Sample records for time step stability

  1. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    NASA Astrophysics Data System (ADS)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-09-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  2. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  3. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  4. The discriminant capabilities of stability measures, trunk kinematics, and step kinematics in classifying successful and failed compensatory stepping responses by young adults.

    PubMed

    Crenshaw, Jeremy R; Rosenblatt, Noah J; Hurt, Christopher P; Grabiner, Mark D

    2012-01-03

    This study evaluated the discriminant capability of stability measures, trunk kinematics, and step kinematics to classify successful and failed compensatory stepping responses. In addition, the shared variance between stability measures, step kinematics, and trunk kinematics is reported. The stability measures included the anteroposterior distance (d) between the body center of mass and the stepping limb toe, the margin of stability (MOS), as well as time-to-boundary considering velocity (TTB(v)), velocity and acceleration (TTB(a)), and MOS (TTB(MOS)). Kinematic measures included trunk flexion angle and angular velocity, step length, and the time after disturbance onset of recovery step completion. Fourteen young adults stood on a treadmill that delivered surface accelerations necessitating multiple forward compensatory steps. Thirteen subjects fell from an initial disturbance, but recovered from a second, identical disturbance. Trunk flexion velocity at completion of the first recovery step and trunk flexion angle at completion of the second step had the greatest overall classification of all measures (92.3%). TTB(v) and TTB(a) at completion of both steps had the greatest classification accuracy of all stability measures (80.8%). The length of the first recovery step (r ≤ 0.70) and trunk flexion angle at completion of the second recovery step (r ≤ -0.54) had the largest correlations with stability measures. Although TTB(v) and TTB(a) demonstrated somewhat smaller discriminant capabilities than trunk kinematics, the small correlations between these stability measures and trunk kinematics (|r| ≤ 0.52) suggest that they reflect two important, yet different, aspects of a compensatory stepping response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Validity of the Instrumented Push and Release Test to Quantify Postural Responses in Persons With Multiple Sclerosis.

    PubMed

    El-Gohary, Mahmoud; Peterson, Daniel; Gera, Geetanjali; Horak, Fay B; Huisinga, Jessie M

    2017-07-01

    To test the validity of wearable inertial sensors to provide objective measures of postural stepping responses to the push and release clinical test in people with multiple sclerosis. Cross-sectional study. University medical center balance disorder laboratory. Total sample N=73; persons with multiple sclerosis (PwMS) n=52; healthy controls n=21. Stepping latency, time and number of steps required to reach stability, and initial step length were calculated using 3 inertial measurement units placed on participants' lumbar spine and feet. Correlations between inertial sensor measures and measures obtained from the laboratory-based systems were moderate to strong and statistically significant for all variables: time to release (r=.992), latency (r=.655), time to stability (r=.847), time of first heel strike (r=.665), number of steps (r=.825), and first step length (r=.592). Compared with healthy controls, PwMS demonstrated a longer time to stability and required a larger number of steps to reach stability. The instrumented push and release test is a valid measure of postural responses in PwMS and could be used as a clinical outcome measures for patient care decisions or for clinical trials aimed at improving postural control in PwMS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Analysis of Time Filters in Multistep Methods

    NASA Astrophysics Data System (ADS)

    Hurl, Nicholas

    Geophysical ow simulations have evolved sophisticated implicit-explicit time stepping methods (based on fast-slow wave splittings) followed by time filters to control any unstable models that result. Time filters are modular and parallel. Their effect on stability of the overall process has been tested in numerous simulations, but never analyzed. Stability is proven herein for the Crank-Nicolson Leapfrog (CNLF) method with the Robert-Asselin (RA) time filter and for the Crank-Nicolson Leapfrog method with the Robert-Asselin-Williams (RAW) time filter for systems by energy methods. We derive an equivalent multistep method for CNLF+RA and CNLF+RAW and stability regions are obtained. The time step restriction for energy stability of CNLF+RA is smaller than CNLF and CNLF+RAW time step restriction is even smaller. Numerical tests find that RA and RAW add numerical dissipation. This thesis also shows that all modes of the Crank-Nicolson Leap Frog (CNLF) method are asymptotically stable under the standard timestep condition.

  7. A Crank–Nicolson Leapfrog stabilization: Unconditional stability and two applications

    DOE PAGES

    Jiang, Nan; Kubacki, Michaela; Layton, William; ...

    2014-12-09

    We propose and analyze a linear stabilization of the Crank-Nicolson Leapfrog (CNLF) method that removes all time step/CFL conditions for stability and controls the unstable mode. It also increases the SPD part of the linear system to be solved at each time step while increasing solution accuracy. We give a proof of unconditional stability of the method as well as a proof of unconditional, asymptotic stability of both the stable and unstable modes. As a result, we illustrate two applications of the method: uncoupling groundwater-surface water flows and Stokes flow plus a Coriolis term.

  8. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  9. Kinetic measures of restabilisation during volitional stepping reveal age-related alterations in the control of mediolateral dynamic stability.

    PubMed

    Singer, Jonathan C; McIlroy, William E; Prentice, Stephen D

    2014-11-07

    Research examining age-related changes in dynamic stability during stepping has recognised the importance of the restabilisation phase, subsequent to foot-contact. While regulation of the net ground reaction force (GRFnet) line of action is believed to influence dynamic stability during steady-state locomotion, such control during restabilisation remains unknown. This work explored the origins of age-related decline in mediolateral dynamic stability by examining the line of action of GRFnet relative to the centre of mass (COM) during restabilisation following voluntary stepping. Healthy younger and older adults (n=20 per group) performed three single-step tasks (varying speed and step placement), altering the challenge to stability control. Age-related differences in magnitude and intertrial variability of the angle of divergence of GRFnet line of action relative to the COM were quantified, along with the peak mediolateral and vertical GRFnet components. The angle of divergence was further examined at discrete points during restabilisation, to uncover events of potential importance to stability control. Older adults exhibited a reduced angle of divergence throughout restabilisation. Temporal and spatial constraints on stepping increased the magnitude and intertrial variability of the angle of divergence, although not differentially among the older adults. Analysis of the time-varying angle of divergence revealed age-related reductions in magnitude, with increases in timing and intertrial timing variability during the later phase of restabilisation. This work further supports the idea that age-related challenges in lateral stability control emerge during restabilisation. Age-related alterations during the later phase of restabilisation may signify challenges with reactive control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Independent influence of gait speed and step length on stability and fall risk.

    PubMed

    Espy, D D; Yang, F; Bhatt, T; Pai, Y-C

    2010-07-01

    With aging, individuals' gaits become slower and their steps shorter; both are thought to improve stability against balance threats. Recent studies have shown that shorter step lengths, which bring the center of mass (COM) closer to the leading foot, improve stability against slip-related falls. However, a slower gait, hence lower COM velocity, does the opposite. Due to the inherent coupling of step length and speed in spontaneous gait, the extent to which the benefit of shorter steps can offset the slower speed is unknown. The purpose of this study was to investigate, through decoupling, the independent effects of gait speed and step length on gait stability and the likelihood of slip-induced falls. Fifty-seven young adults walked at one of three target gait patterns, two of equal speed and two of equal step length; at a later trial, they encountered an unannounced slip. The results supported our hypotheses that faster gait as well as shorter steps each ameliorates fall risk when a slip is encountered. This appeared to be attributable to the maintenance of stability from slip initiation to liftoff of the recovery foot during the slip. Successful decoupling of gait speed from step length reveals for the first time that, although slow gait in itself leads to instability and falls (a one-standard-deviation decrease in gait speed increases the odds of fall by 4-fold), this effect is offset by the related decrease in step length (the same one-standard-deviation decrease in step length lowers fall risk by 6 times). Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A new theory for multistep discretizations of stiff ordinary differential equations: Stability with large step sizes

    NASA Technical Reports Server (NTRS)

    Majda, G.

    1985-01-01

    A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.

  12. Optimal subinterval selection approach for power system transient stability simulation

    DOE PAGES

    Kim, Soobae; Overbye, Thomas J.

    2015-10-21

    Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less

  13. Aging effect on step adjustments and stability control in visually perturbed gait initiation.

    PubMed

    Sun, Ruopeng; Cui, Chuyi; Shea, John B

    2017-10-01

    Gait adaptability is essential for fall avoidance during locomotion. It requires the ability to rapidly inhibit original motor planning, select and execute alternative motor commands, while also maintaining the stability of locomotion. This study investigated the aging effect on gait adaptability and dynamic stability control during a visually perturbed gait initiation task. A novel approach was used such that the anticipatory postural adjustment (APA) during gait initiation were used to trigger the unpredictable relocation of a foot-size stepping target. Participants (10 young adults and 10 older adults) completed visually perturbed gait initiation in three adjustment timing conditions (early, intermediate, late; all extracted from the stereotypical APA pattern) and two adjustment direction conditions (medial, lateral). Stepping accuracy, foot rotation at landing, and Margin of Dynamic Stability (MDS) were analyzed and compared across test conditions and groups using a linear mixed model. Stepping accuracy decreased as a function of adjustment timing as well as stepping direction, with older subjects exhibited a significantly greater undershoot in foot placement to late lateral stepping. Late adjustment also elicited a reaching-like movement (i.e. foot rotation prior to landing in order to step on the target), regardless of stepping direction. MDS measures in the medial-lateral and anterior-posterior direction revealed both young and older adults exhibited reduced stability in the adjustment step and subsequent steps. However, young adults returned to stable gait faster than older adults. These findings could be useful for future study of screening deficits in gait adaptability and preventing falls. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Elderly Fallers Enhance Dynamic Stability Through Anticipatory Postural Adjustments during a Choice Stepping Reaction Time

    PubMed Central

    Tisserand, Romain; Robert, Thomas; Chabaud, Pascal; Bonnefoy, Marc; Chèze, Laurence

    2016-01-01

    In the case of disequilibrium, the capacity to step quickly is critical to avoid falling in elderly. This capacity can be simply assessed through the choice stepping reaction time test (CSRT), where elderly fallers (F) take longer to step than elderly non-fallers (NF). However, the reasons why elderly F elongate their stepping time remain unclear. The purpose of this study is to assess the characteristics of anticipated postural adjustments (APA) that elderly F develop in a stepping context and their consequences on the dynamic stability. Forty-four community-dwelling elderly subjects (20 F and 24 NF) performed a CSRT where kinematics and ground reaction forces were collected. Variables were analyzed using two-way repeated measures ANOVAs. Results for F compared to NF showed that stepping time is elongated, due to a longer APA phase. During APA, they seem to use two distinct balance strategies, depending on the axis: in the anteroposterior direction, we measured a smaller backward movement and slower peak velocity of the center of pressure (CoP); in the mediolateral direction, the CoP movement was similar in amplitude and peak velocity between groups but lasted longer. The biomechanical consequence of both strategies was an increased margin of stability (MoS) at foot-off, in the respective direction. By elongating their APA, elderly F use a safer balance strategy that prioritizes dynamic stability conditions instead of the objective of the task. Such a choice in balance strategy probably comes from muscular limitations and/or a higher fear of falling and paradoxically indicates an increased risk of fall. PMID:27965561

  15. High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.

    2014-01-01

    This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.

  16. Carrier-envelope phase stabilization with sub-10 as residual timing jitter.

    PubMed

    Borchers, B; Koke, S; Husakou, A; Herrmann, J; Steinmeyer, G

    2011-11-01

    We demonstrate carrier-envelope phase (CEP) stabilization of a mode-locked Ti:sapphire oscillator with unprecedented timing jitter of eight attoseconds. The stabilization performance is obtained by a combination of two different stabilization approaches. In a first step the drift of the CEP is stabilized with a conventional feedback loop by means of controlling the oscillator pump power with an acousto-optic modulator (AOM). In a second step we utilize a recently developed feed-forward type stabilization scheme which has a much higher control bandwith. Here an acousto-optic frequency shifter (AOFS) produces the stabilized output in the first diffraction order. Moreover, we present numerical results on the optimization of the length of the photonic crystal fiber, which is used to generate an octave-spanning spectrum, in order to optimize the sensitivity in the f-to-2f interferometers.

  17. Fine Pointing of Military Spacecraft

    DTIC Science & Technology

    2007-03-01

    estimate is high. But feedback controls are attempting to fix the attitude at the next time step with error based on the previous time step without using ...52 a. Stability Analysis Consider not using the reference trajectory in the feedback signal. The previous stability proof (Refs.[43],[46]) are no... robust steering law and quaternion feedback control [52]. TASS2 has center-of-gravity offset disturbance that must be countered by the three CMG

  18. Implicit time accurate simulation of unsteady flow

    NASA Astrophysics Data System (ADS)

    van Buuren, René; Kuerten, Hans; Geurts, Bernard J.

    2001-03-01

    Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright

  19. Stability with large step sizes for multistep discretizations of stiff ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Majda, George

    1986-01-01

    One-leg and multistep discretizations of variable-coefficient linear systems of ODEs having both slow and fast time scales are investigated analytically. The stability properties of these discretizations are obtained independent of ODE stiffness and compared. The results of numerical computations are presented in tables, and it is shown that for large step sizes the stability of one-leg methods is better than that of the corresponding linear multistep methods.

  20. CAN STABILITY REALLY PREDICT AN IMPENDING SLIP-RELATED FALL AMONG OLDER ADULTS?

    PubMed Central

    Yang, Feng; Pai, Yi-Chung

    2015-01-01

    The primary purpose of this study was to systematically evaluate and compare the predictive power of falls for a battery of stability indices, obtained during normal walking among community-dwelling older adults. One hundred and eighty seven community-dwelling older adults participated in the study. After walking regularly for 20 strides on a walkway, participants were subjected to an unannounced slip during gait under the protection of a safety harness. Full body kinematics and kinetics were monitored during walking using a motion capture system synchronized with force plates. Stability variables, including feasible-stability-region measurement, margin of stability, the maximum Floquet multiplier, the Lyapunov exponents (short- and long-term), and the variability of gait parameters (including the step length, step width, and step time) were calculated for each subject. Accuracy of predicting slip outcome (fall vs. recovery) was examined for each stability variable using logistic regression. Results showed that the feasible-stability-region measurement predicted fall incidence among these subjects with the highest accuracy (68.4%). Except for the step width (with an accuracy of 60.2%), no other stability variables could differentiate fallers from those who did not fall for the sample studied in this study. The findings from the present study could provide guidance to identify individuals at increased risk of falling using the feasible-stability-region measurement or variability of the step width. PMID:25458148

  1. Long-term Outcomes After Stepping Down Asthma Controller Medications: A Claims-Based, Time-to-Event Analysis.

    PubMed

    Rank, Matthew A; Johnson, Ryan; Branda, Megan; Herrin, Jeph; van Houten, Holly; Gionfriddo, Michael R; Shah, Nilay D

    2015-09-01

    Long-term outcomes after stepping down asthma medications are not well described. This study was a retrospective time-to-event analysis of individuals diagnosed with asthma who stepped down their asthma controller medications using a US claims database spanning 2000 to 2012. Four-month intervals were established and a step-down event was defined by a ≥ 50% decrease in days-supplied of controller medications from one interval to the next; this definition is inclusive of step-down that occurred without health-care provider guidance or as a consequence of a medication adherence lapse. Asthma stability in the period prior to step-down was defined by not having an asthma exacerbation (inpatient visit, ED visit, or dispensing of a systemic corticosteroid linked to an asthma visit) and having fewer than two rescue inhaler claims in a 4-month period. The primary outcome in the period following step-down was time-to-first asthma exacerbation. Thirty-two percent of the 26,292 included individuals had an asthma exacerbation in the 24-month period following step-down of asthma controller medication, though only 7% had an ED visit or hospitalization for asthma. The length of asthma stability prior to stepping down asthma medication was strongly associated with the risk of an asthma exacerbation in the subsequent 24-month period: < 4 months' stability, 44%; 4 to 7 months, 34%; 8 to 11 months, 30%; and ≥ 12 months, 21% (P < .001). In a large, claims-based, real-world study setting, 32% of individuals have an asthma exacerbation in the 2 years following a step-down event.

  2. Determining postural stability

    NASA Technical Reports Server (NTRS)

    Forth, Katharine E. (Inventor); Paloski, William H. (Inventor); Lieberman, Erez (Inventor)

    2011-01-01

    A method for determining postural stability of a person can include acquiring a plurality of pressure data points over a period of time from at least one pressure sensor. The method can also include the step of identifying a postural state for each pressure data point to generate a plurality of postural states. The method can include the step of determining a postural state of the person at a point in time based on at least the plurality of postural states.

  3. Large time-step stability of explicit one-dimensional advection schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    There is a wide-spread belief that most explicit one-dimensional advection schemes need to satisfy the so-called 'CFL condition' - that the Courant number, c = udelta(t)/delta(x), must be less than or equal to one, for stability in the von Neumann sense. This puts severe limitations on the time-step in high-speed, fine-grid calculations and is an impetus for the development of implicit schemes, which often require less restrictive time-step conditions for stability, but are more expensive per time-step. However, it turns out that, at least in one dimension, if explicit schemes are formulated in a consistent flux-based conservative finite-volume form, von Neumann stability analysis does not place any restriction on the allowable Courant number. Any explicit scheme that is stable for c is less than 1, with a complex amplitude ratio, G(c), can be easily extended to arbitrarily large c. The complex amplitude ratio is then given by exp(- (Iota)(Nu)(Theta)) G(delta(c)), where N is the integer part of c, and delta(c) = c - N (less than 1); this is clearly stable. The CFL condition is, in fact, not a stability condition at all, but, rather, a 'range restriction' on the 'pieces' in a piece-wise polynomial interpolation. When a global view is taken of the interpolation, the need for a CFL condition evaporates. A number of well-known explicit advection schemes are considered and thus extended to large delta(t). The analysis also includes a simple interpretation of (large delta(t)) total-variation-diminishing (TVD) constraints.

  4. Stability of discrete time recurrent neural networks and nonlinear optimization problems.

    PubMed

    Singh, Jayant; Barabanov, Nikita

    2016-02-01

    We consider the method of Reduction of Dissipativity Domain to prove global Lyapunov stability of Discrete Time Recurrent Neural Networks. The standard and advanced criteria for Absolute Stability of these essentially nonlinear systems produce rather weak results. The method mentioned above is proved to be more powerful. It involves a multi-step procedure with maximization of special nonconvex functions over polytopes on every step. We derive conditions which guarantee an existence of at most one point of local maximum for such functions over every hyperplane. This nontrivial result is valid for wide range of neuron transfer functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Identification of the period of stability in a balance test after stepping up using a simplified cumulative sum.

    PubMed

    Safieddine, Doha; Chkeir, Aly; Herlem, Cyrille; Bera, Delphine; Collart, Michèle; Novella, Jean-Luc; Dramé, Moustapha; Hewson, David J; Duchêne, Jacques

    2017-11-01

    Falls are a major cause of death in older people. One method used to predict falls is analysis of Centre of Pressure (CoP) displacement, which provides a measure of balance quality. The Balance Quality Tester (BQT) is a device based on a commercial bathroom scale that calculates instantaneous values of vertical ground reaction force (Fz) as well as the CoP in both anteroposterior (AP) and mediolateral (ML) directions. The entire testing process needs to take no longer than 12 s to ensure subject compliance, making it vital that calculations related to balance are only calculated for the period when the subject is static. In the present study, a method is presented to detect the stabilization period after a subject has stepped onto the BQT. Four different phases of the test are identified (stepping-on, stabilization, balancing, stepping-off), ensuring that subjects are static when parameters from the balancing phase are calculated. The method, based on a simplified cumulative sum (CUSUM) algorithm, could detect the change between unstable and stable stance. The time taken to stabilize significantly affected the static balance variables of surface area and trajectory velocity, and was also related to Timed-up-and-Go performance. Such a finding suggests that the time to stabilize could be a worthwhile parameter to explore as a potential indicator of balance problems and fall risk in older people. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Matinelli, L.

    1994-01-01

    The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.

  7. Formulation of an explicit-multiple-time-step time integration method for use in a global primitive equation grid model

    NASA Technical Reports Server (NTRS)

    Chao, W. C.

    1982-01-01

    With appropriate modifications, a recently proposed explicit-multiple-time-step scheme (EMTSS) is incorporated into the UCLA model. In this scheme, the linearized terms in the governing equations that generate the gravity waves are split into different vertical modes. Each mode is integrated with an optimal time step, and at periodic intervals these modes are recombined. The other terms are integrated with a time step dictated by the CFL condition for low-frequency waves. This large time step requires a special modification of the advective terms in the polar region to maintain stability. Test runs for 72 h show that EMTSS is a stable, efficient and accurate scheme.

  8. On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerkin discretizations

    NASA Astrophysics Data System (ADS)

    Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin

    2017-12-01

    The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.

  9. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Martinelli, L.

    1991-01-01

    The system of equations consisting of the full Navier-Stokes equations and two turbulence equations was solved for in the steady state using a multigrid strategy on unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time stepping scheme with a stability bound local time step, while the turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positively. Low Reynolds number modifications to the original two equation model are incorporated in a manner which results in well behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved for, initializing all quantities with uniform freestream values, and resulting in rapid and uniform convergence rates for the flow and turbulence equations.

  10. A stabilized Runge–Kutta–Legendre method for explicit super-time-stepping of parabolic and mixed equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-15

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge–Kutta-like time-steps to advance the parabolic terms by a time-step that is s{sup 2} times larger than amore » single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge–Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems – a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.« less

  11. A stabilized Runge-Kutta-Legendre method for explicit super-time-stepping of parabolic and mixed equations

    NASA Astrophysics Data System (ADS)

    Meyer, Chad D.; Balsara, Dinshaw S.; Aslam, Tariq D.

    2014-01-01

    Parabolic partial differential equations appear in several physical problems, including problems that have a dominant hyperbolic part coupled to a sub-dominant parabolic component. Explicit methods for their solution are easy to implement but have very restrictive time step constraints. Implicit solution methods can be unconditionally stable but have the disadvantage of being computationally costly or difficult to implement. Super-time-stepping methods for treating parabolic terms in mixed type partial differential equations occupy an intermediate position. In such methods each superstep takes “s” explicit Runge-Kutta-like time-steps to advance the parabolic terms by a time-step that is s2 times larger than a single explicit time-step. The expanded stability is usually obtained by mapping the short recursion relation of the explicit Runge-Kutta scheme to the recursion relation of some well-known, stable polynomial. Prior work has built temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Chebyshev polynomials. Since their stability is based on the boundedness of the Chebyshev polynomials, these methods have been called RKC1 and RKC2. In this work we build temporally first- and second-order accurate super-time-stepping methods around the recursion relation associated with Legendre polynomials. We call these methods RKL1 and RKL2. The RKL1 method is first-order accurate in time; the RKL2 method is second-order accurate in time. We verify that the newly-designed RKL1 and RKL2 schemes have a very desirable monotonicity preserving property for one-dimensional problems - a solution that is monotone at the beginning of a time step retains that property at the end of that time step. It is shown that RKL1 and RKL2 methods are stable for all values of the diffusion coefficient up to the maximum value. We call this a convex monotonicity preserving property and show by examples that it is very useful in parabolic problems with variable diffusion coefficients. This includes variable coefficient parabolic equations that might give rise to skew symmetric terms. The RKC1 and RKC2 schemes do not share this convex monotonicity preserving property. One-dimensional and two-dimensional von Neumann stability analyses of RKC1, RKC2, RKL1 and RKL2 are also presented, showing that the latter two have some advantages. The paper includes several details to facilitate implementation. A detailed accuracy analysis is presented to show that the methods reach their design accuracies. A stringent set of test problems is also presented. To demonstrate the robustness and versatility of our methods, we show their successful operation on problems involving linear and non-linear heat conduction and viscosity, resistive magnetohydrodynamics, ambipolar diffusion dominated magnetohydrodynamics, level set methods and flux limited radiation diffusion. In a prior paper (Meyer, Balsara and Aslam 2012 [36]) we have also presented an extensive test-suite showing that the RKL2 method works robustly in the presence of shocks in an anisotropically conducting, magnetized plasma.

  12. Quantization improves stabilization of dynamical systems with delayed feedback

    NASA Astrophysics Data System (ADS)

    Stepan, Gabor; Milton, John G.; Insperger, Tamas

    2017-11-01

    We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.

  13. Continuous uniformly finite time exact disturbance observer based control for fixed-time stabilization of nonlinear systems with mismatched disturbances

    PubMed Central

    Liu, Chongxin; Liu, Hang

    2017-01-01

    This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966

  14. Stability of numerical integration techniques for transient rotor dynamics

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1977-01-01

    A finite element model of a rotor bearing system was analyzed to determine the stability limits of the forward, backward, and centered Euler; Runge-Kutta; Milne; and Adams numerical integration techniques. The analysis concludes that the highest frequency mode determines the maximum time step for a stable solution. Thus, the number of mass elements should be minimized. Increasing the damping can sometimes cause numerical instability. For a uniform shaft, with 10 mass elements, operating at approximately the first critical speed, the maximum time step for the Runge-Kutta, Milne, and Adams methods is that which corresponds to approximately 1 degree of shaft movement. This is independent of rotor dimensions.

  15. Organic solar cells: evaluation of the stability of P3HT using time-delayed degradation

    NASA Astrophysics Data System (ADS)

    Poh, Chung-How; Poh, Chung-Kiak; Bryant, Glenn; Belcher, Warwick; Dastoor, Paul

    2011-12-01

    Despite the fact that the performance of organic solar cells is generally susceptible to degradation by moisture exposure, there has been suggestion that the photoactive layer (P3HT) is surprisingly resilient. This work attempts to confirm the stability of P3HT as an organic solar cell material by deliberately introducing water into the photoactive layer. A dramatic step drop in device performance during cell characterization is observed approximately one day after the device has been fabricated. The time-delayed step drop in output efficiency strongly suggests that moisture has little effect on the P3HT conducting polymer.

  16. One-step formation of multiple Pickering emulsions stabilized by self-assembled poly(dodecyl acrylate-co-acrylic acid) nanoparticles.

    PubMed

    Zhu, Ye; Sun, Jianhua; Yi, Chenglin; Wei, Wei; Liu, Xiaoya

    2016-09-13

    In this study, a one-step generation of stable multiple Pickering emulsions using pH-responsive polymeric nanoparticles as the only emulsifier was reported. The polymeric nanoparticles were self-assembled from an amphiphilic random copolymer poly(dodecyl acrylate-co-acrylic acid) (PDAA), and the effect of the copolymer content on the size and morphology of PDAA nanoparticles was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The emulsification study of PDAA nanoparticles revealed that multiple Pickering emulsions could be generated through a one-step phase inversion process by using PDAA nanoparticles as the stabilizer. Moreover, the emulsification performance of PDAA nanoparticles at different pH values demonstrated that multiple emulsions with long-time stability could only be stabilized by PDAA nanoparticles at pH 5.5, indicating that the surface wettability of PDAA nanoparticles plays a crucial role in determining the type and stability of the prepared Pickering emulsions. Additionally, the polarity of oil does not affect the emulsification performance of PDAA nanoparticles, and a wide range of oils could be used as the oil phase to prepare multiple emulsions. These results demonstrated that multiple Pickering emulsions could be generated via the one-step emulsification process using self-assembled polymeric nanoparticles as the stabilizer, and the prepared multiple emulsions have promising potential to be applied in the cosmetic, medical, and food industries.

  17. Control of mediolateral stability during rapid step initiation with preferred and non-preferred leg: is it symmetrical?

    PubMed

    Yiou, E; Do, M C

    2010-05-01

    During voluntary stepping initiation, postural stability along the mediolateral direction is controlled via "anticipatory postural adjustment" (APA). This study tested the hypothesis that, in young healthy subjects, the biomechanical features of mediolateral APA depend on the leg that initiates stepping. Subjects (N=10) initiated a rapid single step with the preferred (P condition) and the non-preferred leg (NP condition) on a force-plate. Results showed that mediolateral APA duration (P=0.020) and amplitude were higher (as attested by the increase in maximal center-of-gravity velocity (P=0.003) and displacement (P<0.001) during APA), and that mediolateral stability was better (as attested by the attenuation in center-of-gravity velocity at time of swing-foot contact (P=0.007)) in P than in NP. These results support the view that stepping initiation in healthy subjects involves postural asymmetry. This statement may have relevant implications in clinical evaluation where postural asymmetry is generally considered as reflecting postural impairment. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Scalable explicit implementation of anisotropic diffusion with Runge-Kutta-Legendre super-time stepping

    NASA Astrophysics Data System (ADS)

    Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca

    2017-12-01

    An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.

  19. An in-depth stability analysis of nonuniform FDTD combined with novel local implicitization techniques

    NASA Astrophysics Data System (ADS)

    Van Londersele, Arne; De Zutter, Daniël; Vande Ginste, Dries

    2017-08-01

    This work focuses on efficient full-wave solutions of multiscale electromagnetic problems in the time domain. Three local implicitization techniques are proposed and carefully analyzed in order to relax the traditional time step limit of the Finite-Difference Time-Domain (FDTD) method on a nonuniform, staggered, tensor product grid: Newmark, Crank-Nicolson (CN) and Alternating-Direction-Implicit (ADI) implicitization. All of them are applied in preferable directions, alike Hybrid Implicit-Explicit (HIE) methods, as to limit the rank of the sparse linear systems. Both exponential and linear stability are rigorously investigated for arbitrary grid spacings and arbitrary inhomogeneous, possibly lossy, isotropic media. Numerical examples confirm the conservation of energy inside a cavity for a million iterations if the time step is chosen below the proposed, relaxed limit. Apart from the theoretical contributions, new accomplishments such as the development of the leapfrog Alternating-Direction-Hybrid-Implicit-Explicit (ADHIE) FDTD method and a less stringent Courant-like time step limit for the conventional, fully explicit FDTD method on a nonuniform grid, have immediate practical applications.

  20. Age-related changes in compensatory stepping in response to unpredictable perturbations.

    PubMed

    McIlroy, W E; Maki, B E

    1996-11-01

    Recent studies highlight the importance of compensatory stepping to preserve stability, and the spatial and temporal demands placed on the control of this reaction. Age-related changes in the control of stepping could greatly influence the risk of falling. The present study compares, in healthy elderly and young adults, the characteristics of compensatory stepping responses to unpredictable postural perturbations. A moving platform was used to unpredictably perturb the upright stance of 14 naive, active and mobile subjects (5 aged 22 to 28 and 9 aged 65 to 81). The first 10 randomized trials (5 forward and 5 backward) were evaluated to allow a focus on reactions to relatively novel perturbations. The behavior of the subjects was not constrained. Forceplate and kinematic measures were used to evaluate the responses evoked by the brief (600 msec) platform translation. Subjects stepped in 98% of the trials. Although the elderly were less likely to execute a lateral anticipatory postural adjustment prior to foot-lift, the onset of swing-leg unloading tended to begin at the same time in the two age groups. There was remarkable similarity between the young and elderly in many other characteristics of the first step of the response. In spite of this similarity, the elderly subjects were twice as likely to take additional steps to regain stability (63% of trials for elderly). Moreover, in elderly subjects, the additional steps were often directed so as to preserve lateral stability, whereas the young rarely showed this tendency. Given the functional significance of base-of-support changes as a strategy for preserving stability and the age-related differences presently revealed, assessment of the capacity to preserve stability against unpredictable perturbation, and specific measures such as the occurrence or placement of multiple steps, may prove to be a significant predictor of falling risk and an important outcome in evaluating or developing intervention strategies to prevent falls.

  1. Enabling fast, stable and accurate peridynamic computations using multi-time-step integration

    DOE PAGES

    Lindsay, P.; Parks, M. L.; Prakash, A.

    2016-04-13

    Peridynamics is a nonlocal extension of classical continuum mechanics that is well-suited for solving problems with discontinuities such as cracks. This paper extends the peridynamic formulation to decompose a problem domain into a number of smaller overlapping subdomains and to enable the use of different time steps in different subdomains. This approach allows regions of interest to be isolated and solved at a small time step for increased accuracy while the rest of the problem domain can be solved at a larger time step for greater computational efficiency. Lastly, performance of the proposed method in terms of stability, accuracy, andmore » computational cost is examined and several numerical examples are presented to corroborate the findings.« less

  2. Discrete-time stability of continuous-time controller designs for large space structures

    NASA Technical Reports Server (NTRS)

    Balas, M. J.

    1982-01-01

    In most of the stable control designs for flexible structures, continuous time is assumed. However, in view of the implementation of the controllers by on-line digital computers, the discrete-time stability of such controllers is an important consideration. In the case of direct-velocity feedback (DVFB), involving negative feedback from collocated force actuators and velocity sensors, it is not immediately apparent how much delay due to digital implementation of DVFB can be tolerated without loss of stability. The present investigation is concerned with such questions. A study is conducted of the discrete-time stability of DVFB, taking into account an employment of Euler's method of approximation of the time derivative. The obtained result gives an indication of the acceptable time-step size for stable digital implementation of DVFB. A result derived in connection with the consideration of the discrete-time stability of stable continuous-time systems provides a general condition under which digital implementation of such a system will remain stable.

  3. Stable and verifiable state estimation methods and systems with spacecraft applications

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor)

    2001-01-01

    The stability of a recursive estimator process (e.g., a Kalman filter is assured for long time periods by periodically resetting an error covariance P(t.sub.n) of the system to a predetermined reset value P.sub.r. The recursive process is thus repetitively forced to start from a selected covariance and continue for a time period that is short compared to the system's total operational time period. The time period in which the process must maintain its numerical stability is significantly reduced as is the demand on the system's numerical stability. The process stability for an extended operational time period T.sub.o is verified by performing the resetting step at the end of at least one reset time period T.sub.r whose duration is less than the operational time period T.sub.o and then confirming stability of the process over the reset time period T.sub.r. Because the recursive process starts from a selected covariance at the beginning of each reset time period T.sub.r, confirming stability of the process over at least one reset time period substantially confirms stability over the longer operational time period T.sub.o.

  4. Efficient variable time-stepping scheme for intense field-atom interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, C.; Kosloff, R.

    1993-03-01

    The recently developed Residuum method [Tal-Ezer, Kosloff, and Cerjan, J. Comput. Phys. 100, 179 (1992)], a Krylov subspace technique with variable time-step integration for the solution of the time-dependent Schroedinger equation, is applied to the frequently used soft Coulomb potential in an intense laser field. This one-dimensional potential has asymptotic Coulomb dependence with a softened'' singularity at the origin; thus it models more realistic phenomena. Two of the more important quantities usually calculated in this idealized system are the photoelectron and harmonic photon generation spectra. These quantities are shown to be sensitive to the choice of a numerical integration scheme:more » some spectral features are incorrectly calculated or missing altogether. Furthermore, the Residuum method allows much larger grid spacings for equivalent or higher accuracy in addition to the advantages of variable time stepping. Finally, it is demonstrated that enhanced high-order harmonic generation accompanies intense field stabilization and that preparation of the atom in an intermediate Rydberg state leads to stabilization at much lower laser intensity.« less

  5. Statistical process control as a tool for controlling operating room performance: retrospective analysis and benchmarking.

    PubMed

    Chen, Tsung-Tai; Chang, Yun-Jau; Ku, Shei-Ling; Chung, Kuo-Piao

    2010-10-01

    There is much research using statistical process control (SPC) to monitor surgical performance, including comparisons among groups to detect small process shifts, but few of these studies have included a stabilization process. This study aimed to analyse the performance of surgeons in operating room (OR) and set a benchmark by SPC after stabilized process. The OR profile of 499 patients who underwent laparoscopic cholecystectomy performed by 16 surgeons at a tertiary hospital in Taiwan during 2005 and 2006 were recorded. SPC was applied to analyse operative and non-operative times using the following five steps: first, the times were divided into two segments; second, they were normalized; third, they were evaluated as individual processes; fourth, the ARL(0) was calculated;, and fifth, the different groups (surgeons) were compared. Outliers were excluded to ensure stability for each group and to facilitate inter-group comparison. The results showed that in the stabilized process, only one surgeon exhibited a significantly shorter total process time (including operative time and non-operative time). In this study, we use five steps to demonstrate how to control surgical and non-surgical time in phase I. There are some measures that can be taken to prevent skew and instability in the process. Also, using SPC, one surgeon can be shown to be a real benchmark. © 2010 Blackwell Publishing Ltd.

  6. Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Sabari, S.; Murali, R.

    2018-05-01

    We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.

  7. Experimental study on the stability and failure of individual step-pool

    NASA Astrophysics Data System (ADS)

    Zhang, Chendi; Xu, Mengzhen; Hassan, Marwan A.; Chartrand, Shawn M.; Wang, Zhaoyin

    2018-06-01

    Step-pools are one of the most common bedforms in mountain streams, the stability and failure of which play a significant role for riverbed stability and fluvial processes. Given this importance, flume experiments were performed with a manually constructed step-pool model. The experiments were carried out with a constant flow rate to study features of step-pool stability as well as failure mechanisms. The results demonstrate that motion of the keystone grain (KS) caused 90% of the total failure events. The pool reached its maximum depth and either exhibited relative stability for a period before step failure, which was called the stable phase, or the pool collapsed before its full development. The critical scour depth for the pool increased linearly with discharge until the trend was interrupted by step failure. Variability of the stable phase duration ranged by one order of magnitude, whereas variability of pool scour depth was constrained within 50%. Step adjustment was detected in almost all of the runs with step-pool failure and was one or two orders smaller than the diameter of the step stones. Two discharge regimes for step-pool failure were revealed: one regime captures threshold conditions and frames possible step-pool failure, whereas the second regime captures step-pool failure conditions and is the discharge of an exceptional event. In the transitional stage between the two discharge regimes, pool and step adjustment magnitude displayed relatively large variabilities, which resulted in feedbacks that extended the duration of step-pool stability. Step adjustment, which was a type of structural deformation, increased significantly before step failure. As a result, we consider step deformation as the direct explanation to step-pool failure rather than pool scour, which displayed relative stability during step deformations in our experiments.

  8. Output power stability of a HCN laser using a stepping motor for the EAST interferometer system

    NASA Astrophysics Data System (ADS)

    Zhang, J. B.; Wei, X. C.; Liu, H. Q.; Shen, J. J.; Zeng, L.; Jie, Y. X.

    2015-11-01

    The HCN laser on EAST is a continuous wave glow discharge laser with 3.4 m cavity length and 120 mW power output at 337 μ m wavelength. Without a temperature-controlled system, the cavity length of the laser is very sensitive to the environmental temperature. An external power feedback control system is applied on the HCN laser to stabilize the laser output power. The feedback system is composed of a stepping motor, a PLC, a supervisory computer, and the corresponding control program. One step distance of the stepping motor is 1 μ m and the time response is 0.5 s. Based on the power feedback control system, a stable discharge for the HCN laser is obtained more than eight hours, which satisfies the EAST experiment.

  9. Temporary Stabilization with External Fixator in 'Tripolar' Configuration in Two Steps Treatment of Tibial Pilon Fractures.

    PubMed

    Daghino, Walter; Messina, Marco; Filipponi, Marco; Alessandro, Massè

    2016-01-01

    The tibial pilon fractures represent a complex therapeutic problem for the orthopedic surgeon, given the frequent complications and outcomes disabling. The recent medical literature indicates that the best strategy to reduce amount of complications in tibial pilon fractures is two-stages procedure. We describe our experience in the primary stabilization of these fractures. We treated 36 cases with temporary external fixation in a simple configuration, called "tripolar": this is an essential structure (only three screws and three rods), that is possible to perform even without the availability of X-rays and with simple anesthesia or sedation. We found a sufficient mechanical stability for the nursing post-operative, in absence of intraoperative and postoperative problems. The time between trauma and temporary stabilization ranged between 3 and 144 hours; surgical average time was 8.4 minutes. Definitive treatment was carried out with a delay of a minimum of 4 and a maximum of 15 days from the temporary stabilization, always without problems, both in case of ORIF (open reduction, internal fixation) or circular external fixation. Temporary stabilization with external fixator in 'tripolar' configuration seems to be the most effective strategy in two steps treatment of tibial pilon fractures. These preliminary encouraging results must be confirmed by further studies with more cases.

  10. A linear stability analysis for nonlinear, grey, thermal radiative transfer problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan B., E-mail: wollaber@lanl.go; Larsen, Edward W., E-mail: edlarsen@umich.ed

    2011-02-20

    We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used 'Implicit Monte Carlo' (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or 'Semi-Analog Monte Carlo' (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if {alpha}, the IMC time-discretization parameter, satisfies 0.5 < {alpha} {<=} 1. This is consistent with conventional wisdom. However, wemore » also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.« less

  11. A linear stability analysis for nonlinear, grey, thermal radiative transfer problems

    NASA Astrophysics Data System (ADS)

    Wollaber, Allan B.; Larsen, Edward W.

    2011-02-01

    We present a new linear stability analysis of three time discretizations and Monte Carlo interpretations of the nonlinear, grey thermal radiative transfer (TRT) equations: the widely used “Implicit Monte Carlo” (IMC) equations, the Carter Forest (CF) equations, and the Ahrens-Larsen or “Semi-Analog Monte Carlo” (SMC) equations. Using a spatial Fourier analysis of the 1-D Implicit Monte Carlo (IMC) equations that are linearized about an equilibrium solution, we show that the IMC equations are unconditionally stable (undamped perturbations do not exist) if α, the IMC time-discretization parameter, satisfies 0.5 < α ⩽ 1. This is consistent with conventional wisdom. However, we also show that for sufficiently large time steps, unphysical damped oscillations can exist that correspond to the lowest-frequency Fourier modes. After numerically confirming this result, we develop a method to assess the stability of any time discretization of the 0-D, nonlinear, grey, thermal radiative transfer problem. Subsequent analyses of the CF and SMC methods then demonstrate that the CF method is unconditionally stable and monotonic, but the SMC method is conditionally stable and permits unphysical oscillatory solutions that can prevent it from reaching equilibrium. This stability theory provides new conditions on the time step to guarantee monotonicity of the IMC solution, although they are likely too conservative to be used in practice. Theoretical predictions are tested and confirmed with numerical experiments.

  12. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  13. Step-Down Test Assessment of Postural Stability in Patients With Chronic Ankle Instability.

    PubMed

    Bolt, Doris; Giger, René; Wirth, Stefan; Swanenburg, Jaap

    2018-01-23

    The underlying mechanism in 27% of ankle sprains is a fall while navigating stairs. Therefore, the step-down test (SDT) may be useful to investigate dynamic postural stability deficits in individuals with chronic ankle instability (CAI). To investigate the test-retest reliability and validity of the forward and lateral SDT protocol between individuals with CAI and uninjured controls. Test-retest study. University hospital. A total of 46  individuals, 23 with CAI and 23 uninjured controls. Time to stabilization of the forward and lateral SDT. The absolute reliability (SEM = 0.04-0.12 s; SDD = 0.11-0.33 s) of the SDT protocol was acceptable, whereas the relative reliability (ICC 3 , k = 0.12-0.63) and discriminant validity (P = .42-.99; AUC = 0.50-0.57) were not. The SDT appears to not be challenging enough to detect dynamic postural stability differences between individuals with and without CAI. However, the SDT may be capable of measuring change over time based on its good absolute reliability.

  14. Asynchronous variational integration using continuous assumed gradient elements.

    PubMed

    Wolff, Sebastian; Bucher, Christian

    2013-03-01

    Asynchronous variational integration (AVI) is a tool which improves the numerical efficiency of explicit time stepping schemes when applied to finite element meshes with local spatial refinement. This is achieved by associating an individual time step length to each spatial domain. Furthermore, long-term stability is ensured by its variational structure. This article presents AVI in the context of finite elements based on a weakened weak form (W2) Liu (2009) [1], exemplified by continuous assumed gradient elements Wolff and Bucher (2011) [2]. The article presents the main ideas of the modified AVI, gives implementation notes and a recipe for estimating the critical time step.

  15. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  16. Stability analysis of Eulerian-Lagrangian methods for the one-dimensional shallow-water equations

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1990-01-01

    In this paper stability and error analyses are discussed for some finite difference methods when applied to the one-dimensional shallow-water equations. Two finite difference formulations, which are based on a combined Eulerian-Lagrangian approach, are discussed. In the first part of this paper the results of numerical analyses for an explicit Eulerian-Lagrangian method (ELM) have shown that the method is unconditionally stable. This method, which is a generalized fixed grid method of characteristics, covers the Courant-Isaacson-Rees method as a special case. Some artificial viscosity is introduced by this scheme. However, because the method is unconditionally stable, the artificial viscosity can be brought under control either by reducing the spatial increment or by increasing the size of time step. The second part of the paper discusses a class of semi-implicit finite difference methods for the one-dimensional shallow-water equations. This method, when the Eulerian-Lagrangian approach is used for the convective terms, is also unconditionally stable and highly accurate for small space increments or large time steps. The semi-implicit methods seem to be more computationally efficient than the explicit ELM; at each time step a single tridiagonal system of linear equations is solved. The combined explicit and implicit ELM is best used in formulating a solution strategy for solving a network of interconnected channels. The explicit ELM is used at channel junctions for each time step. The semi-implicit method is then applied to the interior points in each channel segment. Following this solution strategy, the channel network problem can be reduced to a set of independent one-dimensional open-channel flow problems. Numerical results support properties given by the stability and error analyses. ?? 1990.

  17. Contribution of lower limb eccentric work and different step responses to balance recovery among older adults.

    PubMed

    Nagano, Hanatsu; Levinger, Pazit; Downie, Calum; Hayes, Alan; Begg, Rezaul

    2015-09-01

    Falls during walking reflect susceptibility to balance loss and the individual's capacity to recover stability. Balance can be recovered using either one step or multiple steps but both responses are impaired with ageing. To investigate older adults' (n=15, 72.5±4.8 yrs) recovery step control a tether-release procedure was devised to induce unanticipated forward balance loss. Three-dimensional position-time data combined with foot-ground reaction forces were used to measure balance recovery. Dependent variables were; margin of stability (MoS) and available response time (ART) for spatial and temporal balance measures in the transverse and sagittal planes; lower limb joint angles and joint negative/positive work; and spatio-temporal gait parameters. Relative to multi-step responses, single-step recovery was more effective in maintaining balance, indicated by greater MoS and longer ART. MoS in the sagittal plane measure and ART in the transverse plane distinguished single step responses from multiple steps. When MoS and ART were negative (<0), balance was not secured and additional steps would be required to establish the new base of support for balance recovery. Single-step responses demonstrated greater step length and velocity and when the recovery foot landed, greater centre of mass downward velocity. Single-step strategies also showed greater ankle dorsiflexion, increased knee maximum flexion and more negative work at the ankle and knee. Collectively these findings suggest that single-step responses are more effective in forward balance recovery by directing falling momentum downward to be absorbed as lower limb eccentric work. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Use of harmonic ratios to examine the effect of cueing strategies on gait stability in persons with Parkinson's disease.

    PubMed

    Lowry, Kristin A; Carrel, Andrew J; McIlrath, Jessica M; Smiley-Oyen, Ann L

    2010-04-01

    To determine if gait stability, as measured by harmonic ratios (HRs) derived from trunk accelerations, is improved during 3 amplitude-based cueing strategies (visual cues, lines on the floor 20% longer than preferred step length; verbal cues, experimenter saying "big step" every third; cognitive cues, participants think "big step") in people with Parkinson's disease. Gait analysis with a triaxial accelerometer. University research laboratory. A volunteer sample of persons with Parkinson's disease (N=7) (Hoehn and Yahr stages 2-3). Not applicable Gait stability was quantified by anterior-posterior (AP), vertical, and mediolateral (ML) HRs; higher ratios indicated improved gait stability. Spatiotemporal parameters assessed were walking speed, stride length, cadence, and the coefficient of variation for stride time. Of the amplitude-based cues, verbal and cognitive resulted in the largest improvements in the AP HR (P=.018) with a trend in the vertical HR as well as the largest improvements in both stride length and velocity. None of the cues positively affected stability in the ML direction. Descriptively, all participants increased speed and stride length, but only those in Hoehn and Yahr stage 2 (not Hoehn and Yahr stage 3) showed improvements in HRs. Cueing for "big steps" is effective for improving gait stability in the AP direction with modest improvements in the vertical direction, but it is not effective in the ML direction. These data support the use of trunk acceleration measures in assessing the efficacy of common therapeutic interventions. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  20. Notes on the ExactPack Implementation of the DSD Rate Stick Solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaul, Ann

    It has been shown above that the discretization scheme implemented in the ExactPack solver for the DSD Rate Stick equation is consistent with the Rate Stick PDE. In addition, a stability analysis has provided a CFL condition for a stable time step. Together, consistency and stability imply convergence of the scheme, which is expected to be close to first-order in time and second-order in space. It is understood that the nonlinearity of the underlying PDE will affect this rate somewhat. In the solver I implemented in ExactPack, I used the one-sided boundary condition described above at the outer boundary. Inmore » addition, I used 80% of the time step calculated in the stability analysis above. By making these two changes, I was able to implement a solver that calculates the solution without any arbitrary limits placed on the values of the curvature at the boundary. Thus, the calculation is driven directly by the conditions at the boundary as formulated in the DSD theory. The chosen scheme is completely coherent and defensible from a mathematical standpoint.« less

  1. Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing.

    PubMed

    Näreoja, Tuomas; Rosenholm, Jessica M; Lamminmäki, Urpo; Hänninen, Pekka E

    2017-05-01

    Thyrotropin or thyroid-stimulating hormone (TSH) is used as a marker for thyroid function. More precise and more sensitive immunoassays are needed to facilitate continuous monitoring of thyroid dysfunctions and to assess the efficacy of the selected therapy and dosage of medication. Moreover, most thyroid diseases are autoimmune diseases making TSH assays very prone to immunoassay interferences due to autoantibodies in the sample matrix. We have developed a super-sensitive TSH immunoassay utilizing nanoparticle labels with a detection limit of 60 nU L -1 in preprocessed serum samples by reducing nonspecific binding. The developed preprocessing step by affinity purification removed interfering compounds and improved the recovery of spiked TSH from serum. The sensitivity enhancement was achieved by stabilization of the protein corona of the nanoparticle bioconjugates and a spot-coated configuration of the active solid-phase that reduced sedimentation of the nanoparticle bioconjugates and their contact time with antibody-coated solid phase, thus making use of the higher association rate of specific binding due to high avidity nanoparticle bioconjugates. Graphical Abstract We were able to decrease the lowest limit of detection and increase sensitivity of TSH immunoassay using Eu(III)-nanoparticles. The improvement was achieved by decreasing binding time of nanoparticle bioconjugates by small capture area and fast circular rotation. Also, we applied a step to stabilize protein corona of the nanoparticles and a serum-preprocessing step with a structurally related antibody.

  2. A local time stepping algorithm for GPU-accelerated 2D shallow water models

    NASA Astrophysics Data System (ADS)

    Dazzi, Susanna; Vacondio, Renato; Dal Palù, Alessandro; Mignosa, Paolo

    2018-01-01

    In the simulation of flooding events, mesh refinement is often required to capture local bathymetric features and/or to detail areas of interest; however, if an explicit finite volume scheme is adopted, the presence of small cells in the domain can restrict the allowable time step due to the stability condition, thus reducing the computational efficiency. With the aim of overcoming this problem, the paper proposes the application of a Local Time Stepping (LTS) strategy to a GPU-accelerated 2D shallow water numerical model able to handle non-uniform structured meshes. The algorithm is specifically designed to exploit the computational capability of GPUs, minimizing the overheads associated with the LTS implementation. The results of theoretical and field-scale test cases show that the LTS model guarantees appreciable reductions in the execution time compared to the traditional Global Time Stepping strategy, without compromising the solution accuracy.

  3. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  4. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.

    PubMed

    Schütte, Kurt H; Aeles, Jeroen; De Beéck, Tim Op; van der Zwaard, Babette C; Venter, Rachel; Vanwanseele, Benedicte

    2016-07-01

    Despite frequently declared benefits of using wireless accelerometers to assess running gait in real-world settings, available research is limited. The purpose of this study was to investigate outdoor surface effects on dynamic stability and dynamic loading during running using tri-axial trunk accelerometry. Twenty eight runners (11 highly-trained, 17 recreational) performed outdoor running on three outdoor training surfaces (concrete road, synthetic track and woodchip trail) at self-selected comfortable running speeds. Dynamic postural stability (tri-axial acceleration root mean square (RMS) ratio, step and stride regularity, sample entropy), dynamic loading (impact and breaking peak amplitudes and median frequencies), as well as spatio-temporal running gait measures (step frequency, stance time) were derived from trunk accelerations sampled at 1024Hz. Results from generalized estimating equations (GEE) analysis showed that compared to concrete road, woodchip trail had several significant effects on dynamic stability (higher AP ratio of acceleration RMS, lower ML inter-step and inter-stride regularity), on dynamic loading (downward shift in vertical and AP median frequency), and reduced step frequency (p<0.05). Surface effects were unaffected when both running level and running speed were added as potential confounders. Results suggest that woodchip trails disrupt aspects of dynamic stability and loading that are detectable using a single trunk accelerometer. These results provide further insight into how runners adapt their locomotor biomechanics on outdoor surfaces in situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Numerical solution methods for viscoelastic orthotropic materials

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1988-01-01

    Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.

  6. The effect of cane use on the compensatory step following posterior perturbations.

    PubMed

    Hall, Courtney D; Jensen, Jody L

    2004-08-01

    The compensatory step is a critical component of the balance response and is impaired in older fallers. The purpose of this research was to examine whether utilization of a cane modified the compensatory step response following external posterior perturbations. Single subject withdrawal design was employed. Single subject statistical analysis--the standard deviation bandwidth-method--supplemented visual analysis of the data. Four older adults (range: 73-83 years) with balance impairment who habitually use a cane completed this study. Subjects received a series of sudden backward pulls that were large enough to elicit compensatory stepping. We examined the following variables both with and without cane use: timing of cane loading relative to step initiation and center of mass acceleration, stability margin, center of mass excursion and velocity, step length and width. No participant loaded the cane prior to initiation of the first compensatory step. There was no effect of cane use on the stability margin, nor was there an effect of cane use on center of mass excursion or velocity, or step length or width. These data suggest that cane use does not necessarily improve balance recovery following an external posterior perturbation when the individual is forced to rely on compensatory stepping. Instead these data suggest that the strongest factor in modifying step characteristics is experience with the perturbation.

  7. Control of locomotor stability in stabilizing and destabilizing environments.

    PubMed

    Wu, Mengnan/Mary; Brown, Geoffrey; Gordon, Keith E

    2017-06-01

    To develop effective interventions targeting locomotor stability, it is crucial to understand how people control and modify gait in response to changes in stabilization requirements. Our purpose was to examine how individuals with and without incomplete spinal cord injury (iSCI) control lateral stability in haptic walking environments that increase or decrease stabilization demands. We hypothesized that people would adapt to walking in a predictable, stabilizing viscous force field and unpredictable destabilizing force field by increasing and decreasing feedforward control of lateral stability, respectively. Adaptations in feedforward control were measured using after-effects when fields were removed. Both groups significantly (p<0.05) decreased step width in the stabilizing field. When the stabilizing field was removed, narrower steps persisted in both groups and subjects with iSCI significantly increased movement variability (p<0.05). The after-effect of walking in the stabilizing field was a suppression of ongoing general stabilization mechanisms. In the destabilizing field, subjects with iSCI took faster steps and increased lateral margins of stability (p<0.05). Step frequency increases persisted when the destabilizing field was removed (p<0.05), suggesting that subjects with iSCI made feedforward adaptions to increase control of lateral stability. In contrast, in the destabilizing field, non-impaired subjects increased movement variability (p<0.05) and did not change step width, step frequency, or lateral margin of stability (p>0.05). When the destabilizing field was removed, increases in movement variability persisted (p<0.05), suggesting that non-impaired subjects made feedforward decreases in resistance to perturbations. Published by Elsevier B.V.

