(CC) couplings that are masked by strong (1)J(CC) couplings in uniformly (13)C labeled samples.

  5. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    PubMed

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-08

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  6. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis.

    PubMed

    de Leeuw, Christiaan; Goudriaan, Andrea; Smit, August B; Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Verheijen, Mark H G; Posthuma, Danielle

    2015-11-01

    Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.

  7. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis

    PubMed Central

    de Leeuw, Christiaan; Goudriaan, Andrea; Smit, August B; Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Scharf, J M; Pauls, D L; Yu, D; Illmann, C; Osiecki, L; Neale, B M; Mathews, C A; Reus, V I; Lowe, T L; Freimer, N B; Cox, N J; Davis, L K; Rouleau, G A; Chouinard, S; Dion, Y; Girard, S; Cath, D C; Posthuma, D; Smit, J H; Heutink, P; King, R A; Fernandez, T; Leckman, J F; Sandor, P; Barr, C L; McMahon, W; Lyon, G; Leppert, M; Morgan, J; Weiss, R; Grados, M A; Singer, H; Jankovic, J; Tischfield, J A; Heiman, G A; Verheijen, Mark H G; Posthuma, Danielle

    2015-01-01

    Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis. PMID:25735483

  8. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting.

    PubMed

    Xu, Liang; Jiang, Tao; Lin, Pei; Shao, Jia Jia; He, Chuan; Zhong, Wei; Chen, Xiang Yu; Wang, Zhong Lin

    2018-02-27

    Water wave energy is a promising clean energy source, which is abundant but hard to scavenge economically. Triboelectric nanogenerator (TENG) networks provide an effective approach toward massive harvesting of water wave energy in oceans. In this work, a coupling design in TENG networks for such purposes is reported. The charge output of the rationally linked units is over 10 times of that without linkage. TENG networks of three different connecting methods are fabricated and show better performance for the ones with flexible connections. The network is based on an optimized ball-shell structured TENG unit with high responsivity to small agitations. The dynamic behavior of single and multiple TENG units is also investigated comprehensively to fully understand their performance in water. The study shows that a rational design on the linkage among the units could be an effective strategy for TENG clusters to operate collaboratively for reaching a higher performance.

  9. Theoretical Investigation of Kinetic Processes in Small Radicals of Importance in Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Millard; Dagdigian, Paul J.

    Our group studies inelastic and reactive collisions of small molecules, focusing on radicals important in combustion environments. The goal is the better understanding of kinetic processes that may be difficult to access experimentally. An essential component is the accurate determination and fitting of potential energy surfaces (PESs). After fitting the ab initio points to obtain global PESs, we treat the dynamics using time-independent (close-coupling) methods. Cross sections and rate constants for collisions of are determined with our Hibridon program suite . We have studied energy transfer (rotationally, vibrationally, and/or electronically inelastic) in small hydrocarbon radicals (CH 2 and CH 3)more » and the CN radical. We have made a comparison with experimental measurements of relevant rate constants for collisions of these radicals. Also, we have calculated accurate transport properties using state-of-the-art PESs and to investigate the sensitivity to these parameters in 1-dimensional flame simulations. Of particular interest are collision pairs involving the light H atom.« less

  10. Effects of Small Polar Molecules (MA+ and H2O) on Degradation Processes of Perovskite Solar Cells.

    PubMed

    Ma, Chunqing; Shen, Dong; Qing, Jian; Thachoth Chandran, Hrisheekesh; Lo, Ming-Fai; Lee, Chun-Sing

    2017-05-03

    Degradation mechanisms of methylammonium lead halide perovskite solar cells (PSCs) have drawn much attention recently. Herein, the bulk and surface degradation processes of the perovskite were differentiated for the first time by employing combinational studies using electrochemical impedance spectroscopy (EIS), capacitance frequency (CF), and X-ray diffraction (XRD) studies with particular attention on the roles of small polar molecules (MA + and H 2 O). CF study shows that short-circuit current density of the PSCs is increased by H 2 O at the beginning of the degradation process coupled with an increased surface capacitance. On the basis of EIS and XRD analysis, we show that the bulk degradation of PSCs involves a lattice expansion process, which facilitates MA + ion diffusion by creating more efficient channels. These results provide a better understanding of the roles of small polar molecules on degradation processes in the bulk and on the surface of the perovskite film.

  11. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  12. Structure-based drug design for G protein-coupled receptors.

    PubMed

    Congreve, Miles; Dias, João M; Marshall, Fiona H

    2014-01-01

    Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed. © 2014 Elsevier B.V. All rights reserved.

  13. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    NASA Astrophysics Data System (ADS)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  14. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  15. Relationship Between Tobacco Retailers’ Point-of-Sale Marketing and the Density of Same-Sex Couples, 97 U.S. Counties, 2012

    PubMed Central

    Lee, Joseph G. L.; Goldstein, Adam O.; Pan, William K.; Ribisl, Kurt M.

    2015-01-01

    The reasons for higher rates of smoking among lesbian, gay, and bisexual (LGB) people than among heterosexual people are not well known. Research on internal migration and neighborhood selection suggests that LGB people are more likely to live in neighborhoods where the tobacco industry has historically targeted their marketing efforts (lower income, more racial/ethnic diversity). We used multi-level models to assess the relationship between the rate of same-sex couples per 1000 coupled households and 2012 marketing characteristics of tobacco retailers (n = 2231) in 1696 census tracts in 97 U.S. counties. We found no evidence of tobacco marketing at retailers differing by same-sex couple rates in census tracts with the exception of three findings in the opposite direction of our hypotheses: a small, significant positive relationship for the rate of same-sex male couples and the price of Newport Green (mentholated) cigarettes. For male and female same-sex couples, we also found a small negative relationship between tobacco advertisements and same-sex household rate. Tobacco retailers’ tobacco marketing characteristics do not differ substantially by the rate of same-sex couples in their neighborhood in ways that would promote LGB health disparities. Further work is needed to determine if these patterns are similar for non-partnered LGB people. PMID:26225987

  16. Coupled simulation of CFD-flight-mechanics with a two-species-gas-model for the hot rocket staging

    NASA Astrophysics Data System (ADS)

    Li, Yi; Reimann, Bodo; Eggers, Thino

    2016-11-01

    The hot rocket staging is to separate the lowest stage by directly ignite the continuing-stage-motor. During the hot staging, the rocket stages move in a harsh dynamic environment. In this work, the hot staging dynamics of a multistage rocket is studied using the coupled simulation of Computational Fluid Dynamics and Flight Mechanics. Plume modeling is crucial for a coupled simulation with high fidelity. A 2-species-gas model is proposed to simulate the flow system of the rocket during the staging: the free-stream is modeled as "cold air" and the exhausted plume from the continuing-stage-motor is modeled with an equivalent calorically-perfect-gas that approximates the properties of the plume at the nozzle exit. This gas model can well comprise between the computation accuracy and efficiency. In the coupled simulations, the Navier-Stokes equations are time-accurately solved in moving system, with which the Flight Mechanics equations can be fully coupled. The Chimera mesh technique is utilized to deal with the relative motions of the separated stages. A few representative staging cases with different initial flight conditions of the rocket are studied with the coupled simulation. The torque led by the plume-induced-flow-separation at the aft-wall of the continuing-stage is captured during the staging, which can assist the design of the controller of the rocket. With the increasing of the initial angle-of-attack of the rocket, the staging quality becomes evidently poorer, but the separated stages are generally stable when the initial angle-of-attack of the rocket is small.

  17. Coupling time constants of striated and copper-plated coated conductors and the potential of striation to reduce shielding-current-induced fields in pancake coils

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Tominaga, Naoki; Toyomoto, Ryuki; Nishimoto, Takuma; Sogabe, Yusuke; Yamano, Satoshi; Sakamoto, Hisaki

    2018-07-01

    The shielding-current-induced field is a serious concern for the applications of coated conductors to magnets. The striation of the coated conductor is one of the countermeasures, but it is effective only after the decay of the coupling current, which is characterised with the coupling time constant. In a non-twisted striated coated conductor, the coupling time constant is determined primarily by its length and the transverse resistance between superconductor filaments, because the coupling current could flow along its entire length. We measured and numerically calculated the frequency dependences of magnetisation losses in striated and copper-plated coated conductors with various lengths and their stacks at 77 K and determined their coupling time constants. Stacked conductors simulate the turns of a conductor wound into a pancake coil. Coupling time constants are proportional to the square of the conductor length. Stacking striated coated conductors increases the coupling time constants because the coupling currents in stacked conductors are coupled to one another magnetically to increase the mutual inductances for the coupling current paths. We carried out the numerical electromagnetic field analysis of conductors wound into pancake coils and determined their coupling time constants. They can be explained by the length dependence and mutual coupling effect observed in stacked straight conductors. Even in pancake coils with practical numbers of turns, i.e. conductor lengths, the striation is effective to reduce the shielding-current-induced fields for some dc applications.

  18. Characterization of Sensitivity Encoded Silicon Photomultiplier (SeSP) with 1-Dimensional and 2-Dimensional Encoding for High Resolution PET/MR

    NASA Astrophysics Data System (ADS)

    Omidvari, Negar; Schulz, Volkmar

    2015-06-01

    This paper evaluates the performance of a new type of PET detectors called sensitivity encoded silicon photomultiplier (SeSP), which allows a direct coupling of small-pitch crystal arrays to the detector with a reduction in the number of readout channels. Four SeSP devices with two separate encoding schemes of 1D and 2D were investigated in this study. Furthermore, both encoding schemes were manufactured in two different sizes of 4 ×4 mm2 and 7. 73 ×7. 9 mm2, in order to investigate the effect of size on detector parameters. All devices were coupled to LYSO crystal arrays with 1 mm pitch size and 10 mm height, with optical isolation between crystals. The characterization was done for the key parameters of crystal-identification, energy resolution, and time resolution as a function of triggering threshold and over-voltage (OV). Position information was archived using the center of gravity (CoG) algorithm and a least squares approach (LSQA) in combination with a mean light matrix around the photo-peak. The positioning results proved the capability of all four SeSP devices in precisely identifying all crystals coupled to the sensors. Energy resolution was measured at different bias voltages, varying from 12% to 18% (FWHM) and paired coincidence time resolution (pCTR) of 384 ps to 1.1 ns was obtained for different SeSP devices at about 18 °C room temperature. However, the best time resolution was achieved at the highest over-voltage, resulting in a noise ratio of 99.08%.

  19. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianbao; Ma, Zhongjun, E-mail: mzj1234402@163.com; Chen, Guanrong

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding ormore » deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.« less

  20. Robustness of cluster synchronous patterns in small-world networks with inter-cluster co-competition balance

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbao; Ma, Zhongjun; Chen, Guanrong

    2014-06-01

    All edges in the classical Watts and Strogatz's small-world network model are unweighted and cooperative (positive). By introducing competitive (negative) inter-cluster edges and assigning edge weights to mimic more realistic networks, this paper develops a modified model which possesses co-competitive weighted couplings and cluster structures while maintaining the common small-world network properties of small average shortest path lengths and large clustering coefficients. Based on theoretical analysis, it is proved that the new model with inter-cluster co-competition balance has an important dynamical property of robust cluster synchronous pattern formation. More precisely, clusters will neither merge nor split regardless of adding or deleting nodes and edges, under the condition of inter-cluster co-competition balance. Numerical simulations demonstrate the robustness of the model against the increase of the coupling strength and several topological variations.

