Sample records for time-dependent ion selectivity

  1. Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes.

    PubMed

    Zeng, Zhenping; Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2015-10-28

    Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H(+) and OH(-) ions along with the chemistry reactions between functional groups on PE chains and protons. Due to ion concentration polarization, the charge density of PE layers is not homogeneously distributed and depends significantly on the background salt concentration, pH, grafting density of PE chains, and applied voltage bias, thereby resulting in many interesting and unexpected ion transport phenomena in the nanopore. For example, the ion selectivity of the biomimetic nanopore can be regulated from anion-selective (cation-selective) to cation-selective (anion-selective) by diminishing (raising) the solution pH when a sufficiently small grafting density of PE chains, large voltage bias, and low background salt concentration are applied.

  2. Selective time-resolved binding of copper(II) by pyropheophorbide-a methyl ester.

    PubMed

    Ghosh, Indrajit; Saleh, Na'il; Nau, Werner M

    2010-05-01

    The complexation behavior of pyropheophorbide-a methyl ester (PPME) with transition metal ions as well as other biologically relevant metal ions has been investigated in water-DMF (2 : 1 v/v) solution. PPME was found to selectively complex Cu(2+) ions, which leads to a distinct change in its absorption spectrum as well as efficient fluorescence quenching. The degree of fluorescence quenching by Cu(2+) depended on concentration and time. Upon addition of Cu(2+), the fluorescence showed a time-resolved decay on the time scale of minutes to hours, with the decay rate being dependent on the cation concentration. Fitting according to a bimolecular reaction rate law provided a rate constant of 650 +/- 90 M(-1) s(-1) at 298 K for metallochlorin formation. The potential implications of Cu(2+) binding for the use of PPME in photodynamic therapy are discussed, along with its use as a fluorescent sensor for detection of micromolar concentrations of Cu(2+).

  3. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells

    PubMed Central

    McGhee, Claire E.; Loh, Kang Yong

    2017-01-01

    The on-site and real-time detection of metal ions is important for environmental monitoring and for understanding the impact of metal ions on human health. However, developing sensors selective for a wide range of metal ions that can work in the complex matrices of untreated samples and cells presents significant challenges. To meet these challenges, DNAzymes, an emerging class of metal ion-dependent enzymes selective for almost any metal ion, have been functionalized with fluorophores, nanoparticles and other imaging agents and incorporated into sensors for the detection of metal ions in environmental samples and for imaging the metal ions in living cells. Herein, we highlight the recent developments of DNAzyme-based fluorescent, colorimetric, SERS, electrochemical and electrochemiluminscent sensors for metal ions for these applications. PMID:28458112

  4. Direct evidence of ionic fluxes across ion-selective membranes: a scanning electrochemical microscopic and potentiometric study.

    PubMed

    Gyurcsányi, R E; Pergel, E; Nagy, R; Kapui, I; Lan, B T; Tóth, K; Bitter, I; Lindner, E

    2001-05-01

    Scanning electrochemical microscopy (SECM) supplemented with potentiometric measurements was used to follow the time-dependent buildup of a steady-state diffusion layer at the aqueous-phase boundary of lead ion-selective electrodes (ISEs). Differential pulse voltammetry is adapted to SECM for probing the local concentration profiles at the sample side of solvent polymeric membranes. Major factors affecting the membrane transport-related surface concentrations were identified from SECM data and the potentiometric transients obtained under different experimental conditions (inner filling solution composition, membrane thickness, surface pretreatment). The amperometrically determined surface concentrations correlated well with the lower detection limits of the lead ion-selective electrodes.

  5. Breaking through the false coincidence barrier in electron–ion coincidence experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick

    Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ~10 3 has largely precluded its use for this purpose, where a dynamic range of at least 10 5 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniformmore » intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar 9 +, whereas Ar 4 + is the largest observable cluster under traditional operation. As a result, this advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.« less

  6. Breaking through the false coincidence barrier in electron–ion coincidence experiments

    DOE PAGES

    Osborn, David L.; Hayden, Carl C.; Hemberger, Patrick; ...

    2016-10-31

    Photoelectron Photoion Coincidence (PEPICO) spectroscopy holds the promise of a universal, isomer-selective, and sensitive analytical technique for time-resolved quantitative analysis of bimolecular chemical reactions. Unfortunately, its low dynamic range of ~10 3 has largely precluded its use for this purpose, where a dynamic range of at least 10 5 is generally required. This limitation is due to the false coincidence background common to all coincidence experiments, especially at high count rates. Electron/ion pairs emanating from separate ionization events but arriving within the ion time of flight (TOF) range of interest constitute the false coincidence background. Although this background has uniformmore » intensity at every m/z value, the Poisson scatter in the false coincidence background obscures small signals. In this paper, temporal ion deflection coupled with a position-sensitive ion detector enables suppression of the false coincidence background, increasing the dynamic range in the PEPICO TOF mass spectrum by 2–3 orders of magnitude. The ions experience a time-dependent electric deflection field at a well-defined fraction of their time of flight. This deflection defines an m/z- and ionization-time dependent ion impact position for true coincidences, whereas false coincidences appear randomly outside this region and can be efficiently suppressed. When cold argon clusters are ionized, false coincidence suppression allows us to observe species up to Ar 9 +, whereas Ar 4 + is the largest observable cluster under traditional operation. As a result, this advance provides mass-selected photoelectron spectra for fast, high sensitivity quantitative analysis of reacting systems.« less

  7. Detection of Radiation-Exposure Biomarkers by Differential Mobility Prefiltered Mass Spectrometry (DMS-MS)

    PubMed Central

    Coy, Stephen L.; Krylov, Evgeny V.; Schneider, Bradley B.; Covey, Thomas R.; Brenner, David J.; Tyburski, John B.; Patterson, Andrew D.; Krausz, Kris W.; Fornace, Albert J.; Nazarov, Erkinjon G.

    2010-01-01

    Technology to enable rapid screening for radiation exposure has been identified as an important need, and, as a part of a NIH / NIAD effort in this direction, metabolomic biomarkers for radiation exposure have been identified in a recent series of papers. To reduce the time necessary to detect and measure these biomarkers, differential mobility spectrometry – mass spectrometry (DMS-MS) systems have been developed and tested. Differential mobility ion filters preselect specific ions and also suppress chemical noise created in typical atmospheric-pressure ionization sources (ESI, MALDI, and others). Differential-mobility-based ion selection is based on the field dependence of ion mobility, which, in turn, depends on ion characteristics that include conformation, charge distribution, molecular polarizability, and other properties, and on the transport gas composition which can be modified to enhance resolution. DMS-MS is able to resolve small-molecule biomarkers from nearly-isobaric interferences, and suppresses chemical noise generated in the ion source and in the mass spectrometer, improving selectivity and quantitative accuracy. Our planar DMS design is rapid, operating in a few milliseconds, and analyzes ions before fragmentation. Depending on MS inlet conditions, DMS-selected ions can be dissociated in the MS inlet expansion, before mass analysis, providing a capability similar to MS/MS with simpler instrumentation. This report presents selected DMS-MS experimental results, including resolution of complex test mixtures of isobaric compounds, separation of charge states, separation of isobaric biomarkers (citrate and isocitrate), and separation of nearly-isobaric biomarker anions in direct analysis of a bio-fluid sample from the radiation-treated group of a mouse-model study. These uses of DMS combined with moderate resolution MS instrumentation indicate the feasibility of field-deployable instrumentation for biomarker evaluation. PMID:20305793

  8. Potential-dependent, switchable ion selectivity in aqueous media using titanium disulfide.

    PubMed

    Srimuk, Pattarachai; Lee, Juhan; Fleischmann, Simon; Aslan, Mesut; Kim, Choonsoo; Presser, Volker

    2018-05-01

    Selective removal of ions by electrochemical processes is a promising approach to enable various water treatment applications such as water softening or heavy metal removal. Ion intercalation materials have been investigated for their intrinsic ability to prefer one specific ion over others, showing a preference for (small) monovalent ions over multivalent species. In this work, we present for the first time a fundamentally different approach: tunable ion selectivity not by modifying the electrode material, but by changing the operational voltage. We used titanium disulfide which shows distinctly different potentials for the intercalation of different cations and formed thereof binder-free composite electrodes with carbon nanotubes. Capitalizing on this potential difference, we demonstrate controllable cation selectivity by online monitoring the effluent stream during electrochemical operation by inductively coupled plasma optical emission spectrometry for aqueous 50 mM CsCl and MgCl2. We obtained a molar selectivity of Mg2+ over Cs+ of 31 (strong Mg preference) in the potential range between -396 mV and -220 mV vs. Ag/AgCl. By adjusting the operational potential window to -219 mV to +26 mV vs. Ag/AgCl, Cs+ is preferred over Mg2+ by 1.7-times (Cs preference). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. UV Spectra of Tris(2,2'-bipyridine)-M(II) Complex Ions in Vacuo (M = Mn, Fe, Co, Ni, Cu, Zn).

    PubMed

    Xu, Shuang; Smith, James E T; Weber, J Mathias

    2016-11-21

    We present electronic spectra in the π-π* region of a series of tris(bpy)-M(II) complex ions (bpy = 2,2'-bipyridine; M = Mn, Fe, Co, Ni, Cu, Zn) in vacuo for the first time. By applying photodissociation spectroscopy to cryogenically cooled and mass selected [M II (bpy) 3 ] 2+ ions, we obtain the intrinsic spectra of these ions at low temperature without perturbation by solvent interaction or crystal lattice shifts. This allows spectroscopic analysis of these complex ions in greater detail than possible in the condensed phase. We interpret our experimental data by comparison with time-dependent density functional theory.

  10. DNA as Sensors and Imaging Agents for Metal Ions

    PubMed Central

    Xiang, Yu

    2014-01-01

    Increasing interests in detecting metal ions in many chemical and biomedical fields have created demands for developing sensors and imaging agents for metal ions with high sensitivity and selectivity. This review covers recent progress in DNA-based sensors and imaging agents for metal ions. Through both combinatorial selection and rational design, a number of metal ion-dependent DNAzymes and metal ion-binding DNA structures that can selectively recognize specific metal ions have been obtained. By attaching these DNA molecules with signal reporters such as fluorophores, chromophores, electrochemical tags, and Raman tags, a number of DNA-based sensors for both diamagnetic and paramagnetic metal ions have been developed for fluorescent, colorimetric, electrochemical, and surface Raman detections. These sensors are highly sensitive (with detection limit down to 11 ppt) and selective (with selectivity up to millions-fold) toward specific metal ions. In addition, through further development to simplify the operation, such as the use of “dipstick tests”, portable fluorometers, computer-readable discs, and widely available glucose meters, these sensors have been applied for on-site and real-time environmental monitoring and point-of-care medical diagnostics. The use of these sensors for in situ cellular imaging has also been reported. The generality of the combinatorial selection to obtain DNAzymes for almost any metal ion in any oxidation state, and the ease of modification of the DNA with different signal reporters make DNA an emerging and promising class of molecules for metal ion sensing and imaging in many fields of applications. PMID:24359450

  11. Temperature Dependences for the Reactions of O2- and O- with N and O Atoms in a Selected-Ion Flow Tube Instrument

    DTIC Science & Technology

    2013-10-07

    quadrupole mass filter, mass selected, and injected into the flow reactor via a Venturi - type inlet. Ions undergo ∼105 collisions with helium buffer... gas at pressures of 0.4 to 0.8 Torr resulting in complete or near-complete thermalization.10 The higher pressure was used when studying the high...butterfly gate valve resulting in lower pumping speeds and thus longer reaction times. Neutrals were injected 49 cm before the end of the flow tube and

  12. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron bombardment argon ion source was used to ion etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0) keV Ar ions at ion current densities of (0.2 to 1.5) mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic cone-like structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented.

  13. Adhesive bonding of ion beam textured metals and fluoropolymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Sovey, J. S.

    1978-01-01

    An electron-bombardment argon ion source was used to ion-etch various metals and fluoropolymers. The metal and fluoropolymers were exposed to (0.5 to 1.0)-keV Ar ions at ion current densities of 0.2 to 1.5 mA/sq cm for various exposure times. The resulting surface texture is in the form of needles or spires whose vertical dimensions may range from tenths to hundreds of micrometers, depending on the selection of beam energy, ion current density, and etch time. The bonding of textured surfaces is accomplished by ion-beam texturing mating pieces of either metals or fluoropolymers and applying a bonding agent which wets in and around the microscopic conelike structures. After bonding, both tensile and shear strength measurements were made on the samples. Also tested, for comparison's sake, were untextured and chemically etched fluoropolymers. The results of these measurements are presented in this paper.

  14. The sensitivity of benzene cluster cation chemical ionization mass spectrometry to select biogenic terpenes

    NASA Astrophysics Data System (ADS)

    Lavi, Avi; Vermeuel, Michael P.; Novak, Gordon A.; Bertram, Timothy H.

    2018-06-01

    Benzene cluster cations are a sensitive and selective reagent ion for chemical ionization of select biogenic volatile organic compounds. We have previously reported the sensitivity of a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), using benzene cluster cation ion chemistry, for detection of dimethyl sulfide, isoprene and α-pinene. Here, we present laboratory measurements of the sensitivity of the same instrument to a series of terpenes, including isoprene, α-pinene, β-pinene, D-limonene, ocimene, β-myrcene, farnesene, α-humulene, β-caryophyllene, and isolongifolene at atmospherically relevant mixing ratios (< 100 pptv). In addition, we determine the dependence of CI-ToFMS sensitivity on the reagent ion neutral delivery concentration and water vapor concentration. We show that isoprene is primarily detected as an adduct (C5H8 ṡ C6H6+) with a sensitivity ranging between 4 and 10 ncps ppt-1, which depends strongly on the reagent ion precursor concentration, de-clustering voltages, and specific humidity (SH). Monoterpenes are detected primarily as the molecular ion (C10H16+) with an average sensitivity, across the five measured compounds, of 14 ± 3 ncps ppt-1 for SH between 7 and 14 g kg-1, typical of the boreal forest during summer. Sesquiterpenes are detected primarily as the molecular ion (C15H24+) with an average sensitivity, across the four measured compounds, of 9.6 ± 2.3 ncps ppt-1, that is also independent of specific humidity. Comparable sensitivities across broad classes of terpenes (e.g., monoterpenes and sesquiterpenes), coupled to the limited dependence on specific humidity, suggest that benzene cluster cation CI-ToFMS is suitable for field studies of biosphere-atmosphere interactions.

  15. Effects of subtle differences in ligand constitution and conformation in metallo-supramolecular self-assembled polygons.

    PubMed

    Brusilowskij, Boris; Dzyuba, Egor V; Troff, Ralf W; Schalley, Christoph A

    2011-12-07

    3,3'-Bis(pyridin-[n]-ylethynyl)biphenyl (n = 3, 4) and the corresponding 2,2'-bipyridines assemble with (dppp)Pt(II) triflate into metallo-supramolecular polygons. Depending on the position of the terminal pyridine N atoms, the assembly reaction leads to different equilibrium products. With the slow ligand exchange on Pt(II) complexes, the equilibrium is reached on a many-hour time-scale. During the assembly process, larger polygons form under kinetic control. This was confirmed by time-dependent (1)H and (31)P NMR spectroscopy in line with complementary ESI mass spectrometric experiments. The constitutional difference in the pyridine N-atom position is reflected in the tandem mass spectra of the complex ions. In addition, a highly specific fragmentation process of mass-selected M(3)L(3) ions was observed, which proceeds through a ring contraction yielding smaller M(2)L(2) ions.

  16. Multiple reaction monitoring-ion pair finder: a systematic approach to transform nontargeted mode to pseudotargeted mode for metabolomics study based on liquid chromatography-mass spectrometry.

    PubMed

    Luo, Ping; Dai, Weidong; Yin, Peiyuan; Zeng, Zhongda; Kong, Hongwei; Zhou, Lina; Wang, Xiaolin; Chen, Shili; Lu, Xin; Xu, Guowang

    2015-01-01

    Pseudotargeted metabolic profiling is a novel strategy combining the advantages of both targeted and untargeted methods. The strategy obtains metabolites and their product ions from quadrupole time-of-flight (Q-TOF) MS by information-dependent acquisition (IDA) and then picks targeted ion pairs and measures them on a triple-quadrupole MS by multiple reaction monitoring (MRM). The picking of ion pairs from thousands of candidates is the most time-consuming step of the pseudotargeted strategy. Herein, a systematic and automated approach and software (MRM-Ion Pair Finder) were developed to acquire characteristic MRM ion pairs by precursor ions alignment, MS(2) spectrum extraction and reduction, characteristic product ion selection, and ion fusion. To test the reliability of the approach, a mixture of 15 metabolite standards was first analyzed; the representative ion pairs were correctly picked out. Then, pooled serum samples were further studied, and the results were confirmed by the manual selection. Finally, a comparison with a commercial peak alignment software was performed, and a good characteristic ion coverage of metabolites was obtained. As a proof of concept, the proposed approach was applied to a metabolomics study of liver cancer; 854 metabolite ion pairs were defined in the positive ion mode from serum. Our approach provides a high throughput method which is reliable to acquire MRM ion pairs for pseudotargeted metabolomics with improved metabolite coverage and facilitate more reliable biomarkers discoveries.

  17. Ion distribution and selectivity of ionic liquids in microporous electrodes.

    PubMed

    Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong

    2017-05-07

    The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.

  18. Scintillation properties of phosphate-borate-fluoride glass doped with Tb3+/Pr3+

    NASA Astrophysics Data System (ADS)

    Valiev, D.; Stepanov, S.; Polisadova, E.; Yao, G.

    2018-06-01

    Scintillation glass doped with Tb3+ and Pr3+ ions with different concentrations were prepared by the melt-quenching method. Optical, photoluminescence and decay kinetic characteristics of the pulse cathodoluminescence (PCL) were investigated. It was shown that the absorption coefficient of the induced absorption in the visible range of the spectrum decreases significantly with the increase of the Pr2O3 content starting from 0.2 to 1 wt%. There was the difference in the luminescence spectra of the glass at a selective and non-selective type of excitation. The "green" emission (λem= 542 nm, 5D4→7F5 radiative transition of Tb3+ ions) was excited an electron beam. The "red" emission (λem= 600 nm, 3P0→3H6 radiative transition of Pr3+ ion) was observed under selective excitation action (λexc= 450 nm). It was demonstrated that decreasing of intensity the main bands of Tb3+ ions at 487, 544, 622 nm connected with increases of concentration Pr3+ ions. The luminescence decay time of terbium ions at 487, 544, 622 nm emission bands depend on Pr3+ concentration. The tendency of reducing the luminescence decay time in the main luminescence bands of Tb3+ ions at increasing the Pr3+ concentration was presented. The results showed that Tb3+/ Pr3+ co-doped phosphate-borate-fluoride glasses are promising non-crystalline scintillation materials.

  19. Synchronization stability and pattern selection in a memristive neuronal network.

    PubMed

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  20. Synchronization stability and pattern selection in a memristive neuronal network

    NASA Astrophysics Data System (ADS)

    Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun

    2017-11-01

    Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.

  1. Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom's particle insertion method

    NASA Astrophysics Data System (ADS)

    Boda, Dezső; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk

    2011-02-01

    The selectivity filter of the L-type calcium channel works as a Ca2 + binding site with a very large affinity for Ca2 + versus Na+. Ca2 + replaces half of the Na+ ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na+) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca2 +). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca2 + versus Na+ selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.

  2. Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom's particle insertion method.

    PubMed

    Boda, Dezso; Giri, Janhavi; Henderson, Douglas; Eisenberg, Bob; Gillespie, Dirk

    2011-02-07

    The selectivity filter of the L-type calcium channel works as a Ca(2+) binding site with a very large affinity for Ca(2+) versus Na(+). Ca(2+) replaces half of the Na(+) ions in the filter even when these ions are present in 1 μM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na(+)) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca(2+)). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca(2+) versus Na(+) selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.

  3. Distinct regions that control ion selectivity and calcium-dependent activation in the bestrophin ion channel.

    PubMed

    Vaisey, George; Miller, Alexandria N; Long, Stephen B

    2016-11-22

    Cytoplasmic calcium (Ca 2+ ) activates the bestrophin anion channel, allowing chloride ions to flow down their electrochemical gradient. Mutations in bestrophin 1 (BEST1) cause macular degenerative disorders. Previously, we determined an X-ray structure of chicken BEST1 that revealed the architecture of the channel. Here, we present electrophysiological studies of purified wild-type and mutant BEST1 channels and an X-ray structure of a Ca 2+ -independent mutant. From these experiments, we identify regions of BEST1 responsible for Ca 2+ activation and ion selectivity. A "Ca 2+ clasp" within the channel's intracellular region acts as a sensor of cytoplasmic Ca 2+ . Alanine substitutions within a hydrophobic "neck" of the pore, which widen it, cause the channel to be constitutively active, irrespective of Ca 2+ . We conclude that the primary function of the neck is as a "gate" that controls chloride permeation in a Ca 2+ -dependent manner. In contrast to what others have proposed, we find that the neck is not a major contributor to the channel's ion selectivity. We find that mutation of a cytosolic "aperture" of the pore does not perturb the Ca 2+ dependence of the channel or its preference for anions over cations, but its mutation dramatically alters relative permeabilities among anions. The data suggest that the aperture functions as a size-selective filter that permits the passage of small entities such as partially dehydrated chloride ions while excluding larger molecules such as amino acids. Thus, unlike ion channels that have a single "selectivity filter," in bestrophin, distinct regions of the pore govern anion-vs.-cation selectivity and the relative permeabilities among anions.

  4. Metal ion-dependent DNAzymes and their applications as biosensors.

    PubMed

    Lan, Tian; Lu, Yi

    2012-01-01

    Long considered to serve solely as the genetic information carrier, DNA has been shown in 1994 to be able to act as DNA catalysts capable of catalyzing a trans-esterification reaction similar to the action of ribozymes and protein enzymes. Although not yet found in nature, numerous DNAzymes have been isolated through in vitro selection for catalyzing many different types of reactions in the presence of different metal ions and thus become a new class of metalloenzymes. What remains unclear is how DNA can carry out catalysis with simpler building blocks and fewer functional groups than ribozymes and protein enzymes and how DNA can bind metal ions specifically to perform these functions. In the past two decades, many biochemical and biophysical studies have been carried out on DNAzymes, especially RNA-cleaving DNAzymes. Important insights have been gained regarding their metal-dependent activity, global folding, metal binding sites, and catalytic mechanisms for these DNAzymes. Because of their high metal ion selectivity, one of the most important practical applications for DNAzymes is metal ion detection, resulting in highly sensitive and selective fluorescent, colorimetric, and electrochemical sensors for a wide range of metal ions such as Pb(2+), UO2 2 +,[Formula: see text] including paramagnetic metal ions such as Cu(2+). This chapter summarizes recent progresses in in vitro selection of metal ion-selective DNAzymes, their biochemical and biophysical studies and sensing applications.

  5. Modeling of sorption processes on solid-phase ion-exchangers

    NASA Astrophysics Data System (ADS)

    Dorofeeva, Ludmila; Kuan, Nguyen Anh

    2018-03-01

    Research of alkaline elements separation on solid-phase ion-exchangers is carried out to define the selectivity coefficients and height of an equivalent theoretical stage for both continuous and stepwise filling of column by ionite. On inorganic selective sorbents the increase in isotope enrichment factor up to 0.0127 is received. Also, parametrical models that are adequately describing dependence of the pressure difference and the magnitude expansion in the ion-exchange layer from the flow rate and temperature have been obtained. The concentration rate value under the optimum realization conditions of process and depending on type of a selective material changes in a range 1.021÷1.092. Calculated results show agreement with experimental data.

  6. Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties.

    PubMed

    Lima, Isabel; Marshall, Wayne E

    2005-01-01

    The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.

  7. Mass, charge, and energy separation by selective acceleration with a traveling potential hill

    NASA Astrophysics Data System (ADS)

    Tung, L. Schwager; Barr, W. L.; Lowder, R. S.; Post, R. F.

    1996-10-01

    A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%-30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to have broad applications. The primary application is for the enrichment of stable isotopes for medical and industrial tracers. Other applications include mass analysis of unknown gases (atomic and molecular) and metals, extracting single charge states from a multiply charged beam, accelerating the high energy tail in a beam or plasma with a velocity distribution, and beam bunching.

  8. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  9. Ion transport in broad bean leaf mesophyll under saline conditions.

    PubMed

    Percey, William J; Shabala, Lana; Breadmore, Michael C; Guijt, Rosanne M; Bose, Jayakumar; Shabala, Sergey

    2014-10-01

    Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na (+) induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na(+) significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na(+) also induced a significant K(+) efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv'/Fm' were linked to K(+) homeostasis in the mesophyll tissue. Increased apoplastic Na(+) concentrations induced vanadate-sensitive net H(+) efflux, presumably mediated by the plasma membrane H(+)-ATPase. It is concluded that the observed pump's activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.

  10. Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data

    PubMed Central

    2015-01-01

    A data dependent peak model (DDPM) based spectrum deconvolution method was developed for analysis of high resolution LC-MS data. To construct the selected ion chromatogram (XIC), a clustering method, the density based spatial clustering of applications with noise (DBSCAN), is applied to all m/z values of an LC-MS data set to group the m/z values into each XIC. The DBSCAN constructs XICs without the need for a user defined m/z variation window. After the XIC construction, the peaks of molecular ions in each XIC are detected using both the first and the second derivative tests, followed by an optimized chromatographic peak model selection method for peak deconvolution. A total of six chromatographic peak models are considered, including Gaussian, log-normal, Poisson, gamma, exponentially modified Gaussian, and hybrid of exponential and Gaussian models. The abundant nonoverlapping peaks are chosen to find the optimal peak models that are both data- and retention-time-dependent. Analysis of 18 spiked-in LC-MS data demonstrates that the proposed DDPM spectrum deconvolution method outperforms the traditional method. On average, the DDPM approach not only detected 58 more chromatographic peaks from each of the testing LC-MS data but also improved the retention time and peak area 3% and 6%, respectively. PMID:24533635

  11. Theoretical study of high-order harmonic generation from the hydrogen molecular ion with a dichromatic spatially inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Hu; Wang, Yan-Jun; Miao, Xiang-Yang

    2018-05-01

    We theoretically investigate the enhancement of high-order harmonic generation by numerically solving the non-Born-Oppenheimer time-dependent Schrödinger equation from the hydrogen molecular ion in a dichromatic inhomogeneous laser field. An ultrabroad supercontinuum up to 300 orders spectral width is generated. It is found that not only the inhomogeneity, but also the dichromatic field contributes to the significant extension of the harmonic cutoff compared with a monochromatic inhomogeneous laser field. Meanwhile, the long quantum paths can be suppressed and short ones can be enhanced by selecting optimized inhomogeneous parameter β, intensity and carrier envelope phase of the dichromatic inhomogeneous laser field. Furthermore, by superposing a properly selected range of the harmonic spectrum in the continuum region, an isolated 29-as pulse is generated. Both the classical theory and quantum time-frequency analysis are adopted to explain the physical mechanism.

  12. Activation of a Ca2+-dependent cation conductance with properties of TRPM2 by reactive oxygen species in lens epithelial cells.

    PubMed

    Keckeis, Susanne; Wernecke, Laura; Salchow, Daniel J; Reichhart, Nadine; Strauß, Olaf

    2017-08-01

    Ion channels are crucial for maintenance of ion homeostasis and transparency of the lens. The lens epithelium is the metabolically and electrophysiologically active cell type providing nutrients, ions and water to the lens fiber cells. Ca 2+ -dependent non-selective ion channels seem to play an important role for ion homeostasis. The aim of the study was to identify and characterize Ca 2+ - and reactive oxygen species (ROS)-dependent non-selective cation channels in human lens epithelial cells. RT-PCR revealed gene expression of the Ca 2+ -activated non-selective cation channels TRPC3, TRPM2, TRPM4 and Ano6 in both primary lens epithelial cells and the cell line HLE-B3, whereas TRPM5 mRNA was only found in HLE-B3 cells. Using whole-cell patch-clamp technique, ionomycin evoked non-selective cation currents with linear current-voltage relationship in both cell types. The current was decreased by flufenamic acid (FFA), 2-APB, 9-phenanthrol and miconazole, but insensitive to DIDS, ruthenium red, and intracellularly applied spermine. H 2 O 2 evoked a comparable current, abolished by FFA. TRPM2 protein expression in HLE-B3 cells was confirmed by means of immunocytochemistry and western blot. In summary, we conclude that lens epithelial cells functionally express Ca 2+ - and H 2 O 2 -activated non-selective cation channels with properties of TRPM2. Copyright © 2017. Published by Elsevier Ltd.

  13. Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass.

    PubMed

    Ummadi, Jyothir Ganesh; Downs, Corey J; Joshi, Vrushali S; Ferracane, Jack L; Koley, Dipankar

    2016-03-15

    Solid-state ion-selective electrodes are used as scanning electrochemical microscope (SECM) probes because of their inherent fast response time and ease of miniaturization. In this study, we report the development of a solid-state, low-poly(vinyl chloride), carbon-based calcium ion-selective microelectrode (Ca(2+)-ISME), 25 μm in diameter, capable of performing an amperometric approach curve and serving as a potentiometric sensor. The Ca(2+)-ISME has a broad linear response range of 5 μM to 200 mM with a near Nernstian slope of 28 mV/log[a(Ca(2+))]. The calculated detection limit for Ca(2+)-ISME is 1 μM. The selectivity coefficients of this Ca(2+)-ISME are log K(Ca(2+),A) = -5.88, -5.54, and -6.31 for Mg(2+), Na(+), and K(+), respectively. We used this new type of Ca(2+)-ISME as an SECM probe to quantitatively map the chemical microenvironment produced by a model substrate, bioactive glass (BAG). In acidic conditions (pH 4.5), BAG was found to increase the calcium ion concentration from 0.7 mM ([Ca(2+)] in artificial saliva) to 1.4 mM at 20 μm above the surface. In addition, a solid-state dual SECM pH probe was used to correlate the release of calcium ions with the change in local pH. Three-dimensional pH and calcium ion distribution mapping were also obtained by using these solid-state probes. The quantitative mapping of pH and Ca(2+) above the BAG elucidates the effectiveness of BAG in neutralizing and releasing calcium ions in acidic conditions.

  14. Matrix-assisted laser desorption/ionization coupled with quadrupole/orthogonal acceleration time-of-flight mass spectrometry for protein discovery, identification, and structural analysis.

    PubMed

    Baldwin, M A; Medzihradszky, K F; Lock, C M; Fisher, B; Settineri, T A; Burlingame, A L

    2001-04-15

    The design and operation of a novel UV-MALDI ionization source on a commercial QqoaTOF mass spectrometer (Applied Biosystem/MDS Sciex QSTAR Pulsar) is described. Samples are loaded on a 96-well target plate, the movement of which is under software control and can be readily automated. Unlike conventional high-energy MALDI-TOF, the ions are produced with low energies (5-10 eV) in a region of relatively low vacuum (8 mTorr). Thus, they are cooled by extensive low-energy collisions before selection in the quadrupole mass analyzer (Q1), potentially giving a quasi-continuous ion beam ideally suited to the oaTOF used for mass analysis of the fragment ions, although ion yields from individual laser shots may vary widely. Ion dissociation is induced by collisions with argon in an rf-only quadrupole cell, giving typical low-energy CID spectra for protonated peptide ions. Ions separated in the oaTOF are registered by a four-anode detector and time-to-digital converter and accumulated in "bins" that are 625 ps wide. Peak shapes depend upon the number of ion counts in adjacent bins. As expected, the accuracy of mass measurement is shown to be dependent upon the number of ions recorded for a particular peak. With internal calibration, mass accuracy better than 10 ppm is attainable for peaks that contain sufficient ions to give well-defined Gaussian profiles. By virtue of its high resolution, capability for accurate mass measurements, and sensitivity in the low-femotomole range, this instrument is ideally suited to protein identification for proteomic applications by generation of peptide tags, manual sequence interpretation, identification of modifications such as phosphorylation, and protein structural elucidation. Unlike the multiply charged ions typical of electrospray ionization, the singly charged MALDI-generated peptide ions show a linear dependence of optimal collision energy upon molecular mass, which is advantageous for automated operation. It is shown that the novel pulsing technique of this instrument that increases the sensitivity for precursor ions scans is applicable to the identification of peptides labeled with isotope-coded affinity tags.

  15. Solution Dependence of the Collisional Activation of Ubiquitin [M+7H]7+ Ions

    PubMed Central

    Shi, Huilin; Atlasevich, Natalya; Merenbloom, Samuel I.; Clemmer, David E.

    2014-01-01

    The solution dependence of gas-phase unfolding for ubiquitin [M+7H]7+ ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas, activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed. PMID:24658799

  16. Uniform deposition of size-selected clusters using Lissajous scanning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Hirata, Hirohito

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonalmore » directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.« less

  17. High Time-Resolved Kinetic Temperatures of Solar Wind Minor Ions Measured with SOHO/CELIAS/CTOF

    NASA Astrophysics Data System (ADS)

    Janitzek, N. P.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Solar wind heavy ions with an atomic number Z > 2 are referred to as minor ions since they represent a fraction of less than one percent of all solar wind ions. They can be therefore regarded as test particles, only reacting to but not driving the dynamics of the solar wind plasma, which makes them a unique diagnostic tool for plasma wave phenomena both in the solar atmosphere and the extended heliosphere. In the past, several studies have investigated the kinetic temperatures of minor ions, but due to low counting statistics these studies are based on ion velocity distribution functions (VDFs) recorded over time periods of several hours. The Charge Time-Of-Flight (CTOF) mass spectrometer as part of the Charge, ELement and Isotope Analysis System (CELIAS) onboard the SOlar and Heliospheric Observatory (SOHO) provides solar wind heavy ion 1D radial VDFs with excellent charge state separation, an unprecedented cadence of 5 minutes and very high counting statistics, exceeding similar state-of-the-art instruments by a factor of ten. In our study, based on CTOF measurements at Langrangian point L1 between DOY 150 and DOY 220 in 1996, we investigate systematically the influence of the VDF time resolution on the derived kinetic temperatures for solar wind silicon and iron ions. The selected ion set spans a wide range of mass-per-charge from 3 amu/e < m/q < 8 amu/e. Therefore, it is suitable for the search of signatures of gyrofrequency-dependent heating processes resulting from the resonant interaction of heavy ions with ion-cyclotron waves.

  18. Brownian Dynamics Simulations of Ion Transport through the VDAC

    PubMed Central

    Lee, Kyu Il; Rui, Huan; Pastor, Richard W.; Im, Wonpil

    2011-01-01

    It is important to gain a physical understanding of ion transport through the voltage-dependent anion channel (VDAC) because this channel provides primary permeation pathways for metabolites and electrolytes between the cytosol and mitochondria. We performed grand canonical Monte Carlo/Brownian dynamics (GCMC/BD) simulations to explore the ion transport properties of human VDAC isoform 1 (hVDAC1; PDB:2K4T) embedded in an implicit membrane. When the MD-derived, space-dependent diffusion constant was used in the GCMC/BD simulations, the current-voltage characteristics and ion number profiles inside the pore showed excellent agreement with those calculated from all-atom molecular-dynamics (MD) simulations, thereby validating the GCMC/BD approach. Of the 20 NMR models of hVDAC1 currently available, the third one (NMR03) best reproduces both experimental single-channel conductance and ion selectivity (i.e., the reversal potential). In addition, detailed analyses of the ion trajectories, one-dimensional multi-ion potential of mean force, and protein charge distribution reveal that electrostatic interactions play an important role in the channel structure and ion transport relationship. Finally, the GCMC/BD simulations of various mutants based on NMR03 show good agreement with experimental ion selectivity. The difference in ion selectivity between the wild-type and the mutants is the result of altered potential of mean force profiles that are dominated by the electrostatic interactions. PMID:21281575

  19. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    PubMed

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Improvement of water desalination technologies in reverse osmosis plants

    NASA Astrophysics Data System (ADS)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was analyzed and the dependence of the output of desalinated water (permeate) through the membranes on the pressure of influent water for desalination and the dependence of the permeate output on the water viscosity and the dependence of the specific permeate output on the velocity and length of the motion of the desalination water flux were built. The values of the optimum pressure of source influent water for desalination in a reverse osmosis device were found. Provided the current prices for membrane elements (800 to 1200 USD) and cost of electricity (0.06-0.1 USD), the optimum pressure is 1.0 to 1.4 MPa.

  1. Kinetic Modulation of Pulsed Chrono-potentiometric Polymeric Membrane Ion Sensors by Polyelectrolyte Multilayers

    PubMed Central

    Xu, Yida; Xu, Chao; Shvarev, Alexey; Becker, Thomas; De Marco, Roland

    2010-01-01

    Polymeric membrane ion selective electrodes are normally interrogated by zero current potentiometry, and their selectivity is understood to be primarily dependent on an extraction/ion-exchange equilibrium between the aqueous sample and polymeric membrane. If concentration gradients in the contacting diffusion layers are insubstantial, the membrane response is thought to be rather independent of kinetic processes such as surface blocking effects. In this work, the surface of calcium-selective polymeric ion-selective electrodes is coated with polyelectrolyte multilayers as evidenced by zeta potential measurements, atomic force microscopy and electrochemical impedance spectroscopy. Indeed, such multilayers have no effect on their potentiometric response if the membranes are formulated in a traditional manner, containing a lipophilic ion-exchanger and a calcium-selective ionophore. However, drastic changes in the potential response are observed if the membranes are operated in a recently introduced kinetic mode using pulsed chronopotentiometry. The results suggest that the assembled nanostructured multilayers drastically alter the kinetics of ion transport to the sensing membrane, making use of the effect that polyelectrolyte multilayers have different permeabilities toward ions with different valences. The results have implications to the design of chemically selective ion sensors since surface localized kinetic limitations can now be used as an additional dimension to tune the operational ion selectivity. PMID:17711298

  2. Transient response of nonideal ion-selective microchannel-nanochannel devices

    NASA Astrophysics Data System (ADS)

    Leibowitz, Neta; Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad

    2018-04-01

    We report evidence of variation in ion selectivity of a fabricated microchannel-nanochannel device resulting in the appearance of a distinct local maximum in the overlimiting chronopotentiometric response. In this system consisting of shallow microchannels joined by a nanochannel, viscous shear at the microchannel walls suppresses the electro-osmotic instability and prevents any associated contribution to the nonmonotonic response. Thus, this response is primarily electrodiffusive. Numerical simulations indicate that concentration polarization develops not only within the microchannel but also within the nanochannel itself, with a local voltage maximum in the chronopotentiometric response correlated with interfacial depletion and having the classic i-2 Sands time dependence. Furthermore, the occurrence of the local maxima is correlated with the change in selectivity due to internal concentration polarization. Understanding the transient nonideal permselective response is essential for obtaining fundamental insight and for optimizing efficient operation of practical fabricated nanofluidic and membrane devices.

  3. Density-dependent changes of the pore properties of the P2X2 receptor channel

    PubMed Central

    Fujiwara, Yuichiro; Kubo, Yoshihiro

    2004-01-01

    Ligand-gated ion channels underlie and play important roles in synaptic transmission, and it is generally accepted that the ion channel pores have a rigid structure that enables strict regulation of ion permeation. One exception is the P2X ATP-gated channel. After application of ATP, the ion selectivity of the P2X2 channel time-dependently changes, i.e. permeability to large cations gradually increases, and there is significant cell-to-cell variation in the intensity of inward rectification. Here we show P2X2 channel properties are correlated with the expression level: increasing P2X2 expression level in oocytes increases permeability to large cations, decreases inward rectification and increases ligand sensitivity. We also observed that the inward rectification changed in a dose-dependent manner, i.e. when low concentration of ATP was applied to an oocyte with a high expression level, the intensity of inward rectification of the evoked current was weak. Taken together, these results show that the pore properties of P2X2 channel are not static but change dynamically depending on the open channel density. Furthermore, we identified by mutagenesis study that Ile328 located at the outer mouth of the pore is critical for the density-dependent changes of P2X2. Our findings suggest synaptic transmission can be modulated by the local density-dependent changes of channel properties caused, for example, by the presence of clustering molecules. PMID:15107474

  4. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  5. Rotating field mass and velocity analyzer

    NASA Technical Reports Server (NTRS)

    Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)

    1998-01-01

    A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.

  6. Mobility-Resolved Ion Selection in Uniform Drift Field Ion Mobility Spectrometry/Mass Spectrometry: Dynamic Switching in Structures for Lossless Ion Manipulations

    DOE PAGES

    Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.; ...

    2014-09-15

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less

  7. Integrated Arrays of Ion-Sensitive Electrodes

    NASA Technical Reports Server (NTRS)

    Buehler, Martin; Kuhlman, Kimberly

    2003-01-01

    The figure depicts an example of proposed compact water-quality sensors that would contain integrated arrays of ion-sensitive electrodes (ISEs). These sensors would serve as electronic "tongues": they would be placed in contact with water and used to "taste" selected dissolved ions (that is, they would be used to measure the concentrations of the ions). The selected ions could be any or all of a variety of organic and inorganic cations and anions that could be regarded as contaminants or analytes, depending on the specific application. In addition, some of the ISEs could be made sensitive to some neutral analytes

  8. Selective Binding, Self-Assembly and Nanopatterning of the Creutz-Taube Ion on Surfaces

    PubMed Central

    Wang, Yuliang; Lieberman, Marya; Hang, Qingling; Bernstein, Gary

    2009-01-01

    The surface attachment properties of the Creutz-Taube ion, i.e., [(NH3)5Ru(pyrazine)Ru(NH3)5]5+, on both hydrophilic and hydrophobic types of surfaces were investigated using X-ray photoelectron spectroscopy (XPS). The results indicated that the Creutz-Taube ions only bound to hydrophilic surfaces, such as SiO2 and –OH terminated organic SAMs on gold substrates. No attachment of the ions on hydrophobic surfaces such as –CH3 terminated organic SAMs and poly(methylmethacrylate) (PMMA) thin films covered gold or SiO2 substrates was observed. Further ellipsometric, atomic force microscopy (AFM) and time-dependent XPS studies suggested that the attached cations could form an inorganic analog of the self-assembled monolayer on SiO2 substrate with a “lying-down” orientation. The strong electrostatic interaction between the highly charged cations and the anionic SiO2 surface was believed to account for these observations. Based on its selective binding property, patterning of wide (∼200 nm) and narrow (∼35 nm) lines of the Creutz-Taube ions on SiO2 surface were demonstrated through PMMA electron resist masks written by electron beam lithography (EBL). PMID:19333420

  9. Light output function and assembly of the time-of-flight enhanced diagnostics neutron spectrometer plastic scintillators for background reduction by double kinematic selection at EAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, X. Y.; Chen, Z. J.; Zhang, X.

    The 2.5 MeV neutron spectrometer TOFED (Time-Of-Flight Enhanced Diagnostics) has been constructed to perform advanced neutron emission spectroscopy diagnosis of deuterium plasmas on EAST. The instrument has a double-ring structure which, in combination with pulse shape digitization, allows for a dual kinematic selection in the time-of-flight/recoil proton energy (tof/E{sub p}) space, thus improving the spectrometer capability to resolve fast ion signatures in the neutron spectrum, in principle up to a factor ≈100. The identification and separation of features from the energetic ions in the neutron spectrum depends on the detailed knowledge of the instrument response function, both in terms ofmore » the light output function of the scintillators and the effect of undesired multiple neutron scatterings in the instrument. This work presents the determination of the light output function of the TOFED plastic scintillator detectors and their geometrical assembly. Results from dedicated experiments with γ-ray sources and quasi-monoenergetic neutron beams are presented. Implications on the instrument capability to perform background suppression based on double kinematic selection are discussed.« less

  10. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to generate a moderate electric field. Positive ions leaving the membrane holes would be accelerated in this electric field. The resulting flux of ions away from the ionization membrane would create a partial vacuum that would draw more of the gas medium through the membrane. The figure depicts a filter electrode and detector electrodes located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a transverse AC electric field superimposed on a ramped DC electric field. The AC field would effect differential transverse dispersal of ions. At a given instant of time, the trajectories of most of the ions would be bent toward the electrodes, causing most of the ions to collide with the electrodes and thereby become neutralized. The DC field would partly counteract the dispersive effect of the AC field, straightening the trajectories of a selected species of ions; the selection would vary with the magnitude of the applied DC field. The straightening of the trajectories of the selected ions would enable them to pass into the region between the detector electrodes. Depending on the polarity of the voltage applied to the detector electrodes, the electric field between the detector electrodes would draw the selected ions to one of these electrodes. Hence, the current collected by one of the detector electrodes would be a measure of the abundance of ions of the selected species. The ramping of the filter- electrode DC voltage would sweep the selection of ions through the spectrum of ionic species.

  11. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces.

    PubMed

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M; Brown, Warren; Liu, Juan; Wang, Gangli

    2015-01-01

    The dynamics of ion transport at nanostructured substrate-solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current-potential ( I - V ) measurements and theoretical analyses. First, a unique non-zero I - V cross-point and pinched I - V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging-discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current-potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.

  12. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces

    DOE PAGES

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; ...

    2014-08-20

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–Vmore » curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Moreoever, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. Our analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications.« less

  13. Photoionization of Atoms and Ions: Application of Time-Dependent Response Method within the Density Functional Theory.

    DTIC Science & Technology

    1987-10-13

    AD-A±95 686 PHOTOIONIZATION OF ATOMS AND IONS: APPLICATION OF III TIME-DEPENDENT RESPONSE..(U) NAVAL RESEARCH LAB WASHINGTON DC U GUPTA ET AL. 13 OCT...on revere if ncemy and idmntify by block number) FIELD GROUP SUBGROUP Photoionization Density functional Atoms Time dependent 1 S. (Continue on...reverse if necenary and identify by block numnbw) The photoionization cross-section of several atoms (AT, Xe, Rn, Cs) and ions (Ne-like Ar, H-like and Li

  14. Control of Ion Selectivity in LeuT: Two Na+ Binding Sites with two different mechanisms

    PubMed Central

    Noskov, Sergei Y.; Roux, Benoît

    2016-01-01

    The x-ray structure of LeuT, a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporter, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion-binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In site NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In site NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the poly-peptide chain surrounding the ion according to a snug-fit mechanism. PMID:18280500

  15. Theory of ion-matrix-sheath dynamics

    NASA Astrophysics Data System (ADS)

    Kos, L.; Tskhakaya, D. D.

    2018-01-01

    The time evolution of a one-dimensional, uni-polar ion sheath (an "ion matrix sheath") is investigated. The analytical solutions for the ion-fluid and Poisson's equations are found for an arbitrary time dependence of the wall-applied negative potential. In the case that the wall potential is large and remains constant after its ramp-up application, the explicit time dependencies of the sheath's parameters during the initial stage of the process are given. The characteristic rate of approaching the stationary state, satisfying the Child-Langmuir law, is determined.

  16. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    PubMed

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  17. Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESI-MS/MS approach based on advanced mass spectrometric techniques.

    PubMed

    Dasenaki, Marilena E; Thomaidis, Nikolaos S

    2010-07-05

    A strategy was newly developed to rapidly screen seventeen sulfonamides and five tetracyclines in a single run from fish tissues using ultra-high performance liquid chromatography (UHPLC) coupled with comprehensive mass spectrometric approaches, including precursor-ion scan and data dependent scan. The product ions for precursor-ion scanning were selected by studying the MS/MS fragmentation of the analytes. All sulfonamides share the same diagnostic product ion at m/z 156 in positive MS/MS scan, while for tetracycline antibiotics the diagnostic product ion was proved to be at m/z 153.8. Further characterization of each compound was performed using a data dependent scan. Separation was performed on a Zorbax Eclipse Plus C18 column with a gradient elution using acetonitrile - 0.1% formic acid mobile phase at a flow rate of 0.1 mL min(-1). This approach has proven to be a powerful, highly selective, and sensitive tool for rapid screening and detection of non-targeted components in fish tissue and requires a minimum sample preparation such as one generic extraction step with MeOH:ACN 50:50 (v/v) acidified with 0.05% formic acid. The method has also been applied successfully to porcine and poultry meat. The validation of such a screening method was performed for the first time according to Commission Decision 2002/657/EC and satisfactory method performance characteristics were achieved. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    NASA Astrophysics Data System (ADS)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  19. Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter.

    PubMed

    Barker, E L; Moore, K R; Rakhshan, F; Blakely, R D

    1999-06-15

    Mutation of a conserved Asp (D98) in the rat serotonin (5HT) transporter (rSERT) to Glu (D98E) led to decreased 5HT transport capacity, diminished coupling to extracellular Na+ and Cl-, and a selective loss of antagonist potencies (cocaine, imipramine, and citalopram but not paroxetine or mazindol) with no change in 5HT Km value. D98E, which extends the acidic side chain by one carbon, affected the rank-order potency of substrate analogs for inhibition of 5HT transport, selectively increasing the potency of two analogs with shorter alkylamine side chains, gramine, and dihydroxybenzylamine. D98E also increased the efficacy of gramine relative to 5HT for inducing substrate-activated currents in Xenopus laevis oocytes, but these currents were noticeably dependent on extracellular medium acidification. I-V profiles for substrate-independent and -dependent currents indicated that the mutation selectively impacts ion permeation coupled to 5HT occupancy. The ability of the D98E mutant to modulate selective aspects of substrate recognition, to perturb ion dependence as well as modify substrate-induced currents, suggests that transmembrane domain I plays a critical role in defining the permeation pathway of biogenic amine transporters.

  20. Triphenylamine based reactive coloro/fluorimetric chemosensors: Structural isomerism and solvent dependent sensitivity and selectivity

    NASA Astrophysics Data System (ADS)

    Kundu, Anu; Anthony, Savarimuthu Philip

    2018-01-01

    Triphenyl amine based chemosensors, (2-(((2-(9H-carbazol-9-yl)phenyl)imino)methyl)-5-(diphenylamino)phenol (ortho-CPDP) and 2-(((4-(9H-carbazol-9-yl)phenyl)imino)methyl)-5-(diphenylamino)phenol (para-CPDP), showed solvent and isomerism dependent selective coloro/fluorometric sensing of multiple metal ions (Fe3 +, Al3 + and Zn2 +) with distinguishable responses. In CH3CN, ortho and para-CPDP selectively produced yellow color upon addition of Al3 + and Fe3 + that was slowly disappeared. The yellow color of ortho and para-CPDP in DMF was decolourised selectively by adding Al3 + and Fe3 +. Both ortho and para-CPDP in CH3CN showed nearly similar rate of decolourization for Fe3 + and Al3 +. However, the rate of decolourization of ortho and para-CPDP in DMF was different for Fe3 + (10 μM, 8 min) and Al3 + (5 × 10- 4 M, 40 min) ions. The limit of detection of para-CPDP for Fe3 + is 10 μM and Al3 + 500 μM. The mechanistic studies revealed the imine hydrolysis of ortho and para-CPDP in presence of Lewis acidic Fe3 + and Al3 +. The reactivity based sensing lead to high selectivity for Al3 + and Fe3 + ions. Further, para-CPDP exhibited selective fluorescence turn-on for Zn2 + in DMF (λmax = 513 nm) and detection limit of 6.0 μM. Thus, reactive chemosensors, ortho and para-CPDP, exhibited selective and distinguishable colorimetric sensing of Fe3 + and Al3 + ions and isomerism and solvent dependent fluorescence sensing of Zn2 +.

  1. How do biological systems discriminate among physically similar ions?

    PubMed

    Diamond, J M

    1975-10-01

    This paper reviews the history of understanding how biological systems can discriminate so strikingly among physically similar ions, especially alkali cations. Appreciation of qualitative regularities ("permitted sequences") and quantitative regularities ("selectivity isotherms") in ion selectivity grew first from studies of ion exchangers and glass electrodes, then of biological systems such as enzymes and cell membranes, and most recently of lipid bilayers doped with model pores and carriers. Discrimination of ions depends on both electrostatic and steric forces. "Black-box" studies on intact biological membranes have in some cases yielded molecular clues to the structure of the actual biological pores and carriers. Major current problems involve the extraction of these molecules; how to do it, what to do when it is achieved, and how (and if) it is relevant to the central problems of membrane function. Further advances are expected soon from studies of rate barriers within membranes, of voltage-dependent ("excitable") conducting channels, and of increasingly complex model systems and biological membranes.

  2. Construction and performance characteristics of new ion selective electrodes based on carbon nanotubes for determination of meclofenoxate hydrochloride.

    PubMed

    El-Nashar, Rasha M; Abdel Ghani, Nour T; Hassan, Sherif M

    2012-06-12

    This work offers construction and comparative evaluation the performance characteristics of conventional polymer (I), carbon paste (II) and carbon nanotubes chemically modified carbon paste ion selective electrodes (III) for meclofenoxate hydrochloride are described. These electrodes depend mainly on the incorporation of the ion pair of meclofenoxate hydrochloride with phosphomolybdic acid (PMA) or phosphotungestic acid (PTA). They showed near Nernestian responses over usable concentration range 1.0 × 10(-5) to 1.0 × 10(-2)M with slopes in the range 55.15-59.74 mV(concentrationdecade)(-1). These developed electrodes were fully characterized in terms of their composition, response time, working concentration range, life span, usable pH and temperature range. The electrodes showed a very good selectivity for Meclo with respect to a large number of inorganic cations, sugars and in the presence of the degradation product of the drug (p-chloro phenoxy acetic acid). The standard additions method was applied to the determination of MecloCl in pure solution, pharmaceutical preparations and biological samples. Dissolution testing was also applied using the proposed sensors. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    NASA Technical Reports Server (NTRS)

    Larsen, Kameron (Inventor); Burt, Eric A. (Inventor); Tjoelker, Robert L. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  4. History-dependent ion transport through conical nanopipettes and the implications in energy conversion dynamics at nanoscale interfaces† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc02195a Click here for additional data file.

    PubMed Central

    Li, Yan; Wang, Dengchao; Kvetny, Maksim M.; Brown, Warren; Liu, Juan

    2015-01-01

    The dynamics of ion transport at nanostructured substrate–solution interfaces play vital roles in high-density energy conversion, stochastic chemical sensing and biosensing, membrane separation, nanofluidics and fundamental nanoelectrochemistry. Further advancements in these applications require a fundamental understanding of ion transport at nanoscale interfaces. The understanding of the dynamic or transient transport, and the key physical process involved, is limited, which contrasts sharply with widely studied steady-state ion transport features at atomic and nanometer scale interfaces. Here we report striking time-dependent ion transport characteristics at nanoscale interfaces in current–potential (I–V) measurements and theoretical analyses. First, a unique non-zero I–V cross-point and pinched I–V curves are established as signatures to characterize the dynamics of ion transport through individual conical nanopipettes. Second, ion transport against a concentration gradient is regulated by applied and surface electrical fields. The concept of ion pumping or separation is demonstrated via the selective ion transport against concentration gradients through individual nanopipettes. Third, this dynamic ion transport process under a predefined salinity gradient is discussed in the context of nanoscale energy conversion in supercapacitor type charging–discharging, as well as chemical and electrical energy conversion. The analysis of the emerging current–potential features establishes the urgently needed physical foundation for energy conversion employing ordered nanostructures. The elucidated mechanism and established methodology can be generalized into broadly-defined nanoporous materials and devices for improved energy, separation and sensing applications. PMID:28706626

  5. Time-Dependent Erosion of Ion Optics

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.

    2008-01-01

    The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.

  6. Adsorption affinity and selectivity of 3-ureidopropyltriethoxysilane grafted oil palm empty fruit bunches towards mercury ions.

    PubMed

    Kunjirama, Magendran; Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Lye, Jimmy Wei Ping; Mat, Hanapi

    2017-06-01

    This study was conducted to investigate the potential application of oil palm empty fruit branches (OPEFB) as adsorbents to remove organic methylmercurry, MeHg(II), and inorganic Hg(II) from aqueous solution. The OPEFB was functionalized with amine containing ligand namely 3-ureidopropyltriethoxysilane (UPTES) aiming for better adsorption performance towards both mercury ions. The adsorption was found to be dependent on initial pH, initial concentraton, temperatures, and contact time. The maximum adsorption capacities (Q m.exp ) of Hg(II) adsorption onto OPEFB and UPTES-OPEFB were 0.226 and 0.773 mmol/g, respectively. The Q m.exp of MeHg(II) onto OPEFB, however, was higher than UPTES-OPEFB. The adsorption kinetic data obeyed the Elovich model and the adsorption was controlled by the film-diffusion step. The calculated thermodynamic parameters indicate an endothermic adsorption process. Adsorption data analysis indicates that the adsorption mechanism may include ion-exchange, complexation, and physisorption interactions. The potential applications of adsorbents were demonstrated using oilfield produced water and natural gas condensate. The UPTES-OPEFB offered higher selectivity towards both mercury ions than OPEFB. The regenerability studies indicated that the adsorbent could be reused for multiple cycles.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Ian K.; Garimella, Sandilya V. B.; Tolmachev, Aleksey V.

    A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a “Tee” configuration and allows switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be deflected to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 torr. In the “dynamic mode” we show that mobility-selected ions can be switched intomore » the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. Ultimately, this development also provides the basis for e.g. the selection of specific mobilities for storage and accumulation, and key modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.« less

  8. Method for selective detection of explosives in mass spectrometer or ion mobility spectrometer at parts-per-quadrillion level

    DOEpatents

    Ewing, Robert G.; Atkinson, David A.; Clowers, Brian H.

    2015-09-01

    A method for selective detection of volatile and non-volatile explosives in a mass spectrometer or ion mobility spectrometer at a parts-per-quadrillion level without preconcentration is disclosed. The method comprises the steps of ionizing a carrier gas with an ionization source to form reactant ions or reactant adduct ions comprising nitrate ions (NO.sub.3.sup.-); selectively reacting the reactant ions or reactant adduct ions with at least one volatile or non-volatile explosive analyte at a carrier gas pressure of at least about 100 Ton in a reaction region disposed between the ionization source and an ion detector, the reaction region having a length which provides a residence time (tr) for reactant ions therein of at least about 0.10 seconds, wherein the selective reaction yields product ions comprising reactant ions or reactant adduct ions that are selectively bound to the at least one explosive analyte when present therein; and detecting product ions with the ion detector to determine presence or absence of the at least one explosive analyte.