  8. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOEpatents

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  9. Temporary Stabilization with External Fixator in ‘Tripolar’ Configuration in Two Steps Treatment of Tibial Pilon Fractures

    PubMed Central

    Daghino, Walter; Messina, Marco; Filipponi, Marco; Alessandro, Massè

    2016-01-01

    Background: The tibial pilon fractures represent a complex therapeutic problem for the orthopedic surgeon, given the frequent complications and outcomes disabling. The recent medical literature indicates that the best strategy to reduce amount of complications in tibial pilon fractures is two-stages procedure. We describe our experience in the primary stabilization of these fractures. Methods: We treated 36 cases with temporary external fixation in a simple configuration, called "tripolar": this is an essential structure (only three screws and three rods), that is possible to perform even without the availability of X-rays and with simple anesthesia or sedation. Results: We found a sufficient mechanical stability for the nursing post-operative, in absence of intraoperative and postoperative problems. The time between trauma and temporary stabilization ranged between 3 and 144 hours; surgical average time was 8.4 minutes. Definitive treatment was carried out with a delay of a minimum of 4 and a maximum of 15 days from the temporary stabilization, always without problems, both in case of ORIF (open reduction, internal fixation) or circular external fixation Conclusion: Temporary stabilization with external fixator in ‘tripolar’ configuration seems to be the most effective strategy in two steps treatment of tibial pilon fractures. These preliminary encouraging results must be confirmed by further studies with more cases. PMID:27123151

  10. Geomorphic and hydraulic Analyses of In-stream Step-pool Structures (I)

    NASA Astrophysics Data System (ADS)

    Kuo, W. C.; Hu, Y. L.; Wang, H. W.

    2016-12-01

    Longitudinal stair-like structures, such as alternating steps and pools, are found commonly in steep mountain streams. In a way to mimic the natural characteristics, many implementations of constructing artificial step structures have long been found in field practice to stabilize streambeds and enhance aquatic systems. To better understand how constructed step-pool systems form and function, this paper discusses the hydraulic and geomorphic factors based on flume experiments, and further compare to our field observations in Chijiawan Creek in Taiwan. We constructed a 2.9-m-long, 0.15-wide, and 0.3-m-high acrylic walled recirculating channel and conducted experiments to understand the formation, hydraulic features, and channel stability of step-pools of scenarios considering different channel slopes, discharges, feeding sediments. The results indicated that the keystones played a crucial role in stabilizing step-pool structures. The grain sizes of keystones from the experiments ranged approximately from one-third to one-tenth of channel width, while those from the field observations were about one-ninth to two-ninths. While the experimental discharge increased from 0.0012 cms to 0.006 cms, the flow transformed from nappe flow to skimming flow and the difference of average velocity between steps and pools reduced 30%. Besides, experiments showed that the step-pool structures failed immediately after keystones destroyed at a sediment transportation rate about 1.5 times of sediment feeding rate. It highlights the step-pools and channel stability is highly related to keystones. We further found the step-pools were buried at the experimental cases with coarse sediment fed upstream, similar to our field observations in Chijiawan Creek, with an approximately 1 3m deposition after Typhoon Soudelor, a 5-year event. The results obtained in this study would serve as a basis for ongoing discussions on how constructed step-pool structures would function and fail. More efforts of field investigations, flume experiments, and field experiments in helping developing specific recommendations and providing scientific insights for not only in Taiwan but around the world are still in need.

  11. The effects of core stabilization exercise on dynamic balance and gait function in stroke patients.

    PubMed

    Chung, Eun-Jung; Kim, Jung-Hee; Lee, Byoung-Hee

    2013-07-01

    [Purpose] The purpose of this study was to determine the effects of core stabilization exercise on dynamic balance and gait function in stroke patients. [Subjects] The subjects were 16 stroke patients, who were randomly divided into two groups: a core stabilization exercise group of eight subjects and control group of eight subjects. [Methods] Subjects in both groups received general training five times per week. Subjects in the core stabilization exercise group practiced an additional core stabilization exercise program, which was performed for 30 minutes, three times per week, during a period of four weeks. All subjects were evaluated for dynamic balance (Timed Up and Go test, TUG) and gait parameters (velocity, cadence, step length, and stride length). [Results] Following intervention, the core exercise group showed a significant change in TUG, velocity, and cadence. The only significant difference observed between the core group and control group was in velocity. [Conclusion] The results of this study suggest the feasibility and suitability of core stabilization exercise for stroke patients.

  12. Dynamic response and stability of a gas-lubricated Rayleigh-step pad

    NASA Technical Reports Server (NTRS)

    Cheng, C.; Cheng, H. S.

    1973-01-01

    The quasi-static, pressure characteristics of a gas-lubricated thrust bearing with shrouded, Rayleigh-step pads are determined for a time-varying film thickness. The axial response of the thrust bearing to an axial forcing function or an axial rotor disturbance is investigated by treating the gas film as a spring having nonlinear restoring and damping forces. These forces are related to the film thickness by a power relation. The nonlinear equation of motion in the axial mode is solved by the Ritz-Galerkin method as well as the direct, numerical integration. Results of the nonlinear response by both methods are compared with the response based on the linearized equation. Further, the gas-film instability of an infinitely wide Rayleigh step thrust pad is determined by solving the transient Reynolds equation coupled with the equation of the motion of the pad. Results show that the Rayleigh-step geometry is very stable for bearing number A up to 50. The stability threshold is shown to exist only for ultrahigh values of Lambda equal to or greater than 100, where the stability can be achieved by making the mass heavier than the critical mass.

  13. Notes on the ExactPack Implementation of the DSD Explosive Arc Solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaul, Ann; Doebling, Scott William

    It has been shown above that the discretization scheme implemented in the ExactPack solver for the DSD Explosive Arc equation is consistent with the Explosive Arc PDE. In addition, a stability analysis has provided a CFL condition for a stable time step. Together, consistency and stability imply convergence of the scheme, which is expected to be close to first-order in time and second-order in space. It is understood that the nonlinearity of the underlying PDE will affect this rate somewhat.

  14. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    NASA Technical Reports Server (NTRS)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  15. One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance.

    PubMed

    Xu, You; Xu, Rui; Cui, Jianhua; Liu, Yang; Zhang, Bin

    2012-04-21

    Three-dimensional Pd polyhedron networks (Pd PNs) have been fabricated for the first time through a one-step, Cu(2+)-assisted, solution-chemical approach. These as-prepared 3D Pd PNs exhibit high stability and remarkably improved electrocatalytic activity toward formic acid oxidation over commercially available Pd black. This journal is © The Royal Society of Chemistry 2012

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.; Harrison, D. E. Jr.

    A variable time step integration algorithm for carrying out molecular dynamics simulations of atomic collision cascades is proposed which evaluates the interaction forces only once per time step. The algorithm is tested on some model problems which have exact solutions and is compared against other common methods. These comparisons show that the method has good stability and accuracy. Applications to Ar/sup +/ bombardment of Cu and Si show good accuracy and improved speed to the original method (D. E. Harrison, W. L. Gay, and H. M. Effron, J. Math. Phys. /bold 10/, 1179 (1969)).

  17. The effect of some heat treatment parameters on the dimensional stability of AISI D2

    NASA Astrophysics Data System (ADS)

    Surberg, Cord Henrik; Stratton, Paul; Lingenhöle, Klaus

    2008-01-01

    The tool steel AISI D2 is usually processed by vacuum hardening followed by multiple tempering cycles. It has been suggested that a deep cold treatment in between the hardening and tempering processes could reduce processing time and improve the final properties and dimensional stability. Hardened blocks were then subjected to various combinations of single and multiple tempering steps (520 and 540 °C) and deep cold treatments (-90, -120 and -150 °C). The greatest dimensional stability was achieved by deep cold treatments at the lowest temperature used and was independent of the deep cold treatment time.

  18. Step Bunching: Influence of Impurities and Solution Flow

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Vekilov, P. G.; Coriell, S. R.; Murray, B. T.; McFadden, G. B.

    1999-01-01

    Step bunching results in striations even at relatively early stages of its development and in inclusions of mother liquor at the later stages. Therefore, eliminating step bunching is crucial for high crystal perfection. At least 5 major effects causing and influencing step bunching are known: (1) Basic morphological instability of stepped interfaces. It is caused by concentration gradient in the solution normal to the face and by the redistribution of solute tangentially to the interface which redistribution enhances occasional perturbations in step density due to various types of noise; (2) Aggravation of the above basic instability by solution flowing tangentially to the face in the same directions as the steps or stabilization of equidistant step train if these flows are antiparallel; (3) Enhanced bunching at supersaturation where step velocity v increases with relative supersaturation s much faster than linear. This v(s) dependence is believed to be associated with impurities. The impurities of which adsorption time is comparable with the time needed to deposit one lattice layer may also be responsible for bunching; (4) Very intensive solution flow stabilizes growing interface even at parallel solution and step flows; (5) Macrosteps were observed to nucleate at crystal corners and edges. Numerical simulation, assuming step-step interactions via surface diffusion also show that step bunching may be induced by random step nucleation at the facet edge and by discontinuity in the step density (a ridge) somewhere in the middle of a face. The corresponding bunching patterns produce the ones observed in experiment. The nature of step bunching generated at the corners and edges and by dislocation step sources, as well as the also relative importance and interrelations between mechanisms 1-5 is not clear, both from experimental and theoretical standpoints. Furthermore, several laws controlling the evolution of existing step bunches have been suggested, though unambiguous conclusions are still missing. Addressing these issues is the major goal of the present project. The theory addressing the above problem, experimental methods, several figures which include: (1) the spatial wave numbers at which the system is neutrally stable as a function of growth velocity for linear kinetics and supersaturation for nonlinear kinetics; (2) a schematic of the experiment of lysozyme crystal growing under conditions of natural convection; (3) fluctuations in time, t, of the normal growth rate, R(t), vicinal slope, p(t) and Fourier Spectra of R(t), discussions and conclusions are presented.

  19. Characterization of the Head Stabilization Response to a Lateral Perturbation During Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2009-01-01

    A main contributor of fractures in older adults is from a lateral fall. The decline in sensory systems results in difficulty maintaining balance stability. Head stabilization contributes to postural control by serving as a stable platform for the sensory systems. The purpose of this study was to characterize the head stabilization response to a lateral perturbation while walking. A total of 16 healthy older adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors placed on the center of mass of the head and trunk collected head and trunk movement in all three planes of motion. The roll plane was analyzed to examine motion in the plane of the perturbation. Subjects stepped onto the platform with the right foot. Recovery step time and distance were recorded. The first trial was analyzed to capture the novelty of the perturbation. Results indicate a significant difference in footfall distance t=0.004, p<0.05, as well as the speed of foot recovery t=0.001, p<0.05, between natural and perturbed walking. Results indicate that the head t=0.005, p<0.05, and trunk t=0.0001, p<0.05, velocities increase during perturbed compared to natural walking. Older adults place their recovery foot down faster when perturbed to re-establish their base of support. Head and trunk segments are less stable and move with greater velocities to reestablish stability when perturbed.

  20. Analysis of a Stabilized CNLF Method with Fast Slow Wave Splittings for Flow Problems

    DOE PAGES

    Jiang, Nan; Tran, Hoang A.

    2015-04-01

    In this work, we study Crank-Nicolson leap-frog (CNLF) methods with fast-slow wave splittings for Navier-Stokes equations (NSE) with a rotation/Coriolis force term, which is a simplification of geophysical flows. We propose a new stabilized CNLF method where the added stabilization completely removes the method's CFL time step condition. A comprehensive stability and error analysis is given. We also prove that for Oseen equations with the rotation term, the unstable mode (for which u(n+1) + u(n-1) equivalent to 0) of CNLF is asymptotically stable. Numerical results are provided to verify the stability and the convergence of the methods.

  1. Stability and delay sensitivity of neutral fractional-delay systems.

    PubMed

    Xu, Qi; Shi, Min; Wang, Zaihua

    2016-08-01

    This paper generalizes the stability test method via integral estimation for integer-order neutral time-delay systems to neutral fractional-delay systems. The key step in stability test is the calculation of the number of unstable characteristic roots that is described by a definite integral over an interval from zero to a sufficient large upper limit. Algorithms for correctly estimating the upper limits of the integral are given in two concise ways, parameter dependent or independent. A special feature of the proposed method is that it judges the stability of fractional-delay systems simply by using rough integral estimation. Meanwhile, the paper shows that for some neutral fractional-delay systems, the stability is extremely sensitive to the change of time delays. Examples are given for demonstrating the proposed method as well as the delay sensitivity.

  2. Summary of methods for calculating dynamic lateral stability and response and for estimating aerodynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Mckinney, Marion O

    1952-01-01

    A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.

  3. Influence of gait speed on stability: recovery from anterior slips and compensatory stepping.

    PubMed

    Bhatt, T; Wening, J D; Pai, Y-C

    2005-02-01

    Falls precipitated by slipping are a major health concern, with the majority of all slip-related falls occurring during gait. Recent evidence shows that a faster and/or more anteriorly positioned center of mass (COM) is more stable against backward balance loss, and that compensatory stepping is the key to recovering stability upon balance loss. The purposes of this paper were to determine whether walking speed affected gait stability for backward balance loss at slip onset and touchdown of compensatory stepping, and whether compensatory stepping response resembled the regular gait pattern. Forty-seven young subjects were slipped unexpectedly either at a self-selected fast, natural or slow speed. Speed-related differences in stability at slip onset and touchdown of the subsequent compensatory step were analyzed using the COM position-velocity state. The results indicate that gait speed highly correlated with stability against backward balance loss at slip onset. The low COM velocity of the slow group was not sufficiently compensated for by a more anteriorly positioned COM associated with a shorter step length at slip onset. At touchdown of the compensatory step, the speed-related differences in stability diminished, due to the continued advantage of anterior COM positioning from a short compensatory step retained by the slow group, coupled with an increase in COM velocity. Compensatory step length and relative COM position altered as a function of gait speed, indicating the motor program for gait regulation may play a role in modulating the compensatory step.

  4. Testing the Stability of 2-D Recursive QP, NSHP and General Digital Filters of Second Order

    NASA Astrophysics Data System (ADS)

    Rathinam, Ananthanarayanan; Ramesh, Rengaswamy; Reddy, P. Subbarami; Ramaswami, Ramaswamy

    Several methods for testing stability of first quadrant quarter-plane two dimensional (2-D) recursive digital filters have been suggested in 1970's and 80's. Though Jury's row and column algorithms, row and column concatenation stability tests have been considered as highly efficient mapping methods. They still fall short of accuracy as they need infinite number of steps to conclude about the exact stability of the filters and also the computational time required is enormous. In this paper, we present procedurally very simple algebraic method requiring only two steps when applied to the second order 2-D quarter - plane filter. We extend the same method to the second order Non-Symmetric Half-plane (NSHP) filters. Enough examples are given for both these types of filters as well as some lower order general recursive 2-D digital filters. We applied our method to barely stable or barely unstable filter examples available in the literature and got the same decisions thus showing that our method is accurate enough.

  5. One-step production of multiple emulsions: microfluidic, polymer-stabilized and particle-stabilized approaches.

    PubMed

    Clegg, Paul S; Tavacoli, Joe W; Wilde, Pete J

    2016-01-28

    Multiple emulsions have great potential for application in food science as a means to reduce fat content or for controlled encapsulation and release of actives. However, neither production nor stability is straightforward. Typically, multiple emulsions are prepared via two emulsification steps and a variety of approaches have been deployed to give long-term stability. It is well known that multiple emulsions can be prepared in a single step by harnessing emulsion inversion, although the resulting emulsions are usually short lived. Recently, several contrasting methods have been demonstrated which give rise to stable multiple emulsions via one-step production processes. Here we review the current state of microfluidic, polymer-stabilized and particle-stabilized approaches; these rely on phase separation, the role of electrolyte and the trapping of solvent with particles respectively.

  6. An explicit scheme for ohmic dissipation with smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2013-09-01

    In this paper, we present an explicit scheme for Ohmic dissipation with smoothed particle magnetohydrodynamics (SPMHD). We propose an SPH discretization of Ohmic dissipation and solve Ohmic dissipation part of induction equation with the super-time-stepping method (STS) which allows us to take a longer time step than Courant-Friedrich-Levy stability condition. Our scheme is second-order accurate in space and first-order accurate in time. Our numerical experiments show that optimal choice of the parameters of STS for Ohmic dissipation of SPMHD is νsts ˜ 0.01 and Nsts ˜ 5.

  7. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods.

    PubMed

    Ngamwonglumlert, Luxsika; Devahastin, Sakamon; Chiewchan, Naphaporn

    2017-10-13

    Natural colorants from plant-based materials have gained increasing popularity due to health consciousness of consumers. Among the many steps involved in the production of natural colorants, pigment extraction is one of the most important. Soxhlet extraction, maceration, and hydrodistillation are conventional methods that have been widely used in industry and laboratory for such a purpose. Recently, various non-conventional methods, such as supercritical fluid extraction, pressurized liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, pulsed-electric field extraction, and enzyme-assisted extraction have emerged as alternatives to conventional methods due to the advantages of the former in terms of smaller solvent consumption, shorter extraction time, and more environment-friendliness. Prior to the extraction step, pretreatment of plant materials to enhance the stability of natural pigments is another important step that must be carefully taken care of. In this paper, a comprehensive review of appropriate pretreatment and extraction methods for chlorophylls, carotenoids, betalains, and anthocyanins, which are major classes of plant pigments, is provided by using pigment stability and extraction yield as assessment criteria.

  8. The Effect of Core Stability Training on Functional Movement Patterns in Collegiate Athletes.

    PubMed

    Bagherian, Sajad; Ghasempoor, Khodayar; Rahnama, Nader; Wikstrom, Erik A

    2018-02-06

    Pre-participation examinations are the standard approach for assessing poor movement quality that would increase musculoskeletal injury risk. However, little is known about how core stability influences functional movement patterns. The primary purpose of this study was to determine the effect of an 8-week core stability program on functional movement patterns in collegiate athletes. The secondary purpose was to determine if the core stability training program would be more effective in those with worse movement quality (i.e. ≤14 baseline FMS score). Quasi-experimental design. Athletic Training Facility. One-hundred collegiate athletes. Functional movement patterns included the Functional Movement Screen (FMS), Lateral step down (LSD) and Y balance test (YBT) and were assessed before and after the 8-week program. Participants were placed into 1 of the 2 groups: intervention and control. The intervention group was required to complete a core stability training program that met 3 times per week for 8-week. Significant group x time interactions demonstrated improvements in FMS, LSD and YBT scores in the experimental group relative to the control group (p<0.001). Independent sample t-tests demonstrate that change scores were larger (greater improvement) for the FMS total score and Hurdle step (p<0.001) in athletes with worse movement quality. An 8-week core stability training program enhances functional movement patterns and dynamic postural control in collegiate athletes. The benefits are more pronounced in collegiate athletes with poor movement quality.

  9. Effects of Forward- and Backward-Facing Steps on the Crossflow Receptivity and Stability in Supersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; King, Rudolph A.; Eppink, Jenna L.

    2014-01-01

    The effects of forward- and backward-facing steps on the receptivity and stability of three-dimensional supersonic boundary layers over a swept wing with a blunt leading edge are numerically investigated for a freestream Mach number of 3 and a sweep angle of 30 degrees. The flow fields are obtained by solving the full Navier-Stokes equations. The evolution of instability waves generated by surface roughness is simulated with and without the forward- and backward-facing steps. The separation bubble lengths are about 5-10 step heights for the forward-facing step and are about 10 for the backward-facing step. The linear stability calculations show very strong instability in the separated region with a large frequency domain. The simulation results show that the presence of backward-facing steps decreases the amplitude of the stationary crossflow vortices with longer spanwise wavelengths by about fifty percent and the presence of forward-facing steps does not modify the amplitudes noticeably across the steps. The waves with the shorter wavelengths grow substantially downstream of the step in agreement with the linear stability prediction.

  10. A quick response four decade logarithmic high-voltage stepping supply

    NASA Technical Reports Server (NTRS)

    Doong, H.

    1978-01-01

    An improved high-voltage stepping supply, for space instrumentation is described where low power consumption and fast settling time between steps are required. The high-voltage stepping supply, utilizing an average power of 750 milliwatts, delivers a pair of mirror images with 64 level logarithmic outputs. It covers a four decade range of + or - 2500 to + or - 0.29 volts having an output stability of + or - 0.5 percent or + or - 20 millivolts for all line load and temperature variations. The supply provides a typical step setting time of 1 millisecond with 100 microseconds for the lower two decades. The versatile design features of the high-voltage stepping supply provides a quick response staircase generator as described or a fixed voltage with the option to change levels as required over large dynamic ranges without circuit modifications. The concept can be implemented up to + or - 5000 volts. With these design features, the high-voltage stepping supply should find numerous applications where charged particle detection, electro-optical systems, and high voltage scientific instruments are used.

  11. Multigrid time-accurate integration of Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.

    1993-01-01

    Efficient acceleration techniques typical of explicit steady-state solvers are extended to time-accurate calculations. Stability restrictions are greatly reduced by means of a fully implicit time discretization. A four-stage Runge-Kutta scheme with local time stepping, residual smoothing, and multigridding is used instead of traditional time-expensive factorizations. Some applications to natural and forced unsteady viscous flows show the capability of the procedure.

  12. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  13. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions.

    PubMed

    Arkhipova, Viktoriya V; Apyari, Vladimir V; Dmitrienko, Stanislava G

    2015-03-15

    Desensitized ionene-stabilized gold nanoparticles have been prepared and applied as a colorimetric probe for the single-step test for sulfate ions at the relatively high concentration level. The approach is based on aggregation of the nanoparticles leading to the change in absorption spectra and color of the solution. These nanoparticles are characterized by the decreased sensitivity due to both electrostatic and steric stabilization, which allows for simple, and rapid direct single-step determination of sulfate at the relatively high concentration level in real water samples without sample pretreatment or dilution. Influence of different factors (the time of interaction, pH, the concentrations of sulfate ions and the nanoparticles) on the aggregation and analytical performance of the procedure was investigated. The method allows for the determination of sulfate ions in the mass range of 0.2-0.4 mg with RSD of 5% from the sample volume of less than 2 mL. It has a sharp dependence of the colorimetric response on the concentration of sulfate, which makes it prospective for indicating deviations of the sulfate concentration regarding some declared value chosen within the above range. The time of the analysis is 2 min. The method was applied to the analysis of mineral water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Thermal and bias cycling stabilizes planar silicon devices

    NASA Technical Reports Server (NTRS)

    Harris, R. E.; Meinhard, J. E.

    1967-01-01

    Terminal burn-in or baking step time in the processing of planar silicon devices is extended to reduce their inversion tendencies. The collector-base junction of the device is also cyclically biased during the burn-in.

  15. Development of a hardware-based AC microgrid for AC stability assessment

    NASA Astrophysics Data System (ADS)

    Swanson, Robert R.

    As more power electronic-based devices enable the development of high-bandwidth AC microgrids, the topic of microgrid power distribution stability has become of increased interest. Recently, researchers have proposed a relatively straightforward method to assess the stability of AC systems based upon the time-constants of sources, the net bus capacitance, and the rate limits of sources. In this research, a focus has been to develop a hardware test system to evaluate AC system stability. As a first step, a time domain model of a two converter microgrid was established in which a three phase inverter acts as a power source and an active rectifier serves as an adjustable constant power AC load. The constant power load can be utilized to create rapid power flow transients to the generating system. As a second step, the inverter and active rectifier were designed using a Smart Power Module IGBT for switching and an embedded microcontroller as a processor for algorithm implementation. The inverter and active rectifier were designed to operate simultaneously using a synchronization signal to ensure each respective local controller operates in a common reference frame. Finally, the physical system was created and initial testing performed to validate the hardware functionality as a variable amplitude and variable frequency AC system.

  16. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger

    PubMed Central

    Mille, Marie‐Laure

    2016-01-01

    Abstract Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation‐induced steps that are triggered as fast as or faster than for younger adults. While age‐associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step‐triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event‐triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. PMID:26915664

  17. Stability Criteria for Differential Equations with Variable Time Delays

    ERIC Educational Resources Information Center

    Schley, D.; Shail, R.; Gourley, S. A.

    2002-01-01

    Time delays are an important aspect of mathematical modelling, but often result in highly complicated equations which are difficult to treat analytically. In this paper it is shown how careful application of certain undergraduate tools such as the Method of Steps and the Principle of the Argument can yield significant results. Certain delay…

  18. Business Risk Mitigation and Price Stabilization Act of 2012

    THOMAS, 112th Congress

    Rep. Grimm, Michael G. [R-NY-13

    2011-07-28

    Senate - 03/28/2012 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 342. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  19. Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays.

    PubMed

    Eide, Ragna M; Krause, Andrew L; Fadai, Nabil T; Van Gorder, Robert A

    2018-08-14

    We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics through a "stepping-stone" approach. We find that a temporal delay alone does not push species into extinction, but rather may stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics, and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be proposed as a solution to the paradox of enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. hp-Adaptive time integration based on the BDF for viscous flows

    NASA Astrophysics Data System (ADS)

    Hay, A.; Etienne, S.; Pelletier, D.; Garon, A.

    2015-06-01

    This paper presents a procedure based on the Backward Differentiation Formulas of order 1 to 5 to obtain efficient time integration of the incompressible Navier-Stokes equations. The adaptive algorithm performs both stepsize and order selections to control respectively the solution accuracy and the computational efficiency of the time integration process. The stepsize selection (h-adaptivity) is based on a local error estimate and an error controller to guarantee that the numerical solution accuracy is within a user prescribed tolerance. The order selection (p-adaptivity) relies on the idea that low-accuracy solutions can be computed efficiently by low order time integrators while accurate solutions require high order time integrators to keep computational time low. The selection is based on a stability test that detects growing numerical noise and deems a method of order p stable if there is no method of lower order that delivers the same solution accuracy for a larger stepsize. Hence, it guarantees both that (1) the used method of integration operates inside of its stability region and (2) the time integration procedure is computationally efficient. The proposed time integration procedure also features a time-step rejection and quarantine mechanisms, a modified Newton method with a predictor and dense output techniques to compute solution at off-step points.

  1. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    PubMed

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms -1 versus 1.3ms -1 ) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  2. Counterrotating prop-fan simulations which feature a relative-motion multiblock grid decomposition enabling arbitrary time-steps

    NASA Technical Reports Server (NTRS)

    Janus, J. Mark; Whitfield, David L.

    1990-01-01

    Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.

  3. A Symmetric Positive Definite Formulation for Monolithic Fluid Structure Interaction

    DTIC Science & Technology

    2010-08-09

    more likely to converge than simply iterating the partitioned approach to convergence in a simple Gauss - Seidel manner. Our approach allows the use of...conditions in a second step. These approaches can also be iterated within a given time step for increased stability, noting that in the limit if one... converges one obtains a monolithic (albeit expensive) approach. Other approaches construct strongly coupled systems and then solve them in one of several

  4. DEFICIENT LIMB SUPPORT IS A MAJOR CONTRIBUTOR TO AGE-DIFFERENCES IN FALLING

    PubMed Central

    Pavol, Michael J.; Pai, Yi-Chung

    2010-01-01

    Older adults are more likely than young to fall upon a loss of balance, yet the factors responsible for this difference are not well understood. This study investigated whether age-related differences in movement stability, limb support, and reactive stepping contribute to the greater likelihood of falling among older adults. Sixty young and 41 older, safety-harnessed, healthy adults were exposed to a novel and unexpected forward slip during a sit-to-stand task. More older than young adults fell (76% vs. 30%). Falls in both age groups were related to lesser stability and lower hip height at first step touchdown, with 97.1% of slip outcomes correctly classified based on these variables. Decreases in hip height at touchdown had over 20 times greater effect on the odds of falling than equivalent decreases in stability. Three age-differences placed older adults at greater risk of falling: older adults had lower and more slowly rising hips at slip onset, they were less likely to respond to slipping with forceful limb extension, and they placed their stepping foot less posterior to their center of mass. The first two differences, each associated with deficient limb support, reduced hip ascent and increased hip descent. The third difference resulted in lesser stability at step touchdown. These results suggest that deficient limb support in normal movement patterns and in the reactive response to a perturbation is a major contributor to the high incidence of falls in older adults. Improving proactive and reactive limb support should be a focus of fall prevention efforts. PMID:16876174

  5. Deficient limb support is a major contributor to age differences in falling.

    PubMed

    Pavol, Michael J; Pai, Yi-Chung

    2007-01-01

    Older adults are more likely than young to fall upon a loss of balance, yet the factors responsible for this difference are not well understood. This study investigated whether age-related differences in movement stability, limb support, and protective stepping contribute to the greater likelihood of falling among older adults. Sixty young and 41 older, safety-harnessed, healthy adults were exposed to a novel and unexpected forward slip during a sit-to-stand task. More older than young adults fell (76% vs. 30%). Falls in both age groups were related to lesser stability and lower hip height at first step touchdown, with 97.1% of slip outcomes correctly classified based on these variables. Decreases in hip height at touchdown had over 20 times greater effect on the odds of falling than equivalent decreases in stability. Three age differences placed older adults at greater risk of falling: older adults had lower and more slowly rising hips at slip onset, they were less likely to respond to slipping with ample limb support, and they placed their stepping foot less posterior to their center of mass. The first two differences, each associated with deficient limb support, reduced hip ascent and increased hip descent. The third difference resulted in lesser stability at step touchdown. These results suggest that deficient limb support in normal movement patterns and in the reactive response to a perturbation is a major contributor to the high incidence of falls in older adults. Improving proactive and reactive limb support should be a focus of fall prevention efforts.

  6. Timing paradox of stepping and falls in ageing: not so quick and quick(er) on the trigger.

    PubMed

    Rogers, Mark W; Mille, Marie-Laure

    2016-08-15

    Physiological and degenerative changes affecting human standing balance are major contributors to falls with ageing. During imbalance, stepping is a powerful protective action for preserving balance that may be voluntarily initiated in recognition of a balance threat, or be induced by an externally imposed mechanical or sensory perturbation. Paradoxically, with ageing and falls, initiation slowing of voluntary stepping is observed together with perturbation-induced steps that are triggered as fast as or faster than for younger adults. While age-associated changes in sensorimotor conduction, central neuronal processing and cognitive functions are linked to delayed voluntary stepping, alterations in the coupling of posture and locomotion may also prolong step triggering. It is less clear, however, how these factors may explain the accelerated triggering of induced stepping. We present a conceptual model that addresses this issue. For voluntary stepping, a disruption in the normal coupling between posture and locomotion may underlie step-triggering delays through suppression of the locomotion network based on an estimation of the evolving mechanical state conditions for stability. During induced stepping, accelerated step initiation may represent an event-triggering process whereby stepping is released according to the occurrence of a perturbation rather than to the specific sensorimotor information reflecting the evolving instability. In this case, errors in the parametric control of induced stepping and its effectiveness in stabilizing balance would be likely to occur. We further suggest that there is a residual adaptive capacity with ageing that could be exploited to improve paradoxical triggering and other changes in protective stepping to impact fall risk. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  7. Influence of ageing on self-etch adhesives: one-step vs. two-step systems.

    PubMed

    Marchesi, Giulio; Frassetto, Andrea; Visintini, Erika; Diolosà, Marina; Turco, Gianluca; Salgarello, Stefano; Di Lenarda, Roberto; Cadenaro, Milena; Breschi, Lorenzo

    2013-02-01

    The aim of this study was to evaluate microtensile bond strength (μTBS) to dentine, interfacial nanoleakage expression, and stability after ageing, of two-step vs. one-step self-etch adhesives. Human molars were cut to expose middle/deep dentine, assigned to groups (n = 15), and treated with the following bonding systems: (i) Optibond XTR (a two-step self-etch adhesive; Kerr), (ii) Clearfil SE Bond (a two-step self-etch adhesive; Kuraray), (iii) Adper Easy Bond (a one-step self-etch adhesive; 3M ESPE), and (iv) Bond Force (a one-step self-etch adhesive; Tokuyama). Specimens were processed for μTBS testing after 24 h, 6 months, or 1 yr of storage in artificial saliva at 37°C. Nanoleakage expression was examined in similarly processed additional specimens. At baseline the μTBS results ranked in the following order: Adper Easy Bond = Optibond XTR ≥Clearfil SE = Bond Force, and interfacial nanoleakage analysis showed Clearfil SE Bond = Adper Easy Bond = Optibond XTR> Bond Force. After 1 yr of storage, Optibond XTR, Clearfil SE Bond, and Adper Easy Bond showed higher μTBS and lower interfacial nanoleakage expression compared with Bond Force. In conclusion, immediate bond strength, nanoleakage expression, and stability over time were not related to the number of steps of the bonding systems, but to their chemical formulations. © 2012 Eur J Oral Sci.

  8. Long-term efficiency of soil stabilization with apatite and Slovakite: the impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning.

    PubMed

    Tica, D; Udovic, M; Lestan, D

    2013-03-01

    Remediation soil is exposed to various environmental factors over time that can affect the final success of the operation. In the present study, we assessed Pb bioaccessibility and microbial activity in industrially polluted soil (Arnoldstein, Austria) stabilized with 5% (w/w) of Slovakite and 5% (w/w) of apatite soil after exposure to two earthworm species, Lumbricus terrestris and Dendrobaena veneta, used as model environmental biotic soil factors. Stabilization resulted in reduced Pb bioaccessibility, as assessed with one-step extraction tests and six-step sequential extraction, and improved soil functioning, mirrored in reduced β-glucosidase activity in soil. Both earthworm species increased Pb bioaccessibility, thus decreasing the initial stabilization efficacy and indicating the importance of considering the long-term fate of remediated soil. The earthworm species had different effects on soil enzyme activity, which can be attributed to species-specific microbial populations in earthworm gut acting on the ingested soil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Anticipatory postural adjustments contribute to age-related changes in compensatory steps associated with unilateral perturbations.

    PubMed

    Hyodo, Masaki; Saito, Mayumi; Ushiba, Junichi; Tomita, Yutaka; Minami, Mihoko; Masakado, Yoshihisa

    2012-07-01

    Compensatory steps are essential for preventing falls following perturbations. This study aimed to explore age-related changes in compensatory steps to unilateral perturbations, specifically in terms of whether anticipatory postural adjustments (APAs) play a role in stabilizing lateral balance. Five young and five elderly male adults participated. The split-belt treadmill was used to provide bi- and unilateral perturbations, as forward or backward transitions, applied 10 times in random order. Backward steps evoked by unilateral forward perturbations were evaluated. We measured temporal characteristics, mediolateral (ML) center of mass (COM) motion, and ML step length of compensatory steps. Compensatory steps to unexpected perturbations showed delayed onset of foot-off (FO) and expanded lateral swing length in elderly compared to young subjects. Differences in COM motions and step width arose related to APAs. Elderly subjects showing APAs exhibited no significant differences in ML COM, ML COM velocity, or ML swing length compared to young subjects. However, elderly subjects without APAs showed significant changes toward instability in these parameters. The fact that APAs play a notable role, particularly in the elderly, in stability offers a new insight into preventing falls. However, APAs occurred in 29% of the steps of young and 35% of the steps of elderly subjects. If the occurrence of APAs in elderly people in response to compensatory steps was more frequent, fall risk would be reduced. Further studies, particularly into APA frequency, might contribute to improved intervention to prevent falls. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Seismic wavefield modeling based on time-domain symplectic and Fourier finite-difference method

    NASA Astrophysics Data System (ADS)

    Fang, Gang; Ba, Jing; Liu, Xin-xin; Zhu, Kun; Liu, Guo-Chang

    2017-06-01

    Seismic wavefield modeling is important for improving seismic data processing and interpretation. Calculations of wavefield propagation are sometimes not stable when forward modeling of seismic wave uses large time steps for long times. Based on the Hamiltonian expression of the acoustic wave equation, we propose a structure-preserving method for seismic wavefield modeling by applying the symplectic finite-difference method on time grids and the Fourier finite-difference method on space grids to solve the acoustic wave equation. The proposed method is called the symplectic Fourier finite-difference (symplectic FFD) method, and offers high computational accuracy and improves the computational stability. Using acoustic approximation, we extend the method to anisotropic media. We discuss the calculations in the symplectic FFD method for seismic wavefield modeling of isotropic and anisotropic media, and use the BP salt model and BP TTI model to test the proposed method. The numerical examples suggest that the proposed method can be used in seismic modeling of strongly variable velocities, offering high computational accuracy and low numerical dispersion. The symplectic FFD method overcomes the residual qSV wave of seismic modeling in anisotropic media and maintains the stability of the wavefield propagation for large time steps.

  11. Stepping strategies for regulating gait adaptability and stability.

    PubMed

    Hak, Laura; Houdijk, Han; Steenbrink, Frans; Mert, Agali; van der Wurff, Peter; Beek, Peter J; van Dieën, Jaap H

    2013-03-15

    Besides a stable gait pattern, gait in daily life requires the capability to adapt this pattern in response to environmental conditions. The purpose of this study was to elucidate the anticipatory strategies used by able-bodied people to attain an adaptive gait pattern, and how these strategies interact with strategies used to maintain gait stability. Ten healthy subjects walked in a Computer Assisted Rehabilitation ENvironment (CAREN). To provoke an adaptive gait pattern, subjects had to hit virtual targets, with markers guided by their knees, while walking on a self-paced treadmill. The effects of walking with and without this task on walking speed, step length, step frequency, step width and the margins of stability (MoS) were assessed. Furthermore, these trials were performed with and without additional continuous ML platform translations. When an adaptive gait pattern was required, subjects decreased step length (p<0.01), tended to increase step width (p=0.074), and decreased walking speed while maintaining similar step frequency compared to unconstrained walking. These adaptations resulted in the preservation of equal MoS between trials, despite the disturbing influence of the gait adaptability task. When the gait adaptability task was combined with the balance perturbation subjects further decreased step length, as evidenced by a significant interaction between both manipulations (p=0.012). In conclusion, able-bodied people reduce step length and increase step width during walking conditions requiring a high level of both stability and adaptability. Although an increase in step frequency has previously been found to enhance stability, a faster movement, which would coincide with a higher step frequency, hampers accuracy and may consequently limit gait adaptability. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effects of ballates, step aerobics, and walking on balance in women aged 50-75 years.

    PubMed

    Clary, Sarah; Barnes, Cathleen; Bemben, Debra; Knehans, Allen; Bemben, Michael

    2006-01-01

    This study examined the effectiveness of Ballates training (strengthening of the central core musculature by the inception of balance techniques) compared to more traditional exercise programs, such as step aerobics and walking, on balance in women aged 50- 75 years. Participants were randomly assigned to one of three supervised training groups (1 hour/day, 3 days/week, 13 weeks), Ballates (n = 12), step aerobics (n = 17), or walking (n =15). Balance was measured by four different methods (modified Clinical Test for the Sensory Interaction on Balance - mCTSIB; Unilateral Stance with Eyes Open - US-EO or Eyes Closed - US-EC; Tandem Walk - TW; Step Quick Turn - SQT) using the NeuroCom Balance Master. A 2-way (Group and Trial) repeated measures ANOVA and post-hoc Bonferroni Pair-wise Comparisons were used to evaluate changes in the dependent variables used to describe stability and balance (sway velocity, turn sway, speed, and turn time). Measures of static postural stability and dynamic balance were similar for the three groups prior to training. Following the different exercise interventions, sway velocity on firm and foam surfaces (mCTSIB) with eyes closed (p < 0.05) increased for the Ballates group while the other two exercise groups either maintained or decreased their sway velocity following the training, therefore suggesting that these two groups either maintained or improved their balance. There were significant improvements in speed during the TW test (p < 0.01), and turn time (p < 0.01) and sway (p < 0.05) during the SQT test for each of the three groups. In general, all three training programs improved dynamic balance, however, step aerobics and walking programs resulted in be better improvements in postural stability or static balance when compared to the Ballates program. Key PointsExercise training can improve balanceNeed to consider both static and dynamic aspects of balance individuallyImproved balance can reduce the risk of fall.

  13. Effects of interventions on normalizing step width during self-paced dual-belt treadmill walking with virtual reality, a randomised controlled trial.

    PubMed

    Oude Lansink, I L B; van Kouwenhove, L; Dijkstra, P U; Postema, K; Hijmans, J M

    2017-10-01

    Step width is increased during dual-belt treadmill walking, in self-paced mode with virtual reality. Generally a familiarization period is thought to be necessary to normalize step width. The aim of this randomised study was to analyze the effects of two interventions on step width, to reduce the familiarization period. We used the GRAIL (Gait Real-time Analysis Interactive Lab), a dual-belt treadmill with virtual reality in the self-paced mode. Thirty healthy young adults were randomly allocated to three groups and asked to walk at their preferred speed for 5min. In the first session, the control-group received no intervention, the 'walk-on-the-line'-group was instructed to walk on a line, projected on the between-belt gap of the treadmill and the feedback-group received feedback about their current step width and were asked to reduce it. Interventions started after 1min and lasted 1min. During the second session, 7-10days later, no interventions were given. Linear mixed modeling showed that interventions did not have an effect on step width after the intervention period in session 1. Initial step width (second 30s) of session 1 was larger than initial step width of session 2. Step width normalized after 2min and variation in step width stabilized after 1min. Interventions do not reduce step width after intervention period. A 2-min familiarization period is sufficient to normalize and stabilize step width, in healthy young adults, regardless of interventions. A standardized intervention to normalize step width is not necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Use of Perturbation-Based Gait Training in a Virtual Environment to Address Mediolateral Instability in an Individual With Unilateral Transfemoral Amputation

    PubMed Central

    Rábago, Christopher A.; Rylander, Jonathan H.; Dingwell, Jonathan B.; Wilken, Jason M.

    2016-01-01

    Background and Purpose Roughly 50% of individuals with lower limb amputation report a fear of falling and fall at least once a year. Perturbation-based gait training and the use of virtual environments have been shown independently to be effective at improving walking stability in patient populations. An intervention was developed combining the strengths of the 2 paradigms utilizing continuous, walking surface angle oscillations within a virtual environment. This case report describes walking function and mediolateral stability outcomes of an individual with a unilateral transfemoral amputation following a novel perturbation-based gait training intervention in a virtual environment. Case Description The patient was a 43-year-old male veteran who underwent a right transfemoral amputation 7+ years previously as a result of a traumatic blast injury. He used a microprocessor-controlled knee and an energy storage and return foot. Outcomes Following the intervention, multiple measures indicated improved function and stability, including faster self-selected walking speed and reduced functional stepping time, mean step width, and step width variability. These changes were seen during normal level walking and mediolateral visual field or platform perturbations. In addition, benefits were retained at least 5 weeks after the final training session. Discussion The perturbation-based gait training program in the virtual environment resulted in the patient's improved walking function and mediolateral stability. Although the patient had completed intensive rehabilitation following injury and was fully independent, the intervention still induced notable improvements to mediolateral stability. Thus, perturbation-based gait training in challenging simulated environments shows promise for improving walking stability and may be beneficial when integrated into a rehabilitation program. PMID:27277497

  15. Ares-I Bending Filter Design using a Constrained Optimization Approach

    NASA Technical Reports Server (NTRS)

    Hall, Charles; Jang, Jiann-Woei; Hall, Robert; Bedrossian, Nazareth

    2008-01-01

    The Ares-I launch vehicle represents a challenging flex-body structural environment for control system design. Software filtering of the inertial sensor output is required to ensure adequate stable response to guidance commands while minimizing trajectory deviations. This paper presents a design methodology employing numerical optimization to develop the Ares-I bending filters. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares-I time-varying dynamics and control system can be frozen over a short period of time, the bending filters are designed to stabilize all the selected frozen-time launch control systems in the presence of parameter uncertainty. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constrains minimizes performance degradation caused by the addition of the bending filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The bending filter designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC MAVERIC 6DOF nonlinear time domain simulation.

  16. Ares I Flight Control System Design

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedrossian, Nazareth; Hall, Charles; Ryan, Stephen; Jackson, Mark

    2010-01-01

    The Ares I launch vehicle represents a challenging flex-body structural environment for flight control system design. This paper presents a design methodology for employing numerical optimization to develop the Ares I flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics, propellant slosh, and flex. Under the assumption that the Ares I time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time launch control systems in the presence of parametric uncertainty. Flex filters in the flight control system are designed to minimize the flex components in the error signals before they are sent to the attitude controller. To ensure adequate response to guidance command, step response specifications are introduced as constraints in the optimization problem. Imposing these constraints minimizes performance degradation caused by the addition of the flex filters. The first stage bending filter design achieves stability by adding lag to the first structural frequency to phase stabilize the first flex mode while gain stabilizing the higher modes. The upper stage bending filter design gain stabilizes all the flex bending modes. The flight control system designs provided here have been demonstrated to provide stable first and second stage control systems in both Draper Ares Stability Analysis Tool (ASAT) and the MSFC 6DOF nonlinear time domain simulation.

  17. One-step formation of w/o/w multiple emulsions stabilized by single amphiphilic block copolymers.

    PubMed

    Hong, Liangzhi; Sun, Guanqing; Cai, Jinge; Ngai, To

    2012-02-07

    Multiple emulsions are complex polydispersed systems in which both oil-in-water (O/W) and water-in-oil (W/O) emulsion exists simultaneously. They are often prepared accroding to a two-step process and commonly stabilized using a combination of hydrophilic and hydrophobic surfactants. Recently, some reports have shown that multiple emulsions can also be produced through one-step method with simultaneous occurrence of catastrophic and transitional phase inversions. However, these reported multiple emulsions need surfactant blends and are usually described as transitory or temporary systems. Herein, we report a one-step phase inversion process to produce water-in-oil-in-water (W/O/W) multiple emulsions stabilized solely by a synthetic diblock copolymer. Unlike the use of small molecule surfactant combinations, block copolymer stabilized multiple emulsions are remarkably stable and show the ability to separately encapsulate both polar and nonpolar cargos. The importance of the conformation of the copolymer surfactant at the interfaces with regards to the stability of the multiple emulsions using the one-step method is discussed.

  18. Transient performance analysis of the master cylinder hydraulic system of a 6.3 MN fineblanking press

    NASA Astrophysics Data System (ADS)

    Yi, Guodong; Li, Jin

    2018-03-01

    The master cylinder hydraulic system is the core component of the fineblanking press that seriously affects the machine performance. A key issue in the design of the master cylinder hydraulic system is dealing with the heavy shock loads in the fineblanking process. In this paper, an equivalent model of the master cylinder hydraulic system is established based on typical process parameters for practical fineblanking; then, the response characteristics of the master cylinder slider to the step changes in the load and control current are analyzed, and lastly, control strategies for the proportional valve are studied based on the impact of the control parameters on the kinetic stability of the slider. The results show that the kinetic stability of the slider is significantly affected by the step change of the control current, while it is slightly affected by the step change of the system load, which can be improved by adjusting the flow rate and opening time of the proportional valve.

  19. Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping.

    PubMed

    Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G

    2010-12-01

    This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Long time stability of small-amplitude Breathers in a mixed FPU-KG model

    NASA Astrophysics Data System (ADS)

    Paleari, Simone; Penati, Tiziano

    2016-12-01

    In the limit of small couplings in the nearest neighbor interaction, and small total energy, we apply the resonant normal form result of a previous paper of ours to a finite but arbitrarily large mixed Fermi-Pasta-Ulam Klein-Gordon chain, i.e., with both linear and nonlinear terms in both the on-site and interaction potential, with periodic boundary conditions. An existence and orbital stability result for Breathers of such a normal form, which turns out to be a generalized discrete nonlinear Schrödinger model with exponentially decaying all neighbor interactions, is first proved. Exploiting such a result as an intermediate step, a long time stability theorem for the true Breathers of the KG and FPU-KG models, in the anti-continuous limit, is proven.

  1. Stability-maneuverability trade-offs during lateral steps.

    PubMed

    Acasio, Julian; Wu, Mengnan/Mary; Fey, Nicholas P; Gordon, Keith E

    2017-02-01

    Selecting a specific foot placement strategy to perform walking maneuvers requires the management of several competing factors, including: maintaining stability, positioning oneself to actively generate impulses, and minimizing mechanical energy requirements. These requirements are unlikely to be independent. Our purpose was to determine the impact of lateral foot placement on stability, maneuverability, and energetics during walking maneuvers. Ten able-bodied adults performed laterally-directed walking maneuvers. Mediolateral placement of the "Push-off" foot during the maneuvers was varied, ranging from a cross-over step to a side-step. We hypothesized that as mediolateral foot placement became wider, passive stability in the direction of the maneuver, the lateral impulse generated to create the maneuver, and mechanical energy cost would all increase. We also hypothesized that subjects would prefer an intermediate step width reflective of trade-offs between stability vs. both maneuverability and energy. In support of our first hypothesis, we found that as Push-off step width increased, lateral margin of stability, peak lateral impulse, and total joint work all increased. In support of our second hypothesis, we found that when subjects had no restrictions on their mediolateral foot placement, they chose a foot placement between the two extreme positions. We found a significant relationship (p<0.05) between lateral margin of stability and peak lateral impulse (r=0.773), indicating a trade-off between passive stability and the force input required to maneuver. These findings suggest that during anticipated maneuvers people select foot placement strategies that balance competing costs to maintain stability, actively generate impulses, and minimize mechanical energy costs. Published by Elsevier B.V.

  2. Effect of one-step polishing system on the color stability of nanocomposites.

    PubMed

    Alawjali, S S; Lui, J L

    2013-08-01

    This study was to compare the effect of three different one-step polishing systems on the color stability of three different types of nanocomposites after immersion in coffee for one day and seven days and determine which nanocomposite material has the best color stability following polishing with each of the one-step polishing system. The nanocomposites tested were Tetric EvoCeram, Grandio and Herculite Précis. A total of 120 discs (40/nanocomposite, 8mm×2mm) were fabricated. Ten specimens for each nanocomposite cured under Mylar strips served as the control. The other specimens were polished with OptraPol, OneGloss and Occlubrush immersed in coffee (Nescafé) up to seven days. Color measurements were made with a spectrophotometer at baseline and after one and seven days. Two way repeated measure ANOVA, two way ANOVA and Bonferroni tests were used for statistical analyses (P<0.05). The immersion time was a significant factor in the discoloration of the nanocomposites. The effect of three one-step polishing systems on the color stability was also significant. The color change values of the materials cured against Mylar strips were the greatest. The lowest mean color change values were from the Occlubrush polished groups. The effect of the three different types of nanocomposite on the color change was significant. The highest color change values were with Tetric EvoCeram groups. The lowest color change values were with Herculite Précis groups. The color change of nanocomposite resins is affected by the type of composite, polishing procedure and the period of immersion in the staining agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Phase Shift Interferometer and Growth Set Up to Step Pattern Formation During Growth From Solutions. Influence of the Oscillatory solution Flow on Stability

    NASA Technical Reports Server (NTRS)

    Chernov, Alex A.; Booth, N. A.; Vekilov, P. G.; Murray, B. T.; McFadden, G. B.

    2000-01-01

    We have assembled an experimental setup based on Michelson interferometry with the growing crystal surface as one of the reflective surfaces. The crystallization part of the device allows optical monitoring of a face of a crystal growing at temperature stable within 0.05 C in a flow of solution of controlled direction and speed. The reference arm of the interferometer contains a liquid crystal element that allows controlled shifts of the phase of the interferograms. We employ an image-processing algorithm, which combines five images with a pi/2 phase difference between each pair of images. The images are transferred to a computer by a camera capable of capturing 60 frames per second. The device allows data collection on surface morphology and kinetics during the face layers growth over a relatively large area (approximately 4 sq. mm) in situ and in real time during growth. The estimated depth resolution of the phase shifting interferometry is approximately 50 Angstroms. The data will be analyzed in order to reveal and monitor step bunching during the growth process. The crystal chosen as a model for study in this work is KH2PO4 (KDP). This optically non-linear material is widely used in frequency doubling applications. There have been a number of studies of the kinetics of KDP crystallization that can serve as a benchmark for our investigations. However, so far, systematic quantitative characteristics of step interaction and bunching are missing. We intend to present our first quantitative results on the onset, initial stages and development of instabilities in moving step trains on vicinal crystal surfaces at varying supersaturation, flow rate, and flow direction. Behavior of a vicinal face growing from solution flowing normal to the steps and periodically changing its direction in time was considered theoretically. It was found that this oscillating flow reduces both stabilization and destabilization effects resulted from the unidirectional solution flow directed up the step stream and down the step stream. This reduction of stabilization and destabilization comes from effective mixing which entangles the phase shifts between the spatially periodic interface perturbation and the concentration wave induced by this perturbation. Numerical results and simplified mixing criterion will be discussed.

  4. Effect of Afterbody Length and Keel Angle on Minimum Depth of Step for Landing Stability and on Take-Off Stability of a Flying Boat

    NASA Technical Reports Server (NTRS)

    Olson, Roland E; Land, Norman S

    1949-01-01

    Tests were made to fill partly the need for information on the effect of afterbody dimensions on the hydrodynamic stability of a flying boat in smooth water. The dimensions investigated were depth of step, angle of afterbody keel, and length of afterbody. An analysis of the data showed that as either the afterbody length or keel angle was increased an accompanying increase in depth of step was required in order to maintain adequate landing stability. The landing-tests results have been reduced to an empirical formula giving the minimum depth of step in terms of afterbody length and keel angle. This formula is compared with results from other tank tests, and the correlation is fairly good. The formula thus becomes of use in preliminary design.

  5. Time-resolved spectral characterization of ring cavity surface emitting and ridge-type distributed feedback quantum cascade lasers by step-scan FT-IR spectroscopy.

    PubMed

    Brandstetter, Markus; Genner, Andreas; Schwarzer, Clemens; Mujagic, Elvis; Strasser, Gottfried; Lendl, Bernhard

    2014-02-10

    We present the time-resolved comparison of pulsed 2nd order ring cavity surface emitting (RCSE) quantum cascade lasers (QCLs) and pulsed 1st order ridge-type distributed feedback (DFB) QCLs using a step-scan Fourier transform infrared (FT-IR) spectrometer. Laser devices were part of QCL arrays and fabricated from the same laser material. Required grating periods were adjusted to account for the grating order. The step-scan technique provided a spectral resolution of 0.1 cm(-1) and a time resolution of 2 ns. As a result, it was possible to gain information about the tuning behavior and potential mode-hops of the investigated lasers. Different cavity-lengths were compared, including 0.9 mm and 3.2 mm long ridge-type and 0.97 mm (circumference) ring-type cavities. RCSE QCLs were found to have improved emission properties in terms of line-stability, tuning rate and maximum emission time compared to ridge-type lasers.

  6. Fractional Stability of Trunk Acceleration Dynamics of Daily-Life Walking: Toward a Unified Concept of Gait Stability

    PubMed Central

    Ihlen, Espen A. F.; van Schooten, Kimberley S.; Bruijn, Sjoerd M.; Pijnappels, Mirjam; van Dieën, Jaap H.

    2017-01-01

    Over the last decades, various measures have been introduced to assess stability during walking. All of these measures assume that gait stability may be equated with exponential stability, where dynamic stability is quantified by a Floquet multiplier or Lyapunov exponent. These specific constructs of dynamic stability assume that the gait dynamics are time independent and without phase transitions. In this case the temporal change in distance, d(t), between neighboring trajectories in state space is assumed to be an exponential function of time. However, results from walking models and empirical studies show that the assumptions of exponential stability break down in the vicinity of phase transitions that are present in each step cycle. Here we apply a general non-exponential construct of gait stability, called fractional stability, which can define dynamic stability in the presence of phase transitions. Fractional stability employs the fractional indices, α and β, of differential operator which allow modeling of singularities in d(t) that cannot be captured by exponential stability. The fractional stability provided an improved fit of d(t) compared to exponential stability when applied to trunk accelerations during daily-life walking in community-dwelling older adults. Moreover, using multivariate empirical mode decomposition surrogates, we found that the singularities in d(t), which were well modeled by fractional stability, are created by phase-dependent modulation of gait. The new construct of fractional stability may represent a physiologically more valid concept of stability in vicinity of phase transitions and may thus pave the way for a more unified concept of gait stability. PMID:28900400

  7. Development of iterative techniques for the solution of unsteady compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Hixon, Duane

    1992-01-01

    The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.

  8. A comparison of ground reaction force components according to the foothold heights in 16-t truck during downward step.