  1. A constitutive theory for shape memory polymers: coupling of small and large deformation

    NASA Astrophysics Data System (ADS)

    Tan, Qiao; Liu, Liwu; Liu, Yanju; Leng, Jinsong; Yan, Xiangqiao; Wang, Haifang

    2013-04-01

    At high temperatures, SMPs share attributes like rubber and exhibit long-range reversibility. In contrast, at low temperatures they become very rigid and are susceptible to plastic, only small strains are allowable. But there relatively little literature has considered the unique small stain (rubber phase) and large stain (glass phase) coupling in SMPs when developing the constitutive modeling. In this work, we present a 3D constitutive model for shape memory polymers in both low temperature small strain regime and high temperature large strain regime. The theory is based on the work of Liu et al. [15]. Four steps of SMP's thermomechanical loadings cycle are considered in the constitutive model completely. The linear elastic and hyperelastic effects of SMP in different temperatures are also fully accounted for in the proposed model by adopt the neo-Hookean model and the Generalized Hooke's laws.

  2. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions.

    PubMed

    Peltier, Emilien; Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes.

  3. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence.

    PubMed

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu

    2012-11-28

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  4. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions

    PubMed Central

    Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes. PMID:29351285

  5. Time-varying coupling functions: Dynamical inference and cause of synchronization transitions

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav

    2017-02-01

    Interactions in nature can be described by their coupling strength, direction of coupling, and coupling function. The coupling strength and directionality are relatively well understood and studied, at least for two interacting systems; however, there can be a complexity in the interactions uniquely dependent on the coupling functions. Such a special case is studied here: synchronization transition occurs only due to the time variability of the coupling functions, while the net coupling strength is constant throughout the observation time. To motivate the investigation, an example is used to present an analysis of cross-frequency coupling functions between delta and alpha brain waves extracted from the electroencephalography recording of a healthy human subject in a free-running resting state. The results indicate that time-varying coupling functions are a reality for biological interactions. A model of phase oscillators is used to demonstrate and detect the synchronization transition caused by the varying coupling functions during an invariant coupling strength. The ability to detect this phenomenon is discussed with the method of dynamical Bayesian inference, which was able to infer the time-varying coupling functions. The form of the coupling function acts as an additional dimension for the interactions, and it should be taken into account when detecting biological or other interactions from data.

  6. Advances in Acoustic Landmine Detection

    DTIC Science & Technology

    2006-10-01

    8] A. Petculescu and J. M. Sabatier, “ Feasibility study of an air - coupled acoustic sensor for measuring small vibrations, Proc. SPIE 17th...the acoustic-to-seismic (A/S) coupling of airborne sound into the ground for buried anti-personnel and anti-tank landmine detection is well established...113, pp.1333-1341 (2003)]. A sound source is used to insonify the ground surface. The airborne sound couples into the soil and excites the

  7. Applicability of a septic tank/engineered wetland coupled system in the treatment and recycling of wastewater from a small community.

    PubMed

    Mbuligwe, Stephen E

    2005-01-01

    A septic tank (ST)/engineered wetland coupled system used to treat and recycle wastewater from a small community in Dar es Salaam, Tanzania was monitored to assess its performance. The engineered wetland system (EWS) had two parallel units each with two serial beds packed with different sizes of media and vegetated differently. The larger-sized medium bed was upstream and was planted with Phragmites (reeds) and the smaller-sized medium bed was downstream and was planted with Typha (cattails). The ST/EWS coupled system was able to remove ammonia by an average of 60%, nitrate by 71%, sulfate by 55%, chemical oxygen demand by 91%, and fecal coliform as well as total coliform by almost 100%. The effluent from the ST/EWS coupled system is used for irrigation. Notably, users of the recycled irrigation water do not harbor any negative feelings about it. This study demonstrates that it is possible to treat and recycle domestic wastewater using ST/ EWS coupled systems. The study also brings attention to the fact that an ST/EWS coupled system has operation and maintenance (O&M) needs that must be fulfilled for its effectiveness and acceptability. These include removal of unwanted weeds, harvesting of wetland plants when the EWS becomes unappealingly bushy, and routine repair.

  8. Large earthquake rupture process variations on the Middle America megathrust

    NASA Astrophysics Data System (ADS)

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo

    2013-11-01

    The megathrust fault between the underthrusting Cocos plate and overriding Caribbean plate recently experienced three large ruptures: the August 27, 2012 (Mw 7.3) El Salvador; September 5, 2012 (Mw 7.6) Costa Rica; and November 7, 2012 (Mw 7.4) Guatemala earthquakes. All three events involve shallow-dipping thrust faulting on the plate boundary, but they had variable rupture processes. The El Salvador earthquake ruptured from about 4 to 20 km depth, with a relatively large centroid time of ˜19 s, low seismic moment-scaled energy release, and a depleted teleseismic short-period source spectrum similar to that of the September 2, 1992 (Mw 7.6) Nicaragua tsunami earthquake that ruptured the adjacent shallow portion of the plate boundary. The Costa Rica and Guatemala earthquakes had large slip in the depth range 15 to 30 km, and more typical teleseismic source spectra. Regional seismic recordings have higher short-period energy levels for the Costa Rica event relative to the El Salvador event, consistent with the teleseismic observations. A broadband regional waveform template correlation analysis is applied to categorize the focal mechanisms for larger aftershocks of the three events. Modeling of regional wave spectral ratios for clustered events with similar mechanisms indicates that interplate thrust events have corner frequencies, normalized by a reference model, that increase down-dip from anomalously low values near the Middle America trench. Relatively high corner frequencies are found for thrust events near Costa Rica; thus, variations along strike of the trench may also be important. Geodetic observations indicate trench-parallel motion of a forearc sliver extending from Costa Rica to Guatemala, and low seismic coupling on the megathrust has been inferred from a lack of boundary-perpendicular strain accumulation. The slip distributions and seismic radiation from the large regional thrust events indicate relatively strong seismic coupling near Nicoya, Costa Rica, patchy zones of strong seismic coupling in the shallowest megathrust region along Nicaragua and El Salvador, and small deeper patchy zones of strong seismic coupling near Guatemala, which can be reconciled with the geodetic observations as long as the strong coupling is limited to a small fraction of the megathrust area.

  9. Tropospheric ozone simulated by a global-multi-regional two-way coupling model system

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Lin, J.; Chen, J.; Hu, L.

    2015-12-01

    Current global chemical transport models are limited by horizontal resolutions (100-500 km), and they cannot capture small-scale processes affecting tropospheric ozone (O3). Here we use a recently built two-way coupling system of GEOS-Chem to simulate the global tropospheric O3 in 2009. The system couples the global model (~ 200 km) and its three nested models (~ 50 km) covering Asia, North America and Europe, respectively. Benefiting from the high resolution, the nested models better capture small-scale processes than the global model alone. In the coupling system, the nested models provide results to modify the global model simulation within respective nested domains while taking the lateral boundary conditions from the global model. Due to the "coupling" effects, the two-way system significantly improves the tropospheric O3 simulation upon the global model alone, as found by comparisons with a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). Compared to the global model alone, the two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean O3 with the ground measurements from 0.53 to 0.68 and reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled model reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO and MOZAIC data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5%), bringing them closer to the OMI data in all seasons. Simulation improvements are more significant in the northern hemisphere, and are primarily a result of improved representation of the nonlinear ozone chemistry, including but not limited to urban-rural contrast. The two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5% with enhancements by 5% in lifetimes of methyl chloroform and methane, bringing them closer to observation-based estimates. Therefore improving model representations of small-scale processes are a critical step forward to understanding the global tropospheric chemistry.

  10. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.

    PubMed

    Parsons, Sean P; Huizinga, Jan D

    2015-02-15

    Waves of contraction in the small intestine correlate with slow waves generated by the myenteric network of interstitial cells of Cajal. Coupled oscillator theory has been used to explain steplike gradients in the frequency (frequency plateaux) of contraction waves along the length of the small intestine. Inhibition of gap junction coupling between oscillators should lead to predictable effects on these plateaux and the wave dislocation (wave drop) phenomena associated with their boundaries. It is these predictions that we wished to test. We used a novel multicamera diameter-mapping system to measure contraction along 25- to 30-cm lengths of murine small intestine. There were typically two to three plateaux per length of intestine. Dislocations could be limited to the wavefronts immediately about the terminated wave, giving the appearance of a three-pronged fork, i.e., a fork dislocation; additionally, localized decreases in velocity developed across a number of wavefronts, ending with the terminated wave, which could appear as a fork, i.e., slip dislocations. The gap junction inhibitor carbenoxolone increased the number of plateaux and dislocations and decreased contraction wave velocity. In some cases, the usual frequency gradient was reversed, with a plateau at a higher frequency than its proximal neighbor; thus fork dislocations were inverted, and the direction of propagation was reversed. Heptanol had no effect on the frequency or velocity of contractions but did reduce their amplitude. To understand intestinal motor patterns, the pacemaker network of the interstitial cells of Cajal is best evaluated as a system of coupled oscillators. Copyright © 2015 the American Physiological Society.

  11. Catastrophic shifts in the aquatic primary production revealed by a small low-flow section of tropical downstream after dredging.

    PubMed

    Marotta, H; Enrich-Prast, A

    2015-11-01

    Dredging is a catastrophic disturbance that directly affects key biological processes in aquatic ecosystems, especially in those small and shallow. In the tropics, metabolic responses could still be enhanced by the high temperatures and solar incidence. Here, we assessed changes in the aquatic primary production along a small section of low-flow tropical downstream (Imboassica Stream, Brazil) after dredging. Our results suggested that these ecosystems may show catastrophic shifts between net heterotrophy and autotrophy in waters based on three short-term stages following the dredging: (I) a strongly heterotrophic net primary production -NPP- coupled to an intense respiration -R- likely supported by high resuspended organic sediments and nutrients from the bottom; (II) a strongly autotrophic NPP coupled to an intense gross primary production -GPP- favored by the high nutrient levels and low solar light attenuation from suspended solids or aquatic macrophytes; and (III) a NPP near to the equilibrium coupled to low GPP and R rates following, respectively, the shading by aquatic macrophytes and high particulate sedimentation. In conclusion, changes in aquatic primary production could be an important threshold for controlling drastic shifts in the organic matter cycling and the subsequent silting up of small tropical streams after dredging events.