  9. New insights on the voltage dependence of the KCa3.1 channel block by internal TBA.

    PubMed

    Banderali, Umberto; Klein, Hélène; Garneau, Line; Simoes, Manuel; Parent, Lucie; Sauvé, Rémy

    2004-10-01

    We present in this work a structural model of the open IKCa (KCa3.1) channel derived by homology modeling from the MthK channel structure, and used this model to compute the transmembrane potential profile along the channel pore. This analysis showed that the selectivity filter and the region extending from the channel inner cavity to the internal medium should respectively account for 81% and 16% of the transmembrane potential difference. We found however that the voltage dependence of the IKCa block by the quaternary ammonium ion TBA applied internally is compatible with an apparent electrical distance delta of 0.49 +/- 0.02 (n = 6) for negative potentials. To reconcile this observation with the electrostatic potential profile predicted for the channel pore, we modeled the IKCa block by TBA assuming that the voltage dependence of the block is governed by both the difference in potential between the channel cavity and the internal medium, and the potential profile along the selectivity filter region through an effect on the filter ion occupancy states. The resulting model predicts that delta should be voltage dependent, being larger at negative than positive potentials. The model also indicates that raising the internal K+ concentration should decrease the value of delta measured at negative potentials independently of the external K+ concentration, whereas raising the external K+ concentration should minimally affect delta for concentrations >50 mM. All these predictions are born out by our current experimental results. Finally, we found that the substitutions V275C and V275A increased the voltage sensitivity of the TBA block, suggesting that TBA could move further into the pore, thus leading to stronger interactions between TBA and the ions in the selectivity filter. Globally, these results support a model whereby the voltage dependence of the TBA block in IKCa is mainly governed by the voltage dependence of the ion occupancy states of the selectivity filter.

  10. Selectivity of peptide bond dissociation on excitation of a core electron: Effects of a phenyl group

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Cheng; Chen, Jien-Lian; Hu, Wei-Ping; Lin, Yi-Shiue; Lin, Huei-Ru; Lee, Tsai-Yun; Lee, Yuan T.; Ni, Chi-Kung; Liu, Chen-Lin

    2016-09-01

    The selective dissociation of a peptide bond upon excitation of a core electron in acetanilide and N-benzylacetamide was investigated. The total-ion-yield near-edge X-ray absorption fine structure spectra were recorded and compared with the predictions from time-dependent density functional theory. The branching ratios for the dissociation of a peptide bond are observed as 16-34% which is quite significant. This study explores the core-excitation, the X-ray photodissociation pathways, and the theoretical explanation of the NEXAFS spectra of organic molecules containing both a peptide bond and a phenyl group.

  11. An integrated strategy to improve data acquisition and metabolite identification by time-staggered ion lists in UHPLC/Q-TOF MS-based metabolomics.

    PubMed

    Wang, Yang; Feng, Ruibing; He, Chengwei; Su, Huanxing; Ma, Huan; Wan, Jian-Bo

    2018-08-05

    The narrow linear range and the limited scan time of the given ion make the quantification of the features challenging in liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics with the full-scan mode. And metabolite identification is another bottleneck of untargeted analysis owing to the difficulty of acquiring MS/MS information of most metabolites detected. In this study, an integrated workflow was proposed using the newly established multiple ion monitoring mode with time-staggered ion lists (tsMIM) and target-directed data-dependent acquisition with time-staggered ion lists (tsDDA) to improve data acquisition and metabolite identification in UHPLC/Q-TOF MS-based untargeted metabolomics. Compared to the conventional untargeted metabolomics, the proprosed workflow exhibited the better repeatability before and after data normalization. After selecting features with the significant change by statistical analysis, MS/MS information of all these features can be obtained by tsDDA analysis to facilitate metabolite identification. Using time-staggered ion lists, the workflow is more sensitive in data acquisition, especially for the low-abundant features. Moreover, the metabolites with low abundance tend to be wrongly integrated and triggered by full scan-based untargeted analysis with MS E acquisition mode, which can be greatly improved by the proposed workflow. The integrated workflow was also successfully applied to discover serum biosignatures for the genetic modification of fat-1 in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Spectroscopic and TDDFT investigation on highly selective fluorogenic chemosensor and construction of molecular logic gates.

    PubMed

    Basheer, Sabeel M; Kumar, Saravana Loganathan Ashok; Kumar, Moorthy Saravana; Sreekanth, Anandaram

    2017-03-01

    1,5-Bis(2-fluorene)thiocarbohydrazone (FBTC) was designed and synthesized for selective sensing of fluoride and copper ions. The binding constants of FBTC towards fluoride and copper ions have been calculated using the Benesi-Hildebrand equation, and FBTC has more binding affinity towards copper ion than fluoride ion. The 1 H NMR and 13 C NMR titration studies strongly support the deprotonation was taken from the N-H protons followed by the formation of hydrogen bond via N-H … F. To understand the fluoride ion sensing mechanism, theoretical investigation had been carried out using the density functional theory and time-dependent density functional theory. The theoretical data well reproduced the experimental results. The deprotonation process has a moderate transition barrier (481.55kcal/mol). The calculated ΔE and ΔG values (-253.92 and -192.41kcal/mol respectively) suggest the feasibility of sensing process. The potential energy curves give the optimized structures of FBTC-F complex in the ground state and excited state, which states the proton transition occurs at the excited state. The excited state proton transition mechanism was further confirmed with natural bond orbital analysis. The reversibility of the sensor was monitored by the alternate addition of F - and Cu 2+ ions, which was explained with "Read-Erase-Write-Read" behaviour. The multi-ion detection of sensor used to construct the molecular logic gate, such as AND, OR, NOR and INHIBITION logic gates. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dynamics from Seconds to Hours in Hodgkin-Huxley Model with Time-Dependent Ion Concentrations and Buffer Reservoirs

    PubMed Central

    Hübel, Niklas; Dahlem, Markus A.

    2014-01-01

    The classical Hodgkin-Huxley (HH) model neglects the time-dependence of ion concentrations in spiking dynamics. The dynamics is therefore limited to a time scale of milliseconds, which is determined by the membrane capacitance multiplied by the resistance of the ion channels, and by the gating time constants. We study slow dynamics in an extended HH framework that includes time-dependent ion concentrations, pumps, and buffers. Fluxes across the neuronal membrane change intra- and extracellular ion concentrations, whereby the latter can also change through contact to reservoirs in the surroundings. Ion gain and loss of the system is identified as a bifurcation parameter whose essential importance was not realized in earlier studies. Our systematic study of the bifurcation structure and thus the phase space structure helps to understand activation and inhibition of a new excitability in ion homeostasis which emerges in such extended models. Also modulatory mechanisms that regulate the spiking rate can be explained by bifurcations. The dynamics on three distinct slow times scales is determined by the cell volume-to-surface-area ratio and the membrane permeability (seconds), the buffer time constants (tens of seconds), and the slower backward buffering (minutes to hours). The modulatory dynamics and the newly emerging excitable dynamics corresponds to pathological conditions observed in epileptiform burst activity, and spreading depression in migraine aura and stroke, respectively. PMID:25474648

  14. Headspace analysis of new psychoactive substances using a Selective Reagent Ionisation-Time of Flight-Mass Spectrometer

    PubMed Central

    Acton, W. Joe; Lanza, Matteo; Agarwal, Bishu; Jürschik, Simone; Sulzer, Philipp; Breiev, Kostiantyn; Jordan, Alfons; Hartungen, Eugen; Hanel, Gernot; Märk, Lukas; Mayhew, Chris A.; Märk, Tilmann D.

    2014-01-01

    The rapid expansion in the number and use of new psychoactive substances presents a significant analytical challenge because highly sensitive instrumentation capable of detecting a broad range of chemical compounds in real-time with a low rate of false positives is required. A Selective Reagent Ionisation-Time of Flight-Mass Spectrometry (SRI-ToF-MS) instrument is capable of meeting all of these requirements. With its high mass resolution (up to m/Δm of 8000), the application of variations in reduced electric field strength (E/N) and use of different reagent ions, the ambiguity of a nominal (monoisotopic) m/z is reduced and hence the identification of chemicals in a complex chemical environment with a high level of confidence is enabled. In this study we report the use of a SRI-ToF-MS instrument to investigate the reactions of H3O+, O2+, NO+ and Kr+ with 10 readily available (at the time of purchase) new psychoactive substances, namely 4-fluoroamphetamine, methiopropamine, ethcathinone, 4-methylethcathinone, N-ethylbuphedrone, ethylphenidate, 5-MeO-DALT, dimethocaine, 5-(2-aminopropyl)benzofuran and nitracaine. In particular, the dependence of product ion branching ratios on the reduced electric field strength for all reagent ions was investigated and is reported here. The results reported represent a significant amount of new data which will be of use for the development of drug detection techniques suitable for real world scenarios. PMID:25844048

  15. Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups.

    PubMed

    Li, Zhan; Liu, Yanqi; Zhao, Yang; Zhang, Xin; Qian, Lijuan; Tian, Longlong; Bai, Jing; Qi, Wei; Yao, Huijun; Gao, Bin; Liu, Jie; Wu, Wangsuo; Qiu, Hongdeng

    2016-10-18

    Graphene-coated plastic substrates, such as polyethylene terephthalate (PET), are regularly used in flexible electronic devices. Here we demonstrate a new application of the graphene-coated nanoporous PET membrane for the selective separation of metal ions in an ion exchange manner. Irradiation with swift heavy ions is used to perforate graphene and PET substrate. This process could create graphene nanopores with carboxyl groups, thus forming conical holes in the PET after chemical etching to support graphene nanopores. Therefore, a monolayer nanoporous graphene membrane with a PET substrate is constructed successfully to investigate its ionic selective separation. We find that the permeation ratio of ions strongly depends on the temperature and H + concentration in the driving solution. An electric field can increase the permeation ratio of ions through the graphene nanopores, but it inhibits the ion selective separation. Moreover, the structure of the graphene nanopore with carboxyl groups is resolved at the density functional theory level. The results show the asymmetric structure of the nanopore with carboxyl groups, and the analysis indicates that the ionic permeation can be attributed to the ion exchange between metal ions and protons on the two sides of graphene nanopores. These results would be beneficial to the design of membrane separation materials made from graphene with efficient online and offline bulk separation.

  16. Phosphate recovery from wastewater using engineered superparamagnetic particles modified with layered double hydroxide ion exchangers.

    PubMed

    Drenkova-Tuhtan, Asya; Mandel, Karl; Paulus, Anja; Meyer, Carsten; Hutter, Frank; Gellermann, Carsten; Sextl, Gerhard; Franzreb, Matthias; Steinmetz, Heidrun

    2013-10-01

    An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate. Based upon the preliminary screening of different LDH ion exchanger modifications for phosphate selectivity and uptake capacity, MgFe-Zr LDH coated magnetic particles were chosen for further characterization and application. The adsorption kinetics of phosphate from municipal wastewater was studied in dependence with particle concentration, contact time and pH. Adsorption isotherms were then determined for the selected particle system. Recovery of phosphate and regeneration of the particles was examined via testing a variety of desorption solutions. Reusability of the particles was demonstrated for 15 adsorption/desorption cycles. Adsorption in the range of 75-97% was achieved in each cycle after 1 h contact time. Phosphate recovery and enrichment was possible through repetitive application of the desorption solution. Finally, a pilot scale experiment was carried out by treating 125 L of wastewater with the particles in five subsequent 25 L batches. Solid-liquid separation on this scale was carried out with a high-gradient magnetic filter (HGMF). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A micropixelated ion-imaging detector for mass resolution enhancement of a QMS instrument.

    PubMed

    Syed, Sarfaraz U A H; Eijkel, Gert B; Maher, Simon; Kistemaker, Piet; Taylor, Stephen; Heeren, Ron M A

    2015-03-01

    An in-vacuum position-sensitive micropixelated detector (Timepix) is used to investigate the time-dependent spatial distribution of different charge state (and hence different mass-to-charge (m/z)) ions exiting an electrospray ionization (ESI)-based quadrupole mass spectrometer (QMS) instrument. Ion images obtained from the Timepix detector provide a detailed insight into the positions of stable and unstable ions of the mass peak as they exit the QMS. With the help of image processing algorithms and by selecting areas on the ion images where more stable ions impact the detector, an improvement in mass resolution by a factor of 5 was obtained for certain operating conditions. Moreover, our experimental approach of mass resolution enhancement was confirmed by in-house-developed novel QMS instrument simulation software. Utilizing the imaging-based mass resolution enhancement approach, the software predicts instrument mass resolution of ∼1,0000 for a single-filter QMS instrument with a 210-mm long mass filter and a low operating frequency (880 kHz) of the radio frequency (RF) voltage.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram

    Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under differentmore » levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.« less

  19. Formation of multiple energy dispersion of H+, He+, and O+ ions in the inner magnetosphere in response to interplanetary shock

    NASA Astrophysics Data System (ADS)

    Tsuji, H.; Ebihara, Y.; Tanaka, T.