    PubMed

    Hyun, Seung-Hyun; Ryew, Che-Cheong

    2017-12-01

    The aim of this study is to compare and analyze the components of ground reaction force (GRF) relative to the foothold heights during downward step of 16-t truck. Adult males (n= 10) jumped downward from each 1st, 2nd, 3rd foothold step and driver's seat orderly using hand rail. Sampling rate of force components of 3 axis (medial-lateral [ML] GRF, anterior-posterior [AP] GRF, peak vertical force [PVF]), variables (COPx, COPy, COP area) of center of pressure (COP), loading rate, and stability index (ML, AP, vertical, and dynamic postural stability index [DPSI]) processed from GRF system was cut off at 1,000 Hz. and variables was processed with repeated one-way analysis of variance. AP GRF, PVF and loading rate showed higher value in case of not used hand rail than that used hand rail in all 1st, 2nd, and 3rd of foothold step. DPSI showed more lowered stability in order of 2nd, 3rd step than 1st foothold step used with hand rail, of which showed lowest stability from driver's seat. COPx, COPy, and COP area showed higher value in case of 2nd and 3rd than that of 1st of foothold step, and showed lowest stability from driver's seat. It is more desirable for cargo truck driver to utilize an available hand rail in order of 3rd, 2nd, and 1st of foothold step than downward stepping directly, thus by which may results in decrease of falling injuries and minimization of impulsive force transferring to muscular-skeletal system.

  9. Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions

    ERIC Educational Resources Information Center

    Nijdam, Justin J.

    2013-01-01

    A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…

  10. A MULTIPLE GRID APPROACH FOR OPEN CHANNEL FLOWS WITH STRONG SHOCKS. (R825200)

    EPA Science Inventory

    Abstract

    Explicit finite difference schemes are being widely used for modeling open channel flows accompanied with shocks. A characteristic feature of explicit schemes is the small time step, which is limited by the CFL stability condition. To overcome this limitation,...

  11. A MULTIPLE GRID ALGORITHM FOR ONE-DIMENSIONAL TRANSIENT OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    Numerical modeling of open channel flows with shocks using explicit finite difference schemes is constrained by the choice of time step, which is limited by the CFL stability criteria. To overcome this limitation, in this work we introduce the application of a multiple grid al...

  12. Optical frequency locked loop for long-term stabilization of broad-line DFB laser frequency difference

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2017-09-01

    We present an experimental realization of the optical frequency locked loop applied to long-term frequency difference stabilization of broad-line DFB lasers along with a new independent method to characterize relative phase fluctuations of two lasers. The presented design is based on a fast photodiode matched with an integrated phase-frequency detector chip. The locking setup is digitally tunable in real time, insensitive to environmental perturbations and compatible with commercially available laser current control modules. We present a simple model and a quick method to optimize the loop for a given hardware relying exclusively on simple measurements in time domain. Step response of the system as well as phase characteristics closely agree with the theoretical model. Finally, frequency stabilization for offsets within 4-15 GHz working range achieving <0.1 Hz long-term stability of the beat note frequency for 500 s averaging time period is demonstrated. For these measurements we employ an I/Q mixer that allows us to precisely and independently measure the full phase trace of the beat note signal.

  13. A Sub-ps Stability Time Transfer Method Based on Optical Modems.

    PubMed

    Frank, Florian; Stefani, Fabio; Tuckey, Philip; Pottie, Paul-Eric

    2018-06-01

    Coherent optical fiber links recently demonstrate their ability to compare the most advanced optical clocks over a continental scale. The outstanding performances of the optical clocks are stimulating the community to build much more stable time scales, and to develop the means to compare them. Optical fiber link is one solution that needs to be explored. Here, we are investigating a new method to transfer time based on an optical demodulation of a phase step imprint onto the optical carrier. We show the implementation of a proof-of-principle experiment over 86-km urban fiber, and report time interval transfer stability of 1 pulse per second signal with sub-ps resolution from 10 s to one day of measurement time. Prospects for future development and implementation in active telecommunication networks, not only regarding performance but also compatibility, conclude this paper.

  14. The Effect of Afterbody Length of the Hydrodynamic Stability of a Dynamic Model of a Flying Boat: Langley Tank Model 134

    NASA Technical Reports Server (NTRS)

    Land, Norman S

    1945-01-01

    A program of model tests has been completed at Langley tank no. 1 which will furnish a qualitative guide as to the relation of length of afterbody and depth of step. The model used for the tests was a l/12-size unpowered dynamic model of a hypothetical 160,000-pound airplane. The results showed that an increase in length of afterbody requires an accompanying increase in depth of step to maintain adequate landing stability. Changing the length of afterbody and depth of step in such a manner as to maintain a given landing stability will result in only small changes in take-off stability.

  15. Real time and accelerated stability studies of Tetanus toxoid manufactured in public sector facilities of Pakistan.

    PubMed

    Parveen, Ghazala; Hussain, Shahzad; Malik, Farnaz; Begum, Anwar; Mahmood, Sidra; Raza, Naeem

    2013-11-01

    Tetanus is an acute illness represented by comprehensive increased inflexibility and spastic spasms of skeletal muscles. The poor quality tetanus toxoid vaccine can raise the prevalence of neonatal tetanus. WHO has taken numerous steps to assist national regulatory authorities and vaccine manufacturers to ensure its quality and efficacy. It has formulated international principles for stability evaluation of each vaccine, which are available in the form of recommendations and guidelines. The aim of present study was to ensure the stability of tetanus vaccines produced by National Institute of Health, Islamabad, Pakistan by employing standardized methods to ensure constancy of tetanus toxoid at elevated temperature, if during storage/transportation cold chain may not be maintained in hot weather. A total of three batches filled during full-scale production were tested. All Stability studies determination were performed on final products stored at 2-8°C and elevated temperatures in conformance with the ICH Guideline of Stability Testing of Biological Products. These studies gave comparison between real time shelf-life stability and accelerated stability studies. The findings indicate long﷓term thermo stability and prove that this tetanus vaccine can remain efficient under setting of routine use when suggested measures for storage and handling are followed in true spirit.

  16. Effect of production management on semen quality during long-term storage in different European boar studs.

    PubMed

    Schulze, M; Kuster, C; Schäfer, J; Jung, M; Grossfeld, R

    2018-03-01

    The processing of ejaculates is a fundamental step for the fertilizing capacity of boar spermatozoa. The aim of the present study was to identify factors that affect quality of boar semen doses. The production process during 1 day of semen processing in 26 European boar studs was monitored. In each boar stud, nine to 19 randomly selected ejaculates from 372 Pietrain boars were analyzed for sperm motility, acrosome and plasma membrane integrity, mitochondrial activity and thermo-resistance (TRT). Each ejaculate was monitored for production time and temperature for each step in semen processing using the special programmed software SEQU (version 1.7, Minitüb, Tiefenbach, Germany). The dilution of ejaculates with a short-term extender was completed in one step in 10 AI centers (n = 135 ejaculates), in two steps in 11 AI centers (n = 158 ejaculates) and in three steps in five AI centers (n = 79 ejaculates). Results indicated there was a greater semen quality with one-step isothermal dilution compared with the multi-step dilution of AI semen doses (total motility TRT d7: 71.1 ± 19.2%, 64.6 ± 20.0%, 47.1 ± 27.1%; one-step compared with two-step compared with the three-step dilution; P < .05). There was a marked advantage when using the one-step isothermal dilution regarding time management, preservation suitability, stability and stress resistance. One-step dilution caused significant lower holding times of raw ejaculates and reduced the possible risk of making mistakes due to a lower number of processing steps. These results lead to refined recommendations for boar semen processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Does the Spine Surgeon’s Experience Affect Fracture Classification, Assessment of Stability, and Treatment Plan in Thoracolumbar Injuries?

    PubMed Central

    Kanna, Rishi Mugesh; Schroeder, Gregory D.; Oner, Frank Cumhur; Vialle, Luiz; Chapman, Jens; Dvorak, Marcel; Fehlings, Michael; Shetty, Ajoy Prasad; Schnake, Klaus; Kandziora, Frank; Vaccaro, Alexander R.

    2017-01-01

    Study Design: Prospective survey-based study. Objectives: The AO Spine thoracolumbar injury classification has been shown to have good reproducibility among clinicians. However, the influence of spine surgeons’ clinical experience on fracture classification, stability assessment, and decision on management based on this classification has not been studied. Furthermore, the usefulness of varying imaging modalities including radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) in the decision process was also studied. Methods: Forty-one spine surgeons from different regions, acquainted with the AOSpine classification system, were provided with 30 thoracolumbar fractures in a 3-step assessment: first radiographs, followed by CT and MRI. Surgeons classified the fracture, evaluated stability, chose management, and identified reasons for any changes. The surgeons were divided into 2 groups based on years of clinical experience as <10 years (n = 12) and >10 years (n = 29). Results: There were no significant differences between the 2 groups in correctly classifying A1, B2, and C type fractures. Surgeons with less experience had more correct diagnosis in classifying A3 (47.2% vs 38.5% in step 1, 73.6% vs 60.3% in step 2 and 77.8% vs 65.5% in step 3), A4 (16.7% vs 24.1% in step 1, 72.9% vs 57.8% in step 2 and 70.8% vs 56.0% in step3) and B1 injuries (31.9% vs 20.7% in step 1, 41.7% vs 36.8% in step 2 and 38.9% vs 33.9% in step 3). In the assessment of fracture stability and decision on treatment, the less and more experienced surgeons performed equally. The selection of a particular treatment plan varied in all subtypes except in A1 and C type injuries. Conclusion: Surgeons’ experience did not significantly affect overall fracture classification, evaluating stability and planning the treatment. Surgeons with less experience had a higher percentage of correct classification in A3 and A4 injuries. Despite variations between them in classification, the assessment of overall stability and management decisions were similar between the 2 groups. PMID:28815158

  18. Does the Spine Surgeon's Experience Affect Fracture Classification, Assessment of Stability, and Treatment Plan in Thoracolumbar Injuries?

    PubMed

    Rajasekaran, Shanmuganathan; Kanna, Rishi Mugesh; Schroeder, Gregory D; Oner, Frank Cumhur; Vialle, Luiz; Chapman, Jens; Dvorak, Marcel; Fehlings, Michael; Shetty, Ajoy Prasad; Schnake, Klaus; Kandziora, Frank; Vaccaro, Alexander R

    2017-06-01

    Prospective survey-based study. The AO Spine thoracolumbar injury classification has been shown to have good reproducibility among clinicians. However, the influence of spine surgeons' clinical experience on fracture classification, stability assessment, and decision on management based on this classification has not been studied. Furthermore, the usefulness of varying imaging modalities including radiographs, computed tomography (CT) and magnetic resonance imaging (MRI) in the decision process was also studied. Forty-one spine surgeons from different regions, acquainted with the AOSpine classification system, were provided with 30 thoracolumbar fractures in a 3-step assessment: first radiographs, followed by CT and MRI. Surgeons classified the fracture, evaluated stability, chose management, and identified reasons for any changes. The surgeons were divided into 2 groups based on years of clinical experience as <10 years (n = 12) and >10 years (n = 29). There were no significant differences between the 2 groups in correctly classifying A1, B2, and C type fractures. Surgeons with less experience had more correct diagnosis in classifying A3 (47.2% vs 38.5% in step 1, 73.6% vs 60.3% in step 2 and 77.8% vs 65.5% in step 3), A4 (16.7% vs 24.1% in step 1, 72.9% vs 57.8% in step 2 and 70.8% vs 56.0% in step3) and B1 injuries (31.9% vs 20.7% in step 1, 41.7% vs 36.8% in step 2 and 38.9% vs 33.9% in step 3). In the assessment of fracture stability and decision on treatment, the less and more experienced surgeons performed equally. The selection of a particular treatment plan varied in all subtypes except in A1 and C type injuries. Surgeons' experience did not significantly affect overall fracture classification, evaluating stability and planning the treatment. Surgeons with less experience had a higher percentage of correct classification in A3 and A4 injuries. Despite variations between them in classification, the assessment of overall stability and management decisions were similar between the 2 groups.

  19. An embedded mesh method using piecewise constant multipliers with stabilization: mathematical and numerical aspects

    DOE PAGES

    Puso, M. A.; Kokko, E.; Settgast, R.; ...

    2014-10-22

    An embedded mesh method using piecewise constant multipliers originally proposed by Puso et al. (CMAME, 2012) is analyzed here to determine effects of the pressure stabilization term and small cut cells. The approach is implemented for transient dynamics using the central difference scheme for the time discretization. It is shown that the resulting equations of motion are a stable linear system with a condition number independent of mesh size. Furthermore, we show that the constraints and the stabilization terms can be recast as non-proportional damping such that the time integration of the scheme is provably stable with a critical timemore » step computed from the undamped equations of motion. Effects of small cuts are discussed throughout the presentation. A mesh study is conducted to evaluate the effects of the stabilization on the discretization error and conditioning and is used to recommend an optimal value for stabilization scaling parameter. Several nonlinear problems are also analyzed and compared with comparable conforming mesh results. Finally, we show several demanding problems highlighting the robustness of the proposed approach.« less

  20. Attitude output feedback control for rigid spacecraft with finite-time convergence.

    PubMed

    Hu, Qinglei; Niu, Guanglin

    2017-09-01

    The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Robust ADP Design for Continuous-Time Nonlinear Systems With Output Constraints.

    PubMed

    Fan, Bo; Yang, Qinmin; Tang, Xiaoyu; Sun, Youxian

    2018-06-01

    In this paper, a novel robust adaptive dynamic programming (RADP)-based control strategy is presented for the optimal control of a class of output-constrained continuous-time unknown nonlinear systems. Our contribution includes a step forward beyond the usual optimal control result to show that the output of the plant is always within user-defined bounds. To achieve the new results, an error transformation technique is first established to generate an equivalent nonlinear system, whose asymptotic stability guarantees both the asymptotic stability and the satisfaction of the output restriction of the original system. Furthermore, RADP algorithms are developed to solve the transformed nonlinear optimal control problem with completely unknown dynamics as well as a robust design to guarantee the stability of the closed-loop systems in the presence of unavailable internal dynamic state. Via small-gain theorem, asymptotic stability of the original and transformed nonlinear system is theoretically guaranteed. Finally, comparison results demonstrate the merits of the proposed control policy.

  2. Four decades of implicit Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan B.

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  3. Four decades of implicit Monte Carlo

    DOE PAGES

    Wollaber, Allan B.

    2016-02-23

    In 1971, Fleck and Cummings derived a system of equations to enable robust Monte Carlo simulations of time-dependent, thermal radiative transfer problems. Denoted the “Implicit Monte Carlo” (IMC) equations, their solution remains the de facto standard of high-fidelity radiative transfer simulations. Over the course of 44 years, their numerical properties have become better understood, and accuracy enhancements, novel acceleration methods, and variance reduction techniques have been suggested. In this review, we rederive the IMC equations—explicitly highlighting assumptions as they are made—and outfit the equations with a Monte Carlo interpretation. We put the IMC equations in context with other approximate formsmore » of the radiative transfer equations and present a new demonstration of their equivalence to another well-used linearization solved with deterministic transport methods for frequency-independent problems. We discuss physical and numerical limitations of the IMC equations for asymptotically small time steps, stability characteristics and the potential of maximum principle violations for large time steps, and solution behaviors in an asymptotically thick diffusive limit. We provide a new stability analysis for opacities with general monomial dependence on temperature. Here, we consider spatial accuracy limitations of the IMC equations and discussion acceleration and variance reduction techniques.« less

  4. Stability analysis of the Euler discretization for SIR epidemic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryanto, Agus

    2014-06-19

    In this paper we consider a discrete SIR epidemic model obtained by the Euler method. For that discrete model, existence of disease free equilibrium and endemic equilibrium is established. Sufficient conditions on the local asymptotical stability of both disease free equilibrium and endemic equilibrium are also derived. It is found that the local asymptotical stability of the existing equilibrium is achieved only for a small time step size h. If h is further increased and passes the critical value, then both equilibriums will lose their stability. Our numerical simulations show that a complex dynamical behavior such as bifurcation or chaosmore » phenomenon will appear for relatively large h. Both analytical and numerical results show that the discrete SIR model has a richer dynamical behavior than its continuous counterpart.« less

  5. Three-step approach for prediction of limit cycle pressure oscillations in combustion chambers of gas turbines

    NASA Astrophysics Data System (ADS)

    Iurashev, Dmytro; Campa, Giovanni; Anisimov, Vyacheslav V.; Cosatto, Ezio

    2017-11-01

    Currently, gas turbine manufacturers frequently face the problem of strong acoustic combustion driven oscillations inside combustion chambers. These combustion instabilities can cause extensive wear and sometimes even catastrophic damages to combustion hardware. This requires prevention of combustion instabilities, which, in turn, requires reliable and fast predictive tools. This work presents a three-step method to find stability margins within which gas turbines can be operated without going into self-excited pressure oscillations. As a first step, a set of unsteady Reynolds-averaged Navier-Stokes simulations with the Flame Speed Closure (FSC) model implemented in the OpenFOAM® environment are performed to obtain the flame describing function of the combustor set-up. The standard FSC model is extended in this work to take into account the combined effect of strain and heat losses on the flame. As a second step, a linear three-time-lag-distributed model for a perfectly premixed swirl-stabilized flame is extended to the nonlinear regime. The factors causing changes in the model parameters when applying high-amplitude velocity perturbations are analysed. As a third step, time-domain simulations employing a low-order network model implemented in Simulink® are performed. In this work, the proposed method is applied to a laboratory test rig. The proposed method permits not only the unsteady frequencies of acoustic oscillations to be computed, but the amplitudes of such oscillations as well. Knowing the amplitudes of unstable pressure oscillations, it is possible to determine how these oscillations are harmful to the combustor equipment. The proposed method has a low cost because it does not require any license for computational fluid dynamics software.

  6. Stability of nonuniform rotor blades in hover using a mixed formulation

    NASA Technical Reports Server (NTRS)

    Stephens, W. B.; Hodges, D. H.; Avila, J. H.; Kung, R. M.

    1980-01-01

    A mixed formulation for calculating static equilibrium and stability eigenvalues of nonuniform rotor blades in hover is presented. The static equilibrium equations are nonlinear and are solved by an accurate and efficient collocation method. The linearized perturbation equations are solved by a one step, second order integration scheme. The numerical results correlate very well with published results from a nearly identical stability analysis based on a displacement formulation. Slight differences in the results are traced to terms in the equations that relate moments to derivatives of rotations. With the present ordering scheme, in which terms of the order of squares of rotations are neglected with respect to unity, it is not possible to achieve completely equivalent models based on mixed and displacement formulations. The one step methods reveal that a second order Taylor expansion is necessary to achieve good convergence for nonuniform rotating blades. Numerical results for a hypothetical nonuniform blade, including the nonlinear static equilibrium solution, were obtained with no more effort or computer time than that required for a uniform blade.

  7. Determination of pyrophosphate and sulfate using polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles.

    PubMed

    Terenteva, E A; Apyari, V V; Dmitrienko, S G; Garshev, A V; Volkov, P A; Zolotov, Yu A

    2018-04-01

    Positively charged polyhexamethylene guanidine hydrochloride-stabilized silver nanoparticles (PHMG-AgNPs) were prepared and applied as a colorimetric probe for single-step determination of pyrophosphate and sulfate. The approach is based on the nanoparticles aggregation leading to change in their absorption spectra and color of the solution. Due to both electrostatic and steric stabilization these nanoparticles show decreased sensitivity relatively to many common anions, which allows for simple and rapid direct single-step determination of pyrophosphate and sulfate. Effects of different factors (time of interaction, pH, concentrations of anions and the nanoparticles) on aggregation of PHMG-AgNPs and analytical performance of the procedure were investigated. The method allows for the determination of pyrophosphate and sulfate in the range of 0.16-2μgmL -1 and 20-80μgmL -1 with RSD of 2-5%, respectively. The analysis can be performed using either spectrophotometry or naked-eye detection. Practical application of the method was shown by the example of pyrophosphate determination in baking powder sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Atomic and electronic structure of a copper/graphene interface as prepared and 1.5 years after

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Bazylewski, P. F.; Kukharenko, A. I.; Zhidkov, I. S.; Ponosov, Yu. S.; Kurmaev, E. Z.; Cholakh, S. O.; Lee, Y. H.; Chang, G. S.

    2017-12-01

    We report the results of X-ray spectroscopy and Raman measurements of as-prepared graphene on a high quality copper surface and the same materials after 1.5 years under different conditions (ambient and low humidity). The obtained results were compared with density functional theory calculations of the formation energies and electronic structures of various structural defects in graphene/Cu interfaces. For evaluation of the stability of the carbon cover, we propose a two-step model. The first step is oxidation of the graphene, and the second is perforation of graphene with the removal of carbon atoms as part of the carbon dioxide molecule. Results of the modeling and experimental measurements provide evidence that graphene grown on high-quality copper substrate becomes robust and stable in time (1.5 years). However, the stability of this interface depends on the quality of the graphene and the number of native defects in the graphene and substrate. The effect of the presence of a metallic substrate with defects on the stability and electronic structure of graphene is also discussed

  9. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide.

    PubMed

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-04

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  10. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide

    NASA Astrophysics Data System (ADS)

    Liu, Yuhang; Zeng, Jie; Han, Di; Wu, Kai; Yu, Bowen; Chai, Songgang; Chen, Feng; Fu, Qiang

    2018-05-01

    The preparation of graphene oxide (GO) via Hummers method is usually divided into two steps: low temperature oxidation at 35 °C (step I oxidation) and high temperature oxidation at 98 °C (step II oxidation). However, the effects of these two steps on the exfoliation capability and chemical structure of graphite oxide remain unclear. In this study, both the functional group content of graphite oxide and the entire evolution of interlayer spacing were investigated during the two steps. Step I oxidation is a slowly inhomogeneous oxidation step to remove unoxidized graphite flakes. The prepared graphite oxide can be easily self-exfoliated but contains a lot of organic sulfur. During the first 20 min of step II oxidation, the majority of organic sulfur can be efficiently removed and graphite oxide still remains a good exfoliation capability due to sharp increasing of carboxyl groups. However, with a longer oxidation time at step II oxidation, the decrease of organic sulfur content is slowed down apparently but without any carboxyl groups forming, then graphite oxide finally loses self-exfoliation capability. It is concluded that a short time of step II oxidation can produce purer and ultralarge GO sheets via self-exfoliation. The pure GO is possessed with better thermal stability and liquid crystal behavior. Besides, reduced GO films prepared from step II oxidation show better mechanical and electric properties after reducing compared with that obtained only via step I oxidation.

  11. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  12. Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think of a mechanism that activates the split form of the equations only at some parts of the domain. Another issue is how to define good sensors for determining in which parts of the computational domain a certain feature should be filtered by the appropriate numerical dissipation. For the present study we employ a wavelet technique introduced in as sensors. Here, the method is briefly described with selected numerical experiments.

  13. Applications of time-series analysis to mood fluctuations in bipolar disorder to promote treatment innovation: a case series.

    PubMed

    Holmes, E A; Bonsall, M B; Hales, S A; Mitchell, H; Renner, F; Blackwell, S E; Watson, P; Goodwin, G M; Di Simplicio, M

    2016-01-26

    Treatment innovation for bipolar disorder has been hampered by a lack of techniques to capture a hallmark symptom: ongoing mood instability. Mood swings persist during remission from acute mood episodes and impair daily functioning. The last significant treatment advance remains Lithium (in the 1970s), which aids only the minority of patients. There is no accepted way to establish proof of concept for a new mood-stabilizing treatment. We suggest that combining insights from mood measurement with applied mathematics may provide a step change: repeated daily mood measurement (depression) over a short time frame (1 month) can create individual bipolar mood instability profiles. A time-series approach allows comparison of mood instability pre- and post-treatment. We test a new imagery-focused cognitive therapy treatment approach (MAPP; Mood Action Psychology Programme) targeting a driver of mood instability, and apply these measurement methods in a non-concurrent multiple baseline design case series of 14 patients with bipolar disorder. Weekly mood monitoring and treatment target data improved for the whole sample combined. Time-series analyses of daily mood data, sampled remotely (mobile phone/Internet) for 28 days pre- and post-treatment, demonstrated improvements in individuals' mood stability for 11 of 14 patients. Thus the findings offer preliminary support for a new imagery-focused treatment approach. They also indicate a step in treatment innovation without the requirement for trials in illness episodes or relapse prevention. Importantly, daily measurement offers a description of mood instability at the individual patient level in a clinically meaningful time frame. This costly, chronic and disabling mental illness demands innovation in both treatment approaches (whether pharmacological or psychological) and measurement tool: this work indicates that daily measurements can be used to detect improvement in individual mood stability for treatment innovation (MAPP).

  14. Numerical stability of an explicit finite difference scheme for the solution of transient conduction in composite media

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1981-01-01

    A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.

  15. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc).

    PubMed

    Milner, Phillip J; Martell, Jeffrey D; Siegelman, Rebecca L; Gygi, David; Weston, Simon C; Long, Jeffrey R

    2018-01-07

    Alkyldiamine-functionalized variants of the metal-organic framework Mg 2 (dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary , secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2 (dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2 (dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2 (pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para -carboxylate), which, in contrast to Mg 2 (dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2 (pc-dobpdc) with large diamines such as N -( n -heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications.

  16. Overcoming double-step CO 2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg 2(dobpdc)

    DOE PAGES

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.; ...

    2017-10-26

    Alkyldiamine-functionalized variants of the metal–organic framework Mg 2(dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behaviormore » likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2(dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2(dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2(pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg 2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications.« less

  17. Stabilization of time domain acoustic boundary element method for the interior problem with impedance boundary conditions.

    PubMed

    Jang, Hae-Won; Ih, Jeong-Guon

    2012-04-01

    The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.

  18. Energy-based operator splitting approach for the time discretization of coupled systems of partial and ordinary differential equations for fluid flows: The Stokes case

    NASA Astrophysics Data System (ADS)

    Carichino, Lucia; Guidoboni, Giovanna; Szopos, Marcela

    2018-07-01

    The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived.

  19. A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface

    NASA Astrophysics Data System (ADS)

    Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo

    2016-09-01

    The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.

  20. Improved mechanical stability of HKUST-1 in confined nanospace.

    PubMed

    Casco, M E; Fernández-Catalá, J; Martínez-Escandell, M; Rodríguez-Reinoso, F; Ramos-Fernández, E V; Silvestre-Albero, J

    2015-09-28

    One of the main concerns in the technological application of several metal-organic frameworks (MOFs) relates to their structural instability under pressure (after a conforming step). Here we report for the first time that mechanical instability can be highly improved via nucleation and growth of MOF nanocrystals in the confined nanospace of activated carbons.

  1. [Subjective Gait Stability in the Elderly].

    PubMed

    Hirsch, Theresa; Lampe, Jasmin; Michalk, Katrin; Röder, Lotte; Munsch, Karoline; Marquardt, Jonas

    2017-07-10

    It can be assumed that the feeling of gait stability or gait instability in the elderly may be independent of a possible fear of falling or a history of falling when walking. Up to now, there has been a lack of spatiotemporal gait parameters for older people who subjectively feel secure when walking. The aim of the study is to analyse the distribution of various gait parameters for older people who subjectively feel secure when walking. In a cross-sectional study, the gait parameters stride time, step time, stride length, step length, double support, single support, and walking speed were measured using a Vicon three-dimensional motion capture system (Plug-In Gait Lower-Body Marker Set) in 31 healthy people aged 65 years and older (mean age 72 ± 3.54 years) who subjectively feel secure when walking. There was a homogeneous distribution in the gait parameters examined, with no abnormalities. The mean values have a low variance with narrow confidence intervals. This study provides evidence that people who subjectively feel secure when walking demonstrate similarly objective gait parameters..

  2. Mesoporous carbon materials

    DOEpatents

    Dai, Sheng [Knoxville, TN; Wang, Xiqing [Oak Ridge, TN

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  3. Mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  4. Effects of walking speed on the step-by-step control of step width.

    PubMed

    Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C

    2018-02-08

    Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.

  5. A novel approach to periodic event-triggered control: Design and application to the inverted pendulum.

    PubMed

    Aranda-Escolástico, Ernesto; Guinaldo, María; Gordillo, Francisco; Dormido, Sebastián

    2016-11-01

    In this paper, periodic event-triggered controllers are proposed for the rotary inverted pendulum. The control strategy is divided in two steps: swing-up and stabilization. In both cases, the system is sampled periodically but the control actions are only computed at certain instances of time (based on events), which are a subset of the sampling times. For the stabilization control, the asymptotic stability is guaranteed applying the Lyapunov-Razumikhin theorem for systems with delays. This result is applicable to general linear systems and not only to the inverted pendulum. For the swing-up control, a trigger function is provided from the derivative of the Lyapunov function for the swing-up control law. Experimental results show a significant improvement with respect to periodic control in the number of control actions. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Older adults show preserved equilibrium but impaired step length control in motor-equivalent stabilization of gait.

    PubMed

    Verrel, Julius; Lövdén, Martin; Lindenberger, Ulman

    2012-01-01

    Stable walking depends on the coordination of multiple biomechanical degrees of freedom to ensure the dynamic maintenance of whole-body equilibrium as well as continuous forward progression. We investigated adult age-related differences in whole-body coordination underlying stabilization of center of mass (CoM) position and step pattern during locomotion. Sixteen younger (20-30 years) and 16 healthy older men (65-80 years) walked on a motorized treadmill at 80%, 100% and 120% of their self-selected preferred speed. Preferred speeds did not differ between the age groups. Motor-equivalent stabilization of step parameters (step length and width) and CoM position relative to the support (back and front foot) was examined using a generalized covariation analysis. Across age groups, covariation indices were highest for CoM position relative to the front foot, the measure most directly related to body equilibrium. Compared to younger adults, older adults showed lower covariation indices with respect to step length, extending previous findings of age-related differences in motor-equivalent coordination. In contrast, no reliable age differences were found regarding stabilization of step width or any of the CoM parameters. The observed pattern of results may reflect robust prioritization of balance over step pattern regularity, which may be adaptive in the face of age-associated sensorimotor losses and decline of coordinative capacities.

  7. Quick foot placement adjustments during gait are less accurate in individuals with focal cerebellar lesions.

    PubMed

    Hoogkamer, Wouter; Potocanac, Zrinka; Van Calenbergh, Frank; Duysens, Jacques

    2017-10-01

    Online gait corrections are frequently used to restore gait stability and prevent falling. They require shorter response times than voluntary movements which suggests that subcortical pathways contribute to the execution of online gait corrections. To evaluate the potential role of the cerebellum in these pathways we tested the hypotheses that online gait corrections would be less accurate in individuals with focal cerebellar damage than in neurologically intact controls and that this difference would be more pronounced for shorter available response times and for short step gait corrections. We projected virtual stepping stones on an instrumented treadmill while some of the approaching stepping stones were shifted forward or backward, requiring participants to adjust their foot placement. Varying the timing of those shifts allowed us to address the effect of available response time on foot placement error. In agreement with our hypothesis, individuals with focal cerebellar lesions were less accurate in adjusting their foot placement in reaction to suddenly shifted stepping stones than neurologically intact controls. However, the cerebellar lesion group's foot placement error did not increase more with decreasing available response distance or for short step versus long step adjustments compared to the control group. Furthermore, foot placement error for the non-shifting stepping stones was also larger in the cerebellar lesion group as compared to the control group. Consequently, the reduced ability to accurately adjust foot placement during walking in individuals with focal cerebellar lesions appears to be a general movement control deficit, which could contribute to increased fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, F.; Banks, J. W.; Henshaw, W. D.

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less

  9. Age-related differences in the maintenance of frontal plane dynamic stability while stepping to targets

    PubMed Central

    Hurt, Christopher P.; Grabiner, Mark D.

    2015-01-01

    Older adults may be vulnerable to frontal plane dynamic instability, which is of clinical significance. The purpose of the current investigation was to examine the age-related differences in frontal plane dynamic stability by quantifying the margin of stability and hip abductor moment generation of subjects performing a single crossover step and sidestep to targets that created three different step widths during forward locomotion. Nineteen young adults (9 males, age: 22.9±3.1 years, height: 174.3±10.2 cm, mass: 71.7±13.0 kg) and 18 older adults (9 males, age: 72.8±5.2 years, height: 174.9±8.6 cm, mass: 78.0±16.3 kg) participated. For each walking trial, subjects performed a single laterally-directed step to a target on a force plate. Subjects were instructed to “perform the lateral step and keep walking forward”. The peak hip abductor moment of the stepping limb was 42% larger by older adults compared to younger adults (p<0.001). Older adults were also more stable than younger adults at all step targets (p<0.001). Older adults executed the lateral step with slower forward-directed and lateral-directed velocity despite similar step widths. Age-related differences in hip abduction moments may reflect greater muscular effort by older adults to reduce the likelihood of becoming unstable. The results of this investigation, in which subjects performed progressively larger lateral-directed steps, provide evidence that older adults may not be more laterally unstable than younger adults. However, age-related differences in this study could also reflect a compensatory strategy by older adults to ensure stability while performing this task. PMID:25627870

  10. Age-related differences in the maintenance of frontal plane dynamic stability while stepping to targets.

    PubMed

    Hurt, Christopher P; Grabiner, Mark D

    2015-02-26

    Older adults may be vulnerable to frontal plane dynamic instability, which is of clinical significance. The purpose of the current investigation was to examine the age-related differences in frontal plane dynamic stability by quantifying the margin of stability and hip abductor moment generation of subjects performing a single crossover step and sidestep to targets that created three different step widths during forward locomotion. Nineteen young adults (9 males, age: 22.9±3.1 years, height: 174.3±10.2cm, mass: 71.7±13.0kg) and 18 older adults (9 males, age: 72.8±5.2 years, height: 174.9±8.6cm, mass: 78.0±16.3kg) participated. For each walking trial, subjects performed a single laterally-directed step to a target on a force plate. Subjects were instructed to "perform the lateral step and keep walking forward". The peak hip abductor moment of the stepping limb was 42% larger by older adults compared to younger adults (p<0.001). Older adults were also more stable than younger adults at all step targets (p<0.001). Older adults executed the lateral step with slower forward-directed and lateral-directed velocity despite similar step widths. Age-related differences in hip abduction moments may reflect greater muscular effort by older adults to reduce the likelihood of becoming unstable. The results of this investigation, in which subjects performed progressively larger lateral-directed steps, provide evidence that older adults may not be more laterally unstable than younger adults. However, age-related differences in this study could also reflect a compensatory strategy by older adults to ensure stability while performing this task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Vertical Stability of Ephemeral Step-Pool Streams Largely Controlled By Tree Roots, Central Kentucky, USA

    NASA Astrophysics Data System (ADS)

    Macmannis, K. R.; Hawley, R. J.

    2013-12-01

    The mechanisms controlling stability on small streams in steep settings are not well documented but have many implications related to stream integrity and water quality. For example, channel instability on first and second order streams is a potential source of sediment in regulated areas with Total Maximum Daily Loads (TMDLs) on water bodies that are impaired for sedimentation, such as the Chesapeake Bay. Management strategies that preserve stream integrity and protect channel stability are critical to communities that may otherwise require large capital investments to meet TMDLs and other water quality criteria. To contribute to an improved understanding of ephemeral step-pool systems, we collected detailed hydrogeomorphic data on 4 steep (0.06 - 0.12 meter/meter) headwater streams draining to lower relief alluvial valleys in Spencer County, Kentucky, USA. The step-pool streams (mean step height of 0.47 meter, mean step spacing of 4 meters) drained small undeveloped catchments dominated by early successional forest. Data collection for each of the 4 streams included 2 to 3 cross section surveys, bed material particle counts at cross section locations, and profile surveys ranging from approximately 125 to 225 meters in length. All survey data was systematically processed to understand geometric parameters such as cross sectional area, depth, and top width; bed material gradations; and detailed profile measurements such as slope, pool and riffle lengths, pool spacing, pool depth, step height, and step length. We documented the location, frequency, and type of step-forming materials (i.e., large woody debris (LWD), rock, and tree roots), compiling a database of approximately 130 total steps. Lastly, we recorded a detailed tree assessment of all trees located within 2 meters of the top of bank, detailing the species of tree, trunk diameter, and approximate distance from the top of bank. Analysis of geometric parameters illustrated correlations between channel characteristics (e.g., step height was positively correlated to slope while pool spacing was inversely correlated to slope). Most importantly, we assessed the step-forming materials with respect to channel stability. LWD has been widely documented as an important component of geomorphic stability and habitat diversity across many settings; however, our research highlights the importance of roots in providing bed stability in steep, first and second-order ephemeral streams, as 40 percent of the steps in these step-pool systems were controlled by tree roots. Similar to the key member in naturally-occurring log jams, lateral tree roots frequently served as the anchor for channel steps that were often supplemented by rocks or LWD. Assessment of the trees throughout the riparian zone suggested average tree densities of 0.30 trees/square meter or 0.40 trees/meter could provide adequate riparian zone coverage to promote channel stability. These results have implications to land use planning and stormwater management. For example, on developments draining to step-pool systems, maintaining the integrity of the riparian zone would seem to be as important as ensuring hydrologic mimicry if channel integrity is to be preserved.

  12. Stability Test of Partially Purified Bromelain from Pineapple (Ananas comosus (L.) Merr) Core Extract in Artificial Stomach Fluid

    NASA Astrophysics Data System (ADS)

    Setiasih, S.; Adimas, A. Ch. D.; Dzikria, V.; Hudiyono, S.

    2018-01-01

    This study aimed to isolate and purify bromelain from pineapple core (Ananascomosus (L.) Merr) accompanied by a stability test of its enzyme activity in artificial gastric juice. Purification steps start with fractionation by a precipitation method were carried out stepwise using several concentration of ammonium sulfate salt, followed by dialysis prosess and ion exchange chromatography on DEAE-cellulose column. Each step of purification produced an increasing specific activity in enzyme fraction, starting with crude extract, respectively: 0.276 U/mg; 14.591 U/mg; and 16.05 U/mg. Bromelain fraction with the highest level of purity was obtained in 50-80% ammonium sulphate fraction after dialyzed in the amount of 58.15 times compared to the crude extract. Further purification of the enzyme by DEAE-cellulose column produced bromelain which had a purity level 160-fold compared to crude enzyme. The result of bromelain stability test in artificial stomach juice by milk clotting units assay bromelain fraction have proteolytic activity in clotting milk substrate. Exposing bromelain fraction in artificial stomach juice which gave the highest core bromelain proteolytic activity was achieved at estimated volume of 0.4-0.5 mL. Exposure in a period of reaction time to artificial stomach juice that contained pepsin showed relatively stable proteolytic activity in the first 4 hours.

  13. Stabilization of miniemulsion droplets by cerium oxide nanoparticles: a step toward the elaboration of armored composite latexes.

    PubMed

    Zgheib, Nancy; Putaux, Jean-Luc; Thill, Antoine; D'Agosto, Franck; Lansalot, Muriel; Bourgeat-Lami, Elodie

    2012-04-10

    Stable methyl methacrylate (MMA) miniemulsions were successfully prepared using for the first time cerium oxide (CeO(2)) nanoparticles as solid stabilizers in the absence of any molecular surfactant. The interaction between MMA droplets and CeO(2) nanoparticles was induced by the use of methacrylic acid (MAA) as a comonomer. Both MAA and CeO(2) contents played a key role on the diameter and the stability of the droplets formed during the emulsification step. Cryo-transmission electron microscopy (TEM) images of the suspensions formed with 35 wt % of CeO(2) showed the presence of polydisperse 50-150 nm spherical droplets. More surprisingly, some nonspherical (likely discoidal) objects that could be the result of the sonication step were also observed. The subsequent polymerization of these Pickering miniemulsion droplets led to the formation of composite PMMA latex particles armored with CeO(2). In all cases, the conversion was limited to ca. 85%, concomitant with a loss of stability of the latex for CeO(2) contents lower than 35 wt %. This stability issues were likely related to the screening of the cationic charges present on CeO(2) nanoparticles upon polymerization. TEM images showed mostly spherical particles with a diameter ranging from 100 to 400 nm and homogeneously covered with CeO(2). Besides, for particles typically larger than 200 nm, a buckled morphology was observed supporting the presence of residual monomer at the end of the polymerization and consistent with the limited conversion. The versatility of these systems was further demonstrated using 35 wt % of CeO(2) and replacing MMA by n-butyl acrylate (BA) either alone or in combination with MMA. Stable monomer emulsions were always obtained, with the droplet size increasing with the hydrophobicity of the oil phase, pointing out the key influence of the wettability of the solid stabilizer. The polymerization of Pickering miniemulsion stabilized by CeO(2) nanoparticles proved to be an efficient strategy to form armored composite latex particles which may find applications in coating technology. © 2012 American Chemical Society

  14. Minimizing Postsampling Degradation of Peptides by a Thermal Benchtop Tissue Stabilization Method

    PubMed Central

    Segerström, Lova; Gustavsson, Jenny

    2016-01-01

    Enzymatic degradation is a major concern in peptide analysis. Postmortem metabolism in biological samples entails considerable risk for measurements misrepresentative of true in vivo concentrations. It is therefore vital to find reliable, reproducible, and easy-to-use procedures to inhibit enzymatic activity in fresh tissues before subjecting them to qualitative and quantitative analyses. The aim of this study was to test a benchtop thermal stabilization method to optimize measurement of endogenous opioids in brain tissue. Endogenous opioid peptides are generated from precursor proteins through multiple enzymatic steps that include conversion of one bioactive peptide to another, often with a different function. Ex vivo metabolism may, therefore, lead to erroneous functional interpretations. The efficacy of heat stabilization was systematically evaluated in a number of postmortem handling procedures. Dynorphin B (DYNB), Leu-enkephalin-Arg6 (LARG), and Met-enkephalin-Arg6-Phe7 (MEAP) were measured by radioimmunoassay in rat hypothalamus, striatum (STR), and cingulate cortex (CCX). Also, simplified extraction protocols for stabilized tissue were tested. Stabilization affected all peptide levels to varying degrees compared to those prepared by standard dissection and tissue handling procedures. Stabilization increased DYNB in hypothalamus, but not STR or CCX, whereas LARG generally decreased. MEAP increased in hypothalamus after all stabilization procedures, whereas for STR and CCX, the effect was dependent on the time point for stabilization. The efficacy of stabilization allowed samples to be left for 2 hours in room temperature (20°C) without changes in peptide levels. This study shows that conductive heat transfer is an easy-to-use and efficient procedure for the preservation of the molecular composition in biological samples. Region- and peptide-specific critical steps were identified and stabilization enabled the optimization of tissue handling and opioid peptide analysis. The result is improved diagnostic and research value of the samples with great benefits for basic research and clinical work. PMID:27007059

  15. To amend the executive compensation provisions of the Emergency Economic Stabilization Act of 2008 to prohibit unreasonable and excessive compensation and compensation not based on performance standards.

    THOMAS, 111th Congress

    Rep. Grayson, Alan [D-FL-8

    2009-03-23

    Senate - 04/23/2009 Read the second time. Placed on Senate Legislative Calendar under General Orders. Calendar No. 50. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:

  16. Chaos control in delayed phase space constructed by the Takens embedding theory

    NASA Astrophysics Data System (ADS)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  17. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61.

    PubMed

    Won, Sehoon; Incontro, Salvatore; Nicoll, Roger A; Roche, Katherine W

    2016-08-09

    Phosphorylation regulates surface and synaptic expression of NMDA receptors (NMDARs). Both the tyrosine kinase Fyn and the tyrosine phosphatase striatal-enriched protein tyrosine phosphatase (STEP) are known to target the NMDA receptor subunit GluN2B on tyrosine 1472, which is a critical residue that mediates NMDAR endocytosis. STEP reduces the surface expression of NMDARs by promoting dephosphorylation of GluN2B Y1472, whereas the synaptic scaffolding protein postsynaptic density protein 95 (PSD-95) stabilizes the surface expression of NMDARs. However, nothing is known about a potential functional interaction between STEP and PSD-95. We now report that STEP61 binds to PSD-95 but not to other PSD-95 family members. We find that PSD-95 expression destabilizes STEP61 via ubiquitination and degradation by the proteasome. Using subcellular fractionation, we detect low amounts of STEP61 in the PSD fraction. However, STEP61 expression in the PSD is increased upon knockdown of PSD-95 or in vivo as detected in PSD-95-KO mice, demonstrating that PSD-95 excludes STEP61 from the PSD. Importantly, only extrasynaptic NMDAR expression and currents were increased upon STEP knockdown, as is consistent with low STEP61 localization in the PSD. Our findings support a dual role for PSD-95 in stabilizing synaptic NMDARs by binding directly to GluN2B but also by promoting synaptic exclusion and degradation of the negative regulator STEP61.

  18. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61

    PubMed Central

    Won, Sehoon; Incontro, Salvatore; Nicoll, Roger A.; Roche, Katherine W.

    2016-01-01

    Phosphorylation regulates surface and synaptic expression of NMDA receptors (NMDARs). Both the tyrosine kinase Fyn and the tyrosine phosphatase striatal-enriched protein tyrosine phosphatase (STEP) are known to target the NMDA receptor subunit GluN2B on tyrosine 1472, which is a critical residue that mediates NMDAR endocytosis. STEP reduces the surface expression of NMDARs by promoting dephosphorylation of GluN2B Y1472, whereas the synaptic scaffolding protein postsynaptic density protein 95 (PSD-95) stabilizes the surface expression of NMDARs. However, nothing is known about a potential functional interaction between STEP and PSD-95. We now report that STEP61 binds to PSD-95 but not to other PSD-95 family members. We find that PSD-95 expression destabilizes STEP61 via ubiquitination and degradation by the proteasome. Using subcellular fractionation, we detect low amounts of STEP61 in the PSD fraction. However, STEP61 expression in the PSD is increased upon knockdown of PSD-95 or in vivo as detected in PSD-95–KO mice, demonstrating that PSD-95 excludes STEP61 from the PSD. Importantly, only extrasynaptic NMDAR expression and currents were increased upon STEP knockdown, as is consistent with low STEP61 localization in the PSD. Our findings support a dual role for PSD-95 in stabilizing synaptic NMDARs by binding directly to GluN2B but also by promoting synaptic exclusion and degradation of the negative regulator STEP61. PMID:27457929

  19. Re-evaluation of an Optimized Second Order Backward Difference (BDF2OPT) Scheme for Unsteady Flow Applications

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Carpenter, Mark H.; Lockard, David P.

    2009-01-01

    Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.

  20. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  1. PHOSPHITE STABILIZATION EFFECTS ON TWO-STEP MELT-SPUN FIBERS OF POLYLACTIDE. (R826733)

    EPA Science Inventory

    The effects of molecular weight stabilization on mechanical properties of polylactide (PLA) fibers are investigated. The textile-grade PLA contains a 98:02 ratio of L:D stereocenters and fibers are produced by the two step method, involving a primary quench and cold drawing. M...

  2. Footwear width and balance-recovery reactions: A new approach to improving lateral stability in older adults.

    PubMed

    Yamaguchi, Takeshi; Cheng, Kenneth C; McKay, Sandra M; Maki, Brian E

    Age-related difficulty in controlling lateral stability is of crucial importance because lateral falls increase risk of debilitating hip-fracture injury. This study examined whether a small increase in footwear sole width can improve ability of older adults to regain lateral stability subsequent to balance perturbation. The study involved sixteen healthy, ambulatory, community-dwelling older adults (aged 65-78). Widened base-of-support (WBOS) footwear was simulated by affixing polystyrene-foam blocks (20mm wide) on the medial and lateral sides of rubber overshoes; unaltered overshoes were worn in normal (NBOS) trials. Balance perturbations were applied using a motion platform. Gait, mobility and agility tests revealed no adverse effects of wearing the WBOS footwear. Lateral-perturbation tests showed that the WBOS footwear improved ability to stabilize the body without stepping (p=0.002). Depending on the perturbation magnitude, the frequency of stepping was reduced by up to 25% (64% of NBOS trials vs 39% of WBOS trials). In addition, the WBOS footwear appeared to improve ability to maintain lateral stability during forward-step reactions, as evidenced by reduced incidence of additional lateral steps (p=0.04) after stepping over an obstacle in response to a forward-fall perturbation. A small increase in sole width can improve certain aspects of lateral stability in older adults, without compromising mobility and agility. This finding supports the viability of WBOS footwear as an intervention to improve balance. Further research is needed to test populations with more severe balance impairments, examine user compliance, and determine if WBOS footwear actually reduces falling risk in daily life.

  3. H2O on Pt(111): structure and stability of the first wetting layer

    NASA Astrophysics Data System (ADS)

    Standop, Sebastian; Morgenstern, Markus; Michely, Thomas; Busse, Carsten

    2012-03-01

    We study the structure and stability of the first water layer on Pt(111) by variable-temperature scanning tunneling microscopy. We find that a high Pt step edge density considerably increases the long-range order of the equilibrium \\sqrt{37}\\times \\sqrt{37}{R25.3}°- and \\sqrt{39}\\times \\sqrt{39}{R16.1}°-superstructures, presumably due to the capability of step edges to trap residual adsorbates from the surface. Passivating the step edges with CO or preparing a flat metal surface leads to the formation of disordered structures, which still show the same structural elements as the ordered ones. Coadsorption of Xe and CO proves that the water layer covers the metal surface completely. Moreover, we determine the two-dimensional crystal structure of Xe on top of the chemisorbed water layer which exhibits an Xe-Xe distance close to the one in bulk Xe and a rotation angle of 90° between the close-packed directions of Xe and the close-packed directions of the underlying water layer. CO is shown to replace H2O on the Pt(111) surface as has been deduced previously. In addition, we demonstrate that tunneling of electrons into the antibonding state or from the bonding state of H2O leads to dissociation of the molecules and a corresponding reordering of the adlayer into a \\sqrt{3}\\times \\sqrt{3}{R30}°-structure. Finally, a so far not understood restructuring of the adlayer by an increased tunneling current has been observed.

  4. Enhanced planar perovskite solar cell efficiency and stability using a perovskite/PCBM heterojunction formed in one step.

    PubMed

    Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2018-02-08

    Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.

  5. Construction of super - hydrophobic copper alloy surface by one - step mixed solution immersion method

    NASA Astrophysics Data System (ADS)

    Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting

    2018-01-01

    This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.

  6. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.

    PubMed

    Kim, Myunghee; Collins, Steven H

    2015-05-01

    Individuals with below-knee amputation have more difficulty balancing during walking, yet few studies have explored balance enhancement through active prosthesis control. We previously used a dynamical model to show that prosthetic ankle push-off work affects both sagittal and frontal plane dynamics, and that appropriate step-by-step control of push-off work can improve stability. We hypothesized that this approach could be applied to a robotic prosthesis to partially fulfill the active balance requirements of human walking, thereby reducing balance-related activity and associated effort for the person using the device. We conducted experiments on human participants (N = 10) with simulated amputation. Prosthetic ankle push-off work was varied on each step in ways expected to either stabilize, destabilize or have no effect on balance. Average ankle push-off work, known to affect effort, was kept constant across conditions. Stabilizing controllers commanded more push-off work on steps when the mediolateral velocity of the center of mass was lower than usual at the moment of contralateral heel strike. Destabilizing controllers enforced the opposite relationship, while a neutral controller maintained constant push-off work regardless of body state. A random disturbance to landing foot angle and a cognitive distraction task were applied, further challenging participants' balance. We measured metabolic rate, foot placement kinematics, center of pressure kinematics, distraction task performance, and user preference in each condition. We expected the stabilizing controller to reduce active control of balance and balance-related effort for the user, improving user preference. The best stabilizing controller lowered metabolic rate by 5.5% (p = 0.003) and 8.5% (p = 0.02), and step width variability by 10.0% (p = 0.009) and 10.7% (p = 0.03) compared to conditions with no control and destabilizing control, respectively. Participants tended to prefer stabilizing controllers. These effects were not due to differences in average push-off work, which was unchanged across conditions, or to average gait mechanics, which were also unchanged. Instead, benefits were derived from step-by-step adjustments to prosthesis behavior in response to variations in mediolateral velocity at heel strike. Once-per-step control of prosthetic ankle push-off work can reduce both active control of foot placement and balance-related metabolic energy use during walking.

  7. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling

    NASA Astrophysics Data System (ADS)

    Cepeda-Gomez, Rudy; Olgac, Nejat

    2016-01-01

    We consider a linear algorithm to achieve formation control in a group of agents which are driven by second-order dynamics and affected by two rationally independent delays. One of the delays is in the position and the other in the velocity information channels. These delays are taken as constant and uniform throughout the system. The communication topology is assumed to be directed and fixed. The formation is attained by adding a supplementary control term to the stabilising consensus protocol. In preparation for the formation control logic, we first study the stability of the consensus, using the recent cluster treatment of characteristic roots (CTCR) paradigm. This effort results in a unique depiction of the non-conservative stability boundaries in the domain of the delays. However, CTCR requires the knowledge of the potential stability switching loci exhaustively within this domain. The creation of these loci is done in a new surrogate coordinate system, called the 'spectral delay space (SDS)'. The relative stability is also investigated, which has to do with the speed of reaching consensus. This step leads to a paradoxical control design concept, called the 'delay scheduling', which highlights the fact that the group behaviour may be enhanced by increasing the delays. These steps lead to a control strategy to establish a desired group formation that guarantees spacing among the agents. Example case studies are presented to validate the underlying analytical derivations.

  8. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects

    NASA Astrophysics Data System (ADS)

    Becker, Ina; Strauch, Sebastian M.; Hauslage, Jens; Lebert, Michael

    2017-05-01

    The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork.

  9. Thermally Stable Ni-rich Austenite Formed Utilizing Multistep Intercritical Heat Treatment in a Low-Carbon 10 Wt Pct Ni Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Jain, Divya; Isheim, Dieter; Zhang, Xian J.; Ghosh, Gautam; Seidman, David N.

    2017-08-01

    Austenite reversion and its thermal stability attained during the transformation is key to enhanced toughness and blast resistance in transformation-induced-plasticity martensitic steels. We demonstrate that the thermal stability of Ni-stabilized austenite and kinetics of the transformation can be controlled by forming Ni-rich regions in proximity of pre-existing (retained) austenite. Atom probe tomography (APT) in conjunction with thermodynamic and kinetic modeling elucidates the role of Ni-rich regions in enhancing growth kinetics of thermally stable austenite, formed utilizing a multistep intercritical ( Quench- Lamellarization- Tempering (QLT)-type) heat treatment for a low-carbon 10 wt pct Ni steel. Direct evidence of austenite formation is provided by dilatometry, and the volume fraction is quantified by synchrotron X-ray diffraction. The results indicate the growth of nm-thick austenite layers during the second intercritical tempering treatment (T-step) at 863 K (590 °C), with austenite retained from first intercritical treatment (L-step) at 923 K (650 °C) acting as a nucleation template. For the first time, the thermal stability of austenite is quantified with respect to its compositional evolution during the multistep intercritical treatment of these steels. Austenite compositions measured by APT are used in combination with the thermodynamic and kinetic approach formulated by Ghosh and Olson to assess thermal stability and predict the martensite-start temperature. This approach is particularly useful as empirical relations cannot be extrapolated for the highly Ni-enriched austenite investigated in the present study.

  10. Seasonal and annual variation in young children's physical activity.

    PubMed

    McKee, David P; Murtagh, Elaine M; Boreham, Colin A G; Nevill, Alan M; Murphy, Marie H

    2012-07-01

    It is well established that regular physical activity (PA) contributes to lower levels of morbidity and mortality. However, little is known about the stability of very young children's PA habits across seasons and years. The aims of this study were to 1) examine the influence of season and increasing age on objectively assessed PA in preschool children and 2) examine the stability of young children's PA rankings during 1 yr. The PA levels of preschool (3- and 4-yr-old) children were measured, using 6-d pedometer step counts, during winter and spring (n = 85, 52 boys). PA levels were measured again 1 yr after the spring data collection when the children had entered primary school (n = 37, 22 boys). Parents completed questionnaires to assess attitudes toward PA, PA habits, and demographic information in the winter of the first year and the spring of the second year. Young children take approximately 2000 (20%) fewer steps per day in winter than in spring with a rank order stability between the two measures of r = 0.04 (P < 0.01). A modest degree of the observed intrachild or seasonal variation was related to the amount of time fathers played with their children (P < 0.05) and the availability of a safe place for children to play (P < 0.05). Children took approximately 2300 (20%) more steps per day at age 5 compared with age 4 (P < 0.01). The rank order stability of young children's PA during this period was low with correlations ranging from 0.01 to 0.15. Results suggest that a one-off assessment of PA is unlikely to be representative of a young child's activity during 1 yr and that PA tracks poorly from age 4 to 5.