  12. Towards Real-Time Pilot-in-the-Loop Simulation of Rotorcraft With Fully-Coupled CFD Solutions of Rotor / Terrain Interactions

    NASA Astrophysics Data System (ADS)

    Oruc, Ilker

    This thesis presents the development of computationally efficient coupling of Navier-Stokes CFD with a helicopter flight dynamics model, with the ultimate goal of real-time simulation of fully coupled aerodynamic interactions between rotor flow and the surrounding terrain. A particular focus of the research is on coupled airwake effects in the helicopter / ship dynamic interface. A computationally efficient coupling interface was developed between the helicopter flight dynamics model, GENHEL-PSU and the Navier-Stokes solvers, CRUNCH/CRAFT-CFD using both FORTRAN and C/C++ programming languages. In order to achieve real-time execution speeds, the main rotor was modeled with a simplified actuator disk using unsteady momentum sources, instead of resolving the full blade geometry in the CFD. All the airframe components, including the fuselage are represented by single aerodynamic control points in the CFD calculations. The rotor downwash influence on the fuselage and empennage are calculated by using the CFD predicted local flow velocities at these aerodynamic control points defined on the helicopter airframe. In the coupled simulations, the flight dynamics model is free to move within a computational domain, where the main rotor forces are translated into source terms in the momentum equations of the Navier-Stokes equations. Simultaneously, the CFD calculates induced velocities those are fed back to the simulation and affect the aerodynamic loads in the flight dynamics. The CFD solver models the inflow, ground effect, and interactional aerodynamics in the flight dynamics simulation, and these calculations can be coupled with solution of the external flow (e.g. ship airwake effects). The developed framework was utilized for various investigations of hovering, forward flight and helicopter/terrain interaction simulations including standard ground effect, partial ground effect, sloped terrain, and acceleration in ground effect; and results compared with different flight and experimental data. In near ground cases, the fully-coupled flight dynamics and CFD simulations predicted roll oscillations due to interactions of the rotor downwash, ground plane, and the feedback controller, which are not predicted by the conventional simulation models. Fully coupled simulations of a helicopter accelerating near ground predicted flow formations similar to the recirculation and ground vortex flow regimes observed in experiments. The predictions of hover power reductions due to ground effect compared well to a recent experimental data and the results showed 22% power reduction for a hover flight z/R=0.55 above ground level. Fully coupled simulations performed for a helicopter hovering over and approaching to a ship flight deck and results compared with the standalone GENHEL-PSU simulations without ship airwake and one-way coupled simulations. The fully-coupled simulations showed higher pilot workload compared to the other two cases. In order to increase the execution speeds of the CFD calculations, several improvements were made on the CFD solver. First, the initial coupling approach File I/O was replaced with a more efficient method called Multiple Program Multiple Data MPI framework, where the two executables communicate with each other by MPI calls. Next, the unstructured solver (CRUNCH CFD), which is 2nd-order accurate in space, was replaced with the faster running structured solver (CRAFT CFD) that is 5th-order accurate in space. Other improvements including a more efficient k-d tree search algorithm and the bounding of the source term search space within a small region of the grid surrounding the rotor were made on the CFD solver. The final improvement was to parallelize the search task with the CFD solver tasks within the solver. To quantify the speed-up of the improvements to the coupling interface described above, a study was performed to demonstrate the speedup achieved from each of the interface improvements. The improvements made on the CFD solver showed more than 40 times speedup from the baseline file I/O and unstructured solver CRUNCH CFD. Using a structured CFD solver with 5th-order spacial accuracy provided the largest reductions in execution times. Disregarding the solver numeric, the total speedup of all of the interface improvements including the MPMD rotor point exchange, k-d tree search algorithm, bounded search space, and paralleled search task, was approximately 231%, more than a factor of 2. All these improvements provided the necessary speedup for approach real-time CFD. (Abstract shortened by ProQuest.).

  13. Using random telephone sampling to recruit generalizable samples for family violence studies.

    PubMed

    Slep, Amy M Smith; Heyman, Richard E; Williams, Mathew C; Van Dyke, Cheryl E; O'Leary, Susan G

    2006-12-01

    Convenience sampling methods predominate in recruiting for laboratory-based studies within clinical and family psychology. The authors used random digit dialing (RDD) to determine whether they could feasibly recruit generalizable samples for 2 studies (a parenting study and an intimate partner violence study). RDD screen response rate was 42-45%; demographics matched those in the 2000 U.S. Census, with small- to medium-sized differences on race, age, and income variables. RDD respondents who qualified for, but did not participate in, the laboratory study of parents showed small differences on income, couple conflicts, and corporal punishment. Time and cost are detailed, suggesting that RDD may be a feasible, effective method by which to recruit more generalizable samples for in-laboratory studies of family violence when those studies have sufficient resources. (c) 2006 APA, all rights reserved.

  14. Position and attitude tracking control for a quadrotor UAV.

    PubMed

    Xiong, Jing-Jing; Zheng, En-Hui

    2014-05-01

    A synthesis control method is proposed to perform the position and attitude tracking control of the dynamical model of a small quadrotor unmanned aerial vehicle (UAV), where the dynamical model is underactuated, highly-coupled and nonlinear. Firstly, the dynamical model is divided into a fully actuated subsystem and an underactuated subsystem. Secondly, a controller of the fully actuated subsystem is designed through a novel robust terminal sliding mode control (TSMC) algorithm, which is utilized to guarantee all state variables converge to their desired values in short time, the convergence time is so small that the state variables are acted as time invariants in the underactuated subsystem, and, a controller of the underactuated subsystem is designed via sliding mode control (SMC), in addition, the stabilities of the subsystems are demonstrated by Lyapunov theory, respectively. Lastly, in order to demonstrate the robustness of the proposed control method, the aerodynamic forces and moments and air drag taken as external disturbances are taken into account, the obtained simulation results show that the synthesis control method has good performance in terms of position and attitude tracking when faced with external disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Temporal and spatial evolution of nanosecond microwave-driven plasma

    NASA Astrophysics Data System (ADS)

    Chang, C.; Chen, X. Q.; Zhu, M.; Pu, Y. K.

    2018-06-01

    In this paper, a method for simultaneously acquiring the temporal and spatial evolution of characteristic plasma spectra in a single microwave pulse is proposed and studied. By using multi-sub-beam fiber bundles coupled with a spectrometer and EMICCD (Electron-multiplying intensified charge-coupled device), the spatial distribution and time evolution of characteristic spectra of desorbed gases at the dielectric/vacuum interface during nanosecond microwave-driven plasma discharge are observed. Arrays of small align tubes punctured with metal walls of feed horn are filled with separate fibers of matched sizes and equal lengths. The output ends of fibers arranged in a single longitudinal column are connected to the entrance slit of a spectrometer, where the optical spectrum inputs to a high-speed EMICCD, to detect the rapid-varying time and space spectra of nanosecond giga-watt microwave discharges. The evolution of spectral clusters of N2 (C-B), N2+ (B-X), and the hydrogen atoms is discovered and monitored. The whole duration of light emission is much longer than the microwave pulse, and the intensities of ion N2+ (B-X) spectra increase after microwave pulses with rise times of 25-50 ns. The brightness distribution of plasma spectra in different space is observed and approximately consistent with the simulated E-field distribution.

  16. Time and space analysis of turbulence of gravity surface waves

    NASA Astrophysics Data System (ADS)

    Mordant, Nicolas; Aubourg, Quentin; Viboud, Samuel; Sommeria, Joel

    2016-11-01

    Wave turbulence is a statistical state made of a very large number of nonlinearly interacting waves. The Weak Turbulence Theory was developed to describe such a situation in the weakly nonlinear regime. Although, oceanic data tend to be compatible with the theory, laboratory data fail to fulfill the theoretical predictions. A space-time resolved measurement of the waves have proven to be especially fruitful to identify the mechanism at play in turbulence of gravity-capillary waves. We developed an image processing algorithm to measure the motion of the surface of water with both space and time resolution. We first seed the surface with slightly buoyant polystyrene particles and use 3 cameras to reconstruct the surface. Our stereoscopic algorithm is coupled to PIV so that to obtain both the surface deformation and the velocity of the water surface. Such a coupling is shown to improve the sensitivity of the measurement by one order of magnitude. We use this technique to probe the existence of weakly nonlinear turbulence excited by two small wedge wavemakers in a 13-m diameter wave flume. We observe a truly weakly nonlinear regime of isotropic wave turbulence. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 647018-WATU).

  17. Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 1: Implementing exact mode superposition

    NASA Technical Reports Server (NTRS)

    Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.

    1993-01-01

    Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.

  18. Temporal coupling due to illusory movements in bimanual actions: evidence from anosognosia for hemiplegia.

    PubMed

    Pia, Lorenzo; Spinazzola, Lucia; Rabuffetti, Marco; Ferrarin, Maurizio; Garbarini, Francesca; Piedimonte, Alessandro; Driver, Jon; Berti, Anna

    2013-06-01

    In anosognosia for hemiplegia, patients may claim having performed willed actions with the paralyzed limb despite unambiguous evidence to the contrary. Does this false belief of having moved reflect the functioning of the same mechanisms that govern normal motor performance? Here, we examined whether anosognosics show the same temporal constraints known to exist during bimanual movements in healthy subjects. In these paradigms, when participants simultaneously reach for two targets of different difficulties, the motor programs of one hand affect the execution of the other. In detail, the movement time of the hand going to an easy target (i.e., near and large), while the other is going to a difficult target (i.e., far and small), is slowed with respect to unimanual movements (temporal coupling effect). One right-brain-damaged patient with left hemiplegia and anosognosia, six right-brain-damaged patients with left hemiplegia without anosognosia, and twenty healthy subjects were administered such a bimanual task. We recorded the movement times for easy and difficult targets, both in unimanual (one target) and bimanual (two targets) conditions. We found that, as healthy subjects, the anosognosic patient showed coupling effect. In bimanual asymmetric conditions (when one hand went to the easy target and the other went to the difficult target), the movement time of the non-paralyzed hand going to the easy target was slowed by the 'pretended' movement of the paralyzed hand going to the difficult target. This effect was not present in patients without anosognosia. We concluded that in anosognosic patients, the illusory movements of the paralyzed hand impose to the non-paralyzed hand the same motor constraints that emerge during the actual movements. Our data also support the view that coupling relies on central operations (i.e., activation of intention/programming system), rather than on online information from the periphery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2015-01-01

    Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole “decided” to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing properties. Modelling also indicates that electrical coupling within a population can synchronize recruitment of neurons and their pacemaker firing during rhythmic activity. PMID:25954930

  20. Comparison of eigenvectors for coupled seismo-electromagnetic layered-Earth modelling

    NASA Astrophysics Data System (ADS)

    Grobbe, N.; Slob, E. C.; Thorbecke, J. W.

    2016-07-01

    We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.

  1. Dependence of high density nitrogen-vacancy center ensemble coherence on electron irradiation doses and annealing time

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yuan, H.; Zhang, N.; Xu, L. X.; Li, B.; Cheng, G. D.; Wang, Y.; Gui, Q.; Fang, J. C.

    2017-12-01

    Negatively charged nitrogen-vacancy (NV-) center ensembles in diamond have proved to have great potential for use in highly sensitive, small-package solid-state quantum sensors. One way to improve sensitivity is to produce a high-density NV- center ensemble on a large scale with a long coherence lifetime. In this work, the NV- center ensemble is prepared in type-Ib diamond using high energy electron irradiation and annealing, and the transverse relaxation time of the ensemble—T 2—was systematically investigated as a function of the irradiation electron dose and annealing time. Dynamical decoupling sequences were used to characterize T 2. To overcome the problem of low signal-to-noise ratio in T 2 measurement, a coupled strip lines waveguide was used to synchronously manipulate NV- centers along three directions to improve fluorescence signal contrast. Finally, NV- center ensembles with a high concentration of roughly 1015 mm-3 were manipulated within a ~10 µs coherence time. By applying a multi-coupled strip-lines waveguide to improve the effective volume of the diamond, a sub-femtotesla sensitivity for AC field magnetometry can be achieved. The long-coherence high-density large-scale NV- center ensemble in diamond means that types of room-temperature micro-sized solid-state quantum sensors with ultra-high sensitivity can be further developed in the near future.

