Similarity solutions of time-dependent relativistic radiation-hydrodynamical plane-parallel flows
NASA Astrophysics Data System (ADS)
Fukue, Jun
2018-04-01
Similarity solutions are examined for the frequency-integrated relativistic radiation-hydrodynamical flows, which are described by the comoving quantities. The flows are vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate boundary conditions, the flows are accelerated in a somewhat homologous manner, but terminate at some singular locus, which originates from the pathological behavior in relativistic radiation moment equations truncated in finite orders.
Similarity solutions of time-dependent relativistic radiation-hydrodynamical plane-parallel flows
NASA Astrophysics Data System (ADS)
Fukue, Jun
2018-06-01
Similarity solutions are examined for the frequency-integrated relativistic radiation-hydrodynamical flows, which are described by the comoving quantities. The flows are vertical plane-parallel time-dependent ones with a gray opacity coefficient. For adequate boundary conditions, the flows are accelerated in a somewhat homologous manner, but terminate at some singular locus, which originates from the pathological behavior in relativistic radiation moment equations truncated in finite orders.
Flow of sand and a variable mass Atwood machine
NASA Astrophysics Data System (ADS)
Flores, José; Solovey, Guillermo; Gil, Salvador
2003-07-01
We discuss a simple and inexpensive apparatus that lets us measure the instantaneous flow rate of granular media, such as sand, in real time. The measurements allow us to elucidate the phenomenological laws that govern the flow of granular media through an aperture. We use this apparatus to construct a variable mass system and study the motion of an Atwood machine with one weight changing in time in a controlled manner. The study illustrates Newton's second law for variable mass systems and lets us investigate the dependence of the flow rate on acceleration.
Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor.
Malinowski, Robert; Volpe, Giovanni; Parkin, Ivan P; Volpe, Giorgio
2018-02-01
The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner.
New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray.
Hu, Shunying; Gao, Yajing; Zhou, Hao; Kong, Fanxuan; Xiao, Fengjun; Zhou, Pingkun; Chen, Yundai
2017-05-01
To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.
Stevens, Fred J.
1992-01-01
A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.
Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor
2018-01-01
The deposition of particles on a surface by an evaporating sessile droplet is important for phenomena as diverse as printing, thin-film deposition, and self-assembly. The shape of the final deposit depends on the flows within the droplet during evaporation. These flows are typically determined at the onset of the process by the intrinsic physical, chemical, and geometrical properties of the droplet and its environment. Here, we demonstrate deterministic emergence and real-time control of Marangoni flows within the evaporating droplet by an external point source of vapor. By varying the source location, we can modulate these flows in space and time to pattern colloids on surfaces in a controllable manner. PMID:29363979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Arijit; Koch, Donald L., E-mail: dlk15@cornell.edu
2015-11-15
The soft glassy rheology (SGR) model has successfully described the time dependent simple shear rheology of a broad class of complex fluids including foams, concentrated emulsions, colloidal glasses, and solvent-free nanoparticle-organic hybrid materials (NOHMs). The model considers a distribution of mesoscopic fluid elements that hop from trap to trap at a rate which is enhanced by the work done to strain the fluid element. While an SGR fluid has a broad exponential distribution of trap energies, the rheology of NOHMs is better described by a narrower energy distribution and we consider both types of trap energy distributions in this study.more » We introduce a tensorial version of these models with a hopping rate that depends on the orientation of the element relative to the mean stress field, allowing a range of relative strengths of the extensional and simple shear responses of the fluid. As an application of these models we consider the flow of a soft glassy material through a dilute fixed bed of fibers. The dilute fixed bed exhibits a range of local linear flows which alternate in a chaotic manner with time in a Lagrangian reference frame. It is amenable to an analytical treatment and has been used to characterize the strong flow response of many complex fluids including fiber suspensions, dilute polymer solutions and emulsions. We show that the accumulated strain in the fluid elements has an abrupt nonlinear growth at a Deborah number of order one in a manner similar to that observed for polymer solutions. The exponential dependence of the hopping rate on strain leads to a fluid element deformation that grows logarithmically with Deborah number at high Deborah numbers. SGR fluids having a broad range of trap energies flowing through fixed beds can exhibit a range of rheological behaviors at small Deborah numbers ranging from a yield stress, to a power law response and finally to Newtonian behavior.« less
Induction of Apoptosis of 2,4′,6-Trihydroxybenzophenone in HT-29 Colon Carcinoma Cell Line
Lay, Ma Ma; Karsani, Saiful Anuar
2014-01-01
2,4′,6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins. PMID:24579081
Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation
Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung
2013-01-01
The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387
Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.
Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae
2013-12-01
The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.
Impedance Flow Cytometry as a Tool to Analyze Microspore and Pollen Quality.
Heidmann, Iris; Di Berardino, Marco
2017-01-01
Analyzing pollen quality in an efficient and reliable manner is of great importance to the industries involved in seed and fruit production, plant breeding, and plant research. Pollen quality parameters, viability and germination capacity, are analyzed by various staining methods or by in vitro germination assays, respectively. These methods are time-consuming, species-dependent, and require a lab environment. Furthermore, the obtained viability data are often poorly related to in vivo pollen germination and seed set. Here, we describe a quick, label-free method to analyze pollen using microfluidic chips inserted into an impedance flow cytometer (IFC). Using this approach, pollen quality parameters are determined by a single measurement in a species-independent manner. The advantage of this protocol is that pollen viability and germination can be analyzed quickly by a reliable and standardized method.
Regularized Stokeslet representations for the flow around a human sperm
NASA Astrophysics Data System (ADS)
Ishimoto, Kenta; Gadelha, Hermes; Gaffney, Eamonn; Smith, David; Kirkman-Brown, Jackson
2017-11-01
The sperm flagellum does not simply push the sperm. We have established a new theoretical scheme for the dimensional reduction of swimming sperm dynamics, via high-frame-rate digital microscopy of a swimming human sperm cell. This has allowed the reconstruction of the flagellar waveform as a limit cycle in a phase space of PCA modes. With this waveform, boundary element numerical simulation has successfully captured fine-scale sperm swimming trajectories. Further analyses on the flow field around the cell has also demonstrated a pusher-type time-averaged flow, though the instantaneous flow field can temporarily vary in a more complicated manner - even pulling the sperm. Applying PCA to the flow field, we have further found that a small number of PCA modes explain the temporal patterns of the flow, whose core features are well approximated by a few regularized Stokeslets. Such representations provide a methodology for coarse-graining the time-dependent flow around a human sperm and other flagellar microorganisms for use in developing population level models that retain individual cell dynamics.
Time-discretized steady compressible Navier-Stokes equations with inflow and outflow boundaries
NASA Astrophysics Data System (ADS)
Yoon, Gangjoon; Yang, Sung-Dae; Song, Minsu; Gunzburger, Max
2013-12-01
The time-discretized steady compressible Navier-Stokes equations in n-dimensional bounded domains with the velocity specified only at the inflow boundary are considered. The existence and uniqueness of L p solutions are proved for p > n. For time-discretized steady flows, results of Kweon and Kellogg and of Kweon and Song are extended in a manner that allows for more general domains and for density-dependent viscosity coefficients. Moreover, we only require p > n which is a critical barrier in the previous works.
NASA Astrophysics Data System (ADS)
Hernández Cifre, J. G.; García de la Torre, J.
2001-11-01
When linear polymer chains in dilute solution are subject to extensional flow, each chain in the sample experiences the coil-stretch transition at a different time. Using Brownian dynamics simulation, we have studied the distribution of transition times in terms of the extensional rate and the length of the chains. If instead of time one characterizes the effect of the flow by the accumulated strain, then the distribution and its moments seem to take general forms, independent of molecular weight and flow rate, containing some numerical, universal constants that have been evaluated from the dynamical simulation. The kinetics of the transition, expressed by the time-dependence of the fraction of remaining coils, has also been simulated, and the results for the kinetic rate constant has been rationalized in a manner similar to that used for the transition time. The molecular individualism, characterized in this work by the distribution of transition times, is related to the excess of the applied extensional rate over its critical value, which will determine the transition time and other features of the coil-stretch transition.
Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.
2017-01-01
Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.
[Effects of sinensetin on proliferation and apoptosis of human gastric cancer AGS cells].
Dong, Yang; Ji, Guang; Cao, Aili; Shi, Jianrong; Shi, Hailian; Xie, Jianqun; Wu, Dazheng
2011-03-01
To study the effects and mechanisms of sinensetin on proliferation and apoptosis of human AGS gastric cancer cells. MTT assay was used to detect the growth inhibition rates of human AGS gastric cancer cells treated with sinsesectin in different concentrations and times. The cell cycle distribution was measured by flow cytometry. The apoptosis was examined by Annexin-FITC/PI staining and DNA fragment analysis. The apoptosis morphology was observed by inverted fluorescence microscope after Hoechst 33342 staining. The protein expressions of p21 and p53 were detected by western blot. MTT assay showed that sinensetin inhibited the growth of AGS gastric cancer cells in a dose- and time-dependent manner. Sinensetin blocked AGS cells in G2/ M and increased the apoptosis rates of AGS cells in a dose-dependent manner. DNA ladder was observed in cells treated with 60 micromol x L(-1) sinensetin for 48 h. The typical apoptotic morphological changes including cell nucleus shrinkage, chromatin condensation and apoptotic bodies were observed when treated with different dose of sinensetin. Western blot showed that sinensetin increased expressions of p53 and p21 in a dose-dependent manner. Sinensetin could inhibit human AGS gastric cancer cells proliferation and induce cell cycle block in G2/M phase and apoptosis. The up regulation of p53 and p21 protein might be one of the mechanisms.
Blood flow patterns during incremental and steady-state aerobic exercise.
Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N
2017-05-30
Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). Retrograde blood flow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, p<0.05). These results support the hypothesis that exercise induced ESS might be increased in an intensity-dependent way and blood flow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.
NASA Astrophysics Data System (ADS)
Ulrich, A.; Ott, N.; Tournier-Fillon, A.; Homazava, N.; Schmutz, P.
2011-07-01
The development of biodegradable metallic materials designed for implants or medical stents is new and is one of the most interesting new fields in material science. Besides biocompatibility, a detailed understanding of corrosion mechanisms and dissolution processes is required to develop materials with tailored degradation behavior. The materials need to be sufficiently stable as long as they have to fulfill their medical task. However, subsequently they should dissolve completely in a controlled manner in terms of maximum body burden. This study focuses on the elemental and time resolved dissolution processes of a magnesium rare earth elements alloy which has been compared to pure magnesium with different impurity level. The here described investigations were performed using a novel analytical setup based on a micro-flow capillary online-coupled via a flow injection system to a plasma mass spectrometer. Differences in element-specific and time-dependent dissolution were monitored for various magnesium alloys in contact with sodium chloride or mixtures of sodium and calcium chloride as corrosive media. The dissolution behavior strongly depends on bulk matrix elements, secondary alloying elements and impurities, which are usually present even in pure magnesium.
Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Matinelli, L.
1994-01-01
The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.
Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda
2016-08-01
Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016. © 2015 Wiley Periodicals, Inc.
Unsteady potential flow past a propeller blade section
NASA Technical Reports Server (NTRS)
Takallu, M. A.
1990-01-01
An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.
Li, Qian; Peng, Jie; Liu, Ting; Zhang, Guiying
2017-09-01
Fas, which is an apoptotic-related protein, has an important role in cell apoptosis. Fas ligand (FasL) binds to Fas and activates apoptosis signal transduction. We previously demonstrated that the efficiency of celecoxib inhibited the proliferation and apoptosis of HT-29 colon cancer cell line. The BGC823 cell line was used as an experimental model to evaluate the potential role of celecoxib on gastric cancer cell apoptosis. Inhibitory effects of celecoxib on cell viability were determined by MTT assay. Cell apoptosis was evaluated by flow cytometric analysis and laser confocal microscopy. The results of the present study demonstrated that celecoxib inhibited the viability of BGC823 cells in a concentration- and time-dependent manner. Furthermore, the effect of BGC823 cells apoptosis was increased in a concentration-dependent manner. Western blotting was used to determine the protein expression levels of Fas, FasL, and B-cell lymphoma-2 (Bcl-2). During the celecoxib-induced apoptosis of BGC823 cells, celecoxib upregulated Fas expression and downregulated FasL and Bcl-2 expression in a concentration-dependent manner. These results suggest that celecoxib inhibited the growth and induced apoptosis of BGC823 gastric cancer cells by regulating the protein expression of Fas, FasL and Bcl-2.
Creating fast flow channels in paper fluidic devices to control timing of sequential reactions.
Jahanshahi-Anbuhi, Sana; Chavan, Puneet; Sicard, Clémence; Leung, Vincent; Hossain, S M Zakir; Pelton, Robert; Brennan, John D; Filipe, Carlos D M
2012-12-07
This paper reports the development of a method to control the flow rate of fluids within paper-based microfluidic analytical devices. We demonstrate that by simply sandwiching paper channels between two flexible films, it is possible to accelerate the flow of water through paper by over 10-fold. The dynamics of this process are such that the height of the liquid is dependent on time to the power of 1/3. This dependence was validated using three different flexible films (with markedly different contact angles) and three different fluids (water and two silicon oils with different viscosities). These covered channels provide a low-cost method for controlling the flow rate of fluid in paper channels, and can be added following printing of reagents to control fluid flow in selected fluidic channels. Using this method, we redesigned a previously published bidirectional lateral flow pesticide sensor to allow more rapid detection of pesticides while eliminating the need to run the assay in two stages. The sensor is fabricated with sol-gel entrapped reagents (indoxyl acetate in a substrate zone and acetylcholinesterase, AChE, in a sensing zone) present in an uncovered "slow" flow channel, with a second, covered "fast" channel used to transport pesticide samples to the sensing region through a simple paper-flap valve. In this manner, pesticides reach the sensing region first to allow preincubation, followed by delivery of the substrate to generate a colorimetric signal. This format results in a uni-directional device that detects the presence of pesticides two times faster than the original bidirectional sensors.
Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.; Martinelli, L.
1991-01-01
The system of equations consisting of the full Navier-Stokes equations and two turbulence equations was solved for in the steady state using a multigrid strategy on unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time stepping scheme with a stability bound local time step, while the turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positively. Low Reynolds number modifications to the original two equation model are incorporated in a manner which results in well behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved for, initializing all quantities with uniform freestream values, and resulting in rapid and uniform convergence rates for the flow and turbulence equations.
Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Chen, Jie-Ru; Wang, Hong; Li, You-Jie
2018-05-01
Solanine is an alkaloid and is the main extract of the traditional Chinese herb, Solanum nigrum Linn . It has been reported that Solanine has anti-inflammatory and antitumor properties. The present study aimed to investigate the antitumor effect of Solanine in Jurkat cells and demonstrate the molecular mechanism of antitumor activity of Solanine. A Cell Counting Kit-8 assay demonstrated that Solanine inhibited the proliferation of Jurkat cells in a dose-and time-dependent manner. Cell apoptosis was measured by flow cytometry. Flow cytometry revealed that Solanine induced apoptosis in a dose-dependent manner in Jurkat cells. Reverse transcription-quantitative polymerase chain reaction demonstrated that Solanine modulated the mRNA levels of B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Additionally, Bcl-2 and Bax expression was measured using western blot analysis. Western blot analysis revealed a significant increase in the expression of Bax and decrease in the expression of Bcl-2. Solanine increased the chemosensitivity of Jurkat cells to Adriamycin. In summary, the present results indicated that the antitumor activity of Solanine was associated with inhibition of cell proliferation, induction of apoptosis and increasing cytotoxicity of Adriamycin. Therefore, Solanine may have potential as a novel agent for the treatment of acute lymphocytic leukemia.
[Saponin 6 of Anemone Taipaiensis inhibits proliferation and induces apoptosis of U87 MG cells].
Ji, Chenchen; Cheng, Guang; Tang, Haifeng; Zhang, Yun; Hu, Yiyang; Zheng, Minhua; Fei, Zhou
2015-04-01
To investigate the effect of saponin 6 of Anemone Taipaiensis on the proliferation of human U87 MG glioma cells and the possible mechanism. U87 MG cells were treated with different concentrations of saponin 6 (0.0, 1.6, 3.2, 6.4, 12.8 μg/mL) for 24 hours or 48 hours. Cell viability was measured by MTT assay; the apoptosis rate was detected by flow cytometry combined with annexin V-FITC /PI staining; Western blotting was applied to determine the protein level of activated caspase-3. Compared with control groups, saponin 6 significantly inhibited U87 MG cell proliferation in a time- and dose-depended manner. Apoptosis rate of U87 MG cells and the expression of activated caspase-3 were raised with the increasing concentration of saponin 6. Saponin 6 of Anemone Taipaiensis could depress cell proliferation in a dose-depended manner, increase the expression of activated caspase-3 and promote apoptosis in U87 MG cells.
Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure
NASA Technical Reports Server (NTRS)
Anantram, M. P.; Saini, Subhash (Technical Monitor)
1998-01-01
There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.
NASA Astrophysics Data System (ADS)
Miramontes, Marissa; Rossini, Lorenzo; Braun, Oscar; Brambatti, Michela; Almeida, Shone; Mizeracki, Adam; Martinez-Legazpi, Pablo; Benito, Yolanda; Bermejo, Javier; Kahn, Andrew; Adler, Eric; Del Álamo, Juan C.
2017-11-01
In heart failure patients, left ventricular (LV) assist devices (LVADs) decrease mortality and improve quality of life. We hypothesize echo color Doppler velocimetry (echo-CDV), an echocardiographic flow mapping modality, can non-invasively characterize the effect of LVAD support, optimize the device, thereby decreasing the stoke rate present in these patients. We used echo-CDV to image LV flow at baseline LVAD speed and during a ramp test in LVAD patients (Heartmate II, N =10). We tracked diastolic vortices and mapped blood stasis and cumulative shear. Compared to dilated cardiomyopathy (DCM) patients without LVADs, the flow had a less prominent diastolic vortex ring, and transited directly from mitral valve to cannula. Residence time and shear were significantly lower compared to healthy controls and DCMs. Aortic regurgitation and a large LV vortex presence or a direct mitral jet towards the cannula affected blood stasis region location and size. Flow patterns, residence time and shear depended on LV geometry, valve function and LVAD speed in a patient specific manner. This new methodology could be used with standard echo, hemodynamics and clinical information to find the flow optimizing LAVD setting minimizing stasis for each patient.
Qian, Jun; Li, Jing; Jia, Jianguang; Jin, Xin; Yu, Dajun; Guo, Chenxu; Xie, Bo; Qian, Liyu
2016-01-01
Sijunzi Decoction (SD) is a traditional Chinese medicine which is composed of Ginseng, Atractylodes, Poria and Licorice. It is one of the commonly used Chinese traditional medicines that showed anti-gastric cancer activity in clinical studies. Previous evidence demonstrated SD parties (Ginseng, Atractylodes, Poria, Licorice) can inhibit proliferation and induced apoptosis for gastric cancer cell. In order to further investigate the anticancer effect of SD in gastric cancer, we observed the effects of different concentrations of SD on proliferation and apoptosis of Side Population Cells (SP) of human gastric cancer SGC-7901. SGC-7901 SP and Non- Side Population Cells (NSP) were sorted through flow cytometry; to detect the changes of proliferation of SP and NSP before and after the intervention of serum containing different concentrations of SD using cck-8 method; to detect the changes of cell cycle and apoptosis of SP and NSP before and after the intervention of serum containing different concentrations of SD through flow cytometry; to detect the effects of serum containing different concentrations of SD on apoptosis-related proteins Bax and Bcl-2 of SP and NSP before and after the intervention by western-blot. It was found that different concentrations of SD serum treatments inhibited cell proliferation in a time-dependent and concentration-dependent manner. Compared with the control group (normal saline serum treatment), there were increase in G1/G0 phase population of SP and NSP, and decrease in G2/M and S phase population ( P <0.05). Meanwhile, we found G1/G0 arrest induced by different concentrations of SD serum which was followed by apoptosis in a time-dependent and concentration-dependent manner. The apoptosis rate of SD serum treatment group was higher than the control group ( P <0.05), the apoptosis rate of 48 h treatment was higher than 24 h treatment ( P <0.05), and as the SD serum concentration increases, apoptosis rate is higher and higher ( P <0.05). The expression of Bax protein of SP and NSP was higher than the control group in a time-dependent and concentration dependent manner. The expression of Bcl-2 protein of SP and NSP was lower than the control group in a time-dependent and concentration- dependent manner. With the increase of SD serum concentrations, SD can gradually inhibits the proliferation of SP of SGC-7901 cell lines through G1/G0 phase arrest and followed by apoptosis which involves the up-regulation of Bax and the down-regulation of Bcl-2. List of Abbreviations: (SD) Sijunzi Decoction, (SP) side population, (NSP) non-side population, (Control) normal saline serum group, (L) low concentration SD serum group, (N) normal concentration SD serum group, (H) high concentration SD serum group, (ABCG-2) Adenosine triphosphate Binding Cassette super family G member-2 of transport protein, (Bcl-2) B-cell lymphoma 2, (BAX) Bcl-2 Associated X Protein, (FBS) Fetal bovine serum, (PBS) Phosphate buffer solution, (CCK-8) Cell Counting Kit-8 reagent, (AV) Annexin V-FITC, (PI) Propidium iodide, (EDTA) Ethylene Diamine Tetraacetic Acid, (PMSF) Phenylmethanesulfonyl fluoride, (RIPA) Radio Immunoprecipitation Assay, (PVDF) Poly (vinylidene fluoride), (TBST) Tris-buffered saline containing Tween-20.
Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo
WU, CUNZAO; HUANG, WEIPING; GUO, YONG; XIA, PENG; SUN, XIANBIN; PAN, XIAODONG; HU, WEILIE
2015-01-01
Oxymatrine is an alkaloid, which is derived from the traditional Chinese herb, Sophora flavescens Aiton. Oxymatrine has been shown to exhibit anti-inflammatory, antiviral, and anticancer properties. The present study aimed to investigate the anticancer effects of oxymatrine in human prostate cancer cells, and the underlying molecular mechanisms of these effects. An MTT assay demonstrated that oxymatrine significantly inhibited the proliferation of prostate cancer cells in a time- and dose-dependent manner. In addition, flow cytometry and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay suggested that oxymatrine treatment may induce prostate cancer cell apoptosis in a dose-dependent manner. Furthermore, western blot analysis demonstrated a significant increase in the expression of p53 and bax, and a significant decrease in that of Bcl-2, in prostrate cancer cells in a dose-dependent manner. In vivo analysis demonstrated that oxymatrine inhibited tumor growth following subcutaneous inoculation of prostate cancer cells into nude mice. The results of the present study suggested that the antitumor properties of oxymatrine, may be associated with the inhibition of cell proliferation, and induction of apoptosis, via the regulation of apoptosis-associated gene expression. Therefore, the results may provide a novel approach for the development of prostate cancer therapy using oxymatrine, which is derived from the traditional Chinese herb, Sophora flavescens. PMID:25672672
NASA Astrophysics Data System (ADS)
Cvetkovic, V.; Molin, S.
2012-02-01
We present a methodology that combines numerical simulations of groundwater flow and advective transport in heterogeneous porous media with analytical retention models for computing the infection risk probability from pathogens in aquifers. The methodology is based on the analytical results presented in [1,2] for utilising the colloid filtration theory in a time-domain random walk framework. It is shown that in uniform flow, the results from the numerical simulations of advection yield comparable results as the analytical TDRW model for generating advection segments. It is shown that spatial variability of the attachment rate may be significant, however, it appears to affect risk in a different manner depending on if the flow is uniform or radially converging. In spite of the fact that numerous issues remain open regarding pathogen transport in aquifers on the field scale, the methodology presented here may be useful for screening purposes, and may also serve as a basis for future studies that would include greater complexity.
Automated payload experiment tool feasibility study
NASA Technical Reports Server (NTRS)
Maddux, Gary A.; Clark, James; Delugach, Harry; Hammons, Charles; Logan, Julie; Provancha, Anna
1991-01-01
To achieve an environment less dependent on the flow of paper, automated techniques of data storage and retrieval must be utilized. The prototype under development seeks to demonstrate the ability of a knowledge-based, hypertext computer system. This prototype is concerned with the logical links between two primary NASA support documents, the Science Requirements Document (SRD) and the Engineering Requirements Document (ERD). Once developed, the final system should have the ability to guide a principal investigator through the documentation process in a more timely and efficient manner, while supplying more accurate information to the NASA payload developer.
NASA Astrophysics Data System (ADS)
Richards, Lisa M.; Kazmi, S. M. S.; Olin, Katherine E.; Waldron, James S.; Fox, Douglas J.; Dunn, Andrew K.
2017-03-01
Monitoring cerebral blood flow (CBF) during neurosurgery is essential for detecting ischemia in a timely manner for a wide range of procedures. Multiple clinical studies have demonstrated that laser speckle contrast imaging (LSCI) has high potential to be a valuable, label-free CBF monitoring technique during neurosurgery. LSCI is an optical imaging method that provides blood flow maps with high spatiotemporal resolution requiring only a coherent light source, a lens system, and a camera. However, the quantitative accuracy and sensitivity of LSCI is limited and highly dependent on the exposure time. An extension to LSCI called multi-exposure speckle imaging (MESI) overcomes these limitations, and was evaluated intraoperatively in patients undergoing brain tumor resection. This clinical study (n = 7) recorded multiple exposure times from the same cortical tissue area, and demonstrates that shorter exposure times (≤1 ms) provide the highest dynamic range and sensitivity for sampling flow rates in human neurovasculature. This study also combined exposure times using the MESI model, demonstrating high correlation with proper image calibration and acquisition. The physiological accuracy of speckle-estimated flow was validated using conservation of flow analysis on vascular bifurcations. Flow estimates were highly conserved in MESI and 1 ms exposure LSCI, with percent errors at 6.4% ± 5.3% and 7.2% ± 7.2%, respectively, while 5 ms exposure LSCI had higher errors at 21% ± 10% (n = 14 bifurcations). Results from this study demonstrate the importance of exposure time selection for LSCI, and that intraoperative MESI can be performed with high quantitative accuracy.
Thermal control of electroosmotic flow in a microchannel through temperature-dependent properties.
Kwak, Ho Sang; Kim, Hyoungsoo; Hyun, Jae Min; Song, Tae-Ho
2009-07-01
A numerical investigation is conducted on the electroosmotic flow and associated heat transfer in a two-dimensional microchannel. The objective of this study is to explore a new conceptual idea that is control of an electroosmotic flow by using a thermal field effect through the temperature-dependent physical properties. Two exemplary problems are examined: a flow in a microchannel with a constant vertical temperature difference between two horizontal walls and a flow in a microchannel with the wall temperatures varying horizontally in a sinusoidal manner. The results of numerical computations showed that a proper control of thermal field may be a viable means to manipulate various non-plug-like flow patterns. A constant vertical temperature difference across the channel produces a shear flow. The horizontally-varying thermal condition results in spatial variation of physical properties to generate fluctuating flow patterns. The temperature variation at the wall with alternating vertical temperature gradient induces a wavy flow.
Effects of TGF-β1 on the Proliferation and Apoptosis of Human Cervical Cancer Hela Cells In Vitro.
Tao, Ming-Zhu; Gao, Xia; Zhou, Tie-Jun; Guo, Qing-Xi; Zhang, Qiang; Yang, Cheng-Wan
2015-12-01
To investigate the effects of TGF-β1 on the proliferation and apoptosis of cervical cancer Hela cells in vitro. Human cervical cancer Hela cells were cultured in vitro and divided into the experimental and control groups. In the experimental groups, Hela cells were stimulated with different concentrations of TGF-β1 (0.01, 0.1, 1, and 10 ng/mL), while Hela cells cultured in serum-free medium without TGF-β1 were used as controls. The CCK8 method was adopted to detect the effect of TGF-β1 on Hela cell proliferation, and flow cytometry was used to determine cell apoptosis 72 h after TGF-β1 treatment. Compared with the control group, the CCK-8 tests showed that different concentrations of TGF-β1 had no obvious effect on Hela cell proliferation 24 h after treatment (P > 0.05). However, upon 48 or 72 h of treatment, TGF-β1 significantly inhibited the proliferation of Hela cells in a time- and dose-dependent manner (P < 0.05). The flow cytometry results indicated that TGF-β1 influenced the apoptosis of human cervical cancer Hela cells in a dose-dependent manner after 72 h of treatment (P < 0.05). TGF-β1 significantly inhibited the growth and induced the apoptosis of human cervical Hela cells in vitro.
Mixing in a stratified shear flow: Energetics and sampling
NASA Technical Reports Server (NTRS)
Ivey, G. N.; Koseff, J. R.; Briggs, D. A.; Ferziger, J. H.
1993-01-01
Direct numerical simulations of the time evolution of homogeneous stably stratified shear flows have been performed for Richardson numbers from 0 to 1 and for Prandtl numbers between 0.1 and 2. The results indicate that mixing efficiency R(sub f) varies with turbulent Froude number in a manner consistent with laboratory experiments performed with Prandtl numbers of 0.7 and 700. However, unlike the laboratory results, for a particular Froude number, the simulations do not show a clear dependence on the magnitude of R(sub f) on Pr. The observed maximum value of R(sub f) is 0.25. When averaged over vertical length scales of an order of magnitude greater than either the overturning or Ozmidov scales of the flow, the simulations indicate that the dissipation rate epsilon is only weakly lognormally distributed with an intermittency of about 0.01 whereas estimated values in the ocean are 3 to 7.
Ma, Yanping; Liu, Wenhua; Zhang, Ling; Jia, Gu
2017-01-01
Background The aim of this study was to explore the impact of LBH589 alone or in combination with proteasome inhibitor bortezomib on multiple myeloma (MM) cell proliferation and its mechanism. Material/Methods MM cell line U266 and RRMM-BMMNC were treated with different concentrations of LBH589 alone or in combination with bortezomib. Cell proliferation was detected by MTT assay. Cell cycle and apoptosis was analyzed by flow cytometry. The protein and mRNA level of related genes was determined by Western blotting and qRT-PCR respectively. Results U266 cell and RRMM-BMMNC proliferation were inhibited by different concentrations of LBH589 (0, 10, 20, and 50 nmol/L) alone or 50 nmol/L of LBH589 in combination with bortezomib (10 and 20 nmol/L) in a dose- and time-dependent manner. LBH589 significantly induced G0/G1phase arrest and apoptosis in RRMM-BMMNC in a dose-dependent manner. The effects were significantly higher in all combined groups than in single-agent groups (all P<0.05). The mRNA level of Caspase3 and APAF1 were up-regulated gradually, while TOSO gene expression in RRMM-BMMNC was down-regulated gradually in a dose- and time-dependent manner. Moreover, LBH589 significantly induced hyperacetylation of histone H4, the protein level of PARP notably increased, and the level of Bcl-X decreased. Conclusions LBH589 can inhibit MM cell growth, block the cell cycle, and induce cell apoptosis, which has an anti-resistant effect on multidrug-resistant cells. LBH589 in combination with bortezomib has a synergistic effect on myeloma cells; its mechanism and reversal of drug resistance mechanism is involved in multiple changes in gene expression. PMID:29080899
Automated documentation generator for advanced protein crystal growth
NASA Technical Reports Server (NTRS)
Maddux, Gary A.; Provancha, Anna; Chattam, David
1994-01-01
To achieve an environment less dependent on the flow of paper, automated techniques of data storage and retrieval must be utilized. This software system, 'Automated Payload Experiment Tool,' seeks to provide a knowledge-based, hypertext environment for the development of NASA documentation. Once developed, the final system should be able to guide a Principal Investigator through the documentation process in a more timely and efficient manner, while supplying more accurate information to the NASA payload developer. The current system is designed for the development of the Science Requirements Document (SRD), the Experiment Requirements Document (ERD), the Project Plan, and the Safety Requirements Document.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Shashikumar, N. S.; Hayat, T.; Alsaedi, A.
2018-06-01
Present work aims to investigate the features of the exponential space dependent heat source (ESHS) and cross-diffusion effects in Marangoni convective heat mass transfer flow due to an infinite disk. Flow analysis is comprised with magnetohydrodynamics (MHD). The effects of Joule heating, viscous dissipation and solar radiation are also utilized. The thermal and solute field on the disk surface varies in a quadratic manner. The ordinary differential equations have been obtained by utilizing Von Kármán transformations. The resulting problem under consideration is solved numerically via Runge-Kutta-Fehlberg based shooting scheme. The effects of involved pertinent flow parameters are explored by graphical illustrations. Results point out that the ESHS effect dominates thermal dependent heat source effect on thermal boundary layer growth. The concentration and temperature distributions and their associated layer thicknesses are enhanced by Marangoni effect.
Thomas, Elizabeth; Gopalakrishnan, Vidya; Somasagara, Ranganatha R.; Choudhary, Bibha; Raghavan, Sathees C.