  11. Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.

    PubMed

    Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K

    2017-07-01

    Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.

  12. Video Completion in Digital Stabilization Task Using Pseudo-Panoramic Technique

    NASA Astrophysics Data System (ADS)

    Favorskaya, M. N.; Buryachenko, V. V.; Zotin, A. G.; Pakhirka, A. I.

    2017-05-01

    Video completion is a necessary stage after stabilization of a non-stationary video sequence, if it is desirable to make the resolution of the stabilized frames equalled the resolution of the original frames. Usually the cropped stabilized frames lose 10-20% of area that means the worse visibility of the reconstructed scenes. The extension of a view of field may appear due to the pan-tilt-zoom unwanted camera movement. Our approach deals with a preparing of pseudo-panoramic key frame during a stabilization stage as a pre-processing step for the following inpainting. It is based on a multi-layered representation of each frame including the background and objects, moving differently. The proposed algorithm involves four steps, such as the background completion, local motion inpainting, local warping, and seamless blending. Our experiments show that a necessity of a seamless stitching occurs often than a local warping step. Therefore, a seamless blending was investigated in details including four main categories, such as feathering-based, pyramid-based, gradient-based, and optimal seam-based blending.

  13. Higher-order hybrid implicit/explicit FDTD time-stepping

    NASA Astrophysics Data System (ADS)

    Tierens, W.

    2016-12-01

    Both partially implicit FDTD methods, and symplectic FDTD methods of high temporal accuracy (3rd or 4th order), are well documented in the literature. In this paper we combine them: we construct a conservative FDTD method which is fourth order accurate in time and is partially implicit. We show that the stability condition for this method depends exclusively on the explicit part, which makes it suitable for use in e.g. modelling wave propagation in plasmas.

  14. Development of an efficient computer code to solve the time-dependent Navier-Stokes equations. [for predicting viscous flow fields about lifting bodies

    NASA Technical Reports Server (NTRS)

    Harp, J. L., Jr.; Oatway, T. P.

    1975-01-01

    A research effort was conducted with the goal of reducing computer time of a Navier Stokes Computer Code for prediction of viscous flow fields about lifting bodies. A two-dimensional, time-dependent, laminar, transonic computer code (STOKES) was modified to incorporate a non-uniform timestep procedure. The non-uniform time-step requires updating of a zone only as often as required by its own stability criteria or that of its immediate neighbors. In the uniform timestep scheme each zone is updated as often as required by the least stable zone of the finite difference mesh. Because of less frequent update of program variables it was expected that the nonuniform timestep would result in a reduction of execution time by a factor of five to ten. Available funding was exhausted prior to successful demonstration of the benefits to be derived from the non-uniform time-step method.

  15. Application of Organophosphonic Acids by One-Step Supercritical CO2 on 1D and 2D Semiconductors: Toward Enhanced Electrical and Sensing Performances.

    PubMed

    Bhartia, Bhavesh; Bacher, Nadav; Jayaraman, Sundaramurthy; Khatib, Salam; Song, Jing; Guo, Shifeng; Troadec, Cedric; Puniredd, Sreenivasa Reddy; Srinivasan, Madapusi Palavedu; Haick, Hossam

    2015-07-15

    Formation of dense monolayers with proven atmospheric stability using simple fabrication conditions remains a major challenge for potential applications such as (bio)sensors, solar cells, surfaces for growth of biological cells, and molecular, organic, and plastic electronics. Here, we demonstrate a single-step modification of organophosphonic acids (OPA) on 1D and 2D structures using supercritical carbon dioxide (SCCO2) as a processing medium, with high stability and significantly shorter processing times than those obtained by the conventional physisorption-chemisorption method (2.5 h vs 48-60 h).The advantages of this approach in terms of stability and atmospheric resistivity are demonstrated on various 2D materials, such as indium-tin-oxide (ITO) and 2D Si surfaces. The advantage of the reported approach on electronic and sensing devices is demonstrated by Si nanowire field effect transistors (SiNW FETs), which have shown a few orders of magnitude higher electrical and sensing performances, compared with devices obtained by conventional approaches. The compatibility of the reported approach with various materials and its simple implementation with a single reactor makes it easily scalable for various applications.

  16. Implementation of Competency-Based Pharmacy Education (CBPE)

    PubMed Central

    Koster, Andries; Schalekamp, Tom; Meijerman, Irma

    2017-01-01

    Implementation of competency-based pharmacy education (CBPE) is a time-consuming, complicated process, which requires agreement on the tasks of a pharmacist, commitment, institutional stability, and a goal-directed developmental perspective of all stakeholders involved. In this article the main steps in the development of a fully-developed competency-based pharmacy curriculum (bachelor, master) are described and tips are given for a successful implementation. After the choice for entering into CBPE is made and a competency framework is adopted (step 1), intended learning outcomes are defined (step 2), followed by analyzing the required developmental trajectory (step 3) and the selection of appropriate assessment methods (step 4). Designing the teaching-learning environment involves the selection of learning activities, student experiences, and instructional methods (step 5). Finally, an iterative process of evaluation and adjustment of individual courses, and the curriculum as a whole, is entered (step 6). Successful implementation of CBPE requires a system of effective quality management and continuous professional development as a teacher. In this article suggestions for the organization of CBPE and references to more detailed literature are given, hoping to facilitate the implementation of CBPE. PMID:28970422

  17. Direct observation of the myosin Va recovery stroke that contributes to unidirectional stepping along actin.

    PubMed

    Shiroguchi, Katsuyuki; Chin, Harvey F; Hannemann, Diane E; Muneyuki, Eiro; De La Cruz, Enrique M; Kinosita, Kazuhiko

    2011-04-01

    Myosins are ATP-driven linear molecular motors that work as cellular force generators, transporters, and force sensors. These functions are driven by large-scale nucleotide-dependent conformational changes, termed "strokes"; the "power stroke" is the force-generating swinging of the myosin light chain-binding "neck" domain relative to the motor domain "head" while bound to actin; the "recovery stroke" is the necessary initial motion that primes, or "cocks," myosin while detached from actin. Myosin Va is a processive dimer that steps unidirectionally along actin following a "hand over hand" mechanism in which the trailing head detaches and steps forward ∼72 nm. Despite large rotational Brownian motion of the detached head about a free joint adjoining the two necks, unidirectional stepping is achieved, in part by the power stroke of the attached head that moves the joint forward. However, the power stroke alone cannot fully account for preferential forward site binding since the orientation and angle stability of the detached head, which is determined by the properties of the recovery stroke, dictate actin binding site accessibility. Here, we directly observe the recovery stroke dynamics and fluctuations of myosin Va using a novel, transient caged ATP-controlling system that maintains constant ATP levels through stepwise UV-pulse sequences of varying intensity. We immobilized the neck of monomeric myosin Va on a surface and observed real time motions of bead(s) attached site-specifically to the head. ATP induces a transient swing of the neck to the post-recovery stroke conformation, where it remains for ∼40 s, until ATP hydrolysis products are released. Angle distributions indicate that the post-recovery stroke conformation is stabilized by ≥ 5 k(B)T of energy. The high kinetic and energetic stability of the post-recovery stroke conformation favors preferential binding of the detached head to a forward site 72 nm away. Thus, the recovery stroke contributes to unidirectional stepping of myosin Va.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.

    Alkyldiamine-functionalized variants of the metal–organic framework Mg 2(dobpdc) (dobpdc 4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) are promising for CO 2 capture applications owing to their unique step-shaped CO 2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO 2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO 2 adsorption/desorption profiles. This two-step behaviormore » likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg 2(dobpdc) and leads to decreased CO 2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg 2(dotpdc) (dotpdc 4- = 4,4''-dioxido-[1,1':4',1''-terphenyl]-3,3''-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg 2(pc-dobpdc) (pc-dobpdc 4- = 3,3'-dioxidobiphenyl-4,4'-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg 2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO 2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg 2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications.« less

  19. A New Family of Compact High Order Coupled Time-Space Unconditionally Stable Vertical Advection Schemes

    NASA Astrophysics Data System (ADS)

    Lemarié, F.; Debreu, L.

    2016-02-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost. To our knowledge no unconditionally stable scheme with such high order accuracy in time and space have been presented so far in the literature. Furthermore, we show how those schemes can be made monotonic without compromising their stability properties.

  20. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    NASA Astrophysics Data System (ADS)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

  1. Viscous Corrections of the Time Incremental Minimization Scheme and Visco-Energetic Solutions to Rate-Independent Evolution Problems

    NASA Astrophysics Data System (ADS)

    Minotti, Luca; Savaré, Giuseppe

    2018-02-01

    We propose the new notion of Visco-Energetic solutions to rate-independent systems {(X, E,} d) driven by a time dependent energy E and a dissipation quasi-distance d in a general metric-topological space X. As for the classic Energetic approach, solutions can be obtained by solving a modified time Incremental Minimization Scheme, where at each step the dissipation quasi-distance d is incremented by a viscous correction {δ} (for example proportional to the square of the distance d), which penalizes far distance jumps by inducing a localized version of the stability condition. We prove a general convergence result and a typical characterization by Stability and Energy Balance in a setting comparable to the standard energetic one, thus capable of covering a wide range of applications. The new refined Energy Balance condition compensates for the localized stability and provides a careful description of the jump behavior: at every jump the solution follows an optimal transition, which resembles in a suitable variational sense the discrete scheme that has been implemented for the whole construction.

  2. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Tadmor, Eitan

    1991-01-01

    The stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral approximations are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of approximate L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

  3. The CFL condition for spectral approximations to hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Gottlieb, David; Tadmor, Eitan

    1990-01-01

    The stability of spectral approximations to scalar hyperbolic initial-boundary value problems with variable coefficients are studied. Time is discretized by explicit multi-level or Runge-Kutta methods of order less than or equal to 3 (forward Euler time differencing is included), and spatial discretizations are studied by spectral and pseudospectral approximations associated with the general family of Jacobi polynomials. It is proved that these fully explicit spectral approximations are stable provided their time-step, delta t, is restricted by the CFL-like condition, delta t less than Const. N(exp-2), where N equals the spatial number of degrees of freedom. We give two independent proofs of this result, depending on two different choices of approximate L(exp 2)-weighted norms. In both approaches, the proofs hinge on a certain inverse inequality interesting for its own sake. The result confirms the commonly held belief that the above CFL stability restriction, which is extensively used in practical implementations, guarantees the stability (and hence the convergence) of fully-explicit spectral approximations in the nonperiodic case.

  4. An efficient, explicit finite-rate algorithm to compute flows in chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    An explicit finite-rate code was developed to compute hypersonic viscous chemically reacting flows about three-dimensional bodies. Equations describing the finite-rate chemical reactions were fully coupled to the gas dynamic equations using a new coupling technique. The new technique maintains stability in the explicit finite-rate formulation while permitting relatively large global time steps.

  5. Pedometer determined physical activity tracks in African American adults: the Jackson Heart Study.

    PubMed

    Newton, Robert L; M, Hongmei Han; Dubbert, Patricia M; Johnson, William D; Hickson, DeMarc A; Ainsworth, Barbara; Carithers, Teresa; Taylor, Herman; Wyatt, Sharon; Tudor-Locke, Catrine

    2012-04-18

    This study investigated the number of pedometer assessment occasions required to establish habitual physical activity in African American adults. African American adults (mean age 59.9 ± 0.60 years; 59 % female) enrolled in the Diet and Physical Activity Substudy of the Jackson Heart Study wore Yamax pedometers during 3-day monitoring periods, assessed on two to three distinct occasions, each separated by approximately one month. The stability of pedometer measured PA was described as differences in mean steps/day across time, as intraclass correlation coefficients (ICC) by sex, age, and body mass index (BMI) category, and as percent of participants changing steps/day quartiles across time. Valid data were obtained for 270 participants on either two or three different assessment occasions. Mean steps/day were not significantly different across assessment occasions (p values > 0.456). The overall ICCs for steps/day assessed on either two or three occasions were 0.57 and 0.76, respectively. In addition, 85 % (two assessment occasions) and 76 % (three assessment occasions) of all participants remained in the same steps/day quartile or changed one quartile over time. The current study shows that an overall mean steps/day estimate based on a 3-day monitoring period did not differ significantly over 4 - 6 months. The findings were robust to differences in sex, age, and BMI categories. A single 3-day monitoring period is sufficient to capture habitual physical activity in African American adults.

  6. On regulators with a prescribed degree of stability. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ng, P. T. P.

    1981-01-01

    Several important aspects of the Regulator with a Prescribed Degree of Stability (RPDS) methodology and its applications are considered. The solution of the time varying RPDS problem as well as the characterization of RPDS closed loop eigenstructure properties are obtained. Based on the asymptotic behavior of RPDS root loci, a one step algorithm for designing Regulators with Prescribed Damping Ratio (RPDR) is developed. The robustness properties of RPDS are characterized in terms of the properties of the return difference and the inverse return difference matrices for the RPDS state feedback loop. This class of regulators is found to possess excellent multiloop margins with respect to stability and degree of stability properties. The ability of RPDS design to tolerate changing operating conditions and unmodelled dynamics are illustrated with a multiterminal dc/ac power system example. The output feedback realization of RPDS requires the use of Linear Quadratic Gaussian (LQG) methodology.

  7. High stability lasers for lidar and remote sensing

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Lange, Robert; Seel, Stefan; Smutny, Berry

    2017-11-01

    Tesat-Spacecom is currently building a set flight models of frequency stabilized lasers for the ESA Missions AEOLUS and LTP. Lasers with low intensity noise in the kHz region and analogue tuning capabilities for frequency and output power are developed for the on board metrology of the LTP project, the precursor mission for LISA. This type of laser is internally stabilized by precise temperature control, approaching an ALLAN variance of 10-9 for 100 sec. It can be easily locked to external frequency references with <50kHz bandwidth. The Seed laser for the AEOLUS mission (wind LIDAR) is used as the master frequency reference and is stabilized internally by a optical cavity. It shows a 3* 10-11 Allan variance from time intervals 1 sec - 1000 sec. Furthermore it is step-tunable for calibration of the receiver instrument with a speed of GHz / sec by a digital command interface. Performance and environmental test results will be presented.

  8. Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves.

    PubMed

    Cuevas-Maraver, J; Kevrekidis, P G; Frantzeskakis, D J; Karachalios, N I; Haragus, M; James, G

    2017-07-01

    In the present work, we aim at taking a step towards the spectral stability analysis of Peregrine solitons, i.e., wave structures that are used to emulate extreme wave events. Given the space-time localized nature of Peregrine solitons, this is a priori a nontrivial task. Our main tool in this effort will be the study of the spectral stability of the periodic generalization of the Peregrine soliton in the evolution variable, namely the Kuznetsov-Ma breather. Given the periodic structure of the latter, we compute the corresponding Floquet multipliers, and examine them in the limit where the period of the orbit tends to infinity. This way, we extrapolate towards the stability of the limiting structure, namely the Peregrine soliton. We find that multiple unstable modes of the background are enhanced, yet no additional unstable eigenmodes arise as the Peregrine limit is approached. We explore the instability evolution also in direct numerical simulations.

  9. Impact of Si on Microstructure and Mechanical Properties of 22MnB5 Hot Stamping Steel Treated by Quenching & Partitioning (Q&P)

    NASA Astrophysics Data System (ADS)

    Linke, Bernd M.; Gerber, Thomas; Hatscher, Ansgar; Salvatori, Ilaria; Aranguren, Iñigo; Arribas, Maribel

    2018-01-01

    Based on 22MnB5 hot stamping steel, three model alloys containing 0.5, 0.8, and 1.5 wt pct Si were produced, heat treated by quenching and partitioning (Q&P), and characterized. Aided by DICTRA calculations, the thermal Q&P cycles were designed to fit into industrial hot stamping by keeping partitioning times ≤ 30 seconds. As expected, Si increased the amount of retained austenite (RA) stabilized after final cooling. However, for the intermediate Si alloy the heat treatment exerted a particularly pronounced influence with an RA content three times as high for the one-step process compared to the two-step process. It appeared that 0.8 wt pct Si sufficed to suppress direct cementite formation from within martensite laths but did not sufficiently stabilize carbon-soaked RA at higher temperatures. Tensile and bending tests showed strongly diverging effects of austenite on ductility. Total elongation improved consistently with increasing RA content independently from its carbon content. In contrast, the bending angle was not impacted by high-carbon RA but deteriorated almost linearly with the amount of low-carbon RA.

  10. Minimal-Approximation-Based Decentralized Backstepping Control of Interconnected Time-Delay Systems.

    PubMed

    Choi, Yun Ho; Yoo, Sung Jin

    2016-12-01

    A decentralized adaptive backstepping control design using minimal function approximators is proposed for nonlinear large-scale systems with unknown unmatched time-varying delayed interactions and unknown backlash-like hysteresis nonlinearities. Compared with existing decentralized backstepping methods, the contribution of this paper is to design a simple local control law for each subsystem, consisting of an actual control with one adaptive function approximator, without requiring the use of multiple function approximators and regardless of the order of each subsystem. The virtual controllers for each subsystem are used as intermediate signals for designing a local actual control at the last step. For each subsystem, a lumped unknown function including the unknown nonlinear terms and the hysteresis nonlinearities is derived at the last step and is estimated by one function approximator. Thus, the proposed approach only uses one function approximator to implement each local controller, while existing decentralized backstepping control methods require the number of function approximators equal to the order of each subsystem and a calculation of virtual controllers to implement each local actual controller. The stability of the total controlled closed-loop system is analyzed using the Lyapunov stability theorem.

  11. High pressure stability of protein complexes studied by static and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Gebhardt, Ronald; Kulozik, Ulrich

    2011-03-01

    The high pressure dissociation of hemocyanin prepared from the lobster Homarus americanus and casein micelles from cow milk were observed by in situ light scattering. The hemocyanin dodecamer dissociated via a hexamer into monomers in a two-step three-species reaction. The influence of ligands and the effector l-lactate on the dissociation behavior was investigated. While no effect by carbon monoxide after exchanging the ligand oxygen was observed, the addition of the effector l-lactate led to a decrease in the pressure stability. Due to a trimer intermediate which was found to be stabilized by l-lactate, the dissociation reaction in the presence of the effector was analyzed by a three-step four-species reaction. In the case of casein micelles, a two-step dissociation mechanism was found. The stabilizing interactions of casein micelles were identified and separated.

  12. Static Longitudinal Stability of a Rocket Vehicle Having a Rear-Facing Step Ahead of the Stabilizing Fins

    NASA Technical Reports Server (NTRS)

    Keynton, Robert J.

    1961-01-01

    Tests were conducted at Mach numbers of 3.96 and 4.65 in the Langley Unitary Plan wind tunnel to determine the static longitudinal stability characteristics of a fin-stabilized rocket-vehicle configuration which had a rearward facing step located upstream of the fins. Two fin sizes and planforms, a delta and a clipped delta, were tested. The angle of attack was varied from 6 deg to -6 deg and the Reynolds number based on model 6 length was about 10 x 10. The configuration with the larger fins (clipped delta) had a center of pressure slightly rearward of and an initial normal-force-curve slope slightly higher than that of the configuration with the smaller fins (delta) as would be expected. Calculations of the stability parameters gave a slightly lower initial slope of the normal-force curve than measured data, probably because of boundary-layer separation ahead of the step. The calculated center of pressure agreed well with the measured data. Measured and calculated increments in the initial slope of the normal-force curve and in the center of pressure, due to changing fins, were in excellent agreement indicating that separated flow downstream of the step did not influence flow over the fins. This result was consistent with data from schlieren photographs.

  13. Geometric multigrid for an implicit-time immersed boundary method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.

    2014-10-12

    The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less

  14. Footwear width and balance-recovery reactions: A new approach to improving lateral stability in older adults

    PubMed Central

    Yamaguchi, Takeshi; Cheng, Kenneth C.; McKay, Sandra M.; Maki, Brian E.

    2016-01-01

    Background Age-related difficulty in controlling lateral stability is of crucial importance because lateral falls increase risk of debilitating hip-fracture injury. This study examined whether a small increase in footwear sole width can improve ability of older adults to regain lateral stability subsequent to balance perturbation. Methods The study involved sixteen healthy, ambulatory, community-dwelling older adults (aged 65–78). Widened base-of-support (WBOS) footwear was simulated by affixing polystyrene-foam blocks (20mm wide) on the medial and lateral sides of rubber overshoes; unaltered overshoes were worn in normal (NBOS) trials. Balance perturbations were applied using a motion platform. Results Gait, mobility and agility tests revealed no adverse effects of wearing the WBOS footwear. Lateral-perturbation tests showed that the WBOS footwear improved ability to stabilize the body without stepping (p=0.002). Depending on the perturbation magnitude, the frequency of stepping was reduced by up to 25% (64% of NBOS trials vs 39% of WBOS trials). In addition, the WBOS footwear appeared to improve ability to maintain lateral stability during forward-step reactions, as evidenced by reduced incidence of additional lateral steps (p=0.04) after stepping over an obstacle in response to a forward-fall perturbation. Conclusions A small increase in sole width can improve certain aspects of lateral stability in older adults, without compromising mobility and agility. This finding supports the viability of WBOS footwear as an intervention to improve balance. Further research is needed to test populations with more severe balance impairments, examine user compliance, and determine if WBOS footwear actually reduces falling risk in daily life. PMID:27099603

  15. Low temperature stabilization process for production of carbon fiber having structural order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Orlando; McGuire, Michael Alan; More, Karren Leslie

    A method for producing a carbon fiber, the method comprising: (i) subjecting a continuous carbon fiber precursor having a polymeric matrix in which strength-enhancing particles are incorporated to a stabilization process during which the carbon fiber precursor is heated to within a temperature range ranging from the glass transition temperature to no less than 20.degree. C. below the glass transition temperature of the polymeric matrix, wherein the maximum temperature employed in the stabilization process is below 400.degree. C., for a processing time within said temperature range of at least 1 hour in the presence of oxygen and in the presencemore » of a magnetic field of at least 1 Tesla, while said carbon fiber precursor is held under an applied axial tension; and (ii) subjecting the stabilized carbon fiber precursor, following step (i), to a carbonization process. The stabilized carbon fiber precursor, resulting carbon fiber, and articles made thereof are also described.« less

  16. Rapid gait termination: effects of age, walking surfaces and footwear characteristics.

    PubMed

    Menant, Jasmine C; Steele, Julie R; Menz, Hylton B; Munro, Bridget J; Lord, Stephen R

    2009-07-01

    The aim of this study was to systematically investigate the influence of various walking surfaces and footwear characteristics on the ability to terminate gait rapidly in 10 young and 26 older people. Subjects walked at a self-selected speed in eight randomized shoe conditions (standard versus elevated heel, soft sole, hard sole, high-collar, flared sole, bevelled heel and tread sole) on three surfaces: control, irregular and wet. In response to an audible cue, subjects were required to stop as quickly as possible in three out of eight walking trials in each condition. Time to last foot contact, total stopping time, stopping distance, number of steps to stop, step length and step width post-cue and base of support length at total stop were calculated from kinematic data collected using two CODA scanner units. The older subjects took more time and a longer distance to last foot contact and were more frequently classified as using a three or more-steps stopping strategy compared to the young subjects. The wet surface impeded gait termination, as indicated by greater total stopping time and stopping distance. Subjects required more time to terminate gait in the soft sole shoes compared to the standard shoes. In contrast, the high-collar shoes reduced total stopping time on the wet surface. These findings suggest that older adults have more difficulty terminating gait rapidly than their younger counterparts and that footwear is likely to influence whole-body stability during challenging postural tasks on wet surfaces.

  17. Sensorimotor and Cognitive Predictors of Impaired Gait Adaptability in Older People.

    PubMed

    Caetano, Maria Joana D; Menant, Jasmine C; Schoene, Daniel; Pelicioni, Paulo H S; Sturnieks, Daina L; Lord, Stephen R

    2017-09-01

    The ability to adapt gait when negotiating unexpected hazards is crucial to maintain stability and avoid falling. This study investigated whether impaired gait adaptability in a task including obstacle and stepping targets is associated with cognitive and sensorimotor capacities in older adults. Fifty healthy older adults (74±7 years) were instructed to either (a) avoid an obstacle at usual step distance or (b) step onto a target at either a short or long step distance projected on a walkway two heel strikes ahead and then continue walking. Participants also completed cognitive and sensorimotor function assessments. Stroop test and reaction time performance significantly discriminated between participants who did and did not make stepping errors, and poorer Trail-Making test performance predicted shorter penultimate step length in the obstacle avoidance condition. Slower reaction time predicted poorer stepping accuracy; increased postural sway, weaker quadriceps strength, and poorer Stroop and Trail-Making test performances predicted increased number of steps taken to approach the target/obstacle and shorter step length; and increased postural sway and higher concern about falling predicted slower step velocity. Superior executive function, fast processing speed, and good muscle strength and balance were all associated with successful gait adaptability. Processing speed appears particularly important for precise foot placements; cognitive capacity for step length adjustments; and early and/or additional cognitive processing involving the inhibition of a stepping pattern for obstacle avoidance. This information may facilitate fall risk assessments and fall prevention strategies. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing

    NASA Astrophysics Data System (ADS)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko

    2007-10-01

    The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.

  19. Atomistic and coarse-grained computer simulations of raft-like lipid mixtures.

    PubMed

    Pandit, Sagar A; Scott, H Larry

    2007-01-01

    Computer modeling can provide insights into the existence, structure, size, and thermodynamic stability of localized raft-like regions in membranes. However, the challenges in the construction and simulation of accurate models of heterogeneous membranes are great. The primary obstacle in modeling the lateral organization within a membrane is the relatively slow lateral diffusion rate for lipid molecules. Microsecond or longer time-scales are needed to fully model the formation and stability of a raft in a membra ne. Atomistic simulations currently are not able to reach this scale, but they do provide quantitative information on the intermolecular forces and correlations that are involved in lateral organization. In this chapter, the steps needed to carry out and analyze atomistic simulations of hydrated lipid bilayers having heterogeneous composition are outlined. It is then shown how the data from a molecular dynamics simulation can be used to construct a coarse-grained model for the heterogeneous bilayer that can predict the lateral organization and stability of rafts at up to millisecond time-scales.

  20. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.

    PubMed

    Patel, Prakruti J; Bhatt, Tanvi

    2016-10-01

    We examined whether aging with and without a cerebral lesion such as stroke affects modulation of reactive balance response for recovery from increasing intensity of sudden slip-like stance perturbations. Ten young adults, older age-match adults and older chronic stroke survivors were exposed to three different levels of slip-like perturbations, level 1 (7.75m/s(2)), Level II (12.00m/s(2)) and level III (16.75m/s(2)) in stance. The center of mass (COM) state stability was computed as the shortest distance of the instantaneous COM position and velocity relative to base of support (BOS) from a theoretical threshold for backward loss of balance (BLOB). The COM position (XCOM/BOS) and velocity (ẊCOM/BOS) relative to BOS at compensatory step touchdown, compensatory step length and trunk angle at touchdown were also recorded. At liftoff, stability reduced with increasing perturbation intensity across all groups (main effect of intensity p<0.05). At touchdown, while the young group showed a linear improvement in stability with increasing perturbation intensity, such a trend was absent in other groups (intensity×group interaction, p<0.05). Between-group differences in stability at touchdown were thus observed at levels II and III. Further, greater stability at touchdown positively correlated with anterior XCOM/BOS however not with ẊCOM/BOS. Young adults maintained anterior XCOM/BOS by increasing compensatory step length and preventing greater trunk extension at higher perturbation intensities. The age-match group attempted to increase step length from intensity I to II to maintain stability however could not further increase step length at intensity III, resulting in lower stability on this level compared with the young group. Stroke group on the other hand was unable to modulate compensatory step length or control trunk extension at higher perturbation intensities resulting in reduced stability on levels II and III compared with the other groups. The findings reflect impaired modulation of recovery response with increasing intensity of sudden perturbations among stroke survivors compared with their healthy counter parts. Thus, aging superimposed with a cortical lesion could further impair reactive balance control, potentially contributing toward a higher fall risk in older stroke survivors. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Contact-aware simulations of particulate Stokesian suspensions

    NASA Astrophysics Data System (ADS)

    Lu, Libin; Rahimian, Abtin; Zorin, Denis

    2017-10-01

    We present an efficient, accurate, and robust method for simulation of dense suspensions of deformable and rigid particles immersed in Stokesian fluid in two dimensions. We use a well-established boundary integral formulation for the problem as the foundation of our approach. This type of formulation, with a high-order spatial discretization and an implicit and adaptive time discretization, have been shown to be able to handle complex interactions between particles with high accuracy. Yet, for dense suspensions, very small time-steps or expensive implicit solves as well as a large number of discretization points are required to avoid non-physical contact and intersections between particles, leading to infinite forces and numerical instability. Our method maintains the accuracy of previous methods at a significantly lower cost for dense suspensions. The key idea is to ensure interference-free configuration by introducing explicit contact constraints into the system. While such constraints are unnecessary in the formulation, in the discrete form of the problem, they make it possible to eliminate catastrophic loss of accuracy by preventing contact explicitly. Introducing contact constraints results in a significant increase in stable time-step size for explicit time-stepping, and a reduction in the number of points adequate for stability.

  2. Steps in Solution Growth: Revised Gibbs-Thomson Law, Turbulence and Morphological Stability

    NASA Technical Reports Server (NTRS)

    Chernov, A. A.; Rashkovich, L. N.; Vekilov, P. G.

    2004-01-01

    Two groups of new phenomena revealed by AFM and high resolution optical interferometry on crystal faces growing from solutions will be discussed. 1. Spacing between strongly polygonized spiral steps with low less than 10(exp -2) kink density on lysozyme and K- biphtalate do not follow the Burton-cabrera-Frank theory. The critical length of the yet immobile first Short step segment adjacent to a pinning defect (dislocation, stacking fault) is many times longer than that following from the step free energy. The low-kink density steps are typical of many growth conditions and materials, including low temperature gas phase epitaxy and MBE. 2. The step bunching pattern on the approx. 1 cm long { 110) KDP face growing from the turbulent solution flow (Re (triple bonds) 10(exp 4), solution flow rate approx. 1 m/s) suggests that the step bunch height does not increase infinitely as the bunch path on the crystal face rises, as is usually observed on large KDP crystals. The mechanism controlling the maximal bunch width and height is based on the drag of the solution depleted by the step bunch down thc solution stream. It includes splitting, coagulation and interlacing of bunches

  3. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2011-08-01

    This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampére (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier "energy-conserving" explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.

  4. Exact charge and energy conservation in implicit PIC with mapped computational meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guangye; Barnes, D. C.

    This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov Poisson formulation), ours is based on a nonlinearly converged Vlasov Amp re (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant Friedrichs Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicitmore » time steps (unlike the earlier energy-conserving explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.« less

  5. A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qiang; Fan, Liang-Shih, E-mail: fan.1@osu.edu

    A new immersed boundary-lattice Boltzmann method (IB-LBM) is presented for fully resolved simulations of incompressible viscous flows laden with rigid particles. The immersed boundary method (IBM) recently developed by Breugem (2012) [19] is adopted in the present method, development including the retraction technique, the multi-direct forcing method and the direct account of the inertia of the fluid contained within the particles. The present IB-LBM is, however, formulated with further improvement with the implementation of the high-order Runge–Kutta schemes in the coupled fluid–particle interaction. The major challenge to implement high-order Runge–Kutta schemes in the LBM is that the flow information suchmore » as density and velocity cannot be directly obtained at a fractional time step from the LBM since the LBM only provides the flow information at an integer time step. This challenge can be, however, overcome as given in the present IB-LBM by extrapolating the flow field around particles from the known flow field at the previous integer time step. The newly calculated fluid–particle interactions from the previous fractional time steps of the current integer time step are also accounted for in the extrapolation. The IB-LBM with high-order Runge–Kutta schemes developed in this study is validated by several benchmark applications. It is demonstrated, for the first time, that the IB-LBM has the capacity to resolve the translational and rotational motion of particles with the second-order accuracy. The optimal retraction distances for spheres and tubes that help the method achieve the second-order accuracy are found to be around 0.30 and −0.47 times of the lattice spacing, respectively. Simulations of the Stokes flow through a simple cubic lattice of rotational spheres indicate that the lift force produced by the Magnus effect can be very significant in view of the magnitude of the drag force when the practical rotating speed of the spheres is encountered. This finding may lead to more comprehensive studies of the effect of the particle rotation on fluid–solid drag laws. It is also demonstrated that, when the third-order or the fourth-order Runge–Kutta scheme is used, the numerical stability of the present IB-LBM is better than that of all methods in the literature, including the previous IB-LBMs and also the methods with the combination of the IBM and the traditional incompressible Navier–Stokes solver. - Highlights: • The IBM is embedded in the LBM using Runge–Kutta time schemes. • The effectiveness of the present IB-LBM is validated by benchmark applications. • For the first time, the IB-LBM achieves the second-order accuracy. • The numerical stability of the present IB-LBM is better than previous methods.« less

  6. Stabilization of a three-dimensional limit cycle walking model through step-to-step ankle control.

    PubMed

    Kim, Myunghee; Collins, Steven H

    2013-06-01

    Unilateral, below-knee amputation is associated with an increased risk of falls, which may be partially related to a loss of active ankle control. If ankle control can contribute significantly to maintaining balance, even in the presence of active foot placement, this might provide an opportunity to improve balance using robotic ankle-foot prostheses. We investigated ankle- and hip-based walking stabilization methods in a three-dimensional model of human gait that included ankle plantarflexion, ankle inversion-eversion, hip flexion-extension, and hip ad/abduction. We generated discrete feedback control laws (linear quadratic regulators) that altered nominal actuation parameters once per step. We used ankle push-off, lateral ankle stiffness and damping, fore-aft foot placement, lateral foot placement, or all of these as control inputs. We modeled environmental disturbances as random, bounded, unexpected changes in floor height, and defined balance performance as the maximum allowable disturbance value for which the model walked 500 steps without falling. Nominal walking motions were unstable, but were stabilized by all of the step-to-step control laws we tested. Surprisingly, step-by-step modulation of ankle push-off alone led to better balance performance (3.2% leg length) than lateral foot placement (1.2% leg length) for these control laws. These results suggest that appropriate control of robotic ankle-foot prosthesis push-off could make balancing during walking easier for individuals with amputation.

  7. Optimization of ultrasonication period for better dispersion and stability of TiO2-water nanofluid.

    PubMed

    Mahbubul, I M; Elcioglu, Elif Begum; Saidur, R; Amalina, M A

    2017-07-01

    Nanofluids are promising in many fields, including engineering and medicine. Stability deterioration may be a critical constraint for potential applications of nanofluids. Proper ultrasonication can improve the stability, and possibility of the safe use of nanofluids in different applications. In this study, stability properties of TiO 2 -H 2 O nanofluid for varying ultrasonication durations were tested. The nanofluids were prepared through two-step method; and electron microscopies, with particle size distribution and zeta potential analyses were conducted for the evaluation of their stability. Results showed the positive impact of ultrasonication on nanofluid dispersion properties up to some extent. Ultrasonication longer than 150min resulted in re-agglomeration of nanoparticles. Therefore, ultrasonication for 150min was the optimum period yielding highest stability. A regression analysis was also done in order to relate the average cluster size and ultrasonication time to zeta potential. It can be concluded that performing analytical imaging and colloidal property evaluation during and after the sample preparation leads to reliable insights. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Applications of time-series analysis to mood fluctuations in bipolar disorder to promote treatment innovation: a case series

    PubMed Central

    Holmes, E A; Bonsall, M B; Hales, S A; Mitchell, H; Renner, F; Blackwell, S E; Watson, P; Goodwin, G M; Di Simplicio, M

    2016-01-01

    Treatment innovation for bipolar disorder has been hampered by a lack of techniques to capture a hallmark symptom: ongoing mood instability. Mood swings persist during remission from acute mood episodes and impair daily functioning. The last significant treatment advance remains Lithium (in the 1970s), which aids only the minority of patients. There is no accepted way to establish proof of concept for a new mood-stabilizing treatment. We suggest that combining insights from mood measurement with applied mathematics may provide a step change: repeated daily mood measurement (depression) over a short time frame (1 month) can create individual bipolar mood instability profiles. A time-series approach allows comparison of mood instability pre- and post-treatment. We test a new imagery-focused cognitive therapy treatment approach (MAPP; Mood Action Psychology Programme) targeting a driver of mood instability, and apply these measurement methods in a non-concurrent multiple baseline design case series of 14 patients with bipolar disorder. Weekly mood monitoring and treatment target data improved for the whole sample combined. Time-series analyses of daily mood data, sampled remotely (mobile phone/Internet) for 28 days pre- and post-treatment, demonstrated improvements in individuals' mood stability for 11 of 14 patients. Thus the findings offer preliminary support for a new imagery-focused treatment approach. They also indicate a step in treatment innovation without the requirement for trials in illness episodes or relapse prevention. Importantly, daily measurement offers a description of mood instability at the individual patient level in a clinically meaningful time frame. This costly, chronic and disabling mental illness demands innovation in both treatment approaches (whether pharmacological or psychological) and measurement tool: this work indicates that daily measurements can be used to detect improvement in individual mood stability for treatment innovation (MAPP). PMID:26812041

  9. Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations

    NASA Astrophysics Data System (ADS)

    Liu, Changying; Wu, Xinyuan

    2017-07-01

    In this paper we explore arbitrarily high-order Lagrange collocation-type time-stepping schemes for effectively solving high-dimensional nonlinear Klein-Gordon equations with different boundary conditions. We begin with one-dimensional periodic boundary problems and first formulate an abstract ordinary differential equation (ODE) on a suitable infinity-dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula which is essential for the derivation of our arbitrarily high-order Lagrange collocation-type time-stepping schemes for the nonlinear abstract ODE. The nonlinear stability and convergence are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix under some suitable smoothness assumptions. With regard to the two dimensional Dirichlet or Neumann boundary problems, our new time-stepping schemes coupled with discrete Fast Sine / Cosine Transformation can be applied to simulate the two-dimensional nonlinear Klein-Gordon equations effectively. All essential features of the methodology are present in one-dimensional and two-dimensional cases, although the schemes to be analysed lend themselves with equal to higher-dimensional case. The numerical simulation is implemented and the numerical results clearly demonstrate the advantage and effectiveness of our new schemes in comparison with the existing numerical methods for solving nonlinear Klein-Gordon equations in the literature.

  10. Factors affecting emulsion stability and quality of oil recovered from enzyme-assisted aqueous extraction of soybeans.

    PubMed

    Jung, S; Maurer, D; Johnson, L A

    2009-11-01

    The objectives of the present study were to assess how the stability of the emulsion recovered from aqueous extraction processing of soybeans was affected by characteristics of the starting material and extraction and demulsification conditions. Adding endopeptidase Protex 6L during enzyme-assisted aqueous extraction processing (EAEP) of extruded soybean flakes was vital to obtaining emulsions that were easily demulsified with enzymes. Adding salt (up to 1.5 mM NaCl or MgCl(2)) during extraction and storing extruded flakes before extraction at 4 and 30 degrees C for up to 3 months did not affect the stabilities of emulsions recovered from EAEP of soy flour, flakes and extruded flakes. After demulsification, highest free oil yield was obtained with EAEP of extruded flakes, followed by flour and then flakes. The same protease used for the extraction step was used to demulsify the EAEP cream emulsion from extruded full-fat soy flakes at concentrations ranging from 0.03% to 2.50% w/w, incubation times ranging from 2 to 90 min, and temperatures of 25, 50 or 65 degrees C. Highest free oil recoveries were achieved at high enzyme concentrations, mild temperatures, and short incubation times. Both the nature of enzyme (i.e., protease and phospholipase), added alone or as a cocktail, concentration of enzymes (0.5% vs. 2.5%) and incubation time (1 vs. 3 h), use during the extraction step, and nature of enzyme added for demulsifying affected free oil yield. The free oil recovered from EAEP of extruded flakes contained less phosphorus compared with conventional hexane-extracted oil. The present study identified conditions rendering the emulsion less stable, which is critical to increasing free oil yield recovered during EAEP of soybeans, an environmentally friendly alternative processing method to hexane extraction.

  11. Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws based on a posteriori stabilized high order polynomial reconstructions

    NASA Astrophysics Data System (ADS)

    Semplice, Matteo; Loubère, Raphaël

    2018-02-01

    In this paper we propose a third order accurate finite volume scheme based on a posteriori limiting of polynomial reconstructions within an Adaptive-Mesh-Refinement (AMR) simulation code for hydrodynamics equations in 2D. The a posteriori limiting is based on the detection of problematic cells on a so-called candidate solution computed at each stage of a third order Runge-Kutta scheme. Such detection may include different properties, derived from physics, such as positivity, from numerics, such as a non-oscillatory behavior, or from computer requirements such as the absence of NaN's. Troubled cell values are discarded and re-computed starting again from the previous time-step using a more dissipative scheme but only locally, close to these cells. By locally decrementing the degree of the polynomial reconstructions from 2 to 0 we switch from a third-order to a first-order accurate but more stable scheme. The entropy indicator sensor is used to refine/coarsen the mesh. This sensor is also employed in an a posteriori manner because if some refinement is needed at the end of a time step, then the current time-step is recomputed with the refined mesh, but only locally, close to the new cells. We show on a large set of numerical tests that this a posteriori limiting procedure coupled with the entropy-based AMR technology can maintain not only optimal accuracy on smooth flows but also stability on discontinuous profiles such as shock waves, contacts, interfaces, etc. Moreover numerical evidences show that this approach is at least comparable in terms of accuracy and cost to a more classical CWENO approach within the same AMR context.

  12. From h to p efficiently: optimal implementation strategies for explicit time-dependent problems using the spectral/hp element method

    PubMed Central

    Bolis, A; Cantwell, C D; Kirby, R M; Sherwin, S J

    2014-01-01

    We investigate the relative performance of a second-order Adams–Bashforth scheme and second-order and fourth-order Runge–Kutta schemes when time stepping a 2D linear advection problem discretised using a spectral/hp element technique for a range of different mesh sizes and polynomial orders. Numerical experiments explore the effects of short (two wavelengths) and long (32 wavelengths) time integration for sets of uniform and non-uniform meshes. The choice of time-integration scheme and discretisation together fixes a CFL limit that imposes a restriction on the maximum time step, which can be taken to ensure numerical stability. The number of steps, together with the order of the scheme, affects not only the runtime but also the accuracy of the solution. Through numerical experiments, we systematically highlight the relative effects of spatial resolution and choice of time integration on performance and provide general guidelines on how best to achieve the minimal execution time in order to obtain a prescribed solution accuracy. The significant role played by higher polynomial orders in reducing CPU time while preserving accuracy becomes more evident, especially for uniform meshes, compared with what has been typically considered when studying this type of problem.© 2014. The Authors. International Journal for Numerical Methods in Fluids published by John Wiley & Sons, Ltd. PMID:25892840

  13. A point implicit time integration technique for slow transient flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less

  14. A real-time and closed-loop control algorithm for cascaded multilevel inverter based on artificial neural network.

    PubMed

    Wang, Libing; Mao, Chengxiong; Wang, Dan; Lu, Jiming; Zhang, Junfeng; Chen, Xun

    2014-01-01

    In order to control the cascaded H-bridges (CHB) converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN) for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC) algorithm is employed to minimize the total harmonic distortion (THD) and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC) sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current's THD (<5%) when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  15. Accurate prediction of vaccine stability under real storage conditions and during temperature excursions.

    PubMed

    Clénet, Didier

    2018-04-01

    Due to their thermosensitivity, most vaccines must be kept refrigerated from production to use. To successfully carry out global immunization programs, ensuring the stability of vaccines is crucial. In this context, two important issues are critical, namely: (i) predicting vaccine stability and (ii) preventing product damage due to excessive temperature excursions outside of the recommended storage conditions (cold chain break). We applied a combination of advanced kinetics and statistical analyses on vaccine forced degradation data to accurately describe the loss of antigenicity for a multivalent freeze-dried inactivated virus vaccine containing three variants. The screening of large amounts of kinetic models combined with a statistical model selection approach resulted in the identification of two-step kinetic models. Predictions based on kinetic analysis and experimental stability data were in agreement, with approximately five percentage points difference from real values for long-term stability storage conditions, after excursions of temperature and during experimental shipments of freeze-dried products. Results showed that modeling a few months of forced degradation can be used to predict various time and temperature profiles endured by vaccines, i.e. long-term stability, short time excursions outside the labeled storage conditions or shipments at ambient temperature, with high accuracy. Pharmaceutical applications of the presented kinetics-based approach are discussed. Copyright © 2018 The Author. Published by Elsevier B.V. All rights reserved.

  16. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects.

    PubMed

    Becker, Ina; Strauch, Sebastian M; Hauslage, Jens; Lebert, Michael

    2017-05-01

    The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  17. Simulation of Unsteady Flows Using an Unstructured Navier-Stokes Solver on Moving and Stationary Grids

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Vatsa, Veer N.; Atkins, Harold L.

    2005-01-01

    We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for unstructured grids to unsteady flows on moving and stationary grids. Example problems considered are relevant to active flow control and stability and control. Computational results are presented using the Spalart-Allmaras turbulence model and are compared to experimental data. The effect of grid and time-step refinement are examined.

  18. Metabolic Cost of Lateral Stabilization during Walking in People with Incomplete Spinal Cord Injury

    PubMed Central

    Matsubara, J.H.; Wu, M.; Gordon, K.E.

    2015-01-01

    People with incomplete spinal cord injury (iSCI) expend considerable energy to walk, which can lead to rapid fatigue and limit community ambulation. Selecting locomotor patterns that enhance lateral stability may contribute to this population’s elevated cost of transport. The goal of the current study was to quantify the metabolic energy demands of maintaining lateral stability during gait in people with iSCI. To quantify this metabolic cost, we observed ten individuals with iSCI walking with and without external lateral stabilization. We hypothesized that with external lateral stabilization, people with iSCI would adapt their gait by decreasing step width, which would correspond with a substantial decrease in cost of transport. Our findings support this hypothesis. Subjects significantly (p < 0.05) decreased step width by 22%, step width variability by 18%, and minimum lateral margin of stability by 25% when they walked with external lateral stabilization compared to unassisted walking. Metabolic cost of transport also decreased significantly (p < 0.05) by 10% with external lateral stabilization. These findings suggest that this population is capable of adapting their gait to meet changing demands placed on balance. The percent reduction in cost of transport when walking with external lateral stabilization was strongly correlated with functional impairment level as assessed by subjects’ scores on the Berg Balance Scale (R = 0.778) and Lower Extremity Motor Score (R = 0.728). These relationships suggest that as functional balance and strength decrease, the amount of metabolic energy used to maintain lateral stability during gait will increase. PMID:25670651

  19. A stable and accurate partitioned algorithm for conjugate heat transfer

    NASA Astrophysics Data System (ADS)

    Meng, F.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.

    2017-09-01

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in an implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems together with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode theory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized-Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and diffusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. The CHAMP scheme is also developed for general curvilinear grids and CHT examples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.

  20. A stable and accurate partitioned algorithm for conjugate heat transfer

    DOE PAGES

    Meng, F.; Banks, J. W.; Henshaw, W. D.; ...

    2017-04-25

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less

  1. Multiple-time-stepping generalized hybrid Monte Carlo methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escribano, Bruno, E-mail: bescribano@bcamath.org; Akhmatskaya, Elena; IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao

    2015-01-01

    Performance of the generalized shadow hybrid Monte Carlo (GSHMC) method [1], which proved to be superior in sampling efficiency over its predecessors [2–4], molecular dynamics and hybrid Monte Carlo, can be further improved by combining it with multi-time-stepping (MTS) and mollification of slow forces. We demonstrate that the comparatively simple modifications of the method not only lead to better performance of GSHMC itself but also allow for beating the best performed methods, which use the similar force splitting schemes. In addition we show that the same ideas can be successfully applied to the conventional generalized hybrid Monte Carlo method (GHMC).more » The resulting methods, MTS-GHMC and MTS-GSHMC, provide accurate reproduction of thermodynamic and dynamical properties, exact temperature control during simulation and computational robustness and efficiency. MTS-GHMC uses a generalized momentum update to achieve weak stochastic stabilization to the molecular dynamics (MD) integrator. MTS-GSHMC adds the use of a shadow (modified) Hamiltonian to filter the MD trajectories in the HMC scheme. We introduce a new shadow Hamiltonian formulation adapted to force-splitting methods. The use of such Hamiltonians improves the acceptance rate of trajectories and has a strong impact on the sampling efficiency of the method. Both methods were implemented in the open-source MD package ProtoMol and were tested on a water and a protein systems. Results were compared to those obtained using a Langevin Molly (LM) method [5] on the same systems. The test results demonstrate the superiority of the new methods over LM in terms of stability, accuracy and sampling efficiency. This suggests that putting the MTS approach in the framework of hybrid Monte Carlo and using the natural stochasticity offered by the generalized hybrid Monte Carlo lead to improving stability of MTS and allow for achieving larger step sizes in the simulation of complex systems.« less

  2. Effects of annealing on the physical properties of therapeutic proteins during freeze drying process.

    PubMed

    Lim, Jun Yeul; Lim, Dae Gon; Kim, Ki Hyun; Park, Sang-Koo; Jeong, Seong Hoon

    2018-02-01

    Effects of annealing steps during the freeze drying process on etanercept, model protein, were evaluated using various analytical methods. The annealing was introduced in three different ways depending on time and temperature. Residual water contents of dried cakes varied from 2.91% to 6.39% and decreased when the annealing step was adopted, suggesting that they are directly affected by the freeze drying methods Moreover, the samples were more homogenous when annealing was adopted. Transition temperatures of the excipients (sucrose, mannitol, and glycine) were dependent on the freeze drying steps. Size exclusion chromatography showed that monomer contents were high when annealing was adopted and also they decreased less after thermal storage at 60°C. Dynamic light scattering results exhibited that annealing can be helpful in inhibiting aggregation and that thermal storage of freeze-dried samples preferably induced fragmentation over aggregation. Shift of circular dichroism spectrum and of the contents of etanercept secondary structure was observed with different freeze drying steps and thermal storage conditions. All analytical results suggest that the physicochemical properties of etanercept formulation can differ in response to different freeze drying steps and that annealing is beneficial for maintaining stability of protein and reducing the time of freeze drying process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Preconditioned conjugate-gradient methods for low-speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  4. Preconditioned Conjugate Gradient methods for low speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  5. Correlations of phase structure and thermal stability for Alnico 8 alloys

    NASA Astrophysics Data System (ADS)

    Zhao, J. T.; Sun, Y. L.; Liu, L.; Lee, D.; Liu, Z.; Feng, X. C.; Yan, A. R.

    2017-11-01

    The correlations of phase structure and thermal stability for Alnico 8 alloys is analyzed by three-step aging at 650 °C, 600 °C and 550 °C gradually in this paper. After three-step aging the a1 phase is a chess-like structure in transverse direction and a bamboo-like structure in longitudinal direction. Meanwhile the magnetic energy product ((BH)m) increases from 9.17 MGOe to 10.59 MGOe, and the remanence temperature coefficient a(RT-180 °C) reduces from -2.31 %%/°C to -1.25 %%/°C. The MPMS and VSM measurements indicate that three-step aging makes the a1 phase be single domain particles and dispersed distribution, which plays an important role in optimizing the thermal stability of Alnico alloys.

  6. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme

    NASA Astrophysics Data System (ADS)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres

    2007-10-01

    Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.

  7. Stability and Instability of the Sub-extremal Reissner-Nordström Black Hole Interior for the Einstein-Maxwell-Klein-Gordon Equations in Spherical Symmetry

    NASA Astrophysics Data System (ADS)

    Van de Moortel, Maxime

    2018-05-01

    We show non-linear stability and instability results in spherical symmetry for the interior of a charged black hole—approaching a sub-extremal Reissner-Nordström background fast enough—in presence of a massive and charged scalar field, motivated by the strong cosmic censorship conjecture in that setting: 1. Stability We prove that spherically symmetric characteristic initial data to the Einstein-Maxwell-Klein-Gordon equations approaching a Reissner-Nordström background with a sufficiently decaying polynomial decay rate on the event horizon gives rise to a space-time possessing a Cauchy horizon in a neighbourhood of time-like infinity. Moreover, if the decay is even stronger, we prove that the space-time metric admits a continuous extension to the Cauchy horizon. This generalizes the celebrated stability result of Dafermos for Einstein-Maxwell-real-scalar-field in spherical symmetry. 2. Instability We prove that for the class of space-times considered in the stability part, whose scalar field in addition obeys a polynomial averaged- L 2 (consistent) lower bound on the event horizon, the scalar field obeys an integrated lower bound transversally to the Cauchy horizon. As a consequence we prove that the non-degenerate energy is infinite on any null surface crossing the Cauchy horizon and the curvature of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This generalizes an instability result due to Luk and Oh for Einstein-Maxwell-real-scalar-field in spherical symmetry. This instability of the black hole interior can also be viewed as a step towards the resolution of the C 2 strong cosmic censorship conjecture for one-ended asymptotically flat initial data.

  8. Pedometer determined physical activity tracks in African American adults: The Jackson Heart Study

    PubMed Central

    2012-01-01

    Background This study investigated the number of pedometer assessment occasions required to establish habitual physical activity in African American adults. Methods African American adults (mean age 59.9 ± 0.60 years; 59 % female) enrolled in the Diet and Physical Activity Substudy of the Jackson Heart Study wore Yamax pedometers during 3-day monitoring periods, assessed on two to three distinct occasions, each separated by approximately one month. The stability of pedometer measured PA was described as differences in mean steps/day across time, as intraclass correlation coefficients (ICC) by sex, age, and body mass index (BMI) category, and as percent of participants changing steps/day quartiles across time. Results Valid data were obtained for 270 participants on either two or three different assessment occasions. Mean steps/day were not significantly different across assessment occasions (p values > 0.456). The overall ICCs for steps/day assessed on either two or three occasions were 0.57 and 0.76, respectively. In addition, 85 % (two assessment occasions) and 76 % (three assessment occasions) of all participants remained in the same steps/day quartile or changed one quartile over time. Conclusion The current study shows that an overall mean steps/day estimate based on a 3-day monitoring period did not differ significantly over 4 – 6 months. The findings were robust to differences in sex, age, and BMI categories. A single 3-day monitoring period is sufficient to capture habitual physical activity in African American adults. PMID:22512833

  9. Daily activity during stability and exacerbation of chronic obstructive pulmonary disease.

    PubMed

    Alahmari, Ayedh D; Patel, Anant R C; Kowlessar, Beverly S; Mackay, Alex J; Singh, Richa; Wedzicha, Jadwiga A; Donaldson, Gavin C

    2014-06-02

    During most COPD exacerbations, patients continue to live in the community but there is little information on changes in activity during exacerbations due to the difficulties of obtaining recent, prospective baseline data. Patients recorded on daily diary cards any worsening in respiratory symptoms, peak expiratory flow (PEF) and the number of steps taken per day measured with a Yamax Digi-walker pedometer. Exacerbations were defined by increased respiratory symptoms and the number of exacerbations experienced in the 12 months preceding the recording of daily step count used to divide patients into frequent (> = 2/year) or infrequent exacerbators. The 73 COPD patients (88% male) had a mean (±SD) age 71(±8) years and FEV1 53(±16)% predicted. They recorded pedometer data on a median 198 days (IQR 134-353). At exacerbation onset, symptom count rose by 1.9(±1.3) and PEF fell by 7(±13) l/min. Mean daily step count fell from 4154(±2586) steps/day during a preceding baseline week to 3673(±2258) step/day during the initial 7 days of exacerbation (p = 0.045). Patients with larger falls in activity at exacerbation took longer to recover to stable level (rho = -0.56; p < 0.001). Recovery in daily step count was faster (median 3.5 days) than for exacerbation symptoms (median 11 days; p < 0.001). Recovery in step count was also faster in untreated compared to treated exacerbation (p = 0.030).Daily step count fell faster over time in the 40 frequent exacerbators, by 708 steps/year, compared to 338 steps/year in 33 infrequent exacerbators (p = 0.002). COPD exacerbations reduced physical activity and frequent exacerbations accelerate decline in activity over time.