  2. Phase dynamics of coupled oscillators reconstructed from data

    NASA Astrophysics Data System (ADS)

    Rosenblum, Michael; Kralemann, Bjoern; Pikovsky, Arkady

    2013-03-01

    We present a technique for invariant reconstruction of the phase dynamics equations for coupled oscillators from data. The invariant description is achieved by means of a transformation of phase estimates (protophases) obtained from general scalar observables to genuine phases. Staring from the bivariate data, we obtain the coupling functions in terms of these phases. We discuss the importance of the protophase-to-phase transformation for characterization of strength and directionality of interaction. To illustrate the technique we analyse the cardio-respiratory interaction on healthy humans. Our invariant approach is confirmed by high similarity of the coupling functions obtained from different observables of the cardiac system. Next, we generalize the technique to cover the case of small networks of coupled periodic units. We use the partial norms of the reconstructed coupling functions to quantify directed coupling between the oscillators. We illustrate the method by different network motifs for three coupled oscillators. We also discuss nonlinear effects in coupling.

  3. DIRECTIONAL COUPLERS

    DOEpatents

    Nigg, D.J.

    1961-12-01

    A directional coupler of small size is designed. Stripline conductors of non-rectilinear configuration, and separated from each other by a thin dielectric spacer. cross each other at least at two locations at right angles, thus providing practically pure capacitive coupling which substantially eliminates undesirable inductive coupling. The conductors are sandwiched between a pair of ground planes. The coupling factor is dependent only on the thickness and dielectric constant of the dielectric spacer at the point of conductor crossover. (AEC)

  4. An extension of stochastic hierarchy equations of motion for the equilibrium correlation functions

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2017-06-01

    A traditional stochastic hierarchy equations of motion method is extended into the correlated real-time and imaginary-time propagations, in this paper, for its applications in calculating the equilibrium correlation functions. The central idea is based on a combined employment of stochastic unravelling and hierarchical techniques for the temperature-dependent and temperature-free parts of the influence functional, respectively, in the path integral formalism of the open quantum systems coupled to a harmonic bath. The feasibility and validity of the proposed method are justified in the emission spectra of homodimer compared to those obtained through the deterministic hierarchy equations of motion. Besides, it is interesting to find that the complex noises generated from a small portion of real-time and imaginary-time cross terms can be safely dropped to produce the stable and accurate position and flux correlation functions in a broad parameter regime.

  5. Multifractal cross-correlation effects in two-variable time series of complex network vertex observables

    NASA Astrophysics Data System (ADS)

    OświÈ©cimka, Paweł; Livi, Lorenzo; DroŻdŻ, Stanisław

    2016-10-01

    We investigate the scaling of the cross-correlations calculated for two-variable time series containing vertex properties in the context of complex networks. Time series of such observables are obtained by means of stationary, unbiased random walks. We consider three vertex properties that provide, respectively, short-, medium-, and long-range information regarding the topological role of vertices in a given network. In order to reveal the relation between these quantities, we applied the multifractal cross-correlation analysis technique, which provides information about the nonlinear effects in coupling of time series. We show that the considered network models are characterized by unique multifractal properties of the cross-correlation. In particular, it is possible to distinguish between Erdös-Rényi, Barabási-Albert, and Watts-Strogatz networks on the basis of fractal cross-correlation. Moreover, the analysis of protein contact networks reveals characteristics shared with both scale-free and small-world models.

  6. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Martinelli, L.

    1991-01-01

    The system of equations consisting of the full Navier-Stokes equations and two turbulence equations was solved for in the steady state using a multigrid strategy on unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time stepping scheme with a stability bound local time step, while the turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positively. Low Reynolds number modifications to the original two equation model are incorporated in a manner which results in well behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved for, initializing all quantities with uniform freestream values, and resulting in rapid and uniform convergence rates for the flow and turbulence equations.

  7. Traditional Chinese medicine on the effects of low-intensity laser irradiation on cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Cai, Xiongwei

    2002-04-01

    In previous paper, process-specific times (PSTs) are defined by use of molecular reaction dynamics and time quantum theory established by TCY Liu et al., and the change of PSTs representing two weakly nonlinearly coupled bio-processes are shown to be parallel, which is called time parallel principle (TPP). The PST of a physiological process (PP) is called physiological time (PT). After the PTs of two PPs are compared with their Yin-Yang property of traditional Chinese medicine (TCM), the PST model of Yin and Yang (YPTM) was put forward: for two related processes, the process of small PST is Yin, and the other process is Yang. The Yin-Yang parallel principle (YPP) was put forward in terms of YPTM and TPP, which is the fundamental principle of TCM. In this paper, we apply it to study TCM on the effects of low intensity laser on cells, and successfully explained observed phenomena.

  8. Effects of cross-correlated noises on the relaxation time of the bistable system

    NASA Astrophysics Data System (ADS)

    Xie, Chong-Wei; Mei, Dong-Cheng

    2003-11-01

    The stationary correlation function and the associated relaxation time for a general system driven by cross-correlated white noises are derived, by virtue of a Stratonovich-like ansatz. The effects of correlated noises on the relaxation time of a bistable kinetic model coupled to an additive and a multiplicative white noises are studied. It is proved that for small fluctuations the relaxation time Tc as a function of lambda (the correlated intensity between noises) exhibits very different behaviours for alphaD (alpha and D, respectively, stand for the intensities of additive and multiplicative noises). When alpha>D, Tc increases with increasing lambda. But when alpha

  9. On the optimization, and the intensity dependence, of the excitation rate for the absorption of two-photons due to the direct permanent dipole moment excitation mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meath, William J., E-mail: wmeath@uwo.ca

    2016-07-15

    A model two-level dipolar molecule, and the rotating wave approximation and perturbation theory, are used to investigate the optimization and the laser intensity dependence of the two-photon excitation rate via the direct permanent dipole mechanism. The rate is proportional to the square of the laser intensity I only for small intensities and times when perturbation theory is applicable. An improvement on perturbation theory is provided by a small time RWA result for the rate which is not proportional to I{sup 2}; rather it is proportional to the square of an effective intensity I{sub eff}. For each laser intensity the optimummore » RWA excitation rate as a function of time, for low intensities, is proportional to I, not I{sup 2}, and for high intensities it is proportional to I{sub eff}. For a given two-photon transition the laser-molecule coupling optimizes for an intensity I{sub max} which, for example, leads to a maximum possible excitation rate as a function of time. The validity of the RWA results of this paper, and the importance of including the effects of virtual excited states, are also discussed briefly.« less

  10. Middle to Late Pleistocene environmental and climatic reconstruction of the human occurrence at Grotta Maggiore di San Bernardino (Vicenza, Italy) through the small-mammal assemblage

    NASA Astrophysics Data System (ADS)

    López-García, Juan Manuel; Luzi, Elisa; Peresani, Marco

    2017-07-01

    Grotta Maggiore di San Bernardino, located at an altitude of 135 m a.s.l. in the Berici Hills in northeastern Italy, is an archaeological site with a discontinuous sedimentary sequence dating from Marine Isotope Stage 7 (MIS 7) to MIS 3. In this paper we present for the first time a palaeoenvironmental and palaeoclimatic reconstruction of the sequence based on small-mammal (insectivore, bat and rodent) assemblages. Coupled with biochronological data and absolute dating together with previous studies on large mammals, birds and other studies on small mammals and pollen from comparable time-spans in Italy, the results enable us clearly to identify distinct climatic periods: the end of MIS 7 (7c to 7a) in units VIII-VII, MIS 5d in unit V, and probably MIS 5b in unit IV and an indeterminate MIS 3 interstadial in units III-II. Finally, the study shows that the early Middle Palaeolithic human occupation in Italy occurs during mild and temperate sub-stages of MIS 7 and that human groups with the same techno-cultural background (Mousterian) were well adapted to the changing environmental and climatic conditions of the Middle to Late Pleistocene in this part of southern Europe.

  11. Fiber-coupled Luminescence Dosimetry in Therapeutic and Diagnostic Radiology

    NASA Astrophysics Data System (ADS)

    Andersen, Claus E.

    2011-05-01

    Fiber-coupled luminescence dosimetry is an emerging technology with several potentially attractive features of relevance for uses in therapeutic and diagnostic radiology: direct water equivalence (i.e. no significant perturbation of the radiation field in a water phantom or a patient), sub-mm detector size, high dynamic range (below a mGy to several Gy), microsecond time resolution, and absence of electrical wires or other electronics in the dosimeter probe head. Fiber-coupled luminescence dosimetry systems typically consist of one or more small samples of phosphor, e.g. a mg of plastic scintillator, attached to 10-20 m long optical fiber cables of plastic. During irradiation, each dosimeter probe spontaneously emits radioluminescence (RL) in proportion to the dose rate. The luminescence intensity can be detected with photomultiplier tubes, CCD cameras or other highly sensitive photodetectors. Some crystalline phosphors, such as carbon-doped aluminium oxide (Al2O3:C) have the ability to store charge produced in the crystal during irradiation. The stored charge may later be released by fiber-guided laser light under emission of so-called optically stimulated luminescence (OSL). The OSL signal therefore reflects the passively integrated dose. In contrast to thermoluminescence dosimetry, fiber-coupled OSL dosimetry may be performed in vivo while the dosimeter is still in the patient. Within the last few years, several improvements and new applications of these techniques have been published, and the objective of this review is to provide an introduction to this field and to outline some of these new results. Emphasis will be given to applications in medical dosimetry such as in vivo real-time dose verification in brachytherapy and methods aimed for improved quality assurance of linear accelerators.

  12. Higgs Production Through Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Cazzato, Eros; Fischer, Oliver

    In scenarios with sterile (right-handed) neutrinos with an approximate "lepton-numberlike" symmetry, the heavy neutrinos (the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings, while the smallness of the light neutrinos' masses is guaranteed by the approximate symmetry. The on-shell production of the heavy neutrinos at lepton colliders, together with their subsequent decays into a light neutrino and a Higgs boson, constitutes a resonant contribution to the Higgs production mechanism. This resonant mono-Higgs production mechanism can contribute significantly to the mono-Higgs observables at future lepton colliders. A dedicated search for the heavy neutrinos in this channel exhibits sensitivities for the electron neutrino Yukawa coupling as small as ˜ 5 × 10-3. Furthermore, the sensitivity is enhanced for higher center-of-mass energies, when identical integrated luminosities are considered.

  13. Experimental identification of nonlinear coupling between (intermediate, small)-scale microturbulence and an MHD mode in the core of a superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team

    2018-01-01

    In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.