    2017-04-01

    An interplanetary (IP) shock has a large impact on magnetospheric ions. Satellite observations have shown that soon after arrival of the IP shock, overall intensity of the ions rapidly increases and multiple energy dispersion appears in an energy-time spectrogram of the ions. In order to understand the response of the magnetospheric ions to IP shock, we have performed test particle simulation under the electric and magnetic fields provided by the global magnetohydrodynamic simulation. We reconstructed the differential flux of H+, He+, and O+ ions at (7, 0, 0) Re in GSM coordinates by means of the semi-Lagrangian (phase space mapping) method. Simulation results show that the ions respond to the IP shock in two different ways. First, overall intensity of the flux gradually increases at all pitch angles. As the compressional wave propagates tailward, the magnetic field increases, which accelerates the ions due to the gyrobetatron. Second, multiple energy-time dispersion appears in the reconstructed spectrograms of the ion flux. The energy-time dispersion is caused by the ion moving toward mirror point together with tailward propagating compressional wave at off-equator. The ions are primarily accelerated by the drift betatron under the strong electric field looking dawnward. The dispersion is absent in the spectrogram of equatorially mirroring ions. The dispersion appears at higher energy for heavier ions. These features are consistent with the satellite observations. Because the acceleration depends on bounce phase, the bounce-averaged approximation is probably invalid for the ions during the interval of geomagnetic sudden commencement.Plain Language SummarySolar storm can cause a significant compression of the magnetosphere on the dayside. The compression starts at the subsolar point and propagates toward the nightside in the magnetosphere. Some ions bouncing between the Northern Hemisphere and the Southern Hemisphere are found to be accelerated selectively when the ions move together with the propagation of the compressional wave. As a consequence, striped structures appear in the energy versus time spectrum of the ion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28531356','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28531356"><span>Spin Polarization Transfer from a Photogenerated Radical Ion Pair to a Stable Radical Controlled by Charge Recombination.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Horwitz, Noah E; Phelan, Brian T; Nelson, Jordan N; Mauck, Catherine M; Krzyaniak, Matthew D; Wasielewski, Michael R</p> <p>2017-06-15</p> <p>Photoexcitation of electron donor-acceptor molecules frequently produces radical ion pairs with well-defined initial spin-polarized states that have attracted significant interest for spintronics. Transfer of this initial spin polarization to a stable radical is predicted to depend on the rates of the radical ion pair recombination reactions, but this prediction has not been tested experimentally. In this study, a stable radical/electron donor/chromophore/electron acceptor molecule, BDPA • -mPD-ANI-NDI, where BDPA • is α,γ-bisdiphenylene-β-phenylallyl, mPD is m-phenylenediamine, ANI is 4-aminonaphthalene-1,8-dicarboximide, and NDI is naphthalene-1,4:5,8-bis(dicarboximide), was synthesized. Photoexcitation of ANI produces the triradical BDPA • -mPD +• -ANI-NDI -• in which the mPD +• -ANI-NDI -• radical ion pair is spin coupled to the BDPA • stable radical. BDPA • -mPD +• -ANI-NDI -• and its counterpart lacking the stable radical are found to exhibit spin-selective charge recombination in which the triplet radical ion pair 3 (mPD +• -ANI-NDI -• ) is in equilibrium with the 3 *NDI charge recombination product. Time-resolved EPR measurements show that this process is associated with an inversion of the sign of the polarization transferred to BDPA • over time. The polarization transfer rates are found to be strongly solvent dependent, as shifts in this equilibrium affect the spin dynamics. These results demonstrate that even small changes in electron transfer dynamics can have a large effect on the spin dynamics of photogenerated multispin systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5131299','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5131299"><span>Characteristics of Ions Emission from Ultrashort Laser Produced Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Elsied, Ahmed M.; Termini, Nicholas C.; Diwakar, Prasoon K.; Hassanein, Ahmed</p> <p>2016-01-01</p> <p>The dynamic characteristics of the ions emitted from ultrashort laser interaction with materials were studied. A series of successive experiments were conducted for six different elements (C, Al, Cu, Mo, Gd, and W) using 40 fs, 800 nm Ti: Sapphire laser. Time-of-flight (TOF) ion profile was analyzed and charge emission dependencies were investigated. The effects of incident laser interaction with each element were studied over a wide range of laser fluences (0.8 J/cm2 to 24 J/cm2) corresponding to laser intensities (2.0 × 1013 W/cm2 to 6.0 × 1014 W/cm2). The dependencies of the angular resolved ion flux and energy were also investigated. The TOF ion profile exhibits two peaks corresponding to a fast and a slow ion regime. The slow ions emission was the result of thermal vaporization while fast ions emission was due to time dependent ambipolar electric field. A theoretical model is proposed to predict the total ion flux emitted during femtosecond laser interaction that depends on laser parameters, material properties, and plume hydrodynamics. Incident laser fluence directly impacts average charge state and in turn affects the ion flux. Slow ions velocity exhibited different behavior from fast ions velocity. The fast ions energy and flux were found to be more collimated. PMID:27905553</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23385412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23385412"><span>A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus</p> <p>2013-02-04</p> <p>In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3649394','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3649394"><span>A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus</p> <p>2013-01-01</p> <p>In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJD...71...77W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJD...71...77W"><span>Photodetachment dynamics in a time-dependent oscillating electric field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, De-hua; Xu, Qin-feng; Du, Jie</p> <p>2017-03-01</p> <p>Using the time-dependent form of closed orbit theory, as developed by Haggerty and Delos [M.R. Haggerty, J.B. Delos, Phys. Rev. A 61, 053406 (2000)], and by Yang and Robicheaux [B.C. Yang, F. Robicheaux, Phys. Rev. A 93, 053413 (2016)], we study the photodetachment dynamics of a hydrogen negative ion in a time-dependent oscillating electric field. Compared to the photodetachment in a static electric field, the photodetachment dynamics of a negative ion in the time-dependent oscillating electric field become much more complicated but more interesting. Since the applied electric field is oscillating with time, the photodetachment cross section of the negative ion in the oscillating electric field is time-dependent. In a time-dependent framework, we put forward an analytical formula for calculating the instantaneous photodetachment cross section of this system. Our study suggests that the instantaneous photodetachment cross section exhibits oscillatory structure, which depends sensitively on the frequency of the oscillating electric field. With increasing frequency of the oscillating electric field, the number of closed orbits increases and the oscillatory structure in the photodetachment cross section becomes much more complicated. The connection between the detached electron's closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the photodetachment processes of a negative ion in the presence of an oscillating electric field. We hope that our work will be useful in guiding future experimental research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869200','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869200"><span>Recovery of niobium from irradiated targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.</p> <p>1994-01-01</p> <p>A process for selective separation of niobium from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected form the group consisting of molybdenum, biobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the cationic resin; adjusting the pH of the second ion-containing solution to within a range of from about 5.0 to about 6.0; contacting the pH adjusting second ion-containing solution with a dextran-based material for a time to selectively separate niobium from the solution and recovering the niobium from the dextran-based material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28339157','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28339157"><span>Determination of residence times of ions in a resistive glass selected ion flow-drift tube using the Hadamard transformation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spesyvyi, Anatolii; Španěl, Patrik</p> <p>2015-09-15</p> <p>Selected ion flow tube mass spectrometry, SIFT-MS, used for trace gas analyses has certain fundamental limitations that could be alleviated by adding a facility that allows reaction times and ion interaction energies to be varied. Thus, a selected ion flow-drift tube, SIFDT, has been created to explore the influence of an embedded electric field on these parameters and on reaction processes. The new SIFTD instrument was constructed using a miniature resistive glass drift tube. Arrival times of ions, t, analysed by a downstream quadrupole mass spectrometer over the m/z range 10-100 were studied by modulating the injected ion current using a gate lens. Single pulse modulation was compared with pseudorandom time multiplexing exploiting the Hadamard transformation. A simple model involving analysis of ethanol and water vapour mixture in air was used to explore the advantages of the SIFDT concept to SIFT-MS analysis. It is shown that the resistive glass drift tube is suitable for SIFDT experiments. The Hadamard transformation can be used to routinely determine reagent ion residence time in the flow-drift tube and also to observe differences in arrival times for different product ions. Two-dimensional data combining arrival time and mass spectra can be obtained rapidly. The calculated ion drift velocities vary with the reduced field strength, E/N, and the calculated ion mobilities agree with theoretical and previous literature values. This study has provided evidence that the SIFDT-MS technique can be implemented in a miniature and low-cost instrument and two- or three-dimensional data can be obtained (product ion count rates as functions of m/z, t and E/N) using the Hadamard transformation thus providing exciting possibilities for further analytical additions and extensions of the SIFT-MS technique. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcSpA.177....6M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcSpA.177....6M"><span>A novel acidic pH fluorescent probe based on a benzothiazole derivative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi</p> <p>2017-04-01</p> <p>A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22574001-highly-efficient-selective-adsorption-sup-pristine-zn-al-layered-double-hydroxide-zn-al-ldh-from-aqueous-solutions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22574001-highly-efficient-selective-adsorption-sup-pristine-zn-al-layered-double-hydroxide-zn-al-ldh-from-aqueous-solutions"><span>Highly efficient and selective adsorption of In{sup 3+} on pristine Zn/Al layered double hydroxide (Zn/Al-LDH) from aqueous solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Barnabas, Mary Jenisha; Parambadath, Surendran; Mathew, Aneesh</p> <p>2016-01-15</p> <p>A pristine Zn/Al-layered double hydroxide (Zn/Al-LDH) showed excellent adsorption ability and selectivity towards In{sup 3+} ions from aqueous solutions. The adsorption behaviour as a function of the contact time, solution pH, ionic strength, and amount of adsorbent under ambient conditions revealed a strong dependency on the pH and ionic strength over In{sup 3+} intake. The structure and properties of Zn/Al-LDH and In{sup 3+} adsorbed Zn/Al-LDH (In–Zn/Al-LDH) were examined carefully by X-ray diffraction, Fourier transform infrared spectroscopy, N{sub 2}-sorption/desorption, UV–vis spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent had a sufficient number of active sites that were responsible for the In{sup 3+}more » adsorption and quite stable even after the adsorption process. The selective adsorption of In{sup 3+} on Zn/Al-LDH was also observed even from a mixture containing competing ions, such as Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Cu{sup 2+}. The adsorption experiments showed that Zn/Al-LDH is a promising material for the pre-concentration and selective removal of In{sup 3+} from large volumes of aqueous solutions. - Highlights: • A pristine Zn/Al-layered double hydroxide showed good selectivity for In{sup 3+} ions. • The material exhibited a maximum In{sup 3+} intake of 205 mg g{sup −1} at pH 6. • The materials showed good affinity of In{sup 3+} over Cu{sup 2+} and Pb{sup 2+} from ion mixtures.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1484048','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1484048"><span>Biological Ion Exchanger Resins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Damadian, Raymond; Goldsmith, Michael; Zaner, K. S.</p> <p>1971-01-01</p> <p>Biological selectivity is shown to vary with medium osmotic strength and temperature. Selectivity reversals occur at 4°C and at an external osmolality of 0.800 indicating that intracellular hydration and endosolvent (intracellular water) structure are important determinants in selectivity. Magnetic resonance measurements of line width by steady-state nuclear magnetic resonance (NMR) indicate a difference in the intracellular water signal of 16 Hz between the K form and Na form of Escherichia coli, providing additional evidence that changes in the ionic composition of cells are accompanied by changes in endosolvent structure. The changes were found to be consistent with the thermodynamic and magnetic resonance properties of aqueous electrolyte solutions. Calculation of the dependence of ion-pairing forces on medium dielectric reinforces the role of endosolvent structure in determining ion exchange selectivity. PMID:4943653</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97d3806K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97d3806K"><span>Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krumm, F.; Vogel, W.</p> <p>2018-04-01</p> <p>In quantum interaction problems with explicitly time-dependent interaction Hamiltonians, the time ordering plays a crucial role for describing the quantum evolution of the system under consideration. In such complex scenarios, exact solutions of the dynamics are rarely available. Here we study the nonlinear vibronic dynamics of a trapped ion, driven in the resolved sideband regime with some small frequency mismatch. By describing the pump field in a quantized manner, we are able to derive exact solutions for the dynamics of the system. This eventually allows us to provide analytical solutions for various types of time-dependent quantities. In particular, we study in some detail the electronic and the motional quantum dynamics of the ion, as well as the time evolution of the nonclassicality of the motional quantum state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1004140-quasi-simultaneous-measurements-ionic-currents-vibrating-probe-ph-distribution-ion-selective-microelectrode','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1004140-quasi-simultaneous-measurements-ionic-currents-vibrating-probe-ph-distribution-ion-selective-microelectrode"><span>Quasi-simultaneous Measurements of Ionic Currents by Vibrating Probe and pH Distribution by Ion-selective Microelectrode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Isaacs, H.S.; Lamaka, S.V.; Taryba, M.</p> <p>2011-01-01</p> <p>This work reports a new methodology to measure quasi-simultaneously the local electric fields and the distribution of specific ions in a solution via selective microelectrodes. The field produced by the net electric current was detected using the scanning vibrating electrode technique (SVET) with quasi-simultaneous measurements of pH with an ion-selective microelectrode (pH-SME). The measurements were performed in a validation cell providing a 48 ?m diameter Pt wire cross section as a source of electric current. A time lag between acquiring each current density and pH data-point was 1.5 s due to the response time of pH-SME. The quasi-simultaneous SVET-pH measurementsmore » that correlate electrochemical oxidation-reduction processes with acid-base chemical equilibria are reported for the first time. No cross-talk between the vibrating microelectrode and the ion-selective microelectrode could be detected under given experimental conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840009976','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840009976"><span>Neon transport in selected organic composites. [stopping power of Kapton and polyethylene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.</p> <p>1984-01-01</p> <p>An energy-dependent, perturbation expansion solution for heavy-ion transport in one dimension was used to calculate the dose from Ne-20 beams at incident kinetic energies of 350, 670, and 2000 MeV/amu onto selected organic composites. Transport coefficients, applicable to arbitrary ion beams over a broad range of energies, are presented. Polyethylene and Kapton were tested as constituents of multilayered shielding for spacecraft and astronauts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24731684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24731684"><span>Dielectric analysis of depth dependent curing behavior of dental resin composites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Steinhaus, Johannes; Moeginger, Bernhard; Grossgarten, Mandy; Rosentritt, Martin; Hausnerova, Berenika</p> <p>2014-06-01</p> <p>The aim of this study is to investigate depth dependent changes of polymerization process and kinetics of visible light-curing (VLC) dental composites in real-time. The measured quantity - "ion viscosity" determined by dielectric analysis (DEA) - provides the depth dependent reaction rate which is correlated to the light intensity available in the corresponding depths derived from light transmission measurements. The ion viscosity curves of two composites (VOCO Arabesk Top and Grandio) were determined during irradiation of 40s with a light-curing unit (LCU) in specimen depths of 0.5/0.75/1.0/1.25/1.5/1.75 and 2.0mm using a dielectric cure analyzer (NETZSCH DEA 231 with Mini IDEX sensors). The thickness dependent light transmission was measured by irradiation composite specimens of various thicknesses on top of a radiometer setup. The shape of the ion viscosity curves depends strongly on the specimen thickness above the sensor. All curves exhibit a range of linear time dependency of the ion viscosity after a certain initiation time. The determined initiation times, the slopes of the linear part of the curves, and the ion viscosities at the end of the irradiation differ significantly with depth within the specimen. The slopes of the ion viscosity curves as well as the light intensity values decrease with depth and fit to the Lambert-Beer law. The corresponding attenuation coefficients are determined for Arabesk Top OA2 to 1.39mm(-1) and 1.48mm(-1), respectively, and for Grandio OA2 with 1.17 and 1.39mm(-1), respectively. For thicknesses exceeding 1.5mm a change in polymerization behavior is observed as the ion viscosity increases subsequent to the linear range indicating some kind of reaction acceleration. The two VLC composites and different specimen thicknesses discriminate significantly in their ion viscosity evolution allowing for a precise characterization of the curing process even with respect to the polymerization mechanism. Copyright © 2014. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RScI...86i4101S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RScI...86i4101S"><span>Tandem ion mobility spectrometry coupled to laser excitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simon, Anne-Laure; Chirot, Fabien; Choi, Chang Min; Clavier, Christian; Barbaire, Marc; Maurelli, Jacques; Dagany, Xavier; MacAleese, Luke; Dugourd, Philippe</p> <p>2015-09-01</p> <p>This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collision is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25794731','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25794731"><span>Modification of porous starch for the adsorption of heavy metal ions from aqueous solution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Xiaofei; Liu, Xueyuan; Anderson, Debbie P; Chang, Peter R</p> <p>2015-08-15</p> <p>Porous starch xanthate (PSX) and porous starch citrate (PSC) were prepared in anticipation of the attached xanthate and carboxylate groups respectively forming chelation and electrostatic interactions with heavy metal ions in the subsequent adsorption process. The lead(II) ion was selected as the model metal and its adsorption by PSX and PSC was characterized. The adsorption capacity was highly dependent on the carbon disulfide/starch and citric acid/starch mole ratios used during preparation. The adsorption behaviors of lead(II) ion on PSXs and PSCs fit both the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity from the Langmuir isotherm equation reached 109.1 and 57.6 mg/g for PSX and PSC when preparation conditions were optimized, and the adsorption times were just 20 and 60 min, respectively. PSX and PSC may be used as effective adsorbents for removal of heavy metals from contaminated liquid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27715015','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27715015"><span>Enhancement of Compound Selectivity Using a Radio Frequency Ion-Funnel Proton Transfer Reaction Mass Spectrometer: Improved Specificity for Explosive Compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>González-Méndez, Ramón; Watts, Peter; Olivenza-León, David; Reich, D Fraser; Mullock, Stephen J; Corlett, Clive A; Cairns, Stuart; Hickey, Peter; Brookes, Matthew; Mayhew, Chris A</p> <p>2016-11-01</p> <p>A key issue with any analytical system based on mass spectrometry with no initial separation of compounds is to have a high level of confidence in chemical assignment. This is particularly true for areas of security, such as airports, and recent terrorist attacks have highlighted the need for reliable analytical instrumentation. Proton transfer reaction mass spectrometry is a useful technology for these purposes because the chances of false positives are small owing to the use of a mass spectrometric analysis. However, the detection of an ion at a given m/z for an explosive does not guarantee that that explosive is present. There is still some ambiguity associated with any chemical assignment owing to the presence of isobaric compounds and, depending on mass resolution, ions with the same nominal m/z. In this article we describe how for the first time the use of a radio frequency ion-funnel (RFIF) in the reaction region (drift tube) of a proton transfer reaction-time-of-flight-mass spectrometer (PTR-ToF-MS) can be used to enhance specificity by manipulating the ion-molecule chemistry through collisional induced processes. Results for trinitrotoluene, dinitrotoluenes, and nitrotoluenes are presented to demonstrate the advantages of this new RFIF-PTR-ToF-MS for analytical chemical purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993PNAS...90.5446T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993PNAS...90.5446T"><span>Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael</p> <p>1993-06-01</p> <p>Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030058874','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030058874"><span>Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.</p> <p>2002-01-01</p> <p>We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2717285','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2717285"><span>Ion Selectivity in the KcsA Potassium Channel from the Perspective of the Ion Binding Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dixit, Purushottam D.; Merchant, Safir; Asthagiri, D.</p> <p>2009-01-01</p> <p>To understand the thermodynamic exclusion of Na+ relative to K+ from the S2 site of the selectivity filter, the distribution PX(ɛ) (X = K+ or Na+) of the binding energy (ɛ) of the ion with the channel is analyzed using the potential distribution theorem. By expressing the excess chemical potential of the ion as a sum of mean-field 〈ɛ〉 and fluctuation μexflux,X contributions, we find that selectivity arises from a higher value of μflux,Na+ex relative to μflux,K+ex. To understand the role of site-site interactions on μexflux,X, we decompose PX(ɛ) into n-dependent distributions, where n is the number of ion-coordinating ligands within a distance λ from the ion. For λ comparable to typical ion-oxygen bond distances, investigations building on this multistate model reveal an inverse correlation between favorable ion-site and site-site interactions: the ion-coordination states that most influence the thermodynamics of the ion are also those for which the binding site is energetically less strained and vice versa. This correlation motivates understanding entropic effects in ion binding to the site and leads to the finding that μexflux,X is directly proportional to the average site-site interaction energy, a quantity that is sensitive to the chemical type of the ligand coordinating the ion. Increasing the coordination number around Na+ only partially accounts for the observed magnitude of selectivity; acknowledging the chemical type of the ion-coordinating ligand is essential. PMID:19289040</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JASMS..27..699Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JASMS..27..699Z"><span>Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato</p> <p>2016-04-01</p> <p>Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3952148','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3952148"><span>Counter-ion Dependent, Longitudinal Unzipping of Multi-Walled Carbon Nanotubes to Highly Conductive and Transparent Graphene Nanoribbons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shinde, Dhanraj B.; Majumder, Mainak; Pillai, Vijayamohanan K.</p> <p>2014-01-01</p> <p>Here we report for the first time, a simple hydrothermal approach for the bulk production of highly conductive and transparent graphene nanoribbons (GNRs) using several counter ions from K2SO4, KNO3, KOH and H2SO4 in aqueous media, where, selective intercalation followed by exfoliation gives highly conducting GNRs with over 80% yield. In these experiments, sulfate and nitrate ions act as a co-intercalant along with potassium ions resulting into exfoliation of multi-walled carbon nanotubes (MWCNTs) in an effective manner. The striking similarity of experimental results in KOH and H2SO4 that demonstrates partially damaged MWCNTs, implies that no individual K+, SO42− ion plays a key role in unwrapping of MWCNTs, rather this process is largely effective in the presence of both cations and anions working in a cooperative manner. The GNRs can be used for preparing conductive 16 kΩsq−1, transparent (82%) and flexible thin films using low cost fabrication method. PMID:24621526</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatCo...712753D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatCo...712753D"><span>Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît</p> <p>2016-09-01</p> <p>The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17881778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17881778"><span>Space charge effect in spectrometers of ion mobility increment with planar drift chamber.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elistratov, A A; Sherbakov, L A</p> <p>2007-01-01</p> <p>The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MRE.....5e6205T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MRE.....5e6205T"><span>Theoretical studies of structure and selectivity of 5-methyl-4-(2-thiazolylazo) resorcinol as a sensor for metal ions: DFT calculation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thaomola, Sukhontip; Sompech, Supachai</p> <p>2018-05-01</p> <p>The global minimum optimized structures of the free sensor 5-methyl-4-(2-thiazolylazo) resorcinol (5-Me-TAR) and 5-Me-TAR-Cu2+ complexes in the gas phase have been investigated by using Density Functional Theory (DFT) with the def2-TZVP basis set. To compare the selectivity of 5-Me-TAR for metal ions, the binding energy of 5-Me-TAR with various metal ions (Na+, K+, Mg2+, Ca2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Pd2+, Cd2+ and Hg2+) were calculated at the same level as the theory. Binding energy values of most transition metal ions are lower than alkaline earth metal ions and alkali metal ions, respectively. The 5-Me-TAR sensor shows the highest selectivity with the Cu2+ ion. Moreover, Dependent Density Functional Theory (TDDFT) results confirm that the 5-Me-TAR-Cu2+ complex is stabilized by the sensor to metal charge transfer process. The computational studies suggested that the 5-Me-TAR is suitable for Cu2+ ion detection sensor development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NIMPB.381...76G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NIMPB.381...76G"><span>Conducting ion tracks generated by charge-selected swift heavy ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.</p> <p>2016-08-01</p> <p>Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24347072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24347072"><span>Highly selective "turn-on" fluorescent and colorimetric sensing of fluoride ion using 2-(2-hydroxyphenyl)-2,3-dihydroquinolin-4(1H)-one based on excited-state proton transfer.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kanagaraj, Kuppusamy; Pitchumani, Kasi</p> <p>2014-01-01</p> <p>A simple, highly selective and sensitive colorimetric system for the detection of fluoride ion in an aqueous medium has been developed using 2-(2-hydroxyphenyl)-2,3-dihydroquinolin-4(1H)-one. This system allows selective "turn-on" fluorescence detection of fluoride ion, which is found to be dependent upon guest basicity. An excited-state proton transfer is proposed to be the signaling mechanism, which is rationalized by DFT and TD-DFT calculations. The present sensor can also be applied to detect fluoride levels in real water samples. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1435751-cluster-formation-precompound-nuclei-time-dependent-framework','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1435751-cluster-formation-precompound-nuclei-time-dependent-framework"><span>Cluster formation in precompound nuclei in the time-dependent framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schuetrumpf, B.; Nazarewicz, W.</p> <p></p> <p>Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1435751-cluster-formation-precompound-nuclei-time-dependent-framework','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1435751-cluster-formation-precompound-nuclei-time-dependent-framework"><span>Cluster formation in precompound nuclei in the time-dependent framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Schuetrumpf, B.; Nazarewicz, W.</p> <p>2017-12-15</p> <p>Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N = Z . Furthermore, we study reactions with oxygen and carbonmore » ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O, 40Ca + 16O, 40Ca + 40Ca , and 16,18O + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12 C - 12 C- α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of 16,18O + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. Finally, the localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvC..96f4608S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvC..96f4608S"><span>Cluster formation in precompound nuclei in the time-dependent framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schuetrumpf, B.; Nazarewicz, W.</p> <p>2017-12-01</p> <p>Background: Modern applications of nuclear time-dependent density functional theory (TDDFT) are often capable of providing quantitative description of heavy ion reactions. However, the structures of precompound (preequilibrium, prefission) states produced in heavy ion reactions are difficult to assess theoretically in TDDFT as the single-particle density alone is a weak indicator of shell structure and cluster states. Purpose: We employ the time-dependent nucleon localization function (NLF) to reveal the structure of precompound states in nuclear reactions involving light and medium-mass ions. We primarily focus on spin saturated systems with N =Z . Furthermore, we study reactions with oxygen and carbon ions, for which some experimental evidence for α clustering in precompound states exists. Method: We utilize the symmetry-free TDDFT approach with the Skyrme energy density functional UNEDF1 and compute the time-dependent NLFs to describe 16O + 16O,40Ca + 16O, 40Ca + 40Ca, and O,1816 + 12C collisions at energies above the Coulomb barrier. Results: We show that NLFs reveal a variety of time-dependent modes involving cluster structures. For instance, the 16O + 16O collision results in a vibrational mode of a quasimolecular α - 12C - 12C-α state. For heavier ions, a variety of cluster configurations are predicted. For the collision of O,1816 + 12C, we showed that the precompound system has a tendency to form α clusters. This result supports the experimental findings that the presence of cluster structures in the projectile and target nuclei gives rise to strong entrance channel effects and enhanced α emission. Conclusion: The time-dependent nucleon localization measure is a very good indicator of cluster structures in complex precompound states formed in heavy-ion fusion reactions. The localization reveals the presence of collective vibrations involving cluster structures, which dominate the initial dynamics of the fusing system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869392','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869392"><span>Process for separation of zirconium-88, rubidium-83 and yttrium-88</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.</p> <p>1994-01-01</p> <p>A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, passing the first ion-containing solution through a first cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in the first ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, contacting the first resin with an acid solution capable of stripping adsorbed ions from the first cationic exchange resin whereby the adsorbed ions are removed from the first resin to form a second ion-containing solution, evaporating the second ion-containing solution for time sufficient to remove substantially all of the acid and water from the second ion-containing solution whereby a residue remains, dissolving the residue from the evaporated second-ion containing solution in a dilute acid to form a third ion-containing solution, said third ion-containing solution having an acid molarity adapted to permit said ions to be adsorbed by a cationic exchange resin, passing the third ion-containing solution through a second cationic resin whereby the ions are adsorbed by the second resin, contacting the second resin with a dilute sulfuric acid solution whereby the adsorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, and zirconium are selectively removed from the second resin, and contacting the second resin with a dilute acid solution whereby the adsorbed strontium ions are selectively removed. Zirconium, rubidium, and yttrium radioisotopes can also be recovered with additional steps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29390654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29390654"><span>In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fischer, Paul; Knauer, Stefan; Marx, Gerrit; Schweikhard, Lutz</p> <p>2018-01-01</p> <p>The recently introduced method of ion separation by transversal ejection of unwanted species in electrostatic ion-beam traps and multi-reflection time-of-flight devices has been further studied in detail. As this separation is performed during the ion storage itself, there is no need for additional external devices such as ion gates or traps for either pre- or postselection of the ions of interest. The ejection of unwanted contaminant ions is performed by appropriate pulses of the potentials of deflector electrodes. These segmented ring electrodes are located off-center in the trap, i.e., between one of the two ion mirrors and the central drift tube, which also serves as a potential lift for capturing incoming ions and axially ejecting ions of interest after their selection. The various parameters affecting the selection effectivity and resolving power are illustrated with tin-cluster measurements, where isotopologue ion species provide mass differences down to a single atomic mass unit at ion masses of several hundred. Symmetric deflection voltages of only 10 V were found sufficient for the transversal ejection of ion species with as few as three deflection pulses. The duty cycle, i.e., the pulse duration with respect to the period of ion revolution, has been varied, resulting in resolving powers of up to several tens of thousands for this selection technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89a5114F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89a5114F"><span>In-depth study of in-trap high-resolution mass separation by transversal ion ejection from a multi-reflection time-of-flight device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fischer, Paul; Knauer, Stefan; Marx, Gerrit; Schweikhard, Lutz</p> <p>2018-01-01</p> <p>The recently introduced method of ion separation by transversal ejection of unwanted species in electrostatic ion-beam traps and multi-reflection time-of-flight devices has been further studied in detail. As this separation is performed during the ion storage itself, there is no need for additional external devices such as ion gates or traps for either pre- or postselection of the ions of interest. The ejection of unwanted contaminant ions is performed by appropriate pulses of the potentials of deflector electrodes. These segmented ring electrodes are located off-center in the trap, i.e., between one of the two ion mirrors and the central drift tube, which also serves as a potential lift for capturing incoming ions and axially ejecting ions of interest after their selection. The various parameters affecting the selection effectivity and resolving power are illustrated with tin-cluster measurements, where isotopologue ion species provide mass differences down to a single atomic mass unit at ion masses of several hundred. Symmetric deflection voltages of only 10 V were found sufficient for the transversal ejection of ion species with as few as three deflection pulses. The duty cycle, i.e., the pulse duration with respect to the period of ion revolution, has been varied, resulting in resolving powers of up to several tens of thousands for this selection technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1335629','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1335629"><span>Ion nose spectral structures observed by the Van Allen Probes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.</p> <p></p> <p>Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1335629-ion-nose-spectral-structures-observed-van-allen-probes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1335629-ion-nose-spectral-structures-observed-van-allen-probes"><span>Ion nose spectral structures observed by the Van Allen Probes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...</p> <p>2016-11-22</p> <p>Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..12112025F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..12112025F"><span>Ion nose spectral structures observed by the Van Allen Probes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.</p> <p>2016-12-01</p> <p>We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+ and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses, and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted by using a steady state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge-exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482790-tandem-ion-mobility-spectrometry-coupled-laser-excitation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482790-tandem-ion-mobility-spectrometry-coupled-laser-excitation"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Simon, Anne-Laure; Choi, Chang Min; Clavier, Christian</p> <p></p> <p>This manuscript describes a new experimental setup that allows to perform tandem ion mobility spectrometry (IMS) measurements and which is coupled to a high resolution time-of-flight mass spectrometer. It consists of two 79 cm long drift tubes connected by a dual ion funnel assembly. The setup was built to permit laser irradiation of the ions in the transfer region between the two drift tubes. This geometry allows selecting ions according to their ion mobility in the first drift tube, to irradiate selected ions, and examine the ion mobility of the product ions in the second drift tube. Activation by collisionmore » is possible in the same region (between the two tubes) and between the second tube and the time-of-flight. IMS-IMS experiments on Ubiquitin are reported. We selected a given isomer of charge state +7 and explored its structural rearrangement following collisional activation between the two drift tubes. An example of IMS-laser-IMS experiment is reported on eosin Y, where laser irradiation was used to produce radical ions by electron photodetachment starting from doubly deprotonated species. This allowed measuring the collision cross section of the radical photo-product, which cannot be directly produced with an electrospray source.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RScI...89d3104S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RScI...89d3104S"><span>A tandem mass spectrometer for crossed-beam irradiation of mass-selected molecular systems by keV atomic ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain</p> <p>2018-04-01</p> <p>In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPB.420....6Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPB.420....6Y"><span>Injected ion energy dependence of SiC film deposited by low-energy SiC3H9+ ion beam produced from hexamethyldisilane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshimura, Satoru; Sugimoto, Satoshi; Takeuchi, Takae; Murai, Kensuke; Kiuchi, Masato</p> <p>2018-04-01</p> <p>We mass-selected SiC3H9+ ions from various fragments produced through the decomposition of hexamethyldisilane, and finally produced low-energy SiC3H9+ ion beams. The ion beams were injected into Si(1 0 0) substrates and the dependence of deposited films on injected ion energy was then investigated. Injected ion energies were 20, 100, or 200 eV. Films obtained were investigated with X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. X-ray diffraction and X-ray photoelectron spectroscopy of the substrates obtained following the injection of 20 eV ions demonstrated the occurrence of silicon carbide film (3C-SiC) deposition. On the other hand, Raman spectroscopy showed that the films deposited by the injection of 100 or 200 eV ions included 3C-SiC plus diamond-like carbon. Ion beam deposition using hexamethyldisilane-derived 20 eV SiC3H9+ ions is an efficient technique for 3C-SiC film formation on Si substrates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26348462','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26348462"><span>A Change in the Ion Selectivity of Ligand-Gated Ion Channels Provides a Mechanism to Switch Behavior.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pirri, Jennifer K; Rayes, Diego; Alkema, Mark J</p> <p>2015-01-01</p> <p>Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs) do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810045311&hterms=Dissociative&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DDissociative','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810045311&hterms=Dissociative&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DDissociative"><span>Electron-temperature dependence of dissociative recombination of electrons with CO/+/./CO/n-series ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Whitaker, M.; Biondi, M. A.; Johnsen, R.</p> <p>1981-01-01</p> <p>The dependence on electron temperature of the coefficients for electron recombination with molecular cluster ions of the carbon monoxide series, CO(+).(CO)n, is determined. A microwave discharge lasting approximately 0.1 msec was applied in 5-20 Torr neon containing a few tenths percent CO in an afterglow mass spectrometer apparatus, and the time histories of the various afterglow ions were measured. Expressions for the dependence of the recombination coefficients of the dimer and trimer ions CO(+).CO and CO(+).(CO)2 are obtained which are found to be significantly different from those previously obtained for hydronium and ammonium series polar cluster ions, but similar to those of simple diatomic ions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990078587&hterms=electric+transport&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Delectric%2Btransport','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990078587&hterms=electric+transport&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Delectric%2Btransport"><span>A Study of Transport in the Near-Earth Plasma Sheet During A Substorm Using Time-Dependent Large Scale Kinetics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>El-Alaoui, M.; Ashour-Abdalla, M.; Raeder, J.; Frank, L. A.; Paterson, W. R.</p> <p>1998-01-01</p> <p>In this study we investigate the transport of H+ ions that made up the complex ion distribution function observed by the Geotail spacecraft at 0740 UT on November 24, 1996. This ion distribution function, observed by Geotail at approximately 20 R(sub E) downtail, was used to initialize a time-dependent large-scale kinetic (LSK) calculation of the trajectories of 75,000 ions forward in time. Time-dependent magnetic and electric fields were obtained from a global magnetohydrodynamic (MHD) simulation of the magnetosphere and its interaction with the solar wind and the interplanetary magnetic field (IMF) as observed during the interval of the observation of the distribution function. Our calculations indicate that the particles observed by Geotail were scattered across the equatorial plane by the multiple interactions with the current sheet and then convected sunward. They were energized by the dawn-dusk electric field during their transport from Geotail location and ultimately were lost at the ionospheric boundary or into the magnetopause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApPhL.108f4101R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApPhL.108f4101R"><span>Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.</p> <p>2016-02-01</p> <p>We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27802606','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27802606"><span>"Killer" Microcapsules That Can Selectively Destroy Target Microparticles in Their Vicinity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Arya, Chandamany; Oh, Hyuntaek; Raghavan, Srinivasa R</p> <p>2016-11-02</p> <p>We have developed microscale polymer capsules that are able to chemically degrade a certain type of polymeric microbead in their immediate vicinity. The inspiration here is from the body's immune system, where killer T cells selectively destroy cancerous cells or cells infected by pathogens while leaving healthy cells alone. The "killer" capsules are made from the cationic biopolymer chitosan by a combination of ionic cross-linking (using multivalent tripolyposphate anions) and subsequent covalent cross-linking (using glutaraldehyde). During capsule formation, the enzyme glucose oxidase (GOx) is encapsulated in these capsules. The target beads are made by ionic cross-linking of the biopolymer alginate using copper (Cu 2+ ) cations. The killer capsules harvest glucose from their surroundings, which is then enzymatically converted by GOx into gluconate ions. These ions are known for their ability to chelate Cu 2+ cations. Thus, when a killer capsule is next to a target alginate bead, the gluconate ions diffuse into the bead and extract the Cu 2+ cross-links, causing the disintegration of the target bead. Such destruction is visualized in real-time using optical microscopy. The destruction is specific, i.e., other microparticles that do not contain Cu 2+ are left undisturbed. Moreover, the destruction is localized, i.e., the targets destroyed in the short term are the ones right next to the killer beads. The time scale for destruction depends on the concentration of encapsulated enzyme in the capsules.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24658803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24658803"><span>Time-resolved imaging of the MALDI linear-TOF ion cloud: direct visualization and exploitation of ion optical phenomena using a position- and time-sensitive detector.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ellis, Shane R; Soltwisch, Jens; Heeren, Ron M A</p> <p>2014-05-01</p> <p>In this study, we describe the implementation of a position- and time-sensitive detection system (Timepix detector) to directly visualize the spatial distributions of the matrix-assisted laser desorption ionization ion cloud in a linear-time-of-flight (MALDI linear-ToF) as it is projected onto the detector surface. These time-resolved images allow direct visualization of m/z-dependent ion focusing effects that occur within the ion source of the instrument. The influence of key parameters, namely extraction voltage (E(V)), pulsed-ion extraction (PIE) delay, and even the matrix-dependent initial ion velocity was investigated and were found to alter the focusing properties of the ion-optical system. Under certain conditions where the spatial focal plane coincides with the detector plane, so-called x-y space focusing could be observed (i.e., the focusing of the ion cloud to a small, well-defined spot on the detector). Such conditions allow for the stigmatic ion imaging of intact proteins for the first time on a commercial linear ToF-MS system. In combination with the ion-optical magnification of the system (~100×), a spatial resolving power of 11–16 μm with a pixel size of 550 nm was recorded within a laser spot diameter of ~125 μm. This study demonstrates both the diagnostic and analytical advantages offered by the Timepix detector in ToF-MS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMED31B0661Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMED31B0661Y"><span>Development of a ceramic membrane from a lithian spinel, Li1+xMyMn2-yO4 (M=trivalent or tetravalent cations) for a Li ion-selective electrode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoon, H.; Venugopal, N.; Rim, T.; Yang, B.; Chung, K.; Ko, T.</p> <p>2010-12-01</p> <p>Recently a few lithium containing ceramics are reported as promising cathodes for application in lithium batteries. Among them, a spinel-type lithium manganate (LM) exhibits an exceptionally high ion selectivity at room temperature. Thus, LM could have a great potential as an ion selective membrane material for screening interfering ions from lithium ion for the determination of lithium ion in salt solution. In this study, we developed an ion-selective electrode based on LM as a membrane material and investigated its lithium ion selectivity by varying the content of M in composition. A sol-gel process was successfully applied for preparing LM films without resorting to calcination at a high temperature. The LM thin film-type membranes exhibit a high selectivity for Li ion over other cations, a wide operation detection range of 10-5 ~ 10-2 M, and a fast response time less than 60 s. Furthermore, our result demonstrates a linear potentiometric response over a wide range of lithium concentration, which is compared to that of a lithium ion-selective electrode based on an ionophore. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890057171&hterms=reaction+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dreaction%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890057171&hterms=reaction+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dreaction%2Btime"><span>Pulsed ion beam investigation of the kinetics of surface reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horton, C. C.; Eck, T. G.; Hoffman, R. W.</p> <p>1989-01-01</p> <p>Pulsed ion beam measurements of the kinetics of surface reactions are discussed for the case where the width of the ion pulse is comparable to the measured reaction time, but short compared to the time between successive pulses. Theoretical expressions are derived for the time dependence of the ion-induced signals for linear surface reactions. Results are presented for CO emission from surface carbon and CF emission from Teflon induced by oxygen ion bombardment. The strengths and limitations of this technique are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830026871','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830026871"><span>Ion exchange selectivity for cross-linked polyacrylic acid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>May, C. E.; Philipp, W. H.</p> <p>1983-01-01</p> <p>The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcSpA.153...45R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcSpA.153...45R"><span>Synthesis, characterization and application of ion imprinted polymeric nanobeads for highly selective preconcentration and spectrophotometric determination of Ni2 + ion in water samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rajabi, Hamid Reza; Razmpour, Saham</p> <p>2016-01-01</p> <p>Here, the researchers report on the synthesis of ion imprinted polymeric (IIP) nanoparticles using a thermal polymerization strategy, and their usage for the separation of Ni2 + ion from water samples. The prepared Ni-IIP was characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. It was found that the particle size of the prepared particle to be 50-70 nm in diameter with the highly selective binding capability for Ni2 + ion, with reasonable adsorption and desorption process. After preconcentration, bound ions can be eluted with an aqueous solution of hydrochloric acid, after their complexation with dimethylglyoxime, these ions can be quantified by UV-Vis absorption spectrophotometry. The effect of various parameters on the extraction efficiency including pH of sample solution, adsorption and leaching times, initial sample volume, concentration and volume of eluent were investigated. In selectivity study, it was found that imprinting causes increased affinity of the prepared IIP toward Ni2 + ion over other ions such as Na+, K+, Ag+, Co2 +, Cu2 +, Cd2 +, Hg2 +, Pb2 +, Zn2 +, Mn2 +, Mg2 +, Cr3 +, and Fe3 +. The prepared IIP can be used and regenerated for at least eight times without any significant decrease in binding affinities. The prepared IIP is considered to be promising and selective sorbent for solid-phase extraction and preconcentration of Ni2 + ion from different water samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20953045','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20953045"><span>Real-time two-dimensional imaging of potassium ion distribution using an ion semiconductor sensor with charged coupled device technology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hattori, Toshiaki; Masaki, Yoshitomo; Atsumi, Kazuya; Kato, Ryo; Sawada, Kazuaki</p> <p>2010-01-01</p> <p>Two-dimensional real-time observation of potassium ion distributions was achieved using an ion imaging device based on charge-coupled device (CCD) and metal-oxide semiconductor technologies, and an ion selective membrane. The CCD potassium ion image sensor was equipped with an array of 32 × 32 pixels (1024 pixels). It could record five frames per second with an area of 4.16 × 4.16 mm(2). Potassium ion images were produced instantly. The leaching of potassium ion from a 3.3 M KCl Ag/AgCl reference electrode was dynamically monitored in aqueous solution. The potassium ion selective membrane on the semiconductor consisted of plasticized poly(vinyl chloride) (PVC) with bis(benzo-15-crown-5). The addition of a polyhedral oligomeric silsesquioxane to the plasticized PVC membrane greatly improved adhesion of the membrane onto Si(3)N(4) of the semiconductor surface, and the potential response was stabilized. The potential response was linear from 10(-2) to 10(-5) M logarithmic concentration of potassium ion. The selectivity coefficients were K(K(+),Li(+))(pot) = 10(-2.85), K(K(+),Na(+))(pot) = 10(-2.30), K(K(+),Rb(+))(pot) =10(-1.16), and K(K(+),Cs(+))(pot) = 10(-2.05).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24529778','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24529778"><span>Application of self-organizing feature maps to analyze the relationships between ignitable liquids and selected mass spectral ions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Frisch-Daiello, Jessica L; Williams, Mary R; Waddell, Erin E; Sigman, Michael E</p> <p>2014-03-01</p> <p>The unsupervised artificial neural networks method of self-organizing feature maps (SOFMs) is applied to spectral data of ignitable liquids to visualize the grouping of similar ignitable liquids with respect to their American Society for Testing and Materials (ASTM) class designations and to determine the ions associated with each group. The spectral data consists of extracted ion spectra (EIS), defined as the time-averaged mass spectrum across the chromatographic profile for select ions, where the selected ions are a subset of ions from Table 2 of the ASTM standard E1618-11. Utilization of the EIS allows for inter-laboratory comparisons without the concern of retention time shifts. The trained SOFM demonstrates clustering of the ignitable liquid samples according to designated ASTM classes. The EIS of select samples designated as miscellaneous or oxygenated as well as ignitable liquid residues from fire debris samples are projected onto the SOFM. The results indicate the similarities and differences between the variables of the newly projected data compared to those of the data used to train the SOFM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASMS.tmp...63S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASMS.tmp...63S"><span>Implementation of Precursor and Neutral Loss Scans on a Miniature Ion Trap Mass Spectrometer and Performance Comparison to a Benchtop Linear Ion Trap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snyder, Dalton T.; Szalwinski, Lucas J.; Hilger, Ryan; Cooks, R. Graham</p> <p>2018-03-01</p> <p>Implementation of orthogonal double resonance precursor and neutral loss scans on the Mini 12 miniature rectilinear ion trap mass spectrometer is described, and performance is compared to that of a commercial Thermo linear trap quadropole (LTQ) linear ion trap. The ac frequency scan version of the technique at constant rf voltage is used here because it is operationally much simpler to implement. Remarkably, the Mini 12 shows up to two orders of magnitude higher sensitivity compared to that of the LTQ. Resolution on the LTQ is better than unit at scan speeds of 400 Th/s, whereas peak widths on the Mini 12, on average, range from 0.5 to 2.0 Th full width at half maximum and depend heavily on the precursor ion Mathieu q parameter as well as the pump down time that precedes the mass scan. Both sensitivity and resolution are maximized under higher pressure conditions (short pump down time) on the Mini 12. The effective mass range of the product ion ejection waveform was found to be 5.8 Th on the Mini 12 in the precursor ion scan mode vs. that of 3.9 Th on the LTQ. In the neutral loss scan mode, the product ion selectivity was between 8 and 11 Th on the Mini 12 and between 7 and 8 Th on the LTQ. The effects of nonlinear resonance lines on the Mini 12 were also explored. [Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JChPh.136c4304T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JChPh.136c4304T"><span>Dissociative photoionization of methyl chloride studied with threshold photoelectron-photoion coincidence velocity imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Xiaofeng; Zhou, Xiaoguo; Wu, Manman; Liu, Shilin; Liu, Fuyi; Shan, Xiaobin; Sheng, Liusi</p> <p>2012-01-01</p> <p>Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH3Cl+ ions was investigated in the excitation energy range of 11.0-18.5 eV. TPEPICO time-of-flight mass spectra and three-dimensional time-sliced velocity images of CH3+ dissociated from CH3Cl+(A2A1 and B2E) ions were recorded. CH3+ was kept as the most dominant fragment ion in the present energy range, while the branching ratio of CH2Cl+ fragment was very low. For dissociation of CH3Cl+(A2A1) ions, a series of homocentric rings was clearly observed in the CH3+ image, which was assigned as the excitation of umbrella vibration of CH3+ ions. Moreover, a dependence of anisotropic parameters on the vibrational states of CH3+(11A') provided a direct experimental evidence of a shallow potential well along the C-Cl bond rupture. For CH3Cl+(B2E) ions, total kinetic energy released distribution for CH3+ fragmentation showed a near Maxwell-Boltzmann profile, indicating that the Cl-loss pathway from the B2E state was statistical predissociation. With the aid of calculated Cl-loss potential energy curves of CH3Cl+, CH3+ formation from CH3Cl+(A2A1) ions was a rapid direct fragmentation, while CH3Cl+(B2E) ions statistically dissociated to CH3+ + Cl via internal conversion to the high vibrational states of X2E.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3204932','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3204932"><span>Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.</p> <p>2011-01-01</p> <p>In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760019044','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760019044"><span>Time dispersion of energetic solar particles, unexpected velocity and species dependence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallagher, J. J.; Hovestadt, D.; Klecker, B.; Gloeckler, G.; Fan, C. Y.</p> <p>1976-01-01</p> <p>The intensity-time behavior for protons and helium, as well as for carbon, oxygen and iron ions was measured following the 1974 September 19 solar flare for energies between 0.5 and approximately 5 MeV per nucleon. The profiles displayed a time dispersion which is inversely proportional to velocity for each individual species. In addition, at a given velocity the time dispersion also depended on the charge to mass ratio of the ion. Based on this latter dependence, it was concluded that while carbon and oxygen are essentially fully stripped, iron nuclei are not, having an effective charge Q = 10 + or - 5. The observed dispersion cannot be explained by purely rigidity dependent diffusive propagation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AcSpA.117...24S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AcSpA.117...24S"><span>Ion imprinted polymeric nanoparticles for selective separation and sensitive determination of zinc ions in different matrices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shamsipur, Mojtaba; Rajabi, Hamid Reza; Pourmortazavi, Seied Mahdi; Roushani, Mahmoud</p> <p>2014-01-01</p> <p>Preparation of Zn2+ ion-imprinted polymer (Zn-IIP) nanoparticles is presented in this report. The Zn-IIP nanoparticles are prepared by dissolving stoichiometric amounts of zinc nitrate and selected chelating ligand, 3,5,7,20,40-pentahydroxyflavone, in 15 mL ethanol-acetonitrile (2:1; v/v) mixture as a porogen solvent in the presence of ethylene glycol-dimethacrylate (EGDMA) as cross-linking, methacrylic acid (MAA) as functional monomer, and 2,2-azobisisobutyronitrile (AIBN) as initiator. After polymerization, Cavities in the polymer particles corresponding to the Zn2+ ions were created by leaching the polymer in HCl aqueous solution. The synthesized IIPs were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal analysis techniques. Also, the pH range for rebinding of Zn2+ ion on the IIP and equilibrium binding time were optimized, using flame atomic absorption spectrometry. In selectivity study, it was found that imprinting results increased affinity of the material toward Zn2+ ion over other competitor metal ions with the same charge and close ionic radius. The prepared IIPs were repeatedly used and regenerated for six times without any significant decrease in polymer binding affinities. Finally, the prepared sorbent was successfully applied to the selective recognition and determination of zinc ion in different real samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25044622','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25044622"><span>Selective retention of basic compounds by metal aquo-ion affinity chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki</p> <p>2014-10-01</p> <p>A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21280804','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21280804"><span>Synthetic cation-selective nanotube: permeant cations chaperoned by anions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho</p> <p>2011-01-28</p> <p>The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10058E..04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10058E..04S"><span>Ion-selective optical sensor for continuous on-line monitoring of dialysate sodium during dialysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Manoj K.; Frijns, Arjan J. H.; Mandamparambil, Rajesh; Kooman, Jeroen P.; Smeulders, David M. J.</p> <p>2017-02-01</p> <p>Patients with end stage renal disease are dependent on dialysis. In most outpatient centers, the dialysate is prepared with a fixed electrolyte concentration without taking into account the inter-individual differences of essential electrolytes (sodium, potassium and calcium). This one-size fits all approach can lead to acute and chronic cardiovascular complications in dialysis patients. On-line monitoring of these essential electrolytes is an important physiological step towards patient specific dialysate leading to individualized treatment. Currently, changes in electrolyte concentrations are indirectly measured by conductivity measurements, which are not ion- specific. In this paper, we present a novel optical sensor for on-line monitoring of sodium concentrations in dialysate. This sensor is ion-specific and can detect up to a single ion. The working principle is based on the selective fluorescence quenching of photo-induced electron transfer (PET) molecules. The PET molecules when complexed with sodium ions start fluorescing upon laser excitation. The emission intensity is directly correlated to the sodium concentration. To prove the working principle, a micro-optofluidic device has been fabricated in polydimethylsiloxane (PDMS) with integrated optical fibers for fluorescence light collection. The PET molecules are covalently grafted in the PDMS microchannel for continuous monitoring of the sodium dialysate concentrations. The experimental setup consists of a laser module (λ=450nm) operating at 4.5mW, a syringe pump to precisely control the sample flow and a spectrometer for fluorescence collection. The performance of the sensor has been evaluated for sodium ions ranging from 0-50mM. A clear signal and good response time was observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JKPS...72.1013K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JKPS...72.1013K"><span>Movement of Potassium Ions inside KcsA in the High Concentration Regime using a Molecular Dynamics Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Myojeong; Jo, Byeong Chul; Yoon, Hyun Jung; Wu, Sangwook; Thangappan, Jayaraman; Eun, Changsun</p> <p>2018-05-01</p> <p>The selectivity and conduction specificity of the KcsA channel toward potassium ions is crucial to the activity of this protein and this channel is intricately associated with several osmotic regulation and neuronal signaling processes. Despite multi-ion characteristics, the selective conduction behavior of KcsA is controlled by the size and distance specific electrostatic interaction between the selected residues and the potassium ions. The mechanism describing the movement of potassium ions in the channel and the conformational changes to KcsA that facilitate ion movement were investigated by a molecular dynamics (MD) simulation. In this study, we analyze the movement of potassium ions and water molecules at various time intervals during a 90 ns molecular dynamics simulation in the high potassium ion concentration regime and in the absence of the voltage. Examination of specific (3.6, 17.3, 43.38 and 43.44 ns) simulation periods revealed that key residues in the selectivity filter of KcsA influence the movement of potassium ions in the channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JASMS..22.1610Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JASMS..22.1610Z"><span>Tandem MS Analysis of Selenamide-Derivatized Peptide Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Yun; Zhang, Hao; Cui, Weidong; Chen, Hao</p> <p>2011-09-01</p> <p>Our previous study showed that selenamide reagents such as ebselen and N-(phenylseleno)phthalimide (NPSP) can be used for selective and rapid derivatization of protein/peptide thiols in high conversion yield. This paper reports the systematic investigation of MS/MS dissociation behaviors of selenamide-derivatized peptide ions upon collision induced dissociation (CID) and electron transfer dissociation (ETD). In the positive ion mode, derivatized peptide ions exhibit tag-dependent CID dissociation pathways. For instance, ebselen-derivatized peptide ions preferentially undergo Se-S bond cleavage upon CID to produce a characteristic fragment ion, the protonated ebselen ( m/z 276), which allows selective identification of thiol peptides from protein digest as well as selective detection of thiol proteins from protein mixture using precursor ion scan (PIS). In contrast, NPSP-derivatized peptide ions retain their phenylselenenyl tags during CID, which is useful in sequencing peptides and locating cysteine residues. In the negative ion CID mode, both types of tags are preferentially lost via the Se-S cleavage, analogous to the S-S bond cleavage during CID of disulfide-containing peptide anions. In consideration of the convenience in preparing selenamide-derivatized peptides and the similarity of Se-S of the tag to the S-S bond, we also examined ETD of the derivatized peptide ions to probe the mechanism for electron-based ion dissociation. Interestingly, facile cleavage of Se-S bond occurs to the peptide ions carrying either protons or alkali metal ions, while backbone cleavage to form c/z ions is severely inhibited. These results are in agreement with the Utah-Washington mechanism proposed for depicting electron-based ion dissociation processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1237899-electron-impact-action-spectroscopy-mass-charge-selected-macromolecular-ions-inner-shell-excitation-ubiquitin-protein','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1237899-electron-impact-action-spectroscopy-mass-charge-selected-macromolecular-ions-inner-shell-excitation-ubiquitin-protein"><span>Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.</p> <p>2016-02-11</p> <p>In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1237899','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1237899"><span>Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.</p> <p></p> <p>In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..96e3201S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..96e3201S"><span>Time-dependent Tonks-Langmuir model is unstable</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheridan, T. E.; Baalrud, S. D.</p> <p>2017-11-01</p> <p>We investigate a time-dependent extension of the Tonks-Langmuir model for a one-dimensional plasma discharge with collisionless kinetic ions and Boltzmann electrons. Ions are created uniformly throughout the volume and flow from the center of the discharge to the boundary wall due to a self-consistent, zero-order electric field. Solving this model using a particle-in-cell simulation, we observe coherent low-frequency, long-wavelength unstable ion waves which move toward the boundary with a speed below both the ion acoustic speed and the average ion velocity. The maximum amplitude of the wave potential fluctuations peaks at ≈0.09 Te near the wall, where Te is the electron temperature in electron volts. Using linear kinetic theory, we identify this instability as slow ion-acoustic wave modes which are destabilized by the zero-order electric field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920013239','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920013239"><span>A coated-wire ion-selective electrode for ionic calcium measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind</p> <p>1991-01-01</p> <p>A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26894888','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26894888"><span>Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zeegers, Guido P; Günthardt, Barbara F; Zenobi, Renato</p> <p>2016-04-01</p> <p>Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm(-2)) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements. Graphical Abstract ᅟ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29680619','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29680619"><span>Sonochemical synthesis of a multi-responsive regenerable water-stable zinc(II) fluorescent probe for highly selective, sensitive and real-time sensing of benzaldehyde, ferric ion and PH.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xin Rui; Wang, Xing Ze; Li, Yong; Liu, Kun; Liu, Shi Xin; Du, Jing; Huang, Zhuo; Luo, Yan; Huo, Jian Zhong; Wu, Xiang Xia; Liu, Yuan Yuan; Ding, Bin</p> <p>2018-06-01</p> <p>In this work, a novel water-stable coordination polymer with {4 4 } network topology {[Zn(L) 2 (NO 3 ) 2 ]} n (1) (L = 4,4'-Bis(triazol-1-ylmethyl)biphenyl) has been synthesized through the hydrothermal and sonochemical approaches. 1 has been characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy, UV-vis absorption spectrum and scanning electron microscopy (SEM). PXRD patterns of the as-synthesized samples 1 have confirmed the purity of the bulky samples. In the sonochemical preparation approaches, different ultrasound irradiation power and ultrasound time were also used in order to investigate the impact factor for morphology and size of nano-structured 1. Photo-luminescence studies have revealed that 1 can efficiently distinguish Fe 3+ from Fe 2+ and other metal ions. On the other hand, 1 also can exhibit a highly sensitive, excellently selective and real-time detection of benzaldehyde and pH through photo-luminescence quenching process. As for 1, density functional theory (DFT) and time-dependent DFT (TDDFT) theory has been applied to calculate these spectroscopic data, the result agree with the experimental results for detection of benzaldehyde. Photo-luminescent recyclability results indicated 1 can be reused at least five times in the detection process. To the best of our knowledge, this is the first example of a multi-responsive regenerable luminescent sensor for highly selective, sensitive and real-time sensing of Fe 3+ over Fe 2+ , benzaldehyde and pH values. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MolPh.114..855T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MolPh.114..855T"><span>Ellipticity-dependent of multiple ionisation methyl iodide cluster using 532 nm nanosecond laser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tang, Bin; Zhao, Wuduo; Wang, Weiguo; Hua, Lei; Chen, Ping; Hou, Keyong; Huang, Yunguang; Li, Haiyang</p> <p>2016-03-01</p> <p>The dependence of multiply charged ions on laser ellipticity in methyl iodide clusters with 532 nm nanosecond laser was measured using a time-of-flight mass spectrometer. The intensities of multiply charged ions Iq+(q = 2-4) with circularly polarised laser pulse were clearly higher than those with linearly polarised laser pulse but the intensity of single charged ions I+ was inverse. And the dependences of ions on the optical polarisation state were investigated and a flower petal and square distribution for single charged ions (I+, C+) and multiply charged ions (I2+, I3+, I4+, C2+) were observed, respectively. A theoretical calculation was also proposed to simulate the distributions of ions and theoretical results fitted well with the experimental ones. It indicated that the high multiphoton ionisation probability in the initial stage would result in the disintegration of big clusters into small ones and suppress the production of multiply charged ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PMM...115..800V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PMM...115..800V"><span>Mechanical properties of carbon steel depending on the rate of the dose build-up of nitrogen and argon ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vorob'ev, V. L.; Bykov, P. V.; Bayankin, V. Ya.; Shushkov, A. A.; Vakhrushev, A. V.</p> <p>2014-08-01</p> <p>The effect of pulsed irradiation with argons and nitrogen ions on the mechanical properties, morphology, and structure of the surface layers of carbon steel St3 (0.2% C, 0.4% Mn, 0.15% Si, and Fe for balance) has been investigated depending on the rate of dose build-up at an average ion current density of 10, 20, and 40 μA/cm2. It has been established that the fatigue life and microhardness of surface layers increase in the entire studied range of dose build-up rates. This seems to be due to the hardening of the surface layers, which resulted from the generation of radiation defects and the irradiation-dynamic effect of fast ions. The sample irradiated by argon ions at the lowest of the selected dose build-up rates j av = 10 μA/cm2 withstands the largest number of cycles to failure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1178235-laser-ion-source-activities-brookhaven-national-laboratory','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1178235-laser-ion-source-activities-brookhaven-national-laboratory"><span>Laser ion source activities at Brookhaven National Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kanesue, Takeshi; Okamura, Masahiro</p> <p>2015-07-31</p> <p>In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 10more » 10 of C 6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21957488','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21957488"><span>Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata</p> <p>2011-11-21</p> <p>The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996NIMPA.368..819P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996NIMPA.368..819P"><span>A reference aerosol for a radon reference chamber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paul, Annette; Keyser, Uwe</p> <p>1996-02-01</p> <p>The measurement of radon and radon progenies and the calibration of their detection systems require the production and measurement of aerosols well-defined in size and concentration. In the German radon reference chamber, because of its unique chemical and physical properties, carnauba wax is used to produce standard aerosols. The aerosol size spectra are measured on-line by an aerosol measurement system in the range of 10 nm to 1 μm aerodynamic diameter. The experimental set-ups for the study of adsorption of radioactive ions on aerosols as function of their size and concentration will be described, the results presented and further adaptations for an aerosol jet introduced (for example, for the measurement of short-lived neutron-rich isotopes). Data on the dependence of aerosol radius, ion concentration and element selectivity is collected by using a 252Cf-sf source. The fission products of this source range widely in elements, isotopes and charges. Adsorption and the transport of radioactive ions on aerosols have therefore been studied for various ions for the first time, simultaneously with the aerosol size on-line spectrometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015MS%26E...81a2079L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015MS%26E...81a2079L"><span>Synthesis of polymer ion-exchange hydrogels under γ - irradiation 60Co</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le, V. M.; Zhevnyak, V. D.; Pak, V. Kh; Ananev, V. A.; Borodin, U. V.</p> <p>2015-04-01</p> <p>We have reported earlier about the modification of ion-exchange hydrogel under the influence of gamma radiation. The optimal absorbed dose of irradiation had been choosen for radiation modification of polymer hydrogels by ionits to produce products with a high content of the gel - fractions and sufficient mechanical properties. The dependence of the static exchange capacity of hydrogels on the type of ionit and its fractional composition had been studied. The dependence of the static exchange capacity of the quantitative composition of the ionit in the volume of the hydrogel had been investigated. The ion-exchange medical eye lenses had been made under selected conditions of synthesis. Their sorption properties had been studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19181491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19181491"><span>Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Memon, Jamil R; Memon, Saima Q; Bhanger, Muhammad I; El-Turki, Adel; Hallam, Keith R; Allen, Geoffrey C</p> <p>2009-05-01</p> <p>This study describes the use of banana peel, a commonly produced fruit waste, for the removal of Cr(VI) from industrial wastewater. The parameters pH, contact time, initial metal ion concentration, and temperature were investigated and the conditions resulting in rapid and efficient adsorption (95% within 10 min) were determined. The binding of metal ions was found to be pH dependent with the optimal sorption occurring at pH 2. The retained species were eluted with 5 mL of 2M H(2)SO(4). To elucidate the mechanism of the process, total amounts of chromium and Cr(VI) were analyzed using flame atomic absorption and ultraviolet-visible (UV-vis) spectroscopic techniques, respectively. The Langmuir and Dubinin-Radushkevich (D-R) isotherms were used to describe the partitioning behavior for the system at different temperatures. Kinetics and thermodynamics of Cr(VI) removal by banana peel were also studied. The influence of diverse ions on the sorption behavior revealed that only Fe(II) ions (of those tested) suppressed the sorption of Cr(VI) ions to some extent. The method was applied for the removal of Cr(VI) from industrial wastewater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19569504','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19569504"><span>[Application of Brownian dynamics to the description of transmembrane ion flow as exemplified by the chloride channel of glycine receptor].