  10. Silver nanowires as the current collector for a flexible in-plane micro-supercapacitor via a one-step, mask-free patterning strategy

    NASA Astrophysics Data System (ADS)

    Liu, Lang; Li, Han-Yu; Yu, Yao; Liu, Lin; Wu, Yue

    2018-02-01

    The fabrication of a current collector-contained in-plane micro-supercapacitor (MSC) usually requires the patterning of the current collector first and then subsequent patterning of the active material with the assistance of a photoresist and mask. However, this two-step patterning process is too complicated and the photoresist used is harmful to the properties of nanomaterials. Here, we demonstrate a one-step, mask-free strategy to pattern the current collector and the active material at the same time, for the fabrication of an all-solid-state flexible in-plane MSC. Silver nanowires (AgNWs) are used as the current collector. An atmospheric pressure pulsed cold micro-plasma-jet is used to realize the one-step, mask-free production of interdigitated multi-walled carbon nanotube (MWCNT)/AgNW electrodes. Remarkably, the fabricated MWCNT/AgNW-based MSC shows good flexibility and excellent rate capability. Moreover, the performance of properties including cyclic stability, equivalent series resistance, relaxation time and energy/power densities of the MWCNT/AgNW-based MSC are significantly enhanced by the presence of the AgNW current collector.

  11. An embedded formula of the Chebyshev collocation method for stiff problems

    NASA Astrophysics Data System (ADS)

    Piao, Xiangfan; Bu, Sunyoung; Kim, Dojin; Kim, Philsu

    2017-12-01

    In this study, we have developed an embedded formula of the Chebyshev collocation method for stiff problems, based on the zeros of the generalized Chebyshev polynomials. A new strategy for the embedded formula, using a pair of methods to estimate the local truncation error, as performed in traditional embedded Runge-Kutta schemes, is proposed. The method is performed in such a way that not only the stability region of the embedded formula can be widened, but by allowing the usage of larger time step sizes, the total computational costs can also be reduced. In terms of concrete convergence and stability analysis, the constructed algorithm turns out to have an 8th order convergence and it exhibits A-stability. Through several numerical experimental results, we have demonstrated that the proposed method is numerically more efficient, compared to several existing implicit methods.

  12. Leg preference associated with protective stepping responses in older adults.

    PubMed

    Young, Patricia M; Whitall, Jill; Bair, Woei-Nan; Rogers, Mark W

    2013-10-01

    Asymmetries in dynamic balance stability have been previously observed. The goal of this study was to determine whether leg preference influenced the stepping response to a waist-pull perturbation in older adult fallers and non-fallers. 39 healthy, community-dwelling, older adult (>65 years) volunteers participated. Participants were grouped into non-faller and faller cohorts based on fall history in the 12 months prior to the study. Participants received 60 lateral waist-pull perturbations of varying magnitude towards their preferred and non-preferred sides during quiet standing. Outcome measures included balance tolerance limit, number of recovery steps taken and type of recovery step taken for perturbations to each side. No significant differences in balance tolerance limit (P ≥ 0.102) or number of recovery steps taken (η(2)partial ≤ 0.027; P ≥ 0.442) were observed between perturbations towards the preferred and non-preferred legs. However, non-faller participants more frequently responded with a medial step when pulled towards their non-preferred side and cross-over steps when pulled towards their preferred side (P=0.015). Leg preference may influence the protective stepping response to standing balance perturbations in older adults at risk for falls, particularly with the type of recovery responses used. Such asymmetries in balance stability recovery may represent a contributing factor for falls among older individuals and should be considered for rehabilitation interventions aimed at improving balance stability and reducing fall risk. © 2013.

  13. Leg preference associated with protective stepping responses in older adults

    PubMed Central

    Young, Patricia M.; Whitall, Jill; Bair, Woei-Nan; Rogers, Mark W.

    2014-01-01

    Background Asymmetries in dynamic balance stability have been previously observed. The goal of this study was to determine whether leg preference influenced the stepping response to a waist-pull perturbation in older adult fallers and non-fallers. Methods 39 healthy, community-dwelling, older adult (>65 years) volunteers participated. Participants were grouped into non-faller and faller cohorts based on fall history in the 12 months prior to the study. Participants received 60 lateral waist-pull perturbations of varying magnitude towards their preferred and non-preferred sides during quiet standing. Outcome measures included balance tolerance limit, number of recovery steps taken and type of recovery step taken for perturbations to each side. Findings No significant differences in balance tolerance limit (P ≥ 0.102) or number of recovery steps taken (η2partial ≤ 0.027; P ≥ 0.442) were observed between perturbations towards the preferred and non-preferred legs. However, non-faller participants more frequently responded with a medial step when pulled towards their non-preferred side and cross-over steps when pulled towards their preferred side (P = 0.015). Interpretation Leg preference may influence the protective stepping response to standing balance perturbations in older adults at risk for falls, particularly with the type of recovery responses used. Such asymmetries in balance stability recovery may represent a contributing factor for falls among older individuals and should be considered for rehabilitation interventions aimed at improving balance stability and reducing fall risk. PMID:23962655

  14. Roles of conformational stability and colloidal stability in the aggregation of recombinant human granulocyte colony-stimulating factor

    PubMed Central

    Chi, Eva Y.; Krishnan, Sampathkumar; Kendrick, Brent S.; Chang, Byeong S.; Carpenter, John F.; Randolph, Theodore W.

    2003-01-01

    We studied the non-native aggregation of recombinant human granulocyte stimulating factor (rhGCSF) in solution conditions where native rhGCSF is both conformationally stable compared to its unfolded state and at concentrations well below its solubility limit. Aggregation of rhGCSF first involves the perturbation of its native structure to form a structurally expanded transition state, followed by assembly process to form an irreversible aggregate. The energy barriers of the two steps are reflected in the experimentally measured values of free energy of unfolding (ΔGunf) and osmotic second virial coefficient (B22), respectively. Under solution conditions where rhGCSF conformational stability dominates (i.e., large ΔGunf and negative B22), the first step is rate-limiting, and increasing ΔGunf (e.g., by the addition of sucrose) decreases aggregation. In solutions where colloidal stability is high (i.e., large and positive B22 values) the second step is rate-limiting, and solution conditions (e.g., low pH and low ionic strength) that increase repulsive interactions between protein molecules are effective at reducing aggregation. rhGCSF aggregation is thus controlled by both conformational stability and colloidal stability, and depending on the solution conditions, either could be rate-limiting. PMID:12717013

  15. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  16. Apparatus for simultaneously disreefing a centrally reefed clustered parachute system

    DOEpatents

    Johnson, Donald W.

    1988-01-01

    A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing.

  17. Apparatus for simultaneously disreefing a centrally reefed clustered parachute system

    DOEpatents

    Johnson, D.W.

    1988-06-21

    A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing. 13 figs.

  18. Upper Limit of Weights in TAI Computation

    NASA Technical Reports Server (NTRS)

    Thomas, Claudine; Azoubib, Jacques

    1996-01-01

    The international reference time scale International Atomic Time (TAI) computed by the Bureau International des Poids et Mesures (BIPM) relies on a weighted average of data from a large number of atomic clocks. In it, the weight attributed to a given clock depends on its long-term stability. In this paper the TAI algorithm is used as the basis for a discussion of how to implement an upper limit of weight for clocks contributing to the ensemble time. This problem is approached through the comparison of two different techniques. In one case, a maximum relative weight is fixed: no individual clock can contribute more than a given fraction to the resulting time scale. The weight of each clock is then adjusted according to the qualities of the whole set of contributing elements. In the other case, a parameter characteristic of frequency stability is chosen: no individual clock can appear more stable than the stated limit. This is equivalent to choosing an absolute limit of weight and attributing this to to the most stable clocks independently of the other elements of the ensemble. The first technique is more robust than the second and automatically optimizes the stability of the resulting time scale, but leads to a more complicated computatio. The second technique has been used in the TAI algorithm since the very beginning. Careful analysis of tests on real clock data shows that improvement of the stability of the time scale requires revision from time to time of the fixed value chosen for the upper limit of absolute weight. In particular, we present results which confirm the decision of the CCDS Working Group on TAI to increase the absolute upper limit by a factor of 2.5. We also show that the use of an upper relative contribution further helps to improve the stability and may be a useful step towards better use of the massive ensemble of HP 507IA clocks now contributing to TAI.

  19. Model predictive control design for polytopic uncertain systems by synthesising multi-step prediction scenarios

    NASA Astrophysics Data System (ADS)

    Lu, Jianbo; Xi, Yugeng; Li, Dewei; Xu, Yuli; Gan, Zhongxue

    2018-01-01

    A common objective of model predictive control (MPC) design is the large initial feasible region, low online computational burden as well as satisfactory control performance of the resulting algorithm. It is well known that interpolation-based MPC can achieve a favourable trade-off among these different aspects. However, the existing results are usually based on fixed prediction scenarios, which inevitably limits the performance of the obtained algorithms. So by replacing the fixed prediction scenarios with the time-varying multi-step prediction scenarios, this paper provides a new insight into improvement of the existing MPC designs. The adopted control law is a combination of predetermined multi-step feedback control laws, based on which two MPC algorithms with guaranteed recursive feasibility and asymptotic stability are presented. The efficacy of the proposed algorithms is illustrated by a numerical example.

  20. Multi-off-grid methods in multi-step integration of ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Beaudet, P. R.

    1974-01-01

    Description of methods of solving first- and second-order systems of differential equations in which all derivatives are evaluated at off-grid locations in order to circumvent the Dahlquist stability limitation on the order of on-grid methods. The proposed multi-off-grid methods require off-grid state predictors for the evaluation of the n derivatives at each step. Progressing forward in time, the off-grid states are predicted using a linear combination of back on-grid state values and off-grid derivative evaluations. A comparison is made between the proposed multi-off-grid methods and the corresponding Adams and Cowell on-grid integration techniques in integrating systems of ordinary differential equations, showing a significant reduction in the error at larger step sizes in the case of the multi-off-grid integrator.

  1. Stabilizing detached Bridgman melt crystal growth: Proportional-integral feedback control

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2012-10-01

    The dynamics, operability limits, and tuning of a proportional-integral feedback controller to stabilize detached vertical Bridgman crystal growth are analyzed using a capillary model of shape stability. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. Open and closed loop dynamics of step changes in these state variables are analyzed under both shape stable and shape unstable growth conditions. Effects of step changes in static contact angle and growth angle are also studied. Proportional and proportional-integral control can stabilize unstable growth, but only within tight operability limits imposed by the narrow range of allowed meniscus shapes. These limits are used to establish safe operating ranges of controller gain. Strong nonlinearity of the capillary model restricts the range of perturbations that can be stabilized, and under some circumstances, stabilizes a spurious operating state far from the set point. Stabilizing detachment at low growth angle proves difficult and becomes impossible at zero growth angle.

  2. Stages in Learning Motor Synergies: A View Based on the Equilibrium-Point Hypothesis

    PubMed Central

    Latash, Mark L.

    2009-01-01

    This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s), and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable (“good variability”). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the “good variability”. Experimental support for the suggested scheme is reviewed. PMID:20060610

  3. Stages in learning motor synergies: a view based on the equilibrium-point hypothesis.

    PubMed

    Latash, Mark L

    2010-10-01

    This review describes a novel view on stages in motor learning based on recent developments of the notion of synergies, the uncontrolled manifold hypothesis, and the equilibrium-point hypothesis (referent configuration) that allow to merge these notions into a single scheme of motor control. The principle of abundance and the principle of minimal final action form the foundation for analyses of natural motor actions performed by redundant sets of elements. Two main stages of motor learning are introduced corresponding to (1) discovery and strengthening of motor synergies stabilizing salient performance variable(s) and (2) their weakening when other aspects of motor performance are optimized. The first stage may be viewed as consisting of two steps, the elaboration of an adequate referent configuration trajectory and the elaboration of multi-joint (multi-muscle) synergies stabilizing the referent configuration trajectory. Both steps are expected to lead to more variance in the space of elemental variables that is compatible with a desired time profile of the salient performance variable ("good variability"). Adjusting control to other aspects of performance during the second stage (for example, esthetics, energy expenditure, time, fatigue, etc.) may lead to a drop in the "good variability". Experimental support for the suggested scheme is reviewed. Copyright © 2009 Elsevier B.V. All rights reserved.

  4. Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect

    NASA Astrophysics Data System (ADS)

    Cheng, Lifang; Cao, Hongjun

    2016-09-01

    A discrete-time predator-prey model with Allee effect is investigated in this paper. We consider the strong and the weak Allee effect (the population growth rate is negative and positive at low population density, respectively). From the stability analysis and the bifurcation diagrams, we get that the model with Allee effect (strong or weak) growth function and the model with logistic growth function have somewhat similar bifurcation structures. If the predator growth rate is smaller than its death rate, two species cannot coexist due to having no interior fixed points. When the predator growth rate is greater than its death rate and other parameters are fixed, the model can have two interior fixed points. One is always unstable, and the stability of the other is determined by the integral step size, which decides the species coexistence or not in some extent. If we increase the value of the integral step size, then the bifurcated period doubled orbits or invariant circle orbits may arise. So the numbers of the prey and the predator deviate from one stable state and then circulate along the period orbits or quasi-period orbits. When the integral step size is increased to a critical value, chaotic orbits may appear with many uncertain period-windows, which means that the numbers of prey and predator will be chaotic. In terms of bifurcation diagrams and phase portraits, we know that the complexity degree of the model with strong Allee effect decreases, which is related to the fact that the persistence of species can be determined by the initial species densities.

  5. Advancing parabolic operators in thermodynamic MHD models: Explicit super time-stepping versus implicit schemes with Krylov solvers

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.

    2017-05-01

    We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.

  6. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry I.; Kasimov, Aslan R.

    2018-03-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  7. Effect of mass concentration of composite phase change material CA-DE on HCFC-141b hydrate induction time and system stability

    NASA Astrophysics Data System (ADS)

    Li, Juan; Sun, Zhigao; Liu, Chenggang; Zhu, Minggui

    2018-03-01

    HCFC-141b hydrate is a new type of environment-friendly cold storage medium which may be adopted to balance energy supply and demand, achieve peak load shifting and energy saving, wherein the hydrate induction time and system stability are key factors to promote and realize its application in industrial practice. Based on step cooling curve measurement, two kinds of aliphatic hydrocarbon organics, n-capric acid (CA) and lauryl alcohol (DE), were selected to form composite phase change material and to promote the generation of HCFC-141b hydrate. Five kinds of CA-DE mass concentration were chosen to compare the induction time and hydration system stability. In order to accelerate temperature reduction rate, the metal Cu with high heat conductivity performance was adopted to conduct out the heat generated during phase change. Instability index was introduced to appraise system stability. Experimental results show that phase change temperature and sub-cooling degree of CA-DE is 11.1°C and 3.0°C respectively, which means it is a preferable medium for HCFC-141b hydrate formation. For the experimental hydration systems, segmented emulsification is achieved by special titration manner to avoid rapid layering under static condition. Induction time can achieve up to 23.3min with the densest HCFC-141b hydrate and the lowest instability index, wherein CA-DE mass concentration is 3%.

  8. Integrated Chassis Control of Active Front Steering and Yaw Stability Control Based on Improved Inverse Nyquist Array Method

    PubMed Central

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method. PMID:24782676

  9. Integrated chassis control of active front steering and yaw stability control based on improved inverse nyquist array method.

    PubMed

    Zhu, Bing; Chen, Yizhou; Zhao, Jian

    2014-01-01

    An integrated chassis control (ICC) system with active front steering (AFS) and yaw stability control (YSC) is introduced in this paper. The proposed ICC algorithm uses the improved Inverse Nyquist Array (INA) method based on a 2-degree-of-freedom (DOF) planar vehicle reference model to decouple the plant dynamics under different frequency bands, and the change of velocity and cornering stiffness were considered to calculate the analytical solution in the precompensator design so that the INA based algorithm runs well and fast on the nonlinear vehicle system. The stability of the system is guaranteed by dynamic compensator together with a proposed PI feedback controller. After the response analysis of the system on frequency domain and time domain, simulations under step steering maneuver were carried out using a 2-DOF vehicle model and a 14-DOF vehicle model by Matlab/Simulink. The results show that the system is decoupled and the vehicle handling and stability performance are significantly improved by the proposed method.

  10. High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer.

    PubMed

    Jin, Hyung Dae; Garrison, Anna; Tseng, T; Paul, Brian K; Chang, Chih-Hung

    2010-11-05

    Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 µm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s(-1)) was achieved using a microreactor with a size of 1.687 cm(3). This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.

  11. High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer

    NASA Astrophysics Data System (ADS)

    Jin, Hyung Dae; Garrison, Anna; Tseng, T.; Paul, Brian K.; Chang, Chih-Hung

    2010-11-01

    Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 µm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s - 1) was achieved using a microreactor with a size of 1.687 cm3. This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.

  12. Self-stabilized narrow-bandwidth and high-fidelity entangled photons generated from cold atoms

    NASA Astrophysics Data System (ADS)

    Yu, Y. C.; Ding, D. S.; Dong, M. X.; Shi, S.; Zhang, W.; Shi, B. S.

    2018-04-01

    Entangled photon pairs are critically important in fundamental quantum mechanics research as well as in many areas within the field of quantum information, such as quantum communication, quantum computation, and quantum cryptography. Previous demonstrations of entangled photons based on atomic ensembles were achieved by using a reference laser to stabilize the phase of two spontaneous four-wave mixing paths. Here, we demonstrate a convenient and efficient scheme to generate polarization-entangled photons with a narrow bandwidth of 57.2 ±1.6 MHz and a high-fidelity of 96.3 ±0.8 % by using a phase self-stabilized multiplexing system formed by two beam displacers and two half-wave plates where the relative phase between the different signal paths can be eliminated completely. It is possible to stabilize an entangled photon pair for a long time with this system and produce all four Bell states, making this a vital step forward in the field of quantum information.

  13. Numerical proof of stability of roll waves in the small-amplitude limit for inclined thin film flow

    NASA Astrophysics Data System (ADS)

    Barker, Blake

    2014-10-01

    We present a rigorous numerical proof based on interval arithmetic computations categorizing the linearized and nonlinear stability of periodic viscous roll waves of the KdV-KS equation modeling weakly unstable flow of a thin fluid film on an incline in the small-amplitude KdV limit. The argument proceeds by verification of a stability condition derived by Bar-Nepomnyashchy and Johnson-Noble-Rodrigues-Zumbrun involving inner products of various elliptic functions arising through the KdV equation. One key point in the analysis is a bootstrap argument balancing the extremely poor sup norm bounds for these functions against the extremely good convergence properties for analytic interpolation in order to obtain a feasible computation time. Another is the way of handling analytic interpolation in several variables by a two-step process carving up the parameter space into manageable pieces for rigorous evaluation. These and other general aspects of the analysis should serve as blueprints for more general analyses of spectral stability.

  14. Thermal helium clusters at 3.2 Kelvin in classical and semiclassical simulations

    NASA Astrophysics Data System (ADS)

    Schulte, J.

    1993-03-01

    The thermodynamic stability of4He4-13 at 3.2 K is investigated with the classical Monte Carlo method, with the semiclassical path-integral Monte Carlo (PIMC) method, and with the semiclassical all-order many-body method. In the all-order many-body simulation the dipole-dipole approximation including short-range correction is used. The resulting stability plots are discussed and related to recent TOF experiments by Stephens and King. It is found that with classical Monte Carlo of course the characteristics of the measured mass spectrum cannot be resolved. With PIMC, switching on more and more quantum mechanics. by raising the number of virtual time steps results in more structure in the stability plot, but this did not lead to sufficient agreement with the TOF experiment. Only the all-order many-body method resolved the characteristic structures of the measured mass spectrum, including magic numbers. The result shows the influence of quantum statistics and quantum mechanics on the stability of small neutral helium clusters.

  15. Theoretical stability in coefficient inverse problems for general hyperbolic equations with numerical reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Liu, Yikan; Yamamoto, Masahiro

    2018-04-01

    In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.

  16. Posture, head stability, and orientation recovery during vestibular regeneration in pigeons.

    PubMed

    Dickman, J David; Lim, Insook

    2004-09-01

    Compensatory behavior such as oculomotor, gaze, and postural responses that occur during movement largely depend upon a functioning vestibular system. In the present study, the initial loss and subsequent recovery of postural and head stability in pigeons undergoing vestibular regeneration were examined. Adult pigeons were trained to manipulate a straight run chamber to peck an illuminated key for fluid reward. Six behavioral measures assessing performance, posture, and head stability were quantified. These included run latency, steps (walking), path negotiation (lane changes), gaze saccades, head bobs, and head shakes. Once normative values were obtained for four birds, complete lesion of all receptor cells and denervation of the epithelia in the vestibular endorgans were produced using a single intralabyrinthine application of streptomycin sulfate. Each bird was then tested at specific times during regeneration and the same behavioral measures examined. At 7 days post-streptomycin treatment (PST), all birds exhibited severe postural and head instability, with tremors, head shakes, staggering, and circling predominating. No normal trial runs, walking, gaze saccades, or head bobs were present. Many of these dysfunctions persisted through 3-4 weeks PST. Gradually, tremor and head shakes diminished and were replaced with an increasing number of normal head bobs during steps and gaze saccades. Beginning at 4 weeks PST, but largely inaccurate, was the observed initiation of directed steps, less staggering, and some successful path negotiation. As regeneration progressed, spatial orientation and navigation ability increased and, by 49 days PST, most trials were successful. By 70 days PST, all birds had recovered to pretreatment levels. Thus, it was observed that ataxia must subside, coincident with normalized head and postural stability prior to the recovery of spatial orientation and path navigation recovery. Parallels in recovery were drawn to hair cell regeneration and afferent responsiveness, as inferred from present results and those in other investigations.

  17. Control of O-H bonds at a-IGZO/SiO2 interface by long time thermal annealing for highly stable oxide TFT

    NASA Astrophysics Data System (ADS)

    Jeon, Jae Kwon; Um, Jae Gwang; Lee, Suhui; Jang, Jin

    2017-12-01

    We report two-step annealing, high temperature and sequent low temperature, for amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) to improve its stability and device performance. The annealing is carried out at 300 oC in N2 ambient for 1 h (1st step annealing) and then at 250 oC in vacuum for 10 h (2nd step annealing). It is found that the threshold voltage (VTH) changes from 0.4 V to -2.0 V by the 1st step annealing and to +0.6 V by 2nd step annealing. The mobility changes from 18 cm2V-1s-1 to 25 cm2V-1s-1 by 1st step and decreases to 20 cm2V-1s-1 by 2nd step annealing. The VTH shift by positive bias temperature stress (PBTS) is 3.7 V for the as-prepared TFT, and 1.7 V for the 1st step annealed TFT, and 1.3 V for the 2nd step annealed TFT. The XPS (X-ray photoelectron spectroscopy) depth analysis indicates that the reduction in O-H bonds at the top interface (SiO2/a-IGZO) by 2nd step annealing appears, which is related to the positive VTH shift and smaller VTH shift by PBTS.

  18. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE PAGES

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; ...

    2018-04-17

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  19. Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.

    2018-04-01

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  20. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  1. Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions

    PubMed Central

    Honeine, Jean-Louis; Schieppati, Marco

    2014-01-01

    Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1–2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices. PMID:25339872

  2. One-step formation and sterilization of gellan and hyaluronan nanohydrogels using autoclave.

    PubMed

    Montanari, Elita; De Rugeriis, Maria Cristina; Di Meo, Chiara; Censi, Roberta; Coviello, Tommasina; Alhaique, Franco; Matricardi, Pietro

    2015-01-01

    The sterilization of nanoparticles for biomedical applications is one of the challenges that must be faced in the development of nanoparticulate systems. Usually, autoclave sterilization cannot be applied because of stability concerns when polymeric nanoparticles are involved. This paper describes an innovative method which allows to obtain, using a single step autoclave procedure, the preparation and, at the same time, the sterilization of self-assembling nanohydrogels (NHs) obtained with cholesterol-derivatized gellan and hyaluronic acid. Moreover, by using this approach, NHs, while formed in the autoclave, can be easily loaded with drugs. The obtained NHs dispersion can be lyophilized in the presence of a cryoprotectant, leading to the original NHs after re-dispersion in water.

  3. One step effective removal of Congo Red in chitosan nanoparticles by encapsulation

    NASA Astrophysics Data System (ADS)

    Alver, Erol; Bulut, Mehmet; Metin, Ayşegül Ülkü; Çiftçi, Hakan

    2017-01-01

    Chitosan nanoparticles (CNPs) were prepared with ionotropic gelation between chitosan and tripolyphosphate for the removal of Congo Red. The production of chitosan nanoparticles and the dye removal process was carried out in one-step. The removal efficiency of Congo Red by encapsulation within chitosan from the aqueous solution and its storage stability are examined at different pH values. The influence of some parameters such as the initial dye concentration, pH value of the dye solution, electrolyte concentration, tripolyphosphate concentration, mixing time and speed on the encapsulation is examined. Congo Red removal efficiency and encapsulation capacity of chitosan nanoparticles were determined as above 98% and 5107 mg Congo Red/g chitosan, respectively.

  4. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.

    PubMed

    Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David

    2013-09-09

    The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.

  5. An Inverse Method to Estimate the Root Water Uptake Source-Sink Term in Soil Water Transport Equation under the Effect of Superabsorbent Polymer

    PubMed Central

    Liao, Renkuan; Yang, Peiling; Wu, Wenyong; Ren, Shumei

    2016-01-01

    The widespread use of superabsorbent polymers (SAPs) in arid regions improves the efficiency of local land and water use. However, SAPs’ repeated absorption and release of water has periodic and unstable effects on both soil’s physical and chemical properties and on the growth of plant roots, which complicates modeling of water movement in SAP-treated soils. In this paper, we proposea model of soil water movement for SAP-treated soils. The residence time of SAP in the soil and the duration of the experiment were considered as the same parameter t. This simplifies previously proposed models in which the residence time of SAP in the soil and the experiment’s duration were considered as two independent parameters. Numerical testing was carried out on the inverse method of estimating the source/sink term of root water uptake in the model of soil water movement under the effect of SAP. The test results show that time interval, hydraulic parameters, test error, and instrument precision had a significant influence on the stability of the inverse method, while time step, layering of soil, and boundary conditions had relatively smaller effects. A comprehensive analysis of the method’s stability, calculation, and accuracy suggests that the proposed inverse method applies if the following conditions are satisfied: the time interval is between 5 d and 17 d; the time step is between 1000 and 10000; the test error is ≥ 0.9; the instrument precision is ≤ 0.03; and the rate of soil surface evaporation is ≤ 0.6 mm/d. PMID:27505000

  6. Does dynamic stability govern propulsive force generation in human walking?

    PubMed Central

    Browne, Michael G.

    2017-01-01

    Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force (FP) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and FP generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their FP according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an FP at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds. PMID:29291129

  7. Does dynamic stability govern propulsive force generation in human walking?

    PubMed

    Browne, Michael G; Franz, Jason R

    2017-11-01

    Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.

  8. Computational evaluation of load carriage effects on gait balance stability.

    PubMed

    Mummolo, Carlotta; Park, Sukyung; Mangialardi, Luigi; Kim, Joo H

    2016-01-01

    Evaluating the effects of load carriage on gait balance stability is important in various applications. However, their quantification has not been rigorously addressed in the current literature, partially due to the lack of relevant computational indices. The novel Dynamic Gait Measure (DGM) characterizes gait balance stability by quantifying the relative effects of inertia in terms of zero-moment point, ground projection of center of mass, and time-varying foot support region. In this study, the DGM is formulated in terms of the gait parameters that explicitly reflect the gait strategy of a given walking pattern and is used for computational evaluation of the distinct balance stability of loaded walking. The observed gait adaptations caused by load carriage (decreased single support duration, inertia effects, and step length) result in decreased DGM values (p < 0.0001), which indicate that loaded walking motions are more statically stable compared with the unloaded normal walking. Comparison of the DGM with other common gait stability indices (the maximum Floquet multiplier and the margin of stability) validates the unique characterization capability of the DGM, which is consistently informative of the presence of the added load.

  9. Stability of the neurotensin receptor NTS1 free in detergent solution and immobilized to affinity resin.

    PubMed

    White, Jim F; Grisshammer, Reinhard

    2010-09-07

    Purification of recombinant membrane receptors is commonly achieved by use of an affinity tag followed by an additional chromatography step if required. This second step may exploit specific receptor properties such as ligand binding. However, the effects of multiple purification steps on protein yield and integrity are often poorly documented. We have previously reported a robust two-step purification procedure for the recombinant rat neurotensin receptor NTS1 to give milligram quantities of functional receptor protein. First, histidine-tagged receptors are enriched by immobilized metal affinity chromatography using Ni-NTA resin. Second, remaining contaminants in the Ni-NTA column eluate are removed by use of a subsequent neurotensin column yielding pure NTS1. Whilst the neurotensin column eluate contained functional receptor protein, we observed in the neurotensin column flow-through misfolded NTS1. To investigate the origin of the misfolded receptors, we estimated the amount of functional and misfolded NTS1 at each purification step by radio-ligand binding, densitometry of Coomassie stained SDS-gels, and protein content determination. First, we observed that correctly folded NTS1 suffers damage by exposure to detergent and various buffer compositions as seen by the loss of [(3)H]neurotensin binding over time. Second, exposure to the neurotensin affinity resin generated additional misfolded receptor protein. Our data point towards two ways by which misfolded NTS1 may be generated: Damage by exposure to buffer components and by close contact of the receptor to the neurotensin affinity resin. Because NTS1 in detergent solution is stabilized by neurotensin, we speculate that the occurrence of aggregated receptor after contact with the neurotensin resin is the consequence of perturbations in the detergent belt surrounding the NTS1 transmembrane core. Both effects reduce the yield of functional receptor protein.

  10. One-step preparation of antimicrobial silver nanoparticles in polymer matrix

    NASA Astrophysics Data System (ADS)

    Lyutakov, O.; Kalachyova, Y.; Solovyev, A.; Vytykacova, S.; Svanda, J.; Siegel, J.; Ulbrich, P.; Svorcik, V.

    2015-03-01

    Simple one-step procedure for in situ preparation of silver nanoparticles (AgNPs) in the polymer thin films is described. Nanoparticles (NPs) were prepared by reaction of N-methyl pyrrolidone with silver salt in semi-dry polymer film and characterized by transmission electron microscopy, XPS, and UV-Vis spectroscopy techniques. Direct synthesis of NPs in polymer has several advantages; even though it avoids time-consuming NPs mixing with polymer matrix, uniform silver distribution in polymethylmethacrylate (PMMA) films is achieved without necessity of additional stabilization. The influence of the silver concentration, reaction temperature and time on reaction conversion rate, and the size and size-distribution of the AgNPs was investigated. Polymer films doped with AgNPs were tested for their antibacterial activity on Gram-negative bacteria. Antimicrobial properties of AgNPs/PMMA films were found to be depended on NPs concentration, their size and distribution. Proposed one-step synthesis of functional polymer containing AgNPs is environmentally friendly, experimentally simple and extremely quick. It opens up new possibilities in development of antimicrobial coatings with medical and sanitation applications.

  11. Overcoming double-step CO2 adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg2(dobpdc)† †Electronic supplementary information (ESI) available: Additional experimental details, and full characterization (powder X-ray diffraction, infrared spectra, diamine loadings, dry N2 decomposition profiles, and CO2 adsorption data) for all new adsorbents. CCDC 1577354. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04266c

    PubMed Central

    Milner, Phillip J.; Martell, Jeffrey D.; Siegelman, Rebecca L.; Gygi, David; Weston, Simon C.

    2017-01-01

    Alkyldiamine-functionalized variants of the metal–organic framework Mg2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) are promising for CO2 capture applications owing to their unique step-shaped CO2 adsorption profiles resulting from the cooperative formation of ammonium carbamate chains. Primary,secondary (1°,2°) alkylethylenediamine-appended variants are of particular interest because of their low CO2 step pressures (≤1 mbar at 40 °C), minimal adsorption/desorption hysteresis, and high thermal stability. Herein, we demonstrate that further increasing the size of the alkyl group on the secondary amine affords enhanced stability against diamine volatilization, but also leads to surprising two-step CO2 adsorption/desorption profiles. This two-step behavior likely results from steric interactions between ammonium carbamate chains induced by the asymmetrical hexagonal pores of Mg2(dobpdc) and leads to decreased CO2 working capacities and increased water co-adsorption under humid conditions. To minimize these unfavorable steric interactions, we targeted diamine-appended variants of the isoreticularly expanded framework Mg2(dotpdc) (dotpdc4– = 4,4′′-dioxido-[1,1′:4′,1′′-terphenyl]-3,3′′-dicarboxylate), reported here for the first time, and the previously reported isomeric framework Mg-IRMOF-74-II or Mg2(pc-dobpdc) (pc-dobpdc4– = 3,3′-dioxidobiphenyl-4,4′-dicarboxylate, pc = para-carboxylate), which, in contrast to Mg2(dobpdc), possesses uniformally hexagonal pores. By minimizing the steric interactions between ammonium carbamate chains, these frameworks enable a single CO2 adsorption/desorption step in all cases, as well as decreased water co-adsorption and increased stability to diamine loss. Functionalization of Mg2(pc-dobpdc) with large diamines such as N-(n-heptyl)ethylenediamine results in optimal adsorption behavior, highlighting the advantage of tuning both the pore shape and the diamine size for the development of new adsorbents for carbon capture applications. PMID:29629084

  12. Vanadium doped Sb{sub 2}Te{sub 3} material with modified crystallization mechanism for phase-change memory application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xinglong; Zheng, Yonghui; Zhou, Wangyang

    2015-06-15

    In this paper, V{sub 0.21}Sb{sub 2}Te{sub 3} (VST) has been proposed for phase-change memory applications. With vanadium incorporating, VST has better thermal stability than Sb{sub 2}Te{sub 3} and can maintain in amorphous phase at room temperature. Two resistance steps were observed in temperature dependent resistance measurements. By real-time observing the temperature dependent lattice structure evolution, VST presents as a homogenous phase throughout the whole thermal process. Combining Hall measurement and transmission electron microscopy results, we can ascribe the two resistance steps to the unique crystallization mechanism of VST material. Then, the amorphous thermal stability enhancement can also be rooted inmore » the suppression of the fast growth crystallization mechanism. Furthermore, the applicability of VST is demonstrated by resistance-voltage measurement, and the phase transition of VST can be triggered by a 15 ns electric pulse. In addition, endurance up to 2.7×10{sup 4} cycles makes VST a promising candidate for phase-change memory applications.« less

  13. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity.

    PubMed

    Liu, Kang; Zheng, Yuanhui; Lu, Xun; Thai, Thibaut; Lee, Nanju Alice; Bach, Udo; Gooding, J Justin

    2015-05-05

    The conjugation of gold nanorods (AuNRs) with polyethylene glycol (PEG) is one of the most effective ways to reduce their cytotoxicity arising from the cetyltrimethylammonium bromide (CTAB) and silver ions used in their synthesis. However, typical PEGylation occurs only at the tips of the AuNRs, producing partially modified AuNRs. To address this issue, we have developed a novel, facile, one-step surface functionalization method that involves the use of Tween 20 to stabilize AuNRs, bis(p-sulfonatophenyl)phenylphosphine (BSPP) to activate the AuNR surface for the subsequent PEGylation, and NaCl to etch silver from the AuNRs. This method allows for the complete removal of the surface-bound CTAB and the most active surface silver from the AuNRs. The produced AuNRs showed far lower toxicity than other methods to PEGylate AuNRs, with no apparent toxicity when their concentration is lower than 5 μg/mL. Even at a high concentration of 80 μg/mL, their cell viability is still four times higher than that of the tip-modified AuNRs.

  14. Head-bobbing behavior in walking whooping cranes (Grus americana) and sandhill cranes (Grus canadensis)

    USGS Publications Warehouse

    Cronin, Thomas W.; Kinloch, Matthew R.; Olsen, Glenn H.

    2007-01-01

    Head-bobbing is a common and characteristic behavior of walking birds. While the activity could have a relatively minor biomechanical function, for balance and stabilization of gait, head-bobbing is thought to be primarily a visual behavior in which fixation of gaze alternates with a forward movement that generates visual flow. We studied head-bobbing in locomoting whooping cranes (Grus americana) and sandhill cranes (Grus canadensis), using food strewn on the ground to motivate them to walk or run. When the cranes walked, head-bobbing proceeded in a four-step sequence that was closely linked to the stepping cycle. The time available for gaze stabilization decreased with travel speed, and running cranes did not head-bob at all. As a crane extended its bill towards the ground for food, it also exhibited a series of short head-bobs that were not associated with forward travel. Head-bobbing is a flexible behavior that varies with gait and with visual search, most notably as the cranes prepare to strike with the bill.

  15. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  16. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors.

    PubMed

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-27

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  17. Transition from a failing dentition to a removable implant-supported prosthesis: a staged approach.

    PubMed

    Cordaro, Luca; Torsello, Ferruccio; Ribeiro, Carlos Accorsi

    2010-05-01

    Patients with hopeless dentition often present difficulties in the management of the transitional phase to the final restoration. This article describes a staged approach to achieve a full-arch, implant-supported, removable prosthesis in patients with a hopeless dentition. The approach described allows the clinician to proceed in a staged manner and facilitate prosthetic steps by keeping fixed references for vertical dimension. This technique includes initial conservative periodontal care and, afterward, extraction of some strategic teeth, while others are temporarily maintained. At this point, the implants are positioned, and during the healing period, the remaining natural abutments are used for occlusal reference and to stabilize the removable provisional prosthesis. After osseointegration of the implants, the residual teeth are extracted and the final prosthesis is delivered. The main advantages of the technique include maintenance of function during treatment, stabilization of the removable provisional (especially in the mandibular arch), prosthetic-guided insertion of implants, and easier retrieval of prosthetic references. The main drawbacks are longer treatment time and the need for two surgical steps.

  18. Performance of High Resolution Satellite InSAR in Detection of Dangerous Subsidence in Case of Brno Urban Area

    NASA Astrophysics Data System (ADS)

    Lazecky, Milan; Rapant, Petr; Blaha, Pavel; Perissin, Daniele

    2016-08-01

    For the work, we have achieved 20 Radarsat-2 acquisitions in fine beam mode within ESA project C1P.21629 - Evaluation of Potential Threats to Stability of Linear Structures using InSAR Technology. These acquisitions show deformations in Brno city between August 2014 and October 2015 with a regular step of 24 days temporal difference. Also, we have additionally achieved a series of 75 Cosmo SkyMed images with temporal step every 16 days in average, for dates between June 2011 and July 2014. The Cosmo SkyMed dataset partially overlaps with the reference measurements of tilt and height changes. After the end of the intensive measurements, the PS InSAR time series can deliver knowledge about continuation of movement and depict the date of final stabilization of the area. The accuracy can be validated using the limited number of the continuing warranty levelling mission. We have realized that the available dataset can be used also for monitoring of other events. We provide an example of potential detection of a cavity under a house in Brno-Bystrc.

  19. Time history prediction of direct-drive implosions on the Omega facility

    DOE PAGES

    Laffite, S.; Bourgade, J. L.; Caillaud, T.; ...

    2016-01-14

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  20. A time delay controller for magnetic bearings

    NASA Technical Reports Server (NTRS)

    Youcef-Toumi, K.; Reddy, S.

    1991-01-01

    The control of systems with unknown dynamics and unpredictable disturbances has raised some challenging problems. This is particularly important when high system performance needs to be guaranteed at all times. Recently, the Time Delay Control has been suggested as an alternative control scheme. The proposed control system does not require an explicit plant model nor does it depend on the estimation of specific plant parameters. Rather, it combines adaptation with past observations to directly estimate the effect of the plant dynamics. A control law is formulated for a class of dynamic systems and a sufficient condition is presented for control systems stability. The derivation is based on the bounded input-bounded output stability approach using L sub infinity function norms. The control scheme is implemented on a five degrees of freedom high speed and high precision magnetic bearing. The control performance is evaluated using step responses, frequency responses, and disturbance rejection properties. The experimental data show an excellent control performance despite the system complexity.

  1. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  2. Time history prediction of direct-drive implosions on the Omega facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laffite, S.; Bourgade, J. L.; Caillaud, T.

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolved measurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape.more » In contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measured neutron number is about 80% of the prediction. For the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  3. Effects of general fatigue induced by incremental maximal exercise test on gait stability and variability of healthy young subjects.

    PubMed

    Vieira, Marcus Fraga; de Sá E Souza, Gustavo Souto; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa; Andrade, Adriano O

    2016-10-01

    The purpose of this study was to determine whether general fatigue induced by incremental maximal exercise test (IMET) affects gait stability and variability in healthy subjects. Twenty-two young healthy male subjects walked in a treadmill at preferred walking speed for 4min prior (PreT) the test, which was followed by three series of 4min of walking with 4min of rest among them. Gait variability was assessed using walk ratio (WR), calculated as step length normalized by step frequency, root mean square (RMSratio) of trunk acceleration, standard deviation of medial-lateral trunk acceleration between strides (VARML), coefficient of variation of step frequency (SFCV), length (SLCV) and width (SWCV). Gait stability was assessed using margin of stability (MoS) and local dynamic stability (λs). VARML, SFCV, SLCV and SWCV increased after the test indicating an increase in gait variability. MoS decreased and λs increased after the test, indicating a decrease in gait stability. All variables showed a trend to return to PreT values, but the 20-min post-test interval appears not to be enough for a complete recovery. The results showed that general fatigue induced by IMET alters negatively the gait, and an interval of at least 20min should be considered for injury prevention in tasks with similar demands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Highly Efficient Catalysis of Azo Dyes Using Recyclable Silver Nanoparticles Immobilized on Tannic Acid-Grafted Eggshell Membrane

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojing; Liang, Miao; Liu, Mingyue; Su, Rongxin; Wang, Mengfan; Qi, Wei; He, Zhimin

    2016-10-01

    In this study, a facile one-step synthesis of a novel nanocomposite catalytic film was developed based on silver nanoparticles (AgNPs) immobilized in tannic acid-modified eggshell membrane (Tan-ESM). Tannic acid, as a typical plant polyphenol from oak wood, was first grafted onto ESM fibers to serve as both the reductant and the stabilizer during the synthesis of AgNPs. The morphology, constitution, and thermal stability of the resulting AgNPs@Tan-ESM composites were fully characterized to explain the excellent catalytic efficiency of AgNPs@Tan-ESM composites. These composite catalysts were applied to the degradation of azo dyes which exhibited the high catalytic activity toward Congo red and methyl orange according to the kinetic curves. More importantly, they can be easily recovered and reused for many times because of their good stability.

  5. Mechanisms for regulating step length while running towards and over an obstacle.

    PubMed

    Larsen, Roxanne J; Jackson, William H; Schmitt, Daniel

    2016-10-01

    The ability to run across uneven terrain with continuous stable movement is critical to the safety and efficiency of a runner. Successful step-to-step stabilization while running may be mediated by minor adjustments to a few key parameters (e.g., leg stiffness, step length, foot strike pattern). However, it is not known to what degree runners in relatively natural settings (e.g., trails, paved road, curbs) use the same strategies across multiple steps. This study investigates how three readily measurable running parameters - step length, foot placement, and foot strike pattern - are adjusted in response to encountering a typical urban obstacle - a sidewalk curb. Thirteen subjects were video-recorded as they ran at self-selected slow and fast paces. Runners targeted a specific distance before the curb for foot placement, and lengthened their step over the curb (p<0.0001) regardless of where the step over the curb was initiated. These strategies of adaptive locomotion disrupt step cycles temporarily, and may increase locomotor cost and muscle loading, but in the end assure dynamic stability and minimize the risk of injury over the duration of a run. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bacterial detection using bacteriophages and gold nanorods by following time-dependent changes in Raman spectral signals.

    PubMed

    Moghtader, Farzaneh; Tomak, Aysel; Zareie, Hadi M; Piskin, Erhan

    2018-03-27

    This study attemps to develop bacterial detection strategies using bacteriophages and gold nanorods (GNRs) by Raman spectral analysis. Escherichia coli was selected as the target and its specific phage was used as the bioprobe. Target bacteria and phages were propagated/purified by traditional techniques. GNRs were synthesized by using hexadecyltrimethyl ammonium bromide (CTAB) as stabilizer. A two-step detection strategy was applied: Firstly, the target bacteria were interacted with GNRs in suspensions, and then they were dropped onto silica substrates for detection. It was possible to obtain clear surface-enchanced Raman spectroscopy (SERS) peaks of the target bacteria, even without using phages. In the second step, the phage nanoemulsions were droped onto the bacterial-GNRs complexes on those surfaces and time-dependent changes in the Raman spectra were monitored at different time intervals upto 40 min. These results demonstrated that how one can apply phages with plasmonic nanoparticles for detection of pathogenic bacteria very effectively in a quite simple test.

  7. A hybrid incremental projection method for thermal-hydraulics applications

    NASA Astrophysics Data System (ADS)

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong

    2016-07-01

    A new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie-Chow interpolation or by using a Petrov-Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.

  8. A hybrid incremental projection method for thermal-hydraulics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less

  9. A hybrid incremental projection method for thermal-hydraulics applications

    DOE PAGES

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; ...

    2016-07-01

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less

  10. On coupling fluid plasma and kinetic neutral physics models

    DOE PAGES

    Joseph, I.; Rensink, M. E.; Stotler, D. P.; ...

    2017-03-01

    The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that theymore » scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.« less

  11. Nanobiological studies on drug design using molecular mechanic method.

    PubMed

    Ghaheh, Hooria Seyedhosseini; Mousavi, Maryam; Araghi, Mahmood; Rasoolzadeh, Reza; Hosseini, Zahra

    2015-01-01

    Influenza H1N1 is very important worldwide and point mutations that occur in the virus gene are a threat for the World Health Organization (WHO) and druggists, since they could make this virus resistant to the existing antibiotics. Influenza epidemics cause severe respiratory illness in 30 to 50 million people and kill 250,000 to 500,000 people worldwide every year. Nowadays, drug design is not done through trial and error because of its cost and waste of time; therefore bioinformatics studies is essential for designing drugs. This paper, infolds a study on binding site of Neuraminidase (NA) enzyme, (that is very important in drug design) in 310K temperature and different dielectrics, for the best drug design. Information of NA enzyme was extracted from Protein Data Bank (PDB) and National Center for Biotechnology Information (NCBI) websites. The new sequences of N1 were downloaded from the NCBI influenza virus sequence database. Drug binding sites were assimilated and homologized modeling using Argus lab 4.0, HyperChem 6.0 and Chem. D3 softwares. Their stability was assessed in different dielectrics and temperatures. Measurements of potential energy (Kcal/mol) of binding sites of NA in different dielectrics and 310K temperature revealed that at time step size = 0 pSec drug binding sites have maximum energy level and at time step size = 100 pSec have maximum stability and minimum energy. Drug binding sites are more dependent on dielectric constants rather than on temperature and the optimum dielectric constant is 39/78.

  12. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  13. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    DOE PAGES

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2017-09-28

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemannmore » problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. Finally, the upwind scheme is shown to be robust and provide high-order accuracy.« less

  14. High-order upwind schemes for the wave equation on overlapping grids: Maxwell's equations in second-order form

    NASA Astrophysics Data System (ADS)

    Angel, Jordan B.; Banks, Jeffrey W.; Henshaw, William D.

    2018-01-01

    High-order accurate upwind approximations for the wave equation in second-order form on overlapping grids are developed. Although upwind schemes are well established for first-order hyperbolic systems, it was only recently shown by Banks and Henshaw [1] how upwinding could be incorporated into the second-order form of the wave equation. This new upwind approach is extended here to solve the time-domain Maxwell's equations in second-order form; schemes of arbitrary order of accuracy are formulated for general curvilinear grids. Taylor time-stepping is used to develop single-step space-time schemes, and the upwind dissipation is incorporated by embedding the exact solution of a local Riemann problem into the discretization. Second-order and fourth-order accurate schemes are implemented for problems in two and three space dimensions, and overlapping grids are used to treat complex geometry and problems with multiple materials. Stability analysis of the upwind-scheme on overlapping grids is performed using normal mode theory. The stability analysis and computations confirm that the upwind scheme remains stable on overlapping grids, including the difficult case of thin boundary grids when the traditional non-dissipative scheme becomes unstable. The accuracy properties of the scheme are carefully evaluated on a series of classical scattering problems for both perfect conductors and dielectric materials in two and three space dimensions. The upwind scheme is shown to be robust and provide high-order accuracy.

  15. Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples.

    PubMed

    Lin, Shan-Yang; Wang, Shun-Li

    2012-04-01

    The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Theoretical and Analog Studies of the Effects of Nonlinear Stability Derivatives on the Longitudinal Motions of an Aircraft in Response to Step Control Deflections and to the Influence of Proportional Automatic Control

    NASA Technical Reports Server (NTRS)

    Curfman, Howard J , Jr

    1955-01-01

    Through theoretical and analog results the effects of two nonlinear stability derivatives on the longitudinal motions of an aircraft have been investigated. Nonlinear functions of pitching-moment and lift coefficients with angle of attack were considered. Analog results of aircraft motions in response to step elevator deflections and to the action of the proportional control systems are presented. The occurrence of continuous hunting oscillations was predicted and demonstrated for the attitude stabilization system with proportional control for certain nonlinear pitching-moment variations and autopilot adjustments.

  17. Co-evolving Physical and Biological Organization in Step-pool Channels: Experiments from a Restoration Reach on Wildcat Creek, California

    NASA Astrophysics Data System (ADS)

    Chin, A.; O'Dowd, A. P.; Mendez, P. K.; Velasco, K. Z.; Leventhal, R. D.; Storesund, R.; Laurencio, L. R.

    2014-12-01

    Step-pools are important features in fluvial systems. Through energy dissipation, step-pools provide stability in high-energy environments that otherwise may erode and degrade. Although research has focused on geomorphological aspects of step-pool channels, the ecological significance of step-pool streams is increasingly recognized. Step-pool streams often contain higher density and diversity of benthic macroinvertebrates and are critical habitats for organisms such as salmonids and tailed frogs. Step-pools are therefore increasingly used to restore eroding channels and improve ecological conditions. This paper addresses a restoration reach of Wildcat Creek in Berkeley, California that featured an installation of step-pools in 2012. The design framework recognized step-pool formation as a self-organizing process that produces a rhythmic morphology. After placing step particles at locations where step-pools are expected to form according to hydraulic theory, the self-organizing approach allowed fluvial processes to refine the rocks into adjusted sequences over time. In addition, a 30-meter "experimental" reach was created to explore the co-evolution of geomorphological and ecological characteristics. After constructing a plane bed channel, boulders and cobbles piled at the upstream end allowed natural flows to mobilize and sort them into step-pool sequences. Ground surveys and LiDAR recorded the development of step-pool sequences over several seasons. Concurrent sampling of benthic macroinvertebrates documented the formation of biological communities in conjunction with habitat. Biological sampling in an upstream reference reach provided a comparison with the restored reach over time. Results to date show an emergent step-pool channel with steps that segment the plane bed into initial step and pool habitats. Biological communities are beginning to form, showing more distinction among habitat types during some seasons, although they do not yet approach reference values at this stage of development. Research over longer timeframes is needed to reveal how biological and physical characteristics may co-organize toward an equilibrium landscape. Such integrated understanding will assist development of innovative restoration designs.

  18. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy.

    PubMed

    Menz, Hylton B; Lord, Stephen R; St George, Rebecca; Fitzpatrick, Richard C

    2004-02-01

    To evaluate, in older people with diabetic peripheral neuropathy (DPN) and in age-matched controls, acceleration patterns of the head and pelvis when walking to determine the effect of lower-limb sensory loss on walking stability. Case-control study. Falls and balance laboratory in Australia. Thirty persons with diabetes mellitus (age range, 55-91 y) and 30 age-matched controls. Acceleration patterns of the head and pelvis were measured while participants walked on a level surface and an irregular walkway. Participants also underwent tests of vision, sensation, strength, reaction time, and balance. Temporospatial gait parameters and variables derived from acceleration signals. Participants with DPN had reduced walking speed, cadence, and step length, and less rhythmic acceleration patterns at the head and pelvis compared with controls. These differences were particularly evident when participants walked on the irregular surface. Participants with DPN also had impaired peripheral sensation, reaction time, and balance. Older people with DPN have an impaired ability to stabilize their body when walking on irregular surfaces, even if they adopt a more conservative gait pattern. These results provide further insights into the role of peripheral sensory input in the control of gait stability, and suggest possible mechanisms underlying the increased risk of falling in older people with diabetic neuropathy.

  19. Development of a duplex real-time RT-qPCR assay to monitor genome replication, gene expression and gene insert stability during in vivo replication of a prototype live attenuated canine distemper virus vector encoding SIV gag.

    PubMed

    Coleman, John W; Wright, Kevin J; Wallace, Olivia L; Sharma, Palka; Arendt, Heather; Martinez, Jennifer; DeStefano, Joanne; Zamb, Timothy P; Zhang, Xinsheng; Parks, Christopher L

    2015-03-01

    Advancement of new vaccines based on live viral vectors requires sensitive assays to analyze in vivo replication, gene expression and genetic stability. In this study, attenuated canine distemper virus (CDV) was used as a vaccine delivery vector and duplex 2-step quantitative real-time RT-PCR (RT-qPCR) assays specific for genomic RNA (gRNA) or mRNA have been developed that concurrently quantify coding sequences for the CDV nucleocapsid protein (N) and a foreign vaccine antigen (SIV Gag). These amplicons, which had detection limits of about 10 copies per PCR reaction, were used to show that abdominal cavity lymphoid tissues were a primary site of CDV vector replication in infected ferrets, and importantly, CDV gRNA or mRNA was undetectable in brain tissue. In addition, the gRNA duplex assay was adapted for monitoring foreign gene insert genetic stability during in vivo replication by analyzing the ratio of CDV N and SIV gag genomic RNA copies over the course of vector infection. This measurement was found to be a sensitive probe for assessing the in vivo genetic stability of the foreign gene insert. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Modified Labial Button Technique for Maintaining Occlusion After Caudal Mandibular Fracture/Temporomandibular Joint Luxation in the Cat.

    PubMed

    Goodman, Alice E; Carmichael, Daniel T

    2016-03-01

    Maxillofacial trauma in cats often results in mandibular symphyseal separation in addition to injuries of the caudal mandible and/or temporomandibular joint (TMJ). Caudal mandibular and TMJ injuries are difficult to access and stabilize using direct fixation techniques, thus indirect fixation is commonly employed. The immediate goals of fixation include stabilization for return to normal occlusion and function with the long-term objective of bony union. Indirect fixation techniques commonly used for stabilization of caudal mandibular and temporomandibular joint fracture/luxation include maxillomandibular fixation (MMF) with acrylic composite, interarcade wiring, tape muzzles, and the bignathic encircling and retaining device (BEARD) technique. This article introduces a modification of the previously described "labial reverse suture through buttons" technique used by Koestlin et al and the "labial locking with buttons" technique by Rocha et al. In cases with minimally displaced subcondylar and pericondylar fractures without joint involvement, the labial button technique can provide sufficient stabilization for healing. Advantages of the modified labial button technique include ease of application, noninvasive nature, and use of readily available materials. The construct can remain in place for a variable of amount of time, depending on its intended purpose. It serves as an alternative to the tape muzzle, which is rarely tolerated by cats. This technique can be easily used in conjunction with other maxillomandibular repairs, such as cerclage wire fixation of mandibular symphyseal separation. The purpose of this article is to demonstrate a modified labial button technique for maintaining occlusion of feline caudal mandibular fractures/TMJ luxations in a step-by-step fashion.

  1. Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.

    2016-10-01

    New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.

  2. Tai Chi practitioners have better postural control and selective attention in stepping down with and without a concurrent auditory response task.