  14. Control of collective network chaos.

    PubMed

    Wagemakers, Alexandre; Barreto, Ernest; Sanjuán, Miguel A F; So, Paul

    2014-06-01

    Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that chaos control algorithms designed using the reduced equations can be successfully applied to imperfect realizations of the full network. To systematically study the effectiveness of this technique, we measure the quality of control as we relax conditions that are required for the strict accuracy of the reduced equations, and hence, the controller. Although the effects are network-dependent, we show that the method is effective for surprisingly small networks, for modest departures from global coupling, and even with mild inaccuracy in the estimate of network heterogeneity.

  15. Lateral mode coupling to reduce the electrical impedance of small elements required for high power ultrasound therapy phased arrays.

    PubMed

    Hynynen, Kullervo; Yin, Jianhua

    2009-03-01

    A method that uses lateral coupling to reduce the electrical impedance of small transducer elements in generating ultrasound waves was tested. Cylindrical, radially polled transducer elements were driven at their length resonance frequency. Computer simulation and experimental studies showed that the electrical impedance of the transducer element could be controlled by the cylinder wall thickness, while the operation frequency was determined by the cylinder length. Acoustic intensity (averaged over the cylinder diameter) over 10 W / cm(2) (a therapeutically relevant intensity) was measured from these elements.

  16. Minimal non-abelian supersymmetric Twin Higgs

    DOE PAGES

    Badziak, Marcin; Harigaya, Keisuke

    2017-10-17

    We propose a minimal supersymmetric Twin Higgs model that can accommodate tuning of the electroweak scale for heavy stops better than 10% with high mediation scales of supersymmetry breaking. A crucial ingredient of this model is a new SU(2) X gauge symmetry which provides a D-term potential that generates a large SU(4) invariant coupling for the Higgs sector and only small set of particles charged under SU(2) X , which allows the model to be perturbative around the Planck scale. The new gauge interaction drives the top yukawa coupling small at higher energy scales, which also reduces the tuning.

  17. On the Spatio-Temporal Variability of Field-Aligned Currents Observed with the Swarm Satellite Constellation: Implications for the Energetics of Magnetosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Pakhotin, I.; Mann, I. R.; Forsyth, C.; Rae, J.; Burchill, J. K.; Knudsen, D. J.; Murphy, K. R.; Gjerloev, J. W.; Ozeke, L.; Balasis, G.; Daglis, I. A.

    2016-12-01

    With the advent of the Swarm mission with its multi-satellite capacity, it became possible for the first time to make systematic close separation multi-satellite measurements of the magnetic fields associated with field-aligned currents (FACs) at a 50 Hz cadence using fluxgate magnetometers. Initial studies have revealed an even greater level of detail and complexity and spatio-temporal non-stationarity than previously understood. On inter-satellite separation scales of 10 seconds along-track and <120 km cross-track, the peak-to-peak magnitudes of the small scale and poorly correlated inter-spacecraft magnetic field fluctuations can reach tens to hundreds of nanoteslas. These magnitudes are directly comparable to those associated with larger scale magnetic perturbations such as the global scale Region 1 and 2 FAC systems characterised by Iijima and Potemra 40 years ago. We evaluate the impact of these smaller scale magnetic perturbations relative to the larger scale FAC systems statistically as a function of the total number of FAC crossings observed, and as a function of geomagnetic indices, spatial location, and season. Further case studies incorporating Swarm electric field measurements enable estimates of the Poynting flux associated with the small scale and non-stationary magnetic fields. We interpret the small scale structures as Alfvenic, suggesting that Alfven waves play a much larger and more energetically significant role in magnetosphere-ionosphere coupling than previously thought. We further examine what causes such high variability among low-Earth orbit FAC systems to be observed under some conditions but not in others.

  18. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    PubMed

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  19. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water

    USGS Publications Warehouse

    Smith, R.L.; Buckwalter, S.P.; Repert, D.A.; Miller, D.N.

    2005-01-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  20. Direct observation of fault zone structure at the brittle-ductile transition along the Salzach-Ennstal-Mariazell-Puchberg fault system, Austrian Alps

    NASA Astrophysics Data System (ADS)

    Frost, Erik; Dolan, James; Ratschbacher, Lothar; Hacker, Bradley; Seward, Gareth

    2011-02-01

    Structural analysis of two key exposures reveals the architecture of the brittle-ductile transition (BDT) of the subvertical, strike-slip Salzachtal fault. At Lichtensteinklamm, the fault zone is dominantly brittle, with a ˜70 m wide, high-strain fault core highlighted by a 50 m thick, highly foliated gouge zone. In contrast, at Kitzlochklamm, deformation is dominantly ductile, albeit with relatively low strain indicated by weak lattice-preferred orientations (LPOs). The marked contrast in structural style indicates that these sites span the BDT. The close proximity of the outcrops, coupled with Raman spectroscopy indicating similar maximum temperatures of ˜400°C, suggests that the difference in exhumation depth is small, with a commensurately small difference in total downdip width of the BDT. The small strains indicated by weak LPOs at Kitzlochklamm, coupled with evidence for brittle slip at the main fault contact and along the sides of a 5 m wide fault-bounded sliver of Klammkalk exposed 30 m into the Grauwacken zone rocks, suggest the possibility that this exposure may record hybrid behavior at different times during the earthquake cycle, with ductile deformation occurring during slow interseismic slip and brittle deformation occurring during earthquakes, as dynamic coseismic stresses induced a strain rate-dependent shift to brittle fault behavior within the nominally ductile regime in the lower part of the BDT. A key aspect of both outcrops is evidence of a high degree of strain localization through the BDT, with high-strain fault cores no wider than a few tens of meters.

  1. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J; Kertesz, Vilmos

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI modemore » was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.« less

  2. Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Carleton, Karen L.; Davis, Steven J.; Kessler, William J.; Otis, Charles E.; Palombo, Daniel A.; Sonnenfroh, David M.

    1995-06-01

    A dual-beam detection strategy with automatic balancing is described for ultrasensitive spectroscopy. Absorbances of 2 \\times 10-7 Hz-1/2 in free-space configurations and 5 \\times 10-6 Hz -1/2 in fiber-coupled configurations are demonstrated. With the dual-beam technique, atmospherically broadened absorption transitions may be resolved with InGaAsP, AlGaAs, and AlGaInP single-longitudinal-mode diode lasers. Applications to trace measurements of NO2 , O2, and H2O are described by the use of simple, inexpensive laser and detector systems. Small signal gain measurements on optically pumped I2 with a sensitivity of 10-5 are also reported.

  3. Feasibility study for converting traditional line assembly into work cells for termination of fiber optics cable

    NASA Astrophysics Data System (ADS)

    Caldeira, Rylan; Honnungar, Sunilkumar

    2018-04-01

    Most of small to medium industries tend to follow traditional systems of manufacturing which aims at maximum resource utilization irrespective of giving attention to customers volatile demand. In recent times manufacturing is being shifted to be consumers centered, with intense competition among industries to satisfy the customer needs in the required quantity and at the right time. To achieve this, companies investigate the possibility of implementation of cellular manufacturing which is characterized by high variety with optimum usage of resources. Cellular layout coupled with the application of lean methodology, places focus on the production process rather than the production methods so as to identify the wastage and apply methods to further improve productivity.

  4. Fluctuation correlation models for receptor immobilization

    NASA Astrophysics Data System (ADS)

    Fourcade, B.

    2017-12-01

    Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways. Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic simulations show that this analysis can be extended to situations with a small number of molecules. It is also demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.

  5. Method of making a small inlet optical panel

    DOEpatents

    Veligdan, James T.; Slobodin, David E.

    2004-02-03

    An optical panel having a small inlet, and a method of making a small inlet optical panel, are disclosed, which optical panel includes a individually coating, stacking, and cutting a first plurality of stacked optical waveguides to form an outlet face body with an outlet face, individually coating, stacking, and cutting a second plurality of stacked optical waveguides to form an inlet face body with an inlet face, and connecting an optical coupling element to the first plurality and second plurality of stacked optical waveguides, wherein the optical coupling element redirects light along a parallel axis of the inlet face to a parallel axis of the outlet face. In the preferred embodiment of the present invention, the inlet face is disposed obliquely with and askew from the outlet face.

  6. An ultra-HTS process for the identification of small molecule modulators of orphan G-protein-coupled receptors.

    PubMed

    Cacace, Angela; Banks, Martyn; Spicer, Timothy; Civoli, Francesca; Watson, John

    2003-09-01

    G-protein-coupled receptors (GPCRs) are the most successful target proteins for drug discovery research to date. More than 150 orphan GPCRs of potential therapeutic interest have been identified for which no activating ligands or biological functions are known. One of the greatest challenges in the pharmaceutical industry is to link these orphan GPCRs with human diseases. Highly automated parallel approaches that integrate ultra-high throughput and focused screening can be used to identify small molecule modulators of orphan GPCRs. These small molecules can then be employed as pharmacological tools to explore the function of orphan receptors in models of human disease. In this review, we describe methods that utilize powerful ultra-high-throughput screening technologies to identify surrogate ligands of orphan GPCRs.

  7. Application of ion mobility-mass spectrometry to microRNA analysis.

    PubMed

    Takebayashi, Kosuke; Hirose, Kenji; Izumi, Yoshihiro; Bamba, Takeshi; Fukusaki, Eiichiro

    2013-03-01

    Liquid chromatography/mass spectrometry is widely used for studying sequence determination and modification analysis of small RNAs. However, the efficiency of liquid chromatography-based separation of intact small RNA species is insufficient, since the physiochemical properties among small RNAs are very similar. In this study, we focused on ion mobility-mass spectrometry (IM-MS), which is a gas-phase separation technique coupled with mass spectrometry; we have evaluated the utility of IM-MS for microRNA (miRNA) analysis. A multiply charged deprotonated ion derived from an 18-24-nt-long miRNA was formed by electrospray ionization, and then the time, called the "drift time", taken by each ion to migrate through a buffer gas was measured. Each multivalent ion was temporally separated on the basis of the charge state and structural formation; 3 types of unique mass-mobility correlation patterns (i.e., chainlike-form, hairpin-form, and dimer-form) were present on the two-dimensional mobility-mass spectrum. Moreover, we found that the ion size (sequence length) and the secondary structures of the small RNAs strongly contributed to the IM-MS-based separation, although solvent conditions such as pH had no effect. Therefore, sequence isomers could also be discerned by the selection of each specific charged ion, i.e., the 6(-) charged ion reflected a majority among chainlike-, hairpin-, and other structures. We concluded that the IM-MS provides additional capability for separation; thus, this analytical method will be a powerful tool for comprehensive small RNA analysis. Copyright © 2012. Published by Elsevier B.V.

  8. Poor Man's Asteroid Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Landis, R. R.; Graham, L. D.

    2018-02-01

    A cislunar platform at a Near-Rectilinear [Halo] Orbit in the vicinity of the Moon could provide an opportunity for a small NEA sample return mission at relatively low cost. There are a couple potential small ( 1m) object target dynamical groups.

  9. Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system

    NASA Astrophysics Data System (ADS)

    Yan, Y.-Y.; Lin, J.-T.; Chen, J.; Hu, L.