</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boronovskiĭ, S E; Nartsissov, Ia R</p> <p>2009-01-01</p> <p>Using the Brownian dynamics of the movement of hydrated ion in a viscous water solution, a mathematical model has been built, which describes the transport of charged particles through a single protein pore in a lipid membrane. The dependences of transmembrane ion currents on ion concentrations in solution have been obtained. It was shown that, if the geometry of a membrane pore is identical to that of the inner part of the glycine receptor channel and there is no ion selectivity, then the values of both chloride and sodium currents are not greater than 0.5 pA at the physiological concentrations of these ions. If local charge heterogeneity caused by charged amino acid residues of transmembrane protein segments is included into the model calculations, the chloride current increases to about 3.7 pA, which exceeds more than seven times the value for sodium ions under the conditions of the complex channel geometry in the range of physiological concentrations of ions in the solution. The model takes changes in the density of charge distribution both inside the channel and near the protein surface into account. The alteration of pore geometry can be also considered as a parameter at the researcher's option. Thus, the model appears as an effective tool for the description of transmembrane currents for other types of membrane channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2883788','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2883788"><span>Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rubinova, Nastassia; Chumbimuni-Torres, Karin; Bakker, Eric</p> <p>2010-01-01</p> <p>In recent years, ion-selective electrodes based on polymer membranes have been shown to exhibit detection limits that are often in the nanomolar concentration range, and thus drastically lower than traditionally accepted. Since potentiometry is less dependent on scaling laws that other established analytical techniques, their performance in confined sample volumes is explored here. Solid-contact silver-selective microelectrodes, with a sodium-selective microelectrode as a reference, were inserted into a micropipette tip used as a 50-μl sample. The observed potential stabilities, reproducibilities and detection limits were attractive and largely matched that for large 100-ml samples. This should pave the way for further experiments to detecting ultra-small total ion concentrations by potentiometry, especially when used as a transducer after an amplification step in bioanalysis. PMID:20543910</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASMS..24..154B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASMS..24..154B"><span>The (Un)Certainty of Selectivity in Liquid Chromatography Tandem Mass Spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berendsen, Bjorn J. A.; Stolker, Linda A. M.; Nielen, Michel W. F.</p> <p>2013-01-01</p> <p>We developed a procedure to determine the "identification power" of an LC-MS/MS method operated in the MRM acquisition mode, which is related to its selectivity. The probability of any compound showing the same precursor ion, product ions, and retention time as the compound of interest is used as a measure of selectivity. This is calculated based upon empirical models constructed from three very large compound databases. Based upon the final probability estimation, additional measures to assure unambiguous identification can be taken, like the selection of different or additional product ions. The reported procedure in combination with criteria for relative ion abundances results in a powerful technique to determine the (un)certainty of the selectivity of any LC-MS/MS analysis and thus the risk of false positive results. Furthermore, the procedure is very useful as a tool to validate method selectivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3788087','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3788087"><span>Extending the Dynamic Range of the Ion Trap by Differential Mobility Filtration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hall, Adam B.; Coy, Stephen L.; Kafle, Amol; Glick, James; Nazarov, Erkinjon</p> <p>2013-01-01</p> <p>A miniature, planar, differential ion mobility spectrometer (DMS) was interfaced to an LCQ classic ion trap to conduct selective ion filtration prior to mass analysis in order to extend the dynamic range of the trap. Space charge effects are known to limit the functional ion storage capacity of ion trap mass analyzers and this, in turn, can affect the quality of the mass spectral data generated. This problem is further exacerbated in the analysis of mixtures where the indiscriminate introduction of matrix ions results in premature trap saturation with non-targeted species, thereby reducing the number of parent ions that may be used to conduct MS/MS experiments for quantitation or other diagnostic studies. We show that conducting differential mobility-based separations prior to mass analysis allows the isolation of targeted analytes from electrosprayed mixtures preventing the indiscriminate introduction of matrix ions and premature trap saturation with analytically unrelated species. Coupling these two analytical techniques is shown to enhance the detection of a targeted drug metabolite from a biological matrix. In its capacity as a selective ion filter, the DMS can improve the analytical performance of analyzers such as quadrupole (3-D or linear) and ion cyclotron resonance (FT-ICR) ion traps that depend on ion accumulation. PMID:23797861</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29043486','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29043486"><span>Study of In-Trap Ion Clouds by Ion Trajectory Simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Xiaoyu; Liu, Xinwei; Cao, Wenbo; Wang, Xiao; Li, Ming; Qiao, Haoxue; Ouyang, Zheng</p> <p>2018-02-01</p> <p>Gaussian distribution has been utilized to describe the global number density distribution of ion cloud in the Paul trap, which is known as the thermal equilibrium theory and widely used in theoretical modeling of ion clouds in the ion traps. Using ion trajectory simulations, however, the ion clouds can now also be treated as a dynamic ion flow field and the location-dependent features could now be characterized. This study was carried out to better understand the in-trap ion cloud properties, such as the local particle velocity and temperature. The local ion number densities were found to be heterogeneously distributed in terms of mean and distribution width; the velocity and temperature of the ion flow varied with pressure depending on the flow type of the neutral molecules; and the "quasi-static" equilibrium status can only be achieved after a certain number of collisions, for which the time period is pressure-dependent. This work provides new insights of the ion clouds that are globally stable but subjected to local rf heating and collisional cooling. Graphical Abstract ᅟ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21528900-ion-guiding-accompanied-formation-neutrals-polyethylene-terephthalate-polymer-nanocapillaries-further-insight-self-organizing-process','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21528900-ion-guiding-accompanied-formation-neutrals-polyethylene-terephthalate-polymer-nanocapillaries-further-insight-self-organizing-process"><span>Ion guiding accompanied by formation of neutrals in polyethylene terephthalate polymer nanocapillaries: Further insight into a self-organizing process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Juhasz, Z.; Sulik, B.; Racz, R.</p> <p>2010-12-15</p> <p>A relatively large yield of neutralized atoms was observed when 3 keV Ar{sup 7+} ions were guided trough polyethylene terephthalate nanocapillaries. Time and deposited-charge dependence of the angular distribution of both the guided ions and the neutrals was measured simultaneously using a two-dimensional multichannel plate detector. The yield of neutrals increased significantly faster than that of guided ions and saturated typically at a few percent level. In accordance with earlier observations, both the yield and the mean emission angle of the guided ions exhibited strong oscillations. For the atoms, the equilibrium was achieved not only faster, but also without significantmore » oscillations in yield and angular position. A phase analysis of these time dependencies provides insight into the dynamic features of the self-organizing mechanisms, which leads to ion guiding in insulating nanocapillaries.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH41B2768L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH41B2768L"><span>Comparing Shock geometry from MHD simulation to that from the Q/A-scaling analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, G.; Zhao, L.; Jin, M.</p> <p>2017-12-01</p> <p>In large SEP events, ions can be accelerated at CME-driven shocks to very high energies. Spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in energy/nucleon they can be shifted relatively to each other so that the spectra align. The amount of shift is charge-to-mass ratio (Q/A) dependent and varies from event to event. In the work of Li et al. (2009), the Q/A dependences of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. At the same time, shock geometry can be also obtained from MHD simulations. This means we can compare shock geometry from two completely different approaches: one from MHD simulation and the other from in-situ spectral fitting. In this work, we examine this comparison for selected events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22354275','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22354275"><span>Transportation behavior of alkali ions through a cell membrane ion channel. A quantum chemical description of a simplified isolated model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans</p> <p>2012-08-01</p> <p>Quantum chemical model calculations were carried out for modeling the ion transport through an isolated ion channel of a cell membrane. An isolated part of a natural ion channel was modeled. The model channel was a calixarene derivative, hydrated sodium and potassium ions were the models of the transported ion. The electrostatic potential of the channel and the energy of the channel-ion system were calculated as a function of the alkali ion position. Both attractive and repulsive ion-channel interactions were found. The calculations - namely the dependence of the system energy and the atomic charges of the water molecules with respect to the position of the alkali ion in the channel - revealed the molecular-structural background of the potassium selectivity of this artificial ion channel. It was concluded that the studied ion channel mimics real biological ion channel quite well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NIMPB.417...75L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NIMPB.417...75L"><span>Analysis of photon emission induced by light and heavy ions in time-of-flight medium energy ion scattering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lohmann, S.; Sortica, M. A.; Paneta, V.; Primetzhofer, D.</p> <p>2018-02-01</p> <p>We present a systematic analysis of the photon emission observed due to impact of pulsed keV ion beams in time-of-flight medium energy ion scattering (ToF-MEIS) experiments. Hereby, hydrogen, helium and neon ions served as projectiles and thin gold and titanium nitride films on different substrates were employed as target materials. The present experimental evidence indicates that a significant fraction of the photons has energies of around 10 eV, i.e. on the order of typical valence and conduction band transitions in solids. Furthermore, the scaling properties of the photon emission with respect to several experimental parameters were studied. A dependence of the photon yield on the projectile velocity was observed in all experiments. The photon yield exhibits a dependence on the film thickness and the scattering angle, which can be explained by photon production along the path of the incident ion through the material. Additionally, a strong dependence on the projectile type was found with the photon emission being higher for heavier projectiles. This difference is larger than the respective difference in electronic stopping cross section. The photon yield shows a strong material dependence, and according to a comparison of SiO2 and Si seems to be subject to matrix effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20480116','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20480116"><span>Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Vincent; Song, Yong-Ak; Han, Jongyoon</p> <p>2010-06-07</p> <p>In this paper, we report a novel method for fabricating ion-selective membranes in poly(dimethylsiloxane) (PDMS)/glass-based microfluidic preconcentrators. Based on the concept of capillary valves, this fabrication method involves filling a lithographically patterned junction between two microchannels with an ion-selective material such as Nafion resin; subsequent curing results in a high aspect-ratio membrane for use in electrokinetic sample preconcentration. To demonstrate the concentration performance of this high-aspect-ratio, ion-selective membrane, we integrated the preconcentrator with a surface-based immunoassay for R-Phycoerythrin (RPE). Using a 1x PBS buffer system, the preconcentrator-enhanced immunoassay showed an approximately 100x improvement in sensitivity within 30 min. This is the first time that an electrokinetic microfluidic preconcentrator based on ion concentration polarization (ICP) has been used in high ionic strength buffer solutions to enhance the sensitivity of a surface-based immunoassay.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26598654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26598654"><span>Ion-binding properties of a K+ channel selectivity filter in different conformations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Shian; Focke, Paul J; Matulef, Kimberly; Bian, Xuelin; Moënne-Loccoz, Pierre; Valiyaveetil, Francis I; Lockless, Steve W</p> <p>2015-12-08</p> <p>K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..MARP19002T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..MARP19002T"><span>Real-time ab initio simulations of excited-state dynamics in nanostructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tomanek, David</p> <p>2007-03-01</p> <p>Combining time-dependent ab initio density functional calculations for electrons with molecular dynamics simulations for ions, we investigate the effect of excited-state dynamics in nanostructures. In carbon nanotubes, we find electronic excitations to last for a large fraction of a picosecond. The de-excitation process is dominated by coupling to other electronic degrees of freedom during the first few hundred femtoseconds. Later, the de-excitation process becomes dominated by coupling to ionic motion. The onset point and damping rate in that regime change with initial ion velocities, a manifestation of temperature dependent electron-phonon coupling. Considering the fact that the force field in the electronically excited state differs significantly from the ground state, as reflected in the Franck-Condon effect, atomic bonds can easily be broken or restored during the relatively long lifetime of electronic excitations. This effect can be utilized in a ``photo-surgery" of nanotubes, causing structural self-healing at vacancy sites or selective de-oxidation processes induced by photo-absorption. Also, electronic excitations are a key ingredient for the understanding of sputtering processes in nanostructures, induced by energetic collisions with ions. Yoshiyuki Miyamoto, Angel Rubio, and David Tomanek, Phys. Rev. Lett. 97, 126104 (2006). Yoshiyuki Miyamoto, Savas Berber, Mina Yoon, Angel Rubio, and David Tomanek, Chem. Phys. Lett. 392, 209 (2004). Yoshiyuki Miyamoto, Noboru Jinbo, Hisashi Nakamura, Angel Rubio, and David Tomanek, Phys. Rev. B 70, 233408 (2004). Yoshiyuki Miyamoto, Arkady Krasheninnikov, and David Tomanek (in preparation).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ApSS..231..411A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ApSS..231..411A"><span>TOF-SIMS imaging of protein adsorption on dialysis membrane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aoyagi, Satoka; Hayama, Msayo; Hasegawa, Urara; Sakai, Kiyotaka; Hoshi, Takahiro; Kudo, Masahiro</p> <p>2004-06-01</p> <p>Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is capable of chemical imaging of proteins on insulated samples such as hollow-fiber dialysis membranes. Albumin loss and a lowering of diffusive permeability caused by protein adsorption on dialysis membranes should be reduced in order to enhance dialysis adequacy of the patients. Bovine serum albumin (BSA)-adsorbed hollow-fiber dialysis membranes were tested in the present study. TOF-SIMS images and spectra of both native membranes and BSA-adsorbed membranes were compared in order to identify secondary ions related to BSA and membranes. Peaks of secondary ions related to BSA and each membrane were selected by means of information theory, and they are characterized by principal component analysis (PCA). Chemical images of BSA adsorption on both native and treated membranes were obtained to find that BSA permeability and interaction between the membranes and BSA definitely depend on the properties of a membrane. TOF-SIMS imaging obtained with information theory is a powerful tool to estimate protein adsorption on the dialysis membranes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=213185','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=213185"><span>Ion selectivity of the Vibrio alginolyticus flagellar motor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Liu, J Z; Dapice, M; Khan, S</p> <p>1990-01-01</p> <p>The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight. PMID:2394685</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22666080-dynamics-high-energy-ions-structured-collisionless-shock-front','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22666080-dynamics-high-energy-ions-structured-collisionless-shock-front"><span>DYNAMICS OF HIGH ENERGY IONS AT A STRUCTURED COLLISIONLESS SHOCK FRONT</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gedalin, M.; Dröge, W.; Kartavykh, Y. Y., E-mail: gedalin@bgu.ac.il</p> <p>2016-07-10</p> <p>Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. Wemore » also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11340988','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11340988"><span>Silver(I) ion-selective membrane based on Schiff base-p-tert-butylcalix[4]arene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mahajan, R K; Kumar, M; Sharma, V; Kaur, I</p> <p>2001-04-01</p> <p>A PVC membrane electrode for silver(I) ion based on Schiff base-p-tert-butylcalix[4]arene is reported. The electrode works well over a wide range of concentration (1.0 x 10(-5)-1.0 x 10(-1) mol dm-3) with a Nernstian slope of 59.7 mV per decade. The electrode shows a fast response time of 20 s and operates in the pH range 1.0-5.6. The sensor can be used for more than 6 months without any divergence in the potential. The selectivity of the electrode was studied and it was found that the electrode exhibits good selectivity for silver ion over some alkali, alkaline earth and transition metal ions. The silver ion-selective electrode was used as an indicator electrode for the potentiometric titration of silver ion in solution using a standard solution of sodium chloride; a sharp potential change occurs at the end-point. The applicability of the sensor to silver(I) ion measurement in water samples spiked with silver nitrate is illustrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ApPhL.100k2905N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ApPhL.100k2905N"><span>Time-dependent dielectric breakdown of plasma-exposed porous organosilicate glass</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nichols, M. T.; Sinha, H.; Wiltbank, C. A.; Antonelli, G. A.; Nishi, Y.; Shohet, J. L.</p> <p>2012-03-01</p> <p>Time-dependent dielectric breakdown (TDDB) is a major concern for low-k organosilicate dielectrics. To examine the effect of plasma exposure on TDDB degradation, time-to-breakdown measurements were made on porous SiCOH before and after exposure to plasma. A capillary-array window was used to separate charged particle and vacuum ultraviolet (VUV) photon bombardment. Samples exposed to VUV photons, and a combination of VUV photons and ion bombardment exhibited significant degradation in breakdown time. The samples exposed to VUV photons and ion bombardment showed more degradation in breakdown time in comparison to samples exposed to VUV photons alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/2991528','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/2991528"><span>Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Apell, H J; Marcus, M M; Anner, B M; Oetliker, H; Läuger, P</p> <p>1985-01-01</p> <p>A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28208304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28208304"><span>Boric-Acid-Functional Lanthanide Metal-Organic Frameworks for Selective Ratiometric Fluorescence Detection of Fluoride Ions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Zhong-Rui; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo</p> <p>2017-02-07</p> <p>Here, we report that boric acid is used to tune the optical properties of lanthanide metal-organic frameworks (LMOFs) for dual-fluorescence emission and improves the selectivity of LMOFs for the determination of F - ions. The LMOFs are prepared with 5-boronoisophthalic acid (5-bop) and Eu 3+ ions as the precursors. Emission mechanism study indicates that 5-bop is excited with UV photons to produce its triplet state, which then excites Eu 3+ ions for their red emission. This is the general story of the antenna effect, but electron-deficient boric acid decreases the energy transfer efficiency from the triplet state of 5-bop to Eu 3+ ions, so dual emission from both 5-bop and Eu 3+ ions is efficiently excited at the single excitation of 275 nm. Moreover, boric acid is used to identify fluoride specifically as a free accessible site. The ratiometric fluorescent detection of F - ions is validated with the dual emission at single excitation. The LMOFs are very monodisperse, so the determination of aqueous F - ions is easily achieved with high selectivity and a low detection limit (2 μM). For the first time, we reveal that rational selection of functional ligands can improve the sensing efficiency of LMOFs through tuning their optical property and enhancing the selectivity toward targets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27547997','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27547997"><span>Supercritical Fluid Extraction of Metal Chelate: A Review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Xin; Liu, Qinli; Hou, Xiongpo; Fang, Tao</p> <p>2017-03-04</p> <p>Supercritical fluid extraction (SFE), as a new green extraction technology, has been used in extracting various metal species. The solubilities of chelating agents and corresponding metal chelates are the key factors which influence the efficiency of SFE. Other main properties of them such as stability and selectivity are also reviewed. The extraction mechanisms of mainly used chelating agents are explained by typical examples in this paper. This is the important aspect of SFE of metal ions. Moreover, the extraction efficiencies of metal species also depend on other factors such as temperature, pressure, extraction time and matrix effect. The two main complexation methods namely in-situ and on-line chelating SFE are described in detail. As an efficient chelating agent, tributyl phosphate-nitric acid (TBP-HNO 3 ) complex attracts much attention. The SFE of metal ions, lanthanides and actinides as well as organometallic compounds are also summarized. With the proper selection of ligands, high efficient extraction of metal species can be obtained. As an efficient sample analysis method, supercritical fluid chromatography (SFC) is introduced in this paper. Recently, the extraction method combining ionic liquids (ILs) with supercritical fluid has been becoming a novel technology for treating metal ions. The kinetics related to SFE of metal species is discussed with some specific examples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24811255','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24811255"><span>Application of a thiourea-containing task-specific ionic liquid for the solid-phase extraction cleanup of lead ions from red lipstick, pine leaves, and water samples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saljooqi, Asma; Shamspur, Tayebeh; Mohamadi, Maryam; Mostafavi, Ali</p> <p>2014-07-01</p> <p>Here, task-specific ionic liquid solid-phase extraction is proposed for the first time. In this approach, a thiourea-functionalized ionic liquid is immobilized on the solid sorbent, multiwalled carbon nanotubes. These modified nanotubes packed into a solid-phase extraction column are used for the selective extraction and preconcentration of ultra-trace amounts of lead(II) from aqueous samples prior to electrothermal atomic absorption spectroscopy determination. The thiourea functional groups act as chelating agents for lead ions retaining them and so, give the selectivity to the sorbent. Elution of the retained ions can be performed using an acidic thiourea solution. The effects of experimental parameters including pH of the aqueous solution, type and amount of eluent, and the flow rates of sample and eluent solutions on the separation efficiency are investigated. The linear dependence of absorbance of lead on its concentration in the initial solution is in the range of 0.5-40.0 ng/mL with the detection limit of 0.13 ng/mL (3(Sb)/m, n = 10). The proposed method is applicable to the analysis of red lipstick, pine leaves, and water samples for their lead contents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JChPh.139k4702Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JChPh.139k4702Z"><span>Ion selection of charge-modified large nanopores in a graphene sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Shijun; Xue, Jianming; Kang, Wei</p> <p>2013-09-01</p> <p>Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5112581','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5112581"><span>Observation and experimental investigation of confinement effects on ion transport and electrokinetic flows at the microscale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Benneker, Anne M.; Wood, Jeffery A.; Tsai, Peichun A.; Lammertink, Rob G. H.</p> <p>2016-01-01</p> <p>Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using nanochannels as the CSI. Particle tracking obtained under chronoamperometric measurements show the development of vortices in the microchannel adjacent to the nanochannels. We found that the direction of the electric field and the potential drop inside the microchannel has a large influence on the ion transport through the interface, for example by inducing immediate wall electroosmotic flow. In microfluidic devices, the electric field may not be directed normal to the interface, which can result in an inefficient use of the CSI. Multiple vortices are observed adjacent to the CSI, growing in size and velocity as a function of time and dependent on their location in the microfluidic device. Local velocities inside the vortices are measured to be more than 1.5 mm/s. Vortex speed, as well as flow speed in the channel, are dependent on the geometry of the CSI and the distance from the electrode. PMID:27853257</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MAR.G1147E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MAR.G1147E"><span>Optical Properties of Silver Nanoparticulate Glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, Rachel N.; Cannavino, Sarah A.; King, Christy A.; Lamartina, Joseph A.; Magruder, Robert H.; Ferrara, Davon W.</p> <p></p> <p>The ion exchange method of embedding metal nanoparticles (NPs) into float glass is an often used technique of fabricating colored glasses and graded-index waveguides. The depth and size of NP formation in the glass depends on the concentration and temperature of metal ions in the molten bath. In this study we explore the dichroic properties of silver metal ion exchange restricted to only one side of a glass microscope slide using reflection and transmission spectroscopy and its dependence on temperature, concentration of silver ions, and length of time in the molten bath.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19505066','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19505066"><span>Multiple products monitoring as a robust approach for peptide quantification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baek, Je-Hyun; Kim, Hokeun; Shin, Byunghee; Yu, Myeong-Hee</p> <p>2009-07-01</p> <p>Quantification of target peptides and proteins is crucial for biomarker discovery. Approaches such as selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) rely on liquid chromatography and mass spectrometric analysis of defined peptide product ions. These methods are not very widespread because the determination of quantifiable product ion using either SRM or MRM is a very time-consuming process. We developed a novel approach for quantifying target peptides without such an arduous process of ion selection. This method is based on monitoring multiple product ions (multiple products monitoring: MpM) from full-range MS2 spectra of a target precursor. The MpM method uses a scoring system that considers both the absolute intensities of product ions and the similarities between the query MS2 spectrum and the reference MS2 spectrum of the target peptide. Compared with conventional approaches, MpM greatly improves sensitivity and selectivity of peptide quantification using an ion-trap mass spectrometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1416352','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1416352"><span>Ruggedized downhole tool for real-time measurements and uses thereof</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hess, Ryan Falcone; Lindblom, Scott C.; Yelton, William G.</p> <p></p> <p>The present invention relates to ruggedized downhole tools and sensors, as well as uses thereof. In particular, these tools can operate under extreme conditions and, therefore, allow for real-time measurements in geothermal reservoirs or other potentially harsh environments. One exemplary sensor includes a ruggedized ion selective electrode (ISE) for detecting tracer concentrations in real-time. In one embodiment, the ISE includes a solid, non-conductive potting material and an ion selective material, which are disposed in a temperature-resistant electrode body. Other electrode configurations, tools, and methods are also described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26813413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26813413"><span>Role of the electric field in selective ion filtration in nanostructures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Yong; Kim, Sueon; Jang, In Hyuk; Nam, Young Suk; Hong, Hiki; Choi, Dukhyun; Lee, Won Gu</p> <p>2016-02-21</p> <p>Nafion has received great attention as a proton conductor that can block negative ions. Here, we report the effect of a Nafion coating on an anodic aluminium oxide (AAO) nanoporous membrane on its function of ion rejection and filtering depending on the electric field. In our experiments, Nafion, once coated, was used to repel the negative ions (anions) from the coated surface, and then selectively allowed positive ions (cations) to pass through the nanopores in the presence of an electric field. To demonstrate the proof-of-concept validation, we coated Nafion solution onto the surface of AAO membranes with 20 nm nanopores average diameter at different solution concentration levels. Vacuum filtration methods for Nafion coating were vertically applied to the plane of an AAO membrane. An electric field was then applied to the upper surface of the Nafion-coated AAO membrane to investigate if ion rejection and filtering was affected by the presence of the electric field. Both anions and cations could pass through the AAO nanopores without an electric field applied. However, only cations could well pass through the AAO nanopores under an electric field, thus effectively blocking anions from passing through the nanopores. This result shows that ion filtration of electrons has been selectively performed while the system also works as a vital catalyst in reactivating Nafion via electrolysis. A saturated viscosity ratio of Nafion solution for the coating was also determined. We believe that this approach is potentially beneficial for better understanding the fundamentals of selective ion filtration in nanostructures and for promoting the use of nanostructures in potential applications such as ion-based water purification and desalination system at the nanoscale in a massively electrically integrated format.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19272708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19272708"><span>Lead sorption by waste biomass of hazelnut and almond shell.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pehlivan, Erol; Altun, Türkan; Cetin, Serpil; Iqbal Bhanger, M</p> <p>2009-08-15</p> <p>The potential to remove Pb(2+) ion from aqueous solutions using the shells of hazelnut (HNS) (Corylus avellana) and almond (AS) (Prunus dulcis) through biosorption was investigated in batch experiments. The main parameters influencing Pb(2+) ion sorption on HNS and AS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Pb(2+) ion concentration (0.1-1.0mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been investigated. Equilibrium isotherms have been measured and modelled. Adsorption of Pb(2+) ions was in all cases pH-dependent showing a maximum at equilibrium pH values between 6.0 and 7.0, depending on the biomaterial, that corresponded to equilibrium pH values of 6.0 for HNS and 7.0 for AS. The equilibrium sorption capacities of HNS and AS were 28.18 and 8.08 mg/g for lead, respectively after equilibrium time of 2h. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that adsorption, chelation and ion exchange are major adsorption mechanisms for binding Pb(2+) ion to the sorbents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28299713','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28299713"><span>Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dickel, Timo; Plaß, Wolfgang R; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I; Geissel, Hans; Scheidenberger, Christoph</p> <p>2017-06-01</p> <p>A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASMS..28.1079D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASMS..28.1079D"><span>Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph</p> <p>2017-06-01</p> <p>A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. [Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMSM33C1587B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMSM33C1587B"><span>Low Altitude Emission (LAE) of Energetic Neutral Atoms (ENA) Observed by TWINS and its Relation to the CINEMA CubeSat Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bazell, D.; Sotirelis, T.; Nair, H.; Roelof, E. C.; Brandt, P. C.</p> <p>2009-12-01</p> <p>The brightest source of energetic neutral atoms (ENAs) at energies >1keV is low altitude emission (LAE) from ~200-400km near auroral latitudes where precipitating energetic ions undergo multiple atomic collisions with the monatomic (O) exosphere. This emission is many times brighter than that from the high-altitude ring current region where the energetic ions interact only weakly with the much less dense monatomic (H) hydrogen geocorona. The recently selected NSF CubeSat mission CINEMA [Lin et al., this special session] has, as part of its science payload (STEIN), an ENA imager covering energies 4-100keV. From a high-inclination ~800km orbit, STEIN will view the LAE four times during every 90 minutes. The NASA TWINS stereo ENA imagers (2-40keV) will also view the LAE from their Molniya orbits (apogee radius~7Re). We have been analyzing the TWINS ENA images of LAE and comparing them with in situ ion measurements (1-40keV) from DMSP spacecraft when their tracks take them under the ion precipitation regions imaged by TWINS. We have developed an ENA emissivity function that relates the directionally-dependent emergent ENA spectrum to that of the precipitating ions. The TWINS/DMSP direct comparisons show good agreement. We offer suggestions on joint observing strategies for CINEMA, TWINS and DMSP after the CINEMA launch in the second half of 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22285411','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22285411"><span>Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pastor, Victoria; Vicent, Cristian; Cerezo, Miguel; Mauch-Mani, Brigitte; Dean, John; Flors, Victor</p> <p>2012-04-01</p> <p>An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses. Copyright © 2012 Elsevier Masson SAS. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EP%26S...69..122C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EP%26S...69..122C"><span>Distribution of water-group ion cyclotron waves in Saturn's magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chou, Marty; Cheng, Chio Zong</p> <p>2017-09-01</p> <p>The water-group ion cyclotron waves (ICWs) in Saturn's magnetosphere were studied using the magnetic field data provided by the MAG magnetometer on board the Cassini satellite. The period from January 2005 to December 2009, when the Cassini radial distance is smaller than 8 R S , was used. ICWs were identified by their left-hand circularly polarized magnetic perturbations and wave frequencies near the water-group ion gyrofrequencies. We obtained the spatial distribution of ICW amplitude and found that the source region of ICWs is mostly located in the low-latitude region, near the equator and inside the 6 R S radial distance. However, it can extend beyond 7 R S in the midnight region. In general, the wave amplitude is peaked slightly away from the equator, for all local time sectors in both the Northern and Southern Hemispheres. By assuming that the water-group ions are composed of pickup ions and background thermal ions, we obtained the local instability condition of the ICWs and estimated their growth rate along the field lines. If the wave amplitude is correlated with the growth rate, the observed latitudinal dependence of the wave amplitude can be well explained by the local stability analysis. Also, latitudinal location of the peak amplitude is found to depend on the local time. This implies a local time dependence for the water-group ion parallel temperature T|, as determined from the theoretical calculations. [Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1382076-multinuclear-nmr-study-pressure-dependence-carbonate-exchange-uo2-co3-aq-ion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1382076-multinuclear-nmr-study-pressure-dependence-carbonate-exchange-uo2-co3-aq-ion"><span>Multinuclear NMR Study of the Pressure Dependence for Carbonate Exchange in the UO 2(CO 3) 3 4-(aq) Ion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, Rene L.; Harley, Stephen J.; Ohlin, C. André</p> <p>2011-09-16</p> <p>Rates of carbonate exchange by two pH-sensitive pathways between aqueous carbonate ion and UO 2(CO 3) 3 4-(aq) (see picture) are measured by high-pressure NMR. To accomplish this, a custom pulse sequence is employed to achieve selective inversion. Rates of chemical exchange are determined by modeling the return to equilibrium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1065987-multinuclear-nmr-study-pressure-dependence-carbonate-exchange-uo2-co3-aq-ion','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1065987-multinuclear-nmr-study-pressure-dependence-carbonate-exchange-uo2-co3-aq-ion"><span>Multinuclear NMR study of the pressure dependence for carbonate exchange in the [UO2(CO3)3]4- (aq) ion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, Rene L.; Harley, S. J.; Ohlin, C. A.</p> <p>2011-09-16</p> <p>Rates of carbonate exchange by two pH-sensitive pathways between aqueous carbonate ion and UO₂(CO₃)₃⁴⁻(aq) are measured by high-pressure NMR. To accomplish this, a custom pulse sequence is employed to achieve selective inversion. Rates of chemical exchange are determined by modeling the return to equilibrium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NIMPB.371...97N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NIMPB.371...97N"><span>Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishimura, Tomoaki</p> <p>2016-03-01</p> <p>A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663946-origin-properties-quiet-time-mev-nucleon-sup-heavy-ion-population-near-au','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663946-origin-properties-quiet-time-mev-nucleon-sup-heavy-ion-population-near-au"><span>Origin and Properties of Quiet-time 0.11–1.28 MeV Nucleon{sup −1} Heavy-ion Population Near 1 au</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dayeh, M. A.; Desai, M. I.; Ebert, R. W.</p> <p></p> <p>Using measurements from the Advanced Composition Explorer /Ultra-Low Energy Isotope Spectrometer near 1 au, we surveyed the composition and spectra of heavy ions (He-through-Fe) during quiet times from 1998 January 1 to 2015 December 31 at suprathermal energies between ∼0.11 and ∼1.28 MeV nucleon{sup −1}. The selected time period covers the maxima of solar cycles 23 and 24 and the extended solar minimum in between. We find the following. (1) The number of quiet hours in each year correlates well with the sunspot number, year 2009 was the quietest for about 82% of the time. (2) The composition of themore » quiet-time suprathermal heavy-ion population ({sup 3}He, C-through-Fe) correlates well with the level of solar activity, exhibiting SEP-like composition signatures during solar maximum, and CIR- or solar wind-like composition during solar minimum. (3) The heavy-ion (C–Fe) spectra exhibit suprathermal tails at energies of 0.11–0.32 MeV nucleon{sup −1} with power-law spectral indices ranging from 1.40 to 2.97. Fe spectra soften (steepen, i.e., spectral index increases) smoothly with increasing energies compared with Fe, indicating a rollover behavior of Fe at higher energies (0.45–1.28 MeV nucleon{sup −1}). (4) Spectral indices of Fe and O do not appear to exhibit clear solar cycle dependence. (2) and (3) imply that during IP quiet times and at energies above ∼0.1 MeV nucleon{sup −1}, the IP medium is dominated by material from prior solar and interplanetary events. We discuss the implications of these extended observations in the context of the current understanding of the suprathermal ion population near 1 au.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25388287','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25388287"><span>Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim</p> <p>2015-01-01</p> <p>Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. © 2014 International Union of Biochemistry and Molecular Biology, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19760402','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19760402"><span>Solid-contact pH-selective electrode using multi-walled carbon nanotubes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crespo, Gastón A; Gugsa, Derese; Macho, Santiago; Rius, F Xavier</p> <p>2009-12-01</p> <p>Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-microm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JAP...103h3302M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JAP...103h3302M"><span>Real-time plasma control in a dual-frequency, confined plasma etcher</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milosavljević, V.; Ellingboe, A. R.; Gaman, C.; Ringwood, J. V.</p> <p>2008-04-01</p> <p>The physics issues of developing model-based control of plasma etching are presented. A novel methodology for incorporating real-time model-based control of plasma processing systems is developed. The methodology is developed for control of two dependent variables (ion flux and chemical densities) by two independent controls (27 MHz power and O2 flow). A phenomenological physics model of the nonlinear coupling between the independent controls and the dependent variables of the plasma is presented. By using a design of experiment, the functional dependencies of the response surface are determined. In conjunction with the physical model, the dependencies are used to deconvolve the sensor signals onto the control inputs, allowing compensation of the interaction between control paths. The compensated sensor signals and compensated set-points are then used as inputs to proportional-integral-derivative controllers to adjust radio frequency power and oxygen flow to yield the desired ion flux and chemical density. To illustrate the methodology, model-based real-time control is realized in a commercial semiconductor dielectric etch chamber. The two radio frequency symmetric diode operates with typical commercial fluorocarbon feed-gas mixtures (Ar/O2/C4F8). Key parameters for dielectric etching are known to include ion flux to the surface and surface flux of oxygen containing species. Control is demonstrated using diagnostics of electrode-surface ion current, and chemical densities of O, O2, and CO measured by optical emission spectrometry and/or mass spectrometry. Using our model-based real-time control, the set-point tracking accuracy to changes in chemical species density and ion flux is enhanced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998APS..DMP..B207P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998APS..DMP..B207P"><span>Temperature dependent mobility measurements of alkali earth ions in superfluid helium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.</p> <p>1998-05-01</p> <p>Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3591364','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3591364"><span>A Unifying Mechanism for Cancer Cell Death through Ion Channel Activation by HAMLET</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Storm, Petter; Kjaer Klausen, Thomas; Trulsson, Maria; Ho CS, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina</p> <p>2013-01-01</p> <p>Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na+ and K+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET’s broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET’s documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues. PMID:23505537</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23505537','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23505537"><span>A unifying mechanism for cancer cell death through ion channel activation by HAMLET.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina</p> <p>2013-01-01</p> <p>Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1231388','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1231388"><span>MS/MS Automated Selected Ion Chromatograms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Monroe, Matthew</p> <p>2005-12-12</p> <p>This program can be used to read a LC-MS/MS data file from either a Finnigan ion trap mass spectrometer (.Raw file) or an Agilent Ion Trap mass spectrometer (.MGF and .CDF files) and create a selected ion chromatogram (SIC) for each of the parent ion masses chosen for fragmentation. The largest peak in each SIC is also identified, with reported statistics including peak elution time, height, area, and signal to noise ratio. It creates several output files, including a base peak intensity (BPI) chromatogram for the survey scan, a BPI for the fragmentation scans, an XML file containing the SICmore » data for each parent ion, and a "flat file" (ready for import into a database) containing summaries of the SIC data statistics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcSpA.183..225S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcSpA.183..225S"><span>A novel, highly sensitive, selective, reversible and turn-on chemi-sensor based on Schiff base for rapid detection of Cu(II)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saleh, Sayed M.; Ali, Reham; Ali, Ibrahim A. I.</p> <p>2017-08-01</p> <p>In this work, a novel optical fluoro-chemisensor was designed and synthesized for copper (II) ions detection. The sensor film is created by embedded N,N-Bis(2-hydroxo-5-bromobenzyl)ethylenediamine in poly vinyl chloride (PVC) film in presence of dioctyl phthalate (DOP) as plasticizer. The receptor Schiff base reveals "off-on" mode with high selectivity, significant sensitivity to Cu(II) ions. The selectivity of optical sensor for Cu(II) ions is the result of chelation enhanced fluorescence (CHEF). The optimal conditions of pH and response time at which higher efficiency of sensor film is performed was found to be 6.8 and 2.48 min. The possible interference of other metal ions in solution was examined in presence of different types of metal ions. This film shows high selectivity and ultra-sensitivity with low detection limit LOD (1.1 × 10- 8 M). Thus, these considerable properties make it viable to monitor copper metal ions within very low concentration range (0-15 × 10- 6 M Cu(II)) and highly selective even in the presence of different types of metal ions. The sensor reversibility was achieved by utilizing EDTA solution with concentration of 0.1 M solution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6948462-ion-beam-sputter-deposition-yba-sub-cu-sub-sub-minus-delta-beam-induced-target-changes-effect-deposited-film-composition','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6948462-ion-beam-sputter-deposition-yba-sub-cu-sub-sub-minus-delta-beam-induced-target-changes-effect-deposited-film-composition"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Auciello, O.; Ameen, M.S.; Graettinger, T.M.</p> <p></p> <p>Ion beam sputtering is presently used to deposit films from single phase YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} targets. Generally, Ar+ ion beams ({approx}1500 eV) produced by Kaufman-type ion sources are used for this purpose. It has been observed that these ion beams induce compositional and morphological changes on the polycrystalline ceramic target surface, which results in the composition of sputtered flux displaying a time-dependent behavior. This in turn may lead to undesirably long times for reaching steady state conditions in the sputtering process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6793739-ion-beam-sputter-deposition-yba-sub-cu-sub-sub-minus-delta-beam-induced-target-changes-effect-deposited-film-composition','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6793739-ion-beam-sputter-deposition-yba-sub-cu-sub-sub-minus-delta-beam-induced-target-changes-effect-deposited-film-composition"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Auciello, O.; Ameen, M.S.; Graettinger, T.</p> <p></p> <p>Ion beam sputtering is presently used to deposit films from single phase YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} targets. Generally, Ar{sup +} ion beams ({similar to}1500 eV) produced by Kaufman-type ion sources are used for this purpose. It has been observed that these ion beams induce compositional and morphological changes on the polycrystalline ceramic target surface, which results in the composition of sputtered flux displaying a time-dependent behavior. This in turn may lead to undesirably long times for reaching steady state conditions in the sputtering process.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820061319&hterms=hot+spot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhot%2Bspot','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820061319&hterms=hot+spot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dhot%2Bspot"><span>Ionospheric hot spot at high latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schunk, R. W.; Sojka, J. J.</p> <p>1982-01-01</p> <p>Schunk and Raitt (1980) and Sojka et al. (1981) have developed a model of the convecting high-latitude ionosphere in order to determine the extent to which various chemical and transport processes affect the ion composition and electron density at F-region altitudes. The numerical model produces time-dependent, three-dimensional ion density distributions for the ions NO(+), O2(+), N2(+), O(+), N(+), and He(+). Recently, the high-latitude ionospheric model has been improved by including thermal conduction and diffusion-thermal heat flow terms. Schunk and Sojka (1982) have studied the ion temperature variations in the daytime high-latitude F-region. In the present study, a time-dependent three-dimensional ion temperature distribution is obtained for the high-latitude ionosphere for an asymmetric convection electric field pattern with enhanced flow in the dusk sector of the polar region. It is shown that such a convection pattern produces a hot spot in the ion temperature distribution which coincides with the location of the strong convection cell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26919430','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26919430"><span>A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schewe, Marcus; Nematian-Ardestani, Ehsan; Sun, Han; Musinszki, Marianne; Cordeiro, Sönke; Bucci, Giovanna; de Groot, Bert L; Tucker, Stephen J; Rapedius, Markus; Baukrowitz, Thomas</p> <p>2016-02-25</p> <p>Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29139509','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29139509"><span>NEXAFS spectroscopy of ionic liquids: experiments versus calculations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fogarty, Richard M; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt-Talbot, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Bourne, Richard A; Chamberlain, Thomas W; Vander Hoogerstraete, Tom; Thompson, Paul B J; Hunt, Patricia A; Besley, Nicholas A; Lovelock, Kevin R J</p> <p>2017-11-29</p> <p>Experimental near edge X-ray absorption fine structure (NEXAFS) spectra are reported for 12 ionic liquids (ILs) encompassing a range of chemical structures for both the sulfur 1s and nitrogen 1s edges and compared with time-dependent density functional theory (TD-DFT) calculations. The energy scales for the experimental data were carefully calibrated against literature data. Gas phase calculations were performed on lone ions, ion pairs and ion pair dimers, with a wide range of ion pair conformers considered. For the first time, it is demonstrated that TD-DFT is a suitable method for simulating NEXAFS spectra of ILs, although the number of ions included in the calculations and their conformations are important considerations. For most of the ILs studied, calculations on lone ions in the gas phase were sufficient to successfully reproduce the experimental NEXAFS spectra. However, for certain ILs - for example, those containing a protic ammonium cation - calculations on ion pairs were required to obtain a good agreement with experimental spectra. Furthermore, significant conformational dependence was observed for the protic ammonium ILs, providing insight into the predominant liquid phase cation-anion interactions. Among the 12 investigated ILs, we find that four have an excited state that is delocalised across both the cation and the anion, which has implications for any process that depends on the excited state, for example, radiolysis. Considering the collective experimental and theoretical data, we recommend that ion pairs should be the minimum number of ions used for the calculation of NEXAFS spectra of ILs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24559481','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24559481"><span>Sensitivity and selectivity of switchable reagent ion soft chemical ionization mass spectrometry for the detection of picric acid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Agarwal, Bishu; González-Méndez, Ramón; Lanza, Matteo; Sulzer, Philipp; Märk, Tilmann D; Thomas, Neil; Mayhew, Chris A</p> <p>2014-09-18</p> <p>We have investigated the reactions of NO(+), H3O(+), O2(+), and Kr(+) with picric acid (2,4,6 trinitrophenol, C6H3N3O7, PiA) using a time-of-flight mass spectrometer with a switchable reagent ion source. NO(+) forms a simple adduct ion PiA·NO(+), while H3O(+) reacts with PiA via nondissociative proton transfer to form PiAH(+). In contrast, both O2(+) and Kr(+) react with PiA by nondissociative charge transfer to produce PiA(+). For Kr(+), we also observe dissociation of PiA, producing NO2(+) with a branching percentage of approximately 40%. For the reagent ions H3O(+) and O2(+) (and operating the drift tube with normal laboratory air), we find that the intensities of the PiAH(+) and PiA(+) ions both exhibit a peak at a given drift-tube voltage (which is humidity dependent). This unusual behavior implies a peak in the detection sensitivity of PiA as a function of the drift-tube voltage (and hence E/N). Aided by electronic-structure calculations and our previous studies of trinitrotoluene and trinitrobenzene, we provide a possible explanation for the observed peak in the detection sensitivity of PiA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=186841','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=186841"><span>Direct Method for Continuous Determination of Iron Oxidation by Autotrophic Bacteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Steiner, Michael; Lazaroff, Norman</p> <p>1974-01-01</p> <p>A method for direct, continuous determination of ferric ions produced in autotrophic iron oxidation, which depends upon the measurement of ferric ion absorbance at 304 nm, is described. The use of initial rates is shown to compensate for such changes in extinction during oxidation, which are due to dependence of the extinction coefficient on the ratio of complexing anions to ferric ions. A graphical method and a computer method are given for determination of absolute ferric ion concentration, at any time interval, in reaction mixtures containing Thiobacillus ferrooxidans and ferrous ions at known levels of SO42+ and hydrogen ion concentrations. Some examples are discussed of the applicability of these methods to study of the rates of ferrous ion oxidation related to sulfate concentration. PMID:4441066</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28937750','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28937750"><span>Active Site Metal Identity Alters Histone Deacetylase 8 Substrate Selectivity: A Potential Novel Regulatory Mechanism.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castaneda, Carol Ann; Lopez, Jeffrey E; Joseph, Caleb G; Scholle, Michael D; Mrksich, Milan; Fierke, Carol A</p> <p>2017-10-24</p> <p>Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868567','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868567"><span>Process for strontium-82 separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Heaton, Richard C.; Jamriska, Sr., David J.; Taylor, Wayne A.</p> <p>1992-01-01</p> <p>A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7205307','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/7205307"><span>Process for strontium-82 separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Heaton, R.C.; Jamriska, D.J. Sr.; Taylor, W.A.</p> <p>1992-12-01</p> <p>A process for selective separation of strontium-82 and strontium-85 from proton irradiated molybdenum targets comprises dissolving the molybdenum target in a hydrogen peroxide solution to form a first solution containing ions selected from a group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium, rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, and yttrium; passing the solution through a first cationic resin whereby ions selected from a group consisting of zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium a portion of zirconium and a portion of rubidium are selectively absorbed by the first resin; contacting the first resin with an acid solution to strip and remove the absorbed ions from the first cationic exchange resin to form a second solution; evaporating the second solution for a time sufficient to remove substantially all of the acid and water from the solution whereby a residue remains; dissolving the residue in a dilute acid to form a third solution; passing the third solution through a second cationic resin whereby the ions are absorbed by the second resin; contacting the second resin with a dilute sulfuric acid solution whereby the absorbed ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium and zirconium are selectively removed from the second resin; and contacting the second resin with a dilute acid solution whereby the absorbed strontium ions are selectively removed. 1 fig.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26975973','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26975973"><span>The Importance of Magnesium in the Human Body: A Systematic Literature Review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Glasdam, Sidsel-Marie; Glasdam, Stinne; Peters, Günther H</p> <p>2016-01-01</p> <p>Magnesium, the second and fourth most abundant cation in the intracellular compartment and whole body, respectively, is of great physiologic importance. Magnesium exists as bound and free ionized forms depending on temperature, pH, ionic strength, and competing ions. Free magnesium participates in many biochemical processes and is most commonly measured by ion-selective electrode. This analytical approach is problematic because complete selectivity is not possible due to competition with other ions, i.e., calcium, and pH interference. Unfortunately, many studies have focused on measurement of total magnesium rather than its free bioactive form making it difficult to correlate to disease states. This systematic literature review presents current analytical challenges in obtaining accurate and reproducible test results for magnesium. © 2016 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148v2803N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148v2803N"><span>The influence of polarizability and charge transfer on specific ion effects in the dynamics of aqueous salt solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, Mary; Rick, Steven W.</p> <p>2018-06-01</p> <p>The diffusion rates for water molecules in salt solutions depend on the identity of the ions, as well as their concentration. Among the alkali metal ions, cesium and potassium increase and sodium strongly decreases the diffusion constant of water. The origin of the difference can be understood by examining the simulation results using different potential models. In this work, aqueous solutions of salts are simulated with a variety of models. Commonly used non-polarizable models, which otherwise reproduce many experimental properties, do not capture the trend in the diffusion constant, while models which include polarization and/or charge transfer interactions do. For the non-polarizable models, the diffusion constant decreases too strongly with salt concentration. The changes in the water diffusion constant with increasing salt concentration match the diffusion constant of the ion. The ion diffusion constant is dependent on the residence time for water in the ion solvation shell. The non-polarizable models over-estimate the residence time, relative to the translational diffusion constant and so tend to under-estimate the ion and water diffusion constants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JAP...118m5709W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JAP...118m5709W"><span>Radiation defect dynamics in Si at room temperature studied by pulsed ion beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; Myers, M. T.; Shao, L.; Kucheyev, S. O.</p> <p>2015-10-01</p> <p>The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length is revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ˜4-13 ms and a diffusion length of ˜15-50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JOM....54j..47K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JOM....54j..47K"><span>The use of fibrous ion exchangers in gold hydrometallurgy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.</p> <p>2002-10-01</p> <p>This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AcSpA.129...35V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AcSpA.129...35V"><span>Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vinod Kumar, V.; Anbarasan, S.; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu</p> <p>2014-08-01</p> <p>Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg2+, Cd2+ and Pb2+ metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25075382','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25075382"><span>A napthelene-pyrazol conjugate: Al(III) ion-selective blue shifting chemosensor applicable as biomarker in aqueous solution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mukherjee, Manjira; Pal, Siddhartha; Lohar, Somenath; Sen, Buddhadeb; Sen, Supriti; Banerjee, Samya; Banerjee, Snehasis; Chattopadhyay, Pabitra</p> <p>2014-10-07</p> <p>A newly synthesized and crystalographically characterized napthelene–pyrazol conjugate, 1-[(5-phenyl-1H-pyrazole-3-ylimino)-methyl]-naphthalen-2-ol (HL) behaves as an Al(III) ion-selective chemosensor through internal charge transfer (ICT)-chelation-enhanced fluorescence (CHEF) processes in 100 mM HEPES buffer (water–DMSO 5:1, v/v) at biological pH with almost no interference of other competitive ions. This mechanism is readily studied from electronic, fluorimetric and (1)H NMR titration. The probe (HL) behaved as a highly selective fluorescent sensor for Al(III) ions as low as 31.78 nM within a very short response time (15–20 s). The sensor (HL), which has no cytotoxicity, is also efficient in detecting the distribution of Al(III) ions in HeLa cells via image development under fluorescence microscope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1247717-threshold-ion-movements-wood-cell-walls-below-fiber-saturation-observed-ray-fluorescence-microscopy-xfm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1247717-threshold-ion-movements-wood-cell-walls-below-fiber-saturation-observed-ray-fluorescence-microscopy-xfm"><span>Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zelinka, Samuel L.; Gleber, Sophie-Charlotte; Vogt, Stefan</p> <p></p> <p>Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 mu m thick wood sections with a microinjector and then the ion distribution was mapped by means of X-ray fluorescence microscopy with submicron spatial resolution. The MC of the wood was controlled in situ by means of climatic chamber with controlledmore » relative humidity (RH). For all ions investigated, there was a threshold RH below which the concentration profiles did not change. The threshold RH depended upon ionic species, cell wall layer, and wood anatomical orientation. Above the threshold RH, differences in mobility among ions were observed and the mobility depended upon anatomical direction and cell wall layer. These observations support a recently proposed percolation model of electrical conduction in wood. The results contribute to understanding the mechanisms of fungal decay and fastener corrosion that occur below the fiber saturation point.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4904222','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4904222"><span>Selective Deposition of SiO2 on Ion Conductive Area of Soda-lime Glass Surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sakai, Daisuke; Harada, Kenji; Hara, Yuichiro; Ikeda, Hiroshi; Funatsu, Shiro; Uraji, Keiichiro; Suzuki, Toshio; Yamamoto, Yuichi; Yamamoto, Kiyoshi; Ikutame, Naoki; Kawaguchi, Keiga; Kaiju, Hideo; Nishii, Junji</p> <p>2016-01-01</p> <p>Selective deposition of SiO2 nanoparticles was demonstrated on a soda-lime glass surface with a periodic sodium deficient pattern formed using the electrical nanoimprint. Positively charged SiO2 particles generated using corona discharge in a cyclic siloxane vapor, were selectively deposited depending on the sodium pattern. For such phenomena to occur, the sodium ion migration to the cathode side was indispensable to the electrical charge compensation on the glass surface. Therefore, the deposition proceeded preferentially outside the alkali-deficient area. Periodic SiO2 structures with 424 nm and 180 nm heights were obtained using one-dimensional (6 μm period) and two-dimensional (500 nm period) imprinted patterns. PMID:27291796</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22062330-hybrid-quadrupole-mass-filter-quadrupole-ion-trap-time-flight-mass-spectrometer-infrared-multiple-photon-dissociation-spectroscopy-mass-selected-ions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22062330-hybrid-quadrupole-mass-filter-quadrupole-ion-trap-time-flight-mass-spectrometer-infrared-multiple-photon-dissociation-spectroscopy-mass-selected-ions"><span>Hybrid quadrupole mass filter/quadrupole ion trap/time-of-flight-mass spectrometer for infrared multiple photon dissociation spectroscopy of mass-selected ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gulyuz, Kerim; Stedwell, Corey N.; Wang Da</p> <p>2011-05-15</p> <p>We present a laboratory-constructed mass spectrometer optimized for recording infrared multiple photon dissociation (IRMPD) spectra of mass-selected ions using a benchtop tunable infrared optical parametric oscillator/amplifier (OPO/A). The instrument is equipped with two ionization sources, an electrospray ionization source, as well as an electron ionization source for troubleshooting. This hybrid mass spectrometer is composed of a quadrupole mass filter for mass selection, a reduced pressure ({approx}10{sup -5} Torr) quadrupole ion trap (QIT) for OPO irradiation, and a reflectron time-of-flight drift tube for detecting the remaining precursor and photofragment ions. A helium gas pulse is introduced into the QIT to temporarilymore » increase the pressure and hence enhance the trapping efficiency of axially injected ions. After a brief pump-down delay, the compact ion cloud is subjected to the focused output from the continuous wave OPO. In a recent study, we implemented this setup in the study of protonated tryptophan, TrpH{sup +}, as well as collision-induced dissociation products of this protonated amino acid [W. K. Mino, Jr., K. Gulyuz, D. Wang, C. N. Stedwell, and N. C. Polfer, J. Phys. Chem. Lett. 2, 299 (2011)]. Here, we give a more detailed account on the figures of merit of such IRMPD experiments. The appreciable photodissociation yields in these measurements demonstrate that IRMPD spectroscopy of covalently bound ions can be routinely carried out using benchtop OPO setups.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23824098','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23824098"><span>A new fluorescent probe for distinguishing Zn2+ and Cd2+ with high sensitivity and selectivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, Yiqun; Gao, Junkuo; Yu, Jiancan; Wang, Ziqi; Cui, Yuanjing; Yang, Yu; Qian, Guodong</p> <p>2013-08-28</p> <p>A new fluorescence probe for distinguishing Zn(2+) and Cd(2+) is designed and synthesized. For the first time to our knowledge, this probe can recognize similar metal ions by coherently utilizing intramolecular charge transfer (ICT) and different electronic affinities of various metal ions, instead of by selective coordination alone, which may be interfered with and lose its selectivity easily in a complicated environment, providing a distinct recognition even by the naked eye for Zn(2+) and Cd(2+) with the sensitivity at the ppb level. This design strategy may initiate a straightforward approach for the selective detection of various metal ions with similar chemical properties in extensive applications such as environmental, industrial, and bio-science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2717230','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2717230"><span>Ion Trapping with Fast-Response Ion-Selective Microelectrodes Enhances Detection of Extracellular Ion Channel Gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Messerli, Mark A.; Collis, Leon P.; Smith, Peter J.S.</p> <p>2009-01-01</p> <p>Previously, functional mapping of channels has been achieved by measuring the passage of net charge and of specific ions with electrophysiological and intracellular fluorescence imaging techniques. However, functional mapping of ion channels using extracellular ion-selective microelectrodes has distinct advantages over the former methods. We have developed this method through measurement of extracellular K+ gradients caused by efflux through Ca2+-activated K+ channels expressed in Chinese hamster ovary cells. We report that electrodes constructed with short columns of a mechanically stable K+-selective liquid membrane respond quickly and measure changes in local [K+] consistent with a diffusion model. When used in close proximity to the plasma membrane (<4 μm), the ISMs pose a barrier to simple diffusion, creating an ion trap. The ion trap amplifies the local change in [K+] without dramatically changing the rise or fall time of the [K+] profile. Measurement of extracellular K+ gradients from activated rSlo channels shows that rapid events, 10–55 ms, can be characterized. This method provides a noninvasive means for functional mapping of channel location and density as well as for characterizing the properties of ion channels in the plasma membrane. PMID:19217875</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003IJMSp.230....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003IJMSp.230....1S"><span>A SIFT study of the reactions of H2ONO+ ions with several types of organic molecules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, David; Wang, Tianshu; Spanel, Patrik</p> <p>2003-11-01</p> <p>A selected ion flow tube (SIFT) study has been carried out of the reactions of hydrated nitrosonium ions, NO+H2O, which theory has equated to protonated nitrous acid ions, H2ONO+. One objective of this study was to investigate if this ion exhibits the properties of both a cluster ion and a protonated acid in their reactions with a variety of organic molecules. The chosen reactant molecules comprise two each of the following types--amines, terpenes, aromatic hydrocarbons, esters, carboxylic acids, ketones, aldehydes and alcohols. The reactant H2ONO+ (NO+H2O) ions are formed in a discharge ion source and injected into helium carrier gas where they are partially vibrationally excited and partially dissociated to NO+ ions. Hence, the reactions of the H2ONO+ ions had to be studies simultaneously with NO+ ions, the reactions of the latter ions readily being studied by selectively injecting NO+ ions into the carrier gas. The results of this study indicate that the H2ONO+ ions undergo a wide variety of reaction processes that depend on the properties of the reactant molecules such as their ionisation energies and proton affinities. These processes include charge transfer with compounds, M, that have low ionisation energies (producing M+), proton transfer with compounds possessing large proton affinities (MH+), hydride ion transfer (M---H+), alkyl radical (M---R+), alkoxide radical transfer (M---OR+), ion-molecule association (NO+H2OM) and ligand switching (NO+M), producing the ions given in parentheses.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7348B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7348B"><span>Charged particle tracking at Titan, and further applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bebesi, Zsofia; Erdos, Geza; Szego, Karoly</p> <p>2016-04-01</p> <p>We use the CAPS ion data of Cassini to investigate the dynamics and origin of Titan's atmospheric ions. We developed a 4th order Runge-Kutta method to calculate particle trajectories in a time reversed scenario. The test particle magnetic field environment imitates the curved magnetic environment in the vicinity of Titan. The minimum variance directions along the S/C trajectory have been calculated for all available Titan flybys, and we assumed a homogeneous field that is perpendicular to the minimum variance direction. Using this method the magnetic field lines have been calculated along the flyby orbits so we could select those observational intervals when Cassini and the upper atmosphere of Titan were magnetically connected. We have also taken the Kronian magnetodisc into consideration, and used different upstream magnetic field approximations depending on whether Titan was located inside of the magnetodisc current sheet, or in the lobe regions. We also discuss the code's applicability to comets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/5793381','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/5793381"><span>Tokamak power reactor ignition and time dependent fractional power operation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vold, E.L.; Mau, T.K.; Conn, R.W.</p> <p>1986-06-01</p> <p>A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transportmore » power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29210514','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29210514"><span>30 s Response Time of K+ Ion-Selective Hydrogels Functionalized with 18-Crown-6 Ether Based on QCM Sensor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Zhenxiao; Dou, Qian; Gao, Hongkai; Bai, Bing; Zhang, Yongmei; Hu, Debo; Yetisen, Ali K; Butt, Haider; Yang, Xiaoxia; Li, Congju; Dai, Qing</p> <p>2018-03-01</p> <p>Potassium detection is critical in monitoring imbalances in electrolytes and physiological status. The development of rapid and robust potassium sensors is desirable in clinical chemistry and point-of-care applications. In this study, composite supramolecular hydrogels are investigated: polyethylene glycol methacrylate and acrylamide copolymer (P(PEGMA-co-AM)) are functionalized with 18-crown-6 ether by employing surface initiated polymerization. Real-time potassium ion monitoring is realized by combining these compounds with quartz crystal microbalance. The device demonstrates a rapid response time of ≈30 s and a concentration detection range from 0.5 to 7.0 × 10 -3 m. These hydrogels also exhibit high reusability and K + ion selectivity relative to other cations in biofluids such as Na + , NH 4 + , Mg 2+ , and Ca 2+ . These results provide a new approach for sensing alkali metal ions using P(PEGMA-co-AM) hydrogels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1376569','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1376569"><span>Stopping power beyond the adiabatic approximation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Caro, M.; Correa, A. A.; Artacho, E.</p> <p>2017-06-01</p> <p>Energetic ions traveling in solids deposit energy in a variety of ways, being nuclear and electronic stopping the two avenues in which dissipation is usually treated. This separation between electrons and ions relies on the adiabatic approximation in which ions interact via forces derived from the instantaneous electronic ground state. In a more detailed view, in which non-adiabatic effects are explicitly considered, electronic excitations alter the atomic bonding, which translates into changes in the interatomic forces. In this work, we use time dependent density functional theory and forces derived from the equations of Ehrenfest dynamics that depend instantaneously on themore » time-dependent electronic density. With them we analyze how the inter-ionic forces are affected by electronic excitations in a model of a Ni projectile interacting with a Ni target, a metallic system with strong electronic stopping and shallow core level states. We find that the electronic excitations induce substantial modifications to the inter-ionic forces, which translate into nuclear stopping power well above the adiabatic prediction. Particularly, we observe that most of the alteration of the adiabatic potential in early times comes from the ionization of the core levels of the target ions, not readily screened by the valence electrons.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1942T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1942T"><span>Recent progress in empirical modeling of ion composition in the topside ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Truhlik, Vladimir; Triskova, Ludmila; Bilitza, Dieter; Kotov, Dmytro; Bogomaz, Oleksandr; Domnin, Igor</p> <p>2016-07-01</p> <p>The last deep and prolonged solar minimum revealed shortcomings of existing empirical models, especially of parameter models that depend strongly on solar activity, such as the IRI (International Reference Ionosphere) ion composition model, and that are based on data sets from previous solar cycles. We have improved the TTS-03 ion composition model (Triskova et al., 2003) which is included in IRI since version 2007. The new model called AEIKion-13 employs an improved description of the dependence of ion composition on solar activity. We have also developed new global models of the upper transition height based on large data sets of vertical electron density profiles from ISIS, Alouette and COSMIC. The upper transition height is used as an anchor point for adjustment of the AEIKion-13 ion composition model. Additionally, we show also progress on improvements of the altitudinal dependence of the ion composition in the AEIKion-13 model. Results of the improved model are compared with data from other types of measurements including data from the Atmosphere Explorer C and E and C/NOFS satellites, and the Kharkiv and Arecibo incoherent scatter radars. Possible real time updating of the model by the upper transition height from the real time COSMIC vertical profiles is discussed. Triskova, L.,Truhlik,V., Smilauer, J.,2003. An empirical model of ion composition in the outer ionosphere. Adv. Space Res. 31(3), 653-663.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASMS.tmp..725H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASMS.tmp..725H"><span>Determining Energies and Cross Sections of Individual Ions Using Higher-Order Harmonics in Fourier Transform Charge Detection Mass Spectrometry (FT-CDMS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harper, Conner C.; Elliott, Andrew G.; Lin, Haw-Wei; Williams, Evan R.</p> <p>2018-06-01</p> <p>A general method for in situ measurements of the energy of individual ions trapped and weighed using charge detection mass spectrometry (CDMS) is described. Highly charged (> 300 e), individual polyethylene glycol (PEG) ions are trapped and oscillate within an electrostatic trap, producing a time domain signal. A segmented Fourier transform (FT) of this signal yields the temporal evolution of the fundamental and harmonic frequencies of ion motion throughout the 500-ms trap time. The ratio of the fundamental frequency and second harmonic (HAR) depends on the ion energy, which is an essential parameter for measuring ion mass in CDMS. This relationship is calibrated using simulated ion signals, and the calibration is compared to the HAR values measured for PEG ion signals where the ion energy was also determined using an independent method that requires that the ions be highly charged (> 300 e). The mean error of 0.6% between the two measurements indicates that the HAR method is an accurate means of ion energy determination that does not depend on ion size or charge. The HAR is determined dynamically over the entire trapping period, making it possible to observe the change in ion energy that takes place as solvent evaporates from the ion and collisions with background gas occur. This method makes it possible to measure mass changes, either from solvent evaporation or from molecular fragmentation (MSn), as well as the cross sections of ions measured using CDMS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993SurSc.297..167F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993SurSc.297..167F"><span>CO adsorption on ion bombarded Ni(111): characterization by photoemission from adsorbed xenon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, Sabrina S.; Malafsky, Geoffrey P.; Hsu, David S. Y.</p> <p>1993-11-01</p> <p>The adsorption of CO on Ni(111), ion bombarded with various fluences of 1.0 keV Ar + ions, has been investigated using photoemission from adsorbed xenon (PAX). After ion bombardment of the Ni(111) surface, various amounts of CO were adsorbed, followed by adsorption of xenon at 85 K. Two pressures of xenon were used in examining the 3d {5}/{2} peak of xenon: 5 × 10 -6 and 7 × 10 -10 Torr. PAX data taken at both pressures show that CO selectively adsorbs onto the defect (step) sites created by ion bombardment. In addition, it was found that the amount of CO which could occupy a defect site previously occupied by one Xe atom varied from 10 to 2.5, depending on the ion fluence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027120','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027120"><span>Influence of natural organic matter source on copper speciation as demonstrated by Cu binding to fish gills, by ion selective electrode, and by DGT gel sampler</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Luider, C.D.; Crusius, John; Playle, R.C.; Curtis, P.J.</p> <p>2004-01-01</p> <p>Rainbow trout (Oncorhynchus mykiss, 2 g) were exposed to 0−5 μM total copper in ion-poor water for 3 h in the presence or absence of 10 mg C/L of qualitatively different natural organic matter (NOM) derived from water spanning a large gradient in hydrologic residence time. Accumulation of Cu by trout gills was compared to Cu speciation determined by ion selective electrode (ISE) and by diffusive gradients in thin films (DGT) gel sampler technology. The presence of NOM decreased Cu uptake by trout gills as well as Cu concentrations determined by ISE and DGT. Furthermore, the source of NOM influenced Cu binding by trout gills with high-color, allochthonous NOM decreasing Cu accumulation by the gills more than low-color autochthonous NOM. The pattern of Cu binding to the NOM measured by Cu ISE and by Cu accumulation by DGT samplers was similar to the fish gill results. A simple Cu−gill binding model required an NOM Cu-binding factor (F) that depended on NOM quality to account for observed Cu accumulation by trout gills; values of F varied by a factor of 2. Thus, NOM metal-binding quality, as well as NOM quantity, are both important when assessing the bioavailability of metals such as Cu to aquatic organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140000579','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140000579"><span>Conductance of Ion Channels - Theory vs. Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan</p> <p>2013-01-01</p> <p>Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents. In addition, once the free energy profile becomes available the full current-voltage dependence can be readily obtained. For both channels we carried out calculations using both approaches. We also tested the main assumptions underlying the diffusive model, such as uncorrelated nature of individual crossing events and Fickian diffusion. The accuracy and consistency of different methods will be discussed. Finally we will discuss how comparisons between calculated and measured ionic conductance and selectivity of transport can be used for determining structural models of the channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3316736','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3316736"><span>Ultra High Resolution Linear Ion Trap Orbitrap Mass Spectrometer (Orbitrap Elite) Facilitates Top Down LC MS/MS and Versatile Peptide Fragmentation Modes*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Michalski, Annette; Damoc, Eugen; Lange, Oliver; Denisov, Eduard; Nolting, Dirk; Müller, Mathias; Viner, Rosa; Schwartz, Jae; Remes, Philip; Belford, Michael; Dunyach, Jean-Jacques; Cox, Juergen; Horning, Stevan; Mann, Matthias; Makarov, Alexander</p> <p>2012-01-01</p> <p>Although only a few years old, the combination of a linear ion trap with an Orbitrap analyzer has become one of the standard mass spectrometers to characterize proteins and proteomes. Here we describe a novel version of this instrument family, the Orbitrap Elite, which is improved in three main areas. The ion transfer optics has an ion path that blocks the line of sight to achieve more robust operation. The tandem MS acquisition speed of the dual cell linear ion trap now exceeds 12 Hz. Most importantly, the resolving power of the Orbitrap analyzer has been increased twofold for the same transient length by employing a compact, high-field Orbitrap analyzer that almost doubles the observed frequencies. An enhanced Fourier Transform algorithm—incorporating phase information—further doubles the resolving power to 240,000 at m/z 400 for a 768 ms transient. For top-down experiments, we combine a survey scan with a selected ion monitoring scan of the charge state of the protein to be fragmented and with several HCD microscans. Despite the 120,000 resolving power for SIM and HCD scans, the total cycle time is within several seconds and therefore suitable for liquid chromatography tandem MS. For bottom-up proteomics, we combined survey scans at 240,000 resolving power with data-dependent collision-induced dissociation of the 20 most abundant precursors in a total cycle time of 2.5 s—increasing protein identifications in complex mixtures by about 30%. The speed of the Orbitrap Elite furthermore allows scan modes in which complementary dissociation mechanisms are routinely obtained of all fragmented peptides. PMID:22159718</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19416909','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19416909"><span>Dynamic hybrid materials for constitutional self-instructed membranes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cazacu, Adinela; Legrand, Yves-Marie; Pasc, Andreea; Nasr, Gihane; Van der Lee, Arie; Mahon, Eugene; Barboiu, Mihail</p> <p>2009-05-19</p> <p>Constitutional self-instructed membranes were developed and used for mimicking the adaptive structural functionality of natural ion-channel systems. These membranes are based on dynamic hybrid materials in which the functional self-organized macrocycles are reversibly connected with the inorganic silica through hydrophobic noncovalent interactions. Supramolecular columnar ion-channel architectures can be generated by reversible confinement within scaffolding hydrophobic silica mesopores. They can be structurally determined by using X-ray diffraction and morphologically tuned by alkali-salts templating. From the conceptual point of view, these membranes express a synergistic adaptive behavior: the simultaneous binding of the fittest cation and its anion would be a case of "homotropic allosteric interactions," because in time it increases the transport efficiency of the pore-contained superstructures by a selective evolving process toward the fittest ion channel. The hybrid membranes presented here represent dynamic constitutional systems evolving over time to form the fittest ion channels from a library of molecular and supramolecular components, or selecting the fittest ion pairs from a mixture of salts demonstrating flexible adaptation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......260S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......260S"><span>Fast-Ion Spectrometry of ICF Implosions and Laser-Foil Experiments at the Omega and MTW Laser Facilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinenian, Nareg</p> <p></p> <p>Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity of the driver, generate hot electrons with temperatures ranging from tens to thousands of kilo-electron-volts. These electrons, which accelerate the ions measured in this work, can be either detrimental or essential to implosion performance depending on the ICF scheme employed. In direct-drive hot-spot ignition, hot electrons can preheat the fuel and raise the adiabat, potentially degrading compression in the implosion. The amount of preheat depends on the hot-electron source characteristics and the time duration over which electrons can deposit energy into the fuel. This time duration is prescribed by the evolution of a sheath that surrounds the implosion and traps electrons. Fast-ion measurements have been used to develop a circuit model that describes the time decay of the sheath voltage for typical OMEGA implosions. In the context of electron fast ignition, the produced fast ions are considered a loss channel that has been characterized for the first time. These ions have also been used as a diagnostic tool to infer the temperature of the hot electrons in fast-ignition experiments. It has also been shown that the hot-electron temperature scales with laser intensity as expected, but is enhanced by a factor of 2-3. This enhancement is possibly due to relativistic effects and leads to poor implosion performance. Finally, fast-ion generation by ultra-intense lasers has also been studied using planar targets. The mean and maximum energies of protons and heavy ions has been measured, and it has been shown that a two-temperature hot-electron distribution affects the energies of heavy ions and protons. This work is important for advanced fusion concepts that utilize ion beams and also has applications in medicine. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28013180','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28013180"><span>Determination of glycerol in oils and fats using liquid chromatography chloride attachment electrospray ionization mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Chunfen; Viidanoja, Jyrki</p> <p>2017-01-15</p> <p>Existing liquid chromatography - mass spectrometry method for the analysis of short chain carboxylic acids was expanded and validated to cover also the measurement of glycerol from oils and fats. The method employs chloride anion attachment and two ions, [glycerol+ 35 Cl] - and [glycerol+ 37 Cl] - , as alternative quantifiers for improved selectivity of glycerol measurement. The averaged within run precision, between run precision and accuracy ranged between 0.3-7%, 0.4-6% and 94-99%, respectively, depending on the analyte ion and sample matrix. Selected renewable diesel feedstocks were analyzed with the method. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/983889','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/983889"><span>Method and apparatus for efficient photodetachment and purification of negative ion beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN</p> <p>2008-02-26</p> <p>Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33242','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=33242"><span>Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hammann, Christian; Norman, David G.; Lilley, David M. J.</p> <p>2001-01-01</p> <p>We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range. PMID:11331743</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMoSt1104....1A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMoSt1104....1A"><span>Synthesis and crystal structure of imidazole containing amide as a turn on fluorescent probe for nickel ion in aqueous media. An experimental and theoretical investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Annaraj, B.; Mitu, L.; Neelakantan, M. A.</p> <p>2016-01-01</p> <p>Imidazole containing amide fluorescence probe (PAIC) for Ni2+ was designed and successfully synthesized in good yield by reaction between 1-methyl-1H-imidazole-2-carboxylic acid and L-phenylalanine methyl ester. The probe was characterized by FTIR, 1H NMR, ESI-MS, UV-vis and fluorescence spectroscopy. Single crystal XRD analysis reveals that PAIC crystallizes in a monoclinic crystal lattice system with the space group of P21/n. Chemosensor property of PAIC was tested against different metal ions by UV-vis and fluorescent techniques in aqueous medium. Test results show that PAIC has high selectivity for Ni2+ compared to other metal ions (Na+, K+, Ca2+, Ag+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, Mn2+, Zn2+ and Pb2+). Time-dependent density functional theory (TD-DFT) and configuration interaction singles (CIS) calculations were carried out to understand the sensing mechanism. The practical applicability of PAIC was tested in real water samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97d3423M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97d3423M"><span>Heralded ions via ionization coincidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCulloch, A. J.; Speirs, R. W.; Wissenberg, S. H.; Tielen, R. P. M.; Sparkes, B. M.; Scholten, R. E.</p> <p>2018-04-01</p> <p>We demonstrate a method for the deterministic production of single ions by exploiting the correlation between an electron and associated ion following ionization. Coincident detection and feedback in combination with Coulomb-driven particle selection allows for high-fidelity heralding of ions at a high repetition rate. Extension of the scheme beyond time-correlated feedback to position- and momentum-correlated feedback will provide a general and powerful means to optimize the ion beam brightness for the development of next-generation focused ion beam technologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28960994','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28960994"><span>Postsynthesis Modification of a Metallosalen-Containing Metal-Organic Framework for Selective Th(IV)/Ln(III) Separation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guo, Xiang-Guang; Qiu, Sen; Chen, Xiuting; Gong, Yu; Sun, Xiaoqi</p> <p>2017-10-16</p> <p>An uncoordinated salen-containing metal-organic framework (MOF) obtained through postsynthesis removal of Mn(III) ions from a metallosalen-containing MOF material has been used for selective separation of Th(IV) ion from Ln(III) ions in methanol solutions for the first time. This material exhibited an adsorption capacity of 46.345 mg of Th/g. The separation factors (β) of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Lu(III) were 10.7, 16.4, and 10.3, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25279810','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25279810"><span>Quaternary ammonium promoted ultra selective and sensitive fluorescence detection of fluoride ion in water and living cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Long; Ji, Yuzhuo; Tang, Xinjing</p> <p>2014-10-21</p> <p>Highly selective and sensitive fluorescent probes with a quaternary ammonium moiety have been rationally designed and developed for fast and sensitive fluorescence detection of fluoride ion (F(-) from NaF, not TBAF) in aqueous solution and living cells. With the sequestration effect of quaternary ammonium, the detection time was less than 2 min and the detection limit of fluoride ion was as low as 0.57 ppm that is among the lowest detection limits in aqueous solutions of many fluoride fluorescence probes in the literature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1270966-ion-selectivity-graphene-nanopores','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1270966-ion-selectivity-graphene-nanopores"><span>Ion selectivity of graphene nanopores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.</p> <p>2016-04-22</p> <p>As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K + cations over Cl - anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly thanmore » divalent cations. Furthermore, the observed K +/Cl - selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29414086','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29414086"><span>Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Farzbod, Ali; Moon, Hyejin</p> <p>2018-05-30</p> <p>This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4210866','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4210866"><span>Electro- and Magneto-Modulated Ion Transport through Graphene Oxide Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, Pengzhan; Zheng, Feng; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei</p> <p>2014-01-01</p> <p>The control of ion trans-membrane transport through graphene oxide (GO) membranes is achieved by electric and magnetic fields. Electric field can either increase or decrease the ion transport through GO membranes depending on its direction, and magnetic field can enhance the ion penetration monotonically. When electric field is applied across GO membrane, excellent control of ion fluidic flows can be done. With the magnetic field, the effective anchoring of ions is demonstrated but the modulation of the ion flowing directions does not occur. The mechanism of the electro- and magneto-modulated ion trans-membrane transport is investigated, indicating that the electric fields dominate the ion migration process while the magnetic fields tune the structure of nanocapillaries within GO membranes. Results also show that the ion selectivity of GO membranes can be tuned with the electric fields while the transport of ions can be enhanced synchronously with the magnetic fields. These excellent properties make GO membranes promising in areas such as field-induced mass transport control and membrane separation. PMID:25347969</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OLEB...48..123D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OLEB...48..123D"><span>Enantiomer-Selective Photo-Induced Reaction of Protonated Tryptophan with Disaccharides in the Gas Phase</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doan, Thuc N.; Fujihara, Akimasa</p> <p>2018-03-01</p> <p>In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα-Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+( l-Trp)( d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+( d-Trp)( d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C-C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2576370','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2576370"><span>Anion-Cation Permeability Correlates with Hydrated Counterion Size in Glycine Receptor Channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sugiharto, Silas; Lewis, Trevor M.; Moorhouse, Andrew J.; Schofield, Peter R.; Barry, Peter H.</p> <p>2008-01-01</p> <p>The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl− or \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter. PMID:18708455</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29799663','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29799663"><span>On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kielar, Charlotte; Xin, Yang; Shen, Boxuan; Kostiainen, Mauri A; Grundmeier, Guido; Linko, Veikko; Keller, Adrian</p> <p>2018-05-25</p> <p>DNA origami have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Here, we investigate DNA origami stability in low-Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+-DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure-dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low-μM range. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA584457','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA584457"><span>Depth-Resolved Cathodoluminescence of Thorium Dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-03-01</p> <p>exhibited more of an energy dependency than the cut and polished sample. However, in a companion study, ime of flight secondary ion mass spectrometry...Ion Mass Spectrometry (TOF SIMS) ......................17 2.7 Atomic Force Microscope (AFM...1 TOF SIMS……….Time of Flight Secondary Ion Mass Spectroscopy……………….62 1 DEPTH</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013Nanos...5.2073S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013Nanos...5.2073S"><span>Chemically differentiating ascorbate-mediated dissolution of quantum dots in cell culture media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Cheng-Kuan; Sun, Yuh-Chang</p> <p>2013-02-01</p> <p>To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule.To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule. Electronic supplementary information (ESI) available: The operation sequence, optimized parameters, instrumental operation conditions, and schematic representations for the proposed sequential in-tube PTFE SPE-ICP-MS hyphenated system are provided. See DOI: 10.1039/c2nr33365a</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18961082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18961082"><span>Selective gas-chromatographic detection using an ion-selective electrode-II Selective detection of fluorine compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kojima, T; Ichise, M; Seo, Y</p> <p>1972-04-01</p> <p>Components in samples are separated on a gas chromatography column using hydrogen as carrier gas. The individual components from the column are passed through a platinum tube heated at 1000 degrees , where they undergo hydrogenolysis, and fluorine compounds are converted into hydrogen fluoride. The hydrogen fluoride is dissolved in a slow stream of an absorption solution, and the fluoride ion concentration in the resulting solution is monitored in a flow-cell with a fluoride ion electrode. The potentiometric output of the cell is converted into a signal, which is proportional to the concentration of fluoride ion, by an antilogarithmic converter, and recorded. The response of the detector to fluorine compounds was about 10,000 times that to an equal quantity of other organic compounds, and 5 x 10(-11) mole of fluorobenzene could be detected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11542887','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11542887"><span>Solar heavy ion Heinrich fluence spectrum at low earth orbit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Croley, D R; Spitale, G C</p> <p>1998-01-01</p> <p>Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1375301','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1375301"><span>Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.</p> <p></p> <p>Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1375301-complex-ion-dynamics-carbonate-lithium-ion-battery-electrolytes','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1375301-complex-ion-dynamics-carbonate-lithium-ion-battery-electrolytes"><span>Complex Ion Dynamics in Carbonate Lithium-Ion Battery Electrolytes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ong, Mitchell T.; Bhatia, Harsh; Gyulassy, Attila G.; ...</p> <p>2017-03-06</p> <p>Li-ion battery performance is strongly influenced by ionic conductivity, which depends on the mobility of the Li ions in solution, and is related to their solvation structure. In this work, we have performed first-principles molecular dynamics (FPMD) simulations of a LiPF6 salt solvated in different Li-ion battery organic electrolytes. We employ an analytical method using relative angles from successive time intervals to characterize complex ionic motion in multiple dimensions from our FPMD simulations. We find different characteristics of ionic motion on different time scales. We find that the Li ion exhibits a strong caging effect due to its strong solvationmore » structure, while the counterion, PF6– undergoes more Brownian-like motion. Lastly, our results show that ionic motion can be far from purely diffusive and provide a quantitative characterization of the microscopic motion of ions over different time scales.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6962812','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6962812"><span>Isotope separation by photoselective dissociative electron capture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Stevens, C.G.</p> <p>1978-08-29</p> <p>Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863166','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863166"><span>Isotope separation by photoselective dissociative electron capture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Stevens, Charles G. [Pleasanton, CA</p> <p>1978-08-29</p> <p>A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1409995','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1409995"><span>Radiation defect dynamics in Si at room temperature studied by pulsed ion beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.</p> <p></p> <p>The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1409995-radiation-defect-dynamics-si-room-temperature-studied-pulsed-ion-beams','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1409995-radiation-defect-dynamics-si-room-temperature-studied-pulsed-ion-beams"><span>Radiation defect dynamics in Si at room temperature studied by pulsed ion beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wallace, J. B.; Charnvanichborikarn, S.; Bayu Aji, L. B.; ...</p> <p>2015-10-06</p> <p>The evolution of radiation defects after the thermalization of collision cascades often plays the dominant role in the formation of stable radiation disorder in crystalline solids of interest to electronics and nuclear materials applications. Here in this paper, we explore a pulsed-ion-beam method to study defect interaction dynamics in Si crystals bombarded at room temperature with 500 keV Ne, Ar, Kr, and Xe ions. The effective time constant of defect interaction is measured directly by studying the dependence of lattice disorder, monitored by ion channeling, on the passive part of the beam duty cycle. The effective defect diffusion length ismore » revealed by the dependence of damage on the active part of the beam duty cycle. Results show that the defect relaxation behavior obeys a second order kinetic process for all the cases studied, with a time constant in the range of ~4–13 ms and a diffusion length of ~15–50 nm. Both radiation dynamics parameters (the time constant and diffusion length) are essentially independent of the maximum instantaneous dose rate, total ion dose, and dopant concentration within the ranges studied. However, both the time constant and diffusion length increase with increasing ion mass. This demonstrates that the density of collision cascades influences not only defect production and annealing efficiencies but also the defect interaction dynamics.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989JCrGr..96...59I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989JCrGr..96...59I"><span>Effects of inorganic ions on morphology of octacalcium phosphate grown on cation selective membrane at physiological temperature and pH in relation to enamel formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iijima, Mayumi; Moriwaki, Yutaka</p> <p>1989-05-01</p> <p>The crystal growth of octacalcium phosphate (OCP) is of particular interest, since there is a possibility that OCP is formed in the early stage of tooth enamel formation. In this study, the effects of CO2-3, Mg2+ and F-ions on the morphology of OCP were investigated in a membrane system, where a cation selective membrane was used to simulate amelogenesis. Reactions were carried out at pH 6.3, 6.5 and 6.8 for 3 days at 37°C. In most cases, these ions suppressed the crystal growth in the c-axis direction of OCP, particularly when they coexisted. The morphology of OCP crystal changed from ribbon-like to flake-like, depending on the inhibitory activity. The inhibitory activity, particularly that of F - ion, was suppressed at pH lower than pH 6.8. Antagonistic effect of Mg2+ and F-ion was observed at pH 6.5. In the case of F - ion, OCP crystals showed a unique pattern, which suggests hydrolysis of OCP and subsequent growth of apatite. These findings indicate that inorganic ions, particularly F - ion, influence the growth of OCP. Although CO2-3, Mg2+andF-ions coexisted, extended growth in the c-axis direction of OCP took place at pH 6.0.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3633476','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3633476"><span>Resolving Structural Isomers of Monosaccharide Methyl Glycosides Using Drift Tube and Traveling Wave Ion Mobility Mass Spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Hongli; Giles, Kevin; Bendiak, Brad; Kaplan, Kimberly; Siems, William F.; Hill, Herbert H.</p> <p>2013-01-01</p> <p>Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M+Na]+ ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides. PMID:22339760</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24268265','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24268265"><span>Construction of a new selective coated disk electrode for Ag (I) based on modified polypyrrole-carbon nanotubes composite with new lariat ether.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abbaspour, A; Tashkhourian, J; Ahmadpour, S; Mirahmadi, E; Sharghi, H; Khalifeh, R; Shahriyari, M R</p> <p>2014-01-01</p> <p>A poly (vinyl chloride) (PVC) matrix membrane ion-selective electrode for silver (I) ion is fabricated based on modified polypyrrole - multiwalled carbon nanotubes composite with new lariat ether. This sensor has a Nernstian slope of 59.4±0.5mV/decade over a wide linear concentration range of 1.0×10(-7) to 1.0×10(-1)molL(-1) for silver (I) ion. It has a short response time of about 8.0s and can be used for at least 50days. The detection limit is 9.3×10(-8)molL(-1) for silver (I) ion, and the electrode was applicable in the wide pH range of 1.6 -7.7. The electrode shows good selectivity for silver ion against many cations such as Hg (II), which usually imposes serious interference in the determination of silver ion concentration. The use of multiwalled carbon nanotubes (MWCNTs) in a polymer matrix improves the linear range and sensitivity of the electrode. In addition by coating the solid contact with a layer of the polypyrrole (Ppy) before coating the membrane on it, not only did it reduce the drift in potential, but a shorter response time was also resulted. The proposed electrode was used as an indicator electrode for potentiometric titration of silver ions with chloride anions and in the titration of mixed halides. This electrode was successfully applied for the determination of silver ions in silver sulphadiazine as a burning cream. © 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2711324','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2711324"><span>Calcium Ions as “Miscibility Switch”: Colocalization of Surfactant Protein B with Anionic Lipids under Absolute Calcium Free Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Saleem, Mohammed; Meyer, Michaela C.; Breitenstein, Daniel; Galla, Hans-Joachim</p> <p>2009-01-01</p> <p>Abstract One of the main determinants of lung surfactant function is the complex interplay between its protein and lipid components. The lipid specificity of surfactant protein B (SP-B), however, and the protein's ability to selectively squeeze out lipids, has remained contradictory. In this work we present, for the first time to our knowledge, by means of time-of-flight secondary ion mass spectrometry chemical imaging, a direct evidence for colocalization of SP-B as well as its model peptide KL4 with negatively charged dipalmitoylphosphatidylglycerol under absolute calcium free conditions. Our results prove that protein/lipid localization depends on the miscibility of all surfactant components, which itself is influenced by subphase ionic conditions. In contrast to our earlier studies reporting SP-B/KL4 colocalization with zwitterionic dipalmitoylphosphatidylcholine, in the presence of even the smallest traces of calcium, we finally evidence an apparent reversal of protein/lipid mixing behavior upon calcium removal with ethylene diamine tetraacetic acid. In addition, scanning force microscopy measurements reveal that by depleting the subphase from calcium ions the protrusion formation ability of SP-B or KL4 is not hampered. However, in the case of KL4, distinct differences in protrusion morphology and height are visible. Our results support the idea that calcium ions act as a “miscibility switch” in surfactant model systems and probably are one of the major factors steering lipid/protein mixing behavior as well as influencing the protein's protrusion formation ability. PMID:19619464</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29271643','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29271643"><span>Fast Orthogonal Separation by Superposition of Time of Flight and Field Asymmetric Ion Mobility Spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bohnhorst, Alexander; Kirk, Ansgar T; Berger, Marc; Zimmermann, Stefan</p> <p>2018-01-16</p> <p>Ion mobility spectrometry is a powerful and low-cost technique for the identification of chemical warfare agents, toxic chemicals, or explosives in air. Drift tube ion mobility spectrometers (DT-IMS) separate ions by the absolute value of their low field ion mobility, while field asymmetric ion mobility spectrometers (FAIMS) separate them by the change of their ion mobility at high fields. However, using one of these devices alone, some common and harmless substances show the same response as the hazardous target substances. In order to increase the selectivity, orthogonal data are required. Thus, in this work, we present for the first time an ambient pressure ion mobility spectrometer which is able to separate ions both by their differential and low field mobility, providing additional information for selectivity enhancement. This novel field asymmetric time of flight ion mobility spectrometer (FAT-IMS) allows high repetition rates and reaches limits of detection in the low ppb range common for DT-IMS. The device consists of a compact 44 mm drift tube with a tritium ionization source and a resolving power of 70. An increased separation of four substances with similar low field ion mobility is shown: phosgene (K 0 = 2.33 cm 2 /(V s)), 1,1,2-trichlorethane (K 0 = 2.31 cm 2 /(V s)), chlorine (K 0 = 2.24 cm 2 /(V s)), and nitrogen dioxide (K 0 = 2.25 cm 2 /(V s)). Furthermore, the behavior and limits of detection for acetonitrile, dimethyl methylphosphonate, diisopropyl methyl phosphonate in positive polarity and carbon dioxide, sulfur dioxide, hydrochloric acid, cyanogen chloride, and hydrogen cyanide in negative polarity are investigated.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22218056-effect-basic-physical-parameters-control-plasma-meniscus-beam-halo-formation-negative-ion-sources','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22218056-effect-basic-physical-parameters-control-plasma-meniscus-beam-halo-formation-negative-ion-sources"><span>Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miyamoto, K.; Okuda, S.; Nishioka, S.</p> <p>2013-09-14</p> <p>Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beammore » halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1991/0519/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1991/0519/report.pdf"><span>Methods of analysis by the U. S. Geological Survey National Water Quality Laboratory - determination of organonitrogen herbicides in water by solid-phase extraction and capillary-column gas chromatography/mass spectrometry with selected-ion monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sandstrom, Mark W.; Wydoski, Duane S.; Schroeder, Michael P.; Zamboni, Jana L.; Foreman, William T.</p> <p>1992-01-01</p> <p>A method for the isolation of organonitrogen herbicides from natural water samples using solid-phase extraction and analysis by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring is described. Water samples are filtered to remove suspended particulate matter and then are pumped through disposable solid-phase extraction cartridges containing octadecyl-bonded porous silica to remove the herbicides. The cartridges are dried using carbon dioxide, and adsorbed herbicides are removed from the cartridges by elution with 1.8 milliliters of hexaneisopropanol (3:1). Extracts of the eluants are analyzed by capillary-column gas chromatography/mass spectrometry with selected-ion monitoring of at least three characteristic ions. The method detection limits are dependent on sample matrix and each particular herbicide. The method detection limits, based on a 100-milliliter sample size, range from 0.02 to 0.25 microgram per liter. Recoveries averaged 80 to 115 percent for the 23 herbicides and 2 metabolites in 1 reagent-water and 2 natural-water samples fortified at levels of 0.2 and 2.0 micrograms per liter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6473891','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6473891"><span>Transport of carbon ion test particles and hydrogen recycling in the plasma of the Columbia tokamak HBT'' (High Beta Tokamak)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Jian-Hua.</p> <p></p> <p>Carbon impurity ion transport is studied in the Columbia High Beta Tokamak (HBT), using a carbon tipped probe which is inserted into the plasma (n{sub e} {approx} 1 {minus} 5 {times} 10{sup 14} (cm{sup {minus}3}), T{sub e} {approx} 4 {minus} 10 (eV), B{sub t} {approx} 0.2 {minus} 0.4(T)). Carbon impurity light, mainly the strong lines of C{sub II}(4267A, emitted by the C{sup +} ions) and C{sub III} (4647A, emitted by the C{sup ++} ions), is formed by the ablation or sputtering of plasma ions and by the discharge of the carbon probe itself. The diffusion transport of the carbon ionsmore » is modeled by measuring the space-and-time dependent spectral light emission of the carbon ions with a collimated optical beam and photomultiplier. The point of emission can be observed in such a way as to sample regions along and transverse to the toroidal magnetic field. The carbon ion diffusion coefficients are obtained by fitting the data to a diffusion transport model. It is found that the diffusion of the carbon ions is classical'' and is controlled by the high collisionality of the HBT plasma; the diffusion is a two-dimensional problem and the expected dependence on the charge of the impurity ion is observed. The measurement of the spatial distribution of the H{sub {alpha}} emissivity was obtained by inverting the light signals from a 4-channel polychromator, the data were used to calculate the minor-radial influx, the density, and the recycling time of neutral hydrogen atoms or molecules. The calculation shows that the particle recycling time {tau}{sub p} is comparable with the plasma energy confinement time {tau}{sub E}; therefore, the recycling of the hot plasma ions with the cold neutrals from the walls is one of the main mechanisms for loss of plasma energy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=320466','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=320466"><span>Structural characterization of product ions of regulated veterinary drugs by electrospray ionization and quadrupole time-of-flight mass spectrometry (part 3) Anthelmintics, thyreostats, and flukicides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>RATIONALE: Previously we have reported a liquid chromatography tandem mass spectrometry method for the identification and quantification of regulated veterinary drugs. The methods used three selected transition ions but most of these ions lacked structural characterization. The work presented here ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22617219-angular-dependence-raman-scattering-selection-rules-long-wavelength-optical-phonons-short-period-gaas-alas-superlattices','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22617219-angular-dependence-raman-scattering-selection-rules-long-wavelength-optical-phonons-short-period-gaas-alas-superlattices"><span>Angular dependence of Raman scattering selection rules for long-wavelength optical phonons in short-period GaAs/AlAs superlattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Volodin, V. A., E-mail: volodin@isp.nsc.ru; Sachkov, V. A.; Sinyukov, M. P.</p> <p>2016-07-15</p> <p>The angular dependence of Raman scattering selection rules for optical phonons in short-period (001) GaAs/AlAs superlattices is calculated and experimentally studied. Experiments are performed using a micro-Raman setup, in the scattering geometry with the wavevectors of the incident and scattered light lying in the plane of superlattices (so-called in-plane geometry). Phonon frequencies are calculated using the Born model taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra are calculated in the framework of the deformation potential and electro-optical mechanisms. Calculations show an angular dependence of the selection rules for optical phonons with different directions of themore » wavevectors. Drastic differences in the selection rules are found for experimental and calculated spectra. Presumably, these differences are due to the Fröhlich mechanism in Raman scattering for short-period superlattices.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100028860','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100028860"><span>Suppressing Loss of Ions in an Atomic Clock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prestage, John; Chung, Sang</p> <p>2010-01-01</p> <p>An improvement has been made in the design of a compact, highly stable mercury- ion clock to suppress a loss of ions as they are transferred between the quadrupole and higher multipole ion traps. Such clocks are being developed for use aboard spacecraft for navigation and planetary radio science. The modification is also applicable to ion clocks operating on Earth: indeed, the success of the modification has been demonstrated in construction and operation of a terrestrial breadboard prototype of the compact, highly stable mercury-ion clock. Selected aspects of the breadboard prototype at different stages of development were described in previous NASA Tech Briefs articles. The following background information is reviewed from previous articles: In this clock as in some prior ion clocks, mercury ions are shuttled between two ion traps, one a 16- pole linear radio-frequency trap, while the other is a quadrupole radio-frequency trap. In the quadrupole trap, ions are tightly confined and optical state selection from a 202Hg lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions are interrogated by use of a microwave beam at approximately 40.507 GHz. The trapping of ions effectively eliminates the frequency pulling that would otherwise be caused by collisions between clock atoms and the wall of a gas cell. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave-resonance process, so that each of these processes can be optimized independently of the other. This is similar to the operation of an atomic beam clock, except that with ions the beam can be halted and reversed as ions are shuttled back and forth between the two traps. When the two traps are driven at the same radio frequency, the strength of confinement can be reduced near the junction between the two traps, depending upon the relative phase of the RF voltage used to operate each of the two traps, and can cause loss of ions during each transit between the traps and thereby cause loss of the 40.507-GHz ion-clock resonance signal. The essence of the modification is to drive the two traps at different frequencies typically between 1.5 and 2 MHz for the quadrupole trap and a frequency a few hundred kHz higher for the 16- pole trap. A frequency difference of a few hundred kHz ensures that the ion motion caused by the trapping electric fields is small relative to the diameter of the traps. Unlike in the case in which both traps are driven at the same frequency, the trapping electric fields near the junction are not zero at all times; instead, the regions of low electric field near the junction open and close at the difference frequency. An additional benefit of making the 16-pole trap operate at higher frequency is that the strength or depth of the multipole trap can be increased independent of the quadrupole ion trap.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3667885','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3667885"><span>A uniquely adaptable pore is consistent with NALCN being an ion sensor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Senatore, Adriano; Spafford, J. David</p> <p>2013-01-01</p> <p>NALCN is an intriguing, orphan ion channel among the 4x6TM family of related voltage-gated cation channels, sharing a common architecture of four homologous domains consisting of six transmembrane helices, separated by three cytoplasmic linkers and delimited by N and C-terminal ends. NALCN is one of the shortest 4x6TM family members, lacking much of the variation that provides the diverse palate of gating features, and tissue specific adaptations of sodium and calcium channels. NALCN’s most distinctive feature is that that it possesses a highly adaptable pore with a calcium-like EEEE selectivity filter in radially symmetrical animals and a more sodium-like EEKE or EKEE selectivity filter in bilaterally symmetrical animals including vertebrates. Two lineages of animals evolved alternative calcium-like EEEE and sodium-like EEKE / EKEE pores, spliced to regulate NALCN functions in differing cellular environments, such as muscle (heart and skeletal) and secretory tissue (brain and glands), respectively. A highly adaptable pore in an otherwise conserved ion channel in the 4x6TM channel family is not consistent with a role for NALCN in directly gating a significant ion conductance that can be either sodium ions or calcium ions. NALCN was proposed to be an expressible Gd3+-sensitive, NMDG+-impermeant, non-selective and ohmic leak conductance in HEK-293T cells, but we were unable to distinguish these reported currents from leaky patch currents (ILP) in control HEK-293T cells. We suggest that NALCN functions as a sensor for the much larger UNC80/UNC79 complex, in a manner consistent with the coupling mechanism known for other weakly or non-conducting 4x6TM channel sensor proteins such as Nax or Cav1.1. We propose that NALCN serves as a variable sensor that responds to calcium or sodium ion flux, depending on whether the total cellular current density is generated more from calcium-selective or sodium-selective channels. PMID:23442378</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23442378','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23442378"><span>A uniquely adaptable pore is consistent with NALCN being an ion sensor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Senatore, Adriano; Spafford, J David</p> <p>2013-01-01</p> <p>NALCN is an intriguing, orphan ion channel among the 4x6TM family of related voltage-gated cation channels, sharing a common architecture of four homologous domains consisting of six transmembrane helices, separated by three cytoplasmic linkers and delimited by N and C-terminal ends. NALCN is one of the shortest 4x6TM family members, lacking much of the variation that provides the diverse palate of gating features, and tissue specific adaptations of sodium and calcium channels. NALCN's most distinctive feature is that that it possesses a highly adaptable pore with a calcium-like EEEE selectivity filter in radially symmetrical animals and a more sodium-like EEKE or EKEE selectivity filter in bilaterally symmetrical animals including vertebrates. Two lineages of animals evolved alternative calcium-like EEEE and sodium-like EEKE / EKEE pores, spliced to regulate NALCN functions in differing cellular environments, such as muscle (heart and skeletal) and secretory tissue (brain and glands), respectively. A highly adaptable pore in an otherwise conserved ion channel in the 4x6TM channel family is not consistent with a role for NALCN in directly gating a significant ion conductance that can be either sodium ions or calcium ions. NALCN was proposed to be an expressible Gd ( 3+) -sensitive, NMDG (+) -impermeant, non-selective and ohmic leak conductance in HEK-293T cells, but we were unable to distinguish these reported currents from leaky patch currents (ILP) in control HEK-293T cells. We suggest that NALCN functions as a sensor for the much larger UNC80/UNC79 complex, in a manner consistent with the coupling mechanism known for other weakly or non-conducting 4x6TM channel sensor proteins such as Nax or Cav 1.1. We propose that NALCN serves as a variable sensor that responds to calcium or sodium ion flux, depending on whether the total cellular current density is generated more from calcium-selective or sodium-selective channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26894407','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26894407"><span>Protein-Coupled Fluorescent Probe To Visualize Potassium Ion Transition on Cellular Membranes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hirata, Tomoya; Terai, Takuya; Yamamura, Hisao; Shimonishi, Manabu; Komatsu, Toru; Hanaoka, Kenjiro; Ueno, Tasuku; Imaizumi, Yuji; Nagano, Tetsuo; Urano, Yasuteru</p> <p>2016-03-01</p> <p>K(+) is the most abundant metal ion in cells, and changes of [K(+)] around cell membranes play important roles in physiological events. However, there is no practical method to selectively visualize [K(+)] at the surface of cells. To address this issue, we have developed a protein-coupled fluorescent probe for K(+), TLSHalo. TLSHalo is responsive to [K(+)] in the physiological range, with good selectivity over Na(+) and retains its K(+)-sensing properties after covalent conjugation with HaloTag protein. By using cells expressing HaloTag on the plasma membrane, we successfully directed TLSHalo specifically to the outer surface of target cells. This enabled us to visualize localized extracellular [K(+)] change with TLSHalo under a fluorescence microscope in real time. To confirm the experimental value of this system, we used TLSHalo to monitor extracellular [K(+)] change induced by K(+) ionophores or by activation of a native Ca(2+)-dependent K(+) channel (BK channel). Further, we show that K(+) efflux via BK channel induced by electrical stimulation at the bottom surface of the cells can be visualized with TLSHalo by means of total internal reflection fluorescence microscope (TIRFM) imaging. Our methodology should be useful to analyze physiological K(+) dynamics with high spatiotemporal resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29860679','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29860679"><span>Determining Energies and Cross Sections of Individual Ions Using Higher-Order Harmonics in Fourier Transform Charge Detection Mass Spectrometry (FT-CDMS).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harper, Conner C; Elliott, Andrew G; Lin, Haw-Wei; Williams, Evan R</p> <p>2018-06-02</p> <p>A general method for in situ measurements of the energy of individual ions trapped and weighed using charge detection mass spectrometry (CDMS) is described. Highly charged (> 300 e), individual polyethylene glycol (PEG) ions are trapped and oscillate within an electrostatic trap, producing a time domain signal. A segmented Fourier transform (FT) of this signal yields the temporal evolution of the fundamental and harmonic frequencies of ion motion throughout the 500-ms trap time. The ratio of the fundamental frequency and second harmonic (HAR) depends on the ion energy, which is an essential parameter for measuring ion mass in CDMS. This relationship is calibrated using simulated ion signals, and the calibration is compared to the HAR values measured for PEG ion signals where the ion energy was also determined using an independent method that requires that the ions be highly charged (> 300 e). The mean error of 0.6% between the two measurements indicates that the HAR method is an accurate means of ion energy determination that does not depend on ion size or charge. The HAR is determined dynamically over the entire trapping period, making it possible to observe the change in ion energy that takes place as solvent evaporates from the ion and collisions with background gas occur. This method makes it possible to measure mass changes, either from solvent evaporation or from molecular fragmentation (MS n ), as well as the cross sections of ions measured using CDMS. Graphical Abstract.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25980895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25980895"><span>Characterization of ion-irradiation-induced nanodot structures on InP surfaces by atom probe tomography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gnaser, Hubert; Radny, Tobias</p> <p>2015-12-01</p> <p>Surfaces of InP were bombarded by 1.9 keV Ar(+) ions under normal incidence. The total accumulated ion fluence the samples were exposed to was varied from 1 × 10(17) cm(-2) to 3 × 10(18)cm(-2) and ion flux densities f of (0.4-2) × 10(14) cm(-2) s(-1) were used. Nanodot structures were found to evolve on the surface from these ion irradiations, their dimensions however, depend on the specific bombardment conditions. The resulting surface morphology was examined by atomic force microscopy (AFM). As a function of ion fluence, the mean radius, height, and spacing of the dots can be fitted by power-law dependences. In order to determine possible local compositional changes in these nanostructures induced by ion impact, selected samples were prepared for atom probe tomography (APT). The results indicate that by APT the composition of individual InP nanodots evolving under ion bombardment could be examined with atomic spatial resolution. At the InP surface, the values of the In/P concentration ratio are distinctly higher over a distance of ~1 nm and amount to 1.3-1.8. However, several aspects critical for the analyses were identified: (i) because of the small dimensions of these nanostructures a successful tip preparation proved very challenging. (ii) The elemental compositions obtained from APT were found to be influenced pronouncedly by the laser pulse energy; typically, low energies result in the correct stoichiometry whereas high ones lead to an inhomogeneous evaporation from the tips and deviations from the nominal composition. (iii) Depending again on the laser energy, a prolific emission of Pn cluster ions was observed, with n ≤ 11. Copyright © 2015. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25279439','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25279439"><span>Fluorescence-based ion-sensing with colloidal particles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ashraf, Sumaira; Carrillo-Carrion, Carolina; Zhang, Qian; Soliman, Mahmoud G; Hartmann, Raimo; Pelaz, Beatriz; Del Pino, Pablo; Parak, Wolfgang J</p> <p>2014-10-01</p> <p>Particle-based fluorescence sensors for the quantification of specific ions can be made by coupling ion-sensitive fluorophores to carrier particles, or by using intrinsically fluorescent particles whose fluorescence properties depend on the concentration of the ions. Despite the advantages of such particle-based sensors for the quantitative detection of ions, such as the possibility to tune the surface chemistry and thus entry portal of the sensor particles to cells, they have also some associated problems. Problems involve for example crosstalk of the ion-sensitive fluorescence read-out with pH, or spectral overlap of the emission spectra of different fluorescent particles in multiplexing formats. Here the benefits of using particle-based fluorescence sensors, their limitations and strategies to overcome these limitations will be described and exemplified with selected examples. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..DMP.G6001J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..DMP.G6001J"><span>Ultrafast Generation of Large Schrodinger Cat States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Kale; Neyenhuis, Brian; Wong-Campos, David; Mizrahi, Jonathan; Campbell, Wes; Monroe, Christopher</p> <p>2014-05-01</p> <p>Using a series of spin-dependent kicks on a trapped Yb + ion, we create large, entangled, Schrodinger cat states. We prepare the ion in a superposition of its two mf = 0 hyperfine ground states, representing an effective spin-1/2 system. Trapped in a harmonic potential, the ion is illuminated with a specially shaped, 1.5 ns pulse that imparts a momentum kick on the ion with a spin-dependent direction. A fast Pockels cell allows us to change the direction of the spin-dependent kick from each subsequent pulse out of an 80 MHz mode-locked laser. By concatenating a series of these very high fidelity spin-dependent kicks, we separate the ion's wave packet into two, spatially distinct states separated by about 200 recoil momenta and involving about 70 phonons. This method for creating a Schrodinger cat state is not time-limited by the trap frequency, and does not rely on confinement in the Lamb-Dicke regime. This work is supported by grants from the U.S. Army Research Office with funding from the DARPA OLE program, IARPA, and the MURI program; and the NSF Physics Frontier Center at JQI.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..12210458G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..12210458G"><span>Empirical Model of Precipitating Ion Oval</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldstein, Jerry</p> <p>2017-10-01</p> <p>In this brief technical report published maps of ion integral flux are used to constrain an empirical model of the precipitating ion oval. The ion oval is modeled as a Gaussian function of ionospheric latitude that depends on local time and the Kp geomagnetic index. The three parameters defining this function are the centroid latitude, width, and amplitude. The local time dependences of these three parameters are approximated by Fourier series expansions whose coefficients are constrained by the published ion maps. The Kp dependence of each coefficient is modeled by a linear fit. Optimization of the number of terms in the expansion is achieved via minimization of the global standard deviation between the model and the published ion map at each Kp. The empirical model is valid near the peak flux of the auroral oval; inside its centroid region the model reproduces the published ion maps with standard deviations of less than 5% of the peak integral flux. On the subglobal scale, average local errors (measured as a fraction of the point-to-point integral flux) are below 30% in the centroid region. Outside its centroid region the model deviates significantly from the H89 integral flux maps. The model's performance is assessed by comparing it with both local and global data from a 17 April 2002 substorm event. The model can reproduce important features of the macroscale auroral region but none of its subglobal structure, and not immediately following a substorm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22224156-tailored-ion-energy-distributions-plasma-electrodes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22224156-tailored-ion-energy-distributions-plasma-electrodes"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Economou, Demetre J.</p> <p></p> <p>As microelectronic device features continue to shrink approaching atomic dimensions, control of the ion energy distribution on the substrate during plasma etching and deposition becomes increasingly critical. The ion energy should be high enough to drive ion-assisted etching, but not too high to cause substrate damage or loss of selectivity. In many cases, a nearly monoenergetic ion energy distribution (IED) is desired to achieve highly selective etching. In this work, the author briefly reviews: (1) the fundamentals of development of the ion energy distribution in the sheath and (2) methods to control the IED on plasma electrodes. Such methods includemore » the application of “tailored” voltage waveforms on an electrode in continuous wave plasmas, or the application of synchronous bias on a “boundary electrode” during a specified time window in the afterglow of pulsed plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24717716','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24717716"><span>Bio-functionalized silver nanoparticles for selective colorimetric sensing of toxic metal ions and antimicrobial studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vinod Kumar, V; Anbarasan, S; Christena, Lawrence Rene; SaiSubramanian, Nagarajan; Philip Anthony, Savarimuthu</p> <p>2014-08-14</p> <p>Hibiscus Sabdariffa (Gongura) plant extracts (leaves (HL) and stem (HS)) were used for the first time in the green synthesis of bio-functionalized silver nanoparticles (AgNPs). The bio-functionality of AgNPs has been successfully utilized for selective colorimetric sensing of potentially health and environmentally hazardous Hg(2+), Cd(2+) and Pb(2+) metal ions at ppm level in aqueous solution. Importantly, clearly distinguishable colour for all three metal ions was observed. The influence of extract preparation condition and pH were also explored on the formation of AgNPs. Both selectivity and sensitivity differed for AgNPs synthesized from different parts of the plant. Direct correlation between the stability of green synthesized AgNPs at different pH and its antibacterial effects has been established. The selective colorimetric sensing of toxic metal ions and antimicrobial effect of green synthesized AgNPs demonstrated the multifunctional applications of green nanotechnology. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26946015','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26946015"><span>Fluorescent carbon quantum dot hydrogels for direct determination of silver ions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cayuela, A; Soriano, M L; Kennedy, S R; Steed, J W; Valcárcel, M</p> <p>2016-05-01</p> <p>The paper reports for the first time the direct determination of silver ion (Ag(+)) using luminescent Carbon Quantum Dot hydrogels (CQDGs). Carbon Quantum Dots (CQDs) with different superficial moieties (passivate-CQDs with carboxylic groups, thiol-CQDs and amine-CQDs) were used to prepare hybrid gels using a low molecular weight hydrogelator (LMWG). The use of the gels results in considerable fluorescence enhancement and also markedly influences selectivity. The most selective CQDG system for Ag(+) ion detection proved to be those containing carboxylic groups onto their surface. The selectivity towards Ag(+) ions is possibly due to its flexible coordination sphere compared with other metal ions. This fluorescent sensing platform is based on the strong Ag-O interaction which can quench the photoluminescence of passivate-CQDs (p-CQDs) through charge transfer. The limit of detection (LOD) and quantification (LOQ) of the proposed method were 0.55 and 1.83µgmL(-1), respectively, being applied in river water samples. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26609552','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26609552"><span>Magnetic Graphene Nanosheet-Based Microfluidic Device for Homogeneous Real-Time Electronic Monitoring of Pyrophosphatase Activity Using Enzymatic Hydrolysate-Induced Release of Copper Ion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Youxiu; Zhou, Qian; Li, Juan; Shu, Jian; Qiu, Zhenli; Lin, Yuping; Tang, Dianping</p> <p>2016-01-05</p> <p>A novel flow-through microfluidic device based on a magneto-controlled graphene sensing platform was designed for homogeneous electronic monitoring of pyrophosphatase (PPase) activity; enzymatic hydrolysate-induced release of inorganic copper ion (Cu(2+)) from the Cu(2+)-coordinated pyrophosphate ions (Cu(2+)-PPi) complex was assessed to determine enzyme activity. Magnetic graphene nanosheets (MGNS) functionalized with negatively charged Nafion were synthesized by using the wet-chemistry method. The Cu(2+)-PPi complexes were prepared on the basis of the coordination reaction between copper ion and inorganic pyrophosphate ions. Upon target PPase introduction into the detection system, the analyte initially hydrolyzed pyrophosphate ions into phosphate ions and released the electroactive copper ions from Cu(2+)-PPi complexes. The released copper ions could be readily captured through the negatively charged Nafion on the magnetic graphene nanosheets, which could be quantitatively monitored by using the stripping voltammetry on the flow-through detection cell with an external magnet. Under optimal conditions, the obtained electrochemical signal exhibited a high dependence on PPase activity within a dynamic range from 0.1 to 20 mU mL(-1) and allowed the detection at a concentration as low as 0.05 mU mL(-1). Coefficients of variation for reproducibility of the intra-assay and interassay were below 7.6 and 9.8%, respectively. The inhibition efficiency of sodium fluoride (NaF) also received good results in pyrophosphatase inhibitor screening research. In addition, the methodology afforded good specificity and selectivity, simplification, and low cost without the need of sample separations and multiple washing steps, thus representing a user-friendly protocol for practical utilization in a quantitative PPase activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22642399-su-experimental-characterization-field-size-dependence-dose-lateral-beam-profiles-scanning-proton-carbon-ion-beams-empirical-model-air','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22642399-su-experimental-characterization-field-size-dependence-dose-lateral-beam-profiles-scanning-proton-carbon-ion-beams-empirical-model-air"><span>SU-F-T-158: Experimental Characterization of Field Size Dependence of Dose and Lateral Beam Profiles of Scanning Proton and Carbon Ion Beams for Empirical Model in Air</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Y; Hsi, W; Zhao, J</p> <p>2016-06-15</p> <p>Purpose: The Gaussian model for the lateral profiles in air is crucial for an accurate treatment planning system. The field size dependence of dose and the lateral beam profiles of scanning proton and carbon ion beams are due mainly to particles undergoing multiple Coulomb scattering in the beam line components and secondary particles produced by nuclear interactions in the target, both of which depend upon the energy and species of the beam. In this work, lateral profile shape parameters were fitted to measurements of field size dependence dose at the center of field size in air. Methods: Previous studies havemore » employed empirical fits to measured profile data to significantly reduce the QA time required for measurements. From this approach to derive the weight and sigma of lateral profiles in air, empirical model formulations were simulated for three selected energies for both proton and carbon beams. Results: The 20%–80% lateral penumbras predicted by the double model for proton and single model for carbon with the error functions agreed with the measurements within 1 mm. The standard deviation between measured and fitted field size dependence of dose for empirical model in air has a maximum accuracy of 0.74% for proton with double Gaussian, and of 0.57% for carbon with single Gaussian. Conclusion: We have demonstrated that the double Gaussian model of lateral beam profiles is significantly better than the single Gaussian model for proton while a single Gaussian model is sufficient for carbon. The empirical equation may be used to double check the separately obtained model that is currently used by the planning system. The empirical model in air for dose of spot scanning proton and carbon ion beams cannot be directly used for irregular shaped patient fields, but can be to provide reference values for clinical use and quality assurance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21612301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21612301"><span>Rapid identification of fluorochrome modification sites in proteins by LC ESI-Q-TOF mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manikwar, Prakash; Zimmerman, Tahl; Blanco, Francisco J; Williams, Todd D; Siahaan, Teruna J</p> <p>2011-07-20</p> <p>Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24007011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24007011"><span>Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hong, Xuhai; Wang, Feng; Jiao, Yalong; Su, Wenyong; Wang, Jianguo; Gou, Bingcong</p> <p>2013-08-28</p> <p>Based on the time-dependent density functional theory, a method is developed to study ion-atom collision dynamics, which self-consistently couples the quantum mechanical description of electron dynamics with the classical treatment of the ion motion. Employing real-time and real-space method, the coordinate space translation technique is introduced to allow one to focus on the region of target or projectile depending on the actual concerned process. The benchmark calculations are performed for the collisions of He(2+) + Ne, and the time evolution of electron density distribution is monitored, which provides interesting details of the interaction dynamics between the electrons and ion cores. The cross sections of single and many electron capture and loss have been calculated in the energy range of 1-1000 keV/amu, and the results show a good agreement with the available experiments over a wide range of impact energies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100014080','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100014080"><span>Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.</p> <p>2006-01-01</p> <p>A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DPPB11075M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DPPB11075M"><span>Flux threshold determination for tungsten nano-fuzz formation using an 80 eV He-ion beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyer, Fred W.; Bannister, Mark E.; Parish, Chad M.</p> <p>2017-10-01</p> <p>At the ORNL Multicharged Ion Research Facility (MIRF), we have extended our investigation of flux thresholds for He-ion induced nano-fuzz formation on hot tungsten surfaces down to plasma-edge-relevant energies of 80 eV. We measured the size of the incident ion beam by accurate flux-profile measurements, and the size of the region where tungsten nano-fuzz was formed by post-exposure SEM surface analysis and real-time monitoring of the hot W surface-emissivity change throughout the beam exposure. If tungsten nano-fuzz formation had a fluence threshold, the size of the observed nano-fuzz region would be expected to increase with exposure time, eventually filling the entire ion beam spot. Instead, we found that the region of nano-fuzz formation (1) was always smaller than the beam spot itself and (2) did not increase in size with time, i.e. with accumulated He ion fluence. By comparison of the flux profile and the spatial extent of the fuzz region we determined a flux threshold of 9.5 +-3×1019/m2s at 80 eV He ion impact energy. We show that the observed flux-threshold energy dependence for nano-fuzz formation, which we have now mapped out from 80 eV to 8.5 keV, is well reproduced by the combined energy dependences of He-ion reflection, He-ion range and target-damage creation, determined using SRIM. Research sponsored by the LDRD program at ORNL, managed by UT-Battelle for the USDOE, and by the DOE OFES.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29078322','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29078322"><span>Speed of the bacterial flagellar motor near zero load depends on the number of stator units.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nord, Ashley L; Sowa, Yoshiyuki; Steel, Bradley C; Lo, Chien-Jung; Berry, Richard M</p> <p>2017-10-31</p> <p>The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque-speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na + - and H + -driven motors. We measure the full torque-speed relationship of one and two H + units in Escherichia coli by selecting the number of H + units and controlling the number of Na + units in hybrid motors. These experiments confirm that speed near zero torque in H + -driven motors increases with the stator number. We also measured 75 torque-speed curves for Na + -driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque-speed curves to be collapsed onto a single curve by simple rescaling. Published under the PNAS license.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5676901','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5676901"><span>Speed of the bacterial flagellar motor near zero load depends on the number of stator units</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nord, Ashley L.; Sowa, Yoshiyuki; Steel, Bradley C.; Lo, Chien-Jung; Berry, Richard M.</p> <p>2017-01-01</p> <p>The bacterial flagellar motor (BFM) rotates hundreds of times per second to propel bacteria driven by an electrochemical ion gradient. The motor consists of a rotor 50 nm in diameter surrounded by up to 11 ion-conducting stator units, which exchange between motors and a membrane-bound pool. Measurements of the torque–speed relationship guide the development of models of the motor mechanism. In contrast to previous reports that speed near zero torque is independent of the number of stator units, we observe multiple speeds that we attribute to different numbers of units near zero torque in both Na+- and H+-driven motors. We measure the full torque–speed relationship of one and two H+ units in Escherichia coli by selecting the number of H+ units and controlling the number of Na+ units in hybrid motors. These experiments confirm that speed near zero torque in H+-driven motors increases with the stator number. We also measured 75 torque–speed curves for Na+-driven chimeric motors at different ion-motive force and stator number. Torque and speed were proportional to ion-motive force and number of stator units at all loads, allowing all 77 measured torque–speed curves to be collapsed onto a single curve by simple rescaling. PMID:29078322</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJP..132..452W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJP..132..452W"><span>Study on ion energy distribution in low-frequency oscillation time scale of Hall thrusters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, Liqiu; Li, Wenbo; Ding, Yongjie; Han, Liang; Yu, Daren; Cao, Yong</p> <p>2017-11-01</p> <p>This paper reports on the dynamic characteristics of the distribution of ion energy during Hall thruster discharge in the low-frequency oscillation time scale through experimental studies, and a statistical analysis of the time-varying peak and width of ion energy and the ratio of high-energy ions during the low-frequency oscillation. The results show that the ion energy distribution exhibits a periodic change during the low-frequency oscillation. Moreover, the variation in the ion energy peak is opposite to that of the discharge current, and the variations in width of the ion energy distribution and the ratio of high-energy ions are consistent with that of the discharge current. The variation characteristics of the ion density and discharge potential were simulated by one-dimensional hybrid-direct kinetic simulations; the simulation results and analysis indicate that the periodic change in the distribution of ion energy during the low-frequency oscillation depends on the relationship between the ionization source term and discharge potential distribution during ionization in the discharge channel.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1233528','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1233528"><span>Surface potentials measure ion concentrations near lipid bilayers during rapid solution changes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Laver, D R; Curtis, B A</p> <p>1996-01-01</p> <p>We describe a puffing method for changing solutions near one surface of lipid bilayers that allows simultaneous measurement of channel activity and extent of solution change at the bilayer surface. Ion adsorption to the lipid headgroups and screening of the bilayer surface charge by mobile ions provided a convenient probe for the ionic composition of the solution at the bilayer surface. Rapid ionic changes induced a shift in bilayer surface potential that generated a capacitive transient current under voltage-clamp conditions. This depended on the ion species and bilayer composition and was accurately described by the Stern-Gouy-Chapman theory. The time course of solute concentrations during solution changes could also be modeled by an exponential exchange of bath and puffing solutions with time constants ranging from 20 to 110 ms depending on the flow pressure. During changes in [Cs+] and [Ca2+] (applied separately or together) both the mixing model and capacitive currents predicted [Cs+] and [Ca2+] transients consistent with those determined experimentally from: 1) the known Cs(+)-dependent conductance of open ryanodine receptor channels and 2) the Ca(2+)-dependent gating of ryanodine receptor Ca2+ channels from cardiac and skeletal muscle. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 8 PMID:8842210</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NIMPB.376..302R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NIMPB.376..302R"><span>Status and outlook of CHIP-TRAP: The Central Michigan University high precision Penning trap</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Redshaw, M.; Bryce, R. A.; Hawks, P.; Gamage, N. D.; Hunt, C.; Kandegedara, R. M. E. B.; Ratnayake, I. S.; Sharp, L.</p> <p>2016-06-01</p> <p>At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP) that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m / q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24090362','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24090362"><span>Direct real-time detection of vapors from explosive compounds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ewing, Robert G; Clowers, Brian H; Atkinson, David A</p> <p>2013-11-19</p> <p>The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX, and nitroglycerine along with various compositions containing these substances was demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a nonradioactive ionization source coupled to a mass spectrometer. Direct vapor detection was accomplished in less than 5 s at ambient temperature without sample preconcentration. The several seconds of residence time of analytes in the AFT provided a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ions (NO3(-) and NO3(-)·HNO3), enabled highly sensitive explosives detection from explosive vapors present in ambient laboratory air. Observed signals from diluted explosive vapors indicated detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284, and 289 for tetryl, PETN, RDX, and NG, respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations sampled in ambient laboratory air, including double base propellants, plastic explosives, and commercial blasting explosives using SIM for the NG, PETN, and RDX product ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5441707','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5441707"><span>On the permeation of large organic cations through the pore of ATP-gated P2X receptors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Harkat, Mahboubi; Peverini, Laurie; Dunning, Kate; Beudez, Juline; Martz, Adeline; Calimet, Nicolas; Specht, Alexandre; Cecchini, Marco; Chataigneau, Thierry; Grutter, Thomas</p> <p>2017-01-01</p> <p>Pore dilation is thought to be a hallmark of purinergic P2X receptors. The most commonly held view of this unusual process posits that under prolonged ATP exposure the ion pore expands in a striking manner from an initial small-cation conductive state to a dilated state, which allows the passage of larger synthetic cations, such as N-methyl-d-glucamine (NMDG+). However, this mechanism is controversial, and the identity of the natural large permeating cations remains elusive. Here, we provide evidence that, contrary to the time-dependent pore dilation model, ATP binding opens an NMDG+-permeable channel within milliseconds, with a conductance that remains stable over time. We show that the time course of NMDG+ permeability superimposes that of Na+ and demonstrate that the molecular motions leading to the permeation of NMDG+ are very similar to those that drive Na+ flow. We found, however, that NMDG+ “percolates” 10 times slower than Na+ in the open state, likely due to a conformational and orientational selection of permeating molecules. We further uncover that several P2X receptors, including those able to desensitize, are permeable not only to NMDG+ but also to spermidine, a large natural cation involved in ion channel modulation, revealing a previously unrecognized P2X-mediated signaling. Altogether, our data do not support a time-dependent dilation of the pore on its own but rather reveal that the open pore of P2X receptors is wide enough to allow the permeation of large organic cations, including natural ones. This permeation mechanism has considerable physiological significance. PMID:28442564</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LSSR...17...83R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LSSR...17...83R"><span>Persistent depletion of plasma gelsolin (pGSN) after exposure of mice to heavy silicon ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rithidech, Kanokporn Noy; Reungpatthanaphong, Paiboon; Tungjai, Montree; Jangiam, Witawat; Honikel, Louise; Whorton, Elbert B.</p> <p>2018-05-01</p> <p>Little is known about plasma proteins that can be used as biomarkers for early and late responses to radiation. The purpose of this study was to determine a link between depletion of plasma gelsolin (pGSN) and cell-death as well as inflammatory responses in the lung (one of the tissues known to be radiosensitive) of the same exposed CBA/CaJ mice after exposure to heavy silicon (28Si) ions. To prevent the development of multiple organ dysfunctions, pGSN (an important component of the extracellular actin-scavenging system) is responsible for the removal of actin that is released into the circulation during inflammation and from dying cells. We evaluated the levels of pGSN in plasma collected from groups of mice (5 mice in each) at 1 week (wk) and 1 month (1 mo) after exposure whole body to different doses of 28Si ions, i.e. 0, 0.1, 0.25, or 0.5 Gy (2 fractionated exposures, 15 days apart that totaled each selected dose). In the same mouse, the measurements of pGSN levels were coupled with the quantitation of injuries in the lung, determined by (a) the levels of cleaved poly (ADP-ribose) polymerase (cleaved-PARP), a marker of apoptotic cell-death, (b) the levels of activated nuclear factor-kappa B (NF-κB) and selected cytokines, i.e. tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6, from tissue-lysates of the lung. Further, the ratio of neutrophils and lymphocytes (N/L) was determined in the same mouse. Our data indicated: (i) the magnitude of pGSN depletion was dependent to radiation dose at both harvest times, (ii) a persistent depletion of pGSN up to 1 mo post-exposure to 0.25 or 0.5 Gy of 28Si ions, (iii) an inverse-correlation between pGSN depletion and increased levels of cleaved-PARP, including activated NF-κB/pro-inflammatory cytokines in the lung, and (iv) at both harvest times, statistically significant increases in the N/L ratio in groups of mice exposed to 0.5 Gy only. Our findings suggested that depletion in pGSN levels reflects not only the responses to 28Si-ion exposure at both harvest times but also early and late-occurring damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27005864','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27005864"><span>Highly Stable Double-Stranded DNA Containing Sequential Silver(I)-Mediated 7-Deazaadenine/Thymine Watson-Crick Base Pairs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Santamaría-Díaz, Noelia; Méndez-Arriaga, José M; Salas, Juan M; Galindo, Miguel A</p> <p>2016-05-17</p> <p>The oligonucleotide d(TX)9 , which consists of an octadecamer sequence with alternating non-canonical 7-deazaadenine (X) and canonical thymine (T) as the nucleobases, was synthesized and shown to hybridize into double-stranded DNA through the formation of hydrogen-bonded Watson-Crick base pairs. dsDNA with metal-mediated base pairs was then obtained by selectively replacing W-C hydrogen bonds by coordination bonds to central silver(I) ions. The oligonucleotide I adopts a duplex structure in the absence of Ag(+) ions, and its stability is significantly enhanced in the presence of Ag(+) ions while its double-helix structure is retained. Temperature-dependent UV spectroscopy, circular dichroism spectroscopy, and ESI mass spectrometry were used to confirm the selective formation of the silver(I)-mediated base pairs. This strategy could become useful for preparing stable metallo-DNA-based nanostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/15002640-higher-resolution-data-dependent-selective-external-ion-accumulation-capillary-lc-fticr','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/15002640-higher-resolution-data-dependent-selective-external-ion-accumulation-capillary-lc-fticr"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Belov, Mikhail E.; Anderson, Gordon A.; Smith, Richard D.</p> <p></p> <p>Data-dependent selective external ion ejection with improved resolution is demonstrated with a 3.5 tesla FTICR instrument employing DREAMS (Dynamic Range Enhancement Applied to Mass Spectrometry) technology. To correct for the fringing rf-field aberrations each rod of the selection quadrupole has been segmented into three sections, so that ion excitation and ejection was performed by applying auxiliary rf-only waveforms in the region of the middle segments. Two different modes of external ion trapping and ejection were studied with the mixtures of model peptides and a tryptic digest of bovine serum albumin. A mass resolution of about 100 has been attained formore » rf-only dipolar ejection in a quadrupole operating at a Mathieu parameter q of{approx} 0.45. LC-ESI-DREAMS-FTICR analysis of a 0.1 mg/mL solution of bovine serum albumin digest resulted in detection of 82 unique tryptic peptides with mass measurement errors lower than 5 ppm, providing 100% sequence coverage of the protein.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/965637-higher-resolution-data-dependent-selective-external-ion-accumulation-capillary-lc-fticr','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/965637-higher-resolution-data-dependent-selective-external-ion-accumulation-capillary-lc-fticr"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Belov, Mikhail E.; Anderson, Gordon A.; Smith, Richard D.</p> <p></p> <p>Data-dependent selective external ion ejection with improved resolution is demonstrated with a 3.5 tesla FTICR instrument employing DREAMS (Dynamic Range Enhancement Applied to Mass Spectrometry) technology. To correct for the fringing rf-field aberrations each rod of the selection quadrupole has been segmented into three sections, so that ion excitation and ejection was performed by applying auxiliary rf-only waveforms in the region of the middle segments. Two different modes of external ion trapping and ejection were studied with the mixtures of model peptides and a tryptic digest of bovine serum albumin. A mass resolution of about 100 had been attained formore » rf-only dipolar ejection in a quadrupole operating at a Mathieu parameter q of ~0.45. LC-ESI-DREAMS-FTICR analysis of a 0.1 mg/mL solution of bovine serum albumin digest resulted in detection of 82 unique tryptic peptides with mass measurement errors lower than 5 ppm, providing 100 % sequence coverage of the protein.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040090250&hterms=aluminium&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Daluminium','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040090250&hterms=aluminium&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Daluminium"><span>Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ding, J. P.; Pickard, B. G.