2016-01-01
Medicinal plants are considered as one of the ideal sources for cancer therapy due to their bioactive contents and low toxicity to humans. Vernonia genus is one of the common medicinal plants, which has wide spread usage in food and medicine. However, there are limited studies to explore its anticancer properties. In the current study, we have used Vernonia condensata, to explore its anticancer activity using various approaches. Here, we show that extract prepared from Vernonia condensata (VCE) exhibits cytotoxic properties against various cancer cells in a dose- and time-dependent manner. Interestingly, when treated with VCE, there was no significant cytotoxicity in peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis revealed that although VCE induced cell death, arrest was not observed. VCE treatment led to disruption of mitochondrial membrane potential in a concentration dependent manner resulting in activation of apoptosis culminating in cell death. Immunoblotting studies revealed that VCE activated intrinsic pathway of apoptosis. More importantly, VCE treatment resulted in tumor regression leading to significant enhancement in life span in treated mice, without showing any detectable side effects. Therefore, for the first time our study reveals the potential of extract from Vernonia condensata to be used as an anticancer agent. PMID:27009490
Jiang, Yilin; Miao, Junjie; Wang, Dongliang; Zhou, Jingru; Liu, Bo; Jiao, Feng; Liang, Jiangfeng; Wang, Yangshuo; Fan, Cungang; Zhang, Qingjun
2018-01-01
Significant antitumor activity of Momordica anti-human immunodeficiency virus protein of 30 kDa (MAP30) purified from Momordica charantia has been the subject of previous research. However, the effective mechanism of MAP30 on malignant glioma cells has not yet been clarified. The aim of the present study was to investigate the effects and mechanism of MAP30 on U87 and U251 cell lines. A Cell Counting Kit-8 assay, wound healing assay and Transwell assay were used to detect the effects on U87 and U251 cells treated with different concentrations of MAP30 (0.5, 1, 2, 4, 8 and 16 µM) over different periods of time. Proliferation, migration and invasion of each cell line were markedly inhibited by MAP30 in a dose- and time-dependent manner. Flow cytometry and fluorescence staining demonstrated that apoptosis increased and the cell cycle was arrested in S-phase in the two investigated cell lines following MAP30 treatment. Western blot analysis demonstrated that leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) expression and key proteins in the Wnt/β-catenin signaling pathway were apparently decreased, whereas second mitochondria-derived activator of caspase (Smac) protein expression significantly increased with MAP30 treatment in the same manner. These results suggest that MAP30 markedly induces apoptosis in U87 and U251 cell lines by suppressing LGR5 and the Wnt/β-catenin signaling pathway, and enhancing Smac expression in a dose- and time-dependent manner. PMID:29556310
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1987-01-01
It is known that a viscous fluid flow with curved streamlines can support both Tollmien-Schlichting and Taylor-Goertler instabilities. In a situation where both modes are possible on the basis of linear theory a nonlinear theory must be used to determine the effect of the interaction of the instabilities. The details of this interaction are of practical importance because of its possible catastrophic effects on mechanisms used for laminar flow control. This interaction is studied in the context of fully developed flows in curved channels. A part form technical differences associated with boundary layer growth the structures of the instabilities in this flow are very similar to those in the practically more important external boundary layer situation. The interaction is shown to have two distinct phases depending on the size of the disturbances. At very low amplitudes two oblique Tollmein-Schlichting waves interact with a Goertler vortex in such a manner that the amplitudes become infinite at a finite time. This type of interaction is described by ordinary differential amplitude equations with quadratic nonlinearities.
Gallic acid induced apoptotic events in HCT-15 colon cancer cells.
Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu
2016-04-21
To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2',7'-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells.
Gallic acid induced apoptotic events in HCT-15 colon cancer cells
Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu
2016-01-01
AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2’,7’-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells. PMID:27099438
Optimal energy growth in a stably stratified shear flow
NASA Astrophysics Data System (ADS)
Jose, Sharath; Roy, Anubhab; Bale, Rahul; Iyer, Krithika; Govindarajan, Rama
2018-02-01
Transient growth of perturbations by a linear non-modal evolution is studied here in a stably stratified bounded Couette flow. The density stratification is linear. Classical inviscid stability theory states that a parallel shear flow is stable to exponentially growing disturbances if the Richardson number (Ri) is greater than 1/4 everywhere in the flow. Experiments and numerical simulations at higher Ri show however that algebraically growing disturbances can lead to transient amplification. The complexity of a stably stratified shear flow stems from its ability to combine this transient amplification with propagating internal gravity waves (IGWs). The optimal perturbations associated with maximum energy amplification are numerically obtained at intermediate Reynolds numbers. It is shown that in this wall-bounded flow, the three-dimensional optimal perturbations are oblique, unlike in unstratified flow. A partitioning of energy into kinetic and potential helps in understanding the exchange of energies and how it modifies the transient growth. We show that the apportionment between potential and kinetic energy depends, in an interesting manner, on the Richardson number, and on time, as the transient growth proceeds from an optimal perturbation. The oft-quoted stabilizing role of stratification is also probed in the non-diffusive limit in the context of disturbance energy amplification.
Fu, San; Yang, Yanfang; Liu, Dan; Luo, Yan; Ye, Xiaochuan; Liu, Yanwen; Chen, Xin; Wang, Song; Wu, Hezhen; Wang, Yuhang; Hu, Qiwei; You, Pengtao
2017-01-01
In vitro evidence indicates that Smilax china L. rhizome (SCR) can inhibit cell proliferation. Therefore, in the present study, we analyzed the effects in vitro of SCR extracts on human lung adenocarcinoma A549 cells. Our results showed that A549 cell growth was inhibited in a dose- and time-dependent manner after treatment with SCR extracts. Total flavonoids and total tannins from SCR induced A549 apoptosis in a dose-dependent manner, as shown by our flow cytometry analysis, which was consistent with the alterations in nuclear morphology we observed. In addition, the total apoptotic rate induced by total tannins was higher than the rate induced by total flavonoids at the same dose. Cleaved-caspase-3 protein levels in A549 cells after treatment with total flavonoids or total tannins were increased in a dose-dependent manner, followed by the activation of caspase-8 and caspase-9, finally triggering to PARP cleavage. Furthermore, total flavonoids and total tannins increased the expression of Bax, decreased the expression of Bcl-2, and promoted cytochrome [Formula: see text] release. Moreover, MDM2 and p-MDM2 proteins were decreased, while p53 and p-p53 proteins were increased, both in a dose-dependent manner, after A549 treatment with total flavonoids and total tannins. Finally, cleaved-caspase-3 protein levels in the total flavonoids or total tannins-treated H1299 (p53 null) and p53-knockdown A549 cells were increased. Our results indicated that total flavonoids and total tannins from SCR exerted a remarkable effect in reducing A549 growth through their action on mitochondrial pathway and disruption of MDM2-p53 balance. Hence, our findings demonstrated a potential application of total flavonoids and total tannins from SCR in the treatment of human lung adenocarcinoma.
State of stress, faulting, and eruption characteristics of large volcanoes on Mars
NASA Technical Reports Server (NTRS)
Mcgovern, Patrick J.; Solomon, Sean C.
1993-01-01
The formation of a large volcano loads the underlying lithospheric plate and can lead to lithospheric flexure and faulting. In turn, lithospheric stresses affect the stress field beneath and within the volcanic edifice and can influence magma transport. Modeling the interaction of these processes is crucial to an understanding of the history of eruption characteristics and tectonic deformation of large volcanoes. We develop models of time-dependent stress and deformation of the Tharsis volcanoes on Mars. A finite element code is used that simulates viscoelastic flow in the mantle and elastic plate flexural behavior. We calculate stresses and displacements due to a volcano-shaped load emplaced on an elastic plate. Models variously incorporate growth of the volcanic load with time and a detachment between volcano and lithosphere. The models illustrate the manner in which time-dependent stresses induced by lithospheric plate flexure beneath the volcanic load may affect eruption histories, and the derived stress fields can be related to tectonic features on and surrounding martian volcanoes.
Yang, Yi; Zhao, Yi; Ai, Xinghao; Cheng, Baijun; Lu, Shun
2014-01-01
Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human non-small cell lung cancer (NSCLC), and further elucidated the molecular mechanism underlying the anti-tumor property. MTT assay showed that formononetin treatment significantly inhibited the proliferation of two NSCLC cell lines including A549 and NCI-H23 in a time- and dose-dependent manner. Flow cytometric analysis demonstrated that formononetin induced G1-phase cell cycle arrest and promoted cell apoptosis in NSCLC cells. On the molecular level, we observed that exposure to formononetin altered the expression levels of cell cycle arrest-associated proteins p21, cyclin A and cyclin D1. Meanwhile, the apoptosis-related proteins cleaved caspase-3, bax and bcl-2 were also changed following treatment with formononetin. In addition, the expression level of p53 was dose-dependently upregulated after administration with formononetin. We also found that formononetin treatment increased the phosphorylation of p53 at Ser15 and Ser20 and enhances its transcriptional activity in a dose-dependent manner. Collectively, these results demonstrated that formononetin might be a potential chemopreventive drug for lung cancer therapy through induction of cell cycle arrest and apoptosis in NSCLC cells.
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Chung, T. J.
2001-01-01
A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.
Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases
NASA Astrophysics Data System (ADS)
Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro
2016-01-01
This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.
Mikulecky, D C
1979-01-01
A two-port for coupled salt and current flow is created by using the network thermodynamic approach in the same manner as that for coupled solute and volume flow (Mikulecky et al., 1977b; Mikulecky, 1977). This electrochemical two-port has distinct advantages over the equivalent circuit representation and overcomes difficulties pointed out by Finkelstein and Mauro (1963). The electrochemical two-port is used to produce a schematic diagram of the coupled flows through a tissue. The network is superimposable on the tissue morphology and preserves the physical qualities of the flows and forces in each part of an organized structure (e.g., an epithelium). The topological properties are manipulated independently from the constitutive (flow-force) relations. The constitutive relations are chosen from a number of alternatives depending on the detail and rigor desired. With the topology and constitutive parameters specified, the steady-state behavior is simulated with a network simulation program. By using capacitance to represent the filling and depletion of compartments, as well as the traditional electrical capacitances, time-dependent behavior is also simulated. Nonlinear effects arising from the integration of equations describing local behavior (e.g., the Nernst-Planck equations) are dealt with explicitly. The network thermodynamic approach provides a simple, straightforward method for representing a system diagrammatically and then simulating the system's behavior from the diagram with a minimum of mathematical manipulation. PMID:262391
van der Gaast—de Jongh, Christa E.; Diavatopoulos, Dimitri A.; de Jonge, Marien I.
2017-01-01
The respiratory pathogen Streptococcus pneumoniae is a major cause of diseases such as otitis media, pneumonia, sepsis and meningitis. The first step towards infection is colonization of the nasopharynx. Recently, it was shown that agglutinating antibodies play an important role in the prevention of mucosal colonization with S. pneumoniae. Here, we present a novel method to quantify antibody-dependent pneumococcal agglutination in a high-throughput manner using flow cytometry. We found that the concentration of agglutinating antibodies against pneumococcal capsule are directly correlated with changes in the size and complexity of bacterial aggregates, as measured by flow cytometry and confirmed by light microscopy. Using the increase in size, we determined the agglutination index. The cutoff value was set by measuring a series of non-agglutinating antibodies. With this method, we show that not only anti-polysaccharide capsule antibodies are able to induce agglutination but that also anti-PspA protein antibodies have agglutinating capabilities. In conclusion, we have described and validated a novel method to quantify pneumococcal agglutination, which can be used to screen sera from murine or human vaccination studies, in a high-throughput manner. PMID:28288168
Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun
2012-11-09
Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.
Automatic Processing of Reactive Polymers
NASA Technical Reports Server (NTRS)
Roylance, D.
1985-01-01
A series of process modeling computer codes were examined. The codes use finite element techniques to determine the time-dependent process parameters operative during nonisothermal reactive flows such as can occur in reaction injection molding or composites fabrication. The use of these analytical codes to perform experimental control functions is examined; since the models can determine the state of all variables everywhere in the system, they can be used in a manner similar to currently available experimental probes. A small but well instrumented reaction vessel in which fiber-reinforced plaques are cured using computer control and data acquisition was used. The finite element codes were also extended to treat this particular process.
Chen, Zengsheng; Mondal, Nandan K; Zheng, Shirong; Koenig, Steven C; Slaughter, Mark S; Griffith, Bartley P; Wu, Zhongjun J
2017-11-28
Thrombosis and bleeding are devastating adverse events in patients supported with blood-contacting medical devices (BCMDs). In this study, we delineated that high non-physiological shear stress (NPSS) caused platelet dysfunction that may contribute to both thrombosis and bleeding. Human blood was subjected to NPSS with short exposure time. Levels of platelet surface GPIbα and GPVI receptors as well as activation level of GPIIb/IIIa in NPSS-sheared blood were examined with flow cytometry. Adhesion of sheared platelets on fibrinogen, von Willibrand factor (VWF), and collagen was quantified with fluorescent microscopy. Ristocetin- and collagen-induced platelet aggregation was characterized by aggregometry. NPSS activated platelets in a shear and exposure time-dependent manner. The number of activated platelets increased with increasing levels of NPSS and exposure time, which corresponded well with increased adhesion of sheared platelets on fibrinogen. Concurrently, NPSS caused shedding of GPIbα and GPVI in a manner dependent on shear and exposure time. The loss of intact GPIbα and GPVI increased with increasing levels of NPSS and exposure time. The number of platelets adhered on VWF and collagen decreased with increasing levels of NPSS and exposure time, respectively. The decrease in the number of platelets adhered on VWF and collagen corresponded well with the loss in GPIbα and GPVI on platelet surface. Both ristocetin- and collagen-induced platelet aggregation in sheared blood decreased with increasing levels of NPSS and exposure time. The study clearly demonstrated that high NPSS causes simultaneous platelet activation and receptor shedding, resulting in a paradoxical effect on platelet function via two distinct mechanisms. The results from the study suggested that the NPSS could induce the concurrent propensity for both thrombosis and bleeding in patients.
Modeling the Inhomogeneous Response of Steady and Transient Flows of Entangled Micellar Solutions
NASA Astrophysics Data System (ADS)
McKinley, Gareth
2008-03-01
Surfactant molecules can self-assemble in solution into long flexible structures known as wormlike micelles. These structures entangle, forming a viscoelastic network similar to those in entangled polymer melts and solutions. However, in contrast to `inert' polymeric networks, wormlike micelles continuously break and reform leading to an additional relaxation mechanism and the name `living polymers'. Observations in both classes of entangled fluids have shown that steady and transient shearing flows of these solutions exhibit spatial inhomogeneities such as `shear-bands' at sufficiently large applied strains. In the present work, we investigate the dynamical response of a class of two-species elastic network models which can capture, in a self-consistent manner, the creation and destruction of elastically-active network segments, as well as diffusive coupling between the microstructural conformations and the local state of stress in regions with large spatial gradients of local deformation. These models incorporate a discrete version of the micellar breakage and reforming dynamics originally proposed by Cates and capture, at least qualitatively, non-affine tube deformation and chain disentanglement. The `flow curves' of stress and apparent shear rate resulting from an assumption of homogeneous deformation is non-monotonic and linear stability analysis shows that the region of non-monotonic response is unstable. Calculation of the full inhomogeneous flow field results in localized shear bands that grow linearly in extent across the gap as the apparent shear rate increases. Time-dependent calculations in step strain, large amplitude oscillatory shear (LAOS) and in start up of steady shear flow show that the velocity profile in the gap and the total stress measured at the bounding surfaces are coupled and evolve in a complex non-monotonic manner as the shear bands develop and propagate.
Lin, Sheng-yun; Shen, Chu-yun; Jiang, Jian-ping; Wu, Li-qiang; Dai, Tie-ying; Qian, Wen-bing; Meng, Hai-tao
2013-04-01
To explore the proliferation inhibition and apoptosis effects of polysaccharides extracts from Hedyotis diffusa (PEHD) on multiple myeloma (MM) cell line RPMI 8226 cells in vitro, so as to provide experimental theory for the clinical application in the treatment of MM. MTT assay was used to examine the effects of PEHD on cell growth. The apoptotic cells were analyzed by flow cytometry with AnnexinⅤ/PI staining. Hoechst staining was used to observe the morphological changes of RPMI 8226 cell apoptosis. The expression levels of caspase-3,-8,-9, PARP, nucleoprotein NF-κB protein and other channel protein were assayed by Western blotting method. The growth of RPMI 8226 cells were suppressed after treatment with PEHD, the highest inhibition rate reached to 92.3%, the results in the doses from 1 to 4 mg/ml showed a dose-and-time-dependent manner. The proportion of apoptotic cells in 1, 2 and 3 mg/ml PEHD treatment groups for 24 h were 22.52%, 62.31% and 69.94%, respectively, and significantly higher than that of control 8.93%. After treated with PEHD, apoptotic body appeared in RPMI 8226 cells nucleus and the number of apoptotic body increased in a dose-dependent manner. With the increasing of PEHD concentration, the expression of caspase-8,-9,-3 and PARP protein increased. The expression of Mcl-1, Bcl-xl, Bid and Bim protein decreased gradually, but the expression of Bax, Bak and Bad protein increased, and the expression of p-AKT protein (60 kDa) and NF-κB obviously decreased. PEHD could inhibited the growth of RPMI 8226 cells and displayed a dose-and-time-dependent manner, its mechanism may involve cell apoptosis induction, which was associated with the activation of caspase-8, caspase-9, and caspase-3 protein and the down-regulation of p-AKT and NF-κB protein expression.
Intracellular pathways following uptake of bevacizumab in RPE cells.
Aboul Naga, Shereen Hassan; Dithmer, Michaela; Chitadze, Guranda; Kabelitz, Dieter; Lucius, Ralph; Roider, Johann; Klettner, Alexa
2015-02-01
The anti-VEGF antibody bevacizumab is widely used off-label for the treatment of various ocular diseases, most commonly in age-related macular degeneration and diabetic macular edema. Bevacizumab is able to penetrate the retina and is found in the choroid after intravitreal injection in a time dependent manner. It has previously been shown to be taken up by the retinal pigment epithelium (RPE). In this study, we have investigated the intracellular pathway following uptake of bevacizumab in RPE cells, tested both in primary porcine RPE cells and in the human cell line ARPE19. Bevacizumab displays a characteristic, time-dependent pattern of intracellular distribution, as detected by immunofluorescence and pulse chase experiments. In both primary cells and the cell line, intracellular bevacizumab can be found after seven days, as detected by immunofluorescence and Western blotting. Immediately after application, bevacizumab partially colocalizes with Rab5, indicating some uptake in early endosomes. Intracellularly, bevacizumab is detected in the cytoskeletal fraction, aligning with actin filaments, as revealed by subcellular fractioning and immunofluorescence. Bevacizumab seems to travel along actin filaments by myosin7a, as determined by triple staining immunofluorescence. Interestingly, over a period of seven days, bevacizumab seems to accumulate in certain storage areas, as observed by immunofluorescence. Furthermore, results obtained with immunocytochemistry, Western blotting and flow cytometry indicate that bevacizumab may be released from the RPE cells via exosomes. In conclusion, bevacizumab is taken up by and transported in the retinal pigment epithelial cells in a characteristic, time-dependent manner, where it seems to move along actin filaments by myosin7a and seem to be partially released from the cells via exosomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie
2015-01-01
Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks.
Yang, Su; Shi, Shixiong; Hu, Xiaobing; Wang, Minjie
2015-01-01
Spatial-temporal correlations among the data play an important role in traffic flow prediction. Correspondingly, traffic modeling and prediction based on big data analytics emerges due to the city-scale interactions among traffic flows. A new methodology based on sparse representation is proposed to reveal the spatial-temporal dependencies among traffic flows so as to simplify the correlations among traffic data for the prediction task at a given sensor. Three important findings are observed in the experiments: (1) Only traffic flows immediately prior to the present time affect the formation of current traffic flows, which implies the possibility to reduce the traditional high-order predictors into an 1-order model. (2) The spatial context relevant to a given prediction task is more complex than what is assumed to exist locally and can spread out to the whole city. (3) The spatial context varies with the target sensor undergoing prediction and enlarges with the increment of time lag for prediction. Because the scope of human mobility is subject to travel time, identifying the varying spatial context against time lag is crucial for prediction. Since sparse representation can capture the varying spatial context to adapt to the prediction task, it outperforms the traditional methods the inputs of which are confined as the data from a fixed number of nearby sensors. As the spatial-temporal context for any prediction task is fully detected from the traffic data in an automated manner, where no additional information regarding network topology is needed, it has good scalability to be applicable to large-scale networks. PMID:26496370
Flow studies in canine artery bifurcations using a numerical simulation method.
Xu, X Y; Collins, M W; Jones, C J
1992-11-01
Three-dimensional flows through canine femoral bifurcation models were predicted under physiological flow conditions by solving numerically the time-dependent three-dimensional Navier-stokes equations. In the calculations, two models were assumed for the blood, those of (a) a Newtonian fluid, and (b) a non-Newtonian fluid obeying the power law. The blood vessel wall was assumed to be rigid this being the only approximation to the prediction model. The numerical procedure utilized a finite volume approach on a finite element mesh to discretize the equations, and the code used (ASTEC) incorporated the SIMPLE velocity-pressure algorithm in performing the calculations. The predicted velocity profiles were in good qualitative agreement with the in vivo measurements recently obtained by Jones et al. The non-Newtonian effects on the bifurcation flow field were also investigated, and no great differences in velocity profiles were observed. This indicated that the non-Newtonian characteristics of the blood might not be an important factor in determining the general flow patterns for these bifurcations, but could have local significance. Current work involves modeling wall distensibility in an empirically valid manner. Predictions accommodating these will permit a true quantitative comparison with experiment.
U.S. stream flow measurement and data dissemination improve
Hirsch, Robert M.; Costa, John E.
2004-01-01
Stream flow information is essential for many important uses across a broad range of scales, including global water balances, engineering design, flood forecasting, reservoir operations, navigation, water supply, recreation, and environmental management. Growing populations and competing priorities for water, including preservation and restoration of aquatic habitat, are spurring demand for more accurate, timely, and accessible water data.To be most useful, stream flow information must be collected in a standardized manner, with a known accuracy, and for a long and continuous time period.
Li, Min; Sun, Wan; Yang, Ya-ping; Xu, Bo; Yi, Wen-yuan; Ma, Yan-xia; Li, Zhong-jun; Cui, Jing-rong
2009-01-01
To investigate the anticancer property and possible mechanism of action of a novel sugar-substituted thalidomide derivative (STA-35) on HL-60 cells in vitro. TNF-alpha-induced NF-kappaB activation was determined using a reporter gene assay. The MTT assay was used to measure cytotoxicity of the compound. The appearance of apoptotic Sub-G1 cells was detected by flow cytometry analysis. PARP cleavage and protein expression of NF-kappaB p65 and its inhibitor IkappaB were viewed by Western blotting. TA-35 (1-20 micromol/L) suppressed TNF-alpha-induced NF-kappaB activation in transfected cells (HEK293/pNiFty-SEAP) in a dose- (1-20 micromol/L) and time-dependent (0-48 h) manner. It was also shown that STA-35 exerted a dose-dependent inhibitory effect on HL-60 cell proliferation with an IC(50) value of 9.05 micromol/L. In addition, STA-35 induced apoptosis in HL-60 cells, as indicated by the appearance of a Sub-G1 peak in the cell cycle distribution, as well as poly ADP-ribose polymerase (PARP) cleavage. Subsequently, both NF-kappaB p65 and its inhibitor IkappaB gradually accumulated in cytoplasmic extracts in a dose- and time-dependent manner, indicating the blockage of NF-kappaB translocation induced by TNF-alpha from the cytoplasm to the nucleus. A novel sugar-substituted thalidomide derivative, STA-35, is potent toward HL-60 cells in vitro and induces apoptosis by the suppression of NF-kappaB activation.
Bailey, KL; Poole, JA; Mathisen, TL; Wyatt, TA; Von Essen, SG; Romberger, DJ
2009-01-01
Hog confinement workers are at high risk to develop chronic bronchitis as a result of their exposure to organic dust. Chronic bronchitis is characterized by inflammatory changes of the airway epithelium. A key mediator in inflammation is Toll-like receptor 2 (TLR2). We investigated the role of TLR2 in pulmonary inflammation induced by hog confinement dust. Normal Human Bronchial Epithelial Cells (NHBE) were grown in culture and exposed to hog confinement dust extract. Hog confinement dust upregulated airway epithelial cell TLR2 mRNA in a concentration and time-dependent manner using real-time PCR. There was a similar increase in TLR2 protein at 48 hours as shown by Western blot. TLR2 was upregulated on the surface of airway epithelial cells as shown by flow cytometry. A similar upregulation of pulmonary TLR2 mRNA and protein was shown in a murine model of hog confinement dust exposure. Hog confinement dust is known to stimulate epithelial cells to produce IL-6. In order to determine whether TLR2 expression was being regulated by IL-6, the production of IL-6 was blocked using an IL-6 neutralizing antibody. This resulted in attenuation of the dust-induced upregulation of TLR2. To further demonstrate the importance of IL-6 in the regulation of TLR2, NHBE were directly stimulated with recombinant human IL-6. IL-6 alone was able to upregulate TLR2 in airway epithelial cells. Hog confinement dust upregulates TLR2 in the airway epithelium through an IL-6 dependent mechanism. PMID:18359883
Yang, Yi; Zhao, Yi; Ai, Xinghao; Cheng, Baijun; Lu, Shun
2014-01-01
Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human non-small cell lung cancer (NSCLC), and further elucidated the molecular mechanism underlying the anti-tumor property. MTT assay showed that formononetin treatment significantly inhibited the proliferation of two NSCLC cell lines including A549 and NCI-H23 in a time- and dose-dependent manner. Flow cytometric analysis demonstrated that formononetin induced G1-phase cell cycle arrest and promoted cell apoptosis in NSCLC cells. On the molecular level, we observed that exposure to formononetin altered the expression levels of cell cycle arrest-associated proteins p21, cyclin A and cyclin D1. Meanwhile, the apoptosis-related proteins cleaved caspase-3, bax and bcl-2 were also changed following treatment with formononetin. In addition, the expression level of p53 was dose-dependently upregulated after administration with formononetin. We also found that formononetin treatment increased the phosphorylation of p53 at Ser15 and Ser20 and enhances its transcriptional activity in a dose-dependent manner. Collectively, these results demonstrated that formononetin might be a potential chemopreventive drug for lung cancer therapy through induction of cell cycle arrest and apoptosis in NSCLC cells. PMID:25674209
Effects of demethoxycurcumin on the viability and apoptosis of skin cancer cells.
Wu, Yaoqun; Zhang, Pei; Yang, Hongyun; Ge, Yong; Xin, Yong
2017-07-01
The present study investigated the effects and mechanisms of demethoxycurcumin (DMC) on a human skin squamous cell carcinoma cell line, A431, and a human keratinocyte cell line, HaCaT. A431 and HaCaT cells were cultured in vitro. The effects of DMC treatment on cell viability were analyzed using the Cell Counting kit‑8 (CCK‑8) assay; cell cycle distribution was analyzed by flow cytometry; apoptosis was assessed by flow cytometry and Hoechst 33258 staining; and the protein expression levels of cytochrome c, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (BAX), caspase‑9 and caspase‑3 were evaluated by western blotting. CCK‑8 assay results demonstrated that DMC treatment significantly inhibited viability of A431 and HaCaT cells in a dose‑dependent manner. Flow cytometric analysis confirmed that DMC treatment induced apoptosis in a dose‑dependent manner, and significantly increased the proportion of cells in G2/M phase. Western blot analysis indicated that the protein expression levels of Bcl‑2 were decreased, whereas the expression levels of BAX, caspase‑9, caspase‑3 and cytochrome c were increased following DMC treatment compared with in untreated cells. In conclusion, DMC treatment significantly inhibited viability of A431 and HaCaT cells, and induced cell cycle arrest in G2/M phase. The present study indicated that DMC may induce apoptosis of skin cancer cells through a caspase‑dependent pathway.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, R. W.
1992-01-01
The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable, and another one of our goals is to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulation). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.
Mapping of volcanic units at Alba Patera, Mars
NASA Technical Reports Server (NTRS)
Cattermole, Peter
1987-01-01
Detailed photogeologic mapping of Alba Patera, Northern Tharsis, was completed and a geologic map prepared. This was supplemented by a series of detailed volcanic flow maps and used to study the morphometry of different flow types and analyze the way in which the behavior of the volcano has changed with time and also the manner in which flow fields developed in different sectors of the structure.
Lu, Ying-Ying; Chen, Tong-Sheng; Qu, Jun-Le; Pan, Wen-Liang; Sun, Lei; Wei, Xun-Bin
2009-01-01
Background Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, is recommended as the first-line anti-malarial drug with low toxicity. DHA has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways, although the molecular mechanisms are not well understood. Methods In this study, cell counting kit (CCK-8) assay was employed to evaluate the survival of DHA-treated ASTC-a-1 cells. The induction of apoptosis was detected by Hoechst 33258 and PI staining as well as flow cytometry analysis. Collapse of mitochondrial transmembrane potential (ΔΨm) was measured by dynamic detection under a laser scanning confocal microscope and flow cytometry analysis using Rhodamine123. Caspase-3 activities measured with or without Z-VAD-fmk (a broad spectrum caspase inhibitor) pretreatment by FRET techniques, caspase-3 activity measurement, and western blotting analysis. Results Our results indicated that DHA induced apoptotic cell death in a dose- and time-dependent manner, which was accompanied by mitochondrial morphology changes, the loss of ΔΨm and the activation of caspase-3. Conclusion These results show for the first time that DHA can inhibit proliferation and induce apoptosis via caspase-3-dependent mitochondrial death pathway in ASTC-a-1 cells. Our work may provide evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of lung adenocarcinoma. PMID:19272183
Lehmann, Marcus; Schoeman, Rogier M; Krohl, Patrick J; Wallbank, Alison M; Samaniuk, Joseph R; Jandrot-Perrus, Martine; Neeves, Keith B
2018-05-01
The objective of this study was to measure the role of platelets and red blood cells on thrombus propagation in an in vitro model of venous valvular stasis. A microfluidic model with dimensional similarity to human venous valves consists of a sinus distal to a sudden expansion, where for sufficiently high Reynolds numbers, 2 countercurrent vortices arise because of flow separation. The primary vortex is defined by the points of flow separation and reattachment. A secondary vortex forms in the deepest recess of the valve pocket characterized by low shear rates. An initial fibrin gel formed within the secondary vortex of a tissue factor-coated valve sinus. Platelets accumulated at the interface of the fibrin gel and the primary vortex. Red blood cells at physiological hematocrits were necessary to provide an adequate flux of platelets to support thrombus growth out of the valve sinus. A subpopulation of platelets that adhered to fibrin expose phosphatidylserine. Platelet-dependent thrombus growth was attenuated by inhibition of glycoprotein VI with a blocking Fab fragment or D-dimer. A 3-step process regulated by hemodynamics was necessary for robust thrombus propagation: First, immobilized tissue factor initiates coagulation and fibrin deposition within a low flow niche defined by a secondary vortex in the pocket of a model venous valve. Second, a primary vortex delivers platelets to the fibrin interface in a red blood cell-dependent manner. Third, platelets adhere to fibrin, activate through glycoprotein VI, express phosphatidylserine, and subsequently promote thrombus growth beyond the valve sinus and into the bulk flow. © 2018 American Heart Association, Inc.
Advanced in Visualization of 3D Time-Dependent CFD Solutions
NASA Technical Reports Server (NTRS)
Lane, David A.; Lasinski, T. A. (Technical Monitor)
1995-01-01
Numerical simulations of complex 3D time-dependent (unsteady) flows are becoming increasingly feasible because of the progress in computing systems. Unfortunately, many existing flow visualization systems were developed for time-independent (steady) solutions and do not adequately depict solutions from unsteady flow simulations. Furthermore, most systems only handle one time step of the solutions individually and do not consider the time-dependent nature of the solutions. For example, instantaneous streamlines are computed by tracking the particles using one time step of the solution. However, for streaklines and timelines, particles need to be tracked through all time steps. Streaklines can reveal quite different information about the flow than those revealed by instantaneous streamlines. Comparisons of instantaneous streamlines with dynamic streaklines are shown. For a complex 3D flow simulation, it is common to generate a grid system with several millions of grid points and to have tens of thousands of time steps. The disk requirement for storing the flow data can easily be tens of gigabytes. Visualizing solutions of this magnitude is a challenging problem with today's computer hardware technology. Even interactive visualization of one time step of the flow data can be a problem for some existing flow visualization systems because of the size of the grid. Current approaches for visualizing complex 3D time-dependent CFD solutions are described. The flow visualization system developed at NASA Ames Research Center to compute time-dependent particle traces from unsteady CFD solutions is described. The system computes particle traces (streaklines) by integrating through the time steps. This system has been used by several NASA scientists to visualize their CFD time-dependent solutions. The flow visualization capabilities of this system are described, and visualization results are shown.