    2015-09-01

    Small-scale nonlinear chemical and physical processes over pollution source regions affect the global ozone (O3) chemistry, but these processes are not captured by current global chemical transport models (CTMs) and chemistry-climate models that are limited by coarse horizontal resolutions (100-500 km, typically 200 km). These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use a recently built two-way coupling system of the GEOS-Chem CTM to simulate the global tropospheric O3 in 2009. The system couples the global model (at 2.5° long. × 2° lat.) and its three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. Benefiting from the high resolution, the nested models better capture small-scale processes than the global model alone. In the coupling system, the nested models provide results to modify the global model simulation within respective nested domains while taking the lateral boundary conditions from the global model. Due to the "coupling" effects, the two-way system significantly improves the tropospheric O3 simulation upon the global model alone, as found by comparisons with a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). Compared to the global model alone, the two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean O3 with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb in annual average afternoon O3. Regionally, the coupled model reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO (for remote areas) and MOZAIC (for polluted regions) data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5 %, annual mean), bringing them closer to the OMI data in all seasons. Simulation improvements are more significant in the northern hemisphere, and are primarily a result of improved representation of urban-rural contrast and other small-scale processes. The two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5 % with enhancements by 5 % in the lifetimes of methyl chloroform (from 5.58 to 5.87 yr) and methane (from 9.63 to 10.12 yr), bringing them closer to observation-based estimates. Improving model representations of small-scale processes are a critical step forward to understanding the global tropospheric chemistry.

  10. Narcissism and newlywed marriage: Partner characteristics and marital trajectories.

    PubMed

    Lavner, Justin A; Lamkin, Joanna; Miller, Joshua D; Campbell, W Keith; Karney, Benjamin R

    2016-04-01

    Despite narcissism's relation with interpersonal dysfunction, surprisingly little empirical research has been devoted to understanding narcissism's effect on intimate relationships in general or marital relationships in particular. The current study addressed this gap using longitudinal data from a community sample of 146 newlywed couples assessed 6 times over the first 4 years of marriage. First, we examined partner characteristics associated with higher levels of narcissism to determine the degree to which couples were matched on narcissism and related traits. Second, we examined how narcissism predicted the trajectory of marital quality over time, testing narcissism's association with initial levels of relationship functioning (the intercept) and changes in relationship functioning (the slope). Results indicated a small degree of homophily but otherwise no clear pattern of partner characteristics for individuals higher in narcissism. Hierarchical linear modeling indicated that wives' total narcissism and entitlement/exploitativeness scores predicted the slope of marital quality over time, including steeper declines in marital satisfaction and steeper increases in marital problems. Husbands' narcissism scores generally had few effects on their own marital quality or that of their wives. These findings are notable in indicating that the effects of personality characteristics on marital functioning may take some time to manifest themselves, even if they were present from early in the marriage. Future research into the mediating psychological and interpersonal processes that link wives' narcissism with poorer marital functioning over time would be valuable. (c) 2016 APA, all rights reserved).

  11. Solar Wind-Magnetosphere Coupling Influences on Pseudo-Breakup Activity

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M.; Parks, G. K.; Germany, G. A.; Spann, J. F.

    1998-01-01

    Pseudo-breakups are brief, localized aurora[ arc brightening, which do not lead to a global expansion, are historically observed during the growth phase of substorms. Previous studies have demonstrated that phenomenologically there is very little difference between substorm onsets and pseudo-breakups except for the degree of localization and the absence of a global expansion phase. A key open question is what physical mechanism prevents a pseudo-breakup form expanding globally. Using Polar Ultraviolet Imager (UVI) images, we identify periods of pseudo-breakup activity. Foe the data analyzed we find that most pseudo-breakups occur near local midnight, between magnetic local times of 21 and 03, at magnetic latitudes near 70 degrees, through this value may change by several degrees. While often discussed in the context of substorm growth phase events, pseudo-breakups are also shown to occur during prolonged relatively inactive periods. These quiet time pseudo-breakups can occur over a period of several hours without the development of a significant substorm for at least an hour after pseudo-breakup activity stops. In an attempt to understand the cause of quiet time pseudo-breakups, we compute the epsilon parameter as a measure of the efficiency of solar wind-magnetosphere coupling. It is noted that quiet time pseudo-breakups occur typically when epsilon is low; less than about 50 GW. We suggest that quiet time pseudo-breakups are driven by relatively small amounts of energy transferred to the magnetosphere by the solar wind insufficient to initiate a substorm expansion onset.

  12. Reynolds number trend of hierarchies and scale interactions in turbulent boundary layers.

    PubMed

    Baars, W J; Hutchins, N; Marusic, I

    2017-03-13

    Small-scale velocity fluctuations in turbulent boundary layers are often coupled with the larger-scale motions. Studying the nature and extent of this scale interaction allows for a statistically representative description of the small scales over a time scale of the larger, coherent scales. In this study, we consider temporal data from hot-wire anemometry at Reynolds numbers ranging from Re τ ≈2800 to 22 800, in order to reveal how the scale interaction varies with Reynolds number. Large-scale conditional views of the representative amplitude and frequency of the small-scale turbulence, relative to the large-scale features, complement the existing consensus on large-scale modulation of the small-scale dynamics in the near-wall region. Modulation is a type of scale interaction, where the amplitude of the small-scale fluctuations is continuously proportional to the near-wall footprint of the large-scale velocity fluctuations. Aside from this amplitude modulation phenomenon, we reveal the influence of the large-scale motions on the characteristic frequency of the small scales, known as frequency modulation. From the wall-normal trends in the conditional averages of the small-scale properties, it is revealed how the near-wall modulation transitions to an intermittent-type scale arrangement in the log-region. On average, the amplitude of the small-scale velocity fluctuations only deviates from its mean value in a confined temporal domain, the duration of which is fixed in terms of the local Taylor time scale. These concentrated temporal regions are centred on the internal shear layers of the large-scale uniform momentum zones, which exhibit regions of positive and negative streamwise velocity fluctuations. With an increasing scale separation at high Reynolds numbers, this interaction pattern encompasses the features found in studies on internal shear layers and concentrated vorticity fluctuations in high-Reynolds-number wall turbulence.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  13. On the Coupling Time of the Heat-Bath Process for the Fortuin-Kasteleyn Random-Cluster Model

    NASA Astrophysics Data System (ADS)

    Collevecchio, Andrea; Elçi, Eren Metin; Garoni, Timothy M.; Weigel, Martin

    2018-01-01

    We consider the coupling from the past implementation of the random-cluster heat-bath process, and study its random running time, or coupling time. We focus on hypercubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least one. We make a number of conjectures regarding the asymptotic behaviour of the coupling time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimensions two and three. Amongst our findings, we observe that, for generic parameter values, the distribution of the appropriately standardized coupling time converges to a Gumbel distribution, and that the standard deviation of the coupling time is asymptotic to an explicit universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these results to hold both off criticality, where the coupling time closely mimics the coupon collector's problem, and also at the critical point, provided the cluster fugacity is below the value at which the transition becomes discontinuous. Finally, we consider analogous questions for the single-spin Ising heat-bath process.

  14. Study of the dislocation mechanism responsible for the Bordoni relaxation in aluminum by the two-wave acoustic coupling method

    NASA Astrophysics Data System (ADS)

    Bujard, M.; Gremaud, G.; Benoit, W.

    1987-10-01

    The most realistic model for the interpretation of the Bordoni relaxation observed by internal friction experiments is the mechanism of kink pair formation (KPF) on the dislocations. However, according to this model, high values of the critical resolved shear stress should also be measured at low temperature in face-centered-cubic (fcc) metals, but this has never been observed. Using the newly developed two-wave acoustic coupling method, we have studied the reality of the KPF model as an explanation for the Bordoni relaxation in aluminum. The results are in very good agreement with the predictions of the KPF model and thus confirm this model. On the other hand, experimental evidence that the kink mobility is very high in aluminum have been found. Therefore, the diffusion time of the kinks is negligibly small for the KPF process in fcc metals. Values of the internal stress field in cold-worked samples have also been obtained using the two-wave acoustic coupling approach. A description of the experimental method and the theoretical approach for the interpretation of the results will also be given in this paper.

  15. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  16. Charge and pairing dynamics in the attractive Hubbard model: Mode coupling and the validity of linear-response theory

    NASA Astrophysics Data System (ADS)

    Bünemann, Jörg; Seibold, Götz

    2017-12-01

    Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shafer, Morgan W; Battaglia, D. J.; Unterberg, Ezekial A

    A new tangential 2D Soft X-Ray Imaging System (SXRIS) is being designed to examine the edge magnetic island structure in the lower X-point region of DIII-D. A synthetic diagnostic calculation coupled to 3D emissivity estimates is used to generate phantom images. Phillips-Tikhonov regularization is used to invert the phantom images for comparison to the original emissivity model. Noise level, island size, and equilibrium accuracy are scanned to assess the feasibility of detecting edge island structures. Models of typical DIII-D discharges indicate integration times > 1 ms with accurate equilibrium reconstruction are needed for small island (< 3 cm) detection.

  18. Design of analog pixels front-end active feedback

    NASA Astrophysics Data System (ADS)

    Kmon, P.; Kadlubowski, L. A.; Kaczmarczyk, P.

    2018-01-01

    The paper presents the design of the active feedback used in a charge-sensitive amplifier. The predominant advantages of the presented circuit are its ability for setting wide range of pulse-time widths, small silicon area occupation and low power consumption. The feedback also allows sensor leakage current compensation and, thanks to an additional DC amplifier, it minimizes the output DC voltage variations, which is especially important in the DC coupled recording chain and for processes with limited supply voltage. The paper provides feedback description and its operation principle. The proposed circuit was designed in the CMOS 130nm technology.

  19. Single Cell Spectroscopy: Noninvasive Measures of Small-Scale Structure and Function

    PubMed Central

    Mousoulis, Charilaos; Xu, Xin; Reiter, David A.; Neu, Corey P.

    2013-01-01

    The advancement of spectroscopy methods attained through increases in sensitivity, and often with the coupling of complementary techniques, has enabled real-time structure and function measurements of single cells. The purpose of this review is to illustrate, in light of advances, the strengths and the weaknesses of these methods. Included also is an assessment of the impact of the experimental setup and conditions of each method on cellular function and integrity. A particular emphasis is placed on noninvasive and nondestructive techniques for achieving single cell detection, including nuclear magnetic resonance, in addition to physical, optical, and vibrational methods. PMID:23886910

  20. Two-Dimensional Numerical Model of coupled Heat and Moisture Transport in Frost Heaving Soils.

    DTIC Science & Technology

    1982-08-01

    integrated relations become: The exact solution is the %%ell-known series expansion: At -11)e )+bO! -201, +Li j I:IAx), " 2" 4 ,, sin 3 .x )fx. t=-szf...giethe complete mab balance formula tion. Integrating .patiall% and temporall % on eac:n R ~ .% fl, Icc .1’l i l Ilt,.’. ,l~llc "jaJ i l C tl~ I1I’ .El~lt...diffusivity model can be approximately linearized by using values of diffusivitv assumed constant for small intervals of space and time. By a series expansion

  1. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  2. The radiated electromagnetic field from collimated gamma rays and electron beams in air

    NASA Astrophysics Data System (ADS)

    Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.