</p> <p>1993-01-01</p> <p>The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1225402','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1225402"><span>Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, W; Lee, R C</p> <p>1994-01-01</p> <p>The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..435..574R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..435..574R"><span>Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu(II) ions from aqueous solution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Zhongqi; Zhu, Xinyan; Du, Jian; Kong, Delong; Wang, Nian; Wang, Zhuo; Wang, Qi; Liu, Wei; Li, Qunsheng; Zhou, Zhiyong</p> <p>2018-03-01</p> <p>A novel green adsorption polymer was prepared by ion imprinted technology in conjunction with sol-gel process under mild conditions for the selective removal of Cu(II) ions from aqueous solution. Effects of preparation conditions on adsorption performance of prepared polymers were studied. The ion-imprinted polymer was prepared using Cu(II) ion as template, N-[3-(2-aminoethylamino) propyl] trimethoxysilane (AAPTMS) as functional monomer and tetraethyl orthosilicate (TEOS) as cross-linker. Water was used as solvent in the whole preparation process. The imprinted and non-imprinted polymers were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), Brunauer, Emmett and Teller (BET) and zeta potential. Three-dimensional network structure was formed and functional monomer was successfully cross-linked into the network structure of polymers. Effects of adsorption conditions on adsorption performance of prepared polymers were studied too. The pH value is of great influence on adsorption behavior. Adsorption by ion-imprinted polymer was fast (adsorption equilibrium was reached within 60 min). The adsorption capacity of Cu(II) ion-imprinted polymer was always larger than that of non-imprinted polymer. Pseudo-second-order kinetics model and Freundlich isotherm model fitted well with adsorption data. The maximum adsorption capacity of Cu(II) ion-imprinted polymer was 39.82 mg·g-1. However, the preparation conditions used in this work are much milder than those reported in literatures. The Cu(II) ion-imprinted polymer showed high selectivity and relative selectivity coefficients for Pb(II), Ni(II), Cd(II) and Co(II). In addition, the prepared ion-imprinted polymer could be reused several times without significant loss of adsorption capacity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1760b0066T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1760b0066T"><span>Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsukanov, Alexey A.; Psakhie, Sergey G.</p> <p>2016-08-01</p> <p>Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NJPh...20b3032A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NJPh...20b3032A"><span>Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afanasev, Andrei; Carlson, Carl E.; Schmiegelow, Christian T.; Schulz, Jonas; Schmidt-Kaler, Ferdinand; Solyanik, Maria</p> <p>2018-02-01</p> <p>We analyze the multipole excitation of atoms with twisted light, i.e, by a vortex light field that carries orbital angular momentum. A single trapped 40Ca+ ion serves as a localized and positioned probe of the exciting field. We drive the {S}1/2\\to {D}5/2 transition and observe the relative strengths of different transitions, depending on the ion's transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Laguerre-Gauss mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a level of better than 3%. Finally, we propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes in future experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2674937','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2674937"><span>Dynamic hybrid materials for constitutional self-instructed membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cazacu, Adinela; Legrand, Yves-Marie; Pasc, Andreea; Nasr, Gihane; Van der Lee, Arie; Mahon, Eugene; Barboiu, Mihail</p> <p>2009-01-01</p> <p>Constitutional self-instructed membranes were developed and used for mimicking the adaptive structural functionality of natural ion-channel systems. These membranes are based on dynamic hybrid materials in which the functional self-organized macrocycles are reversibly connected with the inorganic silica through hydrophobic noncovalent interactions. Supramolecular columnar ion-channel architectures can be generated by reversible confinement within scaffolding hydrophobic silica mesopores. They can be structurally determined by using X-ray diffraction and morphologically tuned by alkali-salts templating. From the conceptual point of view, these membranes express a synergistic adaptive behavior: the simultaneous binding of the fittest cation and its anion would be a case of “homotropic allosteric interactions,” because in time it increases the transport efficiency of the pore-contained superstructures by a selective evolving process toward the fittest ion channel. The hybrid membranes presented here represent dynamic constitutional systems evolving over time to form the fittest ion channels from a library of molecular and supramolecular components, or selecting the fittest ion pairs from a mixture of salts demonstrating flexible adaptation. PMID:19416909</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanos...716909S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanos...716909S"><span>Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.</p> <p>2015-10-01</p> <p>Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1059614-coverage-dependent-charge-reduction-cationic-gold-clusters-surfaces-prepared-using-soft-landing-mass-selected-ions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1059614-coverage-dependent-charge-reduction-cationic-gold-clusters-surfaces-prepared-using-soft-landing-mass-selected-ions"><span>Coverage Dependent Charge Reduction of Cationic Gold Clusters on Surfaces Prepared Using Soft Landing of Mass-selected Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia</p> <p>2012-11-29</p> <p>The ionic charge state of monodisperse cationic gold clusters on surfaces may be controlled by selecting the coverage of mass-selected ions soft landed onto a substrate. Polydisperse diphosphine-capped gold clusters were synthesized in solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine in the presence of 1,3-bis(diphenylphosphino)propane. The polydisperse gold clusters were introduced into the gas phase by electrospray ionization and mass selection was employed to select a multiply charged cationic cluster species (Au11L53+, m/z = 1409, L = 1,3-bis(diphenylphosphino)propane) which was delivered to the surfaces of four different self-assembled monolayers on gold (SAMs) at coverages of 1011 and 1012 clusters/mm2.more » Employing the spatial profiling capabilities of in-situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) it is shown that, in addition to the chemical functionality of the monolayer (as demonstrated previously: ACS Nano, 2012, 6, 573) the coverage of cationic gold clusters on the surface may be used to control the distribution of ionic charge states of the soft-landed multiply charged clusters. In the case of a 1H,1H,2H,2H-perfluorodecanethiol SAM (FSAM) almost complete retention of charge by the deposited Au11L53+ clusters was observed at a lower coverage of 1011 clusters/mm2. In contrast, at a higher coverage of 1012 clusters/mm2, pronounced reduction of charge to Au11L52+ and Au11L5+ was observed on the FSAM. When soft landed onto 16- and 11-mercaptohexadecanoic acid surfaces on gold (16,11-COOH-SAMs), the mass-selected Au11L53+ clusters exhibited partial reduction of charge to Au11L52+ at lower coverage and additional reduction of charge to both Au11L52+ and Au11L5+ at higher coverage. The reduction of charge was found to be more pronounced on the surface of the shorter (thinner) C11 than the longer (thicker) C16-COOH-SAM. On the surface of the 1-dodecanethiol (HSAM) monolayer, the most abundant charge state was found to be Au11L52+ at lower coverage and Au11L5+ at higher coverage, respectively. A coverage-dependent electron tunneling mechanism is proposed to account for the observed reduction of charge of mass-selected multiply charged gold clusters soft landed on SAMs. The results demonstrate that one of the critical parameters that influence the chemical and physical properties of supported metal clusters, ionic charge state, may be controlled by selecting the coverage of charged species soft landed onto surfaces.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28917748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28917748"><span>Selectivity improvement of positive photoionization ion mobility spectrometry for rapid detection of organophosphorus pesticides by switching dopant concentration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Qinghua; Li, Jia; Wang, Bin; Wang, Shuang; Li, Haiyang; Chen, Jinyuan</p> <p>2018-01-01</p> <p>Ion mobility spectrometry (IMS) opened a potential avenue for the rapid detection of organophosphorus pesticides (OPPs), though an improved selectivity of stand-alone IMS was still in high demand. In this study, a stand-alone positive photoionization ion mobility spectrometry (PP-IMS) apparatus was constructed for the rapid detection of OPPs with acetone as dopant. The photoionization of acetone molecules was induced by the ultraviolet irradiation to produce the reactant ions (Ac) 2 H + , which were employed to ionize the OPPs including fenthion, imidan, phosphamidon, dursban, dimethoate and isocarbophos via the proton transfer reaction. Due to the difference in proton affinity, the tested OPPs exhibited the different dopant-dependent manners. Based on this observation, the switching of dopant concentration was implemented to improve the selectivity of PP-IMS for OPPs detection. For instance, a mixture of fenthion, dursban and dimethoate was tested. By switching the concentration of doped acetone from 0.07 to 2.33 to 19.94mgL -1 , the ion peaks of fenthion and dursban were inhibited in succession, achieving the selective detection of dimethoate at last. In addition, another mixture of imidan and phosphamidon was initially detected by PP-IMS with a dose of 0.07mgL -1 acetone, indicating that their ion peaks were severely overlapped; when the concentration of doped acetone was switched to 19.94mgL -1 , the inhibition of imidan signals promised the accurate identification of phosphamidon in mixture. Finally, the PP-IMS in combination of switching dopant concentration was applied to detect the mixed fenthion, dursban and dimethoate in Chinese cabbage, demonstrating the applicability of proposed method to real samples. Copyright © 2017. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2972997','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2972997"><span>Selectivity of externally facing ion-binding sites in the Na/K pump to alkali metals and organic cations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ratheal, Ian M.; Virgin, Gail K.; Yu, Haibo; Roux, Benoît; Gatto, Craig; Artigas, Pablo</p> <p>2010-01-01</p> <p>The Na/K pump is a P-type ATPase that exchanges three intracellular Na+ ions for two extracellular K+ ions through the plasmalemma of nearly all animal cells. The mechanisms involved in cation selection by the pump's ion-binding sites (site I and site II bind either Na+ or K+; site III binds only Na+) are poorly understood. We studied cation selectivity by outward-facing sites (high K+ affinity) of Na/K pumps expressed in Xenopus oocytes, under voltage clamp. Guanidinium+, methylguanidinium+, and aminoguanidinium+ produced two phenomena possibly reflecting actions at site III: (i) voltage-dependent inhibition (VDI) of outwardly directed pump current at saturating K+, and (ii) induction of pump-mediated, guanidinium-derivative–carried inward current at negative potentials without Na+ and K+. In contrast, formamidinium+ and acetamidinium+ induced K+-like outward currents. Measurement of ouabain-sensitive ATPase activity and radiolabeled cation uptake confirmed that these cations are external K+ congeners. Molecular dynamics simulations indicate that bound organic cations induce minor distortion of the binding sites. Among tested metals, only Li+ induced Na+-like VDI, whereas all metals tested except Na+ induced K+-like outward currents. Pump-mediated K+-like organic cation transport challenges the concept of rigid structural models in which ion specificity at site I and site II arises from a precise and unique arrangement of coordinating ligands. Furthermore, actions by guanidinium+ derivatives suggest that Na+ binds to site III in a hydrated form and that the inward current observed without external Na+ and K+ represents cation transport when normal occlusion at sites I and II is impaired. These results provide insights on external ion selectivity at the three binding sites. PMID:20937860</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994ChPhL..11..215W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994ChPhL..11..215W"><span>Calculation of Energetic Ion Tail from Ion Cyclotron Resonance Frequency Heating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Jianguo; Li, Youyi; Li, Jiangang</p> <p>1994-04-01</p> <p>The second harmonic frequency of hydrogen ion cyclotron resonance heating experiment on HT-6M tokamak was studied by adding the quasi-linear wave-ion interaction term in the two-dimensional (velocity space), time-dependent, nonlinear and multispecies Fokker-Planck equation. The temporal evolution of ion distribution function and relevant parameters were calculated and compared with experiment data. The calculation shows that the ion temperature increases, high-energy ion tail (above 5 keV) and anisotropy appear when the wave is injected to plasma. The simulations are in reasonable agreement with experiment data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28130821','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28130821"><span>A Monte Carlo approach to the microdosimetric kinetic model to account for dose rate time structure effects in ion beam therapy with application in treatment planning simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manganaro, Lorenzo; Russo, Germano; Cirio, Roberto; Dalmasso, Federico; Giordanengo, Simona; Monaco, Vincenzo; Muraro, Silvia; Sacchi, Roberto; Vignati, Anna; Attili, Andrea</p> <p>2017-04-01</p> <p>Advanced ion beam therapeutic techniques, such as hypofractionation, respiratory gating, or laser-based pulsed beams, have dose rate time structures which are substantially different from those found in conventional approaches. The biological impact of the time structure is mediated through the β parameter in the linear quadratic (LQ) model. The aim of this study was to assess the impact of changes in the value of the β parameter on the treatment outcomes, also accounting for noninstantaneous intrafraction dose delivery or fractionation and comparing the effects of using different primary ions. An original formulation of the microdosimetric kinetic model (MKM) is used (named MCt-MKM), in which a Monte Carlo (MC) approach was introduced to account for the stochastic spatio-temporal correlations characteristic of the irradiations and the cellular repair kinetics. A modified version of the kinetic equations, validated on experimental cell survival in vitro data, was also introduced. The model, trained on the HSG cells, was used to evaluate the relative biological effectiveness (RBE) for treatments with acute and protracted fractions. Exemplary cases of prostate cancer irradiated with different ion beams were evaluated to assess the impact of the temporal effects. The LQ parameters for a range of cell lines (V79, HSG, and T1) and ion species (H, He, C, and Ne) were evaluated and compared with the experimental data available in the literature, with good results. Notably, in contrast to the original MKM formulation, the MCt-MKM explicitly predicts an ion and LET-dependent β compatible with observations. The data from a split-dose experiment were used to experimentally determine the value of the parameter related to the cellular repair kinetics. Concerning the clinical case considered, an RBE decrease was observed, depending on the dose, ion, and LET, exceeding up to 3% of the acute value in the case of a protraction in the delivery of 10 min. The intercomparison between different ions shows that the clinical optimality is strongly dependent on a complex interplay between the different physical and biological quantities considered. The present study provides a framework for exploiting the temporal effects of dose delivery. The results show the possibility of optimizing the treatment outcomes accounting for the correlation between the specific dose rate time structure and the spatial characteristic of the LET distribution, depending on the ion type used. © 2017 American Association of Physicists in Medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29723474','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29723474"><span>Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak</p> <p>2018-05-07</p> <p>The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JChPh.11410448Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JChPh.11410448Z"><span>The separation distance distribution in electron-donor-acceptor systems and the wavelength dependence of free ion yields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Jinwei; Findley, Bret R.; Braun, Charles L.; Sutin, Norman</p> <p>2001-06-01</p> <p>We recently reported that free radical ion quantum yields for electron-donor-acceptor (EDA) systems of alkylbenzenes-tetracyanoethylene (TCNE) exhibit a remarkable wavelength dependence in dichloromethane, a medium polarity solvent. We proposed that weak absorption by long-distance, unassociated or "random" D⋯A pairs is mainly responsible for the free radical ion yield. Here a model for the wavelength dependence of the free ion yield is developed for four systems in which differing degrees of EDA complex formation are present: 1,3,5-tri-tert-butylbenzene-TCNE in which only random pairs exist due to the bulky groups on the electron donor, and toluene—TCNE, 1,3,5-triethylbenzene-TCNE and 1,3,5-trimethylbenzene-TCNE. Mulliken-Hush theory is used to determine the excitation distance distribution of unassociated, random pairs at different wavelengths. For each absorption distribution, free radical ion yields at different wavelengths are then calculated using Onsager's result for the ion separation probability. Encouraging agreement between the calculated yields and our experimental results is obtained. As far as we are aware, this is the first time that photoexcitation of unassociated donor/acceptor pairs has been invoked as the source of separated radical ion pairs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23608541','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23608541"><span>Ultrasensitive and selective gold film-based detection of mercury (II) in tap water using a laser scanning confocal imaging-surface plasmon resonance system in real time.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Hongyan; Yang, Liquan; Zhou, Bingjiang; Liu, Weimin; Ge, Jiechao; Wu, Jiasheng; Wang, Ying; Wang, Pengfei</p> <p>2013-09-15</p> <p>An ultrasensitive and selective detection of mercury (II) was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01ng/ml for Hg(2+) ions in ultrapure and tap water based on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg(2+)-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg(2+) ion concentration, which is unaffected by the presence of other metal ions. The coefficients obtained for ultrapure and tap water were 0.99902 and 0.99512, respectively, for the linear part over a range of 0.01-100ng/ml. The results show that the double-effect sensor has potential for practical applications with ultra sensitivity and selectivity, especially in online or real-time monitoring of Hg(2+) ions pollution in tap water with the further improvement of portable LSCI-SPR instrument. Copyright © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4454138','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4454138"><span>Trans-generational responses to low pH depend on parental gender in a calcifying tubeworm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lane, Ackley; Campanati, Camilla; Dupont, Sam; Thiyagarajan, Vengatesen</p> <p>2015-01-01</p> <p>The uptake of anthropogenic CO2 emissions by oceans has started decreasing pH and carbonate ion concentrations of seawater, a process called ocean acidification (OA). Occurring over centuries and many generations, evolutionary adaptation and epigenetic transfer will change species responses to OA over time. Trans-generational responses, via genetic selection or trans-generational phenotypic plasticity, differ depending on species and exposure time as well as differences between individuals such as gender. Males and females differ in reproductive investment and egg producing females may have less energy available for OA stress responses. By crossing eggs and sperm from the calcareous tubeworm Hydroides elegans (Haswell, 1883) raised in ambient (8.1) and low (7.8) pH environments, we observed that paternal and maternal low pH experience had opposite and additive effects on offspring. For example, when compared to offspring with both parents from ambient pH, growth rates of offspring of fathers or mothers raised in low pH were higher or lower respectively, but there was no difference when both parents were from low pH. Gender differences may result in different selection pressures for each gender. This may result in overestimates of species tolerance and missed opportunities of potentially insightful comparisons between individuals of the same species. PMID:26039184</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1262274','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1262274"><span>Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Maitra, Neepa</p> <p>2016-07-14</p> <p>This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NuPhA.942...65K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NuPhA.942...65K"><span>Rapidity window dependences of higher order cumulants and diffusion master equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kitazawa, Masakiyo</p> <p>2015-10-01</p> <p>We study the rapidity window dependences of higher order cumulants of conserved charges observed in relativistic heavy ion collisions. The time evolution and the rapidity window dependence of the non-Gaussian fluctuations are described by the diffusion master equation. Analytic formulas for the time evolution of cumulants in a rapidity window are obtained for arbitrary initial conditions. We discuss that the rapidity window dependences of the non-Gaussian cumulants have characteristic structures reflecting the non-equilibrium property of fluctuations, which can be observed in relativistic heavy ion collisions with the present detectors. It is argued that various information on the thermal and transport properties of the hot medium can be revealed experimentally by the study of the rapidity window dependences, especially by the combined use, of the higher order cumulants. Formulas of higher order cumulants for a probability distribution composed of sub-probabilities, which are useful for various studies of non-Gaussian cumulants, are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1224436','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1224436"><span>Compact ion chamber based neutron detector</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Derzon, Mark S.; Galambos, Paul C.; Renzi, Ronald F.</p> <p>2015-10-27</p> <p>A directional neutron detector has an ion chamber formed in a dielectric material; a signal electrode and a ground electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; readout circuitry which is electrically coupled to the signal and ground electrodes; and a signal processor electrically coupled to the readout circuitry. The ion chamber has a pair of substantially planar electrode surfaces. The chamber pressure of the neutron absorbing material is selected such that the reaction particle ion trail length for neutrons absorbed by the neutron absorbing material is equal to or less than the distance between the electrode surfaces. The signal processor is adapted to determine a path angle for each absorbed neutron based on the rise time of the corresponding pulse in a time-varying detector signal.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/872865','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/872865"><span>Extraction of contaminants from a gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Babko-Malyi, Sergei</p> <p>2000-01-01</p> <p>A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/873482','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/873482"><span>Apparatus for extraction of contaminants from a gas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Babko-Malyi, Sergei</p> <p>2001-01-01</p> <p>A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790012356','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790012356"><span>Industrial potential, uses, and performance of sputtered and ion plated films</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spalvins, T.</p> <p>1979-01-01</p> <p>The sputtering and ion plating technology is reviewed in terms of their potential, uses and performance. It offers the greatest flexibility in coating preparation, since coatings can be tailored in any preferred chemical combination, and graded type interfaces (ceramic to metal seals) can be formed. Sputtered and ion plated film characteristics such as the degree of adherence, coherence and morphological growth which contribute to film performance and reliability are described and illustrated as used in practice. It is concluded that the potential future of sputtered and ion plated films for industrial applications will depend primarily upon greater comprehension of materials selection, possible elimination of restrictions for coating/substrate combinations and the awareness of utilizing the proper deposition parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SMaS...25h5018W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SMaS...25h5018W"><span>Piezoelectric sensor for sensitive determination of metal ions based on the phosphate-modified dendrimer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.</p> <p>2016-08-01</p> <p>Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28668125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28668125"><span>Detection of Reaction Intermediates in Mg2+-Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Samara, Nadine L; Gao, Yang; Wu, Jinjun; Yang, Wei</p> <p>2017-01-01</p> <p>Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg 2+ -dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions. © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860020800','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860020800"><span>Thermal ion heating in the vicinity of the plasmapause: A Dynamics Explorer guest investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Comfort, R. H.</p> <p>1986-01-01</p> <p>The ion thermal structure of the plasmasphere was investigated in a series of experiments. It appears that energy may be generally available to ion and electrons in the vinicity of the plasmapause from Coulomb interactions between ambient thermal plasma and low energy ring current and suprathermal ions, particularly O+. The amount of energy transferred depends on the densities and energies of each of the components. The spatial distribution of heating in turn depends critically on the spatial distribution of the different populations, especially on the density gradients. The spatial distribution of the thermal plasma is found to vary significantly on a diurnal time scale and is complicated by the plasmasphere erosion and refilling processes associated with magnetic activity and its aftermath. Thermal ion composition also appears to be influenced by the heating taking place, often increasing the heavy ion population in the vicinity of the plasmapause. The observations of equatorial heating near the plasmapause in the presence of equatorial noise also raise the likelihood of a wave source of energy. It is not unreasonable to expect that both particle and wave heat sources are significant, although not necessarily at the same times and places.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2607136','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2607136"><span>Preparation of PbS Nanoparticles by Phase-Transfer Method and Application to Pb2+-Selective Electrode Based on PVC Membrane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Song, Weihong; Wu, Chunhui; Yin, Hongzong; Liu, Xiaoyan; Sa, Panpan; Hu, Jinyang</p> <p>2008-01-01</p> <p>A novel approach to prepare homogeneous PbS nanoparticles by phase-transfer method was developed. The preparatory conditions were studied in detail, and the nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. Then a novel lead ion-selective electrode of polyvinyl chloride (PVC) membrane based on these lead sulfide nanoparticles was prepared, and the optimum ratio of components in the membrane was determined. The results indicated that the sensor exhibited a wide concentration range of 1.0×10−5 to 1.0×10−2 mol.L−1. The response time of the electrode was about 10 s, and the optimal pH in which the electrode could be used was from 3.0 to 7.0. Selectivity coefficients indicated that the electrode was selective to the primary ion over the interfering ion. The electrode can be used for at least 3 months without any divergence in potential. It was successfully applied to directly determine lead ions in solution and used as an indicator electrode in potentiometric titration of lead ions with EDTA. PMID:19112518</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15787364','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15787364"><span>Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Forzani, Erica S; Zhang, Haiqian; Chen, Wilfred; Tao, Nongjian</p> <p>2005-03-01</p> <p>We have built a high-resolution differential surface plasmon resonance (SPR) sensor for heavy metal ion detection. The sensor surface is divided into a reference and sensing areas, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. In the presence of metal ions, the differential signal changes due to specific binding of the metal ions onto the sensing area coated with properly selected peptides, which provides an accurate real-time measurement and quantification of the metal ions. Selective detection of Cu2+ and Ni2+ in the ppt-ppb range was achieved by coating the sensing surface with peptides NH2-Gly-Gly-His-COOH and NH2-(His)6-COOH. Cu2+ in drinking water was tested using this sensor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27528453','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27528453"><span>Critical comparison of mass analyzers for forensic hair analysis by ambient ionization mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duvivier, Wilco F; van Beek, Teris A; Nielen, Michel W F</p> <p>2016-11-15</p> <p>Recently, several direct and/or ambient mass spectrometry (MS) approaches have been suggested for drugs of abuse imaging in hair. The use of mass spectrometers with insufficient selectivity could result in false-positive measurements due to isobaric interferences. Different mass analyzers have been evaluated regarding their selectivity and sensitivity for the detection of Δ9-tetrahydrocannabinol (THC) from intact hair samples using direct analysis in real time (DART) ionization. Four different mass analyzers, namely (1) an orbitrap, (2) a quadrupole orbitrap, (3) a triple quadrupole, and (4) a quadrupole time-of-flight (QTOF), were evaluated. Selectivity and sensitivity were assessed by analyzing secondary THC standard dilutions on stainless steel mesh screens and blank hair samples, and by the analysis of authentic cannabis user hair samples. Additionally, separation of isobaric ions by use of travelling wave ion mobility (TWIM) was investigated. The use of a triple quadrupole instrument resulted in the highest sensitivity; however, transitions used for multiple reaction monitoring were only found to be specific when using high mass resolution product ion measurements. A mass resolution of at least 30,000 FWHM at m/z 315 was necessary to avoid overlap of THC with isobaric ions originating from the hair matrix. Even though selectivity was enhanced by use of TWIM, the QTOF instrument in resolution mode could not indisputably differentiate THC from endogenous isobaric ions in drug user hair samples. Only the high resolution of the (quadrupole) orbitrap instruments and the QTOF instrument in high-resolution mode distinguished THC in hair samples from endogenous isobaric interferences. As expected, enhanced selectivity compromises sensitivity and THC was only detectable in hair from heavy users. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27575360','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27575360"><span>Using a polymer probe characterized by MALDI-TOF/MS to assess river ecosystem functioning: From polymer selection to field tests.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rivas, D; Ginebreda, A; Elosegi, A; Pozo, J; Pérez, S; Quero, C; Barceló, D</p> <p>2016-12-15</p> <p>Characterization of river ecosystems must take into consideration both structural and functional aspects. For the latter, a convenient and simple approach for routine monitoring is based on the decomposition of organic matter measured in terms of breakdown of natural organic substrates like leaf litter, wood sticks. Here we extended the method to a synthetic organic material using polymer probes characterized by MALDI-TOF/MS. We first characterized several commercial available polymers, and finally selected polycaprolactonediol 1250 (PCP 1250), a polyester oligomer, as the most convenient for further studies. PCP 1250 was first tested at mesocosms scale under conditions simulating those of the river, with and without nutrient addition for up to 4weeks. Differences to the starting material measured in terms of changes in the relative ion peak intensities were clearly observed. Ions exhibited a different pattern evolution along time depending on their mass. Greatest changes were observed at longest exposure time and in the nutrient addition treatment. At shorter times, the effect of nutrients (addition or not) was indistinguishable. Finally, we performed an experiment in 11 tributaries of the Ebro River during 97days of exposure. Principal Component Analysis confirmed the different behavior of ions, which were clustered according to their mass. Exposed samples were clearly different to the standard starting material, but could not be well distinguished among each other. Polymer mass loss rates, as well as some environmental variables such as conductivity, temperature and flow were correlated with some peak intensities. Overall, the interpretation of field results in terms of environmental conditions remains elusive, due to the influence of multiple concurrent factors. Nevertheless, breakdown of synthetic polymers opens an interesting field of research, which can complement more traditional breakdown studies to assess river ecosystem functioning. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27769457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27769457"><span>Highly selective direct determination of chlorate ions by using a newly developed potentiometric electrode based on modified smectite.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Topcu, Cihan</p> <p>2016-12-01</p> <p>A novel polyvinyl chloride membrane chlorate (ClO 3 - ) selective electrode based on modified smectite was developed for the direct determination of chlorate ions and the potentiometric performance characteristics of its were examined. The best selectivity and sensitivity for chlorate ions were obtained for the electrode membrane containing ionophore/polyvinylchloride/o-nitrophenyloctylether in composition of 12/28/60 (w/w%). The proposed electrode showed a Nernstian response toward chlorate ions at pH=7 in the concentration range of 1×10 -7 -1×10 -1 M and the limit of detection was calculated as 9×10 -8 M from the constructed response plot. The linear slope of the electrode was -61±1mVdecade -1 for chlorate activity in the mentioned linear working range. The selectivity coefficients were calculated according to both the matched potential method and the separate solution method. The calculated selectivity coefficients showed that the electrode performed excellent selectivity for chlorate ions. The potentiometric response of electrode toward chlorate ions was found to be highly reproducible. The electrode potential was stable between pH=4-10 and it had a dynamic response time of <5s. The potentiometric behavior of the electrode in partial non-aqueous medium was also investigated and the obtained results (up to 5% (v/v) alcohol) were satisfactory. The proposed electrode was used during 15 weeks without any significant change in its potential response. Additionally, the electrode was very useful in water analysis studies such as dam water, river water, tap water, and swimming pool water where the direct determination of chlorate ions was required. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28074656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28074656"><span>Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J</p> <p>2017-04-20</p> <p>Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...827...17X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...827...17X"><span>Absolute Integral Cross Sections for the State-selected Ion-Molecule Reaction N2+(X2Σg+ v+ = 0-2) + C2H2 in the Collision Energy Range of 0.03-10.00 eV</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Yuntao; Xiong, Bo; Chung Chang, Yih; Ng, C. Y.</p> <p>2016-08-01</p> <p>Using the vacuum ultraviolet laser pulsed field ionization-photoion source, together with the double-quadrupole-double-octopole mass spectrometer developed in our laboratory, we have investigated the state-selected ion-molecule reaction {{{{N}}}2}+({X}2{{{{Σ }}}{{g}}}+; v + = 0-2, N+ = 0-9) + C2H2, achieving high internal-state selectivity and high kinetic energy resolution for reactant {{{{N}}}2}+ ions. The charge transfer (CT) and hydrogen-atom transfer (HT) channels, which lead to the respective formation of product {{{C}}}2{{{{H}}}2}+ and N2H+ ions, are observed. The vibrationally selected absolute integral cross sections for the CT [σ CT(v +)] and HT [[σ HT(v +)] channels obtained in the center-of-mass collision energy (E cm) range of 0.03-10.00 eV reveal opposite E cm dependences. The σ CT(v +) is found to increase as E cm is decreased, and is consistent with the long-range exothermic CT mechanism, whereas the E cm enhancement observed for the σ HT(v +) suggests effective coupling of kinetic energy to internal energy, enhancing the formation of N2H+. The σ HT(v +) curve exhibits a step at E cm = 0.70-1.00 eV, suggesting the involvement of the excited {{{C}}}2{{{{H}}}2}+({A}2{{{{Σ }}}{{g}}}+) state in the HT reaction. Contrary to the strong E cm dependences for σ CT(v +) and σ HT(v +), the effect of vibrational excitation of {{{{N}}}2}+ on both the CT and HT channels is marginal. The branching ratios and cross sections for the CT and HT channels determined in the present study are useful for modeling the atmospheric compositions of Saturn's largest moon, Titan. These cross sections and branching ratios are also valuable for benchmarking theoretical calculations on chemical dynamics of the titled reaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820042754&hterms=F4&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DF4','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820042754&hterms=F4&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DF4"><span>Observations of the diurnal dependence of the high-latitude F region ion density by DMSP satellites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sojka, J. J.; Raitt, W. J.; Schunk, R. W.; Rich, F. J.; Sagalyn, R. C.</p> <p>1982-01-01</p> <p>Data from the DMSP F2 and F4 satellites for the period December 5-10, 1979, have been used to study the diurnal dependence of the high-latitude ion density at 800-km altitude. A 24-hour periodicity in the minimum orbital density (MOD) during a crossing of the high-latitude region is observed in both the winter and summer hemispheres. The phase of the variation in MOD is such that it has a minimum during the 24-hour period between 0700 and 0900 UT. Both the long-term variation of the high-latitude ion density on a time scale of days, and the orbit-by-orbit variations at the same geomagnetic location in the northern (winter) hemisphere for the magnetically quiet time period chosen, show good qualitative agreement with the diurnal dependence predicted by a theoretical model of the ionospheric density at high latitudes under conditions of low convection speeds (Sojka et al., 1981).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Nanot..28x5501Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Nanot..28x5501Y"><span>A microcantilever-based silver ion sensor using DNA-functionalized gold nanoparticles as a mass amplifier</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>You, Juneseok; Song, Yeongjin; Park, Chanho; Jang, Kuewhan; Na, Sungsoo</p> <p>2017-06-01</p> <p>Silver ions have been used to sterilize many products, however, it has recently been demonstrated that silver ions can be toxic. This toxicity has been studied over many years with the lethal concentration at 10 μM. Silver ions can accumulate through the food chain, causing serious health problems in many species. Hence, there is a need for a commercially available silver ion sensor, with high detection sensitivity. In this work, we develop an ultra-sensitive silver ion sensor platform, using cytosine based DNA and gold nanoparticles as the mass amplifier. We achieve a lower detection limit for silver ions of 10 pM; this detection limit is one million times lower than the toxic concentration. Using our sensor platform we examine highly selective characteristics of other typical ions in water from natural sources. Furthermore, our sensor platform is able to detect silver ions in a real practical sample of commercially available drinking water. Our sensor platform, which we have termed a ‘MAIS’ (mass amplifier ion sensor), with a simple detection procedure, high sensitivity, selectivity and real practical applicability has shown potential as an early toxicity assessment of silver ions in the environment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22597869-synthesis-graphene-graphene-nanostructures-ion-implantation-pulsed-laser-annealing','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22597869-synthesis-graphene-graphene-nanostructures-ion-implantation-pulsed-laser-annealing"><span>Synthesis of graphene and graphene nanostructures by ion implantation and pulsed laser annealing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wang, Xiaotie; Rudawski, Nicholas G.; Appleton, Bill R.</p> <p>2016-07-14</p> <p>In this paper, we report a systematic study that shows how the numerous processing parameters associated with ion implantation (II) and pulsed laser annealing (PLA) can be manipulated to control the quantity and quality of graphene (G), few-layer graphene (FLG), and other carbon nanostructures selectively synthesized in crystalline SiC (c-SiC). Controlled implantations of Si{sup −} plus C{sup −} and Au{sup +} ions in c-SiC showed that both the thickness of the amorphous layer formed by ion damage and the doping effect of the implanted Au enhance the formation of G and FLG during PLA. The relative contributions of the amorphousmore » and doping effects were studied separately, and thermal simulation calculations were used to estimate surface temperatures and to help understand the phase changes occurring during PLA. In addition to the amorphous layer thickness and catalytic doping effects, other enhancement effects were found to depend on other ion species, the annealing environment, PLA fluence and number of pulses, and even laser frequency. Optimum II and PLA conditions are identified and possible mechanisms for selective synthesis of G, FLG, and carbon nanostructures are discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29027561','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29027561"><span>Influence of temperature gradients on charge transport in asymmetric nanochannels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Benneker, Anne M; Wendt, Hans David; Lammertink, Rob G H; Wood, Jeffery A</p> <p>2017-10-25</p> <p>Charge selective asymmetric nanochannels are used for a variety of applications, such as nanofluidic sensing devices and energy conversion applications. In this paper, we numerically investigate the influence of an applied temperature difference over tapered nanochannels on the resulting charge transport and flow behavior. Using a temperature-dependent formulation of the coupled Poisson-Nernst-Planck and Navier-Stokes equations, various nanochannel geometries are investigated. Temperature has a large influence on the total ion transport, as the diffusivity of ions and viscosity of the solution are strongly affected by temperature. We find that the selectivity of the nanochannels is enhanced with increasing asymmetry ratios, while the total current is reduced at higher asymmetry cases. Most interestingly, we find that applying a temperature gradient along the electric field and along the asymmetry direction of the nanochannel enhances the selectivity of the tapered channels even further, while a temperature gradient countering the electric field reduces the selectivity of the nanochannel. Current rectification is enhanced in asymmetric nanochannels if a temperature gradient is applied, independent of the direction of the temperature difference. However, the degree of rectification is dependent on the direction of the temperature gradient with respect to the channel geometry and the electric field direction. The enhanced selectivity of nanochannels due to applied temperature gradients could result in more efficient operation in energy harvesting or desalination applications, motivating experimental investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptMa..79..331L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptMa..79..331L"><span>Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Labeb, Mohmed; Sakr, Abdel-Hamed; Soliman, Moataz; Abdel-Fettah, Tarek M.; Ebrahim, Shaker</p> <p>2018-05-01</p> <p>Cadmium telluride (CdTe) quantum dots (QDs) were prepared from an aqueous solution containing CdCl2 and Te precursor in the presence of thioglycolic acid (TGA) or L-cysteine as capping agents. Two optical sensors have been developed for Hg2+ ions with very low concentration in the range of nanomolar (nM) or picomolar (pM) depending on the type of capping agents and based on photoluminescence (PL) quenching of CdTe QDs. It was observed that low concentrations of Hg2+ ions quench the fluorescence spectra of CdTe QDs and TGA capped CdTe QDs exhibited a linear response to Hg2+ ions in the concentration range from 1.25 to 10 nM. Moreover, it was found that L-cysteine capped CdTe QDs optical sensor with a sensitivity of 6 × 109 M-1, exhibited a linear coefficient of 0.99 and showed a detection limit of 2.7 pM in range from 5 to 25 pM of Hg2+ ions was achieved. In contrast to the significant response that was observed for Hg2+, a weak signal response was noted upon the addition of other metal ions indicating an excellent selectivity of CdTe QDs towards Hg2+.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NIMPB.353....4H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NIMPB.353....4H"><span>Laser ion source for multi-nucleon transfer reaction products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.</p> <p>2015-06-01</p> <p>We have developed a laser ion source for the target-like fragments (TLFs) produced in multi-nucleon transfer (MNT) reactions. The operation principle of the source is based on the in-gas laser ionization and spectroscopy (IGLIS) approach. In the source TLFs are thermalized and neutralized in high pressure and high purity argon gas, and are extracted after being selectively re-ionized in a multi-step laser resonance ionization process. The laser ion source has been implemented at the KEK Isotope Separation System (KISS) for β-decay spectroscopy of neutron-rich isotopes with N = 126 of nuclear astrophysical interest. The simulations of gas flow and ion-beam optics have been performed to optimize the gas cell for efficient thermalization and fast transporting the TLFs, and the mass-separator for efficient transport with high mass-resolving power, respectively. To confirm the performances expected at the design stage, off-line experiments have been performed by using 56Fe atoms evaporated from a filament in the gas cell. The gas-transport time of 230 ms in the argon cell and the measured KISS mass-resolving power of 900 are consistent with the designed values. The high purity of the gas-cell system, which is extremely important for efficient and highly-selective production of laser ions, was achieved and confirmed from the mass distribution of the extracted ions. After the off-line tests, on-line experiments were conducted by directly injecting energetic 56Fe beam into the gas cell. After thermalization of the injected 56Fe beam, laser-produced singly-charged 56Fe+ ions were extracted. The extraction efficiency and selectivity of the gas cell in the presence of plasma induced by 56Fe beam injection as well as the time profile of the extracted ions were investigated; extraction efficiency of 0.25%, a beam purity of >99% and an extraction time of 270 ms. It has been confirmed that the performance of the KISS laser ion source is satisfactory to start the measurements of lifetimes of the β-decayed nuclei with N = 126 .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5128878','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5128878"><span>Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kachel, Hamid S.; Patel, Rohit N.; Franzyk, Henrik; Mellor, Ian R.</p> <p>2016-01-01</p> <p>Philanthotoxin-433 (PhTX-433) is an active component of the venom from the Egyptian digger wasp, Philanthus triangulum. PhTX-433 inhibits several excitatory ligand-gated ion channels, and to improve selectivity two synthetic analogues, PhTX-343 and PhTX-12, were developed. Previous work showed a 22-fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents in response to application of acetylcholine alone or co-applied with PhTX analogue were studied by using two-electrode voltage-clamp. α3β4 nAChRs were most sensitive to PhTX-343 (IC50 = 12 nM at −80 mV) with α4β4, α4β2, α3β2, α7 and α1β1γδ being 5, 26, 114, 422 and 992 times less sensitive. In contrast α1β1γδ was most sensitive to PhTX-12 along with α3β4 (IC50 values of 100 nM) with α4β4, α4β2, α3β2 and α7 being 3, 3, 26 and 49 times less sensitive. PhTX-343 inhibition was strongly voltage-dependent for all subunit combinations except α7, whereas this was not the case for PhTX-12 for which weak voltage dependence was observed. We conclude that PhTX-343 mainly acts as an open-channel blocker of nAChRs with strong subtype selectivity. PMID:27901080</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27108425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27108425"><span>A Pilot Study of Ion - Molecule Reactions at Temperatures Relevant to the Atmosphere of Titan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zymak, Illia; Žabka, Ján; Polášek, Miroslav; Španěl, Patrik; Smith, David</p> <p>2016-11-01</p> <p>Reliable theoretical models of the chemical kinetics of the ionosphere of Saturn's moon, Titan, is highly dependent on the precision of the rates of the reactions of ambient ions with hydrocarbon molecules at relevant temperatures. A Variable Temperature Selected Ions Flow Tube technique, which has been developed primarily to study these reactions at temperatures within the range of 200-330 K, is briefly described. The flow tube temperature regulation system and the thermalisation of ions are also discussed. Preliminary studies of two reactions have been carried out to check the reliability and efficacy of kinetics measurements: (i) Rate constants of the reaction of CH 3 + ions with molecular oxygen were measured at different temperatures, which indicate values in agreement with previous ion cyclotron resonance measurements ostensibly made at 300 K. (ii) Formation of CH 3 + ions in the reaction of N 2 + ions with CH 4 molecules were studied at temperatures within the range 240-310 K which showed a small but statistically significant decrease of the ratio of product CH 3 + ions to reactant N 2 + ions with reaction temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23994226','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23994226"><span>The fate of b-ions in the two worlds of collision-induced dissociation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Waldera-Lupa, Daniel M; Stefanski, Anja; Meyer, Helmut E; Stühler, Kai</p> <p>2013-12-01</p> <p>Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss. © 2013.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29486530','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29486530"><span>Quantification of volatile compounds released by roasted coffee by selected ion flow tube mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dryahina, Kseniya; Smith, David; Španěl, Patrik</p> <p>2018-05-15</p> <p>The major objective of this exploratory study was to implement selected ion flow tube mass spectrometry, SIFT-MS, as a method for the on-line quantification of the volatile organic compounds, VOCs, in the headspace of the ground roasted coffee. The optimal precursor ions and characteristic analyte ions were selected for real-time SIFT-MS quantification of those VOCs that are the most abundant in the headspace or known to contribute to aroma. NO + reagent ion reactions were exploited for most of the VOC analyses. VOC identifications were confirmed using gas chromatography/mass spectrometry, GC/MS, coupled with solid-phase microextraction, SPME. Thirty-one VOCs were quantified, including several alcohols, aldehydes, ketones, carboxylic acids, esters and some heterocyclic compounds. Variations in the concentrations of each VOC in the seven regional coffees were typically less than a factor of 2, yet concentrations patterns characteristic of the different regional coffees were revealed by heat map and principal component analyses. The coefficient of variation in the concentrations across the seven coffees was typically below 24% except for furfural, furan, methylfuran and guaiacol. The SIFT-MS analytical method can be used to quantify in real time the most important odoriferous VOCs in ground coffee headspace to sufficient precision to reveal some differences in concentration patterns for coffee produced in different countries. Copyright © 2018 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJA...52..206F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJA...52..206F"><span>First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finlay, P.; Breitenfeldt, M.; Porobić, T.; Wursten, E.; Ban, G.; Beck, M.; Couratin, C.; Fabian, X.; Fléchard, X.; Friedag, P.; Glück, F.; Herlert, A.; Knecht, A.; Kozlov, V. Y.; Liénard, E.; Soti, G.; Tandecki, M.; Traykov, E.; Van Gorp, S.; Weinheimer, Ch.; Zákoucký, D.; Severijns, N.</p> <p>2016-07-01</p> <p>The first high-statistics and high-resolution data set for the integrated recoil-ion energy spectrum following the β^+ decay of 35Ar has been collected with the WITCH retardation spectrometer located at CERN-ISOLDE. Over 25 million recoil-ion events were recorded on a large-area multichannel plate (MCP) detector with a time-stamp precision of 2ns and position resolution of 0.1mm due to the newly upgraded data acquisition based on the LPC Caen FASTER protocol. The number of recoil ions was measured for more than 15 different settings of the retardation potential, complemented by dedicated background and half-life measurements. Previously unidentified systematic effects, including an energy-dependent efficiency of the main MCP and a radiation-induced time-dependent background, have been identified and incorporated into the analysis. However, further understanding and treatment of the radiation-induced background requires additional dedicated measurements and remains the current limiting factor in extracting a beta-neutrino angular correlation coefficient for 35Ar decay using the WITCH spectrometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1197858-application-high-resolution-time-flight-chemical-ionization-mass-spectrometry-measurements-estimate-volatility-distributions-pinene-naphthalene-oxidation-products','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1197858-application-high-resolution-time-flight-chemical-ionization-mass-spectrometry-measurements-estimate-volatility-distributions-pinene-naphthalene-oxidation-products"><span>Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...</p> <p>2015-01-05</p> <p>Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore » groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O 3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 10 11 to 9.7 × 10 11 molec s cm −3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. Furthermore, while acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..GECQR1004M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..GECQR1004M"><span>Numerical calculation of charge exchange cross sections for plasma diagnostics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mendez, Luis</p> <p>2016-09-01</p> <p>The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22392190-suboxide-subnitride-formation-ta-masks-during-magnetic-material-etching-reactive-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22392190-suboxide-subnitride-formation-ta-masks-during-magnetic-material-etching-reactive-plasmas"><span>Suboxide/subnitride formation on Ta masks during magnetic material etching by reactive plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Hu; Muraki, Yu; Karahashi, Kazuhiro</p> <p>2015-07-15</p> <p>Etching characteristics of tantalum (Ta) masks used in magnetoresistive random-access memory etching processes by carbon monoxide and ammonium (CO/NH{sub 3}) or methanol (CH{sub 3}OH) plasmas have been examined by mass-selected ion beam experiments with in-situ surface analyses. It has been suggested in earlier studies that etching of magnetic materials, i.e., Fe, Ni, Co, and their alloys, by such plasmas is mostly due to physical sputtering and etch selectivity of the process arises from etch resistance (i.e., low-sputtering yield) of the hard mask materials such as Ta. In this study, it is shown that, during Ta etching by energetic CO{sup +}more » or N{sup +} ions, suboxides or subnitrides are formed on the Ta surface, which reduces the apparent sputtering yield of Ta. It is also shown that the sputtering yield of Ta by energetic CO{sup +} or N{sup +} ions has a strong dependence on the angle of ion incidence, which suggests a correlation between the sputtering yield and the oxidation states of Ta in the suboxide or subnitride; the higher the oxidation state of Ta, the lower is the sputtering yield. These data account for the observed etch selectivity by CO/NH{sub 3} and CH{sub 3}OH plasmas.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985PhRvB..31.6976S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985PhRvB..31.6976S"><span>Correlation effects in ion neutralization scattering with the use of a time-dependent coupled-cluster approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sebastian, K. L.</p> <p>1985-06-01</p> <p>We consider the problem of ion neutralization scattering from surfaces. For large kinetic energies, the motion of the ion can be treated classically. The electronic part is assumed to be described by a time-dependent Newns-Anderson Hamiltonian. The ion is supposed to have a closed-shell structure with one empty orbital outside the shell, which can take up, at the most, two electrons from the metal. One can obtain a time-dependent Hartree-Fock (TDHF) solution for this using a procedure suggested earlier. [T. B. Grimley, V. C. Jyothi Bhasu, and K. L. Sebastian, Surf. Sci. 124, 305 (1983)]. We show that this solution is defective in that it predicts that the probability that the ion comes back as a neutral species is always less than 0.5, thus illustrating that one has to include electron correlation in order to describe the process correctly. For this we make use of the time-dependent version of the coupled-cluster approach. In this, one assumes the wave function to have the form exp[T0(t)+T1(t)+T2(t)+. . .]||Φ0> where ||Φ0> is a Slater determinant and Tn(t) can create n-particle hole excitations in it. We take T1(t) as a linear combination of all possible single-particle hole-excitation operators while T2(t) is taken as a linear combination of just those two-particle hole-excitation operators which transfer two electrons to the orbital of the ion from the solid, neglect Tn(t) for n>2, and derive differential equations for the matrix elements of the operators T1(t) and T2(t). These differential equations are solved numerically to obtain the wave function at any time t. New theorems which enable us to calculate all the expectation values that arise in our treatment of the problem are presented. Also, we have derived expressions for the excitation spectrum, produced as a result of the collision, by particles which come back as ions and also by those which have taken up one or two electrons from the solid. The method is applied to the scattering of lithium ions from the Ni(100) surface and also from a Ni surface contaminated with alkali atoms. The calculations show that TDHF theory is not a bad approximation if one is concerned just with the approach of the ion to the surface. But, in treating an ion which leaves the surface, TDHF fails. The predicted values of charge-transfer probabilities are considerably different in the two theories. Also, calculation of the excitation spectrum produced as a result of the collision show that the spectra are much broader for a contaminated surface having a lower work function than for the clean surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3895005','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3895005"><span>Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Haas, Stephan; Farley, Robert A.</p> <p>2014-01-01</p> <p>The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation. PMID:24465882</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/871894','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/871894"><span>Solid state proton and electron mediating membrane and use in catalytic membrane reactors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>White, James H.; Schwartz, Michael; Sammells, Anthony F.</p> <p>1998-01-01</p> <p>This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB.sub.1-x B'.sub.x O.sub.3-y wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B' is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated-by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B' ion such that the stoichiometric ratio A:B:B' is 1:1-x:x where 0.2.ltoreq..times.0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the singlephase material to obtain a membrane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/675814','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/675814"><span>Solid state proton and electron mediating membrane and use in catalytic membrane reactors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>White, J.H.; Schwartz, M.; Sammells, A.F.</p> <p>1998-10-13</p> <p>This invention provides catalytic proton and electron mediating membranes useful in catalytic reactors. The membranes have an oxidation and a reduction surface and comprise a single-phase mixed metal oxide material of the formula: AB{sub 1{minus}x}B{prime}{sub x}O{sub 3{minus}y} wherein A is selected from Ca, Sr or Ba ions; B is selected from Ce, Tb, Pr, or Th ions; B{prime} is selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Ga, or In ions, or combinations thereof; and x is greater than or equal to 0.02 and less than or equal to 0.5. The membranes can further comprise a catalyst on either the oxidation or reduction surface, or both. Membranes include those which are fabricated by combining powders of metal oxides or metal carbonates of metal A ion, metal B ion and metal B{prime} ion such that the stoichiometric ratio A:B:B{prime} is 1:1{minus}x:x where 0.2{<=}{times}0.5, repeatedly calcining and milling the combined powders until a single-phase material is obtained and pressing and sintering the single phase material to obtain a membrane. 6 figs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780025208','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780025208"><span>Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sovey, J. S.</p> <p>1978-01-01</p> <p>Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25924321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25924321"><span>Hydrothermal growth of CuO nanoleaf structures, and their mercuric ion detection application.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ibupoto, Z H; Khun, K; Willander, M</p> <p>2014-09-01</p> <p>Mercury is the hazardous heavy metal ion for the environment and the human being therefore its determination is very important and herein we describe the development of mercury ion sensor on the CuO nanoleaf like nanostructures using cetyltrimethylammonium bromide (CTAB) surfactant as template for the growth by hydrothermal growth method. Scanning electron microscopy and X-ray diffraction study has shown high density and good crystal quality of the fabricated CuO nanostructures respectively. The presented mercury ion sensor has detected the wide range of 1.0 x 10(-7) to 1.0 x 10(-1) M mercury ion concentrations with an acceptable Nernstian behaviour and a sensitivity of 30.1 ± 0.6 mV/decade. The proposed mercury ion sensor exhibited low detection limit of 1.0 x 10(-8) M and also a fast response time of less than 5 s. In addition, the presented mercury ion sensor has shown an excellent repeatability, reproducibility, stability and selectivity. Moreover, the mercury ion selective electrode based on CuO nanoleaves was tested as an indicator electrode in the potentiometric titration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASMS..28.1765P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASMS..28.1765P"><span>The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.</p> <p>2017-09-01</p> <p>We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800010329','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800010329"><span>Study of the storm time fluxes of heavy ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1978-01-01</p> <p>The characteristics of the storm time ring current ions in the energy range of 0.5 to 16 keV were investigated. Data were processed and analyzed from the energetic ion mass spectrometer aboard the S3-3 satellite. Results are used for planning and operating the ion mass spectrometer experiment on the ISEE spacecraft, for selecting and processing the ISEE ion data, and for planning and conducting coordinated satellite experiments in support of the International Magnetospheric Study (IMS). It is established from the S3-3 ion data that relatively large fluxes of energetic (keV) 0(+) and H(+) ions are frequently flowing upward from the ionosphere along magnetic field lines in the polar auroral regions. Also, from investigations with the same instrument during the main phase of three moderate (D sub ST approximately 100) magnetic storms, it is found that the number density of 0(+) ions in the ring current was comparable to H(+) ion density the range 0.5 to 15 keV.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......176W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......176W"><span>Electrically driven ion separations and nanofiltration through membranes coated with polyelectrolyte multilayers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>White, Nicholas</p> <p></p> <p>Polyelectrolyte multilayer (PEM) films deposited using the layer-by-layer (LBL) method are attractive for their simple deposition, tailorable nature, scalability, and charge or size-based selectivity for solutes. This dissertation explores ion separations in electrodialysis (ED) and solute removal through nanofiltration with PEMs deposited on polymer membranes. ED membranes typically exhibit modest selectivities between monovalent and divalent ions. In contrast, this work shows that K+/Mg 2+ ED selectivities reach values >1000 when using Nafion 115 cation-exchange membranes coated with multilayer poly(4-styrenesulfonate) (PSS)/protonated poly(allylamine) (PAH) films. For comparison, the corresponding K+ /Mg2+ selectivity of bare Nafion 115 is <2. However, water-splitting at strongly overlimiting current densities may lead to a local pH increase close to the membrane surface and alter film permeability or allow passage of Mg(OH)x species to decrease selectivity. When the source phase contains high salt concentrations, the K+ transference number approaches unity and the K+/Mg2+ selectivity is >20,000, presumably because the applied current is below the limiting value for K+ and H+ transport is negligible at this high K+ concentration. The high selectivities of these membranes may enable electrodialysis applications such as purification of salts that contain divalent or trivalent ions. The high ED selectivities of (PAH/PSS)5PAH-coated Nafion membranes translate to separations with Li+/Co2+ and K +/La3+. Even with adsorption of only 3 polyelectrolyte layers, Nafion membranes exhibit a Li+/Co2+ selectivity >23. However, the resistance to monovalent-ion passage does not decrease significantly with fewer polyelectrolyte layers. At overlimiting currents, hydroxides from water splitting form insoluble metal hydroxides to foul the membrane. With 0.1 M source-phase salt concentrations, transference numbers for monovalent cations approach unity and selectivities are >5000 because the diffusion-limited K+ or Li+ currents exceed the applied current. However, ED selectivities gradually decline with time. Thus, future research should aim to increase membrane stability and limiting currents to fully exploit the remarkable selectivity of these membranes. PEMs deposited on commercial ultrafiltration (UF) membranes also show high rejections of organic dyes. Coating the surface of polyethersulfone (PES) membranes imparts a selective barrier to dye molecules used in textile production. These films achieve dye rejections >98% and may be useful for wastewater treatment and dye recovery. Other studies in microfluidic channels exploit ion transport phenomena in the vicinity of ion-selective junctions, such as cation-exchange membranes. These studies suggest that ion concentration polarization (ICP) could remove charged species from feed streams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25534438','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25534438"><span>Prostaglandin D2 regulates human colonic ion transport via the DP1 receptor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Medani, M; Collins, D; Mohan, H M; Walsh, E; Winter, D C; Baird, A W</p> <p>2015-02-01</p> <p>Prostaglandin D2 is released by mast cells and is important in allergies. Its role in gastrointestinal function is not clearly defined. This study aimed to determine the effect of exogenous PGD2 on ion transport in ex vivo normal human colonic mucosa. Mucosal sheets were mounted in Ussing chambers and voltage clamped to zero electric potential. Ion transport was quantified as changes in short-circuit current. In separate experiments epithelial monolayers or colonic crypts, isolated by calcium chelation, were treated with PGD2 and cAMP levels determined by ELISA or calcium levels were determined by fluorimetry. PGD2 caused a sustained, concentration-dependent rise in short-circuit current by increasing chloride secretion (EC50=376nM). This effect of PGD2 is mediated by the DP1 receptor, as the selective DP1 receptor antagonist BW A686C inhibited PGD2-induced but not PGE2-induced rise in short-circuit current. PGD2 also increased intracellular cAMP in isolated colonic crypts with no measurable influence on cytosolic calcium. PGD2 induces chloride secretion in isolated human colonic mucosa in a concentration-dependent manner with concomitant elevation of cytoplasmic cAMP in epithelial cells. The involvement of DP2 receptor subtypes has not previously been considered in regulation of ion transport in human intestine. Since inflammatory stimuli may induce production of eicosanoids, selective regulation of these pathways may be pivotal in determining therapeutic strategies and in understanding disease. Copyright © 2014. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22434668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22434668"><span>The importance of dehydration in determining ion transport in narrow pores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richards, Laura A; Schäfer, Andrea I; Richards, Bryce S; Corry, Ben</p> <p>2012-06-11</p> <p>The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4195338','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4195338"><span>In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Johnson, Grant E.; Gunaratne, K. Don Dasitha; Laskin, Julia</p> <p>2014-01-01</p> <p>Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces. PMID:24961913</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1158978-situ-sims-ir-spectroscopy-well-defined-surfaces-prepared-soft-landing-mass-selected-ions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1158978-situ-sims-ir-spectroscopy-well-defined-surfaces-prepared-soft-landing-mass-selected-ions"><span>In Situ SIMS and IR Spectroscopy of Well-Defined Surfaces Prepared by Soft Landing of Mass-Selected Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Johnson, Grant E.; Gunaratne, Kalupathirannehelage Don D.; Laskin, Julia</p> <p>2014-06-16</p> <p>Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+, onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivitymore » of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22493644-decomposition-cyclohexane-ion-induced-intense-femtosecond-laser-fields-ion-trap-time-flight-mass-spectrometry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22493644-decomposition-cyclohexane-ion-induced-intense-femtosecond-laser-fields-ion-trap-time-flight-mass-spectrometry"><span>Decomposition of cyclohexane ion induced by intense femtosecond laser fields by ion-trap time-of-flight mass spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yamazaki, Takao; Watanabe, Yusuke; Kanya, Reika</p> <p>2016-01-14</p> <p>Decomposition of cyclohexane cations induced by intense femtosecond laser fields at the wavelength of 800 nm is investigated by ion-trap time-of-flight mass spectrometry in which cyclohexane cations C{sub 6}H{sub 12}{sup +} stored in an ion trap are irradiated with intense femtosecond laser pulses and the generated fragment ions are recorded by time-of-flight mass spectrometry. The various fragment ion species, C{sub 5}H{sub n}{sup +} (n = 7, 9), C{sub 4}H{sub n}{sup +} (n = 5–8), C{sub 3}H{sub n}{sup +} (n = 3–7), C{sub 2}H{sub n}{sup +} (n = 2–6), and CH{sub 3}{sup +}, identified in the mass spectra show that decompositionmore » of C{sub 6}H{sub 12}{sup +} proceeds efficiently by the photo-irradiation. From the laser intensity dependences of the yields of the fragment ion species, the numbers of photons required for producing the respective fragment ions are estimated.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22416274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22416274"><span>A naphthalene exciplex based Al3+ selective on-type fluorescent probe for living cells at the physiological pH range: experimental and computational studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Banerjee, Arnab; Sahana, Animesh; Das, Sudipta; Lohar, Sisir; Guha, Subarna; Sarkar, Bidisha; Mukhopadhyay, Subhra Kanti; Mukherjee, Asok K; Das, Debasis</p> <p>2012-05-07</p> <p>2-((Naphthalen-6-yl)methylthio)ethanol (HL) was prepared by one pot synthesis using 2-mercaptoethanol and 2-bromomethylnaphthalene. It was found to be a highly selective fluorescent sensor for Al(3+) in the physiological pH (pH 7.0-8.0). It could sense Al(3+) bound to cells through fluorescence microscopy. Metal ions like Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Ag(+), Cd(2+), Hg(2+), Cr(3+) and Pb(2+) did not interfere. No interference was also observed with anions like Cl(-), Br(-), F(-), SO(4)(2-), NO(3)(-), CO(3)(2-), HPO(4)(2-) and SCN(-). Experimentally observed structural and spectroscopic features of HL and its Al(3+) complex have been substantiated by computational calculations using density functional theory (DFT) and time dependent density functional theory (TDDFT).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29057868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29057868"><span>Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Chuang; Ganapathy, Swapna; Eck, Ernst R H van; Wang, Heng; Basak, Shibabrata; Li, Zhaolong; Wagemaker, Marnix</p> <p>2017-10-20</p> <p>Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte interface. However, direct assessment of the lithium-ion transport across realistic electrode-electrolyte interfaces is tedious. Here we report two-dimensional lithium-ion exchange NMR accessing the spontaneous lithium-ion transport, providing insight on the influence of electrode preparation and battery cycling on the lithium-ion transport over the interface between an argyrodite solid-electrolyte and a sulfide electrode. Interfacial conductivity is shown to depend strongly on the preparation method and demonstrated to drop dramatically after a few electrochemical (dis)charge cycles due to both losses in interfacial contact and increased diffusional barriers. The reported exchange NMR facilitates non-invasive and selective measurement of lithium-ion interfacial transport, providing insight that can guide the electrolyte-electrode interface design for future all-solid-state batteries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1340813-soft-landing-complex-ions-studies-catalysis-energy-storage','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1340813-soft-landing-complex-ions-studies-catalysis-energy-storage"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Laskin, Julia; Johnson, Grant E.; Prabhakaran, Venkateshkumar</p> <p></p> <p>Immobilization of complex molecules and clusters on supports plays an important role in a variety of disciplines including materials science, catalysis and biochemistry. In particular, deposition of clusters on surfaces has attracted considerable attention due to their non-scalable, highly size-dependent properties. The ability to precisely control the composition and morphology of clusters and small nanoparticles on surfaces is crucial for the development of next generation materials with rationally tailored properties. Soft- and reactive landing of ions onto solid or liquid surfaces introduces unprecedented selectivity into surface modification by completely eliminating the effect of solvent and sample contamination on the qualitymore » of the film. The ability to select the mass-to-charge ratio of the precursor ion, its kinetic energy and charge state along with precise control of the size, shape and position of the ion beam on the deposition target makes soft-landing an attractive approach for surface modification. High-purity uniform thin films on surfaces generated using mass-selected ion deposition facilitate understanding of critical interfacial phenomena relevant to catalysis, energy generation and storage, and materials science. Our efforts have been directed toward understanding charge retention by soft-landed metal and metal-oxide cluster ions, which may affect both their structure and reactivity. Specifically, we have examined the effect of the surface on charge retention by both positively and negatively charged cluster ions. We found that the electronic properties of the surface play an important role in charge retention by cluster cations. Meanwhile, the electron binding energy is a key factor determining charge retention by cluster anions. These findings provide the scientific foundation for the rational design of interfaces for advanced catalysts and energy storage devices. Further optimization of electrode-electrolyte interfaces for applications in energy storage and electrocatalysis may be achieved by understanding and controlling the properties of soft-landed cluster ions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1422288-online-ozonolysis-combined-ion-mobility-mass-spectrometry-provides-new-platform-lipid-isomer-analyses','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1422288-online-ozonolysis-combined-ion-mobility-mass-spectrometry-provides-new-platform-lipid-isomer-analyses"><span>Online Ozonolysis Combined with Ion Mobility-Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Poad, Berwyck L. J.; Zheng, Xueyun; Mitchell, Todd W.