Fernandes, Elizabeth S; Russell, Fiona A; Alawi, Khadija M; Sand, Claire; Liang, Lihuan; Salamon, Robin; Bodkin, Jennifer V; Aubdool, Aisah A; Arno, Matthew; Gentry, Clive; Smillie, Sarah-Jane; Bevan, Stuart; Keeble, Julie E; Malcangio, Marzia; Brain, Susan D
2016-01-11
The effect of cold temperature on arthritis symptoms is unclear. The aim of this study was to investigate how environmental cold affects pain and blood flow in mono-arthritic mice, and examine a role for transient receptor potential ankyrin 1 (TRPA1), a ligand-gated cation channel that can act as a cold sensor. Mono-arthritis was induced by unilateral intra-articular injection of complete Freund's adjuvant (CFA) in CD1 mice, and in mice either lacking TRPA1 (TRPA1 KO) or respective wildtypes (WT). Two weeks later, nociception and joint blood flow were measured following exposure to 10 °C (1 h) or room temperature (RT). Primary mechanical hyperalgesia in the knee was measured by pressure application apparatus; secondary mechanical hyperalgesia by automated von Frey system; thermal hyperalgesia by Hargreaves technique, and weight bearing by the incapacitance test. Joint blood flow was recorded by full-field laser perfusion imager (FLPI) and using clearance of (99m)Technetium. Blood flow was assessed after pretreatment with antagonists of either TRPA1 (HC-030031), substance P neurokinin 1 (NK1) receptors (SR140333) or calcitonin gene-related peptide (CGRP) (CGRP8-37). TRPA1, TAC-1 and CGRP mRNA levels were examined in dorsal root ganglia, synovial membrane and patellar cartilage samples. Cold exposure caused bilateral primary mechanical hyperalgesia 2 weeks after CFA injection, in a TRPA1-dependent manner. In animals maintained at RT, clearance techniques and FLPI showed that CFA-treated joints exhibited lower blood flow than saline-treated joints. In cold-exposed animals, this reduction in blood flow disappears, and increased blood flow in the CFA-treated joint is observed using FLPI. Cold-induced increased blood flow in CFA-treated joints was blocked by HC-030031 and not observed in TRPA1 KOs. Cold exposure increased TRPA1 mRNA levels in patellar cartilage, whilst reducing it in synovial membranes from CFA-treated joints. We provide evidence that environmental cold exposure enhances pain and increases blood flow in a mono-arthritis model. These changes are dependent on TRPA1. Thus, TRPA1 may act locally within the joint to influence blood flow via sensory nerves, in addition to its established nociceptive actions.
Multi-scale simulations of droplets in generic time-dependent flows
NASA Astrophysics Data System (ADS)
Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico
2017-11-01
We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.
Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway.
Cai, Jun; Peng, Yanxia; Chen, Ting; Liao, Huanjin; Zhang, Lifang; Chen, Qiuhua; He, Yiming; Wu, Ping; Xie, Tong; Pan, Qingjun
2016-12-10
BACKGROUND There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood. MATERIAL AND METHODS This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting. RESULTS The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways. CONCLUSIONS Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation.
Chloral Hydrate Treatment Induced Apoptosis of Macrophages via Fas Signaling Pathway
Cai, Jun; Peng, Yanxia; Chen, Ting; Liao, Huanjin; Zhang, Lifang; Chen, Qiuhua; He, Yiming; Wu, Ping; Xie, Tong; Pan, Qingjun
2016-01-01
Background There are recent reports on several anesthetics that have anti-inflammatory and anti-infective effects apart from their uses for pain relief and muscle relaxation. Chloral hydrate is a clinical anesthetic drug and sedative that has also been reported to attenuate inflammatory response, but the mechanisms are not clearly understood. Material/Methods This study investigated the effect of chloral hydrate treatment on the apoptosis of macrophages and explored the underlying mechanisms. RAW264.7 macrophages were treated with various concentrations of chloral hydrate for various lengths of time. Morphological changes were observed under a light microscope and apoptosis was detected with annexin-V-FITC/PI double-staining assay, Hochest 33258 and DNA ladder assay, the expression of Fas/FasL was detected with a flow cytometer, and the Fas signaling pathway was assessed by Western blotting. Results The results showed that chloral hydrate treatment induced the morphology of RAW264.7 macrophages to change shape from typical fusiform to round in a concentration- and time-dependent manner, and was finally suspended in the supernatant. For the induction of apoptosis, chloral hydrate treatment induced the apoptosis of RAW264.7 macrophages from early-to-late stage apoptosis in a concentration- and time-dependent manner. For the mechanism, chloral hydrate treatment induced higher expression of Fas on RAW264.7 macrophages, and was also associated with changes in the expression of proteins involved in Fas signaling pathways. Conclusions Chloral hydrate treatment can induce the apoptosis of RAW264.7 macrophages through the Fas signaling pathway, which may provide new options for adjunctive treatment of acute inflammation. PMID:27941708
Antibodies enhance CXCL10 production during RSV infection of infant and adult immune cells.
Vissers, Marloes; Schreurs, Inge; Jans, Jop; Heldens, Jacco; de Groot, Ronald; de Jonge, Marien I; Ferwerda, Gerben
2015-12-01
Respiratory syncytial virus (RSV) bronchiolitis is a major burden in infants below three months of age, when the primary immune response is mainly dependent on innate immunity and maternal antibodies. We investigated the influence of antibodies on innate immunity during RSV infection. PBMCs from infants and adults were stimulated with live RSV and inactivated RSV in combination with antibody-containing and antibody-depleted serum. The immune response was determined by transcriptome analysis and chemokine levels were measured using ELISA and flow cytometry. Microarray data showed that CXCL10 gene transcription was RSV dependent, whereas CXCL11 and IFNα were upregulated in an antibody-dependent manner. Although the presence of antibodies reduces RSV infection rate, it enhances the innate immune response. In adult immune cells, antibodies enhance CXCL10, CXCL11, IFNα and IFNγ production in response to RSV infection. Contrary, in infant immune cells only CXCL10 was enhanced in an antibody-dependent manner. Monocytes are the main source of CXCL10 and they produce CXCL10 in both an antibody- and virus-dependent manner. This study shows that antibodies enhance CXCL10 production in infant immune cells. CXCL10 has been implicated in exuberating the inflammatory response during viral infections and antibodies could therefore play a role in the pathogenesis of RSV infections. Copyright © 2015 Elsevier Ltd. All rights reserved.
Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E
2016-08-01
Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway.
Xiang, Tao; Fang, Yong; Wang, Shi-Xuan
2014-10-01
To explore the effect of quercetin on the proliferation and apoptosis of HeLa cells, HeLa cells were incubated with quercetin at different concentrations. Cell viability was evaluated by MTT assay, cell apoptosis was detected by Annexin-V/PI double labeled cytometry and DNA ladder assay. Cell cycle was flow cytometrically determined and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33258 staining and the apoptosis-related proteins in the HeLa cells were assessed by Western blotting. The results showed that quercetin significantly inhibited the growth of HeLa cells and induced obvious apoptosis in vitro in a time- and dose-dependent manner. Moreover, quercetin induced apoptosis of HeLa cells in cell cycle-dependent manner because quercetin could induce arrest of HeLa cells at G0/G1 phase. Quercetin treatment down-regulated the expression of the PI3K and p-Akt. In addition, quercetin could down-regulate expression of bcl-2, up-regulate Bax, but exerted no effect on the overall expression of Akt. We are led to conclude that quercetin induces apoptosis via PI3k/Akt pathways, and quercetin has potential to be used as an anti-tumor agent against human cervix cancer.
On Noether's Theorem for the Invariant of the Time-Dependent Harmonic Oscillator
ERIC Educational Resources Information Center
Abe, Sumiyoshi; Itto, Yuichi; Matsunaga, Mamoru
2009-01-01
The time-dependent oscillator describing parametric oscillation, the concept of invariant and Noether's theorem are important issues in physics education. Here, it is shown how they can be interconnected in a simple and unified manner.
Effects of ischemic stroke on dynamics of cerebral autoregulation
NASA Astrophysics Data System (ADS)
Chen, Zhi; Ivanov, Plamen Ch; Hu, Kun; Stanley, Eugene; Novak, Vera
2004-03-01
Cerebral vasoregulation involves several complex mechanisms adapting blood flow to fluctuations of systemic blood pressure (BP). Autonomic BP and metabolic vasoregulation are impaired after stroke and cerebral blood flow depends on systemic BP. To probe the mechanisms of cerebral autoregulation we study levels of nonlinear synchronization between cerebral blood flow velocity (BFV) and peripheral BP. We quantify the instantaneous phase of each signal employing analytic signal approach and Hilbert transform. As a marker of synchronization, we introduce a measure of cross-correlation between the instantaneous phase increments of the BFV and BP signals at different time lags. We have studied 12 subjects with minor chronic ischemic stroke and 11 matched normotensive controls (age<65years). BFV and BP of these subjects are continuously recorded during supine baseline, head-up tilt, hyperventilation and CO2 rebreathing. For control subjects we find significant synchronization between cerebral BFV and peripheral BP only for short time lags of up to 5-6 seconds, suggesting a rapid return to a steady cerebral blood flow after initial blood pressure perturbations. In contrast, for stroke subjects BFV/BP we find enhanced synchronization over longer time lags of up to 20 seconds, suggesting entrainment of cerebral blood flow velocity by slow vasomotor rhythms. These findings suggest that cerebral vasoregulation is impaired and cerebral blood flow follows the fluctuations of systemic BP in a synchronous manner. Our analysis shows that cerebral autoregulation is impaired in 10 out of the 12 stroke subjects, which is typically difficult to diagnose with conventional methods. Thus, our novel synchronization approach offers a new tool sensitive for evaluation of changes in the dynamics of cerebral autoregulation under stroke.
Inertial objects in complex flows
NASA Astrophysics Data System (ADS)
Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip
2017-11-01
Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.
A real-time device for converting Doppler ultrasound audio signals into fluid flow velocity
Hogeman, Cynthia S.; Koch, Dennis W.; Krishnan, Anandi; Momen, Afsana; Leuenberger, Urs A.
2010-01-01
A Doppler signal converter has been developed to facilitate cardiovascular and exercise physiology research. This device directly converts audio signals from a clinical Doppler ultrasound imaging system into a real-time analog signal that accurately represents blood flow velocity and is easily recorded by any standard data acquisition system. This real-time flow velocity signal, when simultaneously recorded with other physiological signals of interest, permits the observation of transient flow response to experimental interventions in a manner not possible when using standard Doppler imaging devices. This converted flow velocity signal also permits a more robust and less subjective analysis of data in a fraction of the time required by previous analytic methods. This signal converter provides this capability inexpensively and requires no modification of either the imaging or data acquisition system. PMID:20173048
Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces
NASA Astrophysics Data System (ADS)
Bautista, Oscar; Sanchez, Salvador; Mendez, Federico
2015-11-01
In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.
Soltani, Mozhgan; Parivar, Kazem; Baharara, Javad; Kerachian, Mohammad Amin; Asili, Javad
2015-01-01
Objective(s): Marine organisms are known as a potential source of natural products, which contain bioactive substances with therapeutic properties. Sea cucumbers are prominent among marine organisms because of their dietary and therapeutic applications. In addition, they have capacity of synthesizing saponins molecules and other metabolites with therapeutic properties such as antitumor, antimicrobial, anti-inflammatory and antioxidant activities. The aim of this study was to evaluate the antioxidant and pro-apoptotic effects of sea cucumber saponins (SCS) isolated from Holothuria leucospilota species. Materials and Methods: Evaluation of antioxidant activity of SCS was carried out by DPPH (1, 1-diphenyl-2-picrylhydrazyl), ABTS (azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), power reducing and total antioxidant assays. The anti-proliferative effect was studied by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. Mechanisms leading to apoptosis were also evaluated by fluorescence microscopy, flow cytometry and real time PCR. Results: The results showed that the DPPH and ABTS activities increased in a dose dependent manner. The reducing capacity enhanced with increasing concentration of the saponin extract (0 to 2 mg/ml). The SCS exhibited moderate total antioxidant activity. Evaluation of anti-proliferative effect revealed that SCS with IC50 of about 6 μg/ml, can display a good cytotoxic activity in a dose dependent manner. Further apoptosis induction was confirmed by fluorescence microscopy and flow cytometry. Sea cucumber saponin was also found to exert a pro-apoptotic effect by increasing the expression of Bax and decreasing the expression of Bcl2. Conclusion: These results indicate that the SCS may act as a natural antioxidant and antitumor agent. PMID:25810893
Yang, Shucai; Ma, Jing; Xiao, Jianbing; Lv, Xiaohong; Li, Xinlei; Yang, Huike; Liu, Ying; Feng, Sijia; Zhang, Yafang
2012-08-01
Bladder cancer is the most common neoplasm in the urinary system. This study assesses arctigenin anti-tumor activity in human bladder cancer T24 cells in vitro and the underlying molecular events. The flow cytometry analysis was used to detect cell-cycle distribution and apoptosis. Western blotting was used to detect changes in protein expression. The data showed that arctigenin treatment reduced viability of bladder cancer T24 cells in a dose- and time-dependent manner after treatment with arctigenin (10, 20, 40, 80, and 100 μmol/L) for 24 hr and 48 hr. Arctigenin treatment clearly arrested tumor cells in the G1 phase of the cell cycle. Apoptosis was detected by hoechst stain and flow cytometry after Annexin-V-FITC/PI double staining. Early and late apoptotic cells were accounted for 2.32-7.01% and 3.07-7.35%, respectively. At the molecular level, arctigenin treatment decreased cyclin D1 expression, whereas CDK4 and CDK6 expression levels were unaffected. Moreover, arctigenin selectively altered the phosphorylation of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 and activated phosphorylation of p38 significantly in a dose-dependent manner. These results suggest that arctigenin may inhibit cell viability and induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the anti-tumor effect of arctigenin. The data from the current study demonstrate the usefulness of arctigenin in bladder cancer T24 cells, which should further be evaluated in vivo before translation into clinical trials for the chemoprevention of bladder cancer. Copyright © 2012 Wiley Periodicals, Inc.
Rapid feature-driven changes in the attentional window.
Leonard, Carly J; Lopez-Calderon, Javier; Kreither, Johanna; Luck, Steven J
2013-07-01
Spatial attention must adjust around an object of interest in a manner that reflects the object's size on the retina as well as the proximity of distracting objects, a process often guided by nonspatial features. This study used ERPs to investigate how quickly the size of this type of "attentional window" can adjust around a fixated target object defined by its color and whether this variety of attention influences the feedforward flow of subsequent information through the visual system. The task involved attending either to a circular region at fixation or to a surrounding annulus region, depending on which region contained an attended color. The region containing the attended color varied randomly from trial to trial, so the spatial distribution of attention had to be adjusted on each trial. We measured the initial sensory ERP response elicited by an irrelevant probe stimulus that appeared in one of the two regions at different times after task display onset. This allowed us to measure the amount of time required to adjust spatial attention on the basis of the location of the task-relevant feature. We found that the probe-elicited sensory response was larger when the probe occurred within the region of the attended dots, and this effect required a delay of approximately 175 msec between the onset of the task display and the onset of the probe. Thus, the window of attention is rapidly adjusted around the point of fixation in a manner that reflects the spatial extent of a task-relevant stimulus, leading to changes in the feedforward flow of subsequent information through the visual system.
Stability of the Boundary Layer and the Spot
NASA Technical Reports Server (NTRS)
Wygnanski, I.
2007-01-01
The similarity among turbulent spots observed in various transition experiments, and the rate in which they contaminate the surrounding laminar boundary layer is only cursory. The shape of the spot depends on the Reynolds number of the surrounding boundary layer and on the pressure gradient to which it and the surrounding laminar flow are exposed. The propagation speeds of the spot boundaries depend, in addition, on the location from which the spot originated and do not simply scale with the local free stream velocity. The understanding of the manner in which the turbulent manner in which the turbulent spot destabilizes the surrounding, vortical fluid is a key to the understanding of the transition process. We therefore turned to detailed observations near the spot boundaries in general and near the spanwise tip of the spot in particular.
Rethinking cell-cycle-dependent gene expression in Schizosaccharomyces pombe.
Cooper, Stephen
2017-11-01
Three studies of gene expression during the division cycle of Schizosaccharomyces pombe led to the proposal that a large number of genes are expressed at particular times during the S. pombe cell cycle. Yet only a small fraction of genes proposed to be expressed in a cell-cycle-dependent manner are reproducible in all three published studies. In addition to reproducibility problems, questions about expression amplitudes, cell-cycle timing of expression, synchronization artifacts, and the problem with methods for synchronizing cells must be considered. These problems and complications prompt the idea that caution should be used before accepting the conclusion that there are a large number of genes expressed in a cell-cycle-dependent manner in S. pombe.
Suen, Jonathan Y; Navlakha, Saket
2017-05-01
Controlling the flow and routing of data is a fundamental problem in many distributed networks, including transportation systems, integrated circuits, and the Internet. In the brain, synaptic plasticity rules have been discovered that regulate network activity in response to environmental inputs, which enable circuits to be stable yet flexible. Here, we develop a new neuro-inspired model for network flow control that depends only on modifying edge weights in an activity-dependent manner. We show how two fundamental plasticity rules, long-term potentiation and long-term depression, can be cast as a distributed gradient descent algorithm for regulating traffic flow in engineered networks. We then characterize, both by simulation and analytically, how different forms of edge-weight-update rules affect network routing efficiency and robustness. We find a close correspondence between certain classes of synaptic weight update rules derived experimentally in the brain and rules commonly used in engineering, suggesting common principles to both.
[Study on thaspine in inducing apoptosis of A549 cell].
Zhang, Yan-min; He, Lang-chong
2007-04-01
To investigate the effect of thaspine on the cellular proliferation, apoptosis and cell cycle in A549 cell line. A549 cell was cultured with different concentrations of thaspine. Cellular proliferation was detected with MTT, apoptosis and cell cycle were checked with Flow Cytometer, and change of microstructure was observed by transmission electron microscope. Thaspine could inhibit the proliferation and induce apoptosis of A549 cell in a time-dose dependent manner. Cell cycle was significantly stopped at the S phase by thaspine with FCM technology. Under electronic microscope, the morphology of A549 cell showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body when the cell was treated with thaspine. Thaspine has the effects of anti-tumor and inducing apoptosis.
Mohammadi, Saeed; Seyedhosseini, Fakhri Sadat; Behnampour, Nasser; Yazdani, Yaghoub
2017-10-01
The role of aryl hydrocarbon receptor (AhR) in carcinogenesis has been studied recently. Indole-3-carbinol (I3C) is an AhR agonist and a potential anticancer agent. Here, we investigated the effects of I3C on cell cycle progression and apoptosis through activation of AhR on THP-1 acute myeloid leukemia (AML) cell line. MTT viability assay was used to measure the cytotoxic effects of I3C on THP-1 cells. Apoptosis and cell cycle assays were investigated using flow cytometry. Real time RT-PCR was conducted to measure the alterations in the expression of AhR gene, key genes associated with AhR activation (IL1β and CYP1A1) and major genes involved in cell cycle regulation and apoptosis including P27, P21, CDK2, P53, BCL2 and FasR. Our findings revealed that I3C inhibits the proliferation of THP-1 cells in a dose- and time-dependent manner with minimal toxicity over normal monocytes. The AhR target genes (CYP1A1, IL1β) were overexpressed upon I3C treatment (p < .05 to p < .001). The antiproliferative effects of I3C were in association with programed cell death. I3C downregulated BCL2 and upregulated FasR in THP-1 cells (p < .05 to p < .001). G1 cell cycle arrest was also observed using flow cytometry. G1-acting cell cycle genes (P21, P27 and P53) were overexpressed (p < .05 to p < .001), while CDK2 was downregulated upon I3C treatment (p < .01 to p < .001). I3C could exert its antileukemic effects through AhR activation which is associated with programed cell death and G1 cell cycle arrest in a dose- and time-dependent manner. Therefore, AhR could be targeted as a novel treatment possibility in AML.
Tian, Fei; Zhang, Wei; Cai, Lili; Li, Shanshan; Hu, Guoqing; Cong, Yulong; Liu, Chao; Li, Tiejun; Sun, Jiashu
2017-09-12
The microfluidic passive control of microparticles largely relies on the hydrodynamic effects of the carrier media such as Newtonian fluids and viscoelastic fluids. Yet the viscoelastic/Newtonian interfacial effect has been scarcely investigated, especially for high-resolution particle separation. Here we report a microfluidic co-flow of Newtonian (water or PBS) and viscoelastic fluids (PEO) for the size-dependent separation of microparticles. The co-flow condition generates a stable viscoelastic/Newtonian interface, giving rise to the wall-directed elastic lift forces that compete with the center-directed lift forces, and efficiently hinders the migration of microparticles from the Newtonian to the viscoelastic fluid in a size-dependent manner. An almost complete separation of a binary mixture of 1 μm and 2 μm polystyrene particles is achieved by the co-flow of water and a very dilute PEO solution (100 ppm), whereas the sole use of water or PEO could not lead to an efficient separation. This co-flow microfluidic system is also applied for the separation of Staphylococcus aureus (1 μm) from platelets (2-3 μm) with >90% efficiencies and purities.
NASA Astrophysics Data System (ADS)
Browning, L.; Murphy, W.; Manepally, C.; Fedors, R.
2003-04-01
Uncertainties in simulated ambient system unsaturated zone flow could have a significant impact on performance evaluations of the proposed nuclear waste repository at Yucca Mountain, Nevada. In addition to determining variations in the quantity of water available to corrode engineered materials and transport radionuclides, model assumptions regarding flow pathways may significantly affect estimates of groundwater chemistry. The manner and extent to which groundwater compositions evolve along a flow pathway are determined mainly by thermohydrologic conditions, the types of reactive materials encountered, and the interaction times with those materials. Simulated groundwater compositions can thus vary significantly depending on whether or not the flow model includes lateral diversion of infiltrating waters, or preferential flow pathways in variably-saturated materials. To assist a regulatory review of a potential license application for a geologic repository for high-level waste, we developed a reactive transport model for the ambient hydrogeochemical system at Yucca Mountain. The model simulates two phase, nonisothermal, advective and diffusive flow and transport through a one dimensional, matrix and fracture continua (dual permeability) containing ten kinetically reactive hydrostatigraphic layers in the vicinity of the SD-9 borehole at Yucca Mountain. In this presentation, we describe how the model was used to evaluate alternative ambient unsaturated zone flow pathways proposed by the U.S. Department of Energy. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.
Growth promotion effect of steelmaking slag on Spirulina platensis
NASA Astrophysics Data System (ADS)
Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.
2016-04-01
A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.
Antitumor Effects of Flavopiridol on Human Uterine Leiomyoma In Vitro and in a Xenograft Model
Lee, Hyun-Gyo; Baek, Jong-Woo; Shin, So-Jin; Kwon, Sang-Hoon; Cha, Soon-Do; Park, Won-Jin; Chung, Rosa; Choi, Eun-Som; Lee, Gun-Ho
2014-01-01
Dysregulated cyclin-dependent kinases (CDKs) are considered a potential target for cancer therapy. Flavopiridol is a potent CDK inhibitor. In this study, the antiproliferative effect of the flavonoid compound flavopiridol and its mechanism in human uterine leiomyoma cells were investigated. The present study focused on the effect of flavopiridol in cell proliferation and cell cycle progression in primary cultured human uterine leiomyoma cells. Cell viability and cell proliferation assays were conducted. Flow cytometry was performed to determine the effect of flavopiridol on cell cycle. The expression of cell cycle regulatory-related proteins was evaluated by Western blotting. Cell viability and proliferation of uterine leiomyoma cells were significantly reduced by flavopiridol treatment in a dose-dependent manner. Flow cytometry results showed that flavopiridol induced G1 phase arrest. Flavopiridol-induced growth inhibition in uterine leiomyoma cells was associated with increased expression of p21cip/wafl and p27kip1 in a dose-dependent manner. Downregulation of CDK2/4 and Cyclin A with a concomitant increase in dephosphorylation of retinoblastoma was observed. This study demonstrates that flavopiridol inhibits cell proliferation by initiating G1 cell cycle arrest in human uterine leiomyoma. We also found that flavopiridol is effective in inhibiting xenografted human uterine leiomyoma growth. These results indicate that flavopiridol could prove to be a promising chemopreventive and therapeutic agent for human uterine leiomyoma. PMID:24572052
Using steady-state equations for transient flow calculation in natural gas pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, R.N.; Zhou, P.
1984-04-02
Maddox and Zhou have extended their technique for calculating the unsteady-state behavior of straight gas pipelines to complex pipeline systems and networks. After developing the steady-state flow rate and pressure profile for each pipe in the network, analysts can perform the transient-state analysis in the real-time step-wise manner described for this technique.
Kawasaki, Masahiro; Uno, Yutaka; Mori, Jumpei; Kobata, Kenji; Kitajo, Keiichi
2014-01-01
Electroencephalogram (EEG) phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS) to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE), to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz) phase locking factor (PLF) reached its highest value at the distant area (the motor area in this study), with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. Phase-preservation index (PPI) analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms), which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.
Mean-field dynamo action in renovating shearing flows.
Kolekar, Sanved; Subramanian, Kandaswamy; Sridhar, S
2012-08-01
We study mean-field dynamo action in renovating flows with finite and nonzero correlation time (τ) in the presence of shear. Previous results obtained when shear was absent are generalized to the case with shear. The question of whether the mean magnetic field can grow in the presence of shear and nonhelical turbulence, as seen in numerical simulations, is examined. We show in a general manner that, if the motions are strictly nonhelical, then such mean-field dynamo action is not possible. This result is not limited to low (fluid or magnetic) Reynolds numbers nor does it use any closure approximation; it only assumes that the flow renovates itself after each time interval τ. Specifying to a particular form of the renovating flow with helicity, we recover the standard dispersion relation of the α(2)Ω dynamo, in the small τ or large wavelength limit. Thus mean fields grow even in the presence of rapidly growing fluctuations, surprisingly, in a manner predicted by the standard quasilinear closure, even though such a closure is not strictly justified. Our work also suggests the possibility of obtaining mean-field dynamo growth in the presence of helicity fluctuations, although having a coherent helicity will be more efficient.
MODELING THE SOLAR WIND AT THE ULYSSES , VOYAGER , AND NEW HORIZONS SPACECRAFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Pogorelov, N. V.; Zank, G. P.
The outer heliosphere is a dynamic region shaped largely by the interaction between the solar wind and the interstellar medium. While interplanetary magnetic field and plasma observations by the Voyager spacecraft have significantly improved our understanding of this vast region, modeling the outer heliosphere still remains a challenge. We simulate the three-dimensional, time-dependent solar wind flow from 1 to 80 astronomical units (au), where the solar wind is assumed to be supersonic, using a two-fluid model in which protons and interstellar neutral hydrogen atoms are treated as separate fluids. We use 1 day averages of the solar wind parameters frommore » the OMNI data set as inner boundary conditions to reproduce time-dependent effects in a simplified manner which involves interpolation in both space and time. Our model generally agrees with Ulysses data in the inner heliosphere and Voyager data in the outer heliosphere. Ultimately, we present the model solar wind parameters extracted along the trajectory of the New Horizons spacecraft. We compare our results with in situ plasma data taken between 11 and 33 au and at the closest approach to Pluto on 2015 July 14.« less
2014-01-01
Background Radix Trichosanthis (RT), the dry root tuber of Trichosanthis kirilowii Maxim (Cucurbitaceae), is a traditional Chinese medicine. Although a wide range of saponin pharmacological properties has been identified, to our knowledge, this may be the first report to investigate the crude saponins from RT. The purpose of this study was to delineate the antioxidant activity both in vitro and in vivo by using ethyl acetate (EtOAc), n-butanol, and the mixture of n-butanol and EtOAc fractions. Methods In vitro antioxidant activity was detected by using DPPH free radical, hydrogen peroxide scavenging, and reducing power assays. After pretreatment with different fractions saponins at 2 mg/kg/d and 3 mg/kg/d of crude drug, respectively, an established CCl4 induced acute cytotoxicity model was used to evaluate the in vivo antioxidant potential by detection of superoxide dismutase (SOD), malonaldehyde (MDA), lactate dehydrogenase (LDH), and total antioxidant capacity (T-AOC) levels. Results The in vitro assay showed that the antioxidant activity of all the three fractions was promising. The reducing power of the EtOAc and the mixture of n-butanol and EtOAc extracts increased in a dose dependent manner. However, both the n-butanol and the mixture of n-butanol and EtOAc fractions in low dose exhibited in a time dependent manner with prolonged reaction time. As for hydrogen peroxide scavenging capability, the n-butanol fraction mainly demonstrated a time dependent manner, whereas EtOAc fraction showed a dose dependent manner. However, in case of in vivo assay, an increase of SOD and T-AOC and decrease of MDA and LDH levels were only observed in n-butanol (2 mg/kg/d of crude drug) extracts pretreatment group. Conclusions RT saponins in n-butanol fraction might be a potential antioxidant candidate, as CCl4-induced oxidative stress has been found to be alleviated, which may be associated with the time dependent manner of n-butanol saponins in a low dose. Further studies will be needed to investigate the active individual components in n-butanol extract, in vivo antioxidant activities and antioxidant mechanisms. PMID:24597831
Zhao, Chuanke; She, Tiantian; Wang, Lixin; Su, Yahui; Qu, Like; Gao, Yujing; Xu, Shuo; Cai, Shaoqing; Shou, Chengchao
2015-09-15
This study aims to evaluate the anti-cancer effect of daucosterol and explore its possible mechanism. MTT and colony formation assay were performed to determine the effect of daucosterol on cancer cell proliferation in vitro. H22 allograft model was used for the assessment of its anti-cancer activity in vivo. Intracellular generation of reactive oxygen species (ROS) was measured using DCFH-DA probe with flow cytometry system and a laser scanning confocal microscope. LC3 (microtubule-associated protein 1 light chain 3)-II conversion was monitored with immunofluorescence and immunoblotting to demonstrate daucosterol-induced autophagy. We found that daucosterol inhibits the proliferation of human breast cancer cell line MCF-7 and gastric cancer cell lines MGC803, BGC823 and AGS in a dose-dependent manner. Furthermore, daucosterol inhibits murine hepatoma H22 cell growth in ICR mice. Daucosterol treatment induces intracellular ROS generation and autophagy, but not apoptotic cell death. Treatment with ROS scavenger GSH (reduced glutathione), NAC (N-acetyl-l-cysteine) or autophagy inhibitor 3-Methyladenine (3-MA) counteracted daucosterol-induced autophagy and growth inhibition in BGC823 and MCF-7 cancer cells. Daucosterol inhibits cancer cell proliferation by inducing autophagy through ROS-dependent manner and could be potentially developed as an anti-cancer agent. Copyright © 2015 Elsevier Inc. All rights reserved.
A better understanding of long-range temporal dependence of traffic flow time series
NASA Astrophysics Data System (ADS)
Feng, Shuo; Wang, Xingmin; Sun, Haowei; Zhang, Yi; Li, Li
2018-02-01
Long-range temporal dependence is an important research perspective for modelling of traffic flow time series. Various methods have been proposed to depict the long-range temporal dependence, including autocorrelation function analysis, spectral analysis and fractal analysis. However, few researches have studied the daily temporal dependence (i.e. the similarity between different daily traffic flow time series), which can help us better understand the long-range temporal dependence, such as the origin of crossover phenomenon. Moreover, considering both types of dependence contributes to establishing more accurate model and depicting the properties of traffic flow time series. In this paper, we study the properties of daily temporal dependence by simple average method and Principal Component Analysis (PCA) based method. Meanwhile, we also study the long-range temporal dependence by Detrended Fluctuation Analysis (DFA) and Multifractal Detrended Fluctuation Analysis (MFDFA). The results show that both the daily and long-range temporal dependence exert considerable influence on the traffic flow series. The DFA results reveal that the daily temporal dependence creates crossover phenomenon when estimating the Hurst exponent which depicts the long-range temporal dependence. Furthermore, through the comparison of the DFA test, PCA-based method turns out to be a better method to extract the daily temporal dependence especially when the difference between days is significant.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1979-01-01
A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.
Melanosome uptake is associated with the proliferation and differentiation of keratinocytes.
Choi, Hye-In; Sohn, Kyung-Cheol; Hong, Dong-Kyun; Lee, Young; Kim, Chang Deok; Yoon, Tae-Jin; Park, Jin Woon; Jung, Sunggyun; Lee, Jeung-Hoon; Lee, Young Ho
2014-01-01
Melanosomes are synthesized in melanocytes and transferred to neighboring keratinocytes. However, the associations of melanosome uptake with the proliferation and differentiation of keratinocytes are not fully understood. We examined the associations of melanosome uptake with keratinocyte differentiation and proliferation. SV40T-transformed human epidermal keratinocytes (SV-HEKs) were treated with isolated melanosomes. The effects of melanosome uptake on the proliferation and differentiation of the keratinocytes were analyzed by Western blotting and flow cytometry. The relationship between melanosome uptake and keratinocyte differentiation status was verified by determining the melanin content in the cells. Melanosomes reduced the proliferation of SV-HEKs in a dose-dependent manner, but did not induce differentiation. Melanosome uptake was higher in differentiating keratinocytes compared to non-differentiating keratinocytes, and inhibited significantly by PAR-2 inhibitor. Melanosomes inhibit keratinocyte proliferation. Moreover, melanosome uptake is influenced by keratinocyte differentiation status, being highest in mid-stage differentiating keratinocytes in a PAR-2 dependent manner.
Method of introducing additive into a reaction gas flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michelfelder, S.; Chughtai, M.Y.