    1980-12-01

    Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.

  3. The two conformers of acetanilide unraveled using LA-MB-FTMW spectroscopy

    NASA Astrophysics Data System (ADS)

    Cabezas, C.; Varela, M.; Caminati, W.; Mata, S.; López, J. C.; Alonso, J. L.

    2011-07-01

    Acetanilide has been investigated by laser ablation molecular beam Fourier transform microwave LA-MB-FTMW spectroscopy. The rotational spectrum of both trans and cis conformers have been analyzed to determine the rotational and 14N quadrupole coupling the constants. The spectrum of the less abundant cis conformer has been assigned for the first time. The doublets observed for this conformer have been interpreted in terms of the tunneling motion between two equivalent non-planar conformations through a small barrier in which the acetamide group and phenyl ring plane are perpendicular. The results are compared with those of the related formanilide.

  4. Vibration monitoring of Kraftwerk Union pressurized water reactors - Review, present status, and further development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolben, H.; Wehling, H.J.

    Incipient damage to mechanical structure may be detected early in time by deviations from normal dynamic behavior. For vibration monitoring of coupled systems, only a small number of transducers are necessary, in general. On the basis, Kraftwerk Union has been involved in the development and construction of vibration monitoring systems for pressurized water reactors over the last 20 yr. The current state of the art permits vibration monitoring during normal operation by reactor personnel without expert assistance. The new SUS-86 microprocessor-based system allows further expansion toward an expert system.

  5. A method for exponential propagation of large systems of stiff nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Friesner, Richard A.; Tuckerman, Laurette S.; Dornblaser, Bright C.; Russo, Thomas V.

    1989-01-01

    A new time integrator for large, stiff systems of linear and nonlinear coupled differential equations is described. For linear systems, the method consists of forming a small (5-15-term) Krylov space using the Jacobian of the system and carrying out exact exponential propagation within this space. Nonlinear corrections are incorporated via a convolution integral formalism; the integral is evaluated via approximate Krylov methods as well. Gains in efficiency ranging from factors of 2 to 30 are demonstrated for several test problems as compared to a forward Euler scheme and to the integration package LSODE.

  6. Designing prospective cohort studies for assessing reproductive and developmental toxicity during sensitive windows of human reproduction and development--the LIFE Study.

    PubMed

    Buck Louis, Germaine M; Schisterman, Enrique F; Sweeney, Anne M; Wilcosky, Timothy C; Gore-Langton, Robert E; Lynch, Courtney D; Boyd Barr, Dana; Schrader, Steven M; Kim, Sungduk; Chen, Zhen; Sundaram, Rajeshwari

    2011-09-01

    The relationship between the environment and human fecundity and fertility remains virtually unstudied from a couple-based perspective in which longitudinal exposure data and biospecimens are captured across sensitive windows. In response, we completed the LIFE Study with methodology that intended to empirically evaluate a priori purported methodological challenges: implementation of population-based sampling frameworks suitable for recruiting couples planning pregnancy; obtaining environmental data across sensitive windows of reproduction and development; home-based biospecimen collection; and development of a data management system for hierarchical exposome data. We used two sampling frameworks (i.e., fish/wildlife licence registry and a direct marketing database) for 16 targeted counties with presumed environmental exposures to persistent organochlorine chemicals to recruit 501 couples planning pregnancies for prospective longitudinal follow-up while trying to conceive and throughout pregnancy. Enrolment rates varied from <1% of the targeted population (n = 424,423) to 42% of eligible couples who were successfully screened; 84% of the targeted population could not be reached, while 36% refused screening. Among enrolled couples, ∼ 85% completed daily journals while trying; 82% of pregnant women completed daily early pregnancy journals, and 80% completed monthly pregnancy journals. All couples provided baseline blood/urine samples; 94% of men provided one or more semen samples and 98% of women provided one or more saliva samples. Women successfully used urinary fertility monitors for identifying ovulation and home pregnancy test kits. Couples can be recruited for preconception cohorts and will comply with intensive data collection across sensitive windows. However, appropriately sized sampling frameworks are critical, given the small percentage of couples contacted found eligible and reportedly planning pregnancy at any point in time. © Published 2011. This article is a US Government work and is in the public domain in the USA.

  7. Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case study for the upper Tana River basin

    NASA Astrophysics Data System (ADS)

    Kerandi, Noah; Arnault, Joel; Laux, Patrick; Wagner, Sven; Kitheka, Johnson; Kunstmann, Harald

    2018-02-01

    For an improved understanding of the hydrometeorological conditions of the Tana River basin of Kenya, East Africa, its joint atmospheric-terrestrial water balances are investigated. This is achieved through the application of the Weather Research and Forecasting (WRF) and the fully coupled WRF-Hydro modeling system over the Mathioya-Sagana subcatchment (3279 km2) and its surroundings in the upper Tana River basin for 4 years (2011-2014). The model setup consists of an outer domain at 25 km (East Africa) and an inner one at 5-km (Mathioya-Sagana subcatchment) horizontal resolution. The WRF-Hydro inner domain is enhanced with hydrological routing at 500-m horizontal resolution. The results from the fully coupled modeling system are compared to those of the WRF-only model. The coupled WRF-Hydro slightly reduces precipitation, evapotranspiration, and the soil water storage but increases runoff. The total precipitation from March to May and October to December for WRF-only (974 mm/year) and coupled WRF-Hydro (940 mm/year) is closer to that derived from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data (989 mm/year) than from the TRMM (795 mm/year) precipitation product. The coupled WRF-Hydro-accumulated discharge (323 mm/year) is close to that observed (333 mm/year). However, the coupled WRF-Hydro underestimates the observed peak flows registering low but acceptable NSE (0.02) and RSR (0.99) at daily time step. The precipitation recycling and efficiency measures between WRF-only and coupled WRF-Hydro are very close and small. This suggests that most of precipitation in the region comes from moisture advection from the outside of the analysis domain, indicating a minor impact of potential land-precipitation feedback mechanisms in this case. The coupled WRF-Hydro nonetheless serves as a tool in quantifying the atmospheric-terrestrial water balance in this region.

  8. A highly accurate boundary integral equation method for surfactant-laden drops in 3D

    NASA Astrophysics Data System (ADS)

    Sorgentone, Chiara; Tornberg, Anna-Karin

    2018-05-01

    The presence of surfactants alters the dynamics of viscous drops immersed in an ambient viscous fluid. This is specifically true at small scales, such as in applications of droplet based microfluidics, where the interface dynamics become of increased importance. At such small scales, viscous forces dominate and inertial effects are often negligible. Considering Stokes flow, a numerical method based on a boundary integral formulation is presented for simulating 3D drops covered by an insoluble surfactant. The method is able to simulate drops with different viscosities and close interactions, automatically controlling the time step size and maintaining high accuracy also when substantial drop deformation appears. To achieve this, the drop surfaces as well as the surfactant concentration on each surface are represented by spherical harmonics expansions. A novel reparameterization method is introduced to ensure a high-quality representation of the drops also under deformation, specialized quadrature methods for singular and nearly singular integrals that appear in the formulation are evoked and the adaptive time stepping scheme for the coupled drop and surfactant evolution is designed with a preconditioned implicit treatment of the surfactant diffusion.

  9. On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach

    NASA Technical Reports Server (NTRS)

    Gastaldi, Fabio; Quarteroni, Alfio

    1988-01-01

    The coupling of hyperbolic and parabolic systems is discussed in a domain Omega divided into two distinct subdomains omega(+) and omega(-). The main concern is to find the proper interface conditions to be fulfilled at the surface separating the two domains. Next, they are used in the numerical approximation of the problem. The justification of the interface conditions is based on a singular perturbation analysis, i.e., the hyperbolic system is rendered parabolic by adding a small artifical viscosity. As this goes to zero, the coupled parabolic-parabolic problem degenerates into the original one, yielding some conditions at the interface. These are taken as interface conditions for the hyperbolic-parabolic problem. Actually, two alternative sets of interface conditions are discussed according to whether the regularization procedure is variational or nonvariational. It is shown how these conditions can be used in the frame of a numerical approximation to the given problem. Furthermore, a method of resolution is discussed which alternates the resolution of the hyperbolic problem within omega(-) and of the parabolic one within omega(+). The spectral collocation method is proposed, as an example of space discretization (different methods could be used as well); both explicit and implicit time-advancing schemes are considered. The present study is a preliminary step toward the analysis of the coupling between Euler and Navier-Stokes equations for compressible flows.

  10. Palladium-Catalyzed Coupling of Ammonia with Aryl Chlorides, Bromides, Iodides and Sulfonates: A General Method for the Preparation of Primary Arylamines

    PubMed Central

    Vo, Giang D.

    2010-01-01

    We report that the complex generated from Pd[P(o-tol)3]2 and the alkylbisphosphine CyPF-t-Bu is a highly active and selective catalyst for the coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates. The couplings of ammonia with this catalyst conducted with a solution of ammonia in dioxane form primary arylamines from a variety of aryl electrophiles in high yields. Catalyst loadings as low as 0.1 mol % were sufficient for reactions of many aryl chlorides and bromides. In the presence of this catalyst, aryl sulfonates also coupled with ammonia for the first time in high yields. A comparison of reactions in the presence of this catalyst versus those in the presence of existing copper and palladium systems revealed a complementary, if not broader substrate scope. The utility of this method to generate amides, imides and carbamates is illustrated by a one-pot synthesis of a small library of these carbonyl compounds from aryl bromides and chlorides. Mechanistic studies show that Pd[P(o-tol)3]2 and CyPF-t-Bu generate a more active and general catalyst than that generated from CyPF-t-Bu and palladiun(II) precursors because of the low concentration of active catalyst that is generated from the combination of palladium(II), ammonia and base. PMID:19591470

  11. [Treating vaginismus in Turkish women].

    PubMed

    Gül, V; Ruf, G D

    2009-03-01

    Vaginismus is a sexual dysfunction involving various branches of medicine, including psychiatry and gynaecology. Psychiatric help is sought in only a small proportion of cases, although it is probable that the psychopathological aetiology is more frequent than generally recognized. This article deals with the causes and psychological circumstances in four Turkish couples who presented with unconsummated marriage for 3 to 7 years. Vaginismus F52.5 to the ICD-10 is a sexual dysfunction characterised as: deep anxiety about coitus leading to extreme spasm of musculature making coitus impossible or extremely unpleasant and painful. Four Turkish couples with unconsummated marriage due to the female partners' penetration phobia were included to this study. A patient-oriented multidimensional individual treatment (combination therapy) is a cost effective, short-term (typically 10- to 12-week) treatment model for both partners. It includes some elements of cognitive behavioural therapy and systemic partner therapy which were considered not radically different from previous therapeutic strategies. Results were successful in all cases; the couples were extremely satisfied with having a normal sex life for the first time. This led to desired pregnancies and avoiding of possible breakdown of their families. The couples did well with combination behavioural therapy. This methodology is discussed in its various aspects and with a cultural background. We also emphasise the need for physicians to be mindful of cases of vaginismus requiring psychiatric intervention rather than gynaecological treatment.