    PubMed

    Lu, Xi; Siu, Ka-Chun; Fu, Siu N; Hui-Chan, Christina W Y; Tsang, William W N

    2013-08-01

    To compare the performance of older experienced Tai Chi practitioners and healthy controls in dual-task versus single-task paradigms, namely stepping down with and without performing an auditory response task, a cross-sectional study was conducted in the Center for East-meets-West in Rehabilitation Sciences at The Hong Kong Polytechnic University, Hong Kong. Twenty-eight Tai Chi practitioners (73.6 ± 4.2 years) and 30 healthy control subjects (72.4 ± 6.1 years) were recruited. Participants were asked to step down from a 19-cm-high platform and maintain a single-leg stance for 10 s with and without a concurrent cognitive task. The cognitive task was an auditory Stroop test in which the participants were required to respond to different tones of voices regardless of their word meanings. Postural stability after stepping down under single- and dual-task paradigms, in terms of excursion of the subject's center of pressure (COP) and cognitive performance, was measured for comparison between the two groups. Our findings demonstrated significant between-group differences in more outcome measures during dual-task than single-task performance. Thus, the auditory Stroop test showed that Tai Chi practitioners achieved not only significantly less error rate in single-task, but also significantly faster reaction time in dual-task, when compared with healthy controls similar in age and other relevant demographics. Similarly, the stepping-down task showed that Tai Chi practitioners not only displayed significantly less COP sway area in single-task, but also significantly less COP sway path than healthy controls in dual-task. These results showed that Tai Chi practitioners achieved better postural stability after stepping down as well as better performance in auditory response task than healthy controls. The improved performance that was magnified by dual motor-cognitive task performance may point to the benefits of Tai Chi being a mind-and-body exercise.

  3. Independent Assessment of ITRF Site Velocities using GPS Imaging

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Kreemer, C.; Altamimi, Z.

    2015-12-01

    The long-term stability of ITRF is critical to the most challenging scientific applications such as the slow variation of sea level, and of ice sheet loading in Greenland and Antarctica. In 2010, the National Research Council recommended aiming for stability at the level of 1 mm/decade in the ITRF origin and scale. This requires that the ITRF include many globally-distributed sites with motions that are predictable to within a few mm/decade, with a significant number of sites having collocated stations of multiple techniques. Quantifying the stability of ITRF stations can be useful to understand stability of ITRF parameters, and to help the selection and weighting of ITRF stations. Here we apply a new suite of techniques for an independent assessment of ITRF site velocities. Our "GPS Imaging" suite is founded on the principle that, for the case of large numbers of data, the trend can be estimated objectively, automatically, robustly, and accurately by applying non-parametric techniques, which use quantile statistics (e.g., the median). At the foundation of GPS Imaging is the estimator "MIDAS" (Median Interannual Difference Adjusted for Skewness). MIDAS estimates the velocity with a realistic error bar based on sub-sampling the coordinate time series. MIDAS is robust to step discontinuities, outliers, seasonality, and heteroscedasticity. Common-mode noise filters enhance regional- to continental-scale precision in MIDAS estimates, just as they do for standard estimation techniques. Secondly, in regions where there is sufficient spatial sampling, GPS Imaging uses MIDAS velocity estimates to generate a regionally-representative velocity map. For this we apply a median spatial filter to despeckle the maps. We use GPS Imaging to address two questions: (1) How well do the ITRF site velocities derived by parametric estimation agree with non-parametric techniques? (2) Are ITRF site velocities regionally representative? These questions aim to get a handle on (1) the accuracy of ITRF site velocities as a function of characteristics of contributing station data, such as number of step parameters and total time span; and (2) evidence of local processes affecting site velocity, which may impact site stability. Such quantification can be used to rank stations in terms the risk that they may pose to the stability of ITRF.

  4. A time step criterion for the stable numerical simulation of hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Juan-Lien Ramirez, Alina; Löhnert, Stefan; Neuweiler, Insa

    2017-04-01

    The process of propagating or widening cracks in rock formations by means of fluid flow, known as hydraulic fracturing, has been gaining attention in the last couple of decades. There is growing interest in its numerical simulation to make predictions. Due to the complexity of the processes taking place, e.g. solid deformation, fluid flow in an open channel, fluid flow in a porous medium and crack propagation, this is a challenging task. Hydraulic fracturing has been numerically simulated for some years now [1] and new methods to take more of its processes into account (increasing accuracy) while modeling in an efficient way (lower computational effort) have been developed in recent years. An example is the use of the Extended Finite Element Method (XFEM), whose application originated within the framework of solid mechanics, but is now seen as an effective method for the simulation of discontinuities with no need for re-meshing [2]. While more focus has been put to the correct coupling of the processes mentioned above, less attention has been paid to the stability of the model. When using a quasi-static approach for the simulation of hydraulic fracturing, choosing an adequate time step is not trivial. This is in particular true if the equations are solved in a staggered way. The difficulty lies within the inconsistency between the static behavior of the solid and the dynamic behavior of the fluid. It has been shown that too small time steps may lead to instabilities early into the simulation time [3]. While the solid reaches a stationary state instantly, the fluid is not able to achieve equilibrium with its new surrounding immediately. This is why a time step criterion has been developed to quantify the instability of the model concerning the time step. The presented results were created with a 2D poroelastic model, using the XFEM for both the solid and the fluid phases. An embedded crack propagates following the energy release rate criteria when the fluid pressure within the crack rises. The fluid flow within the crack and in the porous medium are simulated using the mass balance for water and Darcy's law for flow. The equations for flow and deformation in the rock and that for flow in the fracture are solved in a staggered manner. The two sets of equations are coupled via Lagrange multipliers. We present a time step criterion for the stability of the scheme and illustrate this criterion with test examples of crack propagation. [1] T. Boone and A. Ingraffea. A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media. Int. J. Numer. Anal. Met. 14, 27-47, (1990) [2] T. Mohammadnejad and A. Khoei. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design. 73, 77-95, (2013) [3] E.W. Remij, J.J.C. Remmers, J.M. Huyghe, D.M.J. Smeulders. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput. Methods Appl. Mech. Engrg. 286, 293-312, (2015)

  5. Recursive regularization step for high-order lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Coreixas, Christophe; Wissocq, Gauthier; Puigt, Guillaume; Boussuge, Jean-François; Sagaut, Pierre

    2017-09-01

    A lattice Boltzmann method (LBM) with enhanced stability and accuracy is presented for various Hermite tensor-based lattice structures. The collision operator relies on a regularization step, which is here improved through a recursive computation of nonequilibrium Hermite polynomial coefficients. In addition to the reduced computational cost of this procedure with respect to the standard one, the recursive step allows to considerably enhance the stability and accuracy of the numerical scheme by properly filtering out second- (and higher-) order nonhydrodynamic contributions in under-resolved conditions. This is first shown in the isothermal case where the simulation of the doubly periodic shear layer is performed with a Reynolds number ranging from 104 to 106, and where a thorough analysis of the case at Re=3 ×104 is conducted. In the latter, results obtained using both regularization steps are compared against the Bhatnagar-Gross-Krook LBM for standard (D2Q9) and high-order (D2V17 and D2V37) lattice structures, confirming the tremendous increase of stability range of the proposed approach. Further comparisons on thermal and fully compressible flows, using the general extension of this procedure, are then conducted through the numerical simulation of Sod shock tubes with the D2V37 lattice. They confirm the stability increase induced by the recursive approach as compared with the standard one.

  6. A structural equation model relating impaired sensorimotor function, fear of falling and gait patterns in older people.

    PubMed

    Menz, Hylton B; Lord, Stephen R; Fitzpatrick, Richard C

    2007-02-01

    Many falls in older people occur while walking, however the mechanisms responsible for gait instability are poorly understood. Therefore, the aim of this study was to develop a plausible model describing the relationships between impaired sensorimotor function, fear of falling and gait patterns in older people. Temporo-spatial gait parameters and acceleration patterns of the head and pelvis were obtained from 100 community-dwelling older people aged between 75 and 93 years while walking on an irregular walkway. A theoretical model was developed to explain the relationships between these variables, assuming that head stability is a primary output of the postural control system when walking. This model was then tested using structural equation modeling, a statistical technique which enables the testing of a set of regression equations simultaneously. The structural equation model indicated that: (i) reduced step length has a significant direct and indirect association with reduced head stability; (ii) impaired sensorimotor function is significantly associated with reduced head stability, but this effect is largely indirect, mediated by reduced step length, and; (iii) fear of falling is significantly associated with reduced step length, but has little direct influence on head stability. These findings provide useful insights into the possible mechanisms underlying gait characteristics and risk of falling in older people. Particularly important is the indication that fear-related step length shortening may be maladaptive.

  7. Body sway adaptation to addition but not withdrawal of stabilizing visual information is delayed by a concurrent cognitive task.

    PubMed

    Honeine, Jean-Louis; Crisafulli, Oscar; Schieppati, Marco

    2017-02-01

    The aim of this study was to test the effects of a concurrent cognitive task on the promptness of the sensorimotor integration and reweighting processes following addition and withdrawal of vision. Fourteen subjects stood in tandem while vision was passively added and removed. Subjects performed a cognitive task, consisting of counting backward in steps of three, or were "mentally idle." We estimated the time intervals following addition and withdrawal of vision at which body sway began to change. We also estimated the time constant of the exponential change in body oscillation until the new level of sway was reached, consistent with the current visual state. Under the mentally idle condition, mean latency was 0.67 and 0.46 s and the mean time constant was 1.27 and 0.59 s for vision addition and withdrawal, respectively. Following addition of vision, counting backward delayed the latency by about 300 ms, without affecting the time constant. Following withdrawal, counting backward had no significant effect on either latency or time constant. The extension by counting backward of the time interval to stabilization onset on addition of vision suggests a competition for allocation of cortical resources. Conversely, the absence of cognitive task effect on the rapid onset of destabilization on vision withdrawal, and on the relevant reweighting time course, advocates the intervention of a subcortical process. Diverting attention from a challenging standing task discloses a cortical supervision on the process of sensorimotor integration of new balance-stabilizing information. A subcortical process would instead organize the response to removal of the stabilizing sensory input. NEW & NOTEWORTHY This study is the first to test the effect of an arithmetic task on the time course of balance readjustment following visual withdrawal or addition. Performing such a cognitive task increases the time delay following addition of vision but has no effect on withdrawal dynamics. This suggests that sensorimotor integration following addition of a stabilizing signal is performed at a cortical level, whereas the response to its withdrawal is "automatic" and accomplished at a subcortical level. Copyright © 2017 the American Physiological Society.

  8. Long-term treatment effects of the FR-2 appliance: a prospective evalution 7 years post-treatment

    PubMed Central

    Franchi, Lorenzo; Cevidanes, Lucia H. S.; Scanavini, Marco A.; McNamara, James A.

    2014-01-01

    AIM To examine the long-term effects induced by treatment with the function regulator (FR-2) appliance 7 years post-treatment compared with untreated class II subjects. SUBJECTS AND METHODS The FR-2 sample was collected prospectively and comprised 17 subjects (10 boys and 7 girls, mean age 10.8 years) who were treated with the FR-2 appliance for 1.7 years and re-evaluated 7.1 years after treatment. The step-by-step mandibular advancement was performed gradually (increments up to 3–4 mm), until a ‘super class I’ molar relationship was obtained. The control group consisted of 17 class II subjects (9 boys and 8 girls, mean age 11.3 years) with class II malocclusion, excessive overjet, and class II molar relationship, matched to the treated group as to ages at all times, gender distribution, and stages of skeletal maturity (evaluated by the cervical vertebral maturation method). The lateral cephalograms were analysed at T1 (initial), T2 (final), and T3 (7.1 years post-treatment). The compatibility between the groups and the comparisons of their changes at T1–T2, T2–T3, and T1–T3 intervals were examined by independent sample t-tests (P < 0.05). RESULTS FR-2 treatment provided a significant improvement in the maxillomandibular relationship due to an increase in mandibular length compared with controls, which remained stable over time. Also overjet, overbite, and molar relationship corrections demonstrated stability. Among dentoalveolar changes, only the increased mesial movement of the mandibular molars in the FR-2 group demonstrated stability. CONCLUSIONS Correction of class II malocclusion remained stable 7 years after FR-2 treatment mainly due to the stability of the skeletal changes. PMID:23736378

  9. Long-wave model for strongly anisotropic growth of a crystal step.

    PubMed

    Khenner, Mikhail

    2013-08-01

    A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the "one-sided" model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed the nonlinear dynamics. Linear stability depends on whether the stiffness is minimum or maximum in the direction of the step growth. It also depends nontrivially on the combination of the anisotropy strength parameter and the atomic flux from the terrace to the step. Computations show formation and coarsening of a hill-and-valley structure superimposed onto a long-wavelength profile, which independently coarsens. Coarsening laws for the hill-and-valley structure are computed for two principal orientations of a maximum step stiffness, the increasing anisotropy strength, and the varying atomic flux.

  10. Lattice Boltzmann model for numerical relativity.

    PubMed

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  11. Falls-risk post-stroke: Examining contributions from paretic versus non paretic limbs to unexpected forward gait slips.

    PubMed

    Kajrolkar, Tejal; Bhatt, Tanvi

    2016-09-06

    Community-dwelling stroke survivors show a high incidence of falls with unexpected external perturbations during dynamic activities like walking. Previous evidence has demonstrated the importance of compensatory stepping to restore dynamic stability in response to perturbations in hemiparetic stroke survivors. However, these studies were limited to either stance perturbations or perturbation induced under the unaffected limb. This study aimed to compare the differences, if any, between the non-paretic and paretic sides in dynamic stability and protective stepping strategies when exposed to unexpected external perturbation during walking. Twenty hemiparetic subjects experienced an unexpected forward slip during walking on the laboratory walkway either on the paretic (n=10) or the nonparetic limb (n=10). Both groups demonstrated a backward loss of balance with a compensatory stepping response, with the nonparetic-side slip group resorting mainly to an aborted step response (60%) and the paretic-side slip group mainly exhibiting a recovery step response (90%). Although both groups showed an equal incidence of falls, the nonparetic-side slip group demonstrated a higher stability at recovery step touchdown, resulting from lower perturbation magnitudes (slip displacement and velocity) compared to the paretic-side slip group. The results indicate that the paretic side had difficulty initiating and executing a successful stepping response (nonparetic-side slip) and also in reactive limb control while in stance (paretic-side slip). Based on these results it is suggested that intervention strategies for fall-prevention in chronic stroke survivors should focus on paretic limb training for both reactive stepping and weight bearing for improving balance control for recovery from unpredictable perturbations during dynamic activities such as walking. Copyright © 2016. Published by Elsevier Ltd.

  12. A pseudospectral Legendre method for hyperbolic equations with an improved stability condition

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1986-01-01

    A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid points are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.

  13. A pseudospectral Legendre method for hyperbolic equations with an improved stability condition

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, H.

    1984-01-01

    A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.

  14. Algorithms for elasto-plastic-creep postbuckling

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1984-01-01

    This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.

  15. Microwave-assisted extraction of cyclotides from Viola ignobilis.

    PubMed

    Farhadpour, Mohsen; Hashempour, Hossein; Talebpour, Zahra; A-Bagheri, Nazanin; Shushtarian, Mozhgan Sadat; Gruber, Christian W; Ghassempour, Alireza

    2016-03-15

    Cyclotides are an interesting family of circular plant peptides. Their unique three-dimensional structure, comprising a head-to-tail circular backbone chain and three disulfide bonds, confers them stability against thermal, chemical, and enzymatic degradation. Their unique stability under extreme conditions creates an idea about the possibility of using harsh extraction methods such as microwave-assisted extraction (MAE) without affecting their structures. MAE has been introduced as a potent extraction method for extraction of natural compounds, but it is seldom used for peptide and protein extraction. In this work, microwave irradiation was applied to the extraction of cyclotides. The procedure was performed in various steps using a microwave instrument under different conditions. High-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results show stability of cyclotide structures on microwave radiation. The influential parameters, including time, temperature, and the ratio of solvents that are affecting the MAE potency, were optimized. Optimal conditions were obtained at 20 min of irradiation time, 1200 W of system power in 60 °C, and methanol/water at the ratio of 90:10 (v/v) as solvent. The comparison of MAE results with maceration extraction shows that there are similarities between cyclotide sequences and extraction yields. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Step-to-Step Ankle Inversion/Eversion Torque Modulation Can Reduce Effort Associated with Balance.

    PubMed

    Kim, Myunghee; Collins, Steven H

    2017-01-01

    Below-knee amputation is associated with higher energy expenditure during walking, partially due to difficulty maintaining balance. We previously found that once-per-step push-off work control can reduce balance-related effort, both in simulation and in experiments with human participants. Simulations also suggested that changing ankle inversion/eversion torque on each step, in response to changes in body state, could assist with balance. In this study, we investigated the effects of ankle inversion/eversion torque modulation on balance-related effort among amputees ( N = 5) using a multi-actuated ankle-foot prosthesis emulator. In stabilizing conditions, changes in ankle inversion/eversion torque were applied so as to counteract deviations in side-to-side center-of-mass acceleration at the moment of intact-limb toe off; higher acceleration toward the prosthetic limb resulted in a corrective ankle inversion torque during the ensuing stance phase. Destabilizing controllers had the opposite effect, and a zero gain controller made no changes to the nominal inversion/eversion torque. To separate the balance-related effects of step-to-step control from the potential effects of changes in average mechanics, average ankle inversion/eversion torque and prosthesis work were held constant across conditions. High-gain stabilizing control lowered metabolic cost by 13% compared to the zero gain controller ( p = 0.05). We then investigated individual responses to subject-specific stabilizing controllers following an enforced exploration period. Four of five participants experienced reduced metabolic rate compared to the zero gain controller (-15, -14, -11, -6, and +4%) an average reduction of 9% ( p = 0.05). Average prosthesis mechanics were unchanged across all conditions, suggesting that improvements in energy economy might have come from changes in step-to-step corrections related to balance. Step-to-step modulation of inversion/eversion torque could be used in new, active ankle-foot prostheses to reduce walking effort associated with maintaining balance.

  17. Special Year on Numerical Linear Algebra

    DTIC Science & Technology

    1988-09-01

    ORNL) Worley, Pat (ORNL) A special acknowledgement should go to Mary Drake (UT) and Mitzy Denson (ORNL) who carried the burden of making the innumerable...a time step appropriate for the regular cells with no stability restriction. Entrance to Y-12 requires a pass. Contact Mitzy Denson (615) 574-3125 to...requires a pass. Contact Mitzy Denson (615) 574-3125 to obtain one. ’This seminar is part of the Special Year on Numerical Linear Algebra sponsored by the

  18. N-Doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors.

    PubMed

    Wang, Shoupei; Zhang, Jianan; Shang, Pei; Li, Yuanyuan; Chen, Zhimin; Xu, Qun

    2014-10-18

    N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycling stability for supercapacitors.

  19. Daily activity during stability and exacerbation of chronic obstructive pulmonary disease

    PubMed Central

    2014-01-01

    Background During most COPD exacerbations, patients continue to live in the community but there is little information on changes in activity during exacerbations due to the difficulties of obtaining recent, prospective baseline data. Methods Patients recorded on daily diary cards any worsening in respiratory symptoms, peak expiratory flow (PEF) and the number of steps taken per day measured with a Yamax Digi-walker pedometer. Exacerbations were defined by increased respiratory symptoms and the number of exacerbations experienced in the 12 months preceding the recording of daily step count used to divide patients into frequent (> = 2/year) or infrequent exacerbators. Results The 73 COPD patients (88% male) had a mean (±SD) age 71(±8) years and FEV1 53(±16)% predicted. They recorded pedometer data on a median 198 days (IQR 134–353). At exacerbation onset, symptom count rose by 1.9(±1.3) and PEF fell by 7(±13) l/min. Mean daily step count fell from 4154(±2586) steps/day during a preceding baseline week to 3673(±2258) step/day during the initial 7 days of exacerbation (p = 0.045). Patients with larger falls in activity at exacerbation took longer to recover to stable level (rho = −0.56; p < 0.001). Recovery in daily step count was faster (median 3.5 days) than for exacerbation symptoms (median 11 days; p < 0.001). Recovery in step count was also faster in untreated compared to treated exacerbation (p = 0.030). Daily step count fell faster over time in the 40 frequent exacerbators, by 708 steps/year, compared to 338 steps/year in 33 infrequent exacerbators (p = 0.002). Conclusions COPD exacerbations reduced physical activity and frequent exacerbations accelerate decline in activity over time. PMID:24885188

  20. Modeling synchronous voltage source converters in transmission system planning studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosterev, D.N.

    1997-04-01

    A Voltage Source Converter (VSC) can be beneficial to power utilities in many ways. To evaluate the VSC performance in potential applications, the device has to be represented appropriately in planning studies. This paper addresses VSC modeling for EMTP, powerflow, and transient stability studies. First, the VSC operating principles are overviewed, and the device model for EMTP studies is presented. The ratings of VSC components are discussed, and the device operating characteristics are derived based on these ratings. A powerflow model is presented and various control modes are proposed. A detailed stability model is developed, and its step-by-step initialization proceduremore » is described. A simplified stability model is also derived under stated assumptions. Finally, validation studies are performed to demonstrate performance of developed stability models and to compare it with EMTP simulations.« less

  1. 3D morphology of Au and Au@Ag nanobipyramids

    NASA Astrophysics Data System (ADS)

    Burgin, Julien; Florea, Ileana; Majimel, Jérôme; Dobri, Adam; Ersen, Ovidiu; Tréguer-Delapierre, Mona

    2012-02-01

    The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance.The morphologies of Au and Au@Ag nanobipyramids were investigated using electron tomography. The 3D reconstruction reveals that the Au bipyramids have an irregular six-fold twinning structure with highly stepped dominant {151} facets. These short steps/edges stabilized via surface adsorbed CTAB favor the growth of silver on the lateral facets leading to strong blue shifts in longitudinal plasmon surface resonance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11454b

  2. Enzyme stabilization via computationally guided protein stapling.

    PubMed

    Moore, Eric J; Zorine, Dmitri; Hansen, William A; Khare, Sagar D; Fasan, Rudi

    2017-11-21

    Thermostabilization represents a critical and often obligatory step toward enhancing the robustness of enzymes for organic synthesis and other applications. While directed evolution methods have provided valuable tools for this purpose, these protocols are laborious and time-consuming and typically require the accumulation of several mutations, potentially at the expense of catalytic function. Here, we report a minimally invasive strategy for enzyme stabilization that relies on the installation of genetically encoded, nonreducible covalent staples in a target protein scaffold using computational design. This methodology enables the rapid development of myoglobin-based cyclopropanation biocatalysts featuring dramatically enhanced thermostability (Δ T m = +18.0 °C and Δ T 50 = +16.0 °C) as well as increased stability against chemical denaturation [Δ C m (GndHCl) = 0.53 M], without altering their catalytic efficiency and stereoselectivity properties. In addition, the stabilized variants offer superior performance and selectivity compared with the parent enzyme in the presence of a high concentration of organic cosolvents, enabling the more efficient cyclopropanation of a water-insoluble substrate. This work introduces and validates an approach for protein stabilization which should be applicable to a variety of other proteins and enzymes.

  3. The supplementary motor area contributes to the timing of the anticipatory postural adjustment during step initiation in participants with and without Parkinson's disease.

    PubMed

    Jacobs, J V; Lou, J S; Kraakevik, J A; Horak, F B

    2009-12-01

    The supplementary motor area (SMA) is thought to contribute to the generation of anticipatory postural adjustments (APAs, which act to stabilize supporting body segments prior to movement), but its precise role remains unclear. In addition, participants with Parkinson's disease (PD) exhibit impaired function of the SMA as well as decreased amplitudes and altered timing of the APA during step initiation, but the contribution of the SMA to these impairments also remains unclear. To determine how the SMA contributes to generating the APA and to the impaired APAs of participants with PD, we examined the voluntary steps of eight participants with PD and eight participants without PD, before and after disrupting the SMA and dorsolateral premotor cortex (dlPMC), in separate sessions, with 1-Hz repetitive transcranial magnetic stimulation (rTMS). Both groups exhibited decreased durations of their APAs after rTMS over the SMA but not over the dlPMC. Peak amplitudes of the APAs were unaffected by rTMS to either site. The symptom severity of the participants with PD positively correlated with the extent that rTMS over the SMA affected the durations of their APAs. The results suggest that the SMA contributes to the timing of the APA and that participants with PD exhibit impaired timing of their APAs, in part, due to progressive dysfunction of circuits associated with the SMA.

  4. Control system design method

    DOEpatents

    Wilson, David G [Tijeras, NM; Robinett, III, Rush D.

    2012-02-21

    A control system design method and concomitant control system comprising representing a physical apparatus to be controlled as a Hamiltonian system, determining elements of the Hamiltonian system representation which are power generators, power dissipators, and power storage devices, analyzing stability and performance of the Hamiltonian system based on the results of the determining step and determining necessary and sufficient conditions for stability of the Hamiltonian system, creating a stable control system based on the results of the analyzing step, and employing the resulting control system to control the physical apparatus.

  5. Specifying Specification.

    PubMed

    Paulo, Norbert

    2016-03-01

    This paper tackles the accusation that applied ethics is no serious academic enterprise because it lacks theoretical bracing. It does so in two steps. In the first step I introduce and discuss a highly acclaimed method to guarantee stability in ethical theories: Henry Richardson's specification. The discussion shows how seriously ethicists take the stability of the connection between the foundational parts of their theories and their further development as well as their "application" to particular problems or cases. A detailed scrutiny of specification leads to the second step, where I use insights from legal theory to inform the debate around stability from that point of view. This view reveals some of specification's limitations. I suggest that, once specification is sufficiently specified, it appears astonishingly similar to deduction as used in legal theory. Legal theory also provides valuable insight into the functional range of deduction and its relation to other forms of reasoning. This leads to a richer understanding of stability in normative theories and to a smart division of labor between deduction and other forms of reasoning. The comparison to legal theory thereby provides a framework for how different methods such as specification, deduction, balancing, and analogy relate to one another.

  6. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    PubMed

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation forces, compared to the average physical folding time of 4-9 μs observed in experiment.

  7. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    PubMed

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  8. Eulerian Lagrangian Adaptive Fup Collocation Method for solving the conservative solute transport in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Srzic, Veljko

    2014-05-01

    Contaminant transport in natural aquifers is a complex, multiscale process that is frequently studied using different Eulerian, Lagrangian and hybrid numerical methods. Conservative solute transport is typically modeled using the advection-dispersion equation (ADE). Despite the large number of available numerical methods that have been developed to solve it, the accurate numerical solution of the ADE still presents formidable challenges. In particular, current numerical solutions of multidimensional advection-dominated transport in non-uniform velocity fields are affected by one or all of the following problems: numerical dispersion that introduces artificial mixing and dilution, grid orientation effects, unresolved spatial and temporal scales and unphysical numerical oscillations (e.g., Herrera et al, 2009; Bosso et al., 2012). In this work we will present Eulerian Lagrangian Adaptive Fup Collocation Method (ELAFCM) based on Fup basis functions and collocation approach for spatial approximation and explicit stabilized Runge-Kutta-Chebyshev temporal integration (public domain routine SERK2) which is especially well suited for stiff parabolic problems. Spatial adaptive strategy is based on Fup basis functions which are closely related to the wavelets and splines so that they are also compactly supported basis functions; they exactly describe algebraic polynomials and enable a multiresolution adaptive analysis (MRA). MRA is here performed via Fup Collocation Transform (FCT) so that at each time step concentration solution is decomposed using only a few significant Fup basis functions on adaptive collocation grid with appropriate scales (frequencies) and locations, a desired level of accuracy and a near minimum computational cost. FCT adds more collocations points and higher resolution levels only in sensitive zones with sharp concentration gradients, fronts and/or narrow transition zones. According to the our recent achievements there is no need for solving the large linear system on adaptive grid because each Fup coefficient is obtained by predefined formulas equalizing Fup expansion around corresponding collocation point and particular collocation operator based on few surrounding solution values. Furthermore, each Fup coefficient can be obtained independently which is perfectly suited for parallel processing. Adaptive grid in each time step is obtained from solution of the last time step or initial conditions and advective Lagrangian step in the current time step according to the velocity field and continuous streamlines. On the other side, we implement explicit stabilized routine SERK2 for dispersive Eulerian part of solution in the current time step on obtained spatial adaptive grid. Overall adaptive concept does not require the solving of large linear systems for the spatial and temporal approximation of conservative transport. Also, this new Eulerian-Lagrangian-Collocation scheme resolves all mentioned numerical problems due to its adaptive nature and ability to control numerical errors in space and time. Proposed method solves advection in Lagrangian way eliminating problems in Eulerian methods, while optimal collocation grid efficiently describes solution and boundary conditions eliminating usage of large number of particles and other problems in Lagrangian methods. Finally, numerical tests show that this approach enables not only accurate velocity field, but also conservative transport even in highly heterogeneous porous media resolving all spatial and temporal scales of concentration field.

  9. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Shu, C.; Tan, D.

    2018-05-01

    An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.

  10. A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haut, T. S.; Babb, T.; Martinsson, P. G.

    2015-06-16

    Our manuscript demonstrates a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form ∂u/∂t=Lu∂u/∂t=Lu, where LL is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(τL)exp(τL) for a relatively large time-step ττ. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existingmore » methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge–Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.« less

  11. Is impaired control of reactive stepping related to falls during inpatient stroke rehabilitation?

    PubMed

    Mansfield, Avril; Inness, Elizabeth L; Wong, Jennifer S; Fraser, Julia E; McIlroy, William E

    2013-01-01

    Individuals with stroke fall more often than age-matched controls. Although many focus on the multifactorial nature of falls, the fundamental problem is likely the ability for an individual to generate reactions to recover from a loss of balance. Stepping reactions to recover balance are particularly important to balance recovery, and individuals with stroke have difficulty executing these responses to prevent a fall following a loss of balance. The purpose of this study is to determine if characteristics of balance recovery steps are related to falls during inpatient stroke rehabilitation. We conducted a retrospective review of individuals with stroke attending inpatient rehabilitation (n = 136). Details of falls experienced during inpatient rehabilitation were obtained from incident reports, nursing notes, and patient interviews. Stepping reactions were evoked using a "release-from-lean" postural perturbation. Poisson regression was used to determine characteristics of stepping reactions that were related to increased fall frequency relative to length of stay. In all, 20 individuals experienced 29 falls during inpatient rehabilitation. The characteristics of stepping reactions significantly related to increased fall rates were increased frequency of external assistance to prevent a fall to the floor, increased frequency of no-step responses, increased frequency of step responses with inadequate foot clearance, and delayed time to initiate stepping responses. Impaired control of balance recovery steps is related to increased fall rates during inpatient stroke rehabilitation. This study informs the specific features of stepping reactions that can be targeted with physiotherapy intervention during inpatient rehabilitation to improve dynamic stability control and potentially prevent falls.

  12. A review of hybrid implicit explicit finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Chen, Juan

    2018-06-01

    The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.

  13. Probing the characteristics of casein as green binder for non-aqueous electrochemical double layer capacitors' electrodes

    NASA Astrophysics Data System (ADS)

    Varzi, Alberto; Raccichini, Rinaldo; Marinaro, Mario; Wohlfahrt-Mehrens, Margret; Passerini, Stefano

    2016-09-01

    Casein from bovine milk is evaluated in this work as binding agent for electrochemical double layer capacitors (EDLCs) electrodes. It is demonstrated that casein provides excellent adhesion strength to the current collector (1187 kPa compared to 51 kPa achieved with PVdF), thus leading to mechanically stable electrodes. At the same time, it offers high thermal stability (above 200 °C) and electrochemical stability in organic electrolytes. Apparently though, the casein-based electrodes offer lower electronic conductivity than those based on other state-of-the-art binders, which can limit the rate performance of the resulting EDLC. In the attempt of improving the electrochemical performance, it is found that the application of a pressing step can solve this issue, leading to excellent rate capability (up to 84% capacitance retention at 50 mA cm-2) and cycling stability (96.8% after 10,000 cycles at 10 mA cm-2) in both PC- and ACN-based electrolytes. Although the adhesive power casein is known since ancient times, this report presents the first proof of concept of its employment in electrochemical power sources.

  14. Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose.

    PubMed

    Pang, Bo; Liu, Huan; Liu, Peiwen; Peng, Xinwen; Zhang, Kai

    2018-03-01

    Hydrophobic particles with static water contact angles larger than 90° are more like to stabilize W/O Pickering emulsions. In particular, high internal phase Pickering emulsions (HIPEs) are of great interest for diverse applications. However, W/O HIPEs have rarely been realized using sustainable biopolymers. Herein, we used stearoylated microcrystalline cellulose (SMCC) to stabilize W/O Pickering emulsions and especially, W/O HIPEs. Moreover, these W/O HIPEs can be further used as platforms for the preparation of porous materials, such as porous foams. Stearoylated microcrystalline cellulose (SMCC) was prepared by modifying MCC with stearoyl chloride under heterogeneous conditions. Using SMCC as emulsifiers, W/O medium and high internal phase Pickering emulsions (MIPEs and HIPEs) with various organic solvents as continuous phases were prepared using one-step and two-step methods, respectively. Polystyrene (PS) foams were prepared after polymerization of oil phase using HIPEs as templates and their oil/water separation capacity were studied. SMCC could efficiently stabilize W/O Pickering emulsions and HIPEs could only be prepared via the two-step method. The internal phase volume fraction of the SMCC-stabilized HIPEs reached as high as 89%. Diverse internal phase volume fractions led to distinct inner structures of foams with closed or open cells. These macroporous polystyrene (PS) foams demonstrated great potential for the effective absorption of organic solvents from underwater. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Real-Time Monitoring and Prediction of the Pilot Vehicle System (PVS) Closed-Loop Stability

    NASA Astrophysics Data System (ADS)

    Mandal, Tanmay Kumar

    Understanding human control behavior is an important step for improving the safety of future aircraft. Considerable resources are invested during the design phase of an aircraft to ensure that the aircraft has desirable handling qualities. However, human pilots exhibit a wide range of control behaviors that are a function of external stimulus, aircraft dynamics, and human psychological properties (such as workload, stress factor, confidence, and sense of urgency factor). This variability is difficult to address comprehensively during the design phase and may lead to undesirable pilot-aircraft interaction, such as pilot-induced oscillations (PIO). This creates the need to keep track of human pilot performance in real-time to monitor the pilot vehicle system (PVS) stability. This work focused on studying human pilot behavior for the longitudinal axis of a remotely controlled research aircraft and using human-in-the-loop (HuIL) simulations to obtain information about the human controlled system (HCS) stability. The work in this dissertation is divided into two main parts: PIO analysis and human control model parameters estimation. To replicate different flight conditions, this study included time delay and elevator rate limiting phenomena, typical of actuator dynamics during the experiments. To study human control behavior, this study employed the McRuer model for single-input single-output manual compensatory tasks. McRuer model is a lead-lag controller with time delay which has been shown to adequately model manual compensatory tasks. This dissertation presents a novel technique to estimate McRuer model parameters in real-time and associated validation using HuIL simulations to correctly predict HCS stability. The McRuer model parameters were estimated in real-time using a Kalman filter approach. The estimated parameters were then used to analyze the stability of the closed-loop HCS and verify them against the experimental data. Therefore, the main contribution of this dissertation is the design of an unscented Kalman filter-based algorithm to estimate McRuer model parameters in real time, and a framework to validate this algorithm for single-input single-output manual compensatory tasks to predict instabilities.

  16. The iterative thermal emission method: A more implicit modification of IMC

    NASA Astrophysics Data System (ADS)

    Long, A. R.; Gentile, N. A.; Palmer, T. S.

    2014-11-01

    For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of ;pseudo-scattering; introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in that they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does however yield solutions with larger variance because each sub-step uses a different Fleck factor (even at equilibrium).

  17. The iterative thermal emission method: A more implicit modification of IMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, A.R., E-mail: arlong.ne@tamu.edu; Gentile, N.A.; Palmer, T.S.

    2014-11-15

    For over 40 years, the Implicit Monte Carlo (IMC) method has been used to solve challenging problems in thermal radiative transfer. These problems typically contain regions that are optically thick and diffusive, as a consequence of the high degree of “pseudo-scattering” introduced to model the absorption and reemission of photons from a tightly-coupled, radiating material. IMC has several well-known features that could be improved: a) it can be prohibitively computationally expensive, b) it introduces statistical noise into the material and radiation temperatures, which may be problematic in multiphysics simulations, and c) under certain conditions, solutions can be nonphysical, in thatmore » they violate a maximum principle, where IMC-calculated temperatures can be greater than the maximum temperature used to drive the problem. We have developed a variant of IMC called iterative thermal emission IMC, which is designed to have a reduced parameter space in which the maximum principle is violated. ITE IMC is a more implicit version of IMC in that it uses the information obtained from a series of IMC photon histories to improve the estimate for the end of time step material temperature during a time step. A better estimate of the end of time step material temperature allows for a more implicit estimate of other temperature-dependent quantities: opacity, heat capacity, Fleck factor (probability that a photon absorbed during a time step is not reemitted) and the Planckian emission source. We have verified the ITE IMC method against 0-D and 1-D analytic solutions and problems from the literature. These results are compared with traditional IMC. We perform an infinite medium stability analysis of ITE IMC and show that it is slightly more numerically stable than traditional IMC. We find that significantly larger time steps can be used with ITE IMC without violating the maximum principle, especially in problems with non-linear material properties. The ITE IMC method does however yield solutions with larger variance because each sub-step uses a different Fleck factor (even at equilibrium)« less

  18. High performance humidity sensor and photodetector based on SnSe nanorods

    NASA Astrophysics Data System (ADS)

    Pawbake, Amit S.; Jadkar, Sandesh R.; Late, Dattatray J.

    2016-10-01

    Tin selenide (SnSe) nanorods were synthesized using a one-step solvothermal route and their humidity sensing and photodetection performance at room temperature were investigated. The results depict that SnSe nanorod-based humidity and photosensors have good long-term stability, are highly sensitive and have fast response and recovery times. In the case of the humidity sensor it was observed that the resistance of the films decreased with increasing relative humidity (RH). The humidity sensing behaviors were investigated in the range 11-97% RH at room temperature. A response time of ˜68 s and recovery time of ˜149 s were observed for the humidity sensor. The photosensing behavior showed typical response /recovery times of ˜3 s with highly reproducible behavior.

  19. An Approach to Stable Gradient-Descent Adaptation of Higher Order Neural Units.

    PubMed

    Bukovsky, Ivo; Homma, Noriyasu

    2017-09-01

    Stability evaluation of a weight-update system of higher order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on the spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring the stability of the weight-update system (at every single adaptation step) naturally results in the adaptation stability of the whole neural architecture that adapts to the target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters.

  20. Hyperbolic heat conduction problems involving non-Fourier effects - Numerical simulations via explicit Lax-Wendroff/Taylor-Galerkin finite element formulations

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Namburu, Raju R.

    1989-01-01

    Numerical simulations are presented for hyperbolic heat-conduction problems that involve non-Fourier effects, using explicit, Lax-Wendroff/Taylor-Galerkin FEM formulations as the principal computational tool. Also employed are smoothing techniques which stabilize the numerical noise and accurately predict the propagating thermal disturbances. The accurate capture of propagating thermal disturbances at characteristic time-step values is achieved; numerical test cases are presented which validate the proposed hyperbolic heat-conduction problem concepts.

  1. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  2. Analysis of Partitioned Methods for the Biot System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukac, Martina; Layton, William; Moraiti, Marina

    2015-02-18

    In this work, we present a comprehensive study of several partitioned methods for the coupling of flow and mechanics. We derive energy estimates for each method for the fully-discrete problem. We write the obtained stability conditions in terms of a key control parameter defined as a ratio of the coupling strength and the speed of propagation. Depending on the parameters in the problem, give the choice of the partitioned method which allows the largest time step. (C) 2015 Wiley Periodicals, Inc.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang; Qin, Hong; Liu, Jian

    An infinite dimensional canonical symplectic structure and structure-preserving geometric algorithms are developed for the photon–matter interactions described by the Schrödinger–Maxwell equations. The algorithms preserve the symplectic structure of the system and the unitary nature of the wavefunctions, and bound the energy error of the simulation for all time-steps. Here, this new numerical capability enables us to carry out first-principle based simulation study of important photon–matter interactions, such as the high harmonic generation and stabilization of ionization, with long-term accuracy and fidelity.

  4. CEF1/CDC5 alleles modulate transitions between catalytic conformations of the spliceosome

    PubMed Central

    Query, Charles C.; Konarska, Maria M.

    2012-01-01

    Conformational change within the spliceosome is required between the first and second catalytic steps of pre-mRNA splicing. A prior genetic screen for suppressors of an intron mutant that stalls between the two steps yielded both prp8 and non-prp8 alleles that suppressed second-step splicing defects. We have now identified the strongest non-prp8 suppressors as alleles of the NTC (Prp19 complex) component, CEF1. These cef1 alleles generally suppress second-step defects caused by a variety of intron mutations, mutations in U6 snRNA, or deletion of the second-step protein factor Prp17, and they can activate alternative 3′ splice sites. Genetic and functional interactions between cef1 and prp8 alleles suggest that they modulate the same event(s) in the first-to-second-step transition, most likely by stabilization of the second-step spliceosome; in contrast, alleles of U6 snRNA that also alter this transition modulate a distinct event, most likely by stabilization of the first-step spliceosome. These results implicate a myb-like domain of Cef1/CDC5 in interactions that modulate conformational states of the spliceosome and suggest that alteration of these events affects splice site use, resulting in alternative splicing-like patterns in yeast. PMID:22408182

  5. Frictional families in 2D experimental disks under periodic gravitational compaction

    NASA Astrophysics Data System (ADS)

    Hubard, Aline; Shattuck, Mark; O'Hern, Corey

    2014-03-01

    We studied a bidisperse system with diameter ratio 1.2 consisting of four 1.26cm and three 1.57cm stainless steel cylinders confined between two glass plates separated 1.05 times their thickness with the cylinder axis perpendicular to gravity. The particles initially resting on a movable piston are thrown upward and allowed to come to rest. In general this frictional state is stabilized by both normal and tangential (frictional) forces. We then apply short (10ms) small amplitude bursts of 440Hz vibration, temporarily breaking tangential forces and then allow the system to re-stabilize. After N of these compaction steps the number of contacts will increase to an isostatic friction-less state and additional steps do not change the system. Many frictional states reach the same final friction-less state. We find that this evolution is determined by the projection of the gravity vector on the null space of the dynamical matrix of a normal spring network formed from the contacts of the frictional state. Thus each frictional contact network follow a one-dimensional path (or family) through phase space under gravitational compaction. PREM-DMR0934206.

  6. Development of iterative techniques for the solution of unsteady compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Sankar, Lakshmi N.; Hixon, Duane

    1991-01-01

    Efficient iterative solution methods are being developed for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. Thus, the extra work required by iterative schemes can also be designed to perform efficiently on current and future generation scalable, missively parallel machines. An obvious candidate for iteratively solving the system of coupled nonlinear algebraic equations arising in CFD applications is the Newton method. Newton's method was implemented in existing finite difference and finite volume methods. Depending on the complexity of the problem, the number of Newton iterations needed per step to solve the discretized system of equations can, however, vary dramatically from a few to several hundred. Another popular approach based on the classical conjugate gradient method, known as the GMRES (Generalized Minimum Residual) algorithm is investigated. The GMRES algorithm was used in the past by a number of researchers for solving steady viscous and inviscid flow problems with considerable success. Here, the suitability of this algorithm is investigated for solving the system of nonlinear equations that arise in unsteady Navier-Stokes solvers at each time step. Unlike the Newton method which attempts to drive the error in the solution at each and every node down to zero, the GMRES algorithm only seeks to minimize the L2 norm of the error. In the GMRES algorithm the changes in the flow properties from one time step to the next are assumed to be the sum of a set of orthogonal vectors. By choosing the number of vectors to a reasonably small value N (between 5 and 20) the work required for advancing the solution from one time step to the next may be kept to (N+1) times that of a noniterative scheme. Many of the operations required by the GMRES algorithm such as matrix-vector multiplies, matrix additions and subtractions can all be vectorized and parallelized efficiently.

  7. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.

    PubMed

    Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W; Daley, Monica A

    2014-11-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force-length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force-length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. © 2014. Published by The Company of Biologists Ltd.

  8. On the relationship between finger width, velocity, and fluxes in thermohaline convection

    NASA Astrophysics Data System (ADS)

    Sreenivas, K. R.; Singh, O. P.; Srinivasan, J.

    2009-02-01

    Double-diffusive finger convection occurs in many natural processes. The theories for double-diffusive phenomena that exist at present consider systems with linear stratification in temperature and salinity. The double-diffusive systems with step change in salinity and temperature are, however, not amenable to simple stability analysis. Hence factors that control the width of the finger, velocity, and fluxes in systems that have step change in temperature and salinity have not been understood so far. In this paper we provide new physical insight regarding factors that influence finger convection in two-layer double-diffusive system through two-dimensional numerical simulations. Simulations have been carried out for density stability ratios (Rρ) from 1.5 to 10. For each density stability ratio, the thermal Rayleigh number (RaT) has been systematically varied from 7×103 to 7×108. Results from these simulations show how finger width, velocity, and flux ratios in finger convection are interrelated and the influence of governing parameters such as density stability ratio and the thermal Rayleigh number. The width of the incipient fingers at the time of onset of instability has been shown to vary as RaT-1/3. Velocity in the finger varies as RaT1/3/Rρ. Results from simulation agree with the scale analysis presented in the paper. Our results demonstrate that wide fingers have lower velocities and flux ratios compared to those in narrow fingers. This result contradicts present notions about the relation between finger width and flux ratio. A counterflow heat-exchanger analogy is used in understanding the dependence of flux ratio on finger width and velocity.

  9. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain

    PubMed Central

    Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. PMID:25355848

  10. One-step, low-temperature fabrication of CdS quantum dots by watermelon rind: a green approach

    PubMed Central

    Lakshmipathy, Rajasekhar; Sarada, Nallani Chakravarthula; Chidambaram, K; Pasha, Sk Khadeer

    2015-01-01

    We investigated the one-step synthesis of CdS nanoparticles via green synthesis that used aqueous extract of watermelon rind as a capping and stabilizing agent. Preliminary phytochemical analysis depicted the presence of carbohydrates which can act as capping and stabilizing agents. Synthesized CdS nanoparticles were characterized using UV-visible, Fourier transform infrared spectroscopy, X-ray diffraction, EDX, dynamic light scattering, transmission electron microscopy, and atomic force microscopy techniques. The CdS nanoparticles were found to be size- and shape-controlled and were stable even after 3 months of synthesis. The results suggest that watermelon rind, an agro-waste, can be used for synthesis of CdS nanoparticles without any addition of stabilizing and capping agents. PMID:26491319

  11. A comparison of various surface charge transfer hole doping of graphene grown by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chandramohan, S.; Seo, Tae Hoon; Janardhanam, V.; Hong, Chang-Hee; Suh, Eun-Kyung

    2017-10-01

    Charge transfer doping is a renowned route to modify the electrical and electronic properties of graphene. Understanding the stability of potentially important charge-transfer materials for graphene doping is a crucial first step. Here we present a systematic comparison on the doping efficiency and stability of single layer graphene using molybdenum trioxide (MoO3), gold chloride (AuCl3), and bis(trifluoromethanesulfonyl)amide (TFSA). Chemical dopants proved to be very effective, but MoO3 offers better thermal stability and device fabrication compatibility. Single layer graphene films with sheet resistance values between 100 and 200 ohm/square were consistently produced by implementing a two-step growth followed by doping without compromising the optical transmittance.

  12. Improved Balance Confidence and Stability for Elderly After 6 Weeks of a Multimodal Self-Administered Balance-Enhancing Exercise Program

    PubMed Central

    Hafström, Anna; Malmström, Eva-Maj; Terdèn, Josefine; Fransson, Per-Anders; Magnusson, Måns

    2016-01-01

    Objective: To develop and assess the efficacy of a multimodal balance-enhancing exercise program (BEEP) designed to be regularly self-administered by community-dwelling elderly. The program aims to promote sensory reweighting, facilitate motor control, improve gaze stabilization, and stimulate continuous improvement by being constantly challenging. Method: Forty participants aged 60 to 80 years performed 6 weeks of BEEP training, on average for 16 min four times weekly, in a randomized one-arm crossover design. Results: One-leg standing time improved 32% with eyes open (EO), 206% with eyes closed (EC) on solid surface, and 54% EO on compliant surface (p < .001). Posturography confirmed balance improvements when perturbed on solid and compliant surfaces with EO and EC (p ≤ .033). Walking, step stool, and Timed Up and Go speeds increased (p ≤ .001), as did scores in Berg Balance and balance confidence scales (p ≤ .018). Discussion: Multimodal balance exercises offer an efficient, cost-effective way to improve balance control and confidence in elderly. PMID:28138495

  13. Purification and Antithrombotic Potential of a Fibrinolytic Enzyme from Shiitake Culinary- Medicinal Mushroom, Lentinus edodes GNA01 (Agaricomycetes).

    PubMed

    Choi, Jun-Hui; Kim, Kyung-Je; Kim, Seung

    2018-01-01

    We purified Lentinus edodes GNA01 fibrinolytic enzyme (LEFE) and identified it as a novel metalloprotease. LEFE was purified to homogeneity through a 2-step procedure, with an 8.28-fold increase in specific activity and 5.3% recovery. The molecular mass of LEFE was approximately 38 kDa, based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its optimal pH, optimal temperature, pH stability, and thermal stability were 5, 30°C, 6-7, and 40°C, respectively. LEFE was inhibited by zinc and magnesium ions, and by EDTA and EGTA, indicating that LEFE is a metalloprotease. The protease exhibited fibrinolytic activity and a degradative effect on clot formation and blood clots. The protease prolonged activated partial thromboplastin time, prothrombin time, and coagulation time as induced by platelet aggregators (collagen and epinephrine). Taken together, our results indicate that L. edodes GNA01 produces a metalloprotease/fibrinolytic enzyme and that this enzyme might be applied as a new thrombolytic and antithrombotic agent for thrombosis-related cardiovascular disorders.

  14. A simple single-step approach towards synthesis of nanofluids containing cuboctahedral cuprous oxide particles using glucose reduction

    NASA Astrophysics Data System (ADS)

    Shenoy, U. Sandhya; Shetty, A. Nityananda

    2018-03-01

    Enhancement of thermal properties of conventional heat transfer fluids has become one of the important technical challenges. Since nanofluids offer a promising help in this regard, development of simpler and hassle free routes for their synthesis is of utmost importance. Synthesis of nanofluids using a hassle free route with greener chemicals has been reported. The single-step chemical approach reported here overcomes the drawbacks of the two-step procedures in the synthesis of nanofluids. The resulting Newtonian nanofluids prepared contained cuboctahedral particles of cuprous oxide and exhibited a thermal conductivity of 2.852 W·m-1·K-1. Polyvinylpyrrolidone (PVP) used during the synthesis acted as a stabilizing agent rendering the nanofluid a stability of 9 weeks.

  15. Reducing Time and Increasing Sensitivity in Sample Preparation for Adherent Mammalian Cell Metabolomics

    PubMed Central

    Lorenz, Matthew A.; Burant, Charles F.; Kennedy, Robert T.

    2011-01-01

    A simple, fast, and reproducible sample preparation procedure was developed for relative quantification of metabolites in adherent mammalian cells using the clonal β-cell line INS-1 as a model sample. The method was developed by evaluating the effect of different sample preparation procedures on high performance liquid chromatography- mass spectrometry quantification of 27 metabolites involved in glycolysis and the tricarboxylic acid cycle on a directed basis as well as for all detectable chromatographic features on an undirected basis. We demonstrate that a rapid water rinse step prior to quenching of metabolism reduces components that suppress electrospray ionization thereby increasing signal for 26 of 27 targeted metabolites and increasing total number of detected features from 237 to 452 with no detectable change of metabolite content. A novel quenching technique is employed which involves addition of liquid nitrogen directly to the culture dish and allows for samples to be stored at −80 °C for at least 7 d before extraction. Separation of quenching and extraction steps provides the benefit of increased experimental convenience and sample stability while maintaining metabolite content similar to techniques that employ simultaneous quenching and extraction with cold organic solvent. The extraction solvent 9:1 methanol: chloroform was found to provide superior performance over acetonitrile, ethanol, and methanol with respect to metabolite recovery and extract stability. Maximal recovery was achieved using a single rapid (~1 min) extraction step. The utility of this rapid preparation method (~5 min) was demonstrated through precise metabolite measurements (11% average relative standard deviation without internal standards) associated with step changes in glucose concentration that evoke insulin secretion in the clonal β-cell line INS-1. PMID:21456517

  16. Balance and postural skills in normal-weight and overweight prepubertal boys.

    PubMed

    Deforche, Benedicte I; Hills, Andrew P; Worringham, Charles J; Davies, Peter S W; Murphy, Alexia J; Bouckaert, Jacques J; De Bourdeaudhuij, Ilse M

    2009-01-01

    This study investigated differences in balance and postural skills in normal-weight versus overweight prepubertal boys. Fifty-seven 8-10-year-old boys were categorized overweight (N = 25) or normal-weight (N = 32) according to the International Obesity Task Force cut-off points for overweight in children. The Balance Master, a computerized pressure plate system, was used to objectively measure six balance skills: sit-to-stand, walk, step up/over, tandem walk (walking on a line), unilateral stance and limits of stability. In addition, three standardized field tests were employed: standing on one leg on a balance beam, walking heel-to-toe along the beam and the multiple sit-to-stand test. Overweight boys showed poorer performances on several items assessed on the Balance Master. Overweight boys had slower weight transfer (p < 0.05), lower rising index (p < 0.05) and greater sway velocity (p < 0.001) in the sit-to-stand test, greater step width while walking (p < 0.05) and lower speed when walking on a line (p < 0.01) compared with normal-weight counterparts. Performance on the step up/over test, the unilateral stance and the limits of stability were comparable between both groups. On the balance beam, overweight boys could not hold their balance on one leg as long (p < 0.001) and had fewer correct steps in the heel-to-toe test (p < 0.001) than normal-weight boys. Finally, overweight boys were slower in standing up and sitting down five times in the multiple sit-to-stand task (p < 0.01). This study demonstrates that when categorised by body mass index (BMI) level, overweight prepubertal boys displayed lower capacity on several static and dynamic balance and postural skills.

  17. Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Martini, Michael C.

    2011-01-01

    A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and sets up initial conditions and integrates; (2) a routine that calculates system reduced derivatives using recurrence relations for quotients and products; and (3) a routine that determines the step size and sums the series. The order of accuracy used in a trajectory calculation is arbitrary and can be set by the user. The algorithm directly calculates the motion of other planetary bodies and does not require ephemeris files (except to start the calculation). The code also runs with Taylor series and Runge-Kutta used interchangeably for different phases of a mission.

  18. Implicit approximate-factorization schemes for the low-frequency transonic equation

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F.; Steger, J. L.

    1975-01-01

    Two- and three-level implicit finite-difference algorithms for the low-frequency transonic small disturbance-equation are constructed using approximate factorization techniques. The schemes are unconditionally stable for the model linear problem. For nonlinear mixed flows, the schemes maintain stability by the use of conservatively switched difference operators for which stability is maintained only if shock propagation is restricted to be less than one spatial grid point per time step. The shock-capturing properties of the schemes were studied for various shock motions that might be encountered in problems of engineering interest. Computed results for a model airfoil problem that produces a flow field similar to that about a helicopter rotor in forward flight show the development of a shock wave and its subsequent propagation upstream off the front of the airfoil.