1984-04-03
A method of continuously introducing additive, which is conveyed by gaseous and/or liquid carriers, into a turbulent reaction gas flow in the combustion chamber of a steam generator having dry ash withdrawal for selective removal, in a dry manner, of environmentally harmful gaseous noxious materials, such as sulfur, chlorine, and chlorine compounds, which are contained in a hot reaction gas flow which results after a complete or incomplete flame combustion of solid, liquid, or gaseous fuels. Depending upon the additive introduced, heat is stored and/or used for decomposition reactions. The additive, is first introduced at one or more input locations,more » due to locally different pressure conditions in the combustion chamber, into one or more recirculation flows which are within the system and are closed. The additive is subsequently withdrawn from these recirculation flows and is introduced into the reaction gas flow.« less
The renal TRPV4 channel is essential for adaptation to increased dietary potassium
Mamenko, Mykola; Boukelmoune, Nabila; Tomilin, Viktor; Zaika, Oleg; Jensen, V. Behrana; O’Neil, Roger G.; Pochynyuk, Oleh
2016-01-01
To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. PMID:28187982
MIRANDA-HERNÁNDEZ, D.F.; FRANCO-MOLINA, M.A.; MENDOZA-GAMBOA, E.; ZAPATA-BENAVIDES, P.; SIERRA-RIVERA, C.A.; CORONADO-CERDA, E.E.; ROSAS-TARACO, A.G.; TAMÉZ-GUERRA, R.S.; RODRÍGUEZ-PADILLA, C.
2013-01-01
The forkhead box P3 (Foxp3) transcription factor is one of the most studied markers used to identify CD4+CD25+ regulatory T cells (Tregs), and has been identified as a key regulator in the development and function of Tregs. Foxp3 expression has been reported in a variety of solid human tumors, including melanoma. The aims of the present study were to analyze Foxp3 expression in B16F10 melanoma cells in vitro, to determine whether this expression was affected during tumor growth in a murine melanoma model and to correlate Foxp3 expression with CD25 expression, interleukin (IL)-2 production and tumor weight. Foxp3 expression was analyzed with quantitative (q)PCR, flow cytometry and confocal microscopy. CD25 expression was analyzed by flow cytometry, and cytokine production was measured by ELISA [IL-2, interferon (IFN)-γ, transforming growth factor (TGF)-β and IL-10] and flow cytometry (IL-2, IFN-γ, IL-4 and IL-5). Foxp3 and CD25 expression was detected in the B16F10 cells in culture and in the intratumoral B16F10 cells. An increase in Foxp3 and CD25 expression was observed in a time-dependent manner during tumor growth at 7, 14 and 21 days. The production of the IL-2, IL-10, IFN-γ and TGF-β cytokines was observed in the B16F10 cells and also detected in the tumoral microenvironment during tumor growth (7, 14 and 21 days). An increase in IL-2 and IL-10 production was observed, whereas IFN-γ production decreased in a time-dependent manner. The production of tumor necrosis factor (TNF)-α was not observed in culture, but was detected during tumor growth, whereas the production of IL-4 and IL-5 was not detected. These data showed a positive correlation between the expression of Foxp3, CD25 and IL-2 and tumor weight in murine melanoma. From these data, it may be suggested that Foxp3 participates in melanoma growth, the modulation of the IL-2, IFN-γ and TNF-α cytokines and CD25 expression, and that it also plays a possible role in immunosuppression. PMID:24179494
Phosphorylated Akt Protein at Ser473 Enables HeLa Cells to Tolerate Nutrient-Deprived Conditions
Fathy, Moustafa; Awale, Suresh; Nikaido, Toshio
2017-12-29
Background: Despite angiogenesis, many tumours remain hypovascular and starved of nutrients while continuing to grow rapidly. The specific biochemical mechanisms associated with starvation resistance, austerity, may be new biological characters of cancer that are critical for cancer progression. Objective: This study aim was to investigate the effect of nutrient starvation on HeLa cells and the possible mechanism by which the cells are able to tolerate nutrient-deprived conditions. Methods: Nutrient starvation was achieved by culturing HeLa cells in nutrient-deprived medium (NDM) and cell survival was estimated by using cell counting kit-8. The effect of starvation on cell cycle distribution and the quantitative analysis of apoptotic cells were investigated by flow cytometry using propidium iodide staining. Western blotting was used to detect the expression levels of Akt and phosphorylated Akt at Ser473 (Ser473p-Akt) proteins. Results: HeLa cells displayed extremely long survival when cultured in NDM. The percentage of apoptotic HeLa cells was significantly increased by starvation in a time-dependent manner. A significant increase in the expression of Ser473p-Akt protein after starvation was also observed. Furthermore, it was found that Akt inhibitor III molecule inhibited the cells proliferation in a concentration- and time-dependent manner. Conclusion: Results of the present study provide evidence that Akt activation may be implicated in the tolerance of HeLa cells for nutrient starvation and may help to suggest new therapeutic strategies designed to prevent austerity of cervical cancer cells through inhibition of Akt activation. Creative Commons Attribution License
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, Robert W.; Banks, P.; Barakat, A. R.; Crain, D. J.; Demars, H. G.; Lemaire, J.; Ma, T.-Z.; Rasmussen, C. E.; Richards, P.; Sica, R.
1990-01-01
The overall goal of our NASA Theory Program was to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, with the funding from this NASA program, we concentrated on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we developed unique global models that allowed us to study the coupling between the different regions. These results are highlighted in the next section. Another important aspect of our NASA Theory Program concerned the effect that localized 'structure' had on the macroscopic flow in the ionosphere, plasmasphere, thermosphere, and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkland current patterns) or time variations in these input due to storms and substorms. Also, some of the plasma flows that we predicted with our macroscopic models could be unstable, and another one of our goals was to examine the stability of our predicted flows. Because time-dependent, three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another goal of our NASA Theory Program was to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This could involve a detailed comparison of kinetic, semi-kinetic, and hydrodynamic predictions for a given polar wind scenario or it could involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations provides insight into when the various models can be used with confidence.
The flow of plasma in the solar terrestrial environment
NASA Technical Reports Server (NTRS)
Schunk, Robert W.
1991-01-01
The overall goal of our NASA Theory Program is to study the coupling, time delays, and feedback mechanisms between the various regions of the solar-terrestrial system in a self-consistent, quantitative, manner. To accomplish this goal, it will eventually be necessary to have time-dependent macroscopic models of the different regions of the solar-terrestrial system and we are continually working toward this goal. However, our immediate emphasis is on the near-earth plasma environment, including the ionosphere, the plasmasphere, and the polar wind. In this area, we have developed unique global models that allow us to study the coupling between the different regions. These results are highlighted. Another important aspect of our NASA Theory Program concerns the effect that localized structure has on the macroscopic flow in the ionosphere, plasmasphere, thermosphere and polar wind. The localized structure can be created by structured magnetospheric inputs (i.e., structured plasma convection, particle precipitation or Birkeland current patterns) or time variations in these inputs due to storms and substorms. Also, some of the plasma flows that we predict with our macroscopic models may be unstable. Another one of our goals is to examine the stability of our predicted flows. Because time-dependent three-dimensional numerical models of the solar-terrestrial environment generally require extensive computer resources, they are usually based on relatively simple mathematical formulations (i.e., simple MHD or hydrodynamic formulations). Therefore, another long-range goal of our NASA Theory Program is to study the conditions under which various mathematical formulations can be applied to specific solar-terrestrial regions. This may involve a detailed comparison of kinetic, semikinetic, and hydrodynamic predictions for a given polar wind scenario or it may involve the comparison of a small-scale particle-in-cell (PIC) simulation of a plasma expansion event with a similar macroscopic expansion event. The different mathematical formulations have different strengths and weaknesses and a careful comparison of model predictions for similar geophysical situations will provide insight into when the various models can be used with confidence.
Lui, Julian C K; Wong, Judy W Y; Suen, Y K; Kwok, T T; Fung, K P; Kong, S K
2007-12-01
Cordyceps sinensis is a prized traditional Chinese medicine and its major component cordycepin is found to have anti-leukemia activities. However, its cytotoxicity in erythrocytes was unclear. To examine the effect of cordycepin on the induction of eryptosis (an apoptosis-like process in enucleated erythrocytes), flow cytometric assays based on membrane integrity and asymmetry were employed. For comparison, analyses were performed in parallel with two other anti-leukemia agents, indirubin 3'-monoxime (IDM) and As2O3. We found that at the IC50 against leukemia HL-60, cordycepin elicited eryptosis while IDM and As2O3 showed no erythrotoxicity in mouse erythrocytes. Mechanistically, cordycepin increased the [Ca2+]i and activated mu-calpain protease in a dose-dependent manner. Yet, no caspase-3 activation was observed in the cordycepin-treated erythrocytes. When extracellular Ca2+ was depleted, both the cordycepin-induced eryptosis and mu-calpain cleavage were suppressed. Our study therefore demonstrated for the first time that cordycepin induces eryptosis through a calcium-dependent pathway in the absence of mitochondria and caspase-3 activation.
A GPU-accelerated implicit meshless method for compressible flows
NASA Astrophysics Data System (ADS)
Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng
2018-05-01
This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.
Influence of vascular network design on gas transfer in lung assist device technology.
Bassett, Erik K; Hoganson, David M; Lo, Justin H; Penson, Elliot J N; Vacanti, Joseph P
2011-01-01
Blood oxygenators are vital for the critically ill, but their use is limited to the hospital setting. A portable blood oxygenator or a lung assist device for ambulatory or long-term use would greatly benefit patients with chronic lung disease. In this work, a biomimetic blood oxygenator system was developed which consisted of a microfluidic vascular network covered by a gas permeable silicone membrane. This system was used to determine the influence of key microfluidic parameters-channel size, oxygen exposure length, and blood shear rate-on blood oxygenation and carbon dioxide removal. Total gas transfer increased linearly with flow rate, independent of channel size and oxygen exposure length. On average, CO(2) transfer was 4.3 times higher than oxygen transfer. Blood oxygen saturation was also found to depend on the flow rate per channel but in an inverse manner; oxygenation decreased and approached an asymptote as the flow rate per channel increased. These relationships can be used to optimize future biomimetic vascular networks for specific lung applications: gas transfer for carbon dioxide removal in patients with chronic obstructive pulmonary disease or oxygenation for premature infants requiring complete lung replacement therapy.
Song, Helen; Bringer, Michelle R.; Tice, Joshua D.; Gerdts, Cory J.; Ismagilov, Rustem F.
2006-01-01
This letter describes an experimental test of a simple argument that predicts the scaling of chaotic mixing in a droplet moving through a winding microfluidic channel. Previously, scaling arguments for chaotic mixing have been described for a flow that reduces striation length by stretching, folding, and reorienting the fluid in a manner similar to that of the baker’s transformation. The experimentally observed flow patterns within droplets (or plugs) resembled the baker’s transformation. Therefore, the ideas described in the literature could be applied to mixing in droplets to obtain the scaling argument for the dependence of the mixing time, t~(aw/U)log(Pe), where w [m] is the cross-sectional dimension of the microchannel, a is the dimensionless length of the plug measured relative to w, U [m s−1] is the flow velocity, Pe is the Péclet number (Pe=wU/D), and D [m2s−1] is the diffusion coefficient of the reagent being mixed. Experiments were performed to confirm the scaling argument by varying the parameters w, U, and D. Under favorable conditions, submillisecond mixing has been demonstrated in this system. PMID:17940580
Theoretical analysis of non-linear Joule heating effects over an electro-thermal patterned flow
NASA Astrophysics Data System (ADS)
Sanchez, Salvador; Ascanio, Gabriel; Mendez, Federico; Bautista, Oscar
2017-11-01
In this work, non-linear Joule heating effects for electro-thermal patterned flows driven inside of a slit microchannel are analyzed. Here, the movement of fluids is controlled by placing electro-thermal forces, which are generated through an imposed longitudinal electric field, E0, and the wall electric potential produced by electrodes inserted along the surface of the microchannel wall, ζ. For this analysis, viscosity and electrical conductivity of fluids are included as known functions, which depend on the temperature; therefore, in order to determine the flow, temperature and electric potential fields together with its simultaneous interactions, the equations of continuity, momentum, energy, charges distribution and electrical current have to be solved in a coupled manner. The main results obtained in the study reveal that with the presence of thermal gradients along of the microchannel, local electro-thermal forces, Fχ, are affected in a sensible manner, and consequently, the flow field is modified substantially, causing the interruption or intensification of recirculations along of the microchannel. This work was supported by the Fondo SEP-CONACYT through research Grants No. 220900 and 20171181 from SIP-IPN. F. Mendez acknowledges support from PAPIIT-UNAM under Contract Number IN112215. S. Sanchez thanks to DGAPA-UNAM for the postdoctoral fellowship.
Cellular Structures in the Flow Over the Flap of a Two-Element Wing
NASA Technical Reports Server (NTRS)
Yon, Steven A.; Katz, Joseph
1997-01-01
Flow visualization information and time dependent pressure coefficients were recorded for the flow over a two-element wing. The investigation focused on the stall onset; particularly at a condition where the flow is attached on the main element but separated on the flap. At this condition, spanwise separation cells were visible in the flow over the flap, and time dependent pressure data was measured along the centerline of the separation cell. The flow visualizations indicated that the spanwise occurrence of the separation cells depends on the flap (and not wing) aspect ratio.
Cikirikcioglu, Mustafa; Cikirikcioglu, Y Banu; Khabiri, Ebrahim; Djebaili, M Karim; Kalangos, Afksendiyos; Walpoth, Beat H
2006-01-01
Intra-operative flow measurement during coronary or peripheral bypass operations is helpful for ruling out technical failures and for prediction of complication and patency rates. Preclinical validation of the flowmeters is required in order to rely on the intra-operatively measured results. The aim of this study is to evaluate a new "dual beam Doppler" blood flowmeter before clinical application and to compare it with the established "transit time flow measure-ment" technique in an artificial circuit. Measurements were performed in an experimental flow model using pig blood and pig arteries. Three different flowmeters were used: Quantix OR (dual beam doppler flowmeter), CardioMed (transit time flowmeter), and Transonic (transit time flowmeter). Three validation tests were performed to assess correlation, precision, and repeatability of devices. (1) Correlation and agreement analysis was performed with various flow amounts (10-350 mL/min) (n = 160). (2) Device reproducibility and measurement stability were tested with a constant flow (flow amount = 300 mL/min) (n = 30). (3) A user accuracy test (intra- and inter-observer variability) was performed by 5 different observers with a constant flow (flow amount = 205 mL/min) (n = 75). Time collected true flow was used as a reference method in all steps and all tests were performed in a blind manner. Results are shown as mean values +/- standard deviations. Pear-son's correlation and Bland-Altman plot analyses were used to compare measurements. The mean flow was 167 +/- 98 mL/min for true flow and 162 +/- 94 mL/min, 165 +/- 94 mL/min, and 166 +/- 100 mL/min for Quantix OR, CardioMed, and Transonic, respectively. Correlation coefficients between Quantix OR, Medi-Stim, Transonic, and time collected true flow were over 0.98 (P = .01). Most of the measured results ( > 90%) were between +/- 1.96 SD agreement limits in Bland and Altman plot analysis. All devices showed good results in the reproducibility test. During the user accuracy test, larger variance changes were observed between intra- and inter-observer results with the dual beam Doppler flowmeter compared to the 2 used transit time flowmeters when used for single sided vessel access without stabilization device (available from the manufacturer). All 3 tested flowmeters showed an excellent correlation to the true flow in an artificial circuit and the accuracy of the tested devices was within agreement limits. Reproducibility of all devices was good and linear. The new dual beam Doppler flow measurement technique compares favorably to the classic transit time method. Clinical use may depend on operator, location, and condition, thus more studies may be required to ensure uniform results using the currently available blood flow measurement devices.
Lee, Yong-Ung; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Sugiura, Tadahisa; Lee, Avione Y; Yi, Tai; Hibino, Narutoshi; Shinoka, Toshiharu; Breuer, Christopher
2016-03-01
We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft.
TLR3 mediates release of IL-1β and cell death in keratinocytes in a caspase-4 dependent manner.
Grimstad, Øystein; Husebye, Harald; Espevik, Terje
2013-10-01
Inflammation and timely cell death are important elements in host defence and healing processes. Keratinocytes express high levels of Toll-like receptor 3 (TLR3), and stimulation of the receptor with its ligand polyinosinic-polycytidylic acid (polyI:C) is a powerful signal for release of a variety of proinflammatory cytokines. Caspase-4 is required for maturation of pro-IL-1β through activation of caspase-1 in keratinocytes. TLR3 in keratinocytes was stimulated with polyI:C. Induction of messenger RNA of pro-IL-1β and inflammasomal components was measured using quantitative polymerase chain reaction methodology. Protein expression of IL-1β was analysed with ELISA and Western blot techniques. Activation of apoptotic caspases was measured with flow cytometry, and cytotoxicity was determined. TLR3 induced release of substantial amounts of pro-IL-1β in keratinocytes. NLRP3 or ASC dependent processing of IL-1β into its cleaved bioactive form was found to be minimal. The release of IL-1β was due to polyI:C induced cell death that occurred through a caspase-4 dependent manner. Caspase-1 did not seem to be involved in the polyI:C induced cytotoxicity despite that TLR3 stimulation induced activation of caspase-1. In addition, the apoptotic caspases -8, -9 and -3/7 were activated by polyI:C. TLR3 stimulation in keratinocytes induces a caspase-4 dependent release of pro-IL-1β, but further processing to active IL-1β is limited. Furthermore, TLR3 stimulation results in pyroptotic- and apoptotic cell death. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1989-11-01
The operation of a nuclear power plant must be regularly supported by various reactor dynamics and thermal-hydraulic analyses, which may include final safety analysis report (FSAR) design-basis calculations, and conservative and best-estimate analyses. The development and improvement of computer codes and analysis methodologies provide many advantages, including the ability to evaluate the effect of modeling simplifications and assumptions made in previous reactor kinetics and thermal-hydraulic calculations. This paper describes the results of using the RETRAN, MCPWR, and STAR codes in a tandem, predictive-corrective manner for three pressurized water reactor (PWR) transients: (a) loss of feedwater (LOF) anticipated transient without scrammore » (ATWS), (b) station blackout ATWS, and (c) loss of total reactor coolant system (RCS) flow with a scram.« less
Time-dependent jet flow and noise computations
NASA Technical Reports Server (NTRS)
Berman, C. H.; Ramos, J. I.; Karniadakis, G. E.; Orszag, S. A.
1990-01-01
Methods for computing jet turbulence noise based on the time-dependent solution of Lighthill's (1952) differential equation are demonstrated. A key element in this approach is a flow code for solving the time-dependent Navier-Stokes equations at relatively high Reynolds numbers. Jet flow results at Re = 10,000 are presented here. This code combines a computationally efficient spectral element technique and a new self-consistent turbulence subgrid model to supply values for Lighthill's turbulence noise source tensor.
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
Timing of distant flap pedicle division using xenon 133 clearance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snelling, C.F.; Poomee, A.; Sutherland, J.B.
1980-09-01
Clearance of intradermally injected xenon 133 was used to measure blood flow in distant flaps in humans with the donor pedicle temporarily clamped just prior to division. All 18 flaps with a blood flow of 0.5 ml per 100 gm of tissue per minute or more survived completely after separation. Of 7 with lesser flow, 3 underwent marginal necrosis adjacent to the line of division and 4 survived entirely. Xenon 133 washout does permit quantitative evaluation of blood flow, and since it is a clean isotope, it appears superior to sodium 24 and technetium 99m, which have been used inmore » a similar manner. The test is proposed as an adjunct to clinical judgment in timing pedicle division.« less
Inducer analysis/pump model development
NASA Astrophysics Data System (ADS)
Cheng, Gary C.
1994-03-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.
Inducer analysis/pump model development
NASA Technical Reports Server (NTRS)
Cheng, Gary C.
1994-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design information in a productive manner. The main goal of this study was to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A finite difference Navier-Stokes flow solver, FDNS, which includes an extended k-epsilon turbulence model and appropriate moving zonal interface boundary conditions, was developed to analyze turbulent flows in turbomachinery devices. In the present study, three key components of the turbopump, the inducer, impeller, and diffuser, were investigated by the proposed pump model, and the numerical results were benchmarked by the experimental data provided by Rocketdyne. For the numerical calculation of inducer flows with tip clearance, the turbulence model and grid spacing are very important. Meanwhile, the development of the cross-stream secondary flow, generated by curved blade passage and the flow through tip leakage, has a strong effect on the inducer flow. Hence, the prediction of the inducer performance critically depends on whether the numerical scheme of the pump model can simulate the secondary flow pattern accurately or not. The impeller and diffuser, however, are dominated by pressure-driven flows such that the effects of turbulence model and grid spacing (except near leading and trailing edges of blades) are less sensitive. The present CFD pump model has been proved to be an efficient and robust analytical tool for pump design due to its very compact numerical structure (requiring small memory), fast turnaround computing time, and versatility for different geometries.
Dong, Yang; Cao, Aili; Shi, Jianrong; Yin, Peihao; Wang, Li; Ji, Guang; Xie, Jianqun; Wu, Dazheng
2014-04-01
Tangeretin, a natural polymethoxyflavone present in citrus peel oil, is known to have anticancer activities in breast cancer, colorectal carcinoma and lung carcinoma, yet, the underlying mechanisms of tangeretin in human gastric cancer AGS cells have not been investigated to date. In the present study, the apoptotic mechanisms of tangeretin in AGS cells were explored. It was observed that tangeretin increased the apoptotic rates of AGS cells following treatment with tangeretin for 48 h in a dose-dependent manner by Annexin V-FITC and PI double staining. In addition, characteristic apoptotic morphology such as nuclear shrinkage and apoptotic bodies was observed after Hoechst 33258 staining. Flow cytometric assay showed that treatment of AGS cells with tangeretin decreased the mitochondrial membrane potential (MMP) in a dose-dependent manner, which indicated that mitochondrial dysfunction was involved in the tangeretin-induced apoptosis. Caspase-3, -8 and -9 activities were increased by tangeretin in a dose-dependent manner. Western blotting showed that the protein levels of pro-apoptotic proteins including cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, Bid, tBid, p53, p21/cip1, Fas and FasL were significantly upregulated by tangeretin. In addition, PFT-α (a p53 inhibitor) reduced the apoptotic rates and the expression of p53, p21, caspase-3 and caspase-9 induced by tangeretin, indicating that tangeretin-induced apoptosis was p53-dependent. In conclusion, these results suggest that tangeretin induces the apoptosis of AGS cells mainly through p53-dependent mitochondrial dysfunction and the Fas/FasL-mediated extrinsic pathway.
Berberine displays antitumor activity in esophageal cancer cells in vitro.
Jiang, Shu-Xian; Qi, Bo; Yao, Wen-Jian; Gu, Cheng-Wei; Wei, Xiu-Feng; Zhao, Yi; Liu, Yu-Zhen; Zhao, Bao-Sheng
2017-04-14
To investigate the effects of berberine on esophageal cancer (EC) cells and its molecular mechanisms. Human esophageal squamous cell carcinoma cell line KYSE-70 and esophageal adenocarcinoma cell line SKGT4 were used. The effects of berberine on cell proliferation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For cell cycle progression, KYSE-70 cells were stained with propidium iodide (PI) staining buffer (10 mg/mL PI and 100 mg/mL RNase A) for 30 min and cell cycle was analyzed using a BD FACSCalibur flow cytometer. For apoptosis assay, cells were stained with an Annexin V-FITC/PI apoptosis detection kit. The rate of apoptotic cells was analyzed using a dual laser flow cytometer and estimated using BD ModFit software. Levels of proteins related to cell cycle and apoptosis were examined by western blotting. Berberine treatment resulted in growth inhibition of KYSE-70 and SKGT4 cells in a dose-dependent and time-dependent manner. KYSE-70 cells were more susceptible to the inhibitory activities of berberine than SKGT4 cells were. In KYSE-70 cells treated with 50 μmol/L berberine for 48 h, the number of cells in G 2 /M phase (25.94% ± 5.01%) was significantly higher than that in the control group (9.77% ± 1.28%, P < 0.01), and berberine treatment resulted in p21 up-regulation in KYSE-70 cells. Flow cytometric analyses showed that berberine significantly augmented the KYSE-70 apoptotic population at 12 and 24 h post-treatment, when compared with control cells (0.83% vs 43.78% at 12 h, P < 0.05; 0.15% vs 81.86% at 24 h, P < 0.01), and berberine-induced apoptotic effect was stronger at 24 h compared with 12 h. Western blotting showed that berberine inhibited the phosphorylation of Akt, mammalian target of rapamycin and p70S6K, and enhanced AMP-activated protein kinase phosphorylation in a sustained manner. Berberine is an inhibitor of human EC cell growth and could be considered as a potential drug for the treatment of EC patients.
Berberine displays antitumor activity in esophageal cancer cells in vitro
Jiang, Shu-Xian; Qi, Bo; Yao, Wen-Jian; Gu, Cheng-Wei; Wei, Xiu-Feng; Zhao, Yi; Liu, Yu-Zhen; Zhao, Bao-Sheng
2017-01-01
AIM To investigate the effects of berberine on esophageal cancer (EC) cells and its molecular mechanisms. METHODS Human esophageal squamous cell carcinoma cell line KYSE-70 and esophageal adenocarcinoma cell line SKGT4 were used. The effects of berberine on cell proliferation were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For cell cycle progression, KYSE-70 cells were stained with propidium iodide (PI) staining buffer (10 mg/mL PI and 100 mg/mL RNase A) for 30 min and cell cycle was analyzed using a BD FACSCalibur flow cytometer. For apoptosis assay, cells were stained with an Annexin V-FITC/PI apoptosis detection kit. The rate of apoptotic cells was analyzed using a dual laser flow cytometer and estimated using BD ModFit software. Levels of proteins related to cell cycle and apoptosis were examined by western blotting. RESULTS Berberine treatment resulted in growth inhibition of KYSE-70 and SKGT4 cells in a dose-dependent and time-dependent manner. KYSE-70 cells were more susceptible to the inhibitory activities of berberine than SKGT4 cells were. In KYSE-70 cells treated with 50 μmol/L berberine for 48 h, the number of cells in G2/M phase (25.94% ± 5.01%) was significantly higher than that in the control group (9.77% ± 1.28%, P < 0.01), and berberine treatment resulted in p21 up-regulation in KYSE-70 cells. Flow cytometric analyses showed that berberine significantly augmented the KYSE-70 apoptotic population at 12 and 24 h post-treatment, when compared with control cells (0.83% vs 43.78% at 12 h, P < 0.05; 0.15% vs 81.86% at 24 h, P < 0.01), and berberine-induced apoptotic effect was stronger at 24 h compared with 12 h. Western blotting showed that berberine inhibited the phosphorylation of Akt, mammalian target of rapamycin and p70S6K, and enhanced AMP-activated protein kinase phosphorylation in a sustained manner. CONCLUSION Berberine is an inhibitor of human EC cell growth and could be considered as a potential drug for the treatment of EC patients. PMID:28465635
NASA Technical Reports Server (NTRS)
Wang, P.; Li, P.
1998-01-01
A high-resolution numerical study on parallel systems is reported on three-dimensional, time-dependent, thermal convective flows. A parallel implentation on the finite volume method with a multigrid scheme is discussed, and a parallel visualization systemm is developed on distributed systems for visualizing the flow.
Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang
2015-01-01
Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis.
Ying, Jinhe; Xu, Huan; Wu, Dhua; Wu, Xiaoguang
2015-01-01
Aim: Emodin showed anti-cancer activity against multiple human malignant tumors by inducing apoptosis. However, the apoptotic inducing effect against human osteosarcoma and related mechanism are still not studied. This study was aimed to investigate them. Methods: Emodin was used to incubate human OS cell U2OS cells at serially diluted concentrations. Hoechst staining was used to evaluate apoptosis; flow cytometry was applied to assess the collapse of mitochondrial membrane potential (MMP); intracellular ROS generation was detected by DCFH-DA staining; endoplasmic reticulum stress activation was examined by western blotting. Results: Cell apoptosis of U2OS cells was induced by emodin incubation in a concentration-dependent manner; MMP collapse and ROS generation were identified at starting concentration of 80 μmol/L of emodin in a concentration-dependent manner. ER stress activation was found at beginning concentration of 40 μmol/L of emodin. The MMP collapse was inhibited while the ER stress was not inhibited by NAC administration. Conclusions: Emodin induces death of human osteosarcoma cells by initiating ROS-dependent mitochondria-induced and ROS-independent ER stress-induced apoptosis. PMID:26722474
Software Aids Visualization of Computed Unsteady Flow
NASA Technical Reports Server (NTRS)
Kao, David; Kenwright, David
2003-01-01
Unsteady Flow Analysis Toolkit (UFAT) is a computer program that synthesizes motions of time-dependent flows represented by very large sets of data generated in computational fluid dynamics simulations. Prior to the development of UFAT, it was necessary to rely on static, single-snapshot depictions of time-dependent flows generated by flow-visualization software designed for steady flows. Whereas it typically takes weeks to analyze the results of a largescale unsteady-flow simulation by use of steady-flow visualization software, the analysis time is reduced to hours when UFAT is used. UFAT can be used to generate graphical objects of flow visualization results using multi-block curvilinear grids in the format of a previously developed NASA data-visualization program, PLOT3D. These graphical objects can be rendered using FAST, another popular flow visualization software developed at NASA. Flow-visualization techniques that can be exploited by use of UFAT include time-dependent tracking of particles, detection of vortex cores, extractions of stream ribbons and surfaces, and tetrahedral decomposition for optimal particle tracking. Unique computational features of UFAT include capabilities for automatic (batch) processing, restart, memory mapping, and parallel processing. These capabilities significantly reduce analysis time and storage requirements, relative to those of prior flow-visualization software. UFAT can be executed on a variety of supercomputers.
A two phase Mach number description of the equilibrium flow of nitrogen in ducts
NASA Technical Reports Server (NTRS)
Bursik, J. W.; Hall, R. M.; Adcock, J. B.
1979-01-01
Some additional thermodynamic properties of the usual two-phase form which is linear in the moisture fraction are derived which are useful in the analysis of many kinds of duct flow. The method used is based on knowledge of the vapor pressure and Gibbs function as functions of temperature. With these, additional two-phase functions linear in moisture fraction are generated, which ultimately reveal that the squared ratio of mixture specific volume to mixture sound speed depends on liquid mass fraction and temperature in the same manner as do many weighted mean two-phase properties. This leads to a simple method of calculating two-phase Mach numbers for various duct flows. The matching of one- and two-phase flows at a saturated vapor point with discontinuous Mach number is also discussed.
Yao, Cheng-Cai; Tu, Yuan-Rong; Jiang, Jie; Ye, Sheng-Fang; Du, Hao-Xin; Zhang, Yi
2014-05-01
β-elemene (β-ELE) is a new anticancer drug extracted from Curcuma zedoaria Roscoe and has been widely used to treat malignant tumors. Recent studies have demonstrated that β-ELE reverses the drug resistance of tumor cells. To explore the possible mechanisms of action of β-ELE, we investigated its effects on cisplatin-resistant human lung adenocarcinoma A549/DDP cells. The effects of β-ELE on the growth of A549/DDP cells in vitro were determined by MTT assay. Apoptosis was assessed by fluorescence microscopy with Hoechst 33258 staining and flow cytometry with Annexin V-FITC/PI double staining. Mitochondrial membrane potential was assessed using JC-1 fluorescence probe and laser confocal scanning microscopy, and intracellular reactive oxygen species levels were measured by 2',7'-dichlorofluorescein-diacetate staining and flow cytometry. Cytosolic glutathione content was determined using GSH kits. The expression of cytochrome c, caspase-3, procaspase-3 and the Bcl-2 family proteins was assessed by western blotting. The results demonstrated that β-ELE inhibited the proliferation of A549/DDP cells in a time- and dose-dependent manner. Furthermore, β-ELE enhanced the sensitivity of A549/DDP cells to cisplatin and reversed the drug resistance of A549/DDP cells. Consistent with a role in activating apoptosis, β-ELE decreased mitochondrial membrane potential, increased intracellular reactive oxygen species concentration and decreased the cytoplasmic glutathione levels in a time- and dose-dependent manner. The combination of β-ELE and cisplatin enhanced the protein expression of cytochrome c, caspase-3 and Bad, and reduced protein levels of Bcl-2 and procaspase-3 in the A549/DDP lung cancer cells. These results define a pathway of procaspase‑3-β-ELE function that involves decreased mitochondrial membrane potential, leading to apoptosis triggered by the release of cytochrome c into the cytoplasm and the modulation of apoptosis-related genes. The reversal of drug resistance of the A549/DDP cell line by β-ELE may be derived from its effect in inducing apoptosis.
Rodriguez-Mateos, Ana; Rendeiro, Catarina; Bergillos-Meca, Triana; Tabatabaee, Setareh; George, Trevor W; Heiss, Christian; Spencer, Jeremy Pe
2013-11-01
There are very limited data regarding the effects of blueberry flavonoid intake on vascular function in healthy humans. We investigated the impact of blueberry flavonoid intake on endothelial function in healthy men and assessed potential mechanisms of action by the assessment of circulating metabolites and neutrophil NADPH oxidase activity. Two randomized, controlled, double-blind, crossover human-intervention trials were conducted with 21 healthy men. Initially, the impact of blueberry flavonoid intake on flow-mediated dilation (FMD) and polyphenol absorption and metabolism was assessed at baseline and 1, 2, 4, and 6 h after consumption of blueberry containing 766, 1278, and 1791 mg total blueberry polyphenols or a macronutrient- and micronutrient-matched control drink (0 mg total blueberry polyphenols). Second, an intake-dependence study was conducted (from baseline to 1 h) with 319, 637, 766, 1278, and 1791 mg total blueberry polyphenols and a control. We observed a biphasic time-dependent increase in FMD, with significant increases at 1-2 and 6 h after consumption of blueberry polyphenols. No significant intake-dependence was observed between 766 and 1791 mg. However, at 1 h after consumption, FMD increased dose dependently to ≤766 mg total blueberry polyphenol intake, after which FMD plateaued. Increases in FMD were closely linked to increases in circulating metabolites and by decreases in neutrophil NADPH oxidase activity at 1-2 and 6 h. Blueberry intake acutely improves vascular function in healthy men in a time- and intake-dependent manner. These benefits may be mechanistically linked to the actions of circulating phenolic metabolites on neutrophil NADPH oxidase activity. This trial was registered at clinicaltrials.gov as NCT01292954 and NCT01829542.