  12. Design of a multimodal fibers optic system for small animal optical imaging.

    PubMed

    Spinelli, Antonello E; Pagliazzi, Marco; Boschi, Federico

    2015-02-01

    Small animals optical imaging systems are widely used in pre-clinical research to image in vivo the bio-distribution of light emitting probes using fluorescence or bioluminescence modalities. In this work we presented a set of simulated results of a novel small animal optical imaging module based on a fibers optics matrix, coupled with a position sensitive detector, devoted to acquire bioluminescence and Cerenkov images. Simulations were performed using GEANT 4 code with the GAMOS architecture using the tissue optics plugin. Results showed that it is possible to image a 30 × 30 mm region of interest using a fiber optics array containing 100 optical fibers without compromising the quality of the reconstruction. The number of fibers necessary to cover an adequate portion of a small animal is thus quite modest. This design allows integrating the module with magnetic resonance (MR) in order to acquire optical and MR images at the same time. A detailed model of the mouse anatomy, obtained by segmentation of 3D MRI images, will improve the quality of optical 3D reconstruction. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States.

    PubMed

    Samanta, Pralok K; Kim, Dongwook; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2017-03-22

    The rates for up-conversion intersystem crossing (UISC) from the T 1 state to the S 1 state are calculated for a series of organic emitters with an emphasis on thermally activated delayed fluorescence (TADF) materials. Both the spin-orbit coupling and the energy difference between the S 1 and T 1 states (ΔE ST ) are evaluated, at the density functional theory (DFT) and time-dependent DFT levels. The calculated UISC rates and ΔE ST values are found to be in good agreement with available experimental data. Our results underline that small ΔE ST values and sizable spin-orbit coupling matrix elements have to be simultaneously realized in order to facilitate UISC and ultimately TADF. Importantly, the spatial separation of the highest occupied and lowest unoccupied molecular orbitals of the emitter, a widely accepted strategy for the design of TADF molecules, does not necessarily lead to a sufficient reduction in ΔE ST ; in fact, either a significant charge-transfer (CT) contribution to the T 1 state or a minimal energy difference between the local-excitation and charge-transfer triplet states is required to achieve a small ΔE ST . Also, having S 1 and T 1 states of a different nature is found to strongly enhance spin-orbit coupling, which is consistent with the El-Sayed rule for ISC rates. Overall, our results indicate that having either similar energies for the local-excitation and charge-transfer triplet states or the right balance between a substantial CT contribution to T 1 and somewhat different natures of the S 1 and T 1 states, paves the way toward UISC enhancement and thus TADF efficiency improvement.

  14. Nonlinear and threshold-dominated runoff generation controls DOC export in a small peat catchment

    NASA Astrophysics Data System (ADS)

    Birkel, C.; Broder, T.; Biester, H.

    2017-03-01

    We used a relatively simple two-layer, coupled hydrology-biogeochemistry model to simultaneously simulate streamflow and stream dissolved organic carbon (DOC) concentrations in a small lead and arsenic contaminated upland peat catchment in northwestern Germany. The model procedure was informed by an initial data mining analysis, in combination with regression relationships of discharge, DOC, and element export. We assessed the internal model DOC processing based on stream DOC hysteresis patterns and 3-hourly time step groundwater level and soil DOC data for two consecutive summer periods in 2013 and 2014. The parsimonious model (i.e., few calibrated parameters) showed the importance of nonlinear and rapid near-surface runoff generation mechanisms that caused around 60% of simulated DOC load. The total load was high even though these pathways were only activated during storm events on average 30% of the monitoring time—as also shown by the experimental data. Overall, the drier period 2013 resulted in increased nonlinearity but exported less DOC (115 kg C ha-1 yr-1 ± 11 kg C ha-1 yr-1) compared to the equivalent but wetter period in 2014 (189 kg C ha-1 yr-1 ± 38 kg C ha-1 yr-1). The exceedance of a critical water table threshold (-10 cm) triggered a rapid near-surface runoff response with associated higher DOC transport connecting all available DOC pools and subsequent dilution. We conclude that the combination of detailed experimental work with relatively simple, coupled hydrology-biogeochemistry models not only allowed the model to be internally constrained but also provided important insight into how DOC and tightly coupled pollutants or trace elements are mobilized.

  15. The synchronization of asymmetric-structured electric coupling neuronal system

    NASA Astrophysics Data System (ADS)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  16. Fundamental considerations in the effect of molecular weight on the glass transition of the gelatin/cosolute system.

    PubMed

    Jiang, Bin; Kasapis, Stefan; Kontogiorgos, Vassilis

    2012-05-01

    Four molecular fractions of gelatin produced by alkaline hydrolysis of collagen were investigated in the presence of cosolute to record the mechanical properties of the glass transition in high-solid preparations. Dynamic oscillatory and stress relaxation moduli in shear were recorded from 40°C to temperatures as low as -60°C. The small-deformation behavior of these linear polymers was separated by the method of reduced variables into a basic function of time alone and a basic function of temperature alone. The former allowed the reduction of isothermal runs into a master curve covering 17 orders of magnitude in the time domain. The latter follows the passage from the rubbery plateau through the glass transition region to the glassy state seen in the variation of shift factor, a(T) , as a function of temperature. The mechanical glass transition temperature (T(g) ) is pinpointed at the operational threshold of the free volume theory and the predictions of the reaction rate theory. Additional insights into molecular dynamics are obtained via the coupling model of cooperativity, which introduces the concept of coupling constant or interaction strength of local segmental motions that govern structural relaxation at the vicinity of T(g) . The molecular weight of the four gelatin fractions appears to have a profound effect on the transition temperature or coupling constant of vitrified matrices, as does the protein chemistry in relation to that of amorphous synthetic polymers or gelling polysaccharides. © 2011 Wiley Periodicals, Inc.

  17. The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model

    NASA Astrophysics Data System (ADS)

    Baehr, J.; Fröhlich, K.; Botzet, M.; Domeisen, D. I. V.; Kornblueh, L.; Notz, D.; Piontek, R.; Pohlmann, H.; Tietsche, S.; Müller, W. A.

    2015-05-01

    A seasonal forecast system is presented, based on the global coupled climate model MPI-ESM as used for CMIP5 simulations. We describe the initialisation of the system and analyse its predictive skill for surface temperature. The presented system is initialised in the atmospheric, oceanic, and sea ice component of the model from reanalysis/observations with full field nudging in all three components. For the initialisation of the ensemble, bred vectors with a vertically varying norm are implemented in the ocean component to generate initial perturbations. In a set of ensemble hindcast simulations, starting each May and November between 1982 and 2010, we analyse the predictive skill. Bias-corrected ensemble forecasts for each start date reproduce the observed surface temperature anomalies at 2-4 months lead time, particularly in the tropics. Niño3.4 sea surface temperature anomalies show a small root-mean-square error and predictive skill up to 6 months. Away from the tropics, predictive skill is mostly limited to the ocean, and to regions which are strongly influenced by ENSO teleconnections. In summary, the presented seasonal prediction system based on a coupled climate model shows predictive skill for surface temperature at seasonal time scales comparable to other seasonal prediction systems using different underlying models and initialisation strategies. As the same model underlying our seasonal prediction system—with a different initialisation—is presently also used for decadal predictions, this is an important step towards seamless seasonal-to-decadal climate predictions.

  18. ¹J(CH) couplings in Group 14/IVA tetramethyls from the gas-phase NMR and DFT structural study: a search for the best computational protocol.

    PubMed

    Nazarski, Ryszard B; Makulski, Włodzimierz

    2014-08-07

    Four tetramethyl compounds EMe4 (E = C, Si, Ge, and Pb) were studied by high-resolution NMR spectroscopy in gaseous and liquid states at 300 K. Extrapolation of experimental vapor-phase C-H J-couplings to a zero-pressure limit permitted determining the (1)J(0,CH)s in methyl groups of their nearly isolated molecules. Theoretical predictions of the latter NMR parameters were also performed in a locally dense basis sets/pseudopotential (Sn, Pb) approach, by applying a few DFT methods pre-selected in calculations of other gas-phase molecular properties of all these species and SnMe4 (bond lengths, C-H stretching IR vibrations). A very good agreement theory vs. experiment was achieved with some computational protocols for all five systems. The trends observed in their geometry and associated coupling constants ((1)J(CH)s, (2)J(HH)s) are discussed and rationalized in terms of the substituent-induced rehybridization of the methyl group (treated as a ligand) carbon, by using Bent's rule and the newly proposed, theoretically derived values of the Mulliken electronegativity (χ) of related atoms and groups. All these χ data for the Group-14/IVA entities were under a lot of controversy for a very long time. As a result, the recommended χ values are semi-experimentally confirmed for the first time and only a small correction is suggested for χ(Ge) and χ(GeMe3).

  19. Enteroscopy in the diagnosis and management of celiac disease.

    PubMed

    Rondonotti, Emanuele; Villa, Federica; Saladino, Valeria; de Franchis, Roberto

    2009-07-01

    Esophagogastroduodenoscopy (EGD) with 3 to 6 biopsies in the descending duodenum is the gold standard for the diagnosis of celiac disease. At the time of the first diagnosis of celiac disease, an extensive evaluation of the small bowel is not recommended. However, video capsule endoscopy, because of its good sensitivity and specificity in recognizing the Endoscopic features of celiac disease, can be considered a valid alternative to EGD in patients unable or unwilling to undergo EGD with biopsies. Capsule endoscopy is also a possible option in selected cases with strong suspicion of celiac disease but negative first-line tests. In evaluating patients with refractory or complicated celiac disease, in whom a complete evaluation of the small bowel is mandatory (at least in refractory celiac disease type II patients) because of the possible presence of complications beyond the reach of conventional endoscopes, both capsule endoscopy and balloon-assisted enteroscopy have been found to be helpful. In these patients, capsule endoscopy offers several advantages: it is well tolerated, it allows inspection of the entire small bowel, and it is able to recognize subtle mucosal changes. However, in this setting, capsule endoscopy should ideally be coupled with imaging techniques that provide important information about the thickness of the wall of the intestine and about extraluminal abnormalities. Although deep enteroscopy (such as balloon enteroscopy) is expensive, time-consuming, and potentially risky in these frail patients, they may have a key role, because they make it possible to take tissue samples from deep in the small intestine.

  20. Analysis of high-frequency oscillations in mutually-coupled nano-lasers.

    PubMed

    Han, Hong; Shore, K Alan

    2018-04-16

    The dynamics of mutually coupled nano-lasers has been analyzed using rate equations which include the Purcell cavity-enhanced spontaneous emission factor F and the spontaneous emission coupling factor β. It is shown that in the mutually-coupled system, small-amplitude oscillations with frequencies of order 100 GHz are generated and are maintained with remarkable stability. The appearance of such high-frequency oscillations is associated with the effective reduction of the carrier lifetime for larger values of the Purcell factor, F, and spontaneous coupling factor, β. In mutually-coupled nano-lasers the oscillation frequency changes linearly with the frequency detuning between the lasers. For non-identical bias currents, the oscillation frequency of mutually-coupled nano-lasers also increases with bias current. The stability of the oscillations which appear in mutually coupled nano-lasers offers opportunities for their practical applications and notably in photonic integrated circuits.

Top