  19. Experimental and theoretical investigation of the stability of stepwise pH gradients in continuous flow electrophoresis

    NASA Technical Reports Server (NTRS)

    Kuhn, Reinhard; Wagner, Horst; Mosher, Richard A.; Thormann, Wolfgang

    1987-01-01

    Isoelectric focusing in the continuous flow mode can be more quickly and economically performed by admitting a stepwise pH gradient composed of simple buffers instead of uniform mixtures of synthetic carrier ampholytes. The time-consuming formation of the pH gradient by the electric field is thereby omitted. The stability of a three-step system with arginine - morpholinoethanesulfonic acid/glycylglycine - aspartic acid is analyzed theoretically by one-dimensional computer simulation as well as experimentally at various flow rates in a continuous flow apparatus. Excellent agreement between experimental and theoretical data was obtained. This metastable configuration was found to be suitable for focusing of proteins under continuous flow conditions. The influence of various combinations of electrolytes and membranes between electrophoresis chamber and electrode compartments is also discussed.

  20. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time

    PubMed Central

    Lu, Yuhua; Liu, Qian

    2018-01-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications. PMID:29515870

  1. Integrating viscoelastic mass spring dampers into position-based dynamics to simulate soft tissue deformation in real time.

    PubMed

    Xu, Lang; Lu, Yuhua; Liu, Qian

    2018-02-01

    We propose a novel method to simulate soft tissue deformation for virtual surgery applications. The method considers the mechanical properties of soft tissue, such as its viscoelasticity, nonlinearity and incompressibility; its speed, stability and accuracy also meet the requirements for a surgery simulator. Modifying the traditional equation for mass spring dampers (MSD) introduces nonlinearity and viscoelasticity into the calculation of elastic force. Then, the elastic force is used in the constraint projection step for naturally reducing constraint potential. The node position is enforced by the combined spring force and constraint conservative force through Newton's second law. We conduct a comparison study of conventional MSD and position-based dynamics for our new integrating method. Our approach enables stable, fast and large step simulation by freely controlling visual effects based on nonlinearity, viscoelasticity and incompressibility. We implement a laparoscopic cholecystectomy simulator to demonstrate the practicality of our method, in which liver and gallbladder deformation can be simulated in real time. Our method is an appropriate choice for the development of real-time virtual surgery applications.

  2. Mesquite Gum as a Novel Reducing and Stabilizing Agent for Modified Tollens Synthesis of Highly Concentrated Ag Nanoparticles

    PubMed Central

    Moreno-Trejo, Maira Berenice; Sánchez-Domínguez, Margarita

    2016-01-01

    The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability that exceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple. PMID:28773938

  3. Additives for vaccine storage to improve thermal stability of adenoviruses from hours to months

    NASA Astrophysics Data System (ADS)

    Pelliccia, Maria; Andreozzi, Patrizia; Paulose, Jayson; D'Alicarnasso, Marco; Cagno, Valeria; Donalisio, Manuela; Civra, Andrea; Broeckel, Rebecca M.; Haese, Nicole; Jacob Silva, Paulo; Carney, Randy P.; Marjomäki, Varpu; Streblow, Daniel N.; Lembo, David; Stellacci, Francesco; Vitelli, Vincenzo; Krol, Silke

    2016-11-01

    Up to 80% of the cost of vaccination programmes is due to the cold chain problem (that is, keeping vaccines cold). Inexpensive, biocompatible additives to slow down the degradation of virus particles would address the problem. Here we propose and characterize additives that, already at very low concentrations, improve the storage time of adenovirus type 5. Anionic gold nanoparticles (10-8-10-6 M) or polyethylene glycol (PEG, molecular weight ~8,000 Da, 10-7-10-4 M) increase the half-life of a green fluorescent protein expressing adenovirus from ~48 h to 21 days at 37 °C (from 7 to >30 days at room temperature). They replicate the known stabilizing effect of sucrose, but at several orders of magnitude lower concentrations. PEG and sucrose maintained immunogenicity in vivo for viruses stored for 10 days at 37 °C. To achieve rational design of viral-vaccine stabilizers, our approach is aided by simplified quantitative models based on a single rate-limiting step.

  4. Electrical Properties of Reactive Liquid Crystal Semiconductors

    NASA Astrophysics Data System (ADS)

    McCulloch, Iain; Coelle, Michael; Genevicius, Kristijonas; Hamilton, Rick; Heckmeier, Michael; Heeney, Martin; Kreouzis, Theo; Shkunov, Maxim; Zhang, Weimin

    2008-01-01

    Fabrication of display products by low cost printing technologies such as ink jet, gravure offset lithography and flexography requires solution processable semiconductors for the backplane electronics. The products will typically be of lower performance than polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal displays (AMLCD's), and flexible organic light-emitting diode (OLED) displays. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the initial evaluation of reactive mesogen semiconductors, which can polymerise within mesophase temperatures, “freezing in” the order in crosslinked domains. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. Both time-of-flight and field effect transistor devices were prepared and their electrical characterisation reported.

  5. The dimensional stability analysis of seventeen stepped specimens of 18Ni 200 grade, PH13-8Mo and A-286

    NASA Technical Reports Server (NTRS)

    Wigley, D. A.

    1983-01-01

    This report documents the results of a dimensional stability analysis of seventeen stepped specimens that were used in the evaluation of factors influencing warpage in metallic alloys being used for cryogenic wind tunnel models. Specimens used in the analysis were manufactured from 18Ni 200 Grade Maaraging steel, PH13-8Mo, and A-286 stainless steel. Quantitative data are provided on the behavior of the specimens due to the effects of both machining and cryogenic cycling effects.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot

    The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less

  7. A stable 1D multigroup high-order low-order method

    DOE PAGES

    Yee, Ben Chung; Wollaber, Allan Benton; Haut, Terry Scot; ...

    2016-07-13

    The high-order low-order (HOLO) method is a recently developed moment-based acceleration scheme for solving time-dependent thermal radiative transfer problems, and has been shown to exhibit orders of magnitude speedups over traditional time-stepping schemes. However, a linear stability analysis by Haut et al. (2015 Haut, T. S., Lowrie, R. B., Park, H., Rauenzahn, R. M., Wollaber, A. B. (2015). A linear stability analysis of the multigroup High-Order Low-Order (HOLO) method. In Proceedings of the Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method; Nashville, TN, April 19–23, 2015. American Nuclear Society.)more » revealed that the current formulation of the multigroup HOLO method was unstable in certain parameter regions. Since then, we have replaced the intensity-weighted opacity in the first angular moment equation of the low-order (LO) system with the Rosseland opacity. Furthermore, this results in a modified HOLO method (HOLO-R) that is significantly more stable.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devadoss, C.; Fessenden, R.W.

    The transient that is produced in the quenching of triplet benzophenone by 1,4-diazabicyclo(2.2.2)octane (DABCO) has been examined by use of nano- and picosecond laser photolysis. The initial step in all solvents, both polar and nonpolar, is electron transfer to form a triplet contact ion pair. In nonpolar solvents, the ion pair remains in this form until it decays. For polar solvents, the spectra change somewhat over the first 100 ps showing that the solvation changes and the ion pair becomes solvent separated. The lifetime of the ion pair varies greatly with the solvent. In saturated hydrocarbons it is about 80more » ps. Nonpolar solvents with either {pi} electrons or a lone pair of electrons stabilize the ion pair on the nanosecond to microsecond time scale. A small amount of alcohol in benzene also stabilizes the ion pair by hydrogen bonding. A shift in the peak position with time toward the blue accompanies the formation of hydrogen bonds in this case.« less

  9. Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme

    PubMed Central

    Zhang, Junshe; Haribal, Vasudev; Li, Fanxing

    2017-01-01

    We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171

  10. The dynamic behaviour of data-driven Δ-M and ΔΣ-M in sliding mode control

    NASA Astrophysics Data System (ADS)

    Almakhles, Dhafer; Swain, Akshya K.; Nasiri, Alireza

    2017-11-01

    In recent years, delta (Δ-M) and delta-sigma modulators (ΔΣ-M) are increasingly being used as efficient data converters due to numerous advantages they offer. This paper investigates various dynamical features of these modulators/systems (both in continuous and discrete time domain) and derives their stability conditions using the theory of sliding mode. The upper bound of the hitting time (step) has been estimated. The equivalent mode conditions, i.e. where the outputs of the modulators are equivalent to the inputs, are established. The results of the analysis are validated through simulations considering a numerical example.

  11. Additive schemes for certain operator-differential equations

    NASA Astrophysics Data System (ADS)

    Vabishchevich, P. N.

    2010-12-01

    Unconditionally stable finite difference schemes for the time approximation of first-order operator-differential systems with self-adjoint operators are constructed. Such systems arise in many applied problems, for example, in connection with nonstationary problems for the system of Stokes (Navier-Stokes) equations. Stability conditions in the corresponding Hilbert spaces for two-level weighted operator-difference schemes are obtained. Additive (splitting) schemes are proposed that involve the solution of simple problems at each time step. The results are used to construct splitting schemes with respect to spatial variables for nonstationary Navier-Stokes equations for incompressible fluid. The capabilities of additive schemes are illustrated using a two-dimensional model problem as an example.

  12. Boundary conditions for the solution of compressible Navier-Stokes equations by an implicit factored method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Smith, G. E.; Springer, G. S.; Rimon, Y.

    1983-01-01

    A method is presented for formulating the boundary conditions in implicit finite-difference form needed for obtaining solutions to the compressible Navier-Stokes equations by the Beam and Warming implicit factored method. The usefulness of the method was demonstrated (a) by establishing the boundary conditions applicable to the analysis of the flow inside an axisymmetric piston-cylinder configuration and (b) by calculating velocities and mass fractions inside the cylinder for different geometries and different operating conditions. Stability, selection of time step and grid sizes, and computer time requirements are discussed in reference to the piston-cylinder problem analyzed.

  13. Exshall: A Turkel-Zwas explicit large time-step FORTRAN program for solving the shallow-water equations in spherical coordinates

    NASA Astrophysics Data System (ADS)

    Navon, I. M.; Yu, Jian

    A FORTRAN computer program is presented and documented applying the Turkel-Zwas explicit large time-step scheme to a hemispheric barotropic model with constraint restoration of integral invariants of the shallow-water equations. We then proceed to detail the algorithms embodied in the code EXSHALL in this paper, particularly algorithms related to the efficiency and stability of T-Z scheme and the quadratic constraint restoration method which is based on a variational approach. In particular we provide details about the high-latitude filtering, Shapiro filtering, and Robert filtering algorithms used in the code. We explain in detail the various subroutines in the EXSHALL code with emphasis on algorithms implemented in the code and present the flowcharts of some major subroutines. Finally, we provide a visual example illustrating a 4-day run using real initial data, along with a sample printout and graphic isoline contours of the height field and velocity fields.

  14. Alternative Attitude Commanding and Control for Precise Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2004-01-01

    A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.

  15. Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence

    NASA Astrophysics Data System (ADS)

    Belli, Emily Ann

    Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the enhancement of zonal flows with shaping, which is observed with the GS2 simulations. Finally, a local linear trial function-based gyrokinetic code is developed to aid in fast scoping studies of gyrokinetic linear stability. This code is successfully benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well as in the more general electromagnetic description with higher-order Hermite basis functions.

  16. Understanding how biodiversity unfolds through time under neutral theory.

    PubMed

    Missa, Olivier; Dytham, Calvin; Morlon, Hélène

    2016-04-05

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. © 2016 The Author(s).

  17. Understanding how biodiversity unfolds through time under neutral theory

    PubMed Central

    2016-01-01

    Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time. PMID:26977066

  18. The balance between keystone clustering and bed roughness in experimental step-pool stabilization

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.

    2016-12-01

    Predicting how mountain channels will respond to environmental perturbations such as floods requires an improved quantitative understanding of morphodynamic feedbacks among bed topography, surface grain size and sediment sorting. In boulder-rich gravel streams, transport and sorting often lead to the development of step pool morphologies, which are expressed both in bed topography and coarse grain clustering. Bed stability is difficult to measure, and is sometimes inferred from the presence of step pools. I use scaled flume experiments to explore feedbacks among surface grain sizes, coarse grain clustering, bed roughness and hydraulic roughness during progressive bed stabilization and over a range of sediment transport rates. While grain clusters are sometimes identified by subjective interpretation, I quantify the degree of coarse surface grain clustering using spatial statistics, including a novel normalization of Ripley's K function. This approach is objective and provides information on the strength of clustering over a range of length scales. Flume experiments start with an initial bed surface with a broad grain size distribution and spatially random positions. Flow causes the bed surface to progressively stabilize in response to erosion, surface coarsening, roughening and grain reorganization. At 95% confidence, many but not all beds stabilized with coarse grains becoming more clustered than complete spatial randomness (CSR). I observe a tradeoff between topographic roughness and clustering. Beds that stabilized with higher degrees of coarse-grain clustering were topographically smoother, and vice-versa. Initial conditions influenced the degree of clustering at stability: Beds that happened to have fewer initial coarse grains had more coarse grain reorganization during stabilization, leading to more clustering. Finally, regressions demonstrate that clustering statistics actually predict hydraulic roughness significantly better than does D84 (the size at which 84% of grains are smaller). In the experimental data, the spatial organization of surface grains is a stronger control on flow characteristics than the size of surface grains.

  19. Stabilization of an α/β-hydrolase by introducing proline residues: salicylic binding protein 2 from tobacco

    PubMed Central

    Huang, Jun; Jones, Bryan J.; Kazlauskas, Romas J.

    2015-01-01

    α/β-Hydrolases are important enzymes for biocatalysis, but their stability often limits their application. As a model α/β-hydrolase, we investigated a plant esterase, salicylic acid binding protein 2 (SABP2). SABP2 shows typical stability to urea (unfolding free energy 6.9±1.5 kcal/mol) and to heat inactivation (T1/215 min 49.2±0.5 °C). Denaturation in urea occurs in two steps, but heat inactivation occurs in a single step. The first unfolding step in urea eliminates catalytic activity. Surprisingly, we found that the first unfolding likely corresponds to the unfolding of the larger catalytic domain. Replacing selected amino acid residues with proline stabilized SABP2. Proline restricts the flexibility of the unfolded protein, thereby shifting the equilibrium toward the folded conformation. Seven locations for proline substitution were chosen either by amino acid sequence alignment with a more stable homolog or by targeting flexible regions in SABP2. Introducing proline in the catalytic domain stabilized SABP2 to the first unfolding in urea for three of five cases: L46P (+0.2 M urea), S70P (+0.1) and E215P (+0.9). Introducing proline in the cap domain did not (two of two cases), supporting the assignment that the first unfolding corresponds to the catalytic domain. Proline substitutions in both domains stabilized SABP2 to heat inactivation: L46P (ΔT1/215 min = +6.4 °C), S70P (+5.4), S115P (+1.8), S141P (+4.9), and E215P (+4.2). Combining substitutions did not further increase the stability to urea denaturation, but dramatically increased resistance to heat inactivation: L46P-S70P ΔT1/215 min = +25.7 °C. This straightforward proline substitution approach may also stabilize other α/β-hydrolases. PMID:26110207

  20. How Load-Carrying Ants Avoid Falling Over: Mechanical Stability during Foraging in Atta vollenweideri Grass-Cutting Ants

    PubMed Central

    Moll, Karin; Roces, Flavio; Federle, Walter

    2013-01-01

    Background Foraging workers of grass-cutting ants (Atta vollenweideri) regularly carry grass fragments larger than their own body. Fragment length has been shown to influence the ants’ running speed and thereby the colony’s food intake rate. We investigated whether and how grass-cutting ants maintain stability when carrying fragments of two different lengths but identical mass. Principal Findings Ants carried all fragments in an upright, backwards-tilted position, but held long fragments more vertically than short ones. All carrying ants used an alternating tripod gait, where mechanical stability was increased by overlapping stance phases of consecutive steps. The overlap was greatest for ants carrying long fragments, resulting in more legs contacting the ground simultaneously. For all ants, the projection of the total centre of mass (ant and fragment) was often outside the supporting tripod, i.e. the three feet that would be in stance for a non-overlapping tripod gait. Stability was only achieved through additional legs in ground contact. Tripod stability (quantified as the minimum distance of the centre of mass to the edge of the supporting tripod) was significantly smaller for ants with long fragments. Here, tripod stability was lowest at the beginning of each step, when the center of mass was near the posterior margin of the supporting tripod. By contrast, tripod stability was lowest at the end of each step for ants carrying short fragments. Consistently, ants with long fragments mainly fell backwards, whereas ants carrying short fragments mainly fell forwards or to the side. Assuming that transporting ants adjust neither the fragment angle nor the gait, they would be less stable and more likely to fall over. Conclusions In grass-cutting ants, the need to maintain static stability when carrying long grass fragments has led to multiple kinematic adjustments at the expense of a reduced material transport rate. PMID:23300994

  1. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Lee, Woochan

    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution is a new method for making an explicit time-domain finite-element method (TDFEM) unconditionally stable for general electromagnetic analysis. In this method, for a given time step, we find the unstable modes that are the root cause of instability, and deduct them directly from the system matrix resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation is made stable for an arbitrarily large time step irrespective of the space step. The third contribution is a new method for full-wave applications from low to very high frequencies in a TDFEM based on matrix exponential. In this method, we directly deduct the eigenmodes having large eigenvalues from the system matrix, thus achieving a significantly increased time step in the matrix exponential based TDFEM. The fourth contribution is a new method for transforming the indefinite system matrix of a frequency-domain FEM to a symmetric positive definite one. We deduct non-positive definite component directly from the system matrix resulting from a frequency-domain FEM-based analysis. The resulting new representation of the finite-element operator ensures an iterative solution to converge in a small number of iterations. We then add back the non-positive definite component to synthesize the original solution with negligible cost.

  2. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  3. Lipid peroxidation and decomposition-Conflicting roles in plaque vulnerability and stability

    PubMed Central

    Parthasarathy, Sampath; Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi

    2008-01-01

    The low density lipoprotein (LDL) oxidation hypothesis has generated considerable interest in oxidative stress and how it might affect atherosclerosis. However, the failure of antioxidants, particularly vitamin E, to affect the progression of the disease in humans has convinced even staunch supporters of the hypothesis to take a step backwards and reconsider alternatives. Preponderant evidence for the hypothesis came from animal antioxidant intervention studies. In this review we point out basic differences between animal and human atherosclerosis development and suggest that human disease starts where animal studies end. While initial oxidative steps in the generation of early fatty streak lesions might be common, the differences might be in the steps involved in the decomposition of peroxidized lipids into aldehydes and their further oxidation into carboxylic acids. We suggest that these steps may not be amenable to attenuation by antioxidants and antioxidants might actually counter the stabilization of plaque by preventing the formation of carboxylic acids which are anti-inflammatory in nature. The formation of such dicarboxylic acids may also be conducive to plaque stabilization by trapping calcium. We suggest that agents that would prevent the decomposition of lipid peroxides and promote the formation and removal of lipid hydroxides, such as paraoxonase (PON 1) or apo A1/high density lipoprotein (HDL) might be more conducive to plaque regression. PMID:18406361

  4. Simulation methods with extended stability for stiff biochemical Kinetics.

    PubMed

    Rué, Pau; Villà-Freixa, Jordi; Burrage, Kevin

    2010-08-11

    With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, tau, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where tau can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called tau-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as tau grows. In this paper we extend Poisson tau-leap methods to a general class of Runge-Kutta (RK) tau-leap methods. We show that with the proper selection of the coefficients, the variance of the extended tau-leap can be well-behaved, leading to significantly larger step sizes. The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original tau-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.

  5. Microstructural stability of fine-grained fully lamellar XD TiAl alloys by step aging

    NASA Astrophysics Data System (ADS)

    Zhu, Hanliang; Maruyama, K.; Seo, D. Y.; Au, P.

    2005-05-01

    XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8 vol pct TiB2) (at. pct) were oil quenched to produce fine-grained fully lamellar (FGFL) structures, and aging treatments at different temperatures for different durations were carried out to stabilize the FGFL structures. Microstructural examinations show that the aging treatments cause phase transformation of α 2 to γ, resulting in stabilization of the lamellar structure, as indicated by a significant decrease in α 2 volume fraction. However, several degradation processes are also introduced. After aging, within lamellar colonies, the α 2 lamellae become finer due to dissolution, whereas most of the γ lamellae coarsen. The dissolution of α 2 involves longitudinal dissolution and lateral dissolution. In addition, at lamellar colony boundaries, lamellar termination migration, nucleation and growth of γ grains, and discontinuous coarsening occur. With the exception of longitudinal dissolution, all the other transformation modes are considered as degradation processes as they result in a reduction in α 2/ γ interfaces. Different phase transformation modes are present to varying degrees in the aged FGFL structures, depending on aging conditions and Al content. A multiple step aging reduces the drive force for phase transformation at high temperature by promoting phase transformation via longitudinal dissolution at low temperatures. As a result, this aging procedure effectively stabilizes the lamellar structure and suppresses other degradation processes. Therefore, the multiple step aging is suggested to be an optimal aging condition for stabilizing FGFL XD TiAl alloys.

  6. Effect of Magnesium Content and Processing Conditions on Phase Formation and Stability in Mg2+ δ Si0.3Sn0.7

    NASA Astrophysics Data System (ADS)

    Goyal, Gagan K.; Dasgupta, T.

    2018-03-01

    Mg2+ δ Si0.3Sn0.7 compositions with nominal Mg content of δ = 0, 0.2 are synthesized using a single-step quartz tube reaction method with different heating rates and holding times. The resulting powders are sintered using a uniaxial induction hot press under similar conditions to produce near-dense compacts. The effect of Mg content and processing conditions on the phase formation and its stability are studied using x-ray diffraction measurements, scanning electron microscopy (SEM) with elemental mapping and compositional analysis using energy dispersive spectroscopy (EDS). Results indicate that with sufficient Mg content and shorter synthesis time, the powder remains single phasic; however, prolonged heat treatment during synthesis results in Mg loss and causes the system to become biphasic. Compaction results in single-phase formation in all the specimens. This is attributed to the removal of the low-melting secondary Sn-rich phases present in the system. The decomposition of the specimens depends on the Mg content after the compaction step with a δ around - 0.15 necessary to preserve the single phase. The decomposition also results in Mg enrichment of the matrix (due to formation of elemental Sn), thereby acting as a self-healing mechanism. Annealing the dense products at 773 K for 24 h in static vacuum is carried out. Progressive Mg loss is observed resulting in degradation of the specimen.

  7. High temperature homogenization improves impact toughness of vitamin E-diffused, irradiated UHMWPE.

    PubMed

    Oral, Ebru; O'Brien, Caitlin; Doshi, Brinda; Muratoglu, Orhun K

    2017-06-01

    Diffusion of vitamin E into radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is used to increase stability against oxidation of total joint implant components. The dispersion of vitamin E throughout implant preforms has been optimized by a two-step process of doping and homogenization. Both of these steps are performed below the peak melting point of the cross-linked polymer (<140°C) to avoid loss of crystallinity and strength. Recently, it was discovered that the exposure of UHMWPE to elevated temperatures, around 300°C, for a limited amount of time in nitrogen, could improve the toughness without sacrificing wear resistance. We hypothesized that high temperature homogenization of antioxidant-doped, radiation cross-linked UHMWPE could improve its toughness. We found that homogenization at 300°C for 8 h resulted in an increase in the impact toughness (74 kJ/m 2 compared to 67 kJ/m 2 ), the ultimate tensile strength (50 MPa compared to 43 MPa) and elongation at break (271% compared to 236%). The high temperature treatment did not compromise the wear resistance or the oxidative stability as measured by oxidation induction time. In addition, the desired homogeneity was achieved at a much shorter duration (8 h compared to >240 h) by using high temperature homogenization. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1343-1347, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Stability and stabilization of the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Brownlee, R. A.; Gorban, A. N.; Levesley, J.

    2007-03-01

    We revisit the classical stability versus accuracy dilemma for the lattice Boltzmann methods (LBM). Our goal is a stable method of second-order accuracy for fluid dynamics based on the lattice Bhatnager-Gross-Krook method (LBGK). The LBGK scheme can be recognized as a discrete dynamical system generated by free flight and entropic involution. In this framework the stability and accuracy analysis are more natural. We find the necessary and sufficient conditions for second-order accurate fluid dynamics modeling. In particular, it is proven that in order to guarantee second-order accuracy the distribution should belong to a distinguished surface—the invariant film (up to second order in the time step). This surface is the trajectory of the (quasi)equilibrium distribution surface under free flight. The main instability mechanisms are identified. The simplest recipes for stabilization add no artificial dissipation (up to second order) and provide second-order accuracy of the method. Two other prescriptions add some artificial dissipation locally and prevent the system from loss of positivity and local blowup. Demonstration of the proposed stable LBGK schemes are provided by the numerical simulation of a one-dimensional (1D) shock tube and the unsteady 2D flow around a square cylinder up to Reynolds number Rẽ20000 .

  9. The Research on Borehole Stability in Depleted Reservoir and Caprock: Using the Geophysics Logging Data

    PubMed Central

    Deng, Jingen; Luo, Yong; Guo, Shisheng; Zhang, Haishan; Tan, Qiang; Zhao, Kai; Hu, Lianbo

    2013-01-01

    Long-term oil and gas exploitation in reservoir will lead to pore pressure depletion. The pore pressure depletion will result in changes of horizontal in-situ stresses both in reservoirs and caprock formations. Using the geophysics logging data, the magnitude and orientation changes of horizontal stresses in caprock and reservoir are studied. Furthermore, the borehole stability can be affected by in-situ stresses changes. To address this issue, the dehydration from caprock to reservoir and roof effect of caprock are performed. Based on that, the influence scope and magnitude of horizontal stresses reduction in caprock above the depleted reservoirs are estimated. The effects of development on borehole stability in both reservoir and caprock are studied step by step with the above geomechanical model. PMID:24228021

  10. Measuring Stability and Security in Iraq: Report to Congress in Accordance with the Department of Defense Appropriations Act 2007 (Section 9010, Public Law 109-289)

    DTIC Science & Technology

    2006-11-01

    initiatives. Political Stability Iraq’s Council of Representatives has passed key legislation to initiate the constitutional review process, to...facilitate foreign invest- ment, and to outline a process for region formation. Most important for long-term political stability is the success of...November 30, 2006 5 1. Stability and Security in Iraq 1.1 Political Stability 1.1.1 Steps to a Free and Self-Governing Iraq As detailed in the August

  11. GPS/INS Sensor Fusion Using GPS Wind up Model

    NASA Technical Reports Server (NTRS)

    Williamson, Walton R. (Inventor)

    2013-01-01

    A method of stabilizing an inertial navigation system (INS), includes the steps of: receiving data from an inertial navigation system; and receiving a finite number of carrier phase observables using at least one GPS receiver from a plurality of GPS satellites; calculating a phase wind up correction; correcting at least one of the finite number of carrier phase observables using the phase wind up correction; and calculating a corrected IMU attitude or velocity or position using the corrected at least one of the finite number of carrier phase observables; and performing a step selected from the steps consisting of recording, reporting, or providing the corrected IMU attitude or velocity or position to another process that uses the corrected IMU attitude or velocity or position. A GPS stabilized inertial navigation system apparatus is also described.

  12. Stability diagrams for the surface patterns of GaN(0001bar) as a function of Schwoebel barrier height

    NASA Astrophysics Data System (ADS)

    Krzyżewski, Filip; Załuska-Kotur, Magdalena A.

    2017-01-01

    Height and type of Schwoebel barriers (direct or inverse) decides about the character of the surface instability. Different surface morphologies are presented. Step bunches, double steps, meanders, mounds and irregular patterns emerge at the surface as a result of step (Schwoebel) barriers at some temperature or miscut values. The study was carried out on the two-component kinetic Monte Carlo (kMC) model of GaN(0001bar) surface grown in nitrogen rich conditions. Diffusion of gallium adatoms over N-polar surface is slow and nitrogen adatoms are almost immobile. We show that in such conditions surfaces remain smooth when gallium adatoms diffuse in the presence of low inverse Schwoebel barrier. It is illustrated by adequate stability diagrams for surface morphologies.

  13. Predicting Dynamic Postural Instability Using Center of Mass Time-to-Contact Information

    PubMed Central

    Hasson, Christopher J.; Van Emmerik, Richard E.A.; Caldwell, Graham E.

    2008-01-01

    Our purpose was to determine whether spatiotemporal measures of center of mass motion relative to the base of support boundary could predict stepping strategies after upper-body postural perturbations in humans. We expected that inclusion of center of mass acceleration in such time-to-contact (TtC) calculations would give better predictions and more advanced warning of perturbation severity. TtC measures were compared with traditional postural variables, which don’t consider support boundaries, and with an inverted pendulum model of dynamic stability developed by Hof et al. (2005). A pendulum was used to deliver sequentially increasing perturbations to 10 young adults, who were strapped to a wooden backboard that constrained motion to sagittal plane rotation about the ankle joint. Subjects were instructed to resist the perturbations, stepping only if necessary to prevent a fall. Peak center of mass and center of pressure velocity and acceleration demonstrated linear increases with postural challenge. In contrast, boundary relevant minimum TtC values decreased nonlinearly with postural challenge, enabling prediction of stepping responses using quadratic equations. When TtC calculations incorporated center of mass acceleration, the quadratic fits were better and gave more accurate predictions of the TtC values that would trigger stepping responses. In addition, TtC minima occurred earlier with acceleration inclusion, giving more advanced warning of perturbation severity. Our results were in agreement with TtC predictions based on Hof’s model, and suggest that TtC may function as a control parameter, influencing the postural control system’s decision to transition from a stationary base of support to a stepping strategy. PMID:18556003

  14. Mixing times towards demographic equilibrium in insect populations with temperature variable age structures.

    PubMed

    Damos, Petros

    2015-08-01

    In this study, we use entropy related mixing rate modules to measure the effects of temperature on insect population stability and demographic breakdown. The uncertainty in the age of the mother of a randomly chosen newborn, and how it is moved after a finite act of time steps, is modeled using a stochastic transformation of the Leslie matrix. Age classes are represented as a cycle graph and its transitions towards the stable age distribution are brought forth as an exact Markov chain. The dynamics of divergence, from a non equilibrium state towards equilibrium, are evaluated using the Kolmogorov-Sinai entropy. Moreover, Kullback-Leibler distance is applied as information-theoretic measure to estimate exact mixing times of age transitions probabilities towards equilibrium. Using empirically data, we show that on the initial conditions and simulated projection's trough time, that population entropy can effectively be applied to detect demographic variability towards equilibrium under different temperature conditions. Changes in entropy are correlated with the fluctuations of the insect population decay rates (i.e. demographic stability towards equilibrium). Moreover, shorter mixing times are directly linked to lower entropy rates and vice versa. This may be linked to the properties of the insect model system, which in contrast to warm blooded animals has the ability to greatly change its metabolic and demographic rates. Moreover, population entropy and the related distance measures that are applied, provide a means to measure these rates. The current results and model projections provide clear biological evidence why dynamic population entropy may be useful to measure population stability. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Linear dimensional stability of elastomeric impression materials over time.

    PubMed

    Garrofé, Analía B; Ferrari, Beatriz A; Picca, Mariana; Kaplan, Andrea E

    2011-01-01

    The purpose of this study was to evaluate the linear dimensional stability of different elastomeric impression materials over time. A metal mold was designed with its custom trays, which were made of thermoplastic sheets (Sabilex sheets 0.125 mm thick). Three impressions were taken of it with each of the following: the polyvinylsiloxane Examix-GC-(AdEx), Aquasil-Dentsply-(AdAq) and Panasil-Kettenbach-(AdPa), and the polydimethylsiloxane Densell-Dental Medrano-(CoDe), Speedex-Coltene-(CoSp) and Lastic-Kettenbach-(CoLa). All impressions were taken with putty and light-body materials using a one-step technique. Standardized digital photographs were taken at different time intervals (0, 15, 30, 60, 120 minutes; 24 hours; 7 and 14 days), using an "ad-hoc" device, and analyzed using software (Image Tool) by measuring the distance between lines previously made at the top of the mold. The results were analyzed by ANOVA for repeated measures. The initial and final values for mean and SD were: AdEx: 1.32 (0.01) and 1.31 (0.00); AdAq: 1.32 (0.00) and 1.32 (0.00), AdPa: 1.327 (0.006) and 1.31 (0.00); CoDe: 1.32 (0.00) and 1.32 (0.01); CoSp: 1.327 (0.006) and 1.31 (0.00), CoLa: 1.327 (0.006) and 1.303 (0.006). Statistical evaluation showed that both material and time have significant effects. Under the conditions in this study we conclude that time would significantly affect the lineal dimensional stability of elastomeric impression materials.

  16. Big Data-Based Approach to Detect, Locate, and Enhance the Stability of an Unplanned Microgrid Islanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Li, Yan; Zhang, Yingchen

    In this paper, a big data-based approach is proposed for the security improvement of an unplanned microgrid islanding (UMI). The proposed approach contains two major steps: the first step is big data analysis of wide-area monitoring to detect a UMI and locate it; the second step is particle swarm optimization (PSO)-based stability enhancement for the UMI. First, an optimal synchrophasor measurement device selection (OSMDS) and matching pursuit decomposition (MPD)-based spatial-temporal analysis approach is proposed to significantly reduce the volume of data while keeping appropriate information from the synchrophasor measurements. Second, a random forest-based ensemble learning approach is trained to detectmore » the UMI. When combined with grid topology, the UMI can be located. Then the stability problem of the UMI is formulated as an optimization problem and the PSO is used to find the optimal operational parameters of the UMI. An eigenvalue-based multiobjective function is proposed, which aims to improve the damping and dynamic characteristics of the UMI. Finally, the simulation results demonstrate the effectiveness and robustness of the proposed approach.« less

  17. Effect of Pd surface structure on the activation of methyl acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lijun; Xu, Ye

    2011-01-01

    The activation of methyl acetate (CH3COOCH3; MA) has been studied using periodic density functional theory calculations to probe the effect of Pd surface structure on the selectivity in MA activation. The adsorption of MA, dehydrogenated derivatives, enolate (CH2COOCH3; ENL) and methylene acetate (CH3COOCH2; MeA), and several dissociation products (including acetate, acetyl, ketene, methoxy, formaldehyde, CO, C, O, and H); and C-H and C-O (mainly in the RCO-OR position) bond dissociation in MA, ENL, and MeA, are calculated on Pd(111) terrace, step, and kink; and on Pd(100) terrace and step. The adsorption of most species is not strongly affected between (111)-more » to (100)-type surfaces, but is clearly enhanced by step/kink compared to the corresponding terrace. Going from terrace to step edge and from (111)- to (100)-type surfaces both stabilize the transition states of C-O bond dissociation steps. Going from terrace to step edge also stabilizes the transition states of C-H bond dissociation steps, but going from (111)- to (100)-type surfaces does not clearly do so. We propose that compared to the Pd(111) terrace, the Pd(100) terrace is more selective for C-O bond dissociation that is desirable for alcohol formation, whereas the Pd step edges are more selective for C-H bond dissociation.« less

  18. High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields

    NASA Astrophysics Data System (ADS)

    He, Yang; Sun, Yajuan; Zhang, Ruili; Wang, Yulei; Liu, Jian; Qin, Hong

    2016-09-01

    We construct high order symmetric volume-preserving methods for the relativistic dynamics of a charged particle by the splitting technique with processing. By expanding the phase space to include the time t, we give a more general construction of volume-preserving methods that can be applied to systems with time-dependent electromagnetic fields. The newly derived methods provide numerical solutions with good accuracy and conservative properties over long time of simulation. Furthermore, because of the use of an accuracy-enhancing processing technique, the explicit methods obtain high-order accuracy and are more efficient than the methods derived from standard compositions. The results are verified by the numerical experiments. Linear stability analysis of the methods shows that the high order processed method allows larger time step size in numerical integrations.

  19. Multi-time Scale Coordination of Distributed Energy Resources in Isolated Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhorn, Ebony; Xie, Le; Butler-Purry, Karen

    2016-03-31

    In isolated power systems, including microgrids, distributed assets, such as renewable energy resources (e.g. wind, solar) and energy storage, can be actively coordinated to reduce dependency on fossil fuel generation. The key challenge of such coordination arises from significant uncertainty and variability occurring at small time scales associated with increased penetration of renewables. Specifically, the problem is with ensuring economic and efficient utilization of DERs, while also meeting operational objectives such as adequate frequency performance. One possible solution is to reduce the time step at which tertiary controls are implemented and to ensure feedback and look-ahead capability are incorporated tomore » handle variability and uncertainty. However, reducing the time step of tertiary controls necessitates investigating time-scale coupling with primary controls so as not to exacerbate system stability issues. In this paper, an optimal coordination (OC) strategy, which considers multiple time-scales, is proposed for isolated microgrid systems with a mix of DERs. This coordination strategy is based on an online moving horizon optimization approach. The effectiveness of the strategy was evaluated in terms of economics, technical performance, and computation time by varying key parameters that significantly impact performance. The illustrative example with realistic scenarios on a simulated isolated microgrid test system suggests that the proposed approach is generalizable towards designing multi-time scale optimal coordination strategies for isolated power systems.« less

  20. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  1. Realizable optimal control for a remotely piloted research vehicle. [stability augmentation

    NASA Technical Reports Server (NTRS)

    Dunn, H. J.

    1980-01-01

    The design of a control system using the linear-quadratic regulator (LQR) control law theory for time invariant systems in conjunction with an incremental gradient procedure is presented. The incremental gradient technique reduces the full-state feedback controller design, generated by the LQR algorithm, to a realizable design. With a realizable controller, the feedback gains are based only on the available system outputs instead of being based on the full-state outputs. The design is for a remotely piloted research vehicle (RPRV) stability augmentation system. The design includes methods for accounting for noisy measurements, discrete controls with zero-order-hold outputs, and computational delay errors. Results from simulation studies of the response of the RPRV to a step in the elevator and frequency analysis techniques are included to illustrate these abnormalities and their influence on the controller design.

  2. Real-time observation of formation and relaxation dynamics of NH4 in (CH3OH)m(NH3)n clusters.

    PubMed

    Yamada, Yuji; Nishino, Yoko; Fujihara, Akimasa; Ishikawa, Haruki; Fuke, Kiyokazu

    2009-03-26

    The formation and relaxation dynamics of NH4(CH3OH)m(NH3)n clusters produced by photolysis of ammonia-methanol mixed clusters has been observed by a time-resolved pump-probe method with femtosecond pulse lasers. From the detailed analysis of the time evolutions of the protonated cluster ions, NH4(+)(CH3OH)m(NH3)n, the kinetic model has been constructed, which consists of sequential three-step reaction: ultrafast hydrogen-atom transfer producing the radical pair (NH4-NH2)*, the relaxation process of radical-pair clusters, and dissociation of the solvated NH4 clusters. The initial hydrogen transfer hardly occurs between ammonia and methanol, implying the unfavorable formation of radical pair, (CH3OH2-NH2)*. The remarkable dependence of the time constants in each step on the number and composition of solvents has been explained by the following factors: hydrogen delocalization within the clusters, the internal conversion of the excited-state radical pair, and the stabilization of NH4 by solvation. The dependence of the time profiles on the probe wavelength is attributed to the different ionization efficiency of the NH4(CH3OH)m(NH3)n clusters.

  3. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.

    PubMed

    Zhang, Wenjing; He, Muyi; Yuan, Tao; Xu, Wei

    2017-12-01

    The measurement of electroosmotic flow (EOF) is important in a capillary electrophoresis (CE) experiment in terms of performance optimization and stability improvement. Although several methods exist, there are demanding needs to accurately characterize ultra-low electroosmotic flow rates (EOF rates), such as in coated capillaries used in protein separations. In this work, a new method, called the two-step method, was developed to accurately and rapidly measure EOF rates in a capillary, especially for measuring the ultra-low EOF rates in coated capillaries. In this two-step method, the EOF rates were calculated by measuring the migration time difference of a neutral marker in two consecutive experiments, in which a pressure driven was introduced to accelerate the migration and the DC voltage was reversed to switch the EOF direction. Uncoated capillaries were first characterized by both this two-step method and a conventional method to confirm the validity of this new method. Then this new method was applied in the study of coated capillaries. Results show that this new method is not only fast in speed, but also better in accuracy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. One-step polypyrrole coating of self-assembled silver nanoprisms for enhanced stability and Raman scattering

    NASA Astrophysics Data System (ADS)

    Jeong, Dong-Won; Jeong, Sugyeong; Jang, Du-Jeon

    2017-07-01

    Self-assemblies of silver nanoprisms (AgPRs) having enhanced structural stability and optical properties have been facilely coated with polypyrrole (PPy) via the in situ polymerization of pyrrole monomers that also act as an assembling agent. The assemblies of AgPRs, whose edge lengths and thicknesses are typically 78 and 4 nm, respectively, have been surrounded by a PPy coating of 6 nm. AgPRs are assembled in a side-to-side orientation, and the degree of assembly has been controlled by varying the concentration of trisodium citrate dihydrate, which attaches selectively to the {111} facets of AgPRs. The morphology deformation time of PPy-coated AgPRs in 0.6 mM H2O2(aq) is seven times longer than that of PPy-free AgPRs, suggesting that PPy coating prevents the sharp tips of AgPRs from being truncated by oxidizing agents. The SERS effect of highly self-assembled and PPy-coated AgPRs becomes as high as 6.3 due to numerous hot spots generated between nanoprisms. Overall, our fabricated AgPRs assemblies with PPy coating have not only improved structural stability but also enhanced optical properties, extending the practical use of noble-metal nanoprisms for various optical applications.

  5. Algorithm for Stabilizing a POD-Based Dynamical System

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia L.

    2010-01-01

    This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.

  6. A facile one-step synthesis of Mn{sub 3}O{sub 4} nanoparticles-decorated TiO{sub 2} nanotube arrays as high performance electrode for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianfang; Wang, Yan; Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009

    Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated bymore » the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4}/TNAs electrode shows an excellent cycling stability of 91.8% after 2000 cycles.« less

  7. Preferential incorporation of substitutional nitrogen near the atomic step edges in diluted nitride alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornet, C.; Nguyen Thanh, T.; Almosni, S.

    We have investigated the influence of the surface roughness on nitrogen incorporation during the molecular beam epitaxy of diluted nitrides, independently of the other growth parameters. GaPN/GaP layers grown simultaneously on surfaces displaying different roughnesses reveal a large difference in nitrogen incorporation despite the same growth temperature and growth rate. The same difference is found on quasi-lattice-matched GaAsPN demonstrating that the phenomenon is not related to any strain-induced mechanisms. The tendency is clearly confirmed when varying the growth conditions. As a direct consequence, the incorporation of substitutional nitrogen near the atomic step edges is found to be 6.7 times moremore » probable than the in-plane nitrogen incorporation. The formation of N-N{sub i} clusters and their stability on the surface is discussed.« less

  8. Numerical Modeling of Turbulent Combustion

    NASA Technical Reports Server (NTRS)

    Ghoneim, A. F.; Chorin, A. J.; Oppenheim, A. K.

    1983-01-01

    The work in numerical modeling is focused on the use of the random vortex method to treat turbulent flow fields associated with combustion while flame fronts are considered as interfaces between reactants and products, propagating with the flow and at the same time advancing in the direction normal to themselves at a prescribed burning speed. The latter is associated with the generation of specific volume (the flame front acting, in effect, as the locus of volumetric sources) to account for the expansion of the flow field due to the exothermicity of the combustion process. The model was applied to the flow in a channel equipped with a rearward facing step. The results obtained revealed the mechanism of the formation of large scale turbulent structure in the wake of the step, while it showed the flame to stabilize on the outer edges of these eddies.

  9. CFD analysis of a scramjet combustor with cavity based flame holders

    NASA Astrophysics Data System (ADS)

    Kummitha, Obula Reddy; Pandey, Krishna Murari; Gupta, Rajat

    2018-03-01

    Numerical analysis of a scramjet combustor with different cavity flame holders has been carried out using ANSYS 16 - FLUENT tool. In this research article the internal fluid flow behaviour of the scramjet combustor with different cavity based flame holders have been discussed in detail. Two dimensional Reynolds-Averaged Navier-Stokes governing(RANS) equations and shear stress turbulence (SST) k - ω model along with finite rate/eddy dissipation chemistry turbulence have been considered for modelling chemical reacting flows. Due to the advantage of less computational time, global one step reaction mechanism has been used for combustion modelling of hydrogen and air. The performance of the scramjet combustor with two different cavities namely spherical and step cavity has been compared with the standard DLR scramjet. From the comparison of numerical results, it is found that the development of recirculation regions and additional shock waves from the edge of cavity flame holder is increased. And also it is observed that with the cavity flame holder the residence time of air in the scramjet combustor is also increased and achieved stabilized combustion. From this research analysis, it has been found that the mixing and combustion efficiency of scramjet combustor with step cavity design is optimum as compared to other models.

  10. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  11. Non-Immunogenic Structurally and Biologically Intact Tissue Matrix Grafts for the Immediate Repair of Ballistic-Induced Vascular and Nerve Tissue Injury in Combat

    DTIC Science & Technology

    2004-12-01

    and -2. However, there was no product breakage. The product stabilizers breakage can be addressed by either using stronger Styrofoam or using the same...dry ice shipper is suitable for use as a 72hrs shipping container for the frozen UVG and that, if necessary, the shipping time can be extended to at...concentrations for two hours at room temperature under constant agitation (85 rpm). The step-wise equilibration was measured using a refractometer

  12. Self-perceived gait stability modulates the effect of daily life gait quality on prospective falls in older adults.

    PubMed

    Weijer, R H A; Hoozemans, M J M; van Dieën, J H; Pijnappels, M

    2018-05-01

    Quality of gait during daily life activities and perceived gait stability are both independent risk factors for future falls in older adults. We investigated whether perceived gait stability modulates the association between gait quality and falling in older adults. In this prospective cohort study, we used one-week daily-life trunk acceleration data of 272 adults over 65 years of age. Sample entropy (SE) of the 3D acceleration signals was calculated to quantify daily life gait quality. To quantify perceived gait stability, the level of concern about falling was assessed using the Falls Efficacy Scale international (FES-I) questionnaire and step length, estimated from the accelerometer data. A fall calendar was used to record fall incidence during a six-month follow up period. Logistic regression analyses were performed to study the association between falling and SE, step length or FES-I score, and their interactions. High (i.e., poor) SE in vertical direction was significantly associated with falling. FES-I scores significantly modulated this association, whereas step length did not. Subgroup analyses based on FES-I scores showed that high SE in the vertical direction was a risk factor for falls only in older adults who had a high (i.e. poor) FES-I score. In conclusion, perceived gait stability modulates the association between gait quality and falls in older adults such that an association between gait quality and falling is only present when perceived gait stability is poor. The results of the present study indicate that the effectiveness of interventions for fall prevention, aimed at improving gait quality, may be affected by a modulating effect of perceived gait stability. Results indicate that interventions to reduce falls in older adults might sort most effectiveness in populations with both a poor physiological and psychological status. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. New image-stabilizing system

    NASA Astrophysics Data System (ADS)

    Zhao, Yuejin

    1996-06-01

    In this paper, a new method for image stabilization with a three-axis image- stabilizing reflecting prism assembly is presented, and the principle of image stabilization in this prism assembly, formulae for image stabilization and working formulae with an approximation up to the third power are given in detail. In this image-stabilizing system, a single chip microcomputer is used to calculate value of compensating angles and thus to control the prism assembly. Two gyroscopes act as sensors from which information of angular perturbation is obtained, three stepping motors drive the prism assembly to compensate for the movement of image produced by angular perturbation. The image-stabilizing device so established is a multifold system which involves optics, mechanics, electronics and computer.

  14. Protein thermal stabilization in aqueous solutions of osmolytes.

    PubMed

    Bruździak, Piotr; Panuszko, Aneta; Jourdan, Muriel; Stangret, Janusz

    2016-01-01

    Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N,N,N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO≈DMG>TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes.

  15. Advanced Monte Carlo methods for thermal radiation transport

    NASA Astrophysics Data System (ADS)

    Wollaber, Allan B.

    During the past 35 years, the Implicit Monte Carlo (IMC) method proposed by Fleck and Cummings has been the standard Monte Carlo approach to solving the thermal radiative transfer (TRT) equations. However, the IMC equations are known to have accuracy limitations that can produce unphysical solutions. In this thesis, we explicitly provide the IMC equations with a Monte Carlo interpretation by including particle weight as one of its arguments. We also develop and test a stability theory for the 1-D, gray IMC equations applied to a nonlinear problem. We demonstrate that the worst case occurs for 0-D problems, and we extend the results to a stability algorithm that may be used for general linearizations of the TRT equations. We derive gray, Quasidiffusion equations that may be deterministically solved in conjunction with IMC to obtain an inexpensive, accurate estimate of the temperature at the end of the time step. We then define an average temperature T* to evaluate the temperature-dependent problem data in IMC, and we demonstrate that using T* is more accurate than using the (traditional) beginning-of-time-step temperature. We also propose an accuracy enhancement to the IMC equations: the use of a time-dependent "Fleck factor". This Fleck factor can be considered an automatic tuning of the traditionally defined user parameter alpha, which generally provides more accurate solutions at an increased cost relative to traditional IMC. We also introduce a global weight window that is proportional to the forward scalar intensity calculated by the Quasidiffusion method. This weight window improves the efficiency of the IMC calculation while conserving energy. All of the proposed enhancements are tested in 1-D gray and frequency-dependent problems. These enhancements do not unconditionally eliminate the unphysical behavior that can be seen in the IMC calculations. However, for fixed spatial and temporal grids, they suppress them and clearly work to make the solution more accurate. Overall, the work presented represents first steps along several paths that can be taken to improve the Monte Carlo simulations of TRT problems.

  16. Real time simulation application to monitor the stability limit of power system

    NASA Astrophysics Data System (ADS)

    Hartono, Kuo, Ming-Tse

    2017-06-01

    If the power system falls into an unsteady state, there will be voltage collapse in which the power system will be separated into small systems. Identifying the stability reserve in conformity with a certain practical operation condition is very important for the system management and operation. In fact, the global power system issue has caused serious outages due to voltage collapse such as in the United States-Canada in August 14, 2003; South London in August 28, 2003; southern Sweden and eastern Denmark in September 23, 2003; and Italy on September 28, 2003, and in Vietnam where power system problem led to power loss on 17 May 2005, 27 December 2006, 20 July 2007, and 10 September 2007. The analysis shows that the phenomenon is related to the loss of system stability. Thus, the operational system as well as the power system designs should be studied related to the issue of the system stability. To study the static stability of the power system, different approximate standards, called pragmatic criteria, were examined. Markovits has investigated the application of the standard of dP/dd to test the stability of the power button and dq/dU to check the voltage stability of the load button [1]. However, the storage stability when calculating standard dP/d d is usually much larger than the reserves when calculating standard dq/dU [1]. This paper presents a method to build a possible operation region in the power plane of load bus which works in comply with the stability limit to evaluate the stability reserve of the power system. This method is used to build a program to monitor the stability reserve of IEEE 39 Bus Power System in real time. To monitor the stability reserve of IEEE 39 nodes power system, articles based on the standard dq/dU was used to calculate the assessment. When using standard dq/dU to check for voltage stability load button, the amount of storage stability can be calculated by the following steps: first, transformed replacement scheme Masonry on the schematic rays of the source and node load stability was examined by using Gaussian elimination algorithm [1, 2, 3], then on the basis of ray diagrams the construction work, allowed domain of spare capacity load capacity in space and storage stability for the load button were determined. The GS-ODT program was built on the basis of Gaussian elimination algorithm and stable domain construction work algorithm for Masonic load button by dQ/dU pragmatic criteria. The GS-ODT program has a simple interface and easy to use with the main function is to identify the allowed domain for the load button and thus can assess visually stable reserve still according to the load capacity of the nodes of the IEEE 39 nodes power system in real-time.

  17. Real time flight simulation methodology

    NASA Technical Reports Server (NTRS)

    Parrish, E. A.; Cook, G.; Mcvey, E. S.

    1976-01-01

    An example sensitivity study is presented to demonstrate how a digital autopilot designer could make a decision on minimum sampling rate for computer specification. It consists of comparing the simulated step response of an existing analog autopilot and its associated aircraft dynamics to the digital version operating at various sampling frequencies and specifying a sampling frequency that results in an acceptable change in relative stability. In general, the zero order hold introduces phase lag which will increase overshoot and settling time. It should be noted that this solution is for substituting a digital autopilot for a continuous autopilot. A complete redesign could result in results which more closely resemble the continuous results or which conform better to original design goals.

  18. The Discriminant Value of Phase-Dependent Local Dynamic Stability of Daily Life Walking in Older Adult Community-Dwelling Fallers and Nonfallers

    PubMed Central

    Ihlen, Espen A. F.; Weiss, Aner; Helbostad, Jorunn L.; Hausdorff, Jeffrey M.

    2015-01-01

    The present study compares phase-dependent measures of local dynamic stability of daily life walking with 35 conventional gait features in their ability to discriminate between community-dwelling older fallers and nonfallers. The study reanalyzes 3D-acceleration data of 3-day daily life activity from 39 older people who reported less than 2 falls during one year and 31 who reported two or more falls. Phase-dependent local dynamic stability was defined for initial perturbation at 0%, 20%, 40%, 60%, and 80% of the step cycle. A partial least square discriminant analysis (PLS-DA) was used to compare the discriminant abilities of phase-dependent local dynamic stability with the discriminant abilities of 35 conventional gait features. The phase-dependent local dynamic stability λ at 0% and 60% of the step cycle discriminated well between fallers and nonfallers (AUC = 0.83) and was significantly larger (p < 0.01) for the nonfallers. Furthermore, phase-dependent λ discriminated as well between fallers and nonfallers as all other gait features combined. The present result suggests that phase-dependent measures of local dynamic stability of daily life walking might be of importance for further development in early fall risk screening tools. PMID:26491669

  19. Stabilization of miscible viscous fingering by a step-growth polymerization reaction

    NASA Astrophysics Data System (ADS)

    Bunton, Patrick; Stewart, Simone; Marin, Daniela; Tullier, Michael; Meiburg, Eckart; Pojman, John

    2017-11-01

    Viscous fingering is a hydrodynamic instability that occurs when a more mobile fluid displaces a fluid of lower mobility. Viscous fingering is often undesirable in industrial processes such as secondary petroleum recovery where it limits resource recovery. Linear stability analysis by Hejazi et al. (2010) has predicted that a non-monotonic viscosity profile at an otherwise unstable interface can in some instances stabilize the flow. We use step-growth polymerization at the interface between two miscible monomers as a model system. A dithiol monomer displacing a diacrylate react to form a linear polymer that behaves as a Newtonian fluid. Viscous fingering was imaged in a horizontal Hele-Shaw cell via Schlieren, which is sensitive to polymer conversion. By varying reaction rate via initiator concentration along with flow rate, we demonstrated increasing stabilization of the flow with increasing Damkohler number (ratio of the reaction rate to the flow rate). Results were compared with regions of predicted stability from the results of Hejazi et al. (2010). When the advection outran the reaction, viscous fingering occurred as usual. However, when the reaction was able to keep pace with the advection, the increased viscosity at the interface stabilized the flow. We acknowledge support from NSF CBET-1335739 and NSF CBET 1511653.

  20. Effect of acidic pH on the stability of α-synuclein dimers.

    PubMed

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean Christophe; Blanchard, Scott C; Lyubchenko, Yuri L

    2016-10-01

    Environmental factors, such as acidic pH, facilitate the assembly of α-synuclein (α-Syn) in aggregates, but the impact of pH on the very first step of α-Syn aggregation remains elusive. Recently, we developed a single-molecule approach that enabled us to measure directly the stability of α-Syn dimers. Unlabeled α-Syn monomers were immobilized on a substrate, and fluorophore-labeled monomers were added to the solution to allow them to form dimers with immobilized α-Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single-molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α-Syn dimers. The experiments were performed at pH 5 and 7 for wild-type α-Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α-Syn dimers lifetimes with some variability between the α-Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96-140 of α-Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α-Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α-Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715-724, 2016. © 2016 Wiley Periodicals, Inc.

  1. Inkjet Deposition of Layer by Layer Assembled Films

    PubMed Central

    Andres, Christine M.; Kotov, Nicholas A.

    2010-01-01

    Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film build-up without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer was also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multi-component, and non-contact patterning for the simple production of stratified patterns that are much needed in advanced devices. PMID:20863114

  2. Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization.