Tsurutani, Junji; Castillo, S Sianna; Brognard, John; Granville, Courtney A; Zhang, Chunyu; Gills, Joell J; Sayyah, Jacqueline; Dennis, Phillip A
2005-07-01
Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells. Nicotinic activation of Akt increased phosphorylation of multiple downstream substrates of Akt in a time-dependent manner, including GSK-3, FKHR, tuberin, mTOR and S6K1. Since nicotine or NNK bind to cell surface nicotinic acetylcholine receptors (nAchR), we used RT-PCR to assess expression of nine alpha and three beta nAchR subunits in five NSCLC cell lines and two types of primary lung epithelial cells. NSCLC cells express multiple nAchR subunits in a cell line-specific manner. Agonists of alpha3/alpha4 or alpha7 subunits activated Akt in a time-dependent manner, suggesting that tobacco components utilize these subunits to activate Akt. Cellular outcomes after nicotine or NNK administration were also assessed. Nicotine or NNK increased proliferation of NSCLC cells in an Akt-dependent manner that was closely linked with changes in cyclin D1 expression. Despite similar induction of proliferation, only nicotine decreased apoptosis caused by serum deprivation and/or chemotherapy. Protection conferred by nicotine was NFkappaB-dependent. Collectively, these results identify tobacco component-induced, Akt-dependent proliferation and NFkappaB-dependent survival as cellular processes that could underlie the detrimental effects of smoking in cancer patients.
Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.
NASA Astrophysics Data System (ADS)
Gavazza, Sergio
Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods are presented. The value of the methods is also discussed. It has been demonstrated that TAM and GAM can be used to enhance the understanding of the space- and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates related to radioactivated fluids flowing through pipes.
[Inhibition effects of black rice pericarp extracts on cell proliferation of PC-3 cells].
Jiang, Weiwei; Yu, Xudong; Ren, Guofeng
2013-05-01
To observe the inhibitive effects of black rice pericarp extracts on cell proliferation of human prostate cancer cell PC-3 and to explore its effecting mechanism. The black rice pericarp extract was used to treat the PC-3 cells. The inhibitory effect of black rice pericarp extract on cells proliferation of PC-3 was tested by MTT method. Cell apoptosis rates and cell cycle were measured by flow cytometric assay (FCM). Western blot was used to study the protein expression levels of p38, p-p38, JNK, p-JNK. A dose-dependent and time-dependent proliferation inhibition of black rice pericarp extract was demonstrated in PC-3. The most prominent experiment condition was inhibitory concentration with 300microg/ml and treated for 72 h. The experiment result of flow cytometry analysis demonstrates that the apoptosis rate of PC-3 cells increased along with the increasing of black rice pericarp extract concentration, and a G1-S cell cycle arrest was induced in a dose-dependent manner. After PC-3 cell was treated with black rice pericarp extract for 72 h, the expressions of p-p38, p-JNK protein increased. Black rice pericarp extract could inhibit proliferation, change the cell cycle distributions and induce apoptosis in human prostatic cancer cell PC-3. Its inhibitory effect may be through promoting activation of the JNK, p38 signaling pathway. These results suggest that black rice pericarp extract maybe has an inhibitory effect on prostatic cancer.
Wongprayoon, Pawaris; Govitrapong, Piyarat
2017-01-01
Methamphetamine (METH), a psychostimulant with highly neurotoxic effects, has been known to induce neuronal apoptosis in part through an endoplasmic reticulum (ER) stress pathway. Melatonin is an endogenous antioxidant compound that exerts protective effects against several neurodegenerative conditions, including METH-induced neurotoxicity, via various mechanisms. However, the role of melatonin in ER stress is still relatively unclear. In the present study, we investigated ER stress and neuronal apoptosis following METH treatment and the role of melatonin in METH-mediated ER stress-induced cell death in the SH-SY5Y neuroblastoma cell line. We found that METH caused the overexpression of ER stress-related genes, including C/EBP homologous protein and spliced X-box binding protein 1, in dose- and time-dependent manners. Moreover, METH time-dependently activated caspase-12 and -3, leading to cellular apoptosis. Furthermore, we demonstrated that pretreatment with melatonin attenuated the overexpression of ER stress-related genes and the cleavages of caspase-12 and -3 caused by METH exposure. Flow cytometry revealed that METH-mediated neuronal apoptosis was also prevented by melatonin. These findings suggest the protective effects of melatonin against ER stress and apoptosis caused by METH and other harmful agents.
Qi, Xuefeng; Xu, Jiamin; Wang, Zugui; Wang, Xueping; Wang, Jingyu
2017-10-01
Although extensive efforts have been made to understand adenovirus infection in human cells, little is known for egg drop syndrome virus (EDSV) infection in the avian-derived cells. In this study, the effects of EDSV infection as well as the possible role hexon protein, the main building block of the EDSV capsid, on apoptosis induction in duck embryo fibroblast (DEF) cells was examined. Flow cytometry analysis and TUNEL assay revealed that EDSV infection induced significant apoptosis in DEF cells compared with mock infected cells. Interestingly, the increase of the apoptosis rate detected in EDSV infected DEF cells were accompanied by an increased virus load in cells in a time-dependent manner. Furthermore, a time-dependent decrease in hexon protein expression levels in hexon transfected DEF cells in parallel with a gradual decrease in TUNEL-labeling cells was also observed in the current study. In addition, caspase activity detection and western blot analysis indicates that either EDSV infection or EDSV hexon transfection both induced apoptosis of DEF cells via activating both the exogenous and the mitochondrial pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya
2010-01-01
The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions
The renal TRPV4 channel is essential for adaptation to increased dietary potassium.
Mamenko, Mykola V; Boukelmoune, Nabila; Tomilin, Viktor N; Zaika, Oleg L; Jensen, V Behrana; O'Neil, Roger G; Pochynyuk, Oleh M
2017-06-01
To maintain potassium homeostasis, kidneys exert flow-dependent potassium secretion to facilitate kaliuresis in response to elevated dietary potassium intake. This process involves stimulation of calcium-activated large conductance maxi-K (BK) channels in the distal nephron, namely the connecting tubule and the collecting duct. Recent evidence suggests that the TRPV4 channel is a critical determinant of flow-dependent intracellular calcium elevations in these segments of the renal tubule. Here, we demonstrate that elevated dietary potassium intake (five percent potassium) increases renal TRPV4 mRNA and protein levels in an aldosterone-dependent manner and causes redistribution of the channel to the apical plasma membrane in native collecting duct cells. This, in turn, leads to augmented TRPV4-mediated flow-dependent calcium ion responses in freshly isolated split-opened collecting ducts from mice fed the high potassium diet. Genetic TRPV4 ablation greatly diminished BK channel activity in collecting duct cells pointing to a reduced capacity to excrete potassium. Consistently, elevated potassium intake induced hyperkalemia in TRPV4 knockout mice due to deficient renal potassium excretion. Thus, regulation of TRPV4 activity in the distal nephron by dietary potassium is an indispensable component of whole body potassium balance. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.
Vadose zone flow convergence test suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, B. T.
Performance Assessment (PA) simulations for engineered disposal systems at the Savannah River Site involve highly contrasting materials and moisture conditions at and near saturation. These conditions cause severe convergence difficulties that typically result in unacceptable convergence or long simulation times or excessive analyst effort. Adequate convergence is usually achieved in a trial-anderror manner by applying under-relaxation to the Saturation or Pressure variable, in a series of everdecreasing RELAxation values. SRNL would like a more efficient scheme implemented inside PORFLOW to achieve flow convergence in a more reliable and efficient manner. To this end, a suite of test problems that illustratemore » these convergence problems is provided to facilitate diagnosis and development of an improved convergence strategy. The attached files are being transmitted to you describing the test problem and proposed resolution.« less
Samarghandian, Saeed; Hadjzadeh, Mousa-Al-Reza; Afshari, Jalil Tavakkol; Hosseini, Mohadeseh
2014-06-17
We investigated the potential of galangal rhizomes to induce cytotoxic and apoptotic effects in the cultured human breast carcinoma cell line, (MCF-7) in compare with the non-malignant (MRC-5) cells. Both cells were cultured in DMEM medium and treated with galangal rhizomes for three consecutive days. The percentage of apoptotic cells was determined by flow cytometry using Annexin-V fluorescein isothiocyanate. The results showed that the ethanolic extract of galangal rhizomes decreased cell viability in the malignant cells as a concentration- and time- dependent manner. The IC50 values against MCF-7 were determined at 400.0 ± 11.7 and 170.0 ± 5.9 μg/ml after 48 and 72 h respectively. The morphology of MCF-7 cells treated with the ethanolic extract confirmed the cell proliferation assay results. Alpinia galanga induced apoptosis in MCF-7 cells, as determined by flow cytometry. We concluded that the extract of Alpinia galanga exerts pro-apoptotic effects in a breast cancer-derived cell line and could be considered as a potential chemotherapeutic agent in breast cancer.
Safety assessment of sodium acetate, sodium diacetate and potassium sorbate food additives.
Mohammadzadeh-Aghdash, Hossein; Sohrabi, Yousef; Mohammadi, Ali; Shanehbandi, Dariush; Dehghan, Parvin; Ezzati Nazhad Dolatabadi, Jafar
2018-08-15
Cytotoxicity and genotoxicity of sodium acetate (SA), sodium diacetate (SDA), and potassium sorbate (PS) was tested on Human Umbilical Vein Endothelial Cells (HUVEC). Cytotoxicity was investigated by MTT assay and flow cytometry analysis, while genotoxicity was evaluated using DNA fragmentation and DAPI staining assays. The growth of treated HUVECs with various concentrations of SA, SDA and PS decreased in a dose-and time-dependent manner. The IC50 of 487.71, 485.82 and 659.96 µM after 24 h and IC50 of 232.05, 190.19 and 123.95 µM after 48 h of treatment were attained for SA, SDA and PS, respectively. Flow cytometry analysis showed that early and late apoptosis percentage in treated cells was not considerable. Also neither considerable DNA fragmentation nor DNA smear was observed using DAPI staining and DNA ladder assays. Overall, it can be concluded that the aforementioned food additives can be used as safe additives at low concentration in food industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ji, Y.; Ji, C.; Yue, L.; Xu, H.
2012-01-01
Objective Many scientific studies have shown that Asparagus officinalis has an antitumour effect and enhances human immunity, but the active components and the antitumour mechanisms are unclear. We investigated the effects of saponins isolated from Asparagus on proliferation and apoptosis in the human hepatoma cell line HepG2. Methods HepG2 cells were treated with varying concentrations of Asparagus saponins at various times. Using mtt and flow cytometry assays, we evaluated the effects of Asparagus saponins on the growth and apoptosis of HepG2 cells. Transmission electron microscopy was used to observe the morphology of cell apoptosis. Confocal laser scanning microscopy was used to analyze intracellular calcium ion concentration, mitochondrial permeability transition pore (mptp), and mitochondrial membrane potential (mmp). Spectrophotometry was applied to quantify the activity of caspase-9 and caspase-3. Flow cytometry was used to investigate the levels of reactive oxygen species (ros) and pH, and the expressions of Bcl2, Bax, CytC, and caspase-3, in HepG2 cells. Results Asparagus saponins inhibited the growth of HepG2 cells in a dose-dependent manner. The median inhibitory concentration (IC50) was 101.15 mg/L at 72 hours. The apoptosis morphology at 72 hours of treatment was obvious, showing cell protuberance, concentrated cytoplasm, and apoptotic bodies. The apoptotic rates at 72 hours were 30.9%, 51.7%, and 62.1% (for saponin concentrations of 50 mg/L, 100 mg/L, 200 mg/L). Treatment with Asparagus saponins for 24 hours increased the intracellular level of ros and Ca2+, lowered the pH, activated intracellular mptp, and decreased mmp in a dose-dependent manner. Treatment also increased the activity of caspase-9 and caspase-3, downregulated the expression of Bcl2, upregulated the expression of Bax, and induced release of CytC and activation of caspase-3. Conclusions Asparagus saponins induce apoptosis in HepG2 cells through a mitochondrial-mediated and caspase-dependent pathway, suggesting that they may be a potent agent for the treatment of hepatocellular carcinoma. PMID:22876162
Elkin, Elana R; Harris, Sean M; Loch-Caruso, Rita
2018-01-01
Trichloroethylene (TCE), a prevalent environmental contaminant, is a potent renal and hepatic toxicant through metabolites such as S-(1, 2-dichlorovinyl)-l-cysteine (DCVC). However, effects of TCE on other target organs such as the placenta have been minimally explored. Because elevated apoptosis and lipid peroxidation in placenta have been observed in pregnancy morbidities involving poor placentation, we evaluated the effects of DCVC exposure on apoptosis and lipid peroxidation in a human extravillous trophoblast cell line, HTR-8/SVneo. We exposed the cells in vitro to 10-100μM DCVC for various time points up to 24h. Following exposure, we measured apoptosis using flow cytometry, caspase activity using luminescence assays, gene expression using qRT-PCR, and lipid peroxidation using a malondialdehyde quantification assay. DCVC significantly increased apoptosis in time- and concentration-dependent manners (p<0.05). DCVC also significantly stimulated caspase 3, 7, 8 and 9 activities after 12h (p<0.05), suggesting that DCVC stimulates the activation of both the intrinsic and extrinsic apoptotic signaling pathways simultaneously. Pre-treatment with the tBID inhibitor Bl-6C9 partially reduced DCVC-stimulated caspase 3 and 7 activity, signifying crosstalk between the two pathways. Additionally, DCVC treatment increased lipid peroxidation in a concentration-dependent manner. Co-treatment with the antioxidant peroxyl radical scavenger (±)-α-tocopherol attenuated caspase 3 and 7 activity, suggesting that lipid peroxidation mediates DCVC-induced apoptosis in extravillous trophoblasts. Our findings suggest that DCVC-induced apoptosis and lipid peroxidation in extravillous trophoblasts could contribute to poor placentation if similar effects occur in vivo in response to TCE exposure, indicating that further studies into this mechanism are warranted. Copyright © 2017 Elsevier Inc. All rights reserved.
Suppression of the sonic heat transfer limit in high-temperature heat pipes
NASA Astrophysics Data System (ADS)
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
Developpement dune methode de simulation de pompage au sein d'un compresseur multi-etage
NASA Astrophysics Data System (ADS)
Dumas, Martial
Surge is an unsteady phenomenon which appears when a compressor operates at a mass flow that is too low relative to its design point. This aerodynamic instability is characterized by large oscillations in pressure and mass flow, resulting in a sudden drop in power delivered by a gas turbine engine and possibly important damage to engine components. The methodology developed in this thesis allows for the simulations of the flow behavior inside a multi-stage compressor during surge and, by extension, predict at the design phase the time variation of aerodynamic forces on the blades and of the pressure and temperature at bleed locations inside the compressors for turbine cooling. While the compressor is the component of interest and the trigger for surge, the flow behavior during this event is also dependent on other engine components (combustion chamber, turbine, ducts). However, the simulation of the entire gas turbine engine cannot be carried out in a practical manner with existing computational technologies. The approach taken consists of coupling 3-D RANS CFD simulations of the compressor with 1-D equations modeling the behavior of the other components applied as dynamic boundary conditions. The method was put into practice in a commercial RANS CFD code (ANSYS CFX) whose integrated options facilitated the implementation of the 1-D equations into the dynamic boundary conditions of the computational domain. In addition, in order to limit computational time, only one blade passage was simulated per blade row to capture surge which is essentially a one-dimensional phenomenon. This methodology was applied to several compressor geometries with distinct features. Simulations on a low-speed (incompressible) three-stage axial compressor allowed for a validation with experimental data, which showed that the pressure and mass flow oscillations are captured well. This comparison also highlighted the strong dependence of the oscillation frequency on the volume of the downstream plenum (combustion chamber). The simulations of the second compressor demonstrated the adaptability of the approach to a multi-stage compressor with an axial-centrifugal configuration. Finally, application of the method to a transonic compressor geometry from Pratt & Whitney Canada demonstrated the tool on a mixed flow-centrifugal compressor configuration operating in a highly compressible regime. These last simulations highlighted certain limitations of the tool, namely the numerical robustness associated with the use of multiple stator/rotor interfaces in a high-speed compressor with high rates of change of mass flow, and the computational time required to a simulate several surge cycles.
[Anti-tumor effect of 5-FU-PLLA-CNTs on human gastric carcinoma cell lines in vitro].
Gu, Jun; Li, Maolan; Wu, Xiangsong; Wu, Wenguang; Zhang, Lin; Ding, Qichen; Yang, Jiahua; Weng, Hao; Ding, Qian; Bao, Runfa; Shu, Yijun; Liu, Yingbin
2014-04-01
To prepare cisPLLAtin-loaded polylactic acid/cnts, and to study the anti-tumor effect of 5-FU-PLLA-CNTs on human gastric carcinoma cell lines(MGC803 and MNK45). 5-FU-PLLA-CNTs were prepared with ultrasound emulsification. The morphology of 5-FU-PLLA-CNTs was determined by scanning electron microscope(SEM), and its drug loading and drug release curve in vitro were detected by UV-Vis-NIR spectrophotometer. Cells were divided into experiment, positive control and negative control groups. CCK8 method was used to test the cytotoxic effect of 5-FU-PLLA-CNTs in different concentrations on MGC803 and MNK45 cell proliferation. Flow cytometry was employed to measure the apoptotic rate of MGC803 and MNK45 cells before and after the intervention of 5-FU-PLLA-CNTs. Deep layer film of 5-FU-PLLA-CNTs was successfully established, whose drug-load rate was(4.54±0.43)%, entrapment rate was(21.56±2.36)%. In vitro release test showed release rate within 24 h of 5-FU-PLLA-CNTs was 23.9% in a as lowly increasing manner, and accumulating release rate was 85.3% at day 31. CCk8 experiment revealed, as compared to control group, 5-FU-PLLA-CNTs significantly inhibited the proliferation of two cell lines in dose-dependent and time-dependent manner. The best 5-FU-PLLA-CNTs concentration of inhibition for human gastric cancer cell lines was 1 mg/well. Flow cytometry indicated the apoptotic rate of MGC803 and MNK45 cells in experiment group treated by 1 mg/well 5-FU-PLLA-CNTs significantly increased as compared to negative control group (P<0.05), while the difference was not significant as compared to positive control group (P>0.05). The 5-FU-PLLA-CNTs has good drug sustained-release capacity, and can significantly kill and inhibit the proliferation of MGC803 and MNK45 cell lines.
2010-01-01
Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer. PMID:20167063
Yen, Ching-Yu; Chiu, Chien-Chih; Chang, Fang-Rong; Chen, Jeff Yi-Fu; Hwang, Chi-Ching; Hseu, You-Cheng; Yang, Hsin-Ling; Lee, Alan Yueh-Luen; Tsai, Ming-Tz; Guo, Zong-Lun; Cheng, Yu-Shan; Liu, Yin-Chang; Lan, Yu-Hsuan; Chang, Yu-Ching; Ko, Ying-Chin; Chang, Hsueh-Wei; Wu, Yang-Chang
2010-02-18
The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4beta-Hydroxywithanolide (4betaHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 microg/mL 4betaHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4betaHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4betaHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 microg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4betaHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 microg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 microg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4betaHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.
[Effect of taspine derivatives on human liver cancer SMMC7721].
Zhang, Yan-min; Wang, Nan; Dai, Bing-ling; He, Lang-chong
2011-07-01
To analyse the inhibition effect of taspine derivatives on human Liver cancer SMMC7721 cell and its mechanism. The effects of five taspine derivatives on SMMC7721 cell growth were determined by MTT. The flow cytometry was used to determine the cell cycle. The effects of Tas-D1 on the EGF and VEGF in SMMC7721 cell were determined by ELISA. The mRNA level of EGF and VEGF in SMMC7721 cell was determined by RT-PCR. The MTT assay demonstrated that the taspine derivative Tas-D1 significantly inhibited the growth of SMMC7721 cell in a dose-dependent manner. Cell was stopped at S phase by Tas-D1. Tas-D1 inhibited the expression of EGF and VEGF and their mRNA in a dose-dependent manner (P<0.05). The taspine derivative Tas-D1 can inhibit the growth of human Liver cancer SMMC7721 cell and change cell cycle, which may be related to the inhibition of EGF and VEGF expression.
Dengue Virus Modulates the Unfolded Protein Response in a Time-dependent Manner*
Peña, José; Harris, Eva
2011-01-01
Flaviviruses, such as dengue virus (DENV), depend on the host endoplasmic reticulum for translation, replication, and packaging of their genomes. Here we report that DENV-2 infection modulates the unfolded protein response in a time-dependent manner. We show that early DENV-2 infection triggers and then suppresses PERK-mediated eIF2α phosphorylation and that in mid and late DENV-2 infection, the IRE1-XBP1 and ATF6 pathways are activated, respectively. Activation of IRE1-XBP1 correlated with induction of downstream targets GRP78, CHOP, and GADD34. Furthermore, induction of CHOP did not induce apoptotic markers, such as suppression of anti-apoptotic protein Bcl-2, activation of caspase-9 or caspase-3, and cleavage of poly(ADP-ribose) polymerase. Finally, we show that DENV-2 replication is affected in PERK−/− and IRE1−/− mouse embryo fibroblasts when compared with wild-type mouse embryo fibroblasts. These results demonstrate that time-dependent activation of the unfolded protein response by DENV-2 can override inhibition of translation, prevent apoptosis, and prolong the viral life cycle. PMID:21385877
Inhibitory effects of β,β-dimethylacrylshikonin on hepatocellular carcinoma in vitro and in vivo.
Wu, Yi-ying; Wan, Li-hong; Zheng, Xiao-wei; Shao, Zhen-jun; Chen, Jian; Chen, Xia-jing; Liu, Li-tao; Kuang, Wen-juan; Tan, Xian-shu; Zhou, Li-ming
2012-05-01
β,β-Dimethylacrylshikonin is one of the most abundant naphthoquinones in the root extracts of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae), which have been reported to have antitumor effects. This study evaluated the antiproliferative activity of β,β-dimethylacrylshikonin on human hepatocellular carcinoma (HCC) cells both in vitro and in vivo. In vitro, the MTT assay showed that β,β-dimethylacrylshikonin inhibited the proliferation of SMMC-7721 cells in both dose- and time-dependent manners with its 50% inhibitory concentration (IC(50) ) at 48 h being 15.01 ± 0.76 µg/mL. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) and Hoechst staining detected the characteristics of cell apoptosis in β,β-dimethylacrylshikonin-treated cells and the apoptotic rates of treated groups were increased in a dose-dependent manner. Flow cytometric analysis revealed that β,β-dimethylacrylshikonin could block the cell cycle arrest at G2 phase. Furthermore, β,β-dimethylacrylshikonin down-regulated the mRNA and protein expression of Bcl-2 but up-regulated that of Bax. The cleaved caspase-3 protein was also detected in treated cells. The experiment in vivo showed that β,β-dimethylacrylshikonin significantly suppressed the growth of H(22) transplantable hepatoma, and induced the activation of caspase-3 determined by immunohistochemistry. The results indicate that β,β-dimethylacrylshikonin has significant antitumor effects on hepatocellular carcinoma both in vitro and in vivo. Copyright © 2011 John Wiley & Sons, Ltd.
The Current Status of Unsteady CFD Approaches for Aerodynamic Flow Control
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Singer, Bart A.; Yamaleev, Nail; Vatsa, Veer N.; Viken, Sally A.; Atkins, Harold L.
2002-01-01
An overview of the current status of time dependent algorithms is presented. Special attention is given to algorithms used to predict fluid actuator flows, as well as other active and passive flow control devices. Capabilities for the next decade are predicted, and principal impediments to the progress of time-dependent algorithms are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongliang; Hong, Da Hye; Kim, Han Sol
We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivationmore » curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.« less
Large springs of east Tennessee
Sun, Pao-chang P.; Criner, J.H.; Poole, J.L.
1963-01-01
Springs constitute an important source of water in east Tennessee, and many individual springs are capable of supplying the large quantities needed for municipal and industrial supplies. Most of the springs in east Tennessee issue from solution openings and fractured and faulted zones in limestone and dolomite of the Knox Group, Chickamauga Limestone, and Conasauga Group. The ability of these rocks to yield a sustained flow of water to springs is dependent on a system of interconnected openings through which water can infiltrate from the land surface and move to points of natural discharge. Ninety springs were selected for detailed study, and 84 of these are analyzed in terms of magnitude and variability of discharge. Of the 84 springs analyzed, 4 flow at an average rate of 10 to 100 cfs (cubic feet per second), 62 at an average rate of 1 to 10 cfs, and 18 at an average rate of 1 cfs or less. Of the 90 springs, 75 are variable in their discharge; that is, the ratio of their fluctuations to their average discharges exceeds 100 percent. Mathematical analysis of the flow recession curve of Mill Spring near Jefferson City shows that the hydrologic system contributing to the flow of the spring has an effective capacity of about 70 million cubic feet of water. The rate of depletion of this volume of water, in the absence of significant precipitation, averages 0.0056 cfs per day between the time when the hydrologic system is full and the time when the spring ceases to flow. From such a curve it is possible to determine at any time the residual volume of water remaining in the system and the expected rate of decrease in discharge from that time to cessation of flow. Correlation of discharge measurements of 22 springs with those of Mill Spring shows that rough approximations of discharge can be projected for springs for which few measurements are available. Seventeen of the springs analyzed in this manner show good correlation with Mill Spring: that is, their coefficients of correlation were 0.70 or better as compared with a perfect correlation factor of 1.00.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100
2015-01-15
In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less
Prasad, Ritika; Koch, Biplob
2014-01-01
Dendrobium, a genus of orchid, was found to possess useful therapeutic activities like anticancer, hypoglycaemic, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and neuroprotective activities. The study was aimed to evaluate the anticancer property of the ethanolic extract of Dendrobium formosum on Dalton's lymphoma. In vitro cytotoxicity was determined by MTT assay, apoptosis was determined by fluorescence microscopy, and cell cycle progression was analysed using flow cytometry; in vivo antitumor activity was performed in Dalton's lymphoma bearing mice. The IC50 value of ethanolic extract was obtained at 350 μg/mL in Dalton's lymphoma cells. Fluorescence microscopy analysis showed significant increase in apoptotic cell death in dose- and time-dependent manner which was further confirmed through the resulting DNA fragmentation. Further, flow cytometry analysis showed that the ethanolic extract arrests the cells in G2/M phase of the cell cycle. The in vivo anticancer activity study illustrates significant increase in the survival time of Dalton's lymphoma bearing mice on treatment with ethanolic extract when compared to control. These results substantiate the antitumor properties of ethanolic extract of Dendrobium formosum and suggest an alternative in treatment of cancer. Further studies are required regarding the isolation and characterization of bioactive components along with the analysis of molecular mechanism involved. PMID:24959588
Kaempferol impedes IL-32-induced monocyte-macrophage differentiation.
Nam, Sun-Young; Jeong, Hyun-Ja; Kim, Hyung-Min
2017-08-25
Kaempferol possesses a wide range of therapeutic properties, including antioxidant, anti-inflammatory, and anticancer properties. The present study sought to evaluate the effects and possible pharmacological mechanisms of kaempferol on interleukin (IL)-32-induced monocyte-macrophage differentiation. In this study, we performed flow cytometry assay, immunocytochemical staining, quantitative real-time PCR, enzyme-linked immuno sorbent assay, caspase-1 assay, and Western blotting to observe the effects and underlying mechanisms of kaempferol using the human monocyte cell line THP-1. The flow cytometry, immunocytochemical staining, and real-time PCR results show that kaempferol attenuated IL-32-induced monocyte differentiation to product macrophage-like cells. Kaempferol decreased the production and mRNA expression of pro-inflammatory cytokines, in this case thymic stromal lymphopoietin (TSLP), IL-1β, tumor necrosis factor (TNF)-α, and IL-8. Furthermore, kaempferol inhibited the IL-32-induced activation of p38 and nuclear factor-κB in a dose-dependent manner in THP-1 cells. Kaempferol also ameliorated the lipopolysaccharide-induced production of the inflammatory mediators TSLP, IL-1β, TNF-α, IL-8, and nitric oxide of macrophage-like cells differentiated by IL-32. In brief, our findings may provide new mechanistic insights into the anti-inflammatory effects of kaempferol. Copyright © 2017 Elsevier B.V. All rights reserved.
Obchoei, Sumalee; Saeeng, Rungnapha; Wongkham, Chaisiri; Wongkham, Sopit
2016-11-01
The treatment of cholangiocarcinoma (CCA) is still ineffective and the search for a novel treatment is needed. In this study, eight novel mono-triazole glycosides (W1-W8) were synthesized and tested for their anticancer activities in CCA cell lines. The anti-proliferation effect and the underlying mechanisms of the triazole glycosides were explored. Viable cells were determined using the MTT test. Among glycosides tested, W4 and W5 exhibited the most potent anticancer activity in a dose- and time-dependent fashion. Flow cytometry and wstern blot analysis revealed that W4 and W5 induced G 0 /G 1 phase cell-cycle arrest through down-regulation of cyclin D1, cyclin E and induction of cyclin-dependent kinase inhibitors, p27 and p21 protein expression. Annexin V/propidium iodide (PI) staining demonstrated that W4 and W5 also induced apoptotic cells in a dose-dependent manner via caspase signaling cascade. Together, these findings imply that the novel synthetic glycosides might be a promising anticancer agent for CCA. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Cathepsin G-Dependent Modulation of Platelet Thrombus Formation In Vivo by Blood Neutrophils
Faraday, Nauder; Schunke, Kathryn; Saleem, Sofiyan; Fu, Juan; Wang, Bing; Zhang, Jian; Morrell, Craig; Dore, Sylvain
2013-01-01
Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies. PMID:23940756
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44×1.22×0.076 m (tank 1) and 2.44×0.61×0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)3(0). However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Miller, Andrew W.; Rodriguez, Derrick R.; Honeyman, Bruce D.
2013-05-01
Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44 × 1.22 × 0.076 m (tank 1) and 2.44 × 0.61 × 0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)30. However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition.
El habbash, Aisha I.; Ibrahim, Mohamed Yousif; Yahayu, Maizatulakmal; Omer, Fatima Abd Elmutaal; Abd Rahman, Mashitoh; Nordin, Noraziah; Lian, Gwendoline Ee Cheng
2017-01-01
Natural medicinal products possess diverse chemical structures and have been an essential source for drug discovery. Therefore, in this study, α-mangostin (AM) is a plant-derived compound was investigated for the apoptotic effect on human cervical cancer cells (HeLa). The cytotoxic effects of AM on the viability of HeLa and human normal ovarian cell line (SV40) were evaluated by using MTT assay. Results showed that AM inhibited HeLa cells viability at concentration- and time-dependent manner with IC50 value of 24.53 ± 1.48 µM at 24 h. The apoptogenic effects of AM on HeLa were assessed using fluorescence microscopy analysis. The effect of AM on cell proliferation was also studied through clonogenic assay. ROS production evaluation, flow cytometry (cell cycle) analysis, caspases 3/7, 8, and 9 assessment and multiple cytotoxicity assays were conducted to determine the mechanism of cell apoptosis. This was associated with G2/M phase cell cycle arrest and elevation in ROS production. AM induced mitochondrial apoptosis which was confirmed based on the significant increase in the levels of caspases 3/7 and 9 in a dose-dependent manner. Furthermore, the MMP disruption and increased cell permeability, concurrent with cytochrome c release from the mitochondria to the cytosol provided evidence that AM can induce apoptosis via mitochondrial-dependent pathway. AM exerted a remarkable antitumor effect and induced characteristic apoptogenic morphological changes on HeLa cells, which indicates the occurrence of cell death. This study reveals that AM could be a potential antitumor compound on cervical cancer in vitro and can be considered for further cervical cancer preclinical and in vivo testing. PMID:28740747
Xie, Qin-Jian; Cao, Xin-Li; Bai, Lu; Wu, Zheng-Rong; Ma, Ying-Ping; Li, Hong-Yu
2014-01-01
Realgar which contains arsenic components has been used in traditional Chinese medicine (TCM) as an anticancer drug. However, neither Realgar nor its formula are soluble in water. As a result, high dose of Realgar has to be administered to achieve an effective blood medicine concentration, and this is associated with adverse side effects. The objective of the present study was to increase the solubility of a formula using hydrometallurgy technology as well as investigating its effects on in vitro and in vivo cell proliferation and apoptosis in Sarcoma-180 cell line. Antiproliferative activity of Realgar Bioleaching Solution (RBS) was evaluated by MTT assay. Further, effects of RBS on cell proliferation and apoptosis were studied using flow cytometry and transmission electron microscopy. Kunming mice were administered RBS in vivo, where arsenic specifically targeted solid tumors. The results indicated that RBS extract potently inhibited the tumor growth of Sarcoma-180 cell line in a dose-dependent manner. Flow cytometry and transmission electron microscopy further indicated that RBS significantly induced cell apoptosis through the inhibition of cell cycle pathway in a dose-dependent manner. Further, on RBS administration to mice, arsenic was specifically targeted to solid tumors RBS could substitute for traditional Realgar or its formula to work as a potent tool in cancer treatment.
Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway.
Li, Qing-chun; Liang, Yun; Tian, Yuan; Hu, Guang-rui
2016-01-01
In the current study the antiproliferative effect of arctigenin, plant lignin, was evaluated on human colon cancer cell line HT-29. Furthermore, attempts were made to explore the signaling mechanism which may be responsible for its effect. Cell growth inhibition was assessed by MTT and LDH assays. Flow cytometric analysis was performed to determine cell arrest in the cell cycle phase and apoptosis. Furthermore, to confirm the apoptotic activity of arctigenin, caspase-9 and -3 activities analysis was performed. The levels of reactive oxygen species (ROS) and p38 mitogen activated protein kinase (MAPK) were investigated to determine their role in inducing apoptosis in arctigenin-treated HT-29 colon cancer cell line. MTT and LDH results demonstrated significant cell growth inhibitory effect of arctigenin on HT-29 cells in a dose-dependent manner. Furthermore, increase in cell number arrested at G2/M phase was observed in flow cytometric analysis upon arctigenin treatment. In addition, arctigenin increased the apoptotic ratio in a dose-dependent manner. The involvement of intrinsic apoptotic pathway was indicated by the activation of caspase-9 and -3. Moreover, increased ROS production, activation of p38 MAPK and changes in mitochondrial membrane potential (ΔΨm) also revealed the role of intrinsic apoptotic signaling pathway in cell growth inhibition after arctigenin exposure. Arctigenin induces apoptosis in HT-29 colon cancer cells by regulating ROS and p38 MAPK pathways.
Dispersive transport and symmetry of the dispersion tensor in porous media
NASA Astrophysics Data System (ADS)
Pride, Steven R.; Vasco, Donald W.; Flekkoy, Eirik G.; Holtzman, Ran
2017-04-01
The macroscopic laws controlling the advection and diffusion of solute at the scale of the porous continuum are derived in a general manner that does not place limitations on the geometry and time evolution of the pore space. Special focus is given to the definition and symmetry of the dispersion tensor that is controlling how a solute plume spreads out. We show that the dispersion tensor is not symmetric and that the asymmetry derives from the advective derivative in the pore-scale advection-diffusion equation. When flow is spatially variable across a voxel, such as in the presence of a permeability gradient, the amount of asymmetry can be large. As first shown by Auriault [J.-L. Auriault et al. Transp. Porous Med. 85, 771 (2010), 10.1007/s11242-010-9591-y] in the limit of low Péclet number, we show that at any Péclet number, the dispersion tensor Di j satisfies the flow-reversal symmetry Di j(+q ) =Dj i(-q ) where q is the mean flow in the voxel under analysis; however, Reynold's number must be sufficiently small that the flow is reversible when the force driving the flow changes sign. We also demonstrate these symmetries using lattice-Boltzmann simulations and discuss some subtle aspects of how to measure the dispersion tensor numerically. In particular, the numerical experiments demonstrate that the off-diagonal components of the dispersion tensor are antisymmetric which is consistent with the analytical dependence on the average flow gradients that we propose for these off-diagonal components.
Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere
Qi, Chao; Warren, Jessica M.
2016-01-01
Tectonic plates are a key feature of Earth’s structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary. PMID:27606485
Olivine anisotropy suggests Gutenberg discontinuity is not the base of the lithosphere.
Hansen, Lars N; Qi, Chao; Warren, Jessica M
2016-09-20
Tectonic plates are a key feature of Earth's structure, and their behavior and dynamics are fundamental drivers in a wide range of large-scale processes. The operation of plate tectonics, in general, depends intimately on the manner in which lithospheric plates couple to the convecting interior. Current debate centers on whether the transition from rigid lithosphere to flowing asthenosphere relates to increases in temperature or to changes in composition such as the presence of a small amount of melt or an increase in water content below a specified depth. Thus, the manner in which the rigid lithosphere couples to the flowing asthenosphere is currently unclear. Here we present results from laboratory-based torsion experiments on olivine aggregates with and without melt, yielding an improved database describing the crystallographic alignment of olivine grains. We combine this database with a flow model for oceanic upper mantle to predict the structure of the seismic anisotropy beneath ocean basins. Agreement between our model and seismological observations supports the view that the base of the lithosphere is thermally controlled. This model additionally supports the idea that discontinuities in velocity and anisotropy, often assumed to be the base of the lithosphere, are, instead, intralithospheric features reflecting a compositional boundary established at midocean ridges, not a rheological boundary.
NASA Technical Reports Server (NTRS)
Rubin, S. G.
1982-01-01
Recent developments with finite-difference techniques are emphasized. The quotation marks reflect the fact that any finite discretization procedure can be included in this category. Many so-called finite element collocation and galerkin methods can be reproduced by appropriate forms of the differential equations and discretization formulas. Many of the difficulties encountered in early Navier-Stokes calculations were inherent not only in the choice of the different equations (accuracy), but also in the method of solution or choice of algorithm (convergence and stability, in the manner in which the dependent variables or discretized equations are related (coupling), in the manner that boundary conditions are applied, in the manner that the coordinate mesh is specified (grid generation), and finally, in recognizing that for many high Reynolds number flows not all contributions to the Navier-Stokes equations are necessarily of equal importance (parabolization, preferred direction, pressure interaction, asymptotic and mathematical character). It is these elements that are reviewed. Several Navier-Stokes and parabolized Navier-Stokes formulations are also presented.
Rootless shield and perched lava pond collapses at Kīlauea Volcano, Hawai'i
Patrick, Matthew R.; Orr, Tim R.
2012-01-01
Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.
p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells.
Wang, Hai-Yan; Yu, Hai-Zhong; Huang, Sheng-Mou; Zheng, Yu-Lan
2016-10-01
The present study aimed to investigate the effects of berberine hydrochloride on the proliferation and apoptosis of HeLa229 human cervical cancer cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to examine the cytotoxicity of berberine hydrochloride against HeLa229 cells. The effects of berberine hydrochloride on the apoptosis of HeLa229 cells was detected by immunofluorescence and flow cytometry, and the mRNA expression levels of p53, B‑cell lymphoma 2 (Bcl‑2) and cyclooxygenase‑2 (cox‑2) were analyzed by reverse transcription-quantitative polymerase chain reaction. Berberine hydrochloride inhibited the proliferation of HeLa229 cells in a dose‑dependent manner; minimum cell viability (3.61%) was detected following treatment with 215.164 µmol/l berberine hydrochloride and the half maximal inhibitory concentration value was 42.93 µmol/l following treatment for 72 h. In addition, berberine hydrochloride induced apoptosis in HeLa229 cells in a dose‑ and time‑dependent manner. Berberine hydrochloride upregulated the mRNA expression levels of p53, and downregulated mRNA expression levels of Bcl‑2 and cox‑2, in a dose‑dependent manner. In conclusion, berberine hydrochloride inhibited the proliferation and induced apoptosis of HeLa229 cells, potentially via the upregulation of p53 and the downregulation of Bcl‑2 and cox‑2 mRNA expression levels.
Sun, Yue; Ye, Da-Wei; Zhang, Peng; Wu, Ying-Xing; Wang, Bang-Yan; Peng, Guang; Yu, Shi-Ying
2016-10-01
Cytokines are believed to be involved in a "vicious circle" of progressive interactions in bone metastasis. Iguratimod is a novel anti-rheumatic drug which is reported to have the capability of anti-cytokines. In this study, a rat model was constructed to investigate the effect of iguratimod on bone metastasis and it was found that iguratimod alleviated cancer-induced bone destruction. To further explore whether an anti-tumor activity of iguratimod contributes to the effect of bone resorption suppression, two human breast cancer cell lines MDA-MB-231 and MCF-7 were studied. The effect of iguratimod on tumor proliferation was detected by CCK-8 assay and flow cytometry. The effects of iguratimod on migration and invasion of cancer cells were determined by wound-healing and Transwell assays. Results showed that high dose (30 μg/mL) iguratimod slightly suppressed the proliferation of cancer cells but failed to inhibit their migration and invasion capacity. Interestingly, iguratimod decreased the transcription level of IL-6 in MDA-MB-231 cells in a concentration-dependent manner. Moreover, iguratimod partially impaired NF-κB signaling by suppressing the phosphorylation of NF-κB p65 subunit. Our findings indicated that iguratimod may alleviate bone destruction by partially decreasing the expression of IL-6 in an NF-κB-dependent manner, while it has little effect on the tumor proliferation and invasion.
Multiple Near Wake Patterns Behind Annular Rings
NASA Astrophysics Data System (ADS)
Zhang, Jinzhong; Higuchi, Hiroshi; Muzas, Brian K.; Furuya, Shojiro
1996-11-01
Wake interactions behind concentric annular rings at different spacing ratios were experimentally investigated. The flow visualization, laser Doppler velocimetry data and results from the particle tracking velocimetry are presented and discussed. Jets through individual slots merged in multiply-stable, axisymmetric manners. Most flow patterns were persistent unless the flow was strongly disturbed. The vortex interactions from individual annular elements were also axisymmetric in the near wake. This is in contrast to the asymmetric flows observed earlier behind two-dimensional slotted plates (Higuchi et al. J. Aircraft 26 1989, Phys. Fluids 6(1), 1994). The intermediate wake, however, was dominated by large scale, three-dimensional wake motions even at moderate porosity. Onset of the specific flow patterns was associated with the interactions among start-up vortices. Given model geometry, different turbulent structures and mean velocity profiles were observed in the intermediate wake depending on the near wake pattern. *BKM was a NSF-REU Program undergrad. from Princeton U. and SF was from Mitsubishi Heavy Industries. This work was suppoted in part by the Naval Air Warfare Center.
Chauhan, Ved; Chauhan, Abha
2016-06-01
Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders. Published by Elsevier Ltd.
Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows.
Rolland, Joran
2018-02-01
This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T)=A_{p}r-B_{p}, with A_{p} and B_{p} positive. Moreover, A_{p} and B_{p} are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T≍exp[L(Ar-B)] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability, where ln(T) in the limit of small variance noise is studied. Two points of view, local noise of small variance and large length, can be used to discuss the exponential dependence in L of T. In particular, it is shown how a T≍exp[L(A^{'}R-B^{'})] can be derived in a conceptual two degrees of freedom model of a transitional wall flow proposed by Dauchot and Manneville. This is done by identifying a quasipotential in low variance noise, large length limit. This pinpoints the physical effects controlling collapse and build-up trajectories and corresponding passage times with an emphasis on the saddle points between laminar and turbulent states. This analytical analysis also shows that these effects lead to the asymmetric probability density function of kinetic energy of turbulence.
Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows
NASA Astrophysics Data System (ADS)
Rolland, Joran
2018-02-01
This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T ) =Apr -Bp , with Ap and Bp positive. Moreover, Ap and Bp are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T ≍exp[L (A r -B )] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability, where ln(T ) in the limit of small variance noise is studied. Two points of view, local noise of small variance and large length, can be used to discuss the exponential dependence in L of T . In particular, it is shown how a T ≍exp[L (A'R -B') ] can be derived in a conceptual two degrees of freedom model of a transitional wall flow proposed by Dauchot and Manneville. This is done by identifying a quasipotential in low variance noise, large length limit. This pinpoints the physical effects controlling collapse and build-up trajectories and corresponding passage times with an emphasis on the saddle points between laminar and turbulent states. This analytical analysis also shows that these effects lead to the asymmetric probability density function of kinetic energy of turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, W.-J.
2008-05-02
Agglucetin, a platelet glycoprotein (GP)Ib binding protein from Formosan Agkistrodon acutus (A. acutus) venom, could sustain human umbilical vein endothelial cell (HUVEC) proliferation and HUVEC adhering to immobilized agglucetin showed extensive spreading, which was strongly abrogated by integrin antagonists 7E3 and triflavin. Flow cytometric analyses confirmed the expression of GPIb complex on HUVEC is absent and fluorescein isothiocyanate (FITC)-agglucetin binds to HUVEC in a dose-dependent and saturable manner. Furthermore, native agglucetin specifically and dose-dependently inhibited the binding of FITC-23C6, an anti-{alpha}v{beta}3 monoclonal antibody (mAb), but not antibodies against {alpha}2 and {alpha}5, toward HUVEC and purified {alpha}v{beta}3 also bound to immobilizedmore » agglucetin-{beta} in a dose-dependent manner. Moreover, agglucetin exhibited a pro-angiogenic effect in vitro, as well as the focal adhesion kinase (FAK)-associated signaling molecules responsible for HUVEC activation were initiated by agglucetin. In conclusion, agglucetin, acting as a survival factor, promotes endothelial adhesion and angiogenesis by triggering {alpha}v{beta}3 signaling through FAK/phosphatidylinositol 3-kinase (PI3K)/Akt pathway.« less
Iterative spectral methods and spectral solutions to compressible flows
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Zang, T. A.
1982-01-01
A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.
Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per
2017-08-01
Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.
NASA Astrophysics Data System (ADS)
Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.; Shaw, Jonathon A.
1994-04-01
This paper is concerned with the flow modelling capabilities of an advanced CFD simulation system known by the acronym SAUNA. This system is aimed primarily at complex aircraft configurations and possesses a unique grid generation strategy in its use of block-structured, unstructured or hybrid grids, depending on the geometric complexity of the addressed configuration. The main focus of the paper is in demonstrating the recently developed multi-grid, block-structured grid, viscous flow capability of SAUNA, through its evaluation on a number of configurations. Inviscid predictions are also presented, both as a means of interpreting the viscous results and with a view to showing more completely the capabilities of SAUNA. It is shown that accuracy and flexibility are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus.
Liu, Ling; Gong, Liansheng; Zhang, Yangde; Li, Nianfeng
2013-01-01
The aim of this study was to evaluate the effects and molecular mechanisms of everolimus on Panc-1 human pancreatic cancer cells. Panc-1 human pancreatic cancer cells were treated with everolimus (10 μg/ml) at selected time points (6, 12 and 24 h). Cell proliferation and apoptosis were evaluated by MTT and flow cytometric analyses. The glycolytic activity was determined by measuring the activity of the key enzyme lactate dehydrogenase (LDH) and lactate production. The activity of mammalian target of rapamycin (mTOR) signaling was measured by western blotting. The expression of genes, including hexokinase 2 (HK2) and microRNA-143 (miR-143), was evaluated by real-time polymerase chain reaction (PCR). The administration of everolimus time-dependently inhibited proliferation and glycolysis and induced apoptosis in the Panc-1 human pancreatic cancer cells. As the time of treatment with everolimus increased, the mTOR signaling activity decreased, indicated by lower phosphorylation levels of S6 kinase; however, the phosphorylation levels of mTOR barely changed. Moreover, our data showed an everolimus-induced increase in miR-143 and decrease in HK2 in Panc-1 cells in a time-dependent manner. In conclusion, the current study indicates a novel role of everolimus in its antitumor effect as an inhibitor of glycolysis in Panc-1 human pancreatic cancer cells. Furthermore, our data highlights the significance of exploring the mechanisms of everolimus and miR-143 in malignant tumors.
Effects of Time-Dependent Inflow Perturbations on Turbulent Flow in a Street Canyon
NASA Astrophysics Data System (ADS)
Duan, G.; Ngan, K.
2017-12-01
Urban flow and turbulence are driven by atmospheric flows with larger horizontal scales. Since building-resolving computational fluid dynamics models typically employ steady Dirichlet boundary conditions or forcing, the accuracy of numerical simulations may be limited by the neglect of perturbations. We investigate the sensitivity of flow within a unit-aspect-ratio street canyon to time-dependent perturbations near the inflow boundary. Using large-eddy simulation, time-periodic perturbations to the streamwise velocity component are incorporated via the nudging technique. Spatial averages of pointwise differences between unperturbed and perturbed velocity fields (i.e., the error kinetic energy) show a clear dependence on the perturbation period, though spatial structures are largely insensitive to the time-dependent forcing. The response of the error kinetic energy is maximized for perturbation periods comparable to the time scale of the mean canyon circulation. Frequency spectra indicate that this behaviour arises from a resonance between the inflow forcing and the mean motion around closed streamlines. The robustness of the results is confirmed using perturbations derived from measurements of roof-level wind speed.
Estimation of roughness coefficients for natural stream channels with vegetated banks
Coon, William F.
1998-01-01
Roughness coefficients for 21 stream sites in New York state are presented. The site-specific relation between roughness coefficent and flow depth varies in a predictable manner, depending on energy gradient, relative smoothness (Rd50), and channel-vegetation density. The percentage of wetted perimeter that is vegetated is a useful indicator of when streambank vegetation can affect the roughness coefficient. To estimate the magnitude of this effect requires evaluation of the density and percent of submergence of vegetation.
Scanning Mode Sensor for Detection of Flow Inhomogeneities
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1998-01-01
A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry. Schlieren, and shadowgraph techniques. These techniques. however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
Scanning Mode Sensor for Detection of Flow Inhomogeneities
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor)
1996-01-01
A scanning mode sensor and method is provided for detection of flow inhomogeneities such as shock. The field of use of this invention is ground test control and engine control during supersonic flight. Prior art measuring techniques include interferometry, Schlieren, and shadowgraph techniques. These techniques, however, have problems with light dissipation. The present method and sensor utilizes a pencil beam of energy which is passed through a transparent aperture in a flow inlet in a time-sequential manner so as to alter the energy beam. The altered beam or its effects are processed and can be studied to reveal information about flow through the inlet which can in turn be used for engine control.
Direction dependence of displacement time for two-fluid electroosmotic flow.
Lim, Chun Yee; Lam, Yee Cheong
2012-03-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings.
Direction dependence of displacement time for two-fluid electroosmotic flow
Lim, Chun Yee; Lam, Yee Cheong
2012-01-01
Electroosmotic flow that involves one fluid displacing another fluid is commonly encountered in various microfludic applications and experiments, for example, current monitoring technique to determine zeta potential of microchannel. There is experimentally observed anomaly in such flow, namely, the displacement time is flow direction dependent, i.e., it depends if it is a high concentration fluid displacing a low concentration fluid, or vice versa. Thus, this investigation focuses on the displacement flow of two fluids with various concentration differences. The displacement time was determined experimentally with current monitoring method. It is concluded that the time required for a high concentration solution to displace a low concentration solution is smaller than the time required for a low concentration solution to displace a high concentration solution. The percentage displacement time difference increases with increasing concentration difference and independent of the length or width of the channel and the voltage applied. Hitherto, no theoretical analysis or numerical simulation has been conducted to explain this phenomenon. A numerical model based on finite element method was developed to explain the experimental observations. Simulations showed that the velocity profile and ion distribution deviate significantly from a single fluid electroosmotic flow. The distortion of ion distribution near the electrical double layer is responsible for the displacement time difference for the two different flow directions. The trends obtained from simulations agree with the experimental findings. PMID:22662083
Cho, Chi Heung; Jang, Holim; Lee, Migi; Kang, Hee; Heo, Ho Jjn; Kim, Dae-Ok
2017-07-28
The present study was carried out to investigate the antioxidative and neuroprotective effects of sea buckthorn ( Hippophae rhamnoides L.) leaves (SBL) harvested at different times. Reversed-phase high-performance liquid chromatography analysis revealed five major phenolic compounds: ellagic acid, gallic acid, isorhamnetin, kaempferol, and quercetin. SBL harvested in August had the highest total phenolic and flavonoid contents and antioxidant capacity. Treatment of neuronal PC-12 cells with the ethyl acetate fraction of SBL harvested in August increased their viability and membrane integrity and reduced intracellular oxidative stress in a dose-dependent manner. The relative populations of both early and late apoptotic PC-12 cells were decreased by treatment with the SBL ethyl acetate fraction, based on flow cytometry analysis using annexin V-FITC/PI staining. These findings suggest that SBL can serve as a good source of antioxidants and medicinal agents that attenuate oxidative stress.
NASA Technical Reports Server (NTRS)
Wicker, J. M.; Greene, W. D.; Kim, S. I.; Yang, V.
1995-01-01
Pulsed oscillations in solid rocket motors are investigated with emphasis on nonlinear combustion response. The study employs a wave equation governing the unsteady motions in a two-phase flow, and a solution technique based on spatial- and time-averaging. A wide class of combustion response functions is studied to second-order in fluctuation amplitude to determine if, when, and how triggered instabilities arise. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Based on the behavior of model dynamical systems, introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be the manner in which the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse.
Abacavir increases platelet reactivity via competitive inhibition of soluble guanylyl cyclase
Baum, Paul D.; Sullam, Paul M.; Stoddart, Cheryl A.; McCune, Joseph M.
2011-01-01
Objective To provide a molecular mechanism that explains the association of the antiretroviral guanosine analogue, abacavir, with an increased risk of myocardial infarction. Design Drug effects were studied with biochemical and cellular assays. Methods Human platelets were incubated with nucleoside analogue drugs ex vivo. Platelet activation stimulated by ADP was studied by measuring surface P-selectin with flow cytometry. Inhibition of purified soluble guanylyl cyclase was quantified using an ELISA to measure cGMP production. Results Pre-incubation of platelets in abacavir significantly increased activation in response to ADP in a time and dose-dependent manner. The active anabolite of abacavir, carbovir triphosphate, competitively inhibited soluble guanylyl cyclase activity with a Ki of 55 μmol/l. Conclusion Abacavir competitively inhibits guanylyl cyclase, leading to platelet hyper-reactivity. This may explain the observed increased risk of myocardial infarction in HIV patients taking abacavir. PMID:21941165
Wu, Duan; Zhou, Jianyin; Yin, Zhenyu; Liu, Pingguo; Zhao, Yilin; Liu, Jianming; Wang, Xiaomin
2014-12-02
To explore the effects and underlying mechanisms of ursodeoxycholic acid on human hepatoma cells. HepG2 and SMMC-7721 HCC cell lines were respectively treated with ursodeoxycholic acid. And cell proliferation, apoptosis and the expression of Bax/Bcl-2 gene were detected by methyl thiazolyl tetrazolium (MTT), inverted microscopy, fluorescent microscopy, flow cytometry and Western blot. Ursodeoxycholic acid significantly inhibited the proliferation of human hepatoma cells in a concentration- and time-dependent manner. The half maximal inhibitory concentrations (IC50) of HepG2 and SMMC-7721 were 397.3 and 387.7 µg/ml respectively after a 48-hour treatment of 400 µg /ml ursodeoxycholic acid. And it also induced the apoptosis of HepG2 and SMMC-7721 cells, up-regulated Bax gene and down-regulated Bcl-2 gene. Ursodeoxycholic acid inhibits the proliferation of hepatoma cells and induce apoptosis by mitochondrial-mediated pathway.
NASA Technical Reports Server (NTRS)
Shishir, Pandya; Chaderjian, Neal; Ahmad, Jsaim; Kwak, Dochan (Technical Monitor)
2001-01-01
Flow simulations using the time-dependent Navier-Stokes equations remain a challenge for several reasons. Principal among them are the difficulty to accurately model complex flows, and the time needed to perform the computations. A parametric study of such complex problems is not considered practical due to the large cost associated with computing many time-dependent solutions. The computation time for each solution must be reduced in order to make a parametric study possible. With successful reduction of computation time, the issue of accuracy, and appropriateness of turbulence models will become more tractable.
Context-Dependent Duration Signals in the Primate Prefrontal Cortex
Genovesio, Aldo; Seitz, Lucia K.; Tsujimoto, Satoshi; Wise, Steven P.
2016-01-01
The activity of some prefrontal (PF) cortex neurons distinguishes short from long time intervals. Here, we examined whether this property reflected a general timing mechanism or one dependent on behavioral context. In one task, monkeys discriminated the relative duration of 2 stimuli; in the other, they discriminated the relative distance of 2 stimuli from a fixed reference point. Both tasks had a pre-cue period (interval 1) and a delay period (interval 2) with no discriminant stimulus. Interval 1 elapsed before the presentation of the first discriminant stimulus, and interval 2 began after that stimulus. Both intervals had durations of either 400 or 800 ms. Most PF neurons distinguished short from long durations in one task or interval, but not in the others. When neurons did signal something about duration for both intervals, they did so in an uncorrelated or weakly correlated manner. These results demonstrate a high degree of context dependency in PF time processing. The PF, therefore, does not appear to signal durations abstractedly, as would be expected of a general temporal encoder, but instead does so in a highly context-dependent manner, both within and between tasks. PMID:26209845
The numerical simulation of a high-speed axial flow compressor
NASA Technical Reports Server (NTRS)
Mulac, Richard A.; Adamczyk, John J.
1991-01-01
The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.
Efficacy and safety of tranexamic acid as an emetic in dogs.
Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Fujii, Yoko; Aoki, Takuma; Yoshiike, Masaki; Arai, Hayato; Nakamura, Atsushi; Orito, Kensuke
2014-12-01
To determine dose dependency of tranexamic acid-induced emesis and the time course of the antifibrinolytic potency of tranexamic acid in dogs. 10 Beagles. In a dose-escalating experiment, ascending doses of tranexamic acid (10, 20, and 30 mg/kg, IV) were administered at 5-minute intervals until vomiting was observed. In a separate single-dose experiment, ascending doses of tranexamic acid (20, 30, 40, and 50 mg/kg, IV) were administered at 1-week intervals until vomiting was observed. Time to onset of vomiting and number of vomiting episodes were measured in both experiments. In a coagulation experiment, a single 50 mg/kg bolus of tranexamic acid was administered, and blood was obtained 1 hour before and 20 minutes, 3 hours, and 24 hours after administration. Antifibrinolytic potency of tranexamic acid was evaluated by use of a modified rotational thromboelastography method. Tranexamic acid induced vomiting in a dose-dependent manner. Vomiting frequency was ≤ 2 episodes, and vomiting concluded ≤ 250 seconds after administration. Antifibrinolytic potency of tranexamic acid was significantly higher at 20 minutes following administration, but not different by 24 hours, when compared with the potency measured before administration. No adverse effects were observed in any experiment. IV administration of tranexamic acid induced emesis in a dose-dependent manner. The antifibrinolytic potency of tranexamic acid decreased in a time-dependent manner and was resolved ≤ 24 hours after administration. Further studies are warranted to investigate the emetic and other adverse effects of tranexamic acid in dogs of various breeds and ages.
Zhang, Ling; Liu, Shuming; Liu, Wenjun
2014-02-01
Polymeric pipes, such as unplasticized polyvinyl chloride (uPVC) pipes, polypropylene random (PPR) pipes and polyethylene (PE) pipes are increasingly used for drinking water distribution lines. Plastic pipes may include some additives like metallic stabilizers and other antioxidants for the protection of the material during its production and use. Thus, some compounds can be released from those plastic pipes and cast a shadow on drinking water quality. This work develops a new procedure to investigate three types of polymer pipes (uPVC, PE and PPR) with respect to the migration of total organic carbon (TOC) into drinking water. The migration test was carried out in stagnant conditions with two types of migration processes, a continuous migration process and a successive migration process. These two types of migration processes are specially designed to mimic the conditions of different flow manners in drinking water pipelines, i.e., the situation of continuous stagnation with long hydraulic retention times and normal flow status with regular water renewing in drinking water networks. The experimental results showed that TOC release differed significantly with different plastic materials and under different flow manners. The order of materials with respect to the total amount of TOC migrating into drinking water was observed as PE > PPR > uPVC under both successive and continuous migration conditions. A higher amount of organic migration from PE and PPR pipes was likely to occur due to more organic antioxidants being used in pipe production. The results from the successive migration tests indicated the trend of the migration intensity of different pipe materials over time, while the results obtained from the continuous migration tests implied that under long stagnant conditions, the drinking water quality could deteriorate quickly with the consistent migration of organic compounds and the dramatic consumption of chlorine to a very low level. Higher amounts of TOC were released under the continuous migration tests.
A novel role of thrombopoietin as a physiological modulator of coronary flow.
Ramella, Roberta; Gallo, Maria Pia; Spatola, Tiziana; Lupia, Enrico; Alloatti, Giuseppe
2011-02-25
Thrombopoietin (TPO) is known for its ability to stimulate platelet production. However, little is currently known whether TPO plays a physiological function in the heart. The potential vasodilatory role of TPO was tested on the isolated rat heart. The expression of TPO receptor (c-mpl) and the TPO-dependent eNOS phosphorylation (P(Ser1179)) were studied on Cardiac-derived normal Human Micro Vascular Endothelial Cells (HMVEC-C) by Western blot analysis. While TPO (10-200 pg/mL) did not modify coronary flow (CF) under basal conditions, it reduced the coronary constriction caused by endothelin-1 (ET-1; 10nM) in a dose-dependent manner. This effect was blocked by both Wortmannin (100 nM) and L-NAME (100 nM); on HMVEC-C, TPO induced eNOS phosphorylation through a Wortmannin sensitive mechanism. Taken together, our data suggest a potential role of TPO as a physiological regulator of CF. By acting on specific receptors present on endothelial cells, TPO may induce PI3K/Akt-dependent eNOS phosphorylation and NO release. Copyright © 2011 Elsevier B.V. All rights reserved.
Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge
Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Mello, Andrew J.
2015-01-01
Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the down-scaled platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency. PMID:26258119
Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge
NASA Astrophysics Data System (ADS)
Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; deMello, Andrew
2015-07-01
Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.
A New Mixing Diagnostic and Gulf Oil Spill Movement
NASA Astrophysics Data System (ADS)
Mezić, Igor; Loire, S.; Fonoberov, Vladimir A.; Hogan, P.
2010-10-01
Chaotic advection has served as the paradigm for mixing in fluid flows with simple time dependence. Its skeletal structure is based on analysis of invariant attracting and repelling manifolds in fluid flows. Here we develop a finite-time theory for two-dimensional incompressible fluid flows with arbitrary time dependence and introduce a new mixing diagnostic based on it. Besides stretching events around attracting and repelling manifolds, this allows us to detect hyperbolic mixing zones. We used the new diagnostic to forecast the spatial location and timing of oil washing ashore in Plaquemines Parish and Grand Isle, Louisiana, and Pensacola, Florida, in May 2010 and the flow of oil toward Panama City Beach, Florida, in June 2010.
Antiviral effects of artesunate on polyomavirus BK replication in primary human kidney cells.
Sharma, Biswa Nath; Marschall, Manfred; Henriksen, Stian; Rinaldo, Christine Hanssen
2014-01-01
Polyomavirus BK (BKV) causes polyomavirus-associated nephropathy (PyVAN) and hemorrhagic cystitis (PyVHC) in renal and bone marrow transplant patients, respectively. Antiviral drugs with targeted activity against BKV are lacking. Since the antimalarial drug artesunate was recently demonstrated to have antiviral activity, the possible effects of artesunate on BKV replication in human primary renal proximal tubular epithelial cells (RPTECs), the host cells in PyVAN, were explored. At 2 h postinfection (hpi), RPTECs were treated with artesunate at concentrations ranging from 0.3 to 80 μM. After one viral replication cycle (approximately 72 hpi), the loads of extracellular BKV DNA, reflecting viral progeny production, were reduced in a concentration-dependent manner. Artesunate at 10 μM reduced the extracellular BKV load by 65%; early large T antigen mRNA and protein expression by 30% and 75%, respectively; DNA replication by 73%; and late VP1 mRNA and protein expression by 47% and 64%, respectively. Importantly, the proliferation of RPTECs was also inhibited in a concentration-dependent manner. At 72 hpi, artesunate at 10 μM reduced cellular DNA replication by 68% and total metabolic activity by 47%. Cell impedance and lactate dehydrogenase measurements indicated a cytostatic but not a cytotoxic mechanism. Flow cytometry and 5-ethynyl-2'-deoxyuridine incorporation revealed a decreased number of cells in S phase and suggested cell cycle arrest in G0 or G2 phase. Both the antiproliferative and antiviral effects of artesunate at 10 μM were reversible. Thus, artesunate inhibits BKV replication in RPTECs in a concentration-dependent manner by inhibiting BKV gene expression and genome replication. The antiviral mechanism appears to be closely connected to cytostatic effects on the host cell, underscoring the dependence of BKV on host cell proliferative functions.