</p> <p></p> <p>One of the most significant challenges in contemporary lipidomics lies in the separation and identification of lipid isomers that differ only in site(s) of unsaturation or geometric configuration of the carbon-carbon double bonds. While analytical separation techniques including ion mobility spectrometry (IMS) and liquid chromatography (LC) can separate isomeric lipids under appropriate conditions, conventional tandem mass spectrometry cannot provide unequivocal identification. To address this challenge, we have implemented ozone-induced dissociation (OzID) in-line with LC, IMS and high resolution mass spectrometry. Modification of an IMS- capable quadrupole time-of-flight mass spectrometer was undertaken to allow the introduction of ozone into the high-pressuremore » trapping ion funnel region preceding the IMS cell. This enabled the novel LC-OzID-IMS-MS configuration where ozonolysis of ionized lipids occurred rapidly (10 ms) without prior mass-selection. LC-elution time alignment combined with accurate mass and arrival time extraction of ozonolysis products facilitated correlation of precursor and product ions without mass-selection (and associated reductions in duty cycle). Unsaturated lipids across 11 classes were examined using this workflow in both positive and negative ion modalities and in all cases the positions of carbon-carbon double bonds were unequivocally assigned based on predictable OzID transitions. Under these conditions geometric isomers exhibited different IMS arrival time distributions and distinct OzID product ion ratios providing a means for discrimination of cis/trans double bonds in complex lipids. The combination of OzID with multidimensional separations shows significant promise for facile profiling of unsaturation patterns within complex lipidomes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25e2112Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25e2112Z"><span>Three-dimensional particle-particle simulations: Dependence of relaxation time on plasma parameter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Yinjian</p> <p>2018-05-01</p> <p>A particle-particle simulation model is applied to investigate the dependence of the relaxation time on the plasma parameter in a three-dimensional unmagnetized plasma. It is found that the relaxation time increases linearly as the plasma parameter increases within the range of the plasma parameter from 2 to 10; when the plasma parameter equals 2, the relaxation time is independent of the total number of particles, but when the plasma parameter equals 10, the relaxation time slightly increases as the total number of particles increases, which indicates the transition of a plasma from collisional to collisionless. In addition, ions with initial Maxwell-Boltzmann (MB) distribution are found to stay in the MB distribution during the whole simulation time, and the mass of ions does not significantly affect the relaxation time of electrons. This work also shows the feasibility of the particle-particle model when using GPU parallel computing techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1439300-dynamical-initial-state-model-relativistic-heavy-ion-collisions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1439300-dynamical-initial-state-model-relativistic-heavy-ion-collisions"><span>Dynamical initial-state model for relativistic heavy-ion collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shen, Chun; Schenke, Bjorn</p> <p></p> <p>We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvC..97b4907S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvC..97b4907S"><span>Dynamical initial-state model for relativistic heavy-ion collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Chun; Schenke, Björn</p> <p>2018-02-01</p> <p>We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy-ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a fluctuating time depending on sampled final rapidities. Energy is deposited in space time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directly from the initial-state model, including net-baryon rapidity distributions, two-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. We also present the implementation of the model with 3+1-dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial-state model at proper times greater than the initial time for the hydrodynamic simulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1439300-dynamical-initial-state-model-relativistic-heavy-ion-collisions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1439300-dynamical-initial-state-model-relativistic-heavy-ion-collisions"><span>Dynamical initial-state model for relativistic heavy-ion collisions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Shen, Chun; Schenke, Bjorn</p> <p>2018-02-15</p> <p>We present a fully three-dimensional model providing initial conditions for energy and net-baryon density distributions in heavy ion collisions at arbitrary collision energy. The model includes the dynamical deceleration of participating nucleons or valence quarks, depending on the implementation. The duration of the deceleration continues until the string spanned between colliding participants is assumed to thermalize, which is either after a fixed proper time, or a uctuating time depending on sampled final rapidities. Energy is deposited in space-time along the string, which in general will span a range of space-time rapidities and proper times. We study various observables obtained directlymore » from the initial state model, including net-baryon rapidity distributions, 2-particle rapidity correlations, as well as the rapidity decorrelation of the transverse geometry. Their dependence on the model implementation and parameter values is investigated. Here, we also present the implementation of the model with 3+1 dimensional hydrodynamics, which involves the addition of source terms that deposit energy and net-baryon densities produced by the initial state model at proper times greater than the initial time for the hydrodynamic simulation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22923057','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22923057"><span>Comparison of cellular lethality in DNA repair-proficient or -deficient cell lines resulting from exposure to 70 MeV/n protons or 290 MeV/n carbon ions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Genet, Stefan C; Maeda, Junko; Fujisawa, Hiroshi; Yurkon, Charles R; Fujii, Yoshihiro; Romero, Ashley M; Genik, Paula C; Fujimori, Akira; Kitamura, Hisashi; Kato, Takamitsu A</p> <p>2012-11-01</p> <p>Charged particle therapy utilizing protons or carbon ions has been rapidly intensifying over recent years. The present study was designed to jointly investigate these two charged particle treatment modalities with respect to modeled anatomical depth-dependent dose and linear energy transfer (LET) deliveries to cells with either normal or compromised DNA repair phenotypes. We compared cellular lethality in response to dose, LET and Bragg peak location for accelerated protons and carbon ions at 70 and 290 MeV/n, respectively. A novel experimental live cell irradiation OptiCell™ in vitro culture system using three different Chinese hamster ovary (CHO) cells as a mammalian model was conducted. A wild-type DNA repair-competent CHO cell line (CHO 10B2) was compared to two other CHO cell lines (51D1 and xrs5), each genetically deficient with respect to one of the two major DNA repair pathways (homologous recombination and non-homologous end joining pathways, respectively) following genotoxic insults. We found that wild-type and homologous recombination-deficient (Rad51D) cellular lethality was dependent on both the dose and LET of the carbon ions, whereas it was only dependent on dose for protons. The non-homologous end joining deficient cell line (Ku80 mutant) showed nearly identical dose-response profiles for both carbon ions and protons. Our results show that the increasingly used modality of carbon ions as charged particle therapy is advantageous to protons in a radiotherapeutic context, primarily for tumor cells proficient in non-homologous end joining DNA repair where cellular lethality is dependent not only on the dose as in the case of more common photon therapeutic modalities, but more importantly on the carbon ion LETs. Genetic characterization of patient tumors would be key to individualize and optimize the selection of radiation modality, clinical outcome and treatment cost.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10596E..1PL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10596E..1PL"><span>Time-dependent chemo-electro-mechanical behavior of hydrogel-based structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leichsenring, Peter; Wallmersperger, Thomas</p> <p>2018-03-01</p> <p>Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97d3210H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97d3210H"><span>Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harbour, L.; Förster, G. D.; Dharma-wardana, M. W. C.; Lewis, Laurent J.</p> <p>2018-04-01</p> <p>The ion-ion dynamical structure factor and the equation of state of warm dense aluminum in a two-temperature quasiequilibrium state, with the electron temperature higher than the ion temperature, are investigated using molecular-dynamics simulations based on ion-ion pair potentials constructed from a neutral pseudoatom model. Such pair potentials based on density functional theory are parameter-free and depend directly on the electron temperature and indirectly on the ion temperature, enabling efficient computation of two-temperature properties. Comparison with ab initio simulations and with other average-atom calculations for equilibrium aluminum shows good agreement, justifying a study of quasiequilibrium situations. Analyzing the van Hove function, we find that ion-ion correlations vanish in a time significantly smaller than the electron-ion relaxation time so that dynamical properties have a physical meaning for the quasiequilibrium state. A significant increase in the speed of sound is predicted from the modification of the dispersion relation of the ion acoustic mode as the electron temperature is increased. The two-temperature equation of state including the free energy, internal energy, and pressure is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1126324-reactive-landing-dendrimer-ions-onto-activated-self-assembled-monolayer-surfaces','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1126324-reactive-landing-dendrimer-ions-onto-activated-self-assembled-monolayer-surfaces"><span>Reactive Landing of Dendrimer Ions onto Activated Self-assembled Monolayer Surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hu, Qichi; Laskin, Julia</p> <p>2014-02-06</p> <p>The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS). The reaction extent is determined from depletion of the infrared band at 1753 cm-1, corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G0–G3) containing 4, 8, 16, and 32more » terminal amino group, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H]4+ ions of the G2 dendrimer at 30, 80, and 120 eV, we demonstrate that the ion’s kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion’s charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/985223','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/985223"><span>Dynamic multiplexed analysis method using ion mobility spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Belov, Mikhail E [Richland, WA</p> <p>2010-05-18</p> <p>A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...515277T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...515277T"><span>Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taurino, Irene; Sanzó, Gabriella; Mazzei, Franco; Favero, Gabriele; de Micheli, Giovanni; Carrara, Sandro</p> <p>2015-10-01</p> <p>Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASMS.tmp...44H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASMS.tmp...44H"><span>SIMS of Organic Materials—Interface Location in Argon Gas Cluster Depth Profiles Using Negative Secondary Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.</p> <p>2018-02-01</p> <p>A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22102176','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22102176"><span>Web interface for Brownian dynamics simulation of ion transport and its applications to beta-barrel pores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Kyu Il; Jo, Sunhwan; Rui, Huan; Egwolf, Bernhard; Roux, Benoît; Pastor, Richard W; Im, Wonpil</p> <p>2012-01-30</p> <p>Brownian dynamics (BD) based on accurate potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web-based graphical user interface (GUI) is presented for carrying out grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm-gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α-Hemolysin (α-HL), and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate the system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all-atom molecular dynamics simulations of VDAC, and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α-HL, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10-20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5-7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. Copyright © 2011 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3240732','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3240732"><span>Web Interface for Brownian Dynamics Simulation of Ion Transport and Its Applications to Beta-Barrel Pores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Kyu Il; Jo, Sunhwan; Rui, Huan; Egwolf, Bernhard; Roux, Benoît; Pastor, Richard W.; Im, Wonpil</p> <p>2011-01-01</p> <p>Brownian dynamics (BD) in a suitably constructed potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web-based graphical user interface (GUI) is presented for grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm-gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α-Hemolysin, and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all-atom molecular dynamics simulations of VDAC; and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α-Hemolysin, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10–20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5 to 7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. PMID:22102176</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22679152-we-bra-experimental-investigation-rbe-lung-cancer-cell-lines-function-dose-let-proton-helium-carbon-beams','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22679152-we-bra-experimental-investigation-rbe-lung-cancer-cell-lines-function-dose-let-proton-helium-carbon-beams"><span>WE-H-BRA-06: Experimental Investigation of RBE for Lung Cancer Cell Lines as a Function of Dose and LET in Proton, Helium and Carbon Beams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Patel, D; Titt, U; Bronk, L</p> <p>2016-06-15</p> <p>Purpose: Investigate and quantify the effect of dose and LET on the RBE of protons, helium and carbon ions. Methods: High throughput, high accuracy experimental setups were custom designed to investigate the Relative Biological Effectiveness (RBE) dependence on the dose and Linear Energy Transfer (LET) values for proton, helium and carbon ion beams. The experiment was conducted at the HIT facility in collaboration with the DKFZ in Heidelberg/Germany. Clonogenic assays of two human lung cancer cell lines, H460 and H1437, were investigated in this study. γH2AX foci staining on the H460 cell line was also undertaken to facilitate the studymore » of differential DNA double-strand break induction and repair between low-design available at the HIT facility. Specific points along the Bragg curve corresponding to well-defined doses and LET values were chosen by appropriate selection of the pre-absorber thicknesses. With a setup design for horizontal beam lines we were able to minimize ion scattering in the cell plate, resulting in narrower energy spectra and hence LET distributions in the Bragg peak and in the distal falloff regions, compared to the earlier experiments. Results: Approximately 16,000 samples of cancer cells were irradiated during 23 hours of beam time. The preliminary results of the survival curves for both cell lines show a distinct dependence on LET for a given dose with decreased survival fractions at increasing LET values, encountered at the Bragg peak and in the distal falloff. Conclusion: Our preliminary findings are indicative of the importance of novel variable-RBE models for proton therapy and provide insight into the RBE of heavy ions for possible future heavy ion therapy facilities in the US. Funding support: SINF 2015/16.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA463529','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA463529"><span>Gyrotropic Guiding-Center Fluid Theory for the Turbulent Heating of Magnetospheric Ions in Downward Birkeland Current Regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-11-20</p> <p>Doppler -shifted, quasistatic turbulence from the real, time- mogeneous medium,18 we can then estimate that k - k1 and dependent turbulence near the...ground is due to Doppler -shifted, spatially irregular, electric- field structures that are stationary in the ion frame. Sub- we have determined that the...erpnding cn ar ion tepeoratre- 18F J. Crary, M. V. Goldman , R. E. Ergun, and D. L. Newman, Geophys. sented in this paper gives the perpendicular ion</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AcSpA.189..495Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AcSpA.189..495Y"><span>Ultrasensitive and highly selective detection of Cu2 + ions based on a new carbazole-Schiff</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Jun; Bing, Qijing; Wang, Lin; Wang, Guang</p> <p>2018-01-01</p> <p>A new chemosensor for Cu2 + based on Schiff base with high sensitivity and selectivity was designed and synthesized. The fluorescence intensity of the chemosensor in CH3CN solution was enhanced 160-fold after the addition of 10 equiv. Cu2 + over other metal ions. In addition, it also facilitates colorimetric detection for Cu2 + in CH3CN solution. The chemosensor displayed low detection limit and fast response time to Cu2 +.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20410565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20410565"><span>Application of oxybutynin selective sensors for monitoring the dissolution profile and assay of pharmaceutical dosage forms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>El Hamshary, Marwa S; Salem, Omar H; El Nashar, Rasha M</p> <p>2010-01-01</p> <p>Two ion-selective sensors of the plastic membrane type were prepared for the determination of oxybutynin hydrochloride (OxCl). They depend on the incorporation of the ion-associates with phosphotungestic acid or phosphomolybdic acid in a PVC matrix. A comparative study is made between their performance characteristics in batch and FIA conditions. The sensors have nearly the same usable concentration, temperature and pH range. They have a wide range of selectivity and can be applied for the determination of the relevant drug with nearly the same precision and accuracy in vitro. Dissolution testing was applied using the sensors; this offers a simple, rapid, cheap way out of sophisticated and high cost instruments used in the pharmacopeial method using HPLC. The investigated drug was determined in its pure and pharmaceutical preparations. The results were accurate and precise, as indicated by the recovery values and coefficients of variation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JASMS..24..286P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JASMS..24..286P"><span>Ozone-Induced Dissociation of Conjugated Lipids Reveals Significant Reaction Rate Enhancements and Characteristic Odd-Electron Product Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pham, Huong T.; Maccarone, Alan T.; Campbell, J. Larry; Mitchell, Todd W.; Blanksby, Stephen J.</p> <p>2013-02-01</p> <p>Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X]+ ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20297776','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20297776"><span>Impact of sodium caseinate concentration and location on magnesium release from multiple W/O/W emulsions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonnet, Marie; Cansell, Maud; Placin, Frédéric; Anton, Marc; Leal-Calderon, Fernando</p> <p>2010-06-15</p> <p>Water-in-oil-in-water (W/O/W) double emulsions were prepared and the rate of release of magnesium ions from the internal to the external aqueous phase was followed. Sodium caseinate was used not only as a hydrophilic surface-active species but also as a chelating agent able to bind magnesium ions. The release occurred without film rupturing (no coalescence). The kinetics of the release process depended on the location (in only one or in both aqueous compartments) and on the concentration of sodium caseinate. The rate of release increased with the concentration of sodium caseinate in the external phase and decreased when sodium caseinate was present in the inner droplets. The experiments were interpreted within the frame of a mean-field model based on diffusion, integrating the effect of ion binding. The data could be adequately fitted by considering a time-dependent permeation coefficient of the magnesium ions across the oil phase. Our results suggested that ion permeability was influenced by the state of the protein interfacial layers which itself depended on the extent of magnesium binding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDA11002C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDA11002C"><span>The Equivalent Electrokinetic Circuit Model of Ion Concentration Polarization Layer: Electrical Double Layer, Extended Space Charge and Electro-convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, Inhee; Huh, Keon; Kwak, Rhokyun; Lee, Hyomin; Kim, Sung Jae</p> <p>2016-11-01</p> <p>The first direct chronopotentiometric measurement was provided to distinguish the potential difference through the extended space charge (ESC) layer which is formed with the electrical double layer (EDL) near a perm-selective membrane. From this experimental result, the linear relationship was obtained between the resistance of ESC and the applied current density. Furthermore, we observed the step-wise distributions of relaxation time at the limiting current regime, confirming the existence of ESC capacitance other than EDL's. In addition, we proposed the equivalent electrokinetic circuit model inside ion concentration polarization (ICP) layer under rigorous consideration of EDL, ESC and electro-convection (EC). In order to elucidate the voltage configuration in chronopotentiometric measurement, the EC component was considered as the "dependent voltage source" which is serially connected to the ESC layer. This model successfully described the charging behavior of the ESC layer with or without EC, where both cases determined each relaxation time, respectively. Finally, we quantitatively verified their values utilizing the Poisson-Nernst-Planck equations. Therefore, this unified circuit model would provide a key insight of ICP system and potential energy-efficient applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24257040','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24257040"><span>Proton-coupled organic cation antiporter-mediated uptake of apomorphine enantiomers in human brain capillary endothelial cell line hCMEC/D3.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Okura, Takashi; Higuchi, Kei; Kitamura, Atsushi; Deguchi, Yoshiharu</p> <p>2014-01-01</p> <p>R(-)-Apomorphine is a dopamine agonist used for rescue management of motor function impairment associated with levodopa therapy in Parkinson's disease patients. The aim of this study was to examine the role of proton-coupled organic cation antiporter in uptake of R(-)-apomorphine and its S-enantiomer in human brain, using human endothelial cell line hCMEC/D3 as a model. Uptake of R(-)- or S(+)-apomorphine into hCMEC/D3 cells was measured under various conditions to evaluate its time-, concentration-, energy- and ion-dependency. Inhibition by selected organic cations was also examined. Uptakes of both R(-)- and S(+)-apomorphine increased with time. The initial uptake velocities of R(-)- and S(+)-apomorphine were concentration-dependent, with similar Km and Vmax values. The cell-to-medium (C/M) ratio of R(-)-apomorphine was significantly reduced by pretreatment with sodium azide, but was not affected by replacement of extracellular sodium ion with N-methylglucamine or potassium. Intracellular alkalization markedly reduced the uptake, while intracellular acidification increased it, suggesting that the uptake is driven by an oppositely directed proton gradient. The C/M ratio was significantly decreased by amantadine, verapamil, pyrilamine and diphenhydramine (substrates or inhibitors of proton-coupled organic cation antiporter), while tetraethylammonium (substrate of organic cation transporters (OCTs)) and carnitine (substrate of carnitine/organic cation transporter 2; (OCTN2)) had no effect. R(-)-Apomorphine uptake was competitively inhibited by diphenhydramine. Our results indicate that R(-)-apomorphine transport in human blood-brain barrier (BBB) model cells is similar to S(+)-apomorphine uptake. The transport was dependent on an oppositely directed proton gradient, but was sodium- or membrane potential-independent. The transport characteristics were consistent with involvement of the previously reported proton-coupled organic cation antiporter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27833754','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27833754"><span>Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Piri, Somayeh; Zanjani, Zahra Alikhani; Piri, Farideh; Zamani, Abbasali; Yaftian, Mohamadreza; Davari, Mehdi</p> <p>2016-01-01</p> <p>Nowadays significant attention is to nanocomposite compounds in water cleaning. In this article the synthesis and characterization of conductive polyaniline/clay (PANI/clay) as a hybrid nanocomposite with extended chain conformation and its application for water purification are presented. Clay samples were obtained from the central plain of Abhar region, Abhar, Zanjan Province, Iran. Clay was dried and sieved before used as adsorbent. The conductive polyaniline was inflicted into the layers of clay to fabricate a hybrid material. The structural properties of the fabricated nanocomposite are studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The elimination process of Pb(II) and Cd(II) ions from synthetics aqueous phase on the surface of PANI/clay as adsorbent were evaluated in batch experiments. Flame atomic absorption instrument spectrophotometer was used for determination of the studied ions concentration. Consequence change of the pH and initial metal amount in aqueous solution, the procedure time and the used adsorbent dose as the effective parameters on the removal efficiency was investigated. Surface characterization was exhibited that the clay layers were flaked in the hybrid nanocomposite. The results show that what happen when a nanocomposite polyaniline chain is inserted between the clay layers. The adsorption of ions confirmed a pH dependency procedure and a maximum removal value was seen at pH 5.0. The adsorption isotherm and the kinetics of the adsorption processes were described by Temkin model and pseudo-second-order equation. Time of procedure, pH and initial ion amount have a severe effect on adsorption efficiency of PANI/clay. By using suggested synthesise method, nano-composite as the adsorbent simply will be prepared. The prepared PANI/clay showed excellent adsorption capability for decontamination of Pb ions from contaminated water. Both of suggested synthesise and removal methods are affordable techniques.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1728b0425S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1728b0425S"><span>Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna</p> <p>2016-05-01</p> <p>Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22606506-temperature-dependent-dielectric-properties-ion-transportation-solid-polymer-electrolyte-lithium-ion-batteries','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22606506-temperature-dependent-dielectric-properties-ion-transportation-solid-polymer-electrolyte-lithium-ion-batteries"><span>Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com</p> <p>2016-05-06</p> <p>Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2847300','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2847300"><span>Influence of Inner Transducer Properties on EMF Response and Stability of Solid-Contact Anion Selective Membrane Electrodes Based on Metalloporphyrin Ionophores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Górski, Łukasz; Matusevich, Alexey; Pietrzak, Mariusz; Wang, Lin; Meyerhoff, Mark E.; Malinowska, Elżbieta</p> <p>2010-01-01</p> <p>The performance of solid-contact/coated wire type electrodes with plasticized PVC membranes containing metalloporphyrins as anion selective ionophores is reported. The membranes are deposited on transducers based on graphite pastes and graphite rods. The hydrophobicity of the underlying conductive transducer surface is found to be a key factor that influences the formation of an aqueous layer beneath the polymer film. Elimination of this ill-defined water layer greatly improves the electrochemical properties of the ion-sensors, such as EMF stability and life-time. Only highly lipophilic electrode substrates, namely graphite paste with mineral oil, were shown to prevent the formation of aqueous layer underneath the ion-sensing membrane. The possibility of employing Co(III)-tetraphenylporphyrin both as NO2− selective ionophore and as electron/ion conducting species to ensure ion-to-electron translation was also discussed based on the results of preliminary experiments. PMID:20357903</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25088135','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25088135"><span>Reactions of the selected ion flow tube mass spectrometry reagent ions H3O(+) and NO(+) with a series of volatile aldehydes of biogenic significance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, David; Chippendale, Thomas W E; Španěl, Patrik</p> <p>2014-09-15</p> <p>It has been shown that aldehydes are often present in biogenic media. For their analysis by selected ion flow tube mass spectrometry (SIFT-MS), the rate coefficients and the product ion distributions for the reactions of the analyte ions H3O(+) and NO(+) with volatile aldehydes in the presence of water vapour are required. The reactions of H3O(+) and NO(+) ions have been studied with a series of n-aldehydes ranging from acetaldehyde (designated as C2), through undecanal (C11) under the conditions used for SIFT-MS analyses (1 Torr He, 0.1 Torr air sample, 300 K) and over a range of sample gas absolute humidity from 1% to 7%. For comparison, the C5 pentanal isomer 3-methyl butanal, the unsaturated trans-2-pentenal and trans-2-octenal and the aromatic benzaldehyde were also included in the study. The H3O(+) reactions led to the formation of protonated molecules MH(+) and their hydrates MH(+)(H2O)0,1,2,3 , and (MH(+)-H2O). The NO(+) reactions resulted in the production of NO(+)M adduct ions and of [M-H](+) fragment ions. The percentages of the different product ions for each aldehyde are seen to be dependent on the air sample humidity. Kinetic modelling was used to quantitatively explain these observations and to obtain rate coefficients for the association reactions producing NO(+) M adduct ions. This detailed study has provided the kinetics data, in particular the product ion distributions, for the reactions of a number of volatile aldehydes, which allows their analyses by SIFT-MS in humid air, including exhaled breath, food emanations and other biogenic media. Copyright © 2014 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11417652','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11417652"><span>Determination of pesticides in composite dietary samples by gas chromatography/mass spectrometry in the selected ion monitoring mode by using a temperature-programmable large volume injector with preseparation column.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rosenblum, L; Hieber, T; Morgan, J</p> <p>2001-01-01</p> <p>Use of a temperature-programmable preseparation column in the gas chromatographic (GC) injection port permits determination of a wide range of semi-volatile pesticides including organochlorines, organophosphates, triazines, and anilines in fatty composite dietary samples while reducing sample preparation time and solvent consumption. Dietary samples are mixed with diatomaceous earth and are Soxhlet-extracted with an azeotropic solution of hexane and acetone. Sample preparation uses liquid-liquid partitioning over diatomaceous earth followed by normal phase chromatography over partially deactivated alumina. The final cleanup step occurs in a preseparation column in the GC injector, which is able to perform splitless transfer of the analytes to the analytical column and purge 99% of the high molecular weight residue. Detection is performed by GC/mass spectrometry (MS) in the selected ion monitoring mode. Method detection limits were at or below 2 ng/g for 24 of 35 pesticides studied, with recovery between 70 and 125% for 27 pesticides in samples fortified at 10 ng/g. Recovery was not dependent on fat content when measured in laboratory fortified samples containing 1, 5, and 10% fat by weight. Precision over multiple injections was acceptable, with a relative standard deviation of 2.6-15% for 25 analytes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22560247-lie-algebraic-approach-time-dependent-quantum-general-harmonic-oscillator-bi-dimensional-charged-particle-time-dependent-electromagnetic-fields','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22560247-lie-algebraic-approach-time-dependent-quantum-general-harmonic-oscillator-bi-dimensional-charged-particle-time-dependent-electromagnetic-fields"><span>Lie algebraic approach to the time-dependent quantum general harmonic oscillator and the bi-dimensional charged particle in time-dependent electromagnetic fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.</p> <p></p> <p>We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JaJAP..57aAA01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JaJAP..57aAA01S"><span>Ion propagation in an aluminum hollow cylinder target laser ion source</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saquilayan, Glynnis Mae Q.; Wada, Motoi</p> <p>2018-01-01</p> <p>Experimental results for the laser produced plasma in an aluminum hollow cylinder target are presented. Observing the plasma formation inside the cylinder, a high-speed camera captured the images of the plasma expanding towards the adjacent walls of target. The optical emission spectrum is obtained for the plasma inside the hollow cylinder and positive singly charged aluminum ions and neutrals are identified from emission spectral lines. Time dependent current signals of the Faraday cup displayed an enlarged signal intensity as the laser power density is increased up to 6.5 GW/cm2. Signal arrival times corresponding to fast ions appeared at the onset of the current waveforms when the laser power density exceeded 4.7 GW/cm2. For the mass analysis of plasma, an accelerating electric field was applied to separate the ions and the time-of-flight measurements showed positive ion signals with an identified peak to have an estimated mass of 350 amu.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4659421','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4659421"><span>Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Negoda, Alexander; Kim, Kwang-Jin; Crandall, Edward D.; Worden, Robert M.</p> <p>2014-01-01</p> <p>A diverse range of molecular interactions can occur between engineered nanomaterials (ENM) and biomembranes, some of which could lead to toxic outcomes following human exposure to ENM. In this study, we adapted electrophysiology methods to investigate the ability of 20 nm polystyrene nanoparticles (PNP) to induce pores in model bilayer lipid membranes (BLM) that mimic biomembranes. PNP charge was varied using PNP decorated with either positive (amidine) groups or negative (carboxyl) groups, and BLM charge was varied using dioleoyl phospholipids having cationic (ethylphosphocholine), zwitterionic (phosphocholine), or anionic (phosphatidic acid) headgroups. Both positive and negative PNP induced BLM pores for all lipid compositions studied, as evidenced by current spikes and integral conductance. Stable PNP-induced pores exhibited ion selectivity, with the highest selectivity for K+ (PK/PCl ~ 8.3) observed when both the PNP and lipids were negatively charged, and the highest selectivity for Cl− (PK/PCl ~ 0.2) observed when both the PNP and lipids were positively charged. This trend is consistent with the finding that selectivity for an ion in channel proteins is imparted by oppositely charged functional groups within the channel’s filter region. The PK/PCl value was unaffected by the voltage-ramp method, the pore conductance, or the side of the BLM to which the PNP were applied. These results demonstrate for the first time that PNP can induce ion-selective pores in BLM, and that the degree of ion selectivity is influenced synergistically by the charges of both the lipid headgroups and functional groups on the PNP. PMID:23747366</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/974624-selective-isobar-suppression-accelerator-mass-spectrometry-radioactive-ion-beam-science','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/974624-selective-isobar-suppression-accelerator-mass-spectrometry-radioactive-ion-beam-science"><span>Selective Isobar Suppression for Accelerator Mass Spectrometry and Radioactive Ion Beam Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Galindo-Uribarri, Alfredo; Havener, Charles C; Lewis, Thomas L.</p> <p>2010-01-01</p> <p>Several applications of AMS will benefit from pushing further the detection limits of AMS isotopes. A new method of selective isobar suppression by photodetachment in a radio-frequency quadrupole ion cooler is being developed at HRIBF with a two-fold purpose: (1) increasing the AMS sensitivity for certain isotopes of interest and (2) purifying radioactive ion beams for nuclear science. The potential of suppressing the 36S contaminants in a 36Cl beam using this method has been explored with stable S- and Cl- ions and a Nd:YLF laser. In the study, the laser beam was directed along the experiment's beam line and throughmore » a RF quadrupole ion cooler. Negative 32S and 35Cl ions produced by a Cs sputter ion source were focused into the ion cooler where they were slowed by collisions with He buffer gas; this increased the interaction time between the negative ion beam and the laser beam. As a result, suppression of S- by a factor of 3000 was obtained with about 2.5 W average laser power in the cooler while no reduction in Cl- current was observed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JaJAP..57fJC03I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JaJAP..57fJC03I"><span>Eliminating dependence of hole depth on aspect ratio by forming ammonium bromide during plasma etching of deep holes in silicon nitride and silicon dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito</p> <p>2018-06-01</p> <p>The reaction mechanism during etching to fabricate deep holes in SiN/SiO2 stacks by using a HBr/N2/fluorocarbon-based gas plasma was investigated. To etch SiN and SiO2 films simultaneously, HBr/fluorocarbon gas mixture ratio was controlled to achieve etching selectivity closest to one. Deep holes were formed in the SiN/SiO2 stacks by one-step etching at several temperatures. The surface composition of the cross section of the holes was analyzed by time-of-flight secondary-ion mass spectrometry. It was found that bromine ions (considered to be derived from NH4Br) were detected throughout the holes in the case of low-temperature etching. It was also found that the dependence of hole depth on aspect ratio decreases as temperature decreases, and it becomes significantly weaker at a substrate temperature of 20 °C. It is therefore concluded that the formation of NH4Br supplies the SiN/SiO2 etchant to the bottom of the holes. Such a finding will make it possible to alleviate the decrease in etching rate due to a high aspect ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760052971&hterms=reaction+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dreaction%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760052971&hterms=reaction+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dreaction%2Btime"><span>Time scales for molecule formation by ion-molecule reactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Langer, W. D.; Glassgold, A. E.</p> <p>1976-01-01</p> <p>Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyS...93f5601K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyS...93f5601K"><span>Relativistic electron plasma oscillations in an inhomogeneous ion background</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil</p> <p>2018-06-01</p> <p>The combined effect of relativistic electron mass variation and background ion inhomogeneity on the phase mixing process of large amplitude electron oscillations in cold plasmas have been analyzed by using Lagrangian coordinates. An inhomogeneity in the ion density is assumed to be time-independent but spatially periodic, and a periodic perturbation in the electron density is considered as well. An approximate space-time dependent solution is obtained in the weakly-relativistic limit by employing the Bogolyubov and Krylov method of averaging. It is shown that the phase mixing process of relativistically corrected electron oscillations is strongly influenced by the presence of a pre-existing ion density ripple in the plasma background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=27085','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=27085"><span>Temperature, ordering, and equilibrium with time-dependent confining forces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Schiffer, J. P.; Drewsen, M.; Hangst, J. S.; Hornekær, L.</p> <p>2000-01-01</p> <p>The concepts of temperature and equilibrium are not well defined in systems of particles with time-varying external forces. An example is a radio frequency ion trap, with the ions laser cooled into an ordered solid, characteristic of sub-mK temperatures, whereas the kinetic energies associated with the fast coherent motion in the trap are up to 7 orders of magnitude higher. Simulations with 1,000 ions reach equilibrium between the degrees of freedom when only aperiodic displacements (secular motion) are considered. The coupling of the periodic driven motion associated with the confinement to the nonperiodic random motion of the ions is very small at low temperatures and increases quadratically with temperature. PMID:10995471</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26311399','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26311399"><span>Identification of the chemical constituents of Chinese medicine Yi-Xin-Shu capsule by molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Hong-ping; Chen, Chang; Liu, Yan; Yang, Hong-Jun; Wu, Hong-Wei; Xiao, Hong-Bin</p> <p>2015-11-01</p> <p>The incomplete identification of the chemical components of traditional Chinese medicinal formula has been one of the bottlenecks in the modernization of traditional Chinese medicine. Tandem mass spectrometry has been widely used for the identification of chemical substances. Current automatic tandem mass spectrometry acquisition, where precursor ions were selected according to their signal intensity, encounters a drawback in chemical substances identification when samples contain many overlapping signals. Compounds in minor or trace amounts could not be identified because most tandem mass spectrometry information was lost. Herein, a molecular feature orientated precursor ion selection and tandem mass spectrometry structure elucidation method for complex Chinese medicine chemical constituent analysis was developed. The precursor ions were selected according to their two-dimensional characteristics of retention times and mass-to-charge ratio ranges from herbal compounds, so that all precursor ions from herbal compounds were included and more minor chemical constituents in Chinese medicine were identified. Compared to the conventional automatic tandem mass spectrometry setups, the approach is novel and can overcome the drawback for chemical substances identification. As an example, 276 compounds from the Chinese Medicine of Yi-Xin-Shu capsule were identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720035826&hterms=cation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720035826&hterms=cation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcation"><span>Photodissociation of the CH3Cl/+/ and N2O/+/ cations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dunbar, R. C.</p> <p>1971-01-01</p> <p>Use of the ion cyclotron resonance (icr) technique to observe the photodissociation of the cations CH3Cl(+) and N2O(+) in the gas phase. Ions were trapped in the icr cell for periods of the order of seconds, which permitted the photodissociation process to be observed with wavelength-selected light. A cyclotron resonance ejection technique was employed to show that CH3Cl(+) ions were being dissociated rather than the CH3ClH(+) ions which were also present. The photodissociation cross section for N2O(+) was found to be without strong wavelength dependence between 4000 and 6500 A. The cross section for CH3Cl(+) showed a large peak at 3150 A. Possible assignments of this peak are considered, and it is suggested that a photodissociation occurs through an ion excitation involving a change in occupation of the bonding or antibonding orbitals of the C-Cl bond.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRA..12010485F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRA..12010485F"><span>Heavy-ion dominance near Cluster perigees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.</p> <p>2015-12-01</p> <p>Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CoPhC.183..705B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CoPhC.183..705B"><span>Resonant coherent excitation of hydrogen-like ions planar channeled in a crystal; Transition into the first excited state</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babaev, A.; Pivovarov, Yu. L.</p> <p>2012-03-01</p> <p>The presented program is designed to simulate the characteristics of resonant coherent excitation of hydrogen-like ions planar-channeled in a crystal. The program realizes the numerical algorithm to solve the Schrödinger equation for the ion-bound electron at a special resonance excitation condition. The calculated wave function of the bound electron defines probabilities for the ion to be in the either ground or first excited state, or to be ionized. Finally, in the outgoing beam the fractions of ions in the ground state, in the first excited state, and ionized by collisions with target electrons, are defined. The program code is written on C++ and is designed for multiprocessing systems (clusters). The output data are presented in the table. Program summaryProgram title: RCE_H-like_1 Catalogue identifier: AEKX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2813 No. of bytes in distributed program, including test data, etc.: 34 667 Distribution format: tar.gz Programming language: C++ (g++, icc compilers) Computer: Multiprocessor systems (clusters) Operating system: Any OS based on LINUX; program was tested under Novell SLES 10 Has the code been vectorized or parallelized?: Yes. Contains MPI directives RAM: <1 MB per processor Classification: 2.1, 2.6, 7.10 External routines: MPI library for GNU C++, Intel C++ compilers Nature of problem: When relativistic hydrogen-like ion moves in the crystal in the planar channeling regime, in the ion rest frame the time-periodic electric field acts on the bound electron. If the frequency of this field matches the transition frequency between electronic energy levels, the resonant coherent excitation can take place. Therefore, ions in the different states may be observed in the outgoing beam behind the crystal. To get the probabilities for the ion to be in the ground state or in the first excited state, or to be ionized, the Schrödinger equation is solved for the electron of ion. The numerical solving of the Schrödinger equation is carried out taking into account the fine structure of electronic energy levels, the Stark effect due to the influence of the crystal electric field on electronic energy levels and the ionization of ion due to the collisions with crystal electrons. Solution method: The wave function of the electron of ion is the superposition of the wave functions of stationary states with time-dependent coefficients. These stationary wave functions and corresponding energies are defined from the stationary Schrödinger equation. The equation is reduced to the problem of the eigen values and vectors of Hermitian matrix. The corresponding matrix equation is considered as the linear equation system. Then the time-dependent coefficients of the electron wave function are defined from the Schrödinger equation, with a time-periodic crystal field. The time-periodic field is responsible for the transitions between the stationary states. The final time-dependent Schrödinger equation represents the matrix equation which has been solved by means of the QR-algorithm. Restrictions: As expected the program gives the correct results for relativistic hydrogen-like ions with the kinetic energies up to 1 GeV/u and at the crystal thicknesses of 1-100 μm. The restrictions are: first, the program might give inadequate results, when the ion kinetic energy is too large (>10 GeV/u); second, the unaccounted physical factors may be significant at specific conditions. For example, the spontaneous emission by exited highly charged ions, as well as both energy and angular spread of the incident beam, could lead to additional broadening of the resonance. The medium polarization by the electric field of ion can influence the electronic energy levels of the ion in the non-relativistic case. The role of these factors was discussed in the references. Also, the large crystal thickness may require large computational time. Running time: In general, the running time depends on the number of processors. In our tests we used the crystal thickness up to 100 μm and the number of 2.66 GHz processors was up to 100. The running time was about 1 hour in these conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1369062','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1369062"><span>Method and device for ion mobility separations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ibrahim, Yehia M.; Garimella, Sandilya V. B.; Smith, Richard D.</p> <p>2017-07-11</p> <p>Methods and devices for ion separations or manipulations in gas phase are disclosed. The device includes a single non-planar surface. Arrays of electrodes are coupled to the surface. A combination of RF and DC voltages are applied to the arrays of electrodes to create confining and driving fields that move ions through the device. The DC voltages are static DC voltages or time-dependent DC potentials or waveforms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97u4203O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97u4203O"><span>Ab initio modeling of nonequilibrium electron-ion dynamics of iron in the warm dense matter regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ogitsu, T.; Fernandez-Pañella, A.; Hamel, S.; Correa, A. A.; Prendergast, D.; Pemmaraju, C. D.; Ping, Y.</p> <p>2018-06-01</p> <p>The spatiotemporal electron and ion relaxation dynamics of iron induced by femtosecond laser pulses was studied using a one-dimensional two-temperature model (1D-TTM) where electron and ion temperature-dependent thermophysical parameters such as specific heat (C ), electron-phonon coupling (G ), and thermal conductivity (K ) were calculated with ab initio density-functional-theory (DFT) simulations. Based on the simulated time evolutions of electron and ion temperature distributions [Te(x ,t ) and Ti(x ,t ) ], the time evolution of x-ray absorption near-edge spectroscopy (XANES) was calculated and compared with experimental results reported by Fernandez-Pañella et al., where the slope of XANES spectrum at the onset of absorption (s ) was used due to its excellent sensitivity to the electron temperature. Our results indicate that the ion temperature dependence on G and C , which is largely neglected in the past studies, is very important for studying the nonequilibrium electron-ion relaxation dynamics of iron in warm dense matter (WDM) conditions. It is also shown that the 1 /s behavior becomes very sensitive to the thermal gradient profile, in other words, to the values of K in a TTM simulation, for target thickness of about two to four times the mean free path of conduction electrons. Our approach based on 1D-TTM and XANES simulations can be used to determine the optimal combination of target geometry and laser fluence for a given target material, which will enable us to tightly constrain the thermophysical parameters under electron-ion nonequilibrium WDM conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1263862-growth-metal-phthalocyanine-deactivated-semiconducting-surfaces-steered-selective-orbital-coupling','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1263862-growth-metal-phthalocyanine-deactivated-semiconducting-surfaces-steered-selective-orbital-coupling"><span>Growth of metal phthalocyanine on deactivated semiconducting surfaces steered by selective orbital coupling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wagner, Sean R.; Feng, Jiagui; Yoon, Mina; ...</p> <p>2015-08-25</p> <p>Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p – d orbital coupling. As a result, this Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11055728','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11055728"><span>High-pressure ion source combined with an in-axis ion trap mass spectrometer. 1. Instrumentation and applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mathurin; Faye; Brunot; Tabet; Wells; Fuche</p> <p>2000-10-15</p> <p>A new combination of a dual EI/CI ion source with a quadrupole ion trap mass spectrometer has been realized in order to efficiently produce negative ions in the reaction cell. Analysis of volatile compounds was performed under negative ion chemical ionization (NICI) during a reaction period where selected reactant negative ions, previously produced in the external ion source, were allowed to interact with molecules, introduced by hyphenated techniques such as gas chromatography. The O2*-, CH3O-, and Cl- reactant ions were used in this study to ensure specific ion/molecule interactions such as proton transfer, nucleophilic displacement, or charge exchange processes, respectively leading to even-electron species, i.e., deprotonated [M - H]- molecules, diagnostic [M - R]- ions, or odd-electron M*- molecular species. The reaction orientation depends on the thermochemistry of reactions within kinetic controls. First analytical results are presented here for the trace-level detection of several contaminants under NICI/Cl- conditions. Phosphorus-containing compounds (malathion, ethyl parathion, and methyl parathion as representative for pesticides) and nitro-containing compounds (2,4,6-trinitrotoluene for explosive material) have been chosen in order to explore the analytical ability of this promising instrumental coupling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..150a2017W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..150a2017W"><span>The influence of reaction time on hydrogen sulphide removal from air by means of Fe(III)-EDTA/Fiban catalysts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wasag, H.; Cel, W.; Chomczynska, M.; Kujawska, J.</p> <p>2018-05-01</p> <p>The paper deals with a new method of hydrogen sulphide removal from air by its filtration and selective catalytic oxidation with the use of fibrous carriers of Fe(III)-EDTA complex. The basis of these filtering materials includes fibrous ion exchangers with the complex immobilized on their functional groups. It has been established that the degree of catalytic hydrogen sulphide decomposition depends on the reaction time. Thus, the required degree of hydrogen sulphide removal from air could be easily controlled by applying appropriate thickness of the filtering layer under a given filtering velocity. It allows applying very thin filtering layers of the Fe(III)-EDTA/Fiban AK-22 or Fiban A-6 catalysts. The obtained results of the research confirm the applicability of these materials for deep air purification from hydrogen sulphide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19680011','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19680011"><span>Radiation-quality dependent cellular response in mutation induction in normal human cells.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suzuki, Masao; Tsuruoka, Chizuru; Uchihori, Yukio; Kitamura, Hisashi; Liu, Cui Hua</p> <p>2009-09-01</p> <p>We studied cellular responses in normal human fibroblasts induced with low-dose (rate) or low-fluence irradiations of different radiation types, such as gamma rays, neutrons and high linear energy transfer (LET) heavy ions. The cells were pretreated with low-dose (rate) or low-fluence irradiations (approximately 1 mGy/7-8 h) of 137Cs gamma rays, 241Am-Be neutrons, helium, carbon and iron ions before irradiations with an X-ray challenging dose (1.5 Gy). Helium (LET = 2.3 keV/microm), carbon (LET = 13.3 keV/microm) and iron (LET = 200 keV/microm) ions were produced by the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No difference in cell-killing effect, measured by a colony forming assay, was observed among the pretreatment with different radiation types. In mutation induction, which was detected in the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus to measure 6-thioguanine resistant clones, there was no difference in mutation frequency induced by the X-ray challenging dose between unpretreated and gamma-ray pretreated cells. In the case of the pretreatment of heavy ions, X-ray-induced mutation was around 1.8 times higher in helium-ion pretreated and 4.0 times higher in carbon-ion pretreated cells than in unpretreated cells (X-ray challenging dose alone). However, the mutation frequency in cells pretreated with iron ions was the same level as either unpretreated or gamma-ray pretreated cells. In contrast, it was reduced at 0.15 times in cells pretreated with neutrons when compared to unpretreated cells. The results show that cellular responses caused by the influence of hprt mutation induced in cells pretreated with low-dose-rate or low-fluence irradiations of different radiation types were radiation-quality dependent manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JASMS..28.1575A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JASMS..28.1575A"><span>Influence of Ionization Source Conditions on the Gas-Phase Protomer Distribution of Anilinium and Related Cations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Attygalle, Athula B.; Xia, Hanxue; Pavlov, Julius</p> <p>2017-08-01</p> <p>The gas-phase-ion generation technique and specific ion-source settings of a mass spectrometer influence heavily the protonation processes of molecules and the abundance ratio of the generated protomers. Hitherto that has been attributed primarily to the nature of the solvent and the pH. By utilizing electrospray ionization and ion-mobility mass spectrometry (IM-MS), we demonstrate, even in the seemingly trivial case of protonated aniline, that the protomer ratio strongly depends on the source conditions. Under low in-source ion activation, nearly 100% of the N-protomer of aniline is produced, and it can be subsequently converted to the C-protomer by collisional activation effected by increasing the electrical potential difference between the entrance and exit orifices of the first vacuum region. This activation and transformation process takes place even before the ion is mass-selected and subjected to IM separation. Despite the apparent simplicity of the problem, the preferred protonation site of aniline in the gas phase—the amino group or the aromatic ring—has been a topic of controversy. Our results not only provide unambiguous evidence that ring- and nitrogen-protonated aniline can coexist and be interconverted in the gas phase, but also that the ratio of the protomers depends on the internal energy of the original ion. There are many dynamic ion-transformation and fragmentation processes that take place in the different physical compartments of a Synapt G2 HDMS instrument. Such processes can dramatically change the very identity even of small ions, and therefore should be taken into account when interpreting product-ion mass spectra.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22406520','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22406520"><span>A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kajma, Anna; Szewczyk, Adam</p> <p>2012-10-01</p> <p>Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1044800','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1044800"><span>Intense Ion Pulses for Radiation Effects Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-04-01</p> <p>station; here, the time dependent beam current can be measured with a fast Faraday cup (ə ns time resolution). The transverse distribution of the...focused into a spot with a diameter of about 2 mm [8]. The helium ion current and the integrated charge ver- sus time, measured with the fast Faraday cup...target measured with the fast Faraday cup. The sharp peak in the current measurement shows the beam pulse compression from 1 μs to a few ns. The full</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998APS..APR..D313O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998APS..APR..D313O"><span>Millimeter-Wave Time Resolved Studies of the Formation and Decay of CO^+</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oesterling, Lee; Herbst, Eric; de Lucia, Frank</p> <p>1998-04-01</p> <p>Since the rate constants for ion-molecule interactions are typically much larger than neutral-neutral interactions, understanding ion-molecule interactions is essential to interpreting radio astronomical spectra from interstellar clouds and modeling the processes which lead to the formation of stars in these regions. We have developed a cell which allows us to study ion-molecule interactions in gases at low temperatures and pressures by using an electron gun technique to create ions. By centering our millimeter-wave source on a rotational resonance and gating the electron beam on and off, we are able to study the time-dependent rotational state distribution of the ion during its formation and decay, and so learn about excitation and relaxation processes as functions of temperature, pressure, electron beam energy, and electron beam current.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..96c3419L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..96c3419L"><span>Femtosecond-laser-induced nonadiabatic alignment in photoexcited pyrimidine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Shuai; Ling, Fengzi; Wang, Yanmei; Long, Jinyou; Deng, Xulan; Jin, Bing; Zhang, Bing</p> <p>2017-09-01</p> <p>The rotational wave-packet dynamics in electronically excited pyrimidine induced by a femtosecond laser pulse at 321.5 nm has been studied by time-resolved mass spectroscopy and photoelectron velocity-map imaging. The rotational revival features at 81.3 ps, which are the direct manifestation of field-free nonadiabatic alignment, are clearly observed in both the time-dependent ion yields and photoelectron angular distributions. In particular, the out-of-phase recurrences in the parent-ion and fragment-ions transients indicate the different directions of the ionization transition-dipole moments for the generation of the parent ion and fragment ions. By tuning the polarization of the probe light parallel or perpendicular to that of the pump light, we demonstrate the potential application of nonadiabatic alignment to manipulate the branching ratio of photoionization products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27342794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27342794"><span>Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yuedan; Zhou, Zhou; Qing, Xing; Zhong, Weibing; Liu, Qiongzhen; Wang, Wenwen; Li, Mufang; Liu, Ke; Wang, Dong</p> <p>2016-08-01</p> <p>Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 μA/dec in the 10(-5)-10(-2) M Pb(2+) concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb(2+) with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application. Graphical Abstract The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2269561','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2269561"><span>Modification of activity-dependent increases in cerebellar blood flow by extracellular potassium in anaesthetized rats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Caesar, Kirsten; Akgören, Nuran; Mathiesen, Claus; Lauritzen, Martin</p> <p>1999-01-01</p> <p>The hypothesis that potassium ions mediate activity-dependent increases of cerebral blood flow was examined in rat cerebellar cortex using ion-selective microelectrodes and laser-Doppler flowmetry. Increases of cerebellar blood flow (CeBF) and extracellular potassium concentration ([K+]o) were evoked by stimulation of parallel fibres and climbing fibres, and by microinjection of KCl into the cortex. For parallel fibre stimulation, there was a maximal increase in [K+]o to 6.3 ± 0.5 mm and in CeBF of 122 ± 11%. Climbing fibre stimulation gave a maximal increase in [K+]o to 4.4 ± 0.2 mm and in CeBF of 157 ± 20%. This indicates different maxima for [K+]o and CeBF, dependent on the afferent system activated. [K+]o and CeBF responses evoked by parallel or climbing fibre stimulation increased rapidly at the onset of stimulation, but exhibited different time courses during the remainder of the stimulation period and during return to baseline. Microinjections of KCl into the cortex increased [K+]o to levels comparable to those evoked by parallel fibre stimulation. The corresponding CeBF increases were the same as, or smaller than, for parallel fibre stimulation, and much smaller than for climbing fibre stimulation. This suggests that mediators other than [K+]o are important for activity-dependent cerebral blood flow increases. The present study showed that increased [K+]o is involved in CeBF regulation in the parallel fibre system, but is of limited importance for CeBF regulation in the climbing fibre system. The hypothesis that K+ is a major mediator of activity-dependent blood flow increases is probably not generally applicable to all brain regions and all types of neuronal stimulation. PMID:10517819</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25597535','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25597535"><span>Ion Move Brownian Dynamics (IMBD)--simulations of ion transport.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kurczynska, Monika; Kotulska, Malgorzata</p> <p>2014-01-01</p> <p>Comparison of the computed characteristics and physiological measurement of ion transport through transmembrane proteins could be a useful method to assess the quality of protein structures. Simulations of ion transport should be detailed but also timeefficient. The most accurate method could be Molecular Dynamics (MD), which is very time-consuming, hence is not used for this purpose. The model which includes ion-ion interactions and reduces the simulation time by excluding water, protein and lipid molecules is Brownian Dynamics (BD). In this paper a new computer program for BD simulation of the ion transport is presented. We evaluate two methods for calculating the pore accessibility (round and irregular shape) and two representations of ion sizes (van der Waals diameter and one voxel). Ion Move Brownian Dynamics (IMBD) was tested with two nanopores: alpha-hemolysin and potassium channel KcsA. In both cases during the simulation an ion passed through the pore in less than 32 ns. Although two types of ions were in solution (potassium and chloride), only ions which agreed with the selectivity properties of the channels passed through the pores. IMBD is a new tool for the ion transport modelling, which can be used in the simulations of wide and narrow pores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PPNL...13..923R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PPNL...13..923R"><span>Accelerator mass spectrometer with ion selection in high-voltage terminal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rastigeev, S. A.; Goncharov, A. D.; Klyuev, V. F.; Konstantinov, E. S.; Kutnyakova, L. A.; Parkhomchuk, V. V.; Petrozhitskii, A. V.; Frolov, A. R.</p> <p>2016-12-01</p> <p>The folded electrostatic tandem accelerator with ion selection in a high-voltage terminal is the basis of accelerator mass spectrometry (AMS) at the BINP. Additional features of the BINP AMS are the target based on magnesium vapors as a stripper without vacuum deterioration and a time-of-flight telescope with thin films for reliable ion identification. The acceleration complex demonstrates reliable operation in a mode of 1 MV with 50 Hz counting rate of 14C+3 radiocarbon for modern samples (14C/12C 1.2 × 10-12). The current state of the AMS has been considered and the experimental results of the radiocarbon concentration measurements in test samples have been presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15214432','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15214432"><span>A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M</p> <p>2004-03-01</p> <p>A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24033029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24033029"><span>Coherent control at its most fundamental: carrier-envelope-phase-dependent electron localization in photodissociation of a H2(+) molecular ion beam target.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rathje, T; Sayler, A M; Zeng, S; Wustelt, P; Figger, H; Esry, B D; Paulus, G G</p> <p>2013-08-30</p> <p>Measurements and calculations of the absolute carrier-envelope-phase (CEP) effects in the photodissociation of the simplest molecule, H2(+), with a 4.5-fs Ti:sapphire laser pulse at intensities up to (4±2)×10(14)  W/cm2 are presented. Localization of the electron with respect to the two nuclei (during the dissociation process) is controlled via the CEP of the ultrashort laser pulses. In contrast to previous CEP-dependent experiments with neutral molecules, the dissociation of the molecular ions is not preceded by a photoionization process, which strongly influences the CEP dependence. Kinematically complete data are obtained by time- and position-resolved coincidence detection. The phase dependence is determined by a single-shot phase measurement correlated to the detection of the dissociation fragments. The experimental results show quantitative agreement with ab initio 3D time-dependent Schrödinger equation calculations that include nuclear vibration and rotation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21930283','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21930283"><span>Selective adsorption of Pt ions from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shen, Shaobo; Guishen, Liang; Pan, Tonglin; He, JunZhang; Guo, Zhanchen</p> <p>2011-12-15</p> <p>Thermodynamic and kinetics studies for adsorption of Pt ions complexes from the chloride solutions obtained by leaching chlorinated spent automotive catalysts on anionic exchange resin Diaion WA21J were carried out. It was found that only Si, Pt, Rh and Pd from the solution were selectively adsorbed on the resin Diaion WA21J more strongly. The adsorption equilibrium time for Pt ions was about 20 h. The isothermal adsorption of Pt ions was found to fit Langmuir, Freundlich and DKR models. The maximum monolayer adsorption capacities Q(max) and X(m) of Pt ions on the resin based on Langmuir and DKR model were 4.85, 5.36 and 5.69 mg/g as well as 5.01, 5.63 and 5.98 mg/g for temperatures 18°C, 28°C and 40°C, respectively. The apparent adsorption energy E(ad) based on DKR model were -11.79, -11.04 and -11.04 kJ/mol for the temperatures 18°C, 28°C and 40°C, respectively. Ion exchange was the mechanism involved in the adsorption process. The adsorption of Pt ions on the resin underwent pseudo-first-order kinetic process, and the apparent adsorption activation energy E(a,1) was 12.6 kJ/mol. The intraparticle diffusion of Pt ions was a main rate-controlling step in most of time of adsorption process. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720024505','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720024505"><span>Gadolinium-hydrogen ion exchange of zirconium phosphate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, D. C.; Power, J. L.</p> <p>1972-01-01</p> <p>The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18613700','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18613700"><span>Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Yushin; Amemiya, Shigeru</p> <p>2008-08-01</p> <p>A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM21B..03F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM21B..03F"><span>Estimation of ion charge states using Van Allen Probes-RBSPICE: a case study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farinas Perez, G.; Sibeck, D. G.</p> <p>2017-12-01</p> <p>We use data from the RBSPICE instrument aboard the Van Allen Probes spacecraft to identify particle injection events with ion drift echoes. We calculate the arrival time and drift period of the protons, helium and oxygen for every energy channel of the RBSPICE instrument. The ions drift period depends upon their energy and charge, as we know the particle energy and the time drift period, the charge state can be estimated for a dipolar magnetic field model. A drift-echo event occurred in May 23, 2013 at 0400 UT is analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24836301','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24836301"><span>Facile preparation of ion-imprinted composite film for selective electrochemical removal of nickel(II) ions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Du, Xiao; Zhang, Hao; Hao, Xiaogang; Guan, Guoqing; Abudula, Abuliti</p> <p>2014-06-25</p> <p>A facile unipolar pulse electropolymerization (UPEP) technique is successfully applied for the preparation of ion-imprinted composite film composed of ferricyanide-embedded conductive polypyrrole (FCN/PPy) for the selective electrochemical removal of heavy metal ions from wastewater. The imprinted heavy metal ions are found to be easily removed in situ from the growing film only by tactfully applying potential oscillation due to the unstable coordination of FCN to the imprinted ions. The obtained Ni(2+) ion-imprinted FCN/PPy composite film shows fast uptake/release ability for the removal of Ni(2+) ions from aqueous solution, and the adsorption equilibrium time is less than 50 s. The ion exchange capacity reaches 1.298 mmol g(-1) and retains 93.5% of its initial value even after 1000 uptake/release cycles. Separation factors of 6.3, 5.6, and 6.2 for Ni(2+)/Ca(2+), Ni(2+)/K(+), and Ni(2+)/Na(+), respectively, are obtained. These characteristics are attributed to the high identification capability of the ion-imprinted composite film for the target ions and the dual driving forces resulting from both PPy and FCN during the redox process. It is expected that the present method can be used for simple preparation of other ion-imprinted composite films for the separation and recovery of target heavy metal ions as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29435638','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29435638"><span>In house validation of a high resolution mass spectrometry Orbitrap-based method for multiple allergen detection in a processed model food.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pilolli, Rosa; De Angelis, Elisabetta; Monaci, Linda</p> <p>2018-02-13</p> <p>In recent years, mass spectrometry (MS) has been establishing its role in the development of analytical methods for multiple allergen detection, but most analyses are being carried out on low-resolution mass spectrometers such as triple quadrupole or ion traps. In this investigation, performance provided by a high resolution (HR) hybrid quadrupole-Orbitrap™ MS platform for the multiple allergens detection in processed food matrix is presented. In particular, three different acquisition modes were compared: full-MS, targeted-selected ion monitoring with data-dependent fragmentation (t-SIM/dd2), and parallel reaction monitoring. In order to challenge the HR-MS platform, the sample preparation was kept as simple as possible, limited to a 30-min ultrasound-aided protein extraction followed by clean-up with disposable size exclusion cartridges. Selected peptide markers tracing for five allergenic ingredients namely skim milk, whole egg, soy flour, ground hazelnut, and ground peanut were monitored in home-made cookies chosen as model processed matrix. Timed t-SIM/dd2 was found the best choice as a good compromise between sensitivity and accuracy, accomplishing the detection of 17 peptides originating from the five allergens in the same run. The optimized method was validated in-house through the evaluation of matrix and processing effects, recoveries, and precision. The selected quantitative markers for each allergenic ingredient provided quantification of 60-100 μg ingred /g allergenic ingredient/matrix in incurred cookies.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930008056','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930008056"><span>Lunar and Asteroid Composition Using a Remote Secondary Ion Mass Spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elphic, R. C.; Funsten, H. O.; Barraclough, B. L.; Mccomas, D. J.; Nordholt, J. E.</p> <p>1992-01-01</p> <p>Laboratory experiments simulating solar wind sputtering of lunar surface materials have shown that solar wind protons sputter secondary ions in sufficient numbers to be measured from low-altitude lunar orbit. Secondary ions of Na, Mg, Al, Si, K, Ca, Mn, Ti, and Fe have been observed sputtered from sample simulants of mare and highland soils. While solar wind ions are hundreds of times less efficient than those used in standard secondary ion mass spectrometry, secondary ion fluxes expected at the Moon under normal solar wind conditions range from approximately 10 to greater than 10(exp 4) ions cm(sup -2)s(sup -1), depending on species. These secondary ion fluxes depend both on concentration in the soil and on probability of ionization; yields of easily ionized elements such as K and Na are relatively much greater than those for the more electronegative elements and compounds. Once these ions leave the surface, they are subject to acceleration by local electric and magnetic fields. For typical solar wind conditions, secondary ions can be accelerated to an orbital observing location. The same is true for atmospheric atoms and molecules that are photoionized by solar EUV. The instrument to detect, identify, and map secondary ions sputtered from the lunar surface and photoions arising from the tenuous atmosphere is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1021548','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1021548"><span>Noise Properties of Rectifying Nanopores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Powell, M R; Sa, N; Davenport, M</p> <p>2011-02-18</p> <p>Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, includingmore » intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930068264&hterms=comparative+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcomparative%2Bstudy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930068264&hterms=comparative+study&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dcomparative%2Bstudy"><span>A comparative study of the time-dependent standard 8-, 13- and 16-moment transport formulations of the polar wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blelly, P. L.; Schunk, . W.</p> <p>1993-01-01</p> <p>The ionosphere, composed of O(+), H(+), and electrons is modeled with four different transport formulations. The equations corresponding to the standard set, the 8-, 13-, and 16-moment approximations are presented, and the collision terms are expressed. Using a time-dependent technique, the ionosphere is studied between altitudes of 200 and 8600 km. The production of electrons and O(+) ions is described by a neutral atmosphere simplified photoionization scheme, while the energy deposition is supported by a downward electron heat flow of -0.005 erg/sq cm per s imposed at the topside boundary. When the models reach a steady state equilibrium, the electron solutions show differences due to the introduction of temperature anisotropies and heat flows between the components parallel and perpendicular to the magnetic field. As a corollary, the ions show structures depending on the level of approximation. A depletion of a factor of 10 is then applied to the ion densities above a certain altitude, and the development of the perturbation is followed for 1000 s for all the models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JChPh..92..292H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JChPh..92..292H"><span>Interaction of boron cluster ions with water: Single collision dynamics and sequential etching</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hintz, Paul A.; Ruatta, Stephen A.; Anderson, Scott L.</p> <p>1990-01-01</p> <p>Reactions of mass-selected, cooled, boron cluster ions (B+n, n=1-14) with water have been studied for collision energies from 0.1 to 6.0 eV. Most work was done with D2O, however isotope effects were examined for selected reactant cluster ions. For all size clusters there are exoergic product channels, which in most cases have no activation barriers. Cross sections are generally large, however there are fluctuations with cluster size in total reactivity, collision energy dependences, and in product distributions. For small cluster ions, there is a multitude of product channels. For clusters larger than B+6, the product distributions are dominated by a single channel: Bn-1D++DBO. Under multiple collision conditions, the primary products undergo a remarkable sequence of secondary ``etching'' reactions. As these occur, boron atoms are continuously replaced by hydrogen, and the intermediate products retain the composition: Bn-mH+m. This highly efficient chemistry appears to continue unchanged as the composition changes from pure boron to mostly hydrogen. Comparison of these results is made with boron cluster ion reactions with O2 and D2, as well as reactions with water of aluminum and silicon cluster ions. Some discussion is given of the thermochemistry for these reactions, and a possible problem with the thermochemical data in the BOD/DBO system is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860034402&hterms=importance+oxygen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dimportance%2Boxygen','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860034402&hterms=importance+oxygen&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dimportance%2Boxygen"><span>Charge state distributions of oxygen and carbon in the energy range 1 to 300 keV/e observed with AMPTE/CCE in the magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kremser, G.; Stuedemann, W.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.</p> <p>1985-01-01</p> <p>Observations of charge state distributions of oxygen and carbon are presented that were obtained with the charge-energy-mass spectrometer onboard the AMPTE/CCE spacecraft. Data were selected for two different local time sectors (apogee at 1300 LT and 0300 LT, respectively), three L-ranges (4-6, 6-8, and greater than 8), and quiet to moderately disturbed days (Kp less than or equal to 4). The charge state distributions reveal the existence of all charge states of oxygen and carbon in the magnetosphere. The relative importance of the different charge states strongly depends on L and much less on local time. The observations confirm that the solar wind and the ionosphere contribute to the oxygen population, whereas carbon only originates from the solar wind. The L-dependence of the charge state distributions can be interpreted in terms of these different ion sources and of charge exchange and diffusion processes that largely influence the distribution of oxygen and carbon in the magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5817922','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5817922"><span>Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D.; Hill, Anita J.; Wang, Huanting</p> <p>2018-01-01</p> <p>Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future. PMID:29487910</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29487910','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29487910"><span>Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Huacheng; Hou, Jue; Hu, Yaoxin; Wang, Peiyao; Ou, Ranwen; Jiang, Lei; Liu, Jefferson Zhe; Freeman, Benny D; Hill, Anita J; Wang, Huanting</p> <p>2018-02-01</p> <p>Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....95..977T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....95..977T"><span>Observation and theory of Pc 5 waves with harmonically related transverse and compressional components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, K.; Cheng, C. Z.; McEntire, R. W.; Kistler, L. M.</p> <p>1990-02-01</p> <p>The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studied. These events are selected on the basis of the field magnitude which oscillated at the second harmonic of a simultaneously present transverse oscillation. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1600-2100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number estimated from an ion finite Larmor radius effect, is generally large (about 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate left-hand polarization with respect to the ambient magnetic field, and propagate eastward with respect to the spacecraft. In the dusk sector the waves have high frequencies (5-15 mHz), indicate right-hand polarization, and propagate westward. It is suggested that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900035876&hterms=wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Dthe%2B5%2Bwave','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900035876&hterms=wave&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D50%26Ntt%3Dthe%2B5%2Bwave"><span>Observation and theory of Pc 5 waves with harmonically related transverse and compressional components</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Takahashi, K.; Mcentire, R. W.; Cheng, C. Z.; Kistler, L. M.</p> <p>1990-01-01</p> <p>The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studied. These events are selected on the basis of the field magnitude which oscillated at the second harmonic of a simultaneously present transverse oscillation. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1600-2100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number estimated from an ion finite Larmor radius effect, is generally large (about 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate left-hand polarization with respect to the ambient magnetic field, and propagate eastward with respect to the spacecraft. In the dusk sector the waves have high frequencies (5-15 mHz), indicate right-hand polarization, and propagate westward. It is suggested that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980iaee.rept.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980iaee.rept.....C"><span>Initial assessment of the effects of energetic ion injections in the magnetosphere due to the transport of satellite power system components from low earth orbit to geosynchronous earth orbit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curtis, S. A.; Grebowsky, J. M.</p> <p>1980-07-01</p> <p>Potentially serious environmental effects exist when cargo orbital transfer vehicle (COTV) ion propulsion is used on the scale proposed in the preliminary definition studies of the Satellite Power System. These effects of the large scale injections of ion propulsion exhaust in the plasmasphere and in the outer magnetosphere were shown to be highly model dependent with major differences existing in the predicted effects of two models, the ion cloud model and the ion sheath model. The expected total number density deposition of the propellant Ar(+) in the plasmasphere, the energy spectra of the deposited Ar(+) and time dependent behavior of the Ar(+) injected into the plasmasphere by a fleet of COTV vehicles differ drastically between the two models. The ion sheath model was demonstrated to be applicable to the proposed Ar(+) beam physics if the beam was divergent and turbulent whereas the ion cloud model was not a realistic approximation for such a beam because the "frozen-field" assumption on which it is based is not valid.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3059120','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3059120"><span>Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Simakov, Nikolay A.</p> <p>2010-01-01</p> <p>A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980JGR....85.5992B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980JGR....85.5992B"><span>Measurements of heavy ions in the low-altitude regions of the outer zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blake, J. B.; Fennell, J. F.; Hovestadt, D.</p> <p>1980-11-01</p> <p>Measurements of heavy ions in the low-altitude outer zone are discussed. The data were acquired with a heavy-ion sensor aboard the S3-2 satellite in the time period between Dec. 24, 1975, and March 3, 1976. Mirroring fluxes of 370/sq/s/sr He ions and CNO ions were observed; thus, the CNO/He ratio was about 6.8 x 10 to the -5th. Equatorial measurements gave a much larger He/CNO ratio showing that magnetospheric processes strongly discriminate against populating the low-altitude regions with ions of increasing mass in the energy range of hundreds of keV. In addition, a comparison of the S3-2 data with those from Injun 5 acquired in Jan. 1969 in the same region of the magnetosphere indicated that the low-altitude CNO/He ratio is strongly time dependent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptMa..74...58A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptMa..74...58A"><span>Effect of europium ion concentration on the structural and photoluminescence properties of novel Li2BaZrO4: Eu3+ nanocrystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ahemen, I.; Dejene, F. B.; Kroon, R. E.; Swart, H. C.</p> <p>2017-12-01</p> <p>This work reports the influence of Eu3+ ion concentration on the structure and photoluminescence properties of Li2BaZrO4 nanocrystals including its intrinsic quantum efficiency (IQE). Chemical bath method was employed in the synthesis procedure. X-ray diffraction results showed tetragonal phase for Eu3+ ion concentration in the range 1 and 7 mol% and cubic phase at 8 mol%. The presence of barium oxide (BaO) was confirmed from selected area electron diffraction (SAED). The excitation spectra for these phosphors consisted of broad charge transfer (CT) bands due to the combination of Zr4+ - O2- and Eu3+-O2- charge transfer states. Superimposed on the CT band were direct excitation levels of Eu3+ and Ba2+ ions, in the range 320-450 nm. At high Eu3+ ions concentrations, the intensities of CT bands decreased because some of the ions were coordinated with Ba2+ ions. Photoluminescence emissions for all the doped samples at room temperature appeared to be entirely from intraconfigurational Eu3+ emissions and depended both on the site symmetry as well as the ion concentration. The quadrupole-quadrupole multipolar process was found to be solely responsible for the luminescence quenching. The intensity parameters (Ω2 ,Ω4), asymmetry ratio, R0 and the average decay lifetime of the nanocrystals showed dependence on concentration. High internal quantum efficiency (IQE) values were obtained at low Eu3+ ion concentrations, but efficiency decreased with increasing ion concentration. The CIE coordinates values were comparable to existing red phosphors and in combination with the high IQE make this phosphor a good candidate for red light emitting applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/516775-identification-quantification-volatile-organic-compounds-using-systematic-single-ion-chromatograms','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/516775-identification-quantification-volatile-organic-compounds-using-systematic-single-ion-chromatograms"><span>Identification and quantification of volatile organic compounds using systematic single-ion chromatograms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tsuchiya, Yoshio; Kanabus-Kaminska, J.M.</p> <p>1996-12-31</p> <p>In order to determine the background level of volatile organic compounds (VOCs) in Canadian indoor air, a method of identification and quantification at a level of 0.3 {micro}g/m{sup 3} using systematic single-ion chromatograms (SICs) has been developed. The compounds selected for measurement included several halogenated compounds, oxygen compounds, terpenes, and C8 to C16 n-alkanes. Air samples were taken in 3-layered sorbent tubes and trapped compounds were thermally desorbed into the helium stream of a gas chromatograph/mass spectrometer (GC/MS) analytical system. Total quantities of volatile organic compounds (TVOCs) were measured using a flame ionization detector (FID). Individual compounds were analyzed bymore » a GC/MS. For the identification of compounds in the main stream GC effluent, both the specific GC retention and mass spectra were used. About 50 selected SICs were routinely extracted from a total ion chromatogram (TIC) to detect and quantify compounds. For each compound, a single representative ion was selected. The specific retention was calculated from the elution time on the SIC. For quantification, ion counts under a peak in the SIC were measured. The single-ion MS response factor for some of the compounds was experimentally determined using a dynamic reference procedure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21315894','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21315894"><span>Construction of a new Cu2+ coated wire ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylidene amino)phenyl)disufanyl)phenylimino)methyl)-4-methoxyphenol Schiff base.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shokrollahi, A; Abbaspour, A; Ghaedi, M; Haghighi, A Naghashian; Kianfar, A H; Ranjbar, M</p> <p>2011-03-15</p> <p>In this article a new coated platinum Cu(2+) ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L(1)) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10(-7)-1.0 × 10(-1) mol L(-1)) and a low detection limit of 9.8 × 10(-8) mol L(-1)of Cu(NO(3))(2). It has a Nernstian response with slope of 29.54 ± 1.62 mV decade(-1) and it is applicable in the pH range of 4.0-6.0 without any divergence in potential. The coated electrode has a short response time of approximately 9s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu(2+) ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu(2+) ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu(2+) ion with EDTA. Copyright © 2010 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24209318','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24209318"><span>Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mueller, Amy V; Hemond, Harold F</p> <p>2013-12-15</p> <p>A novel artificial neural network (ANN) architecture is proposed which explicitly incorporates a priori system knowledge, i.e., relationships between output signals, while preserving the unconstrained non-linear function estimator characteristics of the traditional ANN. A method is provided for architecture layout, disabling training on a subset of neurons, and encoding system knowledge into the neuron structure. The novel architecture is applied to raw readings from a chemical sensor multi-probe (electric tongue), comprised of off-the-shelf ion selective electrodes (ISEs), to estimate individual ion concentrations in solutions at environmentally relevant concentrations and containing environmentally representative ion mixtures. Conductivity measurements and the concept of charge balance are incorporated into the ANN structure, resulting in (1) removal of estimation bias typically seen with use of ISEs in mixtures of unknown composition and (2) improvement of signal estimation by an order of magnitude or more for both major and minor constituents relative to use of ISEs as stand-alone sensors and error reduction by 30-50% relative to use of standard ANN models. This method is suggested as an alternative to parameterization of traditional models (e.g., Nikolsky-Eisenman), for which parameters are strongly dependent on both analyte concentration and temperature, and to standard ANN models which have no mechanism for incorporation of system knowledge. Network architecture and weighting are presented for the base case where the dot product can be used to relate ion concentrations to both conductivity and charge balance as well as for an extension to log-normalized data where the model can no longer be represented in this manner. While parameterization in this case study is analyte-dependent, the architecture is generalizable, allowing application of this method to other environmental problems for which mathematical constraints can be explicitly stated. © 2013 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3799974','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3799974"><span>Trapping Mode Dipolar DC Collisional Activation in the RF-Only Ion Guide of a Linear Ion Trap/Time-of-Flight Instrument for Gaseous Bio-Ion Declustering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Webb, Ian K.; Gao, Yang; Londry, Frank A.; McLuckey, Scott A.</p> <p>2013-01-01</p> <p>The application of dipolar DC (DDC) to the RF-only ion guide (Q0) of a hybrid quadrupole/time-of-flight (QqTOF) mass spectrometer for collision-induced declustering of large bio-ions is described. As a broadband technique, ion trap DDC collision activation (CA) is employed to decluster ions simultaneously over a relatively broad mass-to-charge range. Declustering DDC CA can yield significantly narrower peaks relative to those observed in the absence of declustering methods, depending upon the extent of non-covalent adduction associated with the ions, and can also be used in conjunction with other methods, such as nozzle-skimmer collisional activation. The key experimental variables in the DDC experiment are the dipolar DC voltage (VDDC), VRF, and the time over which VDDC is applied. The VDDC/VRF ratio is key to the extent to which ion temperatures are elevated and also influences the upper mass-to-charge limit for ion storage. The VDDC/VRF ratio affects ion temperatures and upper m/z limit in opposing directions. That is, as the ratio increases, ion temperature increases whereas the upper m/z storage limit decreases. However, for a given VDDC/VRF ratio, the upper m/z storage limit can be increased by increasing VRF, at the expense of the lower m/z limit for ion storage. The key value of the approach is that it affords a relatively precise degree of control over ion temperatures as well as the time over which they are elevated to the higher temperature. The utility of the method is illustrated by the application of ion trap DDC CA in Q0 to oligonucleotide, protein, and multimeric protein complex analyte ions. PMID:24078247</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22251142-development-ultralow-energy-ev-ion-scattering-spectrometry-coupled-reflection-absorption-infrared-spectroscopy-temperature-programmed-desorption-investigation-molecular-solids','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22251142-development-ultralow-energy-ev-ion-scattering-spectrometry-coupled-reflection-absorption-infrared-spectroscopy-temperature-programmed-desorption-investigation-molecular-solids"><span>Development of ultralow energy (1–10 eV) ion scattering spectrometry coupled with reflection absorption infrared spectroscopy and temperature programmed desorption for the investigation of molecular solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bag, Soumabha; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.</p> <p>2014-01-15</p> <p>Extremely surface specific information, limited to the first atomic layer of molecular surfaces, is essential to understand the chemistry and physics in upper atmospheric and interstellar environments. Ultra low energy ion scattering in the 1–10 eV window with mass selected ions can reveal extremely surface specific information which when coupled with reflection absorption infrared (RAIR) and temperature programmed desorption (TPD) spectroscopies, diverse chemical and physical properties of molecular species at surfaces could be derived. These experiments have to be performed at cryogenic temperatures and at ultra high vacuum conditions without the possibility of collisions of neutrals and background deposition inmore » view of the poor ion intensities and consequent need for longer exposure times. Here we combine a highly optimized low energy ion optical system designed for such studies coupled with RAIR and TPD and its initial characterization. Despite the ultralow collision energies and long ion path lengths employed, the ion intensities at 1 eV have been significant to collect a scattered ion spectrum of 1000 counts/s for mass selected CH{sub 2}{sup +}.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27695984','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27695984"><span>Introduction to polymer-based solid-contact ion-selective electrodes-basic concepts, practical considerations, and current research topics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bieg, Christoph; Fuchsberger, Kai; Stelzle, Martin</p> <p>2017-01-01</p> <p>This review aims at providing an introductory overview for researchers new to the field of ion-selective electrodes. Both state of the art technology and novel developments towards solid-contact reference (sc-RE) and solid-contact ion selective electrodes (sc-ISE) are discussed. This technology has potentially widespread and important applications provided certain performance criteria can be met. We present basic concepts, operation principles, and theoretical considerations with regard to their function. Analytical performance and suitability of sc-RE and sc-ISE for a given application depend on critical parameters, which are discussed in this review. Comprehensive evaluation of sensor performance along this set of parameters is considered indispensable to allow for a well-founded comparison of different technologies. Methods and materials employed in the construction of sc-RE and sc-ISE, in particular the solid contact and the polymer membrane composite, are presented and discussed in detail. Operation principles beyond potentiometry are mentioned, which would further extend the field of ISE application. Finally, we conclude by directing the reader to important areas for further scientific research and development work considered particularly critical and promising for advancing this field in sensor R&D. Graphical Abstract ᅟ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22915783','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22915783"><span>Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Antonovic, L; Brahme, A; Furusawa, Y; Toma-Dasu, I</p> <p>2013-01-01</p> <p>Light-ion radiation therapy against hypoxic tumors is highly curative due to reduced dependence on the presence of oxygen in the tumor at elevated linear energy transfer (LET) towards the Bragg peak. Clinical ion beams using spread-out Bragg peak (SOBP) are characterized by a wide spectrum of LET values. Accurate treatment optimization requires a method that can account for influence of the variation in response for a broad range of tumor hypoxia, absorbed doses and LETs. This paper presents a parameterization of the Repairable Conditionally-Repairable (RCR) cell survival model that can describe the survival of oxic and hypoxic cells over a wide range of LET values, and investigates the relationship between hypoxic radiation resistance and LET. The biological response model was tested by fitting cell survival data under oxic and anoxic conditions for V79 cells irradiated with LETs within the range of 30-500 keV/µm. The model provides good agreement with experimental cell survival data for the range of LET investigated, confirming the robustness of the parameterization method. This new version of the RCR model is suitable for describing the biological response of mixed populations of oxic and hypoxic cells and at the same time taking into account the distribution of doses and LETs in the incident beam and its variation with depth in tissue. The model offers a versatile tool for the selection of LET and dose required in the optimization of the therapeutic effect, without severely affecting normal tissue in realistic tumors presenting highly heterogeneous oxic and hypoxic regions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29753417','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29753417"><span>Persistent depletion of plasma gelsolin (pGSN) after exposure of mice to heavy silicon ions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rithidech, Kanokporn Noy; Reungpatthanaphong, Paiboon; Tungjai, Montree; Jangiam, Witawat; Honikel, Louise; Whorton, Elbert B</p> <p>2018-05-01</p> <p>Little is known about plasma proteins that can be used as biomarkers for early and late responses to radiation. The purpose of this study was to determine a link between depletion of plasma gelsolin (pGSN) and cell-death as well as inflammatory responses in the lung (one of the tissues known to be radiosensitive) of the same exposed CBA/CaJ mice after exposure to heavy silicon ( 28 Si) ions. To prevent the development of multiple organ dysfunctions, pGSN (an important component of the extracellular actin-scavenging system) is responsible for the removal of actin that is released into the circulation during inflammation and from dying cells. We evaluated the levels of pGSN in plasma collected from groups of mice (5 mice in each) at 1 week (wk) and 1 month (1 mo) after exposure whole body to different doses of 28 Si ions, i.e. 0, 0.1, 0.25, or 0.5 Gy (2 fractionated exposures, 15 days apart that totaled each selected dose). In the same mouse, the measurements of pGSN levels were coupled with the quantitation of injuries in the lung, determined by (a) the levels of cleaved poly (ADP-ribose) polymerase (cleaved-PARP), a marker of apoptotic cell-death, (b) the levels of activated nuclear factor-kappa B (NF-κB) and selected cytokines, i.e. tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6, from tissue-lysates of the lung. Further, the ratio of neutrophils and lymphocytes (N/L) was determined in the same mouse. Our data indicated: (i) the magnitude of pGSN depletion was dependent to radiation dose at both harvest times, (ii) a persistent depletion of pGSN up to 1 mo post-exposure to 0.25 or 0.5 Gy of 28 Si ions, (iii) an inverse-correlation between pGSN depletion and increased levels of cleaved-PARP, including activated NF-κB/pro-inflammatory cytokines in the lung, and (iv) at both harvest times, statistically significant increases in the N/L ratio in groups of mice exposed to 0.5 Gy only. Our findings suggested that depletion in pGSN levels reflects not only the responses to 28 Si-ion exposure at both harvest times but also early and late-occurring damage. Copyright © 2018. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2814226','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2814226"><span>Synthesis and Characterization of Organic-Inorganic Nanocomposite Poly-o-anisidine Sn(IV) Arsenophosphate: Its Analytical Applications as Pb(II) Ion-Selective Membrane Electrode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Khan, Asif Ali; Habiba, Umme; Khan, Anish</p> <p>2009-01-01</p> <p>Poly-o-anisidine Sn(IV) arsenophosphate is a newly synthesized nanocomposite material and has been characterized on the basis of its chemical composition, ion exchange capacity, TGA-DTA, FTIR, X-RAY, SEM, and TEM studies. On the basis of distribution studies, the exchanger was found to be highly selective for lead that is an environmental pollutant. For the detection of lead in water a heterogeneous precipitate based ion-selective membrane electrode was developed by means of this composite cation exchanger as electroactive material. The membrane electrode is mechanically stable, with a quick response time, and can be operated over a wide pH range. The selectivity coefficients were determined by mixed solution method and revealed that the electrode is sensitive for Pb(II) in presence of interfering cations. The practical utility of this membrane electrode has been established by employing it as an indicator electrode in the potentiometric titration of Pb(II). PMID:20140082</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030062030&hterms=waves+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwaves%2Belectromagnetic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030062030&hterms=waves+electromagnetic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dwaves%2Belectromagnetic"><span>Ring Current Ion Coupling with Electromagnetic Ion Cyclotron Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Khazanov, George V.</p> <p>2002-01-01</p> <p>A new ring current global model has been developed for the first time that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes wave evolution of electromagnetic ion cyclotron waves (EMIC). The coupled model is able to simulate, for the first time self-consistently calculated RC ion kinetic and evolution of EMIC waves that propagate along geomagnetic field lines and reflect from the ionosphere. Ionospheric properties affect the reflection index through the integral Pedersen and Hall coductivities. The structure and dynamics of the ring current proton precipitating flux regions, intensities of EMIC, global RC energy balance, and some other parameters will be studied in detail for the selected geomagnetic storms. The space whether aspects of RC modelling and comparison with the data will also be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19447256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19447256"><span>Possible mechanisms of dose-dependent cough suppressive effect of Althaea officinalis rhamnogalacturonan in guinea pigs test system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sutovská, M; Nosálová, G; Sutovský, J; Franová, S; Prisenznáková, L; Capek, P</p> <p>2009-07-01</p> <p>The rhamnogalacturonan, isolated from the roots of medicinal plant Althaea officinalis L., showed various biological effects on the citric acid-induced cough reflex and reactivity of airways smooth muscle in vitro and in vivo conditions. It possessed dose-dependent cough suppression effect comparable with opioid agonist codeine. However, reactivity of the airways smooth muscle, measured in vitro as well as in vivo conditions was not significantly affected by rhamnogalacturonan and thus bronchodilatory activity did not participate in the cough suppression effect of polysaccharide tested. Moreover, the cough suppression effect of the polymer was not significantly modified by pretreatment of K(+)(ATP) ion channels with selective antagonist and therefore activation of this type of ion channels is not involved in the mechanism of rhamnogalacturonan cough suppressive ability. On the contrary, pretreatment of animals with selective 5-HT(2) receptors antagonist significantly decreased rhamnogalacturonan antitussive efficacy. From this point of view it seems that the cough suppression effect of the polymer is associated with the serotonergic 5-HT(2) receptor's function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27443202','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27443202"><span>A critical assessment of the performance criteria in confirmatory analysis for veterinary drug residue analysis using mass spectrometric detection in selected reaction monitoring mode.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berendsen, Bjorn J A; Meijer, Thijs; Wegh, Robin; Mol, Hans G J; Smyth, Wesley G; Armstrong Hewitt, S; van Ginkel, Leen; Nielen, Michel W F</p> <p>2016-05-01</p> <p>Besides the identification point system to assure adequate set-up of instrumentation, European Commission Decision 2002/657/EC includes performance criteria regarding relative ion abundances in mass spectrometry and chromatographic retention time. In confirmatory analysis, the relative abundance of two product ions, acquired in selected reaction monitoring mode, the ion ratio should be within certain ranges for confirmation of the identity of a substance. The acceptable tolerance of the ion ratio varies with the relative abundance of the two product ions and for retention time, CD 2002/657/EC allows a tolerance of 5%. Because of rapid technical advances in analytical instruments and new approaches applied in the field of contaminant testing in food products (multi-compound and multi-class methods) a critical assessment of these criteria is justified. In this study a large number of representative, though challenging sample extracts were prepared, including muscle, urine, milk and liver, spiked with 100 registered and banned veterinary drugs at levels ranging from 0.5 to 100 µg/kg. These extracts were analysed using SRM mode using different chromatographic conditions and mass spectrometers from different vendors. In the initial study, robust data was collected using four different instrumental set-ups. Based on a unique and highly relevant data set, consisting of over 39 000 data points, the ion ratio and retention time criteria for applicability in confirmatory analysis were assessed. The outcomes were verified based on a collaborative trial including laboratories from all over the world. It was concluded that the ion ratio deviation is not related to the value of the ion ratio, but rather to the intensity of the lowest product ion. Therefore a fixed ion ratio deviation tolerance of 50% (relative) is proposed, which also is applicable for compounds present at sub-ppb levels or having poor ionisation efficiency. Furthermore, it was observed that retention time shifts, when using gradient elution, as is common practice nowadays, are mainly observed for early eluting compounds. Therefore a maximum retention time deviation of 0.2 min (absolute) is proposed. These findings should serve as input for discussions on the revision of currently applied criteria and the establishment of a new, globally accepted, criterion document for confirmatory analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ApSS..254.2325B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ApSS..254.2325B"><span>The role of halide ions on the electrochemical behaviour of iron in alkali solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed</p> <p>2008-02-01</p> <p>Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10125E..17L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10125E..17L"><span>Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.</p> <p>2017-02-01</p> <p>Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22469670-temperature-dependences-photoluminescence-intensities-centers-silicon-implanted-erbium-oxygen-ions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22469670-temperature-dependences-photoluminescence-intensities-centers-silicon-implanted-erbium-oxygen-ions"><span>Temperature dependences of the photoluminescence intensities of centers in silicon implanted with erbium and oxygen ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sobolev, N. A., E-mail: nick@sobolev.ioffe.rssi.ru; Shtel’makh, K. F.; Kalyadin, A. E.</p> <p>2015-12-15</p> <p>Low-temperature photoluminescence in n-Cz-Si after the implantation of erbium ions at an elevated temperature and subsequent implantation of oxygen ions at room temperature is studied. So-called X and W centers formed from self-interstitial silicon atoms, H and P centers containing oxygen atoms, and Er centers containing Er{sup 3+} ions are observed in the photoluminescence spectra. The energies of enhancing and quenching of photoluminescence for these centers are determined. These energies are determined for the first time for X and H centers. In the case of P and Er centers, the values of the energies practically coincide with previously published data.more » For W centers, the energies of the enhancing and quenching of photoluminescence depend on the conditions of the formation of these centers.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22611438-quantum-dynamics-charge-state-silicon-field-evaporation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22611438-quantum-dynamics-charge-state-silicon-field-evaporation"><span>Quantum dynamics of charge state in silicon field evaporation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Silaeva, Elena P.; Uchida, Kazuki; Watanabe, Kazuyuki, E-mail: kazuyuki@rs.kagu.tus.ac.jp</p> <p>2016-08-15</p> <p>The charge state of an ion field-evaporating from a silicon-atom cluster is analyzed using time-dependent density functional theory coupled to molecular dynamics. The final charge state of the ion is shown to increase gradually with increasing external electrostatic field in agreement with the average charge state of silicon ions detected experimentally. When field evaporation is triggered by laser-induced electronic excitations the charge state also increases with increasing intensity of the laser pulse. At the evaporation threshold, the charge state of the evaporating ion does not depend on the electrostatic field due to the strong contribution of laser excitations to themore » ionization process both at low and high laser energies. A neutral silicon atom escaping the cluster due to its high initial kinetic energy is shown to be eventually ionized by external electrostatic field.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/866604','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/866604"><span>Liquid membrane coated ion-exchange column solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Barkey, Dale P.</p> <p>1988-01-01</p> <p>This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867209','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867209"><span>Liquid membrane coated ion-exchange column solids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Barkey, Dale P.</p> <p>1989-01-01</p> <p>This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..MARH34002J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..MARH34002J"><span>Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Johnson, Grant; Priest, Thomas; Laskin, Julia</p> <p>2012-02-01</p> <p>Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11569816','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11569816"><span>Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E</p> <p>2001-09-01</p> <p>Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24821092','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24821092"><span>Novel model of negative secondary ion formation and its use to refine the electronegativity of almost fifty elements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wittmaack, Klaus</p> <p>2014-06-17</p> <p>This study aimed to examine the recently proposed idea that the ionic contribution to atomic bonds is essential in determining the charge state of sputtered atoms. Use was made of negative secondary ion yields reported by Wilson for a large number of elements implanted in silicon and then sputter profiled by Cs bombardment. The derived normalized ion yields (or fractions) P vary by 6 orders of magnitude, but the expected exponential dependence on the electron affinity EA is evident only vaguely. Remarkably, a correlation of similar quality is observed if the data are presented as a function of the ionization potential IP. With IP being the dominant (if not sole) contributor to the electronegativity χ, one is led to assume that P depends on the sum χ + EA. About 72% of the "nonsaturated" ion yields are in accordance with a dependence of the form P ∝ exp[(χ + EA)/ε], with ε ≅ 0.2 eV, provided the appropriate value of χ is selected from the electronegativity tables of Pauling (read in eV), Mulliken or Allen. However, each of the three sources contributes only about one-third to the favorable electronegativity data. This unsatisfactory situation initiated the idea to derive the "true" electronegativity χSIMS from the measured ion yields P(χ + EA), verified for 48 elements. Significant negative deviations of χSIMS from a smooth increase with increasing atomic number are evident for elements with special outer-shell electron configurations such as (n-1)d(g-1)ns(1) or (n-1)d(10)ns(2)np(1). The results strongly support the new model of secondary ion formation and provide means for refining electronegativity data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22253346-multicomponent-kinetic-simulation-bernsteingreenekruskal-modes-associated-ion-acoustic-dust-ion-acoustic-excitations-electron-ion-dusty-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22253346-multicomponent-kinetic-simulation-bernsteingreenekruskal-modes-associated-ion-acoustic-dust-ion-acoustic-excitations-electron-ion-dusty-plasmas"><span>Multicomponent kinetic simulation of Bernstein–Greene–Kruskal modes associated with ion acoustic and dust-ion acoustic excitations in electron-ion and dusty plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hosseini Jenab, S. M., E-mail: mehdi.jenab@yahoo.com; Kourakis, I., E-mail: IoannisKourakisSci@gmail.com</p> <p>2014-04-15</p> <p>A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on Bernstein–Greene–Kruskal (BGK) modes generated during the simulations. In particular, we aim at investigating the parametric dependence of the characteristics of BGK structures, namely of their time periodicity (τ{sub trap}) and their amplitude, on the electron-to-ion temperature ratio andmore » on the dust concentration. In electron-ion plasma, an exponential relation between τ{sub trap} and the amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that both characteristics, namely, the periodicity τ{sub trap} and amplitude, are also related to the size of the phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes characteristics appear to depend on the dust particle density linearly.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24037656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24037656"><span>Bacterial diversity and composition of an alkaline uranium mine tailings-water interface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khan, Nurul H; Bondici, Viorica F; Medihala, Prabhakara G; Lawrence, John R; Wolfaardt, Gideon M; Warner, Jeff; Korber, Darren R</p> <p>2013-10-01</p> <p>The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3443794','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3443794"><span>Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sciacca, Michele F.M.; Kotler, Samuel A.; Brender, Jeffrey R.; Chen, Jennifer; Lee, Dong-kuk; Ramamoorthy, Ayyalusamy</p> <p>2012-01-01</p> <p>Disruption of cell membranes by Aβ is believed to be one of the key components of Aβ toxicity. However, the mechanism by which this occurs is not fully understood. Here, we demonstrate that membrane disruption by Aβ occurs by a two-step process, with the initial formation of ion-selective pores followed by nonspecific fragmentation of the lipid membrane during amyloid fiber formation. Immediately after the addition of freshly dissolved Aβ1–40, defects form on the membrane that share many of the properties of Aβ channels originally reported from single-channel electrical recording, such as cation selectivity and the ability to be blockaded by zinc. By contrast, subsequent amyloid fiber formation on the surface of the membrane fragments the membrane in a way that is not cation selective and cannot be stopped by zinc ions. Moreover, we observed that the presence of ganglioside enhances both the initial pore formation and the fiber-dependent membrane fragmentation process. Whereas pore formation by freshly dissolved Aβ1–40 is weakly observed in the absence of gangliosides, fiber-dependent membrane fragmentation can only be observed in their presence. These results provide insights into the toxicity of Aβ and may aid in the design of specific compounds to alleviate the neurodegeneration of Alzheimer’s disease. PMID:22947931</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12524421','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12524421"><span>Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter</p> <p>2003-03-14</p> <p>Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3064836','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3064836"><span>Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gokarn, Yatin R; Fesinmeyer, R Matthew; Saluja, Atul; Razinkov, Vladimir; Chase, Susan F; Laue, Thomas M; Brems, David N</p> <p>2011-01-01</p> <p>Specific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3M) salt concentrations, in dilute (<0.1M) salt solutions nonspecific electrostatic screening is considered to be dominant. Here, using effective charge (Q*) measurements of hen-egg white lysozyme (HEWL) as a direct and differential measure of ion-association, we experimentally show that anions selectively and preferentially accumulate at the protein surface even at low (<100 mM) salt concentrations. At a given ion normality (50 mN), the HEWL Q* was dependent on anion, but not cation (Li+, Na+, K+, Rb+, Cs+, GdnH+, and Ca2+), identity. The Q* decreased in the order F− > Cl− > Br− > NO3− ∼ I− > SCN− > ClO4− ≫ SO42−, demonstrating progressively greater binding of the monovalent anions to HEWL and also show that the SO42− anion, despite being strongly hydrated, interacts directly with the HEWL surface. Under our experimental conditions, we observe a remarkable asymmetry between anions and cations in their interactions with the HEWL surface. PMID:21432935</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16096680','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16096680"><span>In vitro selection of high temperature Zn(2+)-dependent DNAzymes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nelson, Kevin E; Bruesehoff, Peter J; Lu, Yi</p> <p>2005-08-01</p> <p>In vitro selection of Zn(2+)-dependent RNA-cleaving DNAzymes with activity at 90 degrees C has yielded a diverse spool of selected sequences. The RNA cleavage efficiency was found in all cases to be specific for Zn(2+) over Pb(2+), Ca(2+), Cd(2+), Co(2+), Hg(2+), and Mg(2+). The Zn(2+)-dependent activity assay of the most active sequence showed that the DNAzyme possesses an apparent Zn(2+)-binding dissociation constant of 234 muM and that its activity increases with increasing temperatures from 50-90 degrees C. A fit of the Arrhenius plot data gave E(a) = 15.3 kcal mol(-1). Surprisingly, the selected Zn(2+)-dependent DNAzymes showed only a modest (approximately 3-fold) activity enhancement over the background rate of cleavage of random sequences containing a single embedded ribonucleotide within an otherwise DNA oligonucleotide. The result is attributable to the ability of DNA to sustain cleavage activity at high temperature with minimal secondary structure when Zn(2+) is present. Since this effect is highly specific for Zn(2+), this metal ion may play a special role in molecular evolution of nucleic acids at high temperature.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PMB....63f5012S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PMB....63f5012S"><span>Tumour control in ion beam radiotherapy with different ions in the presence of hypoxia: an oxygen enhancement ratio model based on the microdosimetric kinetic model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strigari, L.; Torriani, F.; Manganaro, L.; Inaniwa, T.; Dalmasso, F.; Cirio, R.; Attili, A.</p> <p>2018-03-01</p> <p>Few attempts have been made to include the oxygen enhancement ratio (OER) in treatment planning for ion beam therapy, and systematic studies to evaluate the impact of hypoxia in treatment with the beam of different ion species are sorely needed. The radiobiological models used to quantify the OER in such studies are mainly based on the dose-averaged LET estimates, and do not explicitly distinguish between the ion species and fractionation schemes. In this study, a new type of OER modelling, based on the microdosimetric kinetic model, taking into account the specificity of the different ions, LET spectra, tissues and fractionation schemes, has been developed. The model has been benchmarked with published in vitro data, HSG, V79 and CHO cells in aerobic and hypoxic conditions, for different ion irradiation. The model has been included in the simulation of treatments for a clinical case (brain tumour) using proton, lithium, helium, carbon and oxygen ion beams. A study of the tumour control probability (TCP) as a function of oxygen partial pressure, dose per fraction and primary ion type has been performed. The modelled OER depends on both the LET and ion type, also showing a decrease for an increased dose per fraction with a slope that depends on the LET and ion type, in good agreement with the experimental data. In the investigated clinical case, a significant increase in TCP has been found upon increasing the ion charge. Higher OER variations as a function of dose per fraction have also been found for low-LET ions (up to 15% varying from 2 to 8 Gy(RBE) for protons). This model could be exploited in the identification of treatment condition optimality in the presence of hypoxia, including fractionation and primary particle selection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..APR.E1059C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..APR.E1059C"><span>Design Challenges of a Rapid Cycling Synchrotron for Carbon/Proton Therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cook, Nathan</p> <p>2012-03-01</p> <p>The growing interest in radiation therapy with protons and light ions has driven demand for new methods of ion acceleration and the delivery of ion beams. One exciting new platform for ion beam acceleration and delivery is the rapid cycling synchrotron. Operating at 15Hz, rapid cycling achieves faster treatment times by making beam extraction possible at any energy during the cycle. Moreover, risk to the patient is reduced by requiring fewer particles in the beam line at a given time, thus eliminating the need for passive filtering and reducing the consequences of a malfunction. Lastly, the ability to switch between carbon ion and proton beam therapy provides the machine with an unmatched flexibility. However, these features do stipulate challenges in accelerator design. Maintaining a compact lattice requires careful tuning of lattice functions, tight focusing combined function magnets, and fast injection and extraction systems. Providing the necessary acceleration over a short cycle time also necessitates a five-fold frequency swing for carbon ions, further burdening the design requirements of ferrite-driven radiofrequency cavities. We will consider these challenges as well as some solutions selected for our current design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1332104','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1332104"><span>Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Song, Yeonho; Lee, Ji Hye; Hwang, Hoon</p> <p></p> <p>Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1332104-energetic-dynamic-analysis-transport-na+-k+-through-cyclic-peptide-nanotube-water-lipid-bilayers','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1332104-energetic-dynamic-analysis-transport-na+-k+-through-cyclic-peptide-nanotube-water-lipid-bilayers"><span>Energetic and dynamic analysis of transport of Na + and K + through a cyclic peptide nanotube in water and in lipid bilayers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Song, Yeonho; Lee, Ji Hye; Hwang, Hoon; ...</p> <p>2016-11-04</p> <p>Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040086919&hterms=modeling+reactions+chemical&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Breactions%2Bchemical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040086919&hterms=modeling+reactions+chemical&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmodeling%2Breactions%2Bchemical"><span>Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hash, David B.; Govindan, T. R.; Meyyappan, M.</p> <p>2004-01-01</p> <p>In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175149','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175149"><span>Pulsed discharge ionization source for miniature ion mobility spectrometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Xu, Jun; Ramsey, J. Michael; Whitten, William B.</p> <p>2004-11-23</p> <p>A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28691799','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28691799"><span>Solid-Contact pH Sensor without CO2 Interference with a Superhydrophobic PEDOT-C14 as Solid Contact: The Ultimate "Water Layer" Test.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guzinski, Marcin; Jarvis, Jennifer M; D'Orazio, Paul; Izadyar, Anahita; Pendley, Bradford D; Lindner, Ernő</p> <p>2017-08-15</p> <p>The aim of this study was to find a conducting polymer-based solid contact (SC) for ion-selective electrodes (ISEs) that could become the ultimate, generally applicable SC, which in combination with all kinds of ion-selective membranes (ISMs) would match the performance characteristics of conventional ISEs. We present data collected with electrodes utilizing PEDOT-C 14 , a highly hydrophobic derivative of poly(3,4-ethylenedioxythiophene), PEDOT, as SC and compare its performance characteristics with PEDOT-based SC ISEs. PEDOT-C 14 has not been used in SC ISEs previously. The PEDOT-C 14 -based solid contact (SC) ion-selective electrodes (ISEs) (H + , K + , and Na + ) have outstanding performance characteristics (theoretical response slope, short equilibration time, excellent potential stability, etc.). Most importantly, PEDOT-C 14 -based SC pH sensors have no CO 2 interference, an essential pH sensors property when aimed for whole-blood analysis. The superhydrophobic properties (water contact angle: 136 ± 5°) of the PEDOT-C 14 SC prevent the detachment of the ion-selective membrane (ISM) from its SC and the accumulation of an aqueous film between the ISM and the SC. The accumulation of an aqueous film between the ISM and its SC has a detrimental effect on the sensor performance. Although there is a test for the presence of an undesirable water layer, if the conditions for this test are not selected properly, it does not provide an unambiguous answer. On the other hand, recording the potential drifts of SC electrodes with pH-sensitive membranes in samples with different CO 2 levels can effectively prove the presence or absence of a water layer in a short time period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21386916-pyramidal-pits-created-single-highly-charged-ions-baf-sub-single-crystals','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21386916-pyramidal-pits-created-single-highly-charged-ions-baf-sub-single-crystals"><span>Pyramidal pits created by single highly charged ions in BaF{sub 2} single crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>El-Said, A. S.; Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura; Heller, R.</p> <p>2010-07-15</p> <p>In various insulators, the impact of individual slow highly charged ions (eV-keV) creates surface nanostructures, whose size depends on the deposited potential energy. Here we report on the damage created on a cleaved BaF{sub 2} (111) surface by irradiation with 4.5xq keV highly charged xenon ions from a room-temperature electron-beam ion trap. Up to charge states q=36, no surface topographic changes on the BaF{sub 2} surface are observed by scanning force microscopy. The hidden stored damage, however, can be made visible using the technique of selective chemical etching. Each individual ion impact develops into a pyramidal etch pits, as canmore » be concluded from a comparison of the areal density of observed etch pits with the applied ion fluence (typically 10{sup 8} ions/cm{sup 2}). The dimensional analysis of the measured pits reveals the significance of the deposited potential energy in the creation of lattice distortions/defects in BaF{sub 2}.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AIPC..820.1476P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AIPC..820.1476P"><span>Charged Particle Detection: Potential of Love Wave Acoustic Devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pedrick, Michael; Tittmann, Bernhard</p> <p>2006-03-01</p> <p>An investigation of the dependence of film density on group and phase velocities in a Love Wave Device shows potential for acoustic-based charged particle detection (CPD). Exposure of an ion sensitive photoresist to charged particles causes localized changes in density through either scission or cross-linking. A theoretical model was developed to study ion fluence effects on Love Wave sensitivity based on: ion energy, effective density changes, layer thickness and mode selection. The model is based on a Poly(Methyl Methacralate) (PMMA) film deposited on a Quartz substrate. The effect of Helium ion fluence on the properties of PMMA has previously been studied. These guidelines were used as an initial basis for the prediction of helium ion detection in a PMMA layer. Procedures for experimental characterization of ion effects on the material properties of PMMA are reviewed. Techniques for experimental validation of the predicted velocity shifts are discussed. A Love Wave Device for CPD could potentially provide a cost-effective alternative to semiconductor or photo-based counterparts. The potential for monitoring ion implantation effects on material properties is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21769166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21769166"><span>Polymer-grafted QCM chemical sensor and application to heavy metalions real time detection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sartore, Luciana; Barbaglio, Marzia; Borgese, Laura; Bontempi, Elza</p> <p>2011-07-20</p> <p>A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29744514','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29744514"><span>A newly developed highly selective Zn2+-AcO- ion-pair sensor through partner preference: equal efficiency under solitary and colonial situation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Karar, Monaj; Paul, Suvendu; Biswas, Bhaskar; Majumdar, Tapas; Mallick, Arabinda</p> <p>2018-05-10</p> <p>Unusual self-sorting of an ion-pair under highly crowded conditions driven by a synthesized intelligent molecule 2-((E)-(3-((E)-2-hydroxy-3-methoxybenzylideneamino)-2-hydroxypropyl imino)methyl)-6-methoxyphenol, hereafter HBP, is described. When a mixture of various metal salts was allowed to react with HBP, only a specific ion-pair ZnII/AcO- in the solution simultaneously reacted, resulting in high-fidelity ion-pair recognition of HBP. This phenomenon was evidenced by significant changes in the absorption spectra and huge enhancement in emission intensity of HBP. The property that one molecule preferring one particular cation-anion pair over others is a rare but interesting phenomenon. Thus, the potential to interact selectively with the targeted ion-pair resulting in the formation of a specific complex recognized HBP as a new class of molecule that might find future applications in real time and on-site monitoring and separation of new molecules.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21893589','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21893589"><span>Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V</p> <p>2011-12-01</p> <p>A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3239185','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3239185"><span>Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.</p> <p>2011-01-01</p> <p>A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5378810','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5378810"><span>Mechanistic Insight into Salt Tolerance of Acacia auriculiformis: The Importance of Ion Selectivity, Osmoprotection, Tissue Tolerance, and Na+ Exclusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rahman, Md. M.; Rahman, Md. A.; Miah, Md. G.; Saha, Satya R.; Karim, M. A.; Mostofa, Mohammad G.</p> <p>2017-01-01</p> <p>Salinity, one of the major environmental constraints, threatens soil health and consequently agricultural productivity worldwide. Acacia auriculiformis, being a halophyte, offers diverse benefits against soil salinity; however, the defense mechanisms underlying salt-tolerant capacity in A. auriculiformis are still elusive. In this study, we aimed to elucidate mechanisms regulating the adaptability of the multi-purpose perennial species A. auriculiformis to salt stress. The growth, ion homeostasis, osmoprotection, tissue tolerance and Na+ exclusion, and anatomical adjustments of A. auriculiformis grown in varied doses of seawater for 90 and 150 days were assessed. Results showed that diluted seawater caused notable reductions in the level of growth-related parameters, relative water content, stomatal conductance, photosynthetic pigments, proteins, and carbohydrates in dose- and time-dependent manners. However, the percent reduction of these parameters did not exceed 50% of those of control plants. Na+ contents in phyllodes and roots increased with increasing levels of salinity, whereas K+ contents and K+/Na+ ratio decreased significantly in comparison with control plants. A. auriculiformis retained more Na+ in the roots and maintained higher levels of K+, Ca2+ and Mg2+, and K+/Na+ ratio in phyllodes than roots through ion selective capacity. The contents of proline, total free amino acids, total sugars and reducing sugars significantly accumulated together with the levels of malondialdehyde and electrolyte leakage in the phyllodes, particularly at day 150th of salt treatment. Anatomical investigations revealed various anatomical changes in the tissues of phyllodes, stems and roots by salt stress, such as increase in the size of spongy parenchyma of phyllodes, endodermal thickness of stems and roots, and the diameter of root vascular bundle, relative to control counterparts. Furthermore, the estimated values for Na+ exclusion and tissue tolerance index suggested that A. auriculiformis efficiently adopted these two mechanisms to address higher salinity levels. Our results conclude that the adaptability of A. auriculiformis to salinity is closely associated with ion selectivity, increased accumulation of osmoprotectants, efficient Na+ retention in roots, anatomical adjustments, Na+ exclusion and tissue tolerance mechanisms. PMID:28421081</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3522970','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3522970"><span>Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus</p> <p>2012-01-01</p> <p>In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23882771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23882771"><span>Ion-selective detection by plasticized poly(vinyl chloride) membrane in glass nanopipette with alternating voltage modulation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Deng, Xiao Long; Takami, Tomohide; Son, Jong Wan; Kang, Eun Ji; Kawai, Tomoji; Park, Bae Ho</p> <p>2013-08-01</p> <p>An alternating current (AC) voltage modulation was applied to ion-selective observations with plasticized poly(vinyl chloride) membranes in glass nanopipettes. The liquid confronting the membranes in the nanopipettes, the conditioning process, and AC voltage modulation play important roles in the ion-selective detection. In the AC detection system developed by us, where distilled water was used as the liquid within the nanopipettes, potassium ions were selectively detected in the sample solution of sodium and potassium ions because sodium ions were captured at the membrane containing bis(12-crown-4) ionophores, before the saturation of the ionophores. The membrane lost the selectivity after the saturation. On using sodium chloride as the liquid within the nanopipette, the membrane selectively detected potassium and sodium ions before and after the saturation of ionophores, respectively. The ion-selective detection of our system can be explained by the ion extraction-diffusion-dissolution mechanism through the bis(12-crown-4) ionophores with AC voltage modulation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130013580','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130013580"><span>Galactic Cosmic Ray Event-Based Risk Model (GERM) Code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.</p> <p>2013-01-01</p> <p>This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhRvL.105n3001T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhRvL.105n3001T"><span>Sympathetic Cooling of Molecular Ions in Selected Rotational and Vibrational States Produced by Threshold Photoionization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tong, Xin; Winney, Alexander H.; Willitsch, Stefan</p> <p>2010-10-01</p> <p>We present a new method for the generation of rotationally and vibrationally state-selected, translationally cold molecular ions in ion traps. Our technique is based on the state-selective threshold photoionization of neutral molecules followed by sympathetic cooling of the resulting ions with laser-cooled calcium ions. Using N2+ ions as a test system, we achieve >90% selectivity in the preparation of the ground rovibrational level and state lifetimes on the order of 15 minutes limited by collisions with background-gas molecules. The technique can be employed to produce a wide range of apolar and polar molecular ions in the ground and excited rovibrational states. Our approach opens up new perspectives for cold quantum-controlled ion-molecule-collision studies, frequency-metrology experiments with state-selected molecular ions and molecular-ion qubits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1130676-direct-real-time-detection-vapors-from-explosive-compounds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1130676-direct-real-time-detection-vapors-from-explosive-compounds"><span>Direct Real-Time Detection of Vapors from Explosive Compounds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ewing, Robert G.; Clowers, Brian H.; Atkinson, David A.</p> <p>2013-10-03</p> <p>The real-time detection of vapors from low volatility explosives including PETN, tetryl, RDX and nitroglycerine along with various compositions containing these substances is demonstrated. This was accomplished with an atmospheric flow tube (AFT) using a non-radioactive ionization source and coupled to a mass spectrometer. Direct vapor detection was demonstrated in less than 5 seconds at ambient temperature without sample pre-concentration. The several seconds of residence time of analytes in the AFT provides a significant opportunity for reactant ions to interact with analyte vapors to achieve ionization. This extended reaction time, combined with the selective ionization using the nitrate reactant ionsmore » (NO3- and NO3-•HNO3), enables highly sensitive explosives detection. Observed signals from diluted explosive vapors indicate detection limits below 10 ppqv using selected ion monitoring (SIM) of the explosive-nitrate adduct at m/z 349, 378, 284 and 289 for tetryl, PETN, RDX and NG respectively. Also provided is a demonstration of the vapor detection from 10 different energetic formulations, including double base propellants, plastic explosives and commercial blasting explosives using SIM for the NG, PETN and RDX product ions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1020586-tuning-ion-selectivity-tetrameric-cation-channels-changing-number-ion-binding-sites','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1020586-tuning-ion-selectivity-tetrameric-cation-channels-changing-number-ion-binding-sites"><span>Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong</p> <p>2015-11-30</p> <p>Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only themore » channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5627904','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5627904"><span>On site DNA barcoding by nanopore sequencing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Menegon, Michele; Cantaloni, Chiara; Rodriguez-Prieto, Ana; Centomo, Cesare; Abdelfattah, Ahmed; Rossato, Marzia; Bernardi, Massimo; Xumerle, Luciano; Loader, Simon; Delledonne, Massimo</p> <p>2017-01-01</p> <p>Biodiversity research is becoming increasingly dependent on genomics, which allows the unprecedented digitization and understanding of the planet’s biological heritage. The use of genetic markers i.e. DNA barcoding, has proved to be a powerful tool in species identification. However, full exploitation of this approach is hampered by the high sequencing costs and the absence of equipped facilities in biodiversity-rich countries. In the present work, we developed a portable sequencing laboratory based on the portable DNA sequencer from Oxford Nanopore Technologies, the MinION. Complementary laboratory equipment and reagents were selected to be used in remote and tough environmental conditions. The performance of the MinION sequencer and the portable laboratory was tested for DNA barcoding in a mimicking tropical environment, as well as in a remote rainforest of Tanzania lacking electricity. Despite the relatively high sequencing error-rate of the MinION, the development of a suitable pipeline for data analysis allowed the accurate identification of different species of vertebrates including amphibians, reptiles and mammals. In situ sequencing of a wild frog allowed us to rapidly identify the species captured, thus confirming that effective DNA barcoding in the field is possible. These results open new perspectives for real-time-on-site DNA sequencing thus potentially increasing opportunities for the understanding of biodiversity in areas lacking conventional laboratory facilities. PMID:28977016</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoPh..293....3Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoPh..293....3Z"><span>Quiet-time 0.04 - 2 MeV/nucleon Ions at 1 AU in Solar Cycles 23 and 24</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeldovich, M. A.; Logachev, Y. I.; Kecskeméty, K.</p> <p>2018-01-01</p> <p>The fluxes of 3He, 4He, C, O, and Fe ions at low energies (about 0.04 - 2 MeV/nucleon) are studied during quiet periods in Solar Cycles (SC) 23 and 24 using data from the ULEIS/ACE instrument. In selecting quiet periods (the definition is given in Section 2.1), additional data from EPHIN/SOHO and EPAM/ACE were also used. The analysis of the ion energy spectra and their relative abundances shows that their behavior is governed by their first-ionization potential. Substantial differences in the ion energy spectra in two consecutive solar cycles are observed during the quiet periods selected. Quiet-time fluxes are divided into three distinct types according to the {˜} 80 - 320 keV/nucleon Fe/O ratio. Our results confirm the earlier observation that these types of suprathermal particles have different origins, that is, they represent different seed populations that are accelerated by different processes. Except for the solar activity minimum, the Fe/O ratio during quiet-time periods correspond either to the abundances of ions in particle fluxes accelerated in impulsive solar flares or to the mean abundances of elements in the solar corona. At the activity minimum, this ratio takes on values that are characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the ascending, maximum, and decay phases of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and ions accelerated in small impulsive solar flares rich in Fe, while the contribution of remnants from earlier SEP events cannot be excluded. The comparison of suprathermal ion abundances during the first five years of SC 23 and SC 24 suggests that the quiet-time and non-quiet fluxes of Fe and 3He were lower in SC 24.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13A2349H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13A2349H"><span>The Locations of Ring Current Pressure Peaks: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 CIR Storm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.</p> <p>2017-12-01</p> <p>The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1736b0074M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1736b0074M"><span>Curing behavior and reaction kinetics of binder resins for 3D-printing investigated by dielectric analysis (DEA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Möginger, B.; Kehret, L.; Hausnerova, B.; Steinhaus, J.</p> <p>2016-05-01</p> <p>3D-Printing is an efficient method in the field of additive manufacturing. In order to optimize the properties of manufactured parts it is essential to adapt the curing behavior of the resin systems with respect to the requirements. Thus, effects of resin composition, e.g. due to different additives such as thickener and curing agents, on the curing behavior have to be known. As the resin transfers from a liquid to a solid glass the time dependent ion viscosity was measured using DEA with flat IDEX sensors. This allows for a sensitive measurement of resin changes as the ion viscosity changes two to four decades. The investigated resin systems are based on the monomers styrene and HEMA. To account for the effects of copolymerization in the calculation of the reaction kinetics it was assumed that the reaction can be considered as a homo-polymerization having a reaction order n≠1. Then the measured ion viscosity curves are fitted with the solution of the reactions kinetics - the time dependent degree of conversion (DC-function) - for times exceeding the initiation phase representing the primary curing. The measured ion viscosity curves can nicely be fitted with the DC-function and the determined fit parameters distinguish distinctly between the investigated resin compositions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..429..138K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..429..138K"><span>Design and fabrication of spectrally selective emitter for thermophotovoltaic system by using nano-imprint lithography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Jong-Moo; Park, Keum-Hwan; Kim, Da-Som; Hwang, Bo-yeon; Kim, Sun-Kyung; Chae, Hee-Man; Ju, Byeong-Kwon; Kim, Young-Seok</p> <p>2018-01-01</p> <p>Thermophotovoltaic (TPV) systems have attracted attention as promising power generation systems that can directly convert the radiant energy produced by the combustion of fuel into electrical energy. However, there is a fundamental limit of their conversion efficiency due to the broadband distribution of the radiant spectrum. To overcome this problem, several spectrally selective thermal emitter technologies have been investigated, including the fabrication of photonic crystal (PhC) structures. In this paper, we present some design rules based on finite-a difference time-domain (FDTD) simulation results for tungsten (W) PhC emitter. The W 2D PhC was fabricated by a simple nano-imprint lithography (NIL) process, and inductive coupled plasma reactive ion etching (ICP-RIE) with an isotropic etching process, the benefits and parameters of which are presented. The fabricated W PhC emitter showed spectrally selective emission near the infrared wavelength range, and the optical properties varied depending on the size of the nano-patterns. The measured results of the fabricated prototype structure correspond well to the simulated values. Finally, compared with the performance of a flat W emitter, the total thermal emitter efficiency was almost 3.25 times better with the 2D W PhC structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..12111637A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..12111637A"><span>A comprehensive suite of suprathermal ion sensors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allegrini, F.; Ho, G. C.; Desai, M. I.; Ebert, R. W.; Nelson, K.; Ogasawara, K.</p> <p>2016-12-01</p> <p>Ions with energies from a few times the solar wind plasma thermal energy up to hundreds of keV/e are called suprathermal (ST) ions. ST ions are ubiquitous throughout the heliosphere and comprise material from many sources that vary in time and space. ST ions constitute a key source of material for solar energetic particles and other higher-energy interplanetary particle populations. Measuring the energy spectra and composition (ionic charge and elemental) of ST ions in the heliosphere has proved to be rather difficult. This is because their energy region lies between that sampled by solar wind instruments, which require long integration times to acquire adequate statistics at these energies, and that by the energetic particle instruments, which typically do not extend down into the lower part of the ST regime due to the low-energy thresholds ( 25-50 keV) of solid-state detectors. We present two novel concepts that, when combined, measure ST ions with high time, mass, and charge state resolution to address these challenges. Both use electrostatic analyzers that essentially serve as spectrographs. They simultaneously select ions over a broad range of energy-per-charge (E/q), thus requiring fewer voltage steps to cover the entire energy range. Their sensitivity is large compared to current instruments because each E/q is sampled for a longer period of time while the geometric factor is comparable. We describe the results obtained with laboratory prototypes. We also present a list of potential options for the detector section.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PSSCR...2..244F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PSSCR...2..244F"><span>Optical properties of BaY2F8:Ce3+</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fabeni, P.; di Martino, D.; Nikl, M.; Pazzi, G. P.; Sani, E.; Toncelli, A.; Tonelli, M.; Vedda, A.</p> <p>2005-01-01</p> <p>The optical properties of Ce3+-doped BaY2F8 crystals were investigated under selective laser excitation and X-ray irradiation. In both cases, the emission spectrum is dominated by the characteristic doublet transition from the lowest energy level of the 5d configuration to the spin-orbit split 2F ground state of Ce3+. Excitation bands at 4.1, 5.0, 5.9 and 6.2 eV, due to transitions between 4f and split 5d levels were observed. The emission time decay was satisfactorily analyzed by a single exponential component, characterized by a decay time of approximately 28 ns at 10 K and slightly increasing with temperature. A monotonic temperature quenching of the photo-luminescence intensity was observed; on the other hand, the temperature dependence of radio-luminescence intensity is modulated by the presence of shallow traps competing with Ce3+ ions in carrier trapping during irradiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005NIMPB.236..449G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005NIMPB.236..449G"><span>Microstructured polymer films by X-ray lithographic exposure and grafting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gürsel, Selmiye A.; Padeste, Celestino; Solak, Harun H.; Scherer, Günther G.</p> <p>2005-07-01</p> <p>Recently we reported on a new technique to generate micro- and nanostructured polymer materials by the combination of selective irradiation of polymer substrates with X-rays and subsequent grafting of a second polymer. Here we focus on the spatially defined grafting throughout the thickness of poly(ethylene-alt-tetrafluoroethylene) (ETFE) and poly (tetrafluoroethylene-co-hexafluoropropylene) (FEP) films using X-ray irradiation through a metal mask, followed by grafting with styrene. Calculations of the transmission of X-rays through the polymer as a function of the wavelength have revealed that energy deposition within the substrate material, which should control the density of created radicals, can be selected in a wide range. Depending on the used wavelength the radicals are created either near the surface or in the bulk of the sample. First experiments demonstrated spatially defined grafting through a 100 μm thick ETFE film and 25 μm thick FEP film. The achieved graft level depends on the irradiation dose as well as on the grafting parameters such as concentration, temperature and time. The precision of structure definition within the film depends on the properties of the X-ray source, the metal mask and the grafting process. The presented process allows controlled grafting through fluoropolymer films with micrometer resolution and local modification of the properties of the films, such as ion conductivity, diffusion of specific molecules or optical properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009IJMSp.279..170B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009IJMSp.279..170B"><span>Accurate characterization of carcinogenic DNA adducts using MALDI tandem time-of-flight mass spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barnes, Charles A.; Chiu, Norman H. L.</p> <p>2009-01-01</p> <p>Many chemical carcinogens and their in vivo activated metabolites react readily with genomic DNA, and form covalently bound carcinogen-DNA adducts. Clinically, carcinogen-DNA adducts have been linked to various cancer diseases. Among the current methods for DNA adduct analysis, mass spectroscopic method allows the direct measurement of unlabeled DNA adducts. The goal of this study is to explore the use of matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to determine the identity of carcinogen-DNA adducts. Two of the known carcinogenic DNA adducts, namely N-(2'-deoxyguanosin-8-yl)-2-amino-1-methyl-6-phenyl-imidazo [4,5-b] pyridine (dG-C8-PhIP) and N-(2'-deoxyguanosin-8yl)-4-aminobiphenyl (dG-C8-ABP), were selected as our models. In MALDI-TOF MS measurements, the small matrix ion and its cluster ions did not interfere with the measurements of both selected dG adducts. To achieve a higher accuracy for the characterization of selected dG adducts, 1 keV collision energy in MALDI-TOF/TOF MS/MS was used to measure the adducts. In comparison to other MS/MS techniques with lower collision energies, more extensive precursor ion dissociations were observed. The detection of the corresponding fragment ions allowed the identities of guanine, PhIP or ABP, and the position of adduction to be confirmed. Some of the fragment ions of dG-C8-PhIP have not been reported by other MS/MS techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008APS..MARQ39002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008APS..MARQ39002A"><span>Intercalation of Li Ions into a Graphite Anode Material: Molecular Dynamics Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abou Hamad, Ibrahim; Novotny, Mark</p> <p>2008-03-01</p> <p>Large-scale molecular dynamics simulations of the anode half-cell of a lithium-ion battery are presented. The model system is composed of an anode represented by a stack of graphite sheets, an electrolyte of ethylene carbonate and propylene carbonate molecules, and lithium and hexafluorophosphate ions. The simulations are done in the NVT ensemble and at room temperature. One charging scheme explored is normal charging in which intercalation is enhanced by electric charges on the graphitic sheets. The second charging mechanism has an external applied oscillatory electric field of amplitude A and frequency f. The simulations were performed on 2.6 GHz Opteron processors, using 160 processors at a time. Our simulation results show an improvement in the intercalation time of the lithium ions for the second charging mechanism. The dependence of the intercalation time on A and f will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PPCF...59i5008P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PPCF...59i5008P"><span>Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; White, R. B.</p> <p>2017-09-01</p> <p>Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. In this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that has been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Additional information from the actual experiment enables further tuning of the model’s parameters to achieve a close match with measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1395250-computation-alfven-eigenmode-stability-saturation-through-reduced-fast-ion-transport-model-transp-tokamak-transport-code','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1395250-computation-alfven-eigenmode-stability-saturation-through-reduced-fast-ion-transport-model-transp-tokamak-transport-code"><span>Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.</p> <p></p> <p>Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARF22008L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARF22008L"><span>Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Cheng-Wei; Schleife, André</p> <p></p> <p>Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1395250-computation-alfven-eigenmode-stability-saturation-through-reduced-fast-ion-transport-model-transp-tokamak-transport-code','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1395250-computation-alfven-eigenmode-stability-saturation-through-reduced-fast-ion-transport-model-transp-tokamak-transport-code"><span>Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Podestà, M.; Gorelenkova, M.; Gorelenkov, N. N.; ...</p> <p>2017-07-20</p> <p>Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE-induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. Here, in this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that hasmore » been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Finally, additional information from the actual experiment enables further tuning of the model's parameters to achieve a close match with measurements.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995AIPC..329..511B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995AIPC..329..511B"><span>New perspectives in laser analytics: Resonance-enhanced multiphoton ionization in a Paul ion trap combined with a time-of-flight mass spectrometer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bisling, Peter; Heger, Hans Jörg; Michaelis, Walfried; Weitkamp, Claus; Zobel, Harald</p> <p>1995-04-01</p> <p>A new laser analytical device has been developed that is based on resonance-enhanced multiphoton ionization in the very center of a radio-frequency quadrupole ion trap. Applications in speciation anlaysis of biological and enviromental samples and in materials science will all benefit from laser-optical selectivity in the resonance excitation process, combined with mass-spectropic sensivity which is further enhanced by the ion accumulation and storage capability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990063838&hterms=monographs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmonographs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990063838&hterms=monographs&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmonographs"><span>Origins and Transport of Ions during Magnetospheric Substorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ashour-Abdalla, Maha; El-Alaoui, Mostafa; Peroomian, Vahe; Raeder, Joachim; Walker, Ray J.; Frank, L. A.; Paterson, W. R.</p> <p>1999-01-01</p> <p>We investigate the origins and the transport of ions observed in the near-Earth plasma sheet during the growth and expansion phases of a magnetospheric substorm that occurred on November 24, 1996. Ions observed at Geotail were traced backward in time in time-dependent magnetic and electric fields to determine their origins and the acceleration mechanisms responsible for their energization. Results from this investigation indicate that, during the growth phase of the substorm, most of the ions reaching Geotail had origins in the low latitude boundary layer (LLBL) and had alread@, entered the magnetosphere when the growth phase began. Late in the growth phase and in the expansion phase a higher proportion of the ions reaching Geotail had their origin in the plasma mantle. Indeed, during the expansion phase more than 90% of the ions seen by Geotail were from the mantle. The ions were accelerated enroute to the spacecraft; however, most of the ions' energy gain was achieved by non-adiabatic acceleration while crossing the equatorial current sheet just prior to their detection by Geotail. In general, the plasma mantle from both southern and northern hemispheres supplied non-adiabatic ions to Geotail, whereas the LLBL supplied mostly adiabatic ions to the distributions measured by the spacecraft.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3596245','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3596245"><span>Collagen remodeling by phagocytosis is determined by collagen substrate topology and calcium-dependent interactions of gelsolin with nonmuscle myosin IIA in cell adhesions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Arora, P. D.; Wang, Y.; Bresnick, A.; Dawson, J.; Janmey, P. A.; McCulloch, C. A.</p> <p>2013-01-01</p> <p>We examine how collagen substrate topography, free intracellular calcium ion concentration ([Ca2+]i, and the association of gelsolin with nonmuscle myosin IIA (NMMIIA) at collagen adhesions are regulated to enable collagen phagocytosis. Fibroblasts plated on planar, collagen-coated substrates show minimal increase of [Ca2+]i, minimal colocalization of gelsolin and NMMIIA in focal adhesions, and minimal intracellular collagen degradation. In fibroblasts plated on collagen-coated latex beads there are large increases of [Ca2+]i, time- and Ca2+-dependent enrichment of NMMIIA and gelsolin at collagen adhesions, and abundant intracellular collagen degradation. NMMIIA knockdown retards gelsolin recruitment to adhesions and blocks collagen phagocytosis. Gelsolin exhibits tight, Ca2+-dependent binding to full-length NMMIIA. Gelsolin domains G4–G6 selectively require Ca2+ to interact with NMMIIA, which is restricted to residues 1339–1899 of NMMIIA. We conclude that cell adhesion to collagen presented on beads activates Ca2+ entry and promotes the formation of phagosomes enriched with NMMIIA and gelsolin. The Ca2+ -dependent interaction of gelsolin and NMMIIA in turn enables actin remodeling and enhances collagen degradation by phagocytosis. PMID:23325791</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSM32A..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSM32A..08G"><span>Global, Energy-Dependent Ring Current Response During Two Large Storms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldstein, J.; Angelopoulos, V.; Burch, J. L.; De Pascuale, S.; Fuselier, S. A.; Genestreti, K. J.; Kurth, W. S.; LLera, K.; McComas, D. J.; Reeves, G. D.; Spence, H. E.; Valek, P. W.</p> <p>2015-12-01</p> <p>Two recent large (~200 nT) geomagnetic storms occurred during 17--18 March 2015 and 22--23 June 2015. The global, energy-dependent ring current response to these two extreme events is investigated using both global imaging and multi-point in situ observations. Energetic neutral atom (ENA) imaging by the Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a global view of ring current ions. Local measurements are provided by two multi-spacecraft missions. The two Van Allen Probes measure in situ plasma (including ion composition) and fields at ring current and plasmaspheric L values. The recently launched Magnetospheric Multiscale (MMS) comprises four spacecraft that have just begun to measure particles (including ion composition) and fields at outer magnetospheric L-values. We analyze the timing and energetics of the stormtime evolution of ring current ions, both trapped and precipitating, using TWINS ENA images and in situ data by the Van Allen Probes and MMS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JChEd..82..575E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JChEd..82..575E"><span>Pharmaceutical Applications of Ion-Exchange Resins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elder, David P.</p> <p>2005-04-01</p> <p>The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26634979','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26634979"><span>Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shaffer, Christopher J; Pepin, Robert; Tureček, František</p> <p>2015-12-01</p> <p>We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation. Copyright © 2015 John Wiley & Sons, Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>