    PubMed

    Forsgren, Eva; Locke, Barbara; Semberg, Emilia; Laugen, Ane T; Miranda, Joachim R de

    2017-08-01

    Viral infections in managed honey bees are numerous, and most of them are caused by viruses with an RNA genome. Since RNA degrades rapidly, appropriate sample management and RNA extraction methods are imperative to get high quality RNA for downstream assays. This study evaluated the effect of various sampling-transport scenarios (combinations of temperature, RNA stabilizers, and duration) of transport on six RNA quality parameters; yield, purity, integrity, cDNA synthesis efficiency, target detection and quantification. The use of water and extraction buffer were also compared for a primary bee tissue homogenate prior to RNA extraction. The strategy least affected by time was preservation of samples at -80°C. All other regimens turned out to be poor alternatives unless the samples were frozen or processed within 24h. Chemical stabilizers have the greatest impact on RNA quality and adding an extra homogenization step (a QIAshredder™ homogenizer) to the extraction protocol significantly improves the RNA yield and chemical purity. This study confirms that RIN values (RNA Integrity Number), should be used cautiously with bee RNA. Using water for the primary homogenate has no negative effect on RNA quality as long as this step is no longer than 15min. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Feasibility, stability and validity of the four square step test in typically developed children and children with brain damage.

    PubMed

    Leizerowitz, Gil; Katz-Leurer, Michal

    2017-01-01

    To assess feasibility, test-retest reliability and validity of the Four Square Step Test (FSST) in typically developed children (TD), and children with cerebral palsy (CP) and acquired brain injury (ABI). 30 TD children, 20 with CP and 12 with ABI participated in the study. The FSST while sitting and standing, the Timed Up and Go (TUG) and the balance subtest of the Bruininks-Oseretsky Test (BOT-2) were assessed. Each child attempted the FSST twice within 1 week. The scores for the FSST were assigned according to the original test: two successes in four trials, and according to a more lenient test, one success in four trials. The original form of the FSST is not feasible for children with CP or ABI. In TD children the lenient version is feasible (93%) and has moderate stability (Interclass correlation, ICC = 0.723), with a significant, positive correlation with the TUG (r s = 0.56). In children with CP the lenient test is feasible (80%), stable (r s = 0.83) and negatively correlates with the BOT-2 (r s =-0.69). In children with ABI the test is less feasible (67%) and neither stable nor valid. The lenient form of the FSST is feasible, reliable and valid in TD children and children with CP.

  4. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1

    NASA Astrophysics Data System (ADS)

    Bauer, Joschka; Schaal, Daniel; Eisoldt, Lukas; Schweimer, Kristian; Schwarzinger, Stephan; Scheibel, Thomas

    2016-09-01

    Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by protonation of acidic residues upon acidification along the spinning duct. Here, the structure and monomer-dimer-equilibrium of the domain NRN1 of Latrodectus hesperus MaSp1 and variants thereof have been investigated, and the key residues for both could be identified. Changes in ionic composition and strength within the spinning duct enable electrostatic interactions between the acidic and basic pole of two monomers which prearrange into an antiparallel dimer. Upon naturally occurring acidification this dimer is stabilized by protonation of residue E114. A conformational change is independently triggered by protonation of clustered acidic residues (D39, E76, E81). Such step-by-step mechanism allows a controlled spidroin assembly in a pH- and salt sensitive manner, preventing premature aggregation of spider silk proteins in the gland and at the same time ensuring fast and efficient dimer formation and stabilization on demand in the spinning duct.

  5. Low NO(x) potential of gas turbine engines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1990-01-01

    The purpose is to correlate emission levels of gas turbine engines. The predictions of NO(x) emissions are based on a review of the literature of previous low NO(x) combustor programs and analytical chemical kinetic calculations. Concepts included in the literature review consisted of lean-premixed-prevaporized (LPP), rich burn/quick quench/lean burn (RQL), and direct injection. The NO(x) emissions were found to be an exponential function of adiabatic combustion temperature over a wide range of inlet temperatures, pressures and (lean) fuel-air ratios. A simple correlation of NO(x) formation with time was not found. The LPP and direct injection (using gaseous fuels) concepts have the lowest NO(x) emissions of the three concepts. The RQL data has higher values of NO(x) than the LPP concept, probably due to the stoichiometric temperatures and NO(x) production that occur during the quench step. Improvements in the quick quench step could reduce the NO(x) emissions to the LPP levels. The low NO(x) potential of LPP is offset by the operational disadvantages of its narrow stability limits and its susceptibility to autoignition/flashback. The Rich-Burn/Quick-Quench/Lean-Burn (RQL) and the direct injection concepts have the advantage of wider stability limits comparable to conventional combustors.

  6. Semi-implicit time integration of atmospheric flows with characteristic-based flux partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Constantinescu, Emil M.

    2016-06-23

    Here, this paper presents a characteristic-based flux partitioning for the semi-implicit time integration of atmospheric flows. Nonhydrostatic models require the solution of the compressible Euler equations. The acoustic time scale is significantly faster than the advective scale, yet it is typically not relevant to atmospheric and weather phenomena. The acoustic and advective components of the hyperbolic flux are separated in the characteristic space. High-order, conservative additive Runge-Kutta methods are applied to the partitioned equations so that the acoustic component is integrated in time implicitly with an unconditionally stable method, while the advective component is integrated explicitly. The time step ofmore » the overall algorithm is thus determined by the advective scale. Benchmark flow problems are used to demonstrate the accuracy, stability, and convergence of the proposed algorithm. The computational cost of the partitioned semi-implicit approach is compared with that of explicit time integration.« less

  7. Synthesis, Tribological and Hydrolysis Stability Study of Novel Benzotriazole Borate Derivative

    PubMed Central

    Liping, Xiong; Zhongyi, He; Liang, Qian; Lin, Mu; Aixi, Chen; Sheng, Han; Jianwei, Qiu; Xisheng, Fu

    2014-01-01

    Benzotriazole and borate derivatives have long been used as multifunctional additives to lubricants. A novel, environmentally friendly additive borate ester (NHB), which contains boron, ethanolamine, and benzotriazole groups in one molecule, was synthesized by a multi-step reaction, and its tribological properties in rapeseed oil (RSO) were investigated by a four-ball tribometer. The hydrolysis stability of the additive was investigated by half-time and open observation methods, and the mechanism of hydrolysis stability was discussed through Gaussian calculation. The novel compound NHB showed excellent performance under extreme pressure, against wearing, and in reducing friction, and its hydrolysis time is more than 1,220 times, which is better than that of triethyl borate. The mass ratio of NHB is bigger than that of the mixed liquid of triethyl borate and ethanolamine. The lone electron of amino N atoms forms a coordination effect with the B atom to compensate for the shortage of electrons in the B atom and to improve the hydrolysis stability of NHB. The surface morphology and the traces of different elements in the tribofilms formed with 1.0 wt.% NHB in were detected with scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy (EDX)and X-ray photoelectron spectroscopy(XPS). The results shown that the additive caused a tribochemical reaction with the steel ball surface during the lubricating process. A mixed boundary lubrication film that contains organic nitrogen and inorganic salts, such as BN, B2O3, FeOx, Fe–O–B, and FeB, was also formed, and the formation of the lubricating film improved the tribological properties of the base oil. PMID:24465382

  8. Complete nutrient recovery from source-separated urine by nitrification and distillation.

    PubMed

    Udert, K M; Wächter, M

    2012-02-01

    In this study we present a method to recover all nutrients from source-separated urine in a dry solid by combining biological nitrification with distillation. In a first process step, a membrane-aerated biofilm reactor was operated stably for more than 12 months, producing a nutrient solution with a pH between 6.2 and 7.0 (depending on the pH set-point), and an ammonium to nitrate ratio between 0.87 and 1.15 gN gN(-1). The maximum nitrification rate was 1.8 ± 0.3 gN m(-2) d(-1). Process stability was achieved by controlling the pH via the influent. In the second process step, real nitrified urine and synthetic solutions were concentrated in lab-scale distillation reactors. All nutrients were recovered in a dry powder except for some ammonia (less than 3% of total nitrogen). We estimate that the primary energy demand for a simple nitrification/distillation process is four to five times higher than removing nitrogen and phosphorus in a conventional wastewater treatment plant and producing the equivalent amount of phosphorus and nitrogen fertilizers. However, the primary energy demand can be reduced to values very close to conventional treatment, if 80% of the water is removed with reverse osmosis and distillation is operated with vapor compression. The ammonium nitrate content of the solid residue is below the limit at which stringent EU safety regulations for fertilizers come into effect; nevertheless, we propose some additional process steps that will increase the thermal stability of the solid product. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The influence of gait speed on the stability of walking among the elderly.

    PubMed

    Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo

    2016-06-01

    Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks.

    PubMed

    Bernini, Patrizia; Bertini, Ivano; Luchinat, Claudio; Nincheri, Paola; Staderini, Samuele; Turano, Paola

    2011-04-01

    (1)H NMR metabolic profiling of urine, serum and plasma has been used to monitor the impact of the pre-analytical steps on the sample quality and stability in order to propose standard operating procedures (SOPs) for deposition in biobanks. We analyzed the quality of serum and plasma samples as a function of the elapsed time (t = 0-4 h) between blood collection and processing and of the time from processing to freezing (up to 24 h). The stability of the urine metabolic profile over time (up to 24 h) at various storage temperatures was monitored as a function of the different pre-analytical treatments like pre-storage centrifugation, filtration, and addition of the bacteriostatic preservative sodium azide. Appreciable changes in the profiles, reflecting changes in the concentration of a number of metabolites, were detected and discussed in terms of chemical and enzymatic reactions for both blood and urine samples. Appropriate procedures for blood derivatives collection and urine preservation/storage that allow maintaining as much as possible the original metabolic profile of the fresh samples emerge, and are proposed as SOPs for biobanking.

  11. Numerical Analysis of Ginzburg-Landau Models for Superconductivity.

    NASA Astrophysics Data System (ADS)

    Coskun, Erhan

    Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.

  12. Multiscale variability of soil aggregate stability: implications for rangeland hydrology and erosion

    USDA-ARS?s Scientific Manuscript database

    Conservation of soil and water resources in rangelands is a crucial step in stopping desertification processes. The formation of water-stable soil aggregates reduces soil erodibility and can increase infiltration capacity in many soils. Soil aggregate stability is highly variable at scales ranging f...

  13. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration shceme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. The paper presents a description of the Euler solvers along with results and comparisons which assess the capability.

  14. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  15. Nonlinear time series analysis of normal and pathological human walking

    NASA Astrophysics Data System (ADS)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed.

  16. USING LINEAR AND POLYNOMIAL MODELS TO EXAMINE THE ENVIRONMENTAL STABILITY OF VIRUSES

    EPA Science Inventory

    The article presents the development of model equations for describing the fate of viral infectivity in environmental samples. Most of the models were based upon the use of a two-step linear regression approach. The first step employs regression of log base 10 transformed viral t...

  17. The largest Lyapunov exponent of gait in young and elderly individuals: A systematic review.

    PubMed

    Mehdizadeh, Sina

    2018-02-01

    The largest Lyapunov exponent (LyE) is an accepted method to quantify gait stability in young and old adults. However, a range of LyE values has been reported in the literature for healthy young and elderly adults in normal walking. Therefore, it has been impractical to use the LyE as a clinical measure of gait stability. The aims of this systematic review were to summarize different methodological approaches of quantifying LyE, as well as to classify LyE values of different body segments and joints in young and elderly individuals during normal walking. The Pubmed, Ovid Medline, Scopus and ISI Web of Knowledge databases were searched using keywords related to gait, stability, variability, and LyE. Only English language articles using the Lyapunov exponent to quantify the stability of healthy normal young and old subjects walking on a level surface were considered. 102 papers were included for full-text review and data extraction. Data associated with the walking surface, data recording method, sampling rate, walking speed, body segments and joints, number of strides/steps, variable type, filtering, time-normalizing, state space dimension, time delay, LyE algorithm, and the LyE values were extracted. The disparity in implementation and calculation of the LyE was from, (i) experiment design, (ii) data pre-processing, and (iii) LyE calculation method. For practical implementation of LyE as a measure of gait stability in clinical settings, a standard and universally accepted approach of calculating LyE is required. Therefore, future studies should look for a standard and generalized procedure to apply and calculate LyE. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Facile one-step construction of covalently networked, self-healable, and transparent superhydrophobic composite films

    NASA Astrophysics Data System (ADS)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-07-01

    Despite the considerable demand for bioinspired superhydrophobic surfaces with highly transparent, self-cleaning, and self-healable properties, a facile and scalable fabrication method for multifunctional superhydrophobic films with strong chemical networks has rarely been established. Here, we report a rationally designed facile one-step construction of covalently networked, transparent, self-cleaning, and self-healable superhydrophobic films via a one-step preparation and single-reaction process of multi-components. As coating materials for achieving the one-step fabrication of multifunctional superhydrophobic films, we included two different sizes of Al2O3 nanoparticles for hierarchical micro/nano dual-scale structures and transparent films, fluoroalkylsilane for both low surface energy and covalent binding functions, and aluminum nitrate for aluminum oxide networked films. On the basis of stability tests for the robust film composition, the optimized, covalently linked superhydrophobic composite films with a high water contact angle (>160°) and low sliding angle (<1°) showed excellent thermal stability (up to 400 °C), transparency (≈80%), self-healing, self-cleaning, and waterproof abilities. Therefore, the rationally designed, covalently networked superhydrophobic composite films, fabricated via a one-step solution-based process, can be further utilized for various optical and optoelectronic applications.

  19. Real-time MSE measurements for current profile control on KSTAR.

    PubMed

    De Bock, M F M; Aussems, D; Huijgen, R; Scheffer, M; Chung, J

    2012-10-01

    To step up from current day fusion experiments to power producing fusion reactors, it is necessary to control long pulse, burning plasmas. Stability and confinement properties of tokamak fusion reactors are determined by the current or q profile. In order to control the q profile, it is necessary to measure it in real-time. A real-time motional Stark effect diagnostic is being developed at Korean Superconducting Tokamak for Advanced Research for this purpose. This paper focuses on 3 topics important for real-time measurements: minimize the use of ad hoc parameters, minimize external influences and a robust and fast analysis algorithm. Specifically, we have looked into extracting the retardance of the photo-elastic modulators from the signal itself, minimizing the influence of overlapping beam spectra by optimizing the optical filter design and a multi-channel, multiharmonic phase locking algorithm.

  20. Rivastigmine for gait stability in patients with Parkinson's disease (ReSPonD): a randomised, double-blind, placebo-controlled, phase 2 trial.

    PubMed

    Henderson, Emily J; Lord, Stephen R; Brodie, Matthew A; Gaunt, Daisy M; Lawrence, Andrew D; Close, Jacqueline C T; Whone, A L; Ben-Shlomo, Y

    2016-03-01

    Falls are a frequent and serious complication of Parkinson's disease and are related partly to an underlying cholinergic deficit that contributes to gait and cognitive dysfunction in these patients. Gait dysfunction can lead to an increased variability of gait from one step to another, raising the likelihood of falls. In the ReSPonD trial we aimed to assess whether ameliorating this cholinergic deficit with the acetylcholinesterase inhibitor rivastigmine would reduce gait variability. We did this randomised, double-blind, placebo-controlled, phase 2 trial at the North Bristol NHS Trust Hospital, Bristol, UK, in patients with Parkinson's disease recruited from community and hospital settings in the UK. We included patients who had fallen at least once in the year before enrolment, were able to walk 18 m without an aid, had no previous exposure to an acetylcholinesterase inhibitor, and did not have dementia. Our clinical trials unit randomly assigned (1:1) patients to oral rivastigmine or placebo capsules (both taken twice a day) using a computer-generated randomisation sequence and web-based allocation. Rivastigmine was uptitrated from 3 mg per day to the target dose of 12 mg per day over 12 weeks. Both the trial team and patients were masked to treatment allocation. Masking was achieved with matched placebo capsules and a dummy uptitration schedule. The primary endpoint was difference in step time variability between the two groups at 32 weeks, adjusted for baseline age, cognition, step time variability, and number of falls in the previous year. We measured step time variability with a triaxial accelerometer during an 18 m walking task in three conditions: normal walking, simple dual task with phonemic verbal fluency (walking while naming words beginning with a single letter), and complex dual task switching with phonemic verbal fluency (walking while naming words, alternating between two letters of the alphabet). Analysis was by modified intention to treat; we excluded from the primary analysis patients who withdrew, died, or did not attend the 32 week assessment. This trial is registered with ISRCTN, number 19880883. Between Oct 4, 2012 and March 28, 2013, we enrolled 130 patients and randomly assigned 65 to the rivastigmine group and 65 to the placebo group. At week 32, compared with patients assigned to placebo (59 assessed), those assigned to rivastigmine (55 assessed) had improved step time variability for normal walking (ratio of geometric means 0.72, 95% CI 0.58-0.88; p=0.002) and the simple dual task (0.79; 0.62-0.99; p=0.045). Improvements in step time variability for the complex dual task did not differ between groups (0.81, 0.60-1.09; p=0.17). Gastrointestinal side-effects were more common in the rivastigmine group than in the placebo group (p<0.0001); 20 (31%) patients in the rivastigmine group versus three (5%) in the placebo group had nausea and 15 (17%) versus three (5%) had vomiting. Rivastigmine can improve gait stability and might reduce the frequency of falls. A phase 3 study is needed to confirm these findings and show cost-effectiveness of rivastigmine treatment. Parkinson's UK. Copyright © 2016 Henderson et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd.. All rights reserved.

  1. Destabilization of mayonnaise induced by lipid crystallization upon freezing.

    PubMed

    Miyagawa, Yayoi; Ogawa, Takenobu; Nakagawa, Kyuya; Adachi, Shuji

    2016-01-01

    The thermal and rheological history of mayonnaise during freezing and its dispersion stability after the freeze-thaw process were investigated. Mayonnaise was cooled to freeze and stored at -20 to -40 °C while monitoring the temperature; penetration tests were conducted on the mayonnaise, which was sampled at selected times during isothermal storage at -20 °C. Significant increases in the temperature and stress values due to water-phase crystallization and subsequent oil-phase crystallization were observed. The water phase crystallized during the cooling step in all the tested mayonnaise samples. The oil phases of the prepared mayonnaise (with rapeseed oil) and commercial mayonnaise crystallized during isothermal storage after 6 and 4 h, respectively, at -20 °C. The dispersion stability was evaluated from the separation ratio, which was defined as the weight ratio of separated oil after centrifuging to the total amount of oil in the commercial mayonnaise. The separation ratio rapidly increased after 4 h of freezing. This result suggests that crystallization of the oil phase is strongly related to the dispersion stability of mayonnaise.

  2. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption.

    PubMed

    DeCoste, Jared B; Denny, Michael S; Peterson, Gregory W; Mahle, John J; Cohen, Seth M

    2016-04-21

    Metal-organic frameworks (MOFs) in their free powder form have exhibited superior capacities for many gases when compared to other materials, due to their tailorable functionality and high surface areas. Specifically, the MOF HKUST-1 binds small Lewis bases, such as ammonia, with its coordinatively unsaturated copper sites. We describe here the use of HKUST-1 in mixed-matrix membranes (MMMs) prepared from polyvinylidene difluoride (PVDF) for the removal of ammonia gas. These MMMs exhibit ammonia capacities similar to their hypothetical capacities based on the weight percent of HKUST-1 in each MMM. HKUST-1 in its powder form is unstable toward humid conditions; however, upon exposure to humid environments for prolonged periods of time, the HKUST-1 MMMs exhibit outstanding structural stability, and maintain their ammonia capacity. Overall, this study has achieved all of the critical and combined elements for real-world applications of MOFs: high MOF loadings, fully accessible MOF surfaces, enhanced MOF stabilization, recyclability, mechanical stability, and processability. This study is a critical step in advancing MOFs to a stable, usable, and enabling technology.

  3. Management of septic non-union of the tibia by the induced membrane technique. What factors could improve results?

    PubMed

    Siboni, Renaud; Joseph, Etienne; Blasco, Laurent; Barbe, Coralie; Bajolet, Odile; Diallo, Saïdou; Ohl, Xavier

    2018-06-07

    Management of septic non-union of the tibia requires debridement and excision of all infected bone and soft tissues. Various surgical techniques have been described to fill the bone defect. The "Induced Membrane" technique, described by A. C. Masquelet in 1986, is a two-step procedure using a PMMA cement spacer around which an induced membrane develops, to be used in the second step as a bone graft holder for the bone graft. The purpose of this study was to assess our clinical and radiological results with this technique in a series managed in our department. Nineteen traumatic septic non-unions of the tibia were included in a retrospective single-center study between November 2007 and November 2014. All patients were followed up clinically and radiologically to assess bone union time. Multivariate analysis was used to identify factors influencing union. The series comprised 4 women and 14 men (19 legs); mean age was 53.9 years. Vascularized flap transfer was required in 26% of cases before the first stage of treatment. All patients underwent a two-step procedure, with a mean interval of 7.9 weeks. Mean bone defect after the first step was 52.4mm. The bone graft was harvested from the iliac crest in the majority of cases (18/19). The bone was stabilized with an external fixator, locking plate or plaster cast after the second step. Mean follow-up was 34 months. Bony union rate was 89% (17/19), at a mean 16 months after step 2. Eleven patients underwent one or more (mean 2.1) complementary procedures. Severity of index fracture skin opening was significantly correlated with union time (Gustilo III vs. Gustilo I or II, p=0.028). A trend was found for negative impact of smoking on union (p=0.06). Bone defect size did not correlate with union rate or time. The union rate was acceptable, at 89%, but with longer union time than reported in the literature. Many factors could explain this: lack of rigid fixation after step 2 (in case of plaster cast or external fixator), or failure to cease smoking. The results showed that the induced membrane technique is effective in treating tibial septic non-union, but could be improved by stable fixation after the second step and by cessation of smoking. IV, Retrospective study. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Investigation of flow-induced numerical instability in a mixed semi-implicit, implicit leapfrog time discretization

    NASA Astrophysics Data System (ADS)

    King, Jacob; Kruger, Scott

    2017-10-01

    Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).

  5. A Spectral Multi-Domain Penalty Method for Elliptic Problems Arising From a Time-Splitting Algorithm For the Incompressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, Theodore; Rowe, Kristopher; Diamessis, Peter

    2017-11-01

    The Collocation Penalty Method (CPM) solves a PDE on the interior of a domain, while weakly enforcing boundary conditions at domain edges via penalty terms, and naturally lends itself to high-order and multi-domain discretization. Such spectral multi-domain penalty methods (SMPM) have been used to solve the Navier-Stokes equations. Bounds for penalty coefficients are typically derived using the energy method to guarantee stability for time-dependent problems. The choice of collocation points and penalty parameter can greatly affect the conditioning and accuracy of a solution. Effort has been made in recent years to relate various high-order methods on multiple elements or domains under the umbrella of the Correction Procedure via Reconstruction (CPR). Most applications of CPR have focused on solving the compressible Navier-Stokes equations using explicit time-stepping procedures. A particularly important aspect which is still missing in the context of the SMPM is a study of the Helmholtz equation arising in many popular time-splitting schemes for the incompressible Navier-Stokes equations. Stability and convergence results for the SMPM for the Helmholtz equation will be presented. Emphasis will be placed on the efficiency and accuracy of high-order methods.

  6. Extreme learning machine for reduced order modeling of turbulent geophysical flows.

    PubMed

    San, Omer; Maulik, Romit

    2018-04-01

    We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.

  7. Extreme learning machine for reduced order modeling of turbulent geophysical flows

    NASA Astrophysics Data System (ADS)

    San, Omer; Maulik, Romit

    2018-04-01

    We investigate the application of artificial neural networks to stabilize proper orthogonal decomposition-based reduced order models for quasistationary geophysical turbulent flows. An extreme learning machine concept is introduced for computing an eddy-viscosity closure dynamically to incorporate the effects of the truncated modes. We consider a four-gyre wind-driven ocean circulation problem as our prototype setting to assess the performance of the proposed data-driven approach. Our framework provides a significant reduction in computational time and effectively retains the dynamics of the full-order model during the forward simulation period beyond the training data set. Furthermore, we show that the method is robust for larger choices of time steps and can be used as an efficient and reliable tool for long time integration of general circulation models.

  8. Attitude-Independent Magnetometer Calibration for Spin-Stabilized Spacecraft

    NASA Technical Reports Server (NTRS)

    Natanson, Gregory

    2005-01-01

    The paper describes a three-step estimator to calibrate a Three-Axis Magnetometer (TAM) using TAM and slit Sun or star sensor measurements. In the first step, the Calibration Utility forms a loss function from the residuals of the magnitude of the geomagnetic field. This loss function is minimized with respect to biases, scale factors, and nonorthogonality corrections. The second step minimizes residuals of the projection of the geomagnetic field onto the spin axis under the assumption that spacecraft nutation has been suppressed by a nutation damper. Minimization is done with respect to various directions of the body spin axis in the TAM frame. The direction of the spin axis in the inertial coordinate system required for the residual computation is assumed to be unchanged with time. It is either determined independently using other sensors or included in the estimation parameters. In both cases all estimation parameters can be found using simple analytical formulas derived in the paper. The last step is to minimize a third loss function formed by residuals of the dot product between the geomagnetic field and Sun or star vector with respect to the misalignment angle about the body spin axis. The method is illustrated by calibrating TAM for the Fast Auroral Snapshot Explorer (FAST) using in-flight TAM and Sun sensor data. The estimated parameters include magnetic biases, scale factors, and misalignment angles of the spin axis in the TAM frame. Estimation of the misalignment angle about the spin axis was inconclusive since (at least for the selected time interval) the Sun vector was about 15 degrees from the direction of the spin axis; as a result residuals of the dot product between the geomagnetic field and Sun vectors were to a large extent minimized as a by-product of the second step.

  9. A new unconditionally stable and consistent quasi-analytical in-stream water quality solution scheme for CSTR-based water quality simulators

    NASA Astrophysics Data System (ADS)

    Woldegiorgis, Befekadu Taddesse; van Griensven, Ann; Pereira, Fernando; Bauwens, Willy

    2017-06-01

    Most common numerical solutions used in CSTR-based in-stream water quality simulators are susceptible to instabilities and/or solution inconsistencies. Usually, they cope with instability problems by adopting computationally expensive small time steps. However, some simulators use fixed computation time steps and hence do not have the flexibility to do so. This paper presents a novel quasi-analytical solution for CSTR-based water quality simulators of an unsteady system. The robustness of the new method is compared with the commonly used fourth-order Runge-Kutta methods, the Euler method and three versions of the SWAT model (SWAT2012, SWAT-TCEQ, and ESWAT). The performance of each method is tested for different hypothetical experiments. Besides the hypothetical data, a real case study is used for comparison. The growth factors we derived as stability measures for the different methods and the R-factor—considered as a consistency measure—turned out to be very useful for determining the most robust method. The new method outperformed all the numerical methods used in the hypothetical comparisons. The application for the Zenne River (Belgium) shows that the new method provides stable and consistent BOD simulations whereas the SWAT2012 model is shown to be unstable for the standard daily computation time step. The new method unconditionally simulates robust solutions. Therefore, it is a reliable scheme for CSTR-based water quality simulators that use first-order reaction formulations.

  10. Reliability and convergent validity of the five-step test in people with chronic stroke.

    PubMed

    Ng, Shamay S M; Tse, Mimi M Y; Tam, Eric W C; Lai, Cynthia Y Y

    2018-01-10

    (i) To estimate the intra-rater, inter-rater and test-retest reliabilities of the Five-Step Test (FST), as well as the minimum detectable change in FST completion times in people with stroke. (ii) To estimate the convergent validity of the FST with other measures of stroke-specific impairments. (iii) To identify the best cut-off times for distinguishing FST performance in people with stroke from that of healthy older adults. A cross-sectional study. University-based rehabilitation centre. Forty-eight people with stroke and 39 healthy controls. None. The FST, along with (for the stroke survivors only) scores on the Fugl-Meyer Lower Extremity Assessment (FMA-LE), the Berg Balance Scale (BBS), Limits of Stability (LOS) tests, and Activities-specific Balance Confidence (ABC) scale were tested. The FST showed excellent intra-rater (intra-class correlation coefficient; ICC = 0.866-0.905), inter-rater (ICC = 0.998), and test-retest (ICC = 0.838-0.842) reliabilities. A minimum detectable change of 9.16 s was found for the FST in people with stroke. The FST correlated significantly with the FMA-LE, BBS, and LOS results in the forward and sideways directions (r = -0.411 to -0.716, p < 0.004). The FST completion time of 13.35 s was shown to discriminate reliably between people with stroke and healthy older adults. The FST is a reliable, easy-to-administer clinical test for assessing stroke survivors' ability to negotiate steps and stairs.

  11. Bone conduction responses of middle ear structures in Thiel embalmed heads

    NASA Astrophysics Data System (ADS)

    Arnold, Andreas; Stieger, Christof; Caversaccio, Marco; Kompis, Martin; Guignard, Jérémie

    2015-12-01

    Thiel-embalmed human whole-head specimens offer a promising alternative model for bone conduction (BC) studies of middle ear structures. In this work we present the Thiel model's linearity and stability over time as well as its possible use in the study of a fixed ossicle chain. Using laser Doppler vibrometry (LDV), the motion of the retroauricular skull, the promontory, the stapes footplate and the round window (RW) were measured. A bone-anchored hearing aid stimulated the ears with step sinus tones logarithmically spread between 0.1 and 10 kHz. Linearity of the model was verified using input levels in steps of 10 dBV. The stability of the Thiel model over time was examined with measurements repeated after hours and weeks. The influence of a cement-fixed stapes was assessed. The middle ear elements measured responded linearly in amplitude for the applied input levels (100, 32.6, and 10 mV). The variability of measurements for both short- (2 h) and long-term (4-16 weeks) repetitions in the same ear was lower than the interindividual difference. The fixation of the stapes induced a lowered RW displacement for frequencies near 750 Hz (-4 dB) and an increased displacement for frequencies above 1 kHz (max. +3.7 dB at 4 kHz). LDV assessment of BC-induced middle ear motion in Thiel heads can be performed with stable results. The vibratory RW response is affected by the fixation of the stapes, indicating a measurable effect of ossicle chain inertia on BC response in Thiel embalmed heads.

  12. From phase drift to synchronisation - pedestrian stepping behaviour on laterally oscillating structures and consequences for dynamic stability

    NASA Astrophysics Data System (ADS)

    Bocian, Mateusz; Burn, Jeremy F.; Macdonald, John H. G.; Brownjohn, James M. W.

    2017-03-01

    The subject of this paper pertains to the contentious issue of synchronisation of walking pedestrians to lateral structural motion, which is the mechanism most commonly purported to cause lateral dynamic instability. Tests have been conducted on a custom-built experimental setup consisting of an instrumented treadmill laterally driven by a hydraulic shaking table. The experimental setup can accommodate adaptive pedestrian behaviour via a bespoke speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to that of the walker. 15 people participated in a total of 137 walking tests during which the treadmill underwent lateral sinusoidal motion. The amplitude of this motion was set from 5 to 15 mm and the frequency was set from 0.54 to 1.1 Hz. A variety of stepping behaviours are identified in the kinematic data obtained using a motion capture system. The most common behaviour is for the timing of footsteps to be essentially unaffected by the structural motion, but a few instances of synchronisation are found. A plausible mechanism comprising an intermediate state between unsynchronised and synchronised pedestrian and structural motion is observed. This mechanism, characterised by a weak form of modulation of the timing of footsteps, could possibly explain the under-estimation of negative damping coefficients in models and laboratory trials compared with previously reported site measurements. The results from tests conducted on the setup for which synchronisation is identified are evaluated in the context of structural stability and related to the predictions of the inverted pendulum model, providing insight into fundamental relations governing pedestrian behaviour on laterally oscillating structures.

  13. Colloidal lithography with electrochemical nickel deposition as a unique method for improved silver decorated nanocavities in SERS applications

    NASA Astrophysics Data System (ADS)

    Petruš, Ondrej; Oriňak, Andrej; Oriňaková, Renáta; Orságová Králová, Zuzana; Múdra, Erika; Kupková, Miriam; Kovaľ, Karol

    2017-11-01

    Two types of metallised nanocavities (single and hybrid) were fabricated by colloid lithography followed by electrochemical deposition of Ni and subsequently Ag layers. Introductory Ni deposition step iniciates more homogenous decoration of nanocavities with Ag nanoparticles. Silver nanocavity decoration has been so performed with lower nucleation rate and with Ag nanoparticles homogeinity increase. By this, two step Ni and Ag deposition trough polystyrene nanospheres (100, 300, 500, 700, 900 nm), the various Ag surfaces were obtained. Ni layer formation in the first step of deposition enabled more precise controlling of Ag film deposition and thus final Ag surface morphology. Prepared substrates were tested as active surfaces in SERS application. The best SERS signal enhancement was observed at 500 nm Ag nanocavities with normalised thickness Ni layer ∼0.5. Enhancement factor has been established at value 1.078 × 1010; time stability was determined within 13 weeks; charge distribution at nanocavity Ag surfaces as well as reflection spectra were calculated by FDTD method. Newly prepared nanocavity surface can be applied in SERS analysis, predominantly.

  14. A Novel Methodology for the Synthesis of Acyloxy Castor Polyol Esters: Low Pour Point Lubricant Base Stocks.

    PubMed

    Kamalakar, Kotte; Mahesh, Goli; Prasad, Rachapudi B N; Karuna, Mallampalli S L

    2015-01-01

    Castor oil, a non-edible oil containing hydroxyl fatty acid, ricinoleic acid (89.3 %) was chemically modified employing a two step procedure. The first step involved acylation (C(2)-C(6) alkanoic anhydrides) of -OH functionality employing a green catalyst, Kieselguhr-G and solvent free medium. The catalyst after reaction was filtered and reused several times without loss in activity. The second step is esterification of acylated castor fatty acids with branched mono alcohol, 2-ethylhexanol and polyols namely neopentyl glycol (NPG), trimethylolpropane (TMP) and pentaerythritol (PE) to obtain 16 novel base stocks. The base stocks when evaluated for different lubricant properties have shown very low pour points (-30 to -45°C) and broad viscosity ranges 20.27 cSt to 370.73 cSt, higher viscosity indices (144-171), good thermal and oxidative stabilities, and high weld load capacities suitable for multi-range industrial applications such as hydraulic fluids, metal working fluids, gear oil, forging and aviation applications. The study revealed that acylated branched mono- and polyol esters rich in monounsaturation is desirable for developing low pour point base stocks.

  15. GaN HEMTs with p-GaN gate: field- and time-dependent degradation

    NASA Astrophysics Data System (ADS)

    Meneghesso, G.; Meneghini, M.; Rossetto, I.; Canato, E.; Bartholomeus, J.; De Santi, C.; Trivellin, N.; Zanoni, E.

    2017-02-01

    GaN-HEMTs with p-GaN gate have recently demonstrated to be excellent normally-off devices for application in power conversion systems, thanks to the high and robust threshold voltage (VTH>1 V), the high breakdown voltage, and the low dynamic Ron increase. For this reason, studying the stability and reliability of these devices under high stress conditions is of high importance. This paper reports on our most recent results on the field- and time-dependent degradation of GaN-HEMTs with p-GaN gate submitted to stress with positive gate bias. Based on combined step-stress experiments, constant voltage stress and electroluminescence testing we demonstrated that: (i) when submitted to high/positive gate stress, the transistors may show a negative threshold voltage shift, that is ascribed to the injection of holes from the gate metal towards the p-GaN/AlGaN interface; (ii) in a step-stress experiment, the analyzed commercial devices fail at gate voltages higher than 9-10 V, due to the extremely high electric field over the p-GaN/AlGaN stack; (iii) constant voltage stress tests indicate that the failure is also time-dependent and Weibull distributed. The several processes that can explain the time-dependent failure are discussed in the following.

  16. Image Understanding and Information Extraction\\

    DTIC Science & Technology

    1977-11-01

    mentation and generalization of DeCarlo’s Nyquist-like stability test [15,161. The last step of the procedure is to check whether this zero ...Several general sta- bility theorems which relate stability to the zero set of B(w,z) have been presented. These theorems led to the conclusion that...Spatial Stochastic Model for Contextual Pattern Recognition . ° . .............. 88 T. S. Yu and K. S. Fu V. PREPROCESSING 1. Stability of General Two

  17. Changes in Head Stability Control in Response to a Lateral Perturbation while Walking in Older Adults

    NASA Technical Reports Server (NTRS)

    Buccello, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.

    2008-01-01

    Falling is a main contributor of injury in older adults. The decline in sensory systems associated with aging limits information needed to successfully compensate for unexpected perturbations. Therefore, sensory changes result in older adults having problems maintaining balance stability when experiencing an unexpected lateral perturbation (e.g. slip) in the environment. The goal of this study was to determine head stability movement strategies used by older adults when experiencing an unexpected lateral perturbation during walking. A total of 16 healthy adults, aged 66-81 years, walked across a foam pathway 6 times. One piece of the foam pathway covered a movable platform that translated to the left when the subject stepped on the foam. Three trials were randomized in which the platform shifted. Angular rate sensors were placed on the center of mass for the head and trunk segments to collect head and trunk movement in all three planes of motion. The predominant movement strategies for maintaining head stability were determined from the results of the cross-correlation analyses between the head and trunk segments. The Chi square test of independence was used to evaluate the movement pattern distributions of head-trunk coordination during perturbed and non-perturbed walking. When perturbed, head stabilization was significantly challenged in the yaw and roll planes of motion. Subjects demonstrated a movement pattern of the head leading the trunk in an effort to stabilize the head. The older adult subjects used this head stabilization movement pattern to compensate for sensory changes when experiencing the unexpected lateral perturbation.

  18. Stabilization and localization of Xist RNA are controlled by separate mechanisms and are not sufficient for X inactivation.

    PubMed

    Clemson, C M; Chow, J C; Brown, C J; Lawrence, J B

    1998-07-13

    These studies address whether XIST RNA is properly localized to the X chromosome in somatic cells where human XIST expression is reactivated, but fails to result in X inactivation (Tinker, A.V., and C.J. Brown. 1998. Nucl. Acids Res. 26:2935-2940). Despite a nuclear RNA accumulation of normal abundance and stability, XIST RNA does not localize in reactivants or in naturally inactive human X chromosomes in mouse/ human hybrid cells. The XIST transcripts are fully stabilized despite their inability to localize, and hence XIST RNA localization can be uncoupled from stabilization, indicating that these are separate steps controlled by distinct mechanisms. Mouse Xist RNA tightly localized to an active X chromosome, demonstrating for the first time that the active X chromosome in somatic cells is competent to associate with Xist RNA. These results imply that species-specific factors, present even in mature, somatic cells that do not normally express Xist, are necessary for localization. When Xist RNA is properly localized to an active mouse X chromosome, X inactivation does not result. Therefore, there is not a strict correlation between Xist localization and chromatin inactivation. Moreover, expression, stabilization, and localization of Xist RNA are not sufficient for X inactivation. We hypothesize that chromosomal association of XIST RNA may initiate subsequent developmental events required to enact transcriptional silencing.

  19. Flexible Mixed-Potential-Type (MPT) NO₂ Sensor Based on An Ultra-Thin Ceramic Film.

    PubMed

    You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong

    2017-07-29

    A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO₂ detection from 0 to 500 ppm at 200 °C. An ultra-thin Y₂O₃-doped ZrO₂ (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor's sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO₂ sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO₂ emissions and improve fuel efficiency.

  20. Flexible Mixed-Potential-Type (MPT) NO2 Sensor Based on An Ultra-Thin Ceramic Film

    PubMed Central

    You, Rui; Jing, Gaoshan; Yu, Hongyan; Cui, Tianhong

    2017-01-01

    A novel flexible mixed-potential-type (MPT) sensor was designed and fabricated for NO2 detection from 0 to 500 ppm at 200 °C. An ultra-thin Y2O3-doped ZrO2 (YSZ) ceramic film 20 µm thick was sandwiched between a heating electrode and reference/sensing electrodes. The heating electrode was fabricated by a conventional lift-off process, while the porous reference and the sensing electrodes were fabricated by a two-step patterning method using shadow masks. The sensor’s sensitivity is achieved as 58.4 mV/decade at the working temperature of 200 °C, as well as a detection limit of 26.7 ppm and small response time of less than 10 s at 200 ppm. Additionally, the flexible MPT sensor demonstrates superior mechanical stability after bending over 50 times due to the mechanical stability of the YSZ ceramic film. This simply structured, but highly reliable flexible MPT NO2 sensor may lead to wide application in the automobile industry for vehicle emission systems to reduce NO2 emissions and improve fuel efficiency. PMID:28758933

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yan, E-mail: xuyanjlu@126.com; Jin, Jingjie; Li, Xianliang, E-mail: lixianliang007@163.com

    Highlights: • Fabrication of ZnO nanoflowers assembled from thin and uniform nanosheets. • The material possesses photocatalytic acitivity toward degradation of metamitron. • The catalyst features excellent cycling stability for at least 5 cycle times. • The promising mechanism of photocatalysis of metamitron is also discussed. - Abstract: Large-scale ZnO nanoflowers assembled from numerous thin and uniform nanosheets with a thickness of around 20 nm, were successfully prepared through a facile one-step hydrothermal synthesis route by using zinc acetate, sodium citrate and sodium hydroxide in water solution. The method was simple, green and effective. The obtained ZnO nanoflowers exhibited remarkablemore » photocatalytic acitivity and good cycle stability for the degradation of metamitron under a 300 W of Osram{sup ®} ultra-vitalux lamp light emitting UV and visible radiation over 300–600 nm. UV–vis spectrophotometery was used to measure the rate of photodecomposition of metamitron. The results indicate that about 97% of the metamitron disappeared in the suspension of flower-like ZnO microspheres within four hours, and the degradation efficiency were not changed even after 5 cycle times.« less

  2. Exponential stability preservation in semi-discretisations of BAM networks with nonlinear impulses

    NASA Astrophysics Data System (ADS)

    Mohamad, Sannay; Gopalsamy, K.

    2009-01-01

    This paper demonstrates the reliability of a discrete-time analogue in preserving the exponential convergence of a bidirectional associative memory (BAM) network that is subject to nonlinear impulses. The analogue derived from a semi-discretisation technique with the value of the time-step fixed is treated as a discrete-time dynamical system while its exponential convergence towards an equilibrium state is studied. Thereby, a family of sufficiency conditions governing the network parameters and the impulse magnitude and frequency is obtained for the convergence. As special cases, one can obtain from our results, those corresponding to the non-impulsive discrete-time BAM networks and also those corresponding to continuous-time (impulsive and non-impulsive) systems. A relation between the Lyapunov exponent of the non-impulsive system and that of the impulsive system involving the size of the impulses and the inter-impulse intervals is obtained.

  3. A family of compact high order coupled time-space unconditionally stable vertical advection schemes

    NASA Astrophysics Data System (ADS)

    Lemarié, Florian; Debreu, Laurent

    2016-04-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost.

  4. Well-balanced compressible cut-cell simulation of atmospheric flow.

    PubMed

    Klein, R; Bates, K R; Nikiforakis, N

    2009-11-28

    Cut-cell meshes present an attractive alternative to terrain-following coordinates for the representation of topography within atmospheric flow simulations, particularly in regions of steep topographic gradients. In this paper, we present an explicit two-dimensional method for the numerical solution on such meshes of atmospheric flow equations including gravitational sources. This method is fully conservative and allows for time steps determined by the regular grid spacing, avoiding potential stability issues due to arbitrarily small boundary cells. We believe that the scheme is unique in that it is developed within a dimensionally split framework, in which each coordinate direction in the flow is solved independently at each time step. Other notable features of the scheme are: (i) its conceptual and practical simplicity, (ii) its flexibility with regard to the one-dimensional flux approximation scheme employed, and (iii) the well-balancing of the gravitational sources allowing for stable simulation of near-hydrostatic flows. The presented method is applied to a selection of test problems including buoyant bubble rise interacting with geometry and lee-wave generation due to topography.

  5. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-03-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices.

  6. Conformational stability and thermodynamic characterization of the lipoic acid bearing domain of human mitochondrial branched chain α-ketoacid dehydrogenase

    PubMed Central

    Naik, Mandar T.; Huang, Tai-Huang

    2004-01-01

    The lipoic acid bearing domain (hbLBD) of human mitochondrial branched chain α-ketoacid dehydrogenase (BCKD) plays important role of substrate channeling in oxidative decarboxylation of the branched chain α-ketoacids. Recently hbLBD has been found to follow two-step folding mechanism without detectable presence of stable or kinetic intermediates. The present study describes the conformational stability underlying the folding of this small β-barrel domain. Thermal denaturation in presence of urea and isothermal urea denaturation titrations are used to evaluate various thermodynamic parameters defining the equilibrium unfolding. The linear extrapolation model successfully describes the two-step; native state ↔denatured state unfolding transition of hbLBD. The average temperature of maximum stability of hbLBD is estimated as 295.6 ± 0.9 K. Cold denaturation of hbLBD is also predicted and discussed. PMID:15322287

  7. A simplified computer program for the prediction of the linear stability behavior of liquid propellant combustors

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.; Eckert, K.

    1979-01-01

    A program for predicting the linear stability of liquid propellant rocket engines is presented. The underlying model assumptions and analytical steps necessary for understanding the program and its input and output are also given. The rocket engine is modeled as a right circular cylinder with an injector with a concentrated combustion zone, a nozzle, finite mean flow, and an acoustic admittance, or the sensitive time lag theory. The resulting partial differential equations are combined into two governing integral equations by the use of the Green's function method. These equations are solved using a successive approximation technique for the small amplitude (linear) case. The computational method used as well as the various user options available are discussed. Finally, a flow diagram, sample input and output for a typical application and a complete program listing for program MODULE are presented.

  8. Effect of pole zero location on system dynamics of boost converter for micro grid

    NASA Astrophysics Data System (ADS)

    Lavanya, A.; Vijayakumar, K.; Navamani, J. D.; Jayaseelan, N.

    2018-04-01

    Green clean energy like photo voltaic, wind energy, fuel cell can be brought together by microgrid.For low voltage sources like photovoltaic cell boost converter is very much essential. This paper explores the dynamic analysis of boost converter in a continuous conduction mode (CCM). The transient performance and stability analysis is carried out in this paper using time domain analysis and frequency domain analysis techniques. Boost converter is simulated using both PSIM and MATLAB software. Furthermore, state space model obtained and the transfer function is derived. The converter behaviour when a step input is applied is analyzed and stability of the converter is analyzed from bode plot frequency for open loop. Effect of the locations of poles and zeros in the transfer function of boost converter and how the performance parameters are affected is discussed in this paper. Closed loop performance with PI controller is also analyzed for boost converter.

  9. A kinetic study of xanthohumol cyclization to isoxanthohumol - A role of water

    NASA Astrophysics Data System (ADS)

    Kamiński, Daniel M.; Gawęda, Karolina; Arczewska, Marta; Senczyna, Bogusław; Gagoś, Mariusz

    2017-07-01

    Xanthohumol, a major prenylated chalcone found in hop resin, has recently attracted scientific interest due to its health-promoting properties. In the present work, we investigated the mechanism of xanthohumol cyclization to isoxanthohumol in an aqueous solution with a high pH by means of UV-Vis spectroscopy and liquid chromatography. The results were modeled by DFT methods with the SMD solvation model. The results of theoretical calculations were consistent with experimental data. The proposed mechanism comprises two stages, where the first step involves cyclization of xanthohumol ions and the second step involves the addition of H+ ion from a water molecule to an isoxanthohumol ion. The second step is responsible for the stabilization of isoxanthohumol. Based on these results some practical information can be drawn, which may be important from the point of view of the problem xanthohumol stability in commercial dietary supplements.

  10. Dynamics behavior of lithium in graphite lattice: MD calculation approach

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Tachikawa, H.

    2000-12-01

    In order to investigate the diffusion process of Li atom in graphite, molecular dynamics simulation was achieved on the basis of molecular mechanics 2 (MM2) method using four layers cluster model one of which is composed of C150H30 with terminating hydrogen atoms. According to the simulations at 500 K, Li atom stabilizes initially around the center of mass, gets out of the graphite layers after 3.0 ps through diffusion, which is different from the movement of Li+ ion captured by the dangling bonds of the edge carbon atoms. The diffusion process of Li atom is found to be composed of following four steps in series: (1) vibration around the stabilization point; (2) bulk diffusion; (3) vibration under influence of the dangling bonds of edge carbon atoms; and (4) escape from the graphite layers. The diffusivity for step (3) is smaller than that for step (2).

  11. Plasma fibronectin: three steps to purification and stability.

    PubMed

    Poulouin, L; Gallet, O; Rouahi, M; Imhoff, J M

    1999-10-01

    Large amounts of soluble fibronectin were easily purified from cryoprecipitated or fresh citrated human blood plasma by a three-step combination of gelatin and heparin-cellufine affinity chromatography. The elution conditions were optimized to obtain a homogeneous fraction on SDS-PAGE and Western blot under reducing condition. No proteolytic activities were detected by zymography at acidic or neutral pH. Furthermore, the fibronectin preparation was stable over time up to 456 h at 37 degrees C in the presence of calcium, zinc, or mercury. This preparation of very stable fibronectin, called highly purified fibronectin (hpFN), gave a yield of 7.00 +/- 0.77 mg of fibronectin per gram of cryoprecipitated plasma and 0.16 mg of fibronectin per milliliter of fresh citrated, giving a yield of 32 to 53% (from presumed fibronectin concentration). This preparation may be useful for cellular tests and interaction analysis. Copyright 1999 Academic Press.

  12. A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance

    NASA Astrophysics Data System (ADS)

    Witte, J. H.; Reisinger, C.

    2010-09-01

    We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.

  13. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-07-01

    A three-dimensional (3D) MoS2 coated CoS2-nitrogen doped graphene (NG) (CoS2@MoS2-NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS2@MoS2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS2@MoS2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS2@MoS2-NG has higher specific capacitance (198 F g‑1 at 1 A g‑1), better rate performance (with about 56.57% from 1 to 16 A g‑1) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  14. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors.

    PubMed

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-07-20

    A three-dimensional (3D) MoS 2 coated CoS 2 -nitrogen doped graphene (NG) (CoS 2 @MoS 2 -NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS 2 @MoS 2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS 2 @MoS 2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS 2 @MoS 2 -NG has higher specific capacitance (198 F g -1 at 1 A g -1 ), better rate performance (with about 56.57% from 1 to 16 A g -1 ) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  15. Reaction mechanism of electrochemical-vapor deposition of yttria-stabilized zirconia film

    NASA Astrophysics Data System (ADS)

    Sasaki, Hirokazu; Yakawa, Chiori; Otoshi, Shoji; Suzuki, Minoru; Ippommatsu, Masamichi

    1993-10-01

    The reaction mechanism for electrochemical-vapor deposition of yttria-stabilized zirconia was studied. Yttria-stabilized zirconia films were deposited on porous La(Sr)MnOx using the electrochemical-vapor-deposition process. The distribution of yttria concentration through the film was investigated by means of secondary-ion-mass spectroscopy and x-ray microanalysis and found to be nearly constant. The deposition rate was approximately proportional to the minus two-thirds power of the film thickness, the one-third power of the partial pressure of ZrCl4/YCl3 mixed gas, and the two-thirds power of the product of the reaction temperature and the electronic conductivity of yttria-stabilized zirconia film. These experimental results were explained by a model for electron transport through the YSZ film and reaction between the surface oxygen and the metal chloride on the chloride side of the film, both of which affect the deposition rate. If the film thickness is very small, the deposition rate is thought to be controlled by the surface reaction step. On the other hand, if large, the electron transport step is rate controlling.

  16. One-step synthesis of 2D-layered carbon wrapped transition metal nitrides from transition metal carbides (MXenes) for supercapacitors with ultrahigh cycling stability.

    PubMed

    Yuan, Wenyu; Cheng, Laifei; Wu, Heng; Zhang, Yani; Lv, Shilin; Guo, Xiaohui

    2018-03-13

    A novel one-step method to synthesize 2D carbon wrapped TiN (C@TiN) was proposed via using 2D metal carbides (MXenes) as precursors. This study provides a novel approach to synthesize carbon wrapped metal nitrides.

  17. Stabilization of cat paw trajectory during locomotion

    PubMed Central

    Klishko, Alexander N.; Farrell, Bradley J.; Beloozerova, Irina N.; Latash, Mark L.

    2014-01-01

    We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it (“bad variance,” variance orthogonal to the UCM, VORT) while the other one did not (“good variance,” variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement. PMID:24899676

  18. Dynamic stabilization of rapid hexapedal locomotion.

    PubMed

    Jindrich, Devin L; Full, Robert J

    2002-09-01

    To stabilize locomotion, animals must generate forces appropriate to overcome the effects of perturbations and to maintain a desired speed or direction of movement. We studied the stabilizing mechanism employed by rapidly running insects by using a novel apparatus to perturb running cockroaches (Blaberus discoidalis). The apparatus used chemical propellants to accelerate a small projectile, generating reaction force impulses of less than 10 ms duration. The apparatus was mounted onto the thorax of the insect, oriented to propel the projectile laterally and loaded with propellant sufficient to cause a nearly tenfold increase in lateral velocity relative to maxima observed during unperturbed locomotion. Cockroaches were able to recover from these perturbations in 27+/-12 ms (mean +/- S.D., N=9) when running on a high-friction substratum. Lateral velocity began to decrease 13+/-5 ms (mean +/- S.D., N=11) following the start of a perturbation, a time comparable with the fastest reflexes measured in cockroaches. Cockroaches did not require step transitions to recover from lateral perturbations. Instead, they exhibited viscoelastic behavior in the lateral direction, with spring constants similar to those observed during unperturbed locomotion. The rapid onset of recovery from lateral perturbations supports the possibility that, during fast locomotion, intrinsic properties of the musculoskeletal system augment neural stabilization by reflexes.

  19. Direct Room Temperature Welding and Chemical Protection of Silver Nanowire Thin Films for High Performance Transparent Conductors.

    PubMed

    Ge, Yongjie; Duan, Xidong; Zhang, Meng; Mei, Lin; Hu, Jiawen; Hu, Wei; Duan, Xiangfeng

    2018-01-10

    Silver nanowire (Ag-NW) thin films have emerged as a promising next-generation transparent electrode. However, the current Ag-NW thin films are often plagued by high NW-NW contact resistance and poor long-term stability, which can be largely attributed to the ill-defined polyvinylpyrrolidone (PVP) surface ligands and nonideal Ag-PVP-Ag contact at NW-NW junctions. Herein, we report a room temperature direct welding and chemical protection strategy to greatly improve the conductivity and stability of the Ag-NW thin films. Specifically, we use a sodium borohydride (NaBH 4 ) treatment process to thoroughly remove the PVP ligands and produce a clean Ag-Ag interface that allows direct welding of NW-NW junctions at room temperature, thus greatly improving the conductivity of the Ag-NW films, outperforming those obtained by thermal or plasmonic thermal treatment. We further show that, by decorating the as-formed Ag-NW thin film with a dense, hydrophobic dodecanethiol layer, the stability of the Ag-NW film can be greatly improved by 150-times compared with that of PVP-wrapped ones. Our studies demonstrate that a proper surface ligand design can effectively improve the conductivity and stability of Ag-NW thin films, marking an important step toward their applications in electronic and optoelectronic devices.

  20. Non-linear visco-elastic analysis and the design of super-pressure balloons : stress, strain and stability

    NASA Astrophysics Data System (ADS)

    Wakefield, David

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation approach to stress and stability analysis inherent in inTENS, and focuses in particular on: Implementation of an alternative application of the Incremental Schapery Rand (ISR) representation of the non-linear visco-elastic response of the polyethylene balloon film. This is based upon the relaxation modulus, rather than the creep compliance, and as such fits more efficiently into the Dynamic Relaxation analysis procedure used within inTENS. Comparisons of results between the two approaches are given. Verification of the material model by comparison with material tests. Verification of the application to pumpkin balloon structures by comparison with scale model tests. Application of inTENS with ISR to time-stepping analyses of a balloon flight including diurnal variations of temperature and pressure. This includes the demonstration of a method for checking the likely hood of overall instability developing at any particular time in the flight as both balloon geometry and film properties change due to visco-elastic effects.

Top