Antiviral Effects of Artesunate on Polyomavirus BK Replication in Primary Human Kidney Cells
Sharma, Biswa Nath; Marschall, Manfred; Henriksen, Stian
2014-01-01
Polyomavirus BK (BKV) causes polyomavirus-associated nephropathy (PyVAN) and hemorrhagic cystitis (PyVHC) in renal and bone marrow transplant patients, respectively. Antiviral drugs with targeted activity against BKV are lacking. Since the antimalarial drug artesunate was recently demonstrated to have antiviral activity, the possible effects of artesunate on BKV replication in human primary renal proximal tubular epithelial cells (RPTECs), the host cells in PyVAN, were explored. At 2 h postinfection (hpi), RPTECs were treated with artesunate at concentrations ranging from 0.3 to 80 μM. After one viral replication cycle (approximately 72 hpi), the loads of extracellular BKV DNA, reflecting viral progeny production, were reduced in a concentration-dependent manner. Artesunate at 10 μM reduced the extracellular BKV load by 65%; early large T antigen mRNA and protein expression by 30% and 75%, respectively; DNA replication by 73%; and late VP1 mRNA and protein expression by 47% and 64%, respectively. Importantly, the proliferation of RPTECs was also inhibited in a concentration-dependent manner. At 72 hpi, artesunate at 10 μM reduced cellular DNA replication by 68% and total metabolic activity by 47%. Cell impedance and lactate dehydrogenase measurements indicated a cytostatic but not a cytotoxic mechanism. Flow cytometry and 5-ethynyl-2′-deoxyuridine incorporation revealed a decreased number of cells in S phase and suggested cell cycle arrest in G0 or G2 phase. Both the antiproliferative and antiviral effects of artesunate at 10 μM were reversible. Thus, artesunate inhibits BKV replication in RPTECs in a concentration-dependent manner by inhibiting BKV gene expression and genome replication. The antiviral mechanism appears to be closely connected to cytostatic effects on the host cell, underscoring the dependence of BKV on host cell proliferative functions. PMID:24145549
Interstitial flows promote an amoeboid cell phenotype and motility of breast cancer cells
NASA Astrophysics Data System (ADS)
Tung, Chih-Kuan; Huang, Yu Ling; Zheng, Angela; Wu, Mingming
2015-03-01
Lymph nodes, the drainage systems for interstitial flows, are clinically known to be the first metastatic sites of many cancer types including breast and prostate cancers. Here, we demonstrate that breast cancer cell morphology and motility is modulated by interstitial flows in a cell-ECM adhesion dependent manner. The average aspect ratios of the cells are significantly lower (or are more amoeboid like) in the presence of the flow in comparison to the case when the flow is absent. The addition of exogenous adhesion molecules within the extracellular matrix (type I collagen) enhances the overall aspect ratio (or are more mesenchymal like) of the cell population. Using measured cell trajectories, we find that the persistence of the amoeboid cells (aspect ratio less than 2.0) is shorter than that of mesenchymal cells. However, the maximum speed of the amoeboid cells is larger than that of mesenchymal cells. Together these findings provide the novel insight that interstitial flows promote amoeboid cell morphology and motility and highlight the plasticity of tumor cell motility in response to its biophysical environment. Supported by NIH Grant R21CA138366.
Heterogeneity of human adipose blood flow
Levitt, David G
2007-01-01
Background The long time pharmacokinetics of highly lipid soluble compounds is dominated by blood-adipose tissue exchange and depends on the magnitude and heterogeneity of adipose blood flow. Because the adipose tissue is an infinite sink at short times (hours), the kinetics must be followed for days in order to determine if the adipose perfusion is heterogeneous. The purpose of this paper is to quantitate human adipose blood flow heterogeneity and determine its importance for human pharmacokinetics. Methods The heterogeneity was determined using a physiologically based pharmacokinetic model (PBPK) to describe the 6 day volatile anesthetic data previously published by Yasuda et. al. The analysis uses the freely available software PKQuest and incorporates perfusion-ventilation mismatch and time dependent parameters that varied from the anesthetized to the ambulatory period. This heterogeneous adipose perfusion PBPK model was then tested by applying it to the previously published cannabidiol data of Ohlsson et. al. and the cannabinol data of Johansson et. al. Results The volatile anesthetic kinetics at early times have only a weak dependence on adipose blood flow while at long times the pharmacokinetics are dominated by the adipose flow and are independent of muscle blood flow. At least 2 adipose compartments with different perfusion rates (0.074 and 0.014 l/kg/min) were needed to describe the anesthetic data. This heterogeneous adipose PBPK model also provided a good fit to the cannabinol data. Conclusion Human adipose blood flow is markedly heterogeneous, varying by at least 5 fold. This heterogeneity significantly influences the long time pharmacokinetics of the volatile anesthetics and tetrahydrocannabinol. In contrast, using this same PBPK model it can be shown that the long time pharmacokinetics of the persistent lipophilic compounds (dioxins, PCBs) do not depend on adipose blood flow. The ability of the same PBPK model to describe both the anesthetic and cannabinol kinetics provides direct qualitative evidence that their kinetics are flow limited and that there is no significant adipose tissue diffusion limitation. PMID:17239252
Nonlinear effects in time-dependent transonic flows: An analysis of analog black hole stability
NASA Astrophysics Data System (ADS)
Michel, Florent; Parentani, Renaud
2015-05-01
We study solutions of the one-dimensional Gross-Pitaevskii equation to better understand dynamical instabilities occurring in flowing atomic condensates. Whereas transonic stationary flows can be fully described in simple terms, time-dependent flows exhibit a wide variety of behaviors. When the sound speed is crossed once, we observe that flows analogous to black holes obey something similar to the so-called no hair theorem since their late time profile is stationary and uniquely fixed by parameters entering the Hamiltonian and conserved quantities. For flows analogous to white holes, at late time one finds a macroscopic undulation in the supersonic side which has either a fixed amplitude or a widely varying one, signaling a quasiperiodic emission of solitons on the subsonic side. When considering flows which cross the sound speed twice, we observe various scenarios which can be understood from the above behaviors and from the hierarchy of the growth rates of the dynamical instabilities characterizing such flows.
The significance of sediment transport in arroyo development
Meyer, David F.
1989-01-01
Arroyo widening dominates postincisional arroyo development, and the manner of widening is dependent on the grain size of bed material transported by the channel. When bed material is predominantly gravel, subaqueous bars that alternate from one side of the channel to the other form during high flows in initially narrow, often straight, arroyos. These alternate bars grow and become coarse-grained point bars. Moderate and low flows cannot rework these coarse bars, and the channel meanders around them. Arroyo walls opposite the bars are undercut and eroded. With progressive arroyo widening by erosion of cut banks, high-flow channel width increases, and depth decreases, reducing channel competence. Gravel is deposited in midchannel bars, point bars are reworked, and the channel becomes braided. As braiding becomes dominant, both arroyo walls are eroded. This conceptual model of coarse-grained arroyo development is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the San Simon, San Pedro, and Santa Cruz Rivers in southeast Arizona. When bed material is predominantly sand, the channel pattern within initial arroyos is typically braided, and both arroyo walls are actively eroded. Alternate bars may form within single-thread, high-flow channels, but they are reworked during recessional flows, and the .low-flow channel is again braided. With progressive arroyo widening, fine sand, silt, and clay carried in suspension are deposited across a flood plain within the wide arroyo, causing the channel to meander. This fine-grained arroyo development model is based on observations of arroyo development through time using physical models and interpretation of the channel and arroyo morphology and sedimentology during a short period along the Rio Puerco, New Mexico. Experimental investigations using physical models in which incised channels were monitored through time indicate that the rate of arroyo widening is dependent on the amount of bedload transported through a reach. This is documented by the relations between the rate of arroyo erosion and the observed sediment transport, the channel slope, the channel width and the channel width-to-depth ratio. When a small amount of bed material is being transported, arroyos do not widen whether they are narrow (arroyo width-to-depth ratios between 1.5 and 3.1), intermediate (between 2.5 and 4.8), or wide (greater than 4.9). Arroyo widening resumes when a larger supply of bed material is introduced. Arroyo widening decreases through time because with progressive increases of arroyo width, the frequency with which unstable channels within the arroyo impinge upon arroyo walls decreases. Arroyos become wider in a downstream direction in response to the cumulative effect of upstream sediment production.
Continuum modeling of rate-dependent granular flows in SPH
Hurley, Ryan C.; Andrade, José E.
2016-09-13
In this paper, we discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker–Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. In conclusion, this technique may therefore be attractive for modeling the time-dependent evolutionmore » of natural and industrial flows.« less
Grover, G J; Sleph, P G; Fox, M; Trippodo, N C
1992-12-01
The effect of endothelin-1 (ET-1) and big ET-1 on coronary flow and contractile function was determined in isolated nonischemic and ischemic rat hearts. Both ET-1 (IC50 = 12 pMol) and big ET-1 (IC50 = 2 nMol) reduced coronary flow in a concentration-dependent manner, although ET-1 was > 100-fold more potent. Both compounds decreased contractility, an effect which was lost when coronary flow was held constant, indicating that ET-1 and big ET-1 decrease contractility secondary to reducing coronary flow. Mechanical reduction in coronary flow to levels equivalent to those seen for ET-1 or big ET-1 caused similar reductions in contractility. Both 30 pMol ET-1 and 10 nMol big ET-1 pretreatment significantly reduced the time to contracture in globally ischemic rat hearts, suggesting a proischemic effect. Phosphoramidon (100 microM, endothelin-converting enzyme inhibitor) and BQ-123 (0.3 microM, ETA receptor antagonist) abolished the preischemic increase in coronary perfusion pressure induced by big ET-1 as well as its proischemic effect, whereas only BQ-123 abolished the cardiac effect of ET-1. Neither phosphoramidon nor BQ-123 had an effect on severity of ischemia when given alone. Phosphoramidon was also given i.v. to rats subjected to coronary occlusion and reperfusion and was found to significantly reduce infarct size 24 hr postischemia. Thus, in isolated rat hearts, big ET-1 appears to be converted to ET-1 and is a potent coronary constrictor.(ABSTRACT TRUNCATED AT 250 WORDS)
Wu, Liqiang; Zhang, Xiuxia; Lin, Xiaojie; Wang, Bo; Huang, Chang; Qin, Yao; Lin, Shengyun
2018-01-01
Flavonoids, a vast group of polyphenols widely distributed in plants, are known to possess a range of biological activities and potential anti-tumor effects. X-linked inhibitor of apoptosis protein (XIAP) promotes the progression of leukemia by preventing tumor cells undergoing apoptosis. The present study investigated the potential effects and underlying mechanisms of pure total flavonoids from Citrus paradisi Macfad (PTFC) on human U937 cells, and explored the effects of short hairpin (sh)RNA-mediated XIAP knockdown on the anti-cancer effects of PTFC. Western blotting was used to determine level of apoptosis-associated effectors following PTFC treatment. A lentiviral vector of RNA interference of XIAP gene was constructed to downregulate XIAP expression. MTT assay and flow cytometry were used to determine the effects of PTFC separately or combined with XIAP-shRNA on inhibition and apoptosis of U937 cells, respectively. Treatment with PTFC effectively inhibited leukemic cell proliferation in a dose- and time-dependent manner. PTFC induced apoptosis of U937 cells in a dose-dependent manner, at a particular concentration range, by decreasing XIAP expression levels and activating caspases-3, −7 and −9. PTFC treatment combined with XIAP-shRNA additionally demonstrated a marked increase in cell apoptosis, compared with PTFC or XIAP-shRNA alone (P<0.05). Therefore, these findings suggest that PTFC inhibits growth and induces apoptosis in U937 cells in vitro. Furthermore, suppression of XIAP expression enhances these effects. PMID:29434799
NASA Technical Reports Server (NTRS)
Ostrach, Simon
1953-01-01
The free-convection flow and heat transfer (generated by a body force) about a flat plate parallel to the direction of the body force are formally analyzed and the type of flow is found to be dependent on the Grashof number alone. For large Grashof numbers (which are of interest in aeronautics), the flow is of the boundary-layer type and the problem is reduced in a formal manner, which is analogous to Prandtl's forced-flow boundary-layer theory, to the simultaneous solution of two ordinary differential equations subject to the proper boundary conditions. Velocity and temperature distributions for Prandtl numbers of 0.01, 0.72, 0.733, 1, 1, 10, 100, and 1000 are computed, and it is shown that velocities and Nusselt numbers of the order of magnitude of those encountered in forced-convection flows may be obtained in free-convection flows. The theoretical and experimental velocity and temperature distributions are in good agreement. A flow and a heat-transfer parameter, from which the important physical quantities such as shear stress and heat-transfer rate can be computed, are derived as functions of Prandtl number alone.
Computation of steady nozzle flow by a time-dependent method
NASA Technical Reports Server (NTRS)
Cline, M. C.
1974-01-01
The equations of motion governing steady, inviscid flow are of a mixed type, that is, hyperbolic in the supersonic region and elliptic in the subsonic region. These mathematical difficulties may be removed by using the so-called time-dependent method, where the governing equations become hyperbolic everywhere. The steady-state solution may be obtained as the asymptotic solution for large time. The object of this research was to develop a production type computer program capable of solving converging, converging-diverging, and plug two-dimensional nozzle flows in computational times of 1 min or less on a CDC 6600 computer.
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.
1990-01-01
The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.
Exogenous fatty acids and niacin on acute prostaglandin D2 production in human myeloid cells.
Montserrat-de la Paz, Sergio; Bermudez, Beatriz; Lopez, Sergio; Naranjo, Maria C; Romero, Yolanda; Bando-Hidalgo, Maria J; Abia, Rocio; Muriana, Francisco J G
2017-01-01
Niacin activates HCA 2 receptor that results in the release of PGD 2 . However, little is known on PGD 2 -producing cells and the role of fatty acids. Notably M-CSF macrophages exhibited a timely dependent PGD 2 production upon niacin challenge. Short pretreatment of M-CSF macrophages with autologous postprandial TRLs induced the down-regulation of HCA 2 gene and up-regulation of genes encoding COX1 and COX2 enzymes in a fatty acid-dependent manner. These effects were paralleled by a higher PGD 2 production with postprandial TRL-SFAs. The niacin-mediated transcriptional activity of all genes involved in PGD 2 biosynthesis was desensitized in a time-dependent manner by postprandial TRLs, leading to a decreased PGD 2 release. In vivo, the net excursions of PGD 2 in plasma followed similar fatty acid-dependent patterns as those found for PGD 2 release in vitro. The predominant fatty acid class in the diet acutely modulates PGD 2 biosynthetic pathway both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
2014-01-01
Background We investigated the potential of galangal rhizomes to induce cytotoxic and apoptotic effects in the cultured human breast carcinoma cell line, (MCF-7) in compare with the non-malignant (MRC-5) cells. Methods Both cells were cultured in DMEM medium and treated with galangal rhizomes for three consecutive days. The percentage of apoptotic cells was determined by flow cytometry using Annexin-V fluorescein isothiocyanate. Results The results showed that the ethanolic extract of galangal rhizomes decreased cell viability in the malignant cells as a concentration- and time- dependent manner. The IC50 values against MCF-7 were determined at 400.0 ± 11.7 and 170.0 ± 5.9 μg/ml after 48 and 72 h respectively. The morphology of MCF-7 cells treated with the ethanolic extract confirmed the cell proliferation assay results. Alpinia galanga induced apoptosis in MCF-7 cells, as determined by flow cytometry. Conclusions We concluded that the extract of Alpinia galanga exerts pro-apoptotic effects in a breast cancer-derived cell line and could be considered as a potential chemotherapeutic agent in breast cancer. PMID:24935101
NASA Astrophysics Data System (ADS)
Henclik, S.
2014-08-01
Transient flows in pipes (water hammer = WH) do appear in various situations and the accompanying pressure waves may involve serious perturbations in system functioning. To model these effects properly in the case of elastic pipe the dynamic fluid-structure interaction (FSI) should be taken into account. Fluid-structure couplings appear in various manners and the junction coupling is considered to be the strongest. This effect can be especially significant if the pipe can move as a whole body, which is possible when all its supports are not rigid. In the current paper a similar effect is numerically modelled. The pipe is fixed rigidly, but the valve at the end has a spring-dashpot mounting system, thus its motion is possible when WH is excited by the valve closuring. The boundary condition at the moving valve is modelled as a differential equation of motion. The valve hydraulic characteristics during closuring period are assumed by a time dependence of its loss factor. Preliminary numerical tests of that algorithm were done with an own computer program and it was found that the proper valve fixing system may produce significant lowering of WH pressures.
Resilience of riverbed vegetation to uprooting by flow
NASA Astrophysics Data System (ADS)
Perona, P.; Crouzy, B.
2018-03-01
Riverine ecosystem biodiversity is largely maintained by ecogeomorphic processes including vegetation renewal via uprooting and recovery times to flow disturbances. Plant roots thus heavily contribute to engineering resilience to perturbation of such ecosystems. We show that vegetation uprooting by flow occurs as a fatigue-like mechanism, which statistically requires a given exposure time to imposed riverbed flow erosion rates before the plant collapses. We formulate a physically based stochastic model for the actual plant rooting depth and the time-to-uprooting, which allows us to define plant resilience to uprooting for generic time-dependent flow erosion dynamics. This theory shows that plant resilience to uprooting depends on the time-to-uprooting and that root mechanical anchoring acts as a process memory stored within the plant-soil system. The model is validated against measured data of time-to-uprooting of Avena sativa seedlings with various root lengths under different flow conditions. This allows for assessing the natural variance of the uprooting-by-flow process and to compute the prediction entropy, which quantifies the relative importance of the deterministic and the random components affecting the process.
Optic flow detection is not influenced by visual-vestibular congruency.
Holten, Vivian; MacNeilage, Paul R
2018-01-01
Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advantage of this probabilistic association, we expect observers to be more sensitive to visual optic flow that is congruent with ongoing vestibular stimulation. We tested this expectation by measuring the motion coherence threshold, which is the percentage of signal versus noise dots, necessary to detect an optic flow pattern. Observers seated on a hexapod motion platform in front of a screen experienced two sequential intervals. One interval contained optic flow with a given motion coherence and the other contained noise dots only. Observers had to indicate which interval contained the optic flow pattern. The motion coherence threshold was measured for detection of laminar and radial optic flow during leftward/rightward and fore/aft linear self-motion, respectively. We observed no dependence of coherence thresholds on vestibular congruency for either radial or laminar optic flow. Prior studies using similar methods reported both decreases and increases in coherence thresholds in response to congruent vestibular stimulation; our results do not confirm either of these prior reports. While methodological differences may explain the diversity of results, another possibility is that motion coherence thresholds are mediated by neural populations that are either not modulated by vestibular stimulation or that are modulated in a manner that does not depend on congruency.
Real-time monitoring of capacity loss for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Wei, Zhongbao; Bhattarai, Arjun; Zou, Changfu; Meng, Shujuan; Lim, Tuti Mariana; Skyllas-Kazacos, Maria
2018-06-01
The long-term operation of the vanadium redox flow battery is accompanied by ion diffusion across the separator and side reactions, which can lead to electrolyte imbalance and capacity loss. The accurate online monitoring of capacity loss is therefore valuable for the reliable and efficient operation of vanadium redox flow battery system. In this paper, a model-based online monitoring method is proposed to detect capacity loss in the vanadium redox flow battery in real time. A first-order equivalent circuit model is built to capture the dynamics of the vanadium redox flow battery. The model parameters are online identified from the onboard measureable signals with the recursive least squares, in seeking to keep a high modeling accuracy and robustness under a wide range of working scenarios. Based on the online adapted model, an observer is designed with the extended Kalman Filter to keep tracking both the capacity and state of charge of the battery in real time. Experiments are conducted on a lab-scale battery system. Results suggest that the online adapted model is able to simulate the battery behavior with high accuracy. The capacity loss as well as the state of charge can be estimated accurately in a real-time manner.
Jiang, Zengxin; Lu, Wei; Zeng, Qingmin; Li, Defang; Ding, Lei; Wu, Jingping
2018-04-16
Diabetes mellitus (DM) is an important factor in intervertebral disc degeneration (IDD). Apoptosis of cartilage endplate (CEP) cells is one of the initiators of IDD. However, the effects of high glucose on CEP cells are still unknown. Therefore, we conducted the present study to evaluate the effects of high glucose on CEP cells and to identify the mechanisms of those effects. Rat CEP cells were isolated and cultured in 10% foetal bovine serum (FBS, normal control) or high-glucose medium (10% FBS + 0.1 M glucose or 10% FBS + 0.2 M glucose, experimental conditions) for 1 or 3 days. In addition, CEP cells were treated with 0.2 M glucose for 3 days in the presence or absence of alpha-lipoic acid (ALA, 0.15 M). Flow cytometry was performed to identify and quantify the degree of apoptosis. The expression of reactive oxygen species (ROS) was assessed by flow cytometry, and mitochondrial damage (mitochondrial membrane potential) was assessed by fluorescence microscopy. Furthermore, the expression levels of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, and cytochrome c were evaluated by Western blotting. High glucose significantly increased apoptosis and ROS accumulation in CEP cells in a dose- and time-dependent manner. Meanwhile, a disrupted mitochondrial membrane potential was detected in rat CEP cells cultured in the two high glucose concentrations. Incubating in high glucose enhanced the expression levels of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but decreased the level of the anti-apoptotic protein Bcl-2. ALA inhibited the expression of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but enhanced the expression of Bcl-2. ALA also prevented disruption of the mitochondrial membrane potential in CEP cells. This study demonstrates that high glucose-induced excessive reactive oxygen species promote mitochondrial damage, thus causing apoptosis in rat CEP cells in a dose- and time-dependent manner. ALA could prevent mitochondrial damage and apoptosis caused by high glucose in CEP cells. The results suggest that appropriate blood glucose control may be the key to preventing IDD in diabetic patients. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schneider, Kai; Kadoch, Benjamin; Bos, Wouter
2017-11-01
The angle between two subsequent particle displacement increments is evaluated as a function of the time lag. The directional change of particles can thus be quantified at different scales and multiscale statistics can be performed. Flow dependent and geometry dependent features can be distinguished. The mean angle satisfies scaling behaviors for short time lags based on the smoothness of the trajectories. For intermediate time lags a power law behavior can be observed for some turbulent flows, which can be related to Kolmogorov scaling. The long time behavior depends on the confinement geometry of the flow. We show that the shape of the probability distribution function of the directional change can be well described by a Fischer distribution. Results for two-dimensional (direct and inverse cascade) and three-dimensional turbulence with and without confinement, illustrate the properties of the proposed multiscale statistics. The presented Monte-Carlo simulations allow disentangling geometry dependent and flow independent features. Finally, we also analyze trajectories of football players, which are, in general, not randomly spaced on a field.
Saunders, Jeffrey A.
2014-01-01
Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°–2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%–34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures. PMID:24648194
Gourdain, P-A; Peebles, W A
2008-10-01
Reflectometry has successfully demonstrated measurements of many important parameters in high temperature tokamak fusion plasmas. However, implementing such capabilities in a high-field, large plasma, such as ITER, will be a significant challenge. In ITER, the ratio of plasma size (meters) to the required reflectometry source wavelength (millimeters) is significantly larger than in existing fusion experiments. This suggests that the flow of the launched reflectometer millimeter-wave power can be realistically analyzed using three-dimensional ray tracing techniques. The analytical and numerical studies presented will highlight the fact that the group velocity (or power flow) of the launched microwaves is dependent on the direction of wave propagation relative to the internal magnetic field. It is shown that this dependence strongly modifies power flow near the cutoff layer in a manner that embeds the local magnetic field direction in the "footprint" of the power returned toward the launch antenna. It will be shown that this can potentially be utilized to locally determine the magnetic field pitch angle at the cutoff location. The resultant beam drift and distortion due to magnetic field and relativistic effects also have significant consequences on the design of reflectometry systems for large, high-field fusion experiments. These effects are discussed in the context of the upcoming ITER burning plasma experiment.
Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy
NASA Astrophysics Data System (ADS)
Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.
2015-08-01
We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.
Chen, Chung-Yi; Yen, Ching-Yu; Wang, Hui-Ru; Yang, Hui-Ping; Tang, Jen-Yang; Huang, Hurng-Wern; Hsu, Shih-Hsien; Chang, Hsueh-Wei
2016-11-05
The development of drugs that selectively kill oral cancer cells but are less harmful to normal cells still provide several challenges. In this study, the antioral cancer effects of tenuifolide B (TFB), extracted from the stem of the plant Cinnamomum tenuifolium are evaluated in terms of their effects on cancer cell viability, cell cycle analysis, apoptosis, oxidative stress, and DNA damage. Cell viability of oral cancer cells (Ca9-22 and CAL 27) was found to be significantly inhibited by TFB in a dose-responsive manner in terms of ATP assay, yielding IC 50 = 4.67 and 7.05 μM (24 h), but are less lethal to normal oral cells (HGF-1). Dose-responsive increases in subG1 populations as well as the intensities of flow cytometry-based annexin V/propidium iodide (PI) analysis and pancaspase activity suggested that apoptosis was inducible by TFB in these two types of oral cancer cells. Pretreatment with the apoptosis inhibitor (Z-VAD-FMK) reduced the annexin V intensity of these two TFB-treated oral cancer cells, suggesting that TFB induced apoptosis-mediated cell death to oral cancer cells. Cleaved-poly (ADP-ribose) polymerase (PARP) and cleaved-caspases 3, 8, and 9 were upregulated in these two TFB-treated oral cancer cells over time but less harmful for normal oral HGF-1 cells. Dose-responsive and time-dependent increases in reactive oxygen species (ROS) and decreases in mitochondrial membrane potential (MitoMP) in these two TFB-treated oral cancer cells suggest that TFB may generate oxidative stress as measured by flow cytometry. N -acetylcysteine (NAC) pretreatment reduced the TFB-induced ROS generation and further validated that ROS was relevant to TFB-induced cell death. Both flow cytometry and Western blotting demonstrated that the DNA double strand marker γH2AX dose-responsively increased in TFB-treated Ca9-22 cells and time-dependently increased in two TFB-treated oral cancer cells. Taken together, we infer that TFB can selectively inhibit cell proliferation of oral cancer cells through apoptosis, ROS generation, mitochondrial membrane depolarization, and DNA damage.
The effect of vortex formation on left ventricular filling and mitral valve efficiency.
Pierrakos, Olga; Vlachos, Pavlos P
2006-08-01
A new mechanism for quantifying the filling energetics in the left ventricle (LV) and past mechanical heart valves (MHV) is identified and presented. This mechanism is attributed to vortex formation dynamics past MHV leaflets. Recent studies support the conjecture that the natural healthy left ventricle (LV) performs in an optimum, energy-preserving manner by redirecting the flow with high efficiency. Yet to date, no quantitative proof has been presented. The present work provides quantitative results and validation of a theory based on the dynamics of vortex ring formation, which is governed by a critical formation number (FN) that corresponds to the dimensionless time at which the vortex ring has reached its maximum circulation content, in support of this hypothesis. Herein, several parameters (vortex ring circulation, vortex ring energy, critical FN, hydrodynamic efficiencies, vortex ring propagation speed) have been quantified and presented as a means of bridging the physics of vortex formation in the LV. In fact, the diastolic hydrodynamic efficiencies were found to be 60, 41, and 29%, respectively, for the porcine, anti-anatomical, and anatomical valve configurations. This assessment provides quantitative proof of vortex formation, which is dependent of valve design and orientation, being an important flow characteristic and associated to LV energetics. Time resolved digital particle image velocimetry with kilohertz sampling rate was used to study the ejection of fluid into the LV and resolve the spatiotemporal evolution of the flow. The clinical significance of this study is quantifying vortex formation and the critical FN that can potentially serve as a parameter to quantify the LV filling process and the performance of heart valves.
Determination of in vivo carbon monoxide production in laboratory animals via exhaled air.
Dercho, Ryan A; Nakatsu, Kanji; Wong, Ronald J; Stevenson, David K; Vreman, Hendrik J
2006-01-01
In vitro assays play an important role in the understanding of the heme oxygenase (HO)/carbon monoxide (CO) pathway. However, because physiological roles for the products of this pathway are hypothesized, it is becoming increasingly important to perform in vivo studies. Since CO production is primarily mediated by HO and is excreted mainly by the lungs, measurements of total body CO excretion (VeCO) via the breath allow continuous, noninvasive monitoring of heme degradation and CO and bilirubin production. Here, we describe a modified flow-through method for the collection and quantitation of CO from small laboratory animals. Mice and rats were studied in gas-tight chambers supplied with a continuous flow of CO-free air. CO in the exhaust air was measured by gas chromatography with a reduction gas analyzer. After establishing baseline VeCO levels, animals were administered various xenobiotics known to alter HO activity and further monitored for changes in CO production for up to 12 h without observable distress. Administration of heme (substrate for HO) resulted in reproducible increases in CO production; whereas, prior administration of zinc protoporphyrin (ZnPP, HO inhibitor) or cobalt protoporphyrin (CoPP, HO inducer) resulted in respective dose-dependent decreases and increases in the heme-induced CO production. We have demonstrated that this noninvasive method of CO quantitation reliably estimates heme degradation with sensitivity to distinguish between different types of HO-manipulating xenobiotics in a dose-dependant manner in both mouse and rat models. Furthermore, VeCO measurements allow nearly real-time determinations of CO and bilirubin formation, which helps to illustrate the time course of drug action.
Olivares, Astrid; Laskin, Julia; Johnson, Grant E
2014-09-18
The scalable synthesis of ligated subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic, and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth, and postreduction etching are still not well understood. Herein, we demonstrate a prototype temperature-controlled flow reactor for qualitatively studying cluster formation in solution at steady-state conditions. Employing this technique, methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand, and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with a known length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates, and products synthesized in real time was characterized qualitatively using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged organometallic complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged organometallic complexes while reducing the abundance of triply charged species. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of batch reduction synthesis in solution.
Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells
Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun
2017-01-01
Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro. When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer. PMID:28587399
Cytotoxic and apoptotic activities of black widow spiderling extract against HeLa cells.
Peng, Xiaozhen; Dai, Zhipan; Lei, Qian; Liang, Long; Yan, Shuai; Wang, Xianchun
2017-06-01
Black widow spiders contain toxic components not only in the venom glands but also in other parts of the spider body, including the legs and abdomen. Additionally, both the eggs and newborn spiderlings of the black widow spider contain venom. It is important to investigate their potential effects on cancer cells. In the present study, the effects of newborn black widow spiderling extract on human HeLa cells were evaluated in vitro . When applied at different concentrations, the total extract decreased HeLa cell viability in a dose-dependent manner, with an IC 50 value of 158 µg/ml. Flow cytometry indicated that treatment of HeLa cells with the total extract of the spiderlings induced apoptosis in HeLa cells in a dose-dependent manner and led to cell cycle arrest in the S-phase. Additionally, application of the total extract at different concentrations increased apoptosis-related caspase 3 activity in a dose-dependent manner. HeLa cells treated with the total extract appeared to be morphologically changed, exhibiting membrane blebbing, nuclear fragmentation and condensation of chromatin. Further separation and activity screening demonstrated that the cytotoxic and apoptotic activities of the total extract were attributable mainly to its high molecular mass proteins, one of which was purified and characterized to determine its anti-tumor activities on HeLa cells. The results of the present study therefore have expanded understanding regarding the effect of spider toxins on cancer cells and suggested that components of black widow spiderlings may be developed as a promising novel agent to treat cancer.
Two-stream modeling of plasmaspheric refilling
NASA Technical Reports Server (NTRS)
Guiter, S. M.; Gombosi, T. I.; Rasmussen, C. E.
1995-01-01
Plasmaspheric refilling on an L = 4 flux tube was studied by using a time-dependent, hydrodynamic plasmaspheric flow model in which the ion streams from the two hemispheres are treated as distinct fluids. In the model the continuity, momentum, and energy equations of a two-ion (O(+) and H(+)), quasi-neutral, currentless plasma are solved along a closed geomagnetic field line; diffusive equilibrium is not assumed. collisions between all stream pairs and with neutral species are included. The model includes a corotating, tilted dipole magnetic field and neutral winds. Ionospheric sources and sinks are accounted for in a self-consistent manner. Electrons are assumed to be heated by photoelectrons. The model flux tube extends from a 200-km altitude in one hemisphere to a 200-km altitude in the other hemisphere. Initially, the upwelling streams pass through each other practically unimpeded. When the streams approach the boundary in the conjugate ionosphere, a shock develops there, which moves upward and dissipates slowly; at about the same time a reverse shock develops in the hemisphere of origin, which moves upward. After about 1 hour, large shocks develop in each stream near the equator; these shocks move toward the equator and downward after crossing the equator. However, these shocks are probably artificial, because counterstreaming flows occur in each H(+) fluid, which the model can only handle by creating shocks.
NASA Technical Reports Server (NTRS)
Yee, Helen M. C.; Kotov, D. V.; Wang, Wei; Shu, Chi-Wang
2013-01-01
The goal of this paper is to relate numerical dissipations that are inherited in high order shock-capturing schemes with the onset of wrong propagation speed of discontinuities. For pointwise evaluation of the source term, previous studies indicated that the phenomenon of wrong propagation speed of discontinuities is connected with the smearing of the discontinuity caused by the discretization of the advection term. The smearing introduces a nonequilibrium state into the calculation. Thus as soon as a nonequilibrium value is introduced in this manner, the source term turns on and immediately restores equilibrium, while at the same time shifting the discontinuity to a cell boundary. The present study is to show that the degree of wrong propagation speed of discontinuities is highly dependent on the accuracy of the numerical method. The manner in which the smearing of discontinuities is contained by the numerical method and the overall amount of numerical dissipation being employed play major roles. Moreover, employing finite time steps and grid spacings that are below the standard Courant-Friedrich-Levy (CFL) limit on shockcapturing methods for compressible Euler and Navier-Stokes equations containing stiff reacting source terms and discontinuities reveals surprising counter-intuitive results. Unlike non-reacting flows, for stiff reactions with discontinuities, employing a time step and grid spacing that are below the CFL limit (based on the homogeneous part or non-reacting part of the governing equations) does not guarantee a correct solution of the chosen governing equations. Instead, depending on the numerical method, time step and grid spacing, the numerical simulation may lead to (a) the correct solution (within the truncation error of the scheme), (b) a divergent solution, (c) a wrong propagation speed of discontinuities solution or (d) other spurious solutions that are solutions of the discretized counterparts but are not solutions of the governing equations. The present investigation for three very different stiff system cases confirms some of the findings of Lafon & Yee (1996) and LeVeque & Yee (1990) for a model scalar PDE. The findings might shed some light on the reported difficulties in numerical combustion and problems with stiff nonlinear (homogeneous) source terms and discontinuities in general.
Linearized unsteady jet analysis
NASA Technical Reports Server (NTRS)
Viets, H.; Piatt, M.
1979-01-01
The introduction of a time dependency into a jet flow to change the rate at which it mixes with a coflowing stream or ambient condition is investigated. The advantages and disadvantages of the unsteady flow are discussed in terms of steady state mass and momentum transfer. A linear system which is not limited by frequency constraints and evolves through a simplification of the equations of motion is presented for the analysis of the unsteady flow field generated by the time dependent jet.
Platelet-derived growth factor regulates K-Cl cotransport in vascular smooth muscle cells.
Zhang, Jing; Lauf, Peter K; Adragna, Norma C
2003-03-01
Platelet-derived growth factor (PDGF), a potent serum mitogen for vascular smooth muscle cells (VSMCs), plays an important role in membrane transport regulation and in atherosclerosis. K-Cl cotransport (K-Cl COT/KCC), the coupled-movement of K and Cl, is involved in ion homeostasis. VSMCs possess K-Cl COT activity and the KCC1 and KCC3 isoforms. Here, we report on the effect of PDGF on K-Cl COT activity and mRNA expression in primary cultures of rat VSMCs. K-Cl COT was determined as the Cl-dependent Rb influx and mRNA expression by semiquantitative RT-PCR. Twenty four-hour serum deprivation inhibited basal K-Cl COT activity. Addition of PDGF increased total protein content and K-Cl COT activity in a time-dependent manner. PDGF activated K-Cl COT in a dose-dependent manner, both acutely (10 min) and chronically (12 h). AG-1296, a selective inhibitor of the PDGF receptor tyrosine kinase, abolished these effects. Actinomycin D and cycloheximide had no effect on the acute PDGF activation of K-Cl COT, suggesting posttranslational regulation by the drug. Furthermore, PDGF increased KCC1 and decreased KCC3 mRNA expression in a time-dependent manner. These results indicate that chronic activation of K-Cl COT activity by PDGF may involve regulation of the two KCC mRNA isoforms, with KCC1 playing a dominant role in the mechanism of PDGF-mediated activation.
MRP8/14 induces autophagy to eliminate intracellular Mycobacterium bovis BCG.
Wang, Jinli; Huang, Chunyu; Wu, Minhao; Zhong, Qiu; Yang, Kun; Li, Miao; Zhan, Xiaoxia; Wen, Jinsheng; Zhou, Lin; Huang, Xi
2015-04-01
To explore the role of myeloid-related protein 8/14 in mycobacterial infection. The mRNA and protein expression levels of MRP8 or MRP14 were measured by real-time PCR and flow cytometry, respectively. Role of MRP8/14 was tested by overexpression or RNA interference assays. Flow cytometry and colony forming unit were used to test the phagocytosis and the survival of intracellular Mycobacterium bovis BCG (BCG), respectively. Autophagy mediated by MRP8/14 was detected by Western blot and immunofluorescence. The colocalization of BCG phagosomes with autophagosomes or lysosomes was by detected by confocal microscopy. ROS production was detected by flow cytometry. MRP8/14 expressions were up-regulated in human monocytic THP1 cells and primary macrophages after mycobacterial challenge. Silencing of MRP8/14 suppressed bacterial killing, but had no influence on the phagocytosis of BCG. Importantly, silencing MRP8/14 decreased autophagy and BCG phagosome maturation in THP1-derived macrophages, thereby increasing the BCG survival. Additionally, we demonstrated that MRP8/14 promoted autophagy in a ROS-dependent manner. The present study revealed a novel role of MRP8/14 in the autophagy-mediated elimination of intracellular BCG by promoting ROS generation, which may provide a promising therapeutic target for tuberculosis and other intracellular bacterial infectious diseases. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto
2018-06-01
Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.
NASA Astrophysics Data System (ADS)
Ram, Paras; Joshi, Vimal Kumar; Sharma, Kushal; Walia, Mittu; Yadav, Nisha
2016-01-01
An attempt has been made to describe the effects of geothermal viscosity with viscous dissipation on the three dimensional time dependent boundary layer flow of magnetic nanofluids due to a stretchable rotating plate in the presence of a porous medium. The modelled governing time dependent equations are transformed a from boundary value problem to an initial value problem, and thereafter solved by a fourth order Runge-Kutta method in MATLAB with a shooting technique for the initial guess. The influences of mixed temperature, depth dependent viscosity, and the rotation strength parameter on the flow field and temperature field generated on the plate surface are investigated. The derived results show direct impact in the problems of heat transfer in high speed computer disks (Herrero et al. [1]) and turbine rotor systems (Owen and Rogers [2]).
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-01-01
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices. PMID:26687638
Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2015-12-21
We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.
Infrared Imaging of Nitric Oxide-Mediated Blood Flow in Human Sickle Cell Disease
Gorbach, Alexander M.; Ackerman, Hans C.; Liu, Wei-Min; Meyer, Joseph M.; Littel, Patricia L.; Seamon, Catherine; Footman, Eleni; Chi, Amy; Zorca, Suzana; Krajewski, Megan L.; Cuttica, Michael J.; Machado, Roberto F.; Cannon, Richard O.; Kato, Gregory J.
2012-01-01
Vascular dysfunction is an important pathophysiologic manifestation of sickle cell disease (SCD), a condition that increases risk of pulmonary hypertension and stroke. We hypothesized that infrared (IR) imaging would detect changes in cutaneous blood flow reflective of vascular function. We performed IR imaging and conventional strain gauge plethysmography in twenty-five adults with SCD at baseline and during intra-arterial infusions of an endothelium-dependent vasodilator acetylcholine (ACh), an endothelium-independent vasodilator sodium nitroprusside (SNP), and a NOS inhibitor L-NMMA. Skin temperature measured by IR imaging increased in a dose-dependent manner to graded infusions of ACh (+1.1° C, p < 0.0001) and SNP (+0.9° C, p < 0.0001), and correlated with dose-dependent increases in forearm blood flow (ACh: +19.9 mL/min/100mL, p < 0.0001; rs = 0.57, p = 0.003; SNP: +8.6 mL/min/100mL, p < 0.0001; r = 0.70, p = 0.0002). Although IR measurement of skin temperature accurately reflected agonist-induced increases in blood flow, it was less sensitive to decreases in blood flow caused by NOS inhibition. Baseline forearm skin temperature measured by IR imaging correlated significantly with baseline forearm blood flow (31.8±0.2° C, 6.0±0.4 mL/min/100mL; r = 0.58, p = 0.003), and appeared to represent a novel biomarker of vascular function. It predicted a blunted blood flow response to SNP (r = −0.61, p = 0.002), and was independently associated with a marker of pulmonary artery pressure, as well as hemoglobin level, diastolic blood pressure, homocysteine, and cholesterol (R2 = 0.84, p < 0.0001 for the model). IR imaging of agonist-stimulated cutaneous blood flow represents a less cumbersome alternative to plethysmography methodology. Measurement of baseline skin temperature by IR imaging may be a useful new marker of vascular risk in adults with SCD. PMID:22784510
Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells.
Sun, Li; Wang, Xu
2003-09-01
To investigate the effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. The gastric cancer SGC-7901 adenocarcinoma cells were treated with allicin and the cell cycle, inhibitory rate, apoptosis, telomerase activity and morphologic changes were studied by MTT assay, flow cytometry (FCM), TRAP-PCR-ELISA assay, light microscope, electron microscope respectively. Results were compared with that of AZT (3'-Azido-3'-deoxythymidine). SGC-7901 cells were suppressed after exposure to allicin of 0.016 mg/ml, 0.05 mg/ml, and 0.1 mg/ml for 48 h. Compared with the control, the difference was significant (P<0.05). Allicin could induce apoptosis of the cells in a dose-dependent and non-linear manner and increase the proportion of cells in the G(2)/M phase. Compared with the control, the difference was significant in terms of the percentage of cells in the G2/M phase (P<0.05). Allicin could inhibit telomerase activity in a time-dependent and dose-dependent pattern. After exposure to allicin at 0.016 mg/ml for 24 hours, SGC-7901 cells showed typical morphologic change. Allicin can inhibit telomerase activity and induce apoptosis of gastric cancer SGC-7901 cells. Allicin may be more effective than AZT.
RITA enhances chemosensivity of pre-B ALL cells to doxorubicin by inducing p53-dependent apoptosis.
Kazemi, Ahmad; Safa, Majid; Shahbazi, Atefeh
2011-07-01
The use of low-molecular-weight, non-peptidic molecules that disrupt the interaction between the p53 tumor suppressor and its negative regulator MDM2 has provided a promising alternative for the treatment of different types of cancer. Here, we used small-molecule reactivation of p53 and induction of tumor cell apoptosis (RITA) to sensitize leukemic NALM-6 cells to doxorubicin by upregulating p53 protein. RITA alone effectively inhibited NALM-6 cells viability in dose-dependent manner as measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay and induced apoptosis as evaluated by flow cytometry, whereas RITA in combination with doxorubicin enhanced NALM-6 cells to doxorubicin-sensitivity and promoted doxorubicin induced apoptosis. Levels of p53 protein and its proapoptotic target genes, quantified by western blot and real-time PCR respectively, showed that expression of p53 was significantly increased after RITA treatment. Using p53 inhibitors PFT-alpha and PFT-mu it was shown that p53-mediated apoptosis induced by RITA can be regulated by both p53-transcription-dependent and -independent pathways. Moreover, RITA-induced apoptosis was accompanied by the activation of caspase-3 and PARP cleavage. Therefore, exploiting synergistic effects between RITA and chemotherapeutics might be an effective clinical strategy for leukemia chemotherapy.
[Inhibitory effect of apatinib on HCT-116 cells and its mechanism].
Yin, Liang; Wang, Jin; Huang, Feng-Chang; Zhang, Yun-Fei; Xu, Ning; Wen, Zheng-Qi; Li, Wen-Liang; Dong, Jian
2017-03-20
To investigate the inhibitory effects of apatinib on colorectal carcinoma HCT-116 cells in vitro and the signaling pathways involved. The cytotoxicity of different concentrations (0, 0.5, 1, 1.5, and 2 µmol/L) of apatinib in HCT-116 cells was assessed by MTT assay, using capecitabine as the positive control. The apoptosis rate of apatinib-treated HCT-116 cells was detected using flow cytometry, and the expressions of Bcl-2, Bax, and caspase-3 were determined with quantitative real-time PCR and Western blotting. The effect of apatinib on the expressions of Akt, pAkt, Erk1/2 and pErk1/2 in HCT-116 cells was evaluated using Western blotting. Apatinib significantly inhibited the proliferation of HCT-116 cells in a concentration-dependent manner with an IC 50 value of 1.335 µmol/L. Flow cytometric analysis showed that apatinib significantly increased the apoptotic rate of HCT-116 cells dose-dependently. Apatinib induced the expression of the pro-apoptotic genes Bax and caspase-3 at both the mRNA and protein levels while inhibited the expression of the anti- apoptotic gene Bcl-2. The expressions of p-Akt and p-Erk1/2 were decreased in HCT-116 cells after apatinib treatment, but the total protein levels did not undergo obvious changes. Apatinib inhibits the proliferation and induces apoptosis of HCT-116 cells by suppressing the phosphorylation of Erk1/2 and Akt in the MAPK/Erk and PI3K/Akt signaling pathways.
NASA Astrophysics Data System (ADS)
Weber, Michael; Shandas, Robin
2005-11-01
Micron-sized bubbles have been effectively used as contrast agents in ultrasound imaging systems and have the potential for many other applications including targeted drug delivery and tumor destruction. The further development of these applications is dependent on precise control of bubble size. Recently, microfluidic flow-focusing systems have emerged as a viable means of producing microbubbles with monodisperse size distributions. These systems focus co-flowing liquid streams surrounding a gas stream through a narrow orifice, producing bubbles in very reproducible manner. In this work, a photopolymerization technique has been used to produce microfludicic flow-focusing devices which were successfully used to produce micron-sized bubbles. The flow dynamics involved in these devices has also been simulated using a volume-of-fluid approach to simultaneously solve the equations of motion for both the gas and liquid phases. Simulations were run with several variations of the flow-focuser geometry (gas inlet width, orifice length, gas-liquid approach angle, etc.) in an effort to produce smaller bubbles and increase the working range of liquid and gas flow rates. These findings are being incorporated into the production of actual devices in an effort to improve the overall effectiveness of the bubble production process.
Dynamical role of predators in population cycles of a forest insect: an experimental test.
P. Turchin; A.D. Taylor; J.D. Reeve
1999-01-01
Population cycles occur frequently in forest insects.Time-series analysis of fluctuations in one such insect, the southern pine beetle (Dendroctonus frontalis), suggests that beetle dynamics are dominated by an ecological process acting in a delayed density-dependent manner.The hypothesis that delayed density-dependence in this insect results from its interaction with...
Lalitha, P; Veena, V; Vidhyapriya, P; Lakshmi, Pragna; Krishna, R; Sakthivel, N
2016-05-01
Marine bacterium, strain MB30 isolated from the deep sea sediment of Bay of Bengal, India, exhibited antimicrobial activity against human pathogenic bacteria. Based on the 16S rRNA sequence homology and subsequent phylogenetic tree analysis, the strain MB30 was identified as Staphylococcus sp. The bioactive metabolite produced by the strain MB30 was purified through silica gel column chromatography and preparative HPLC. Purified metabolite was further characterized by FT-IR, LC-MS and NMR analyses. On the basis of spectroscopic data, the metabolite was identified as pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP). The PPDHMP exhibited in vitro anticancer potential against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner with the IC50 concentration of 19.94 ± 1.23 and 16.73 ± 1.78 μg ml(-1) respectively. The acridine orange (AO)/ethidium bromide (EB) and 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining of the IC50 concentration of PPDHMP-treated cancer cells exhibited an array of morphological changes such as nuclear condensation, cell shrinkage and formation of apoptotic bodies. The PPDHMP-treated cancer cells induced the progressive accumulation of fragmented DNA in a time-dependent manner. Based on the flow cytometric analysis, it has become evident that the compound was also effective in arresting the cell cycle at G1 phase. Further, the Western blotting analysis confirmed the down-regulation of cyclin-D1, cyclin dependent kinase (CDK-2), anti-apoptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL), activation of caspase-9 and 3 with the cleavage of PARP. The PPDHMP-treated cancer cells also showed the inhibition of migration and invasive capacity of cancer cells. In the present investigation, for the first time, we have reported the extraction, purification and characterization of an anticancer metabolite, PPDHMP from a new marine bacterium, Staphylococcus sp. strain MB30.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
Re/Os constraint on the time variability of the fine-structure constant.
Fujii, Yasunori; Iwamoto, Akira
2003-12-31
We argue that the accuracy by which the isochron parameters of the decay 187Re-->187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant alpha, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.
NASA Technical Reports Server (NTRS)
Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)
2002-01-01
Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.
Gao, Lin-Lin; Feng, Lei; Yao, Shu-Tong; Jiao, Peng; Qin, Shu-Cun; Zhang, Wei; Zhang, Ya-Bin; Li, Fu-Rong
2011-01-01
Mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. Loss of cell cycle control, leading to uncontrolled proliferation, is common in cancer. Therefore, the identification of potent and selective cyclin dependent kinase inhibitors is a priority for anti-cancer drug discovery. There are at least two major apoptotic pathways, initiated by caspase-8 and caspase-9, respectively, which can activate caspase cascades. Apoptosis triggered by activation of the mitochondrial-dependent caspase pathway represents the main programmed cell death mechanism. This is activated by various intracellular stresses that induce permeabilization of the mitochondrial membrane. Anti-tumor effects of celery seed extract (CSE) and related mechanisms regarding apoptosis were here investigated in human gastric cancer BGC-823 cells. CSE was produced by supercritical fluid extraction. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide (MTT) assay and apoptosis by flow cytometry using Annexin/PI staining and DAPI staining and a laser scanning confocal microscope (LSCM). Cell cycling was evaluated using PI staining with flow cytometry and expression of cell cycle and apoptosis-related proteins cyclin A, CDK2, bcl-2 and bax was assessed by immunohistochemical staining. CSE had an anti-proliferation effect on human gastric cancer BGC-823 cells in a dose- and time-dependent manner. After treatment, the apoptotic rate significantly increased, with morphological changes typical of apoptosis observed with LSCM by DAPI staining. Cell cycle and apoptosis related proteins, such as cyclin A, CDK2 and bcl-2 were all down-regulated, whereas bax was up-regulated. The molecular determinants of inhibition of cell proliferation as well as apoptosis of CSE may be associated with cycle arrest in the S phase.
Flow Webs: Mechanism and Architecture for the Implementation of Sensor Webs
NASA Astrophysics Data System (ADS)
Gorlick, M. M.; Peng, G. S.; Gasster, S. D.; McAtee, M. D.
2006-12-01
The sensor web is a distributed, federated infrastructure much like its predecessors, the internet and the world wide web. It will be a federation of many sensor webs, large and small, under many distinct spans of control, that loosely cooperates and share information for many purposes. Realistically, it will grow piecemeal as distinct, individual systems are developed and deployed, some expressly built for a sensor web while many others were created for other purposes. Therefore, the architecture of the sensor web is of fundamental import and architectural strictures that inhibit innovation, experimentation, sharing or scaling may prove fatal. Drawing upon the architectural lessons of the world wide web, we offer a novel system architecture, the flow web, that elevates flows, sequences of messages over a domain of interest and constrained in both time and space, to a position of primacy as a dynamic, real-time, medium of information exchange for computational services. The flow web captures; in a single, uniform architectural style; the conflicting demands of the sensor web including dynamic adaptations to changing conditions, ease of experimentation, rapid recovery from the failures of sensors and models, automated command and control, incremental development and deployment, and integration at multiple levels—in many cases, at different times. Our conception of sensor webs—dynamic amalgamations of sensor webs each constructed within a flow web infrastructure—holds substantial promise for earth science missions in general, and of weather, air quality, and disaster management in particular. Flow webs, are by philosophy, design and implementation a dynamic infrastructure that permits massive adaptation in real-time. Flows may be attached to and detached from services at will, even while information is in transit through the flow. This concept, flow mobility, permits dynamic integration of earth science products and modeling resources in response to real-time demands. Flows are the connective tissue of flow webs—massive computational engines organized as directed graphs whose nodes are semi-autonomous components and whose edges are flows. The individual components of a flow web may themselves be encapsulated flow webs. In other words, a flow web subgraph may be presented to a yet larger flow web as a single, seamless component. Flow webs, at all levels, may be edited and modified while still executing. Within a flow web individual components may be added, removed, started, paused, halted, reparameterized, or inspected. The topology of a flow web may be changed at will. Thus, flow webs exhibit an extraordinary degree of adaptivity and robustness as they are explicitly designed to be modified on the fly, an attribute well suited for dynamic model interactions in sensor webs. We describe our concept for a sensor web, implemented as a flow web, in the context of a wildfire disaster management system for the southern California region. Comprehensive wildfire management requires cooperation among multiple agencies. Flow webs allow agencies to share resources in exactly the manner they choose. We will explain how to employ flow webs and agents to integrate satellite remote sensing data, models, in-situ sensors, UAVs and other resources into a sensor web that interconnects organizations and their disaster management tools in a manner that simultaneously preserves their independence and builds upon the individual strengths of agency-specific models and data sources.
NASA Astrophysics Data System (ADS)
Guo, Xiaolei; Guo, Qiang; Li, Zhiqiang; Fan, Genlian; Xiong, Ding-Bang; Su, Yishi; Zhang, Jie; Tan, Zhanqiu; Guo, Cuiping; Zhang, Di
2018-02-01
Single crystalline 4H-SiC micro-/nano-pillars of various sizes and different crystallographic orientations were fabricated and tested by uniaxial compression. The pillars with zero shear stress resolved on the basal slip system were found to fracture in a brittle manner without showing significant size dependence, while the pillars with non-zero resolved shear stress showed a "smaller is stronger" behavior and a jerky plastic flow. These observations were interpreted by homogeneous dislocation nucleation and dislocation glide on the basal plane.
Time-dependent limited penetrable visibility graph analysis of nonstationary time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Yang, Yu-Xuan; Dang, Wei-Dong
2017-06-01
Recent years have witnessed the development of visibility graph theory, which allows us to analyze a time series from the perspective of complex network. We in this paper develop a novel time-dependent limited penetrable visibility graph (TDLPVG). Two examples using nonstationary time series from RR intervals and gas-liquid flows are provided to demonstrate the effectiveness of our approach. The results of the first example suggest that our TDLPVG method allows characterizing the time-varying behaviors and classifying heart states of healthy, congestive heart failure and atrial fibrillation from RR interval time series. For the second example, we infer TDLPVGs from gas-liquid flow signals and interestingly find that the deviation of node degree of TDLPVGs enables to effectively uncover the time-varying dynamical flow behaviors of gas-liquid slug and bubble flow patterns. All these results render our TDLPVG method particularly powerful for characterizing the time-varying features underlying realistic complex systems from time series.
Time-derivative preconditioning for viscous flows
NASA Technical Reports Server (NTRS)
Choi, Yunho; Merkle, Charles L.
1991-01-01
A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems.
Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct
NASA Technical Reports Server (NTRS)
Gashev, Anatoliy A.; Davis, Michael J.; Zawieja, David C.; Delp, M. D. (Principal Investigator)
2002-01-01
There are only a few reports of the influence of imposed flow on an active lymph pump under conditions of controlled intraluminal pressure. Thus, the mechanisms are not clearly defined. Rat mesenteric lymphatics and thoracic ducts were isolated, cannulated and pressurized. Input and output pressures were adjusted to impose various flows. Lymphatic systolic and diastolic diameters were measured and used to determine contraction frequency and pump flow indices. Imposed flow inhibited the active lymph pump in both mesenteric lymphatics and in the thoracic duct. The active pump of the thoracic duct appeared more sensitive to flow than did the active pump of the mesenteric lymphatics. Imposed flow reduced the frequency and amplitude of the contractions and accordingly the active pump flow. Flow-induced inhibition of the active lymph pump followed two temporal patterns. The first pattern was a rapidly developing inhibition of contraction frequency. Upon imposition of flow, the contraction frequency immediately fell and then partially recovered over time during continued flow. This effect was dependent on the magnitude of imposed flow, but did not depend on the direction of flow. The effect also depended upon the rate of change in the direction of flow. The second pattern was a slowly developing reduction of the amplitude of the lymphatic contractions, which increased over time during continued flow. The inhibition of contraction amplitude was dependent on the direction of the imposed flow, but independent of the magnitude of flow. Nitric oxide was partly but not completely responsible for the influence of flow on the mesenteric lymph pump. Exposure to NO mimicked the effects of flow, and inhibition of the NO synthase by N (G)-monomethyl-L-arginine attenuated but did not completely abolish the effects of flow.
Segeda, V; Izakova, L; Hlavacova, N; Bednarova, A; Jezova, D
2017-08-01
Evidence is accumulating that aldosterone may exert central actions and influence mental functions. The aim of the present study was to test the hypothesis that major depressive disorder affects the diurnal variation of salivary aldosterone and that aldosterone concentrations reflect the duration and severity of the depressive episode in a sex dependent manner. The sample consisted of 60 patients (37 postmenopausal women, 23 men) with major depressive disorder. Patients were examined two times, in acute depressive episode (admission to the hospital) and after reaching clinical remission (discharge). The samples of saliva were taken by the patients themselves twice a day (8.00-9.00 h in the morning and in the evening). Aldosterone concentrations were significantly higher in women compared to men and were significantly higher at the time of admission to the hospital compared to those at the discharge. Morning but not evening salivary aldosterone concentrations reflected the length of the depressive episode in women as well as the severity of the disorder in both sexes. Moreover, the patients with depression failed to exert known daily rhythmicity of aldosterone release. The present study brings several pieces of evidence suggesting the association of aldosterone with the pathophysiology of depression. Salivary aldosterone concentrations appear to reflect the outcome, the duration and the severity of the depressive episode in a sex dependent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neuron-derived orphan receptor 1 promoted human pulmonary artery smooth muscle cells proliferation.
Wang, Chang-Guo; Lei, Wei; Li, Chang; Zeng, Da-Xiong; Huang, Jian-An
2015-05-01
As a transcription factor of the nuclear receptor superfamily, neuron-derived orphan receptor 1 (NOR1) is induced rapidly in response to various extracellular stimuli. But, it is still unclear its role in pulmonary artery smooth muscle cells proliferation. Human PASMCs were cultured in vitro and stimulated by serum. The special antisense oligodeoxynucleotides (AS-ODNs) were used to knockdown human NOR1 gene expression. Real-time PCR and Western-blot were used to evaluate the gene expression and protein levels. Fetal bovine serum (FBS) induced human PASMCs proliferation in a dose dependent manner. Furthermore, FBS promoted NOR1 gene expression in a dose dependent manner and a time dependent manner. 10% FBS induced a maximal NOR1 mRNA levels at 2 h. FBS also induced a significant higher NOR1 protein levels as compared with control. The NOR1 over-expressed plasmid significantly promoted DNA synthesis and cells proliferation. Moreover, the special AS-ODNs against human NOR1 not only prevented NOR1 expression but also inhibited DNA synthesis and cells proliferation significantly. The NOR1 over-expression plasmid could up-regulate cyclin D1 expression markedly, but the AS-ODNs inhibited cyclin D1 expression significantly. So, we concluded that NOR1 could promote human PASMCs proliferation. Cyclin D1 might be involved in this process.
Hidalgo, Alejandro A.; Deeb, Kristin K.; Pike, J. Wesley; Johnson, Candace S.; Trump, Donald L.
2011-01-01
Calcitriol, the active form of vitamin D, in combination with the glucocorticoid dexamethasone (Dex) has been shown to increase the antitumor effects of calcitriol in squamous cell carcinoma. In this study we found that pretreatment with Dex potentiates calcitriol effects by inhibiting cell growth and increasing vitamin D receptor (VDR) and VDR-mediated transcription. Treatment with actinomycin D inhibits Vdr mRNA synthesis, indicating that Dex regulates VDR expression at transcriptional level. Real time PCR shows that treatment with Dex increases Vdr transcripts in a time- and a dose-dependent manner, indicating that Dex directly regulates expression of Vdr. RU486, an inhibitor of glucocorticoids, inhibits Dex-induced Vdr expression. In addition, the silencing of glucocorticoid receptor (GR) abolishes the induction of Vdr by Dex, indicating that Dex increases Vdr transcripts in a GR-dependent manner. A fragment located 5.2 kb upstream of Vdr transcription start site containing two putative glucocorticoid response elements (GREs) was evaluated using a luciferase-based reporter assay. Treatment with 100 nm Dex induces transcription of luciferase driven by the fragment. Deletion of the GRE distal to transcription start site was sufficient to abolish Dex induction of luciferase. Also, chromatin immunoprecipitation reveals recruitment of GR to distal GRE with Dex treatment. We conclude that Dex increases VDR and vitamin D effects by increasing Vdr de novo transcription in a GR-dependent manner. PMID:21868377
Electroosmotic flow hysteresis for dissimilar ionic solutions
Lim, An Eng; Lam, Yee Cheong
2015-01-01
Electroosmotic flow (EOF) with two or more fluids is commonly encountered in various microfluidics applications. However, no investigation has hitherto been conducted to investigate the hysteretic or flow direction-dependent behavior during the displacement flow of solutions with dissimilar ionic species. In this investigation, electroosmotic displacement flow involving dissimilar ionic solutions was studied experimentally through a current monitoring method and numerically through finite element simulations. The flow hysteresis can be characterized by the turning and displacement times; turning time refers to the abrupt gradient change of current-time curve while displacement time is the time for one solution to completely displace the other solution. Both experimental and simulation results illustrate that the turning and displacement times for a particular solution pair can be directional-dependent, indicating that the flow conditions in the microchannel are not the same in the two different flow directions. The mechanics of EOF hysteresis was elucidated through the theoretical model which includes the ionic mobility of each species, a major governing parameter. Two distinct mechanics have been identified as the causes for the EOF hysteresis involving dissimilar ionic solutions: the widening/sharpening effect of interfacial region between the two solutions and the difference in ion concentration distributions (and thus average zeta potentials) in different flow directions. The outcome of this investigation contributes to the fundamental understanding of flow behavior in microfluidic systems involving solution pair with dissimilar ionic species. PMID:25945139
Numerical studies of asymmetric adiabatic accretion flow - The effect of velocity gradients
NASA Technical Reports Server (NTRS)
Taam, Ronald E.; Fryxell, B. A.
1989-01-01
A numerical study of the time variation of the angular momentum and mass capture rates for a central object accreting from a uniform medium with a velocity gradient transverse to the direction of the mean flow is presented, covering a range of velocity asymmetries and Mach numbers in the incident flow. It is found that the mass accretion rate in a given evolutionary sequence varies in an irregular manner, with the matter accreting onto the central object from either a continuously moving accretion wake or from an accretion disk. The implications of the results from the study of short-term fluctuations observed in the pulse period and luminosity of X-ray pulsars are discussed.
Kowinsky, Amy M; Shovel, Judith; McLaughlin, Maribeth; Vertacnik, Lisa; Greenhouse, Pamela K; Martin, Susan Christie; Minnier, Tamra E
2012-01-01
Predictable and unpredictable patient care tasks compete for caregiver time and attention, making it difficult for patient care staff to reliably and consistently meet patient needs. We have piloted a redesigned care model that separates the work of patient care technicians based on task predictability and creates role specificity. This care model shows promise in improving the ability of staff to reliably complete tasks in a more consistent and timely manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audigier, S.M.P.; Wang, J.K.T.; Greengard, P.
Synaptosomes, purified from rat cerebral cortex, were prelabeled with (/sup 3/H)inositol to study phosphatidylinositol turnover in nerve terminals. Labeled synaptosomes were either depolarized with 40 mM K/sup +/ or exposed to carbamoylcholine (carbachol). K/sup +/ depolarization increased the level of inositol phosphates in a time-dependent manner. The inositol bisphosphate level also increased rapidly, but its elevated level was sustained during continued depolarization. The elevated level of inositol bisphosphate was reversed upon repolarization of the synaptosomes. The level of inositol monophosphate increased slowly to 120-130% of control. These effects of K/sup +/ depolarization depended on the presence of Ca/sup 2 +/more » in the incubation medium. Carbachol stimulated the turnover of phosphatidylinositol in a dose- and time-dependent manner. The level of inositol bisphosphate increased to 210% of control, and this maximal response was seen from 15 to 60 min. Accumulation of inositol monophosphate was larger than that of inositol bisphosphate, but its time course was slower. Atropine and pirenzepine inhibited the carbachol effect with high affinities. These data show that both Ca/sup 2 +/ influx and M/sub 1/ muscarinic receptor activation stimulate phospholipase C activity in synaptosomes, suggesting that phosphatidylinositol turnover may be involved in regulating neurotransmitter release from nerve terminals.« less
Experimental study of the flow over a backward-facing rounded ramp
NASA Astrophysics Data System (ADS)
Duriez, Thomas; Aider, Jean-Luc; Wesfreid, Jose Eduardo
2010-11-01
The backward-facing rounded ramp (BFR) is a very simple geometry leading to boundary layer separation, close to the backward facing step (BFS) flow. The main difference with the BFS flow is that the separation location depends on the incoming flow while it is fixed to the step edge for the BFS flow. Despite the simplicity of the geometry, the flow is complex and the transition process still has to be investigated. In this study we investigate the BFR flow using time-resolved PIV. For Reynolds number ranging between 300 and 12 000 we first study the time averaged properties such as the positions of the separation and reattachment, the recirculation length and the shear layer thickness. The time resolution also gives access to the characteristic frequencies of the time-dependant flow. An appropriate Fourier filtering of the flow field, around each frequency peak in the global spectrum, allows an investigation of each mode in order to extract its wavelength, phase velocity, and spatial distribution. We then sort the spectral content and relate the main frequencies to the most amplified Kelvin-Helmholtz instability mode and its harmonics, the vortex pairing, the low frequency recirculation bubble oscillation and the interactions between all these phenomena.
Linear analysis of time dependent properties of Child-Langmuir flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhlenko, A.
We continue our analysis of the time dependent behavior of the electron flow in the Child-Langmuir system, removing an approximation used earlier. We find a modified set of oscillatory decaying modes with frequencies of the same order as the inverse of the electron transient time. This range (typically MHz) allows simple experimental detection and maybe exploitation. We then study the time evolution of the current in response to a slow change of the anode voltage where the same modes of oscillations appear too. The cathode current in this case is systematically advanced or retarded depending on the direction of themore » voltage change.« less
Linear analysis of time dependent properties of Child-Langmuir flow
NASA Astrophysics Data System (ADS)
Rokhlenko, A.
2013-01-01
We continue our analysis of the time dependent behavior of the electron flow in the Child-Langmuir system, removing an approximation used earlier. We find a modified set of oscillatory decaying modes with frequencies of the same order as the inverse of the electron transient time. This range (typically MHz) allows simple experimental detection and maybe exploitation. We then study the time evolution of the current in response to a slow change of the anode voltage where the same modes of oscillations appear too. The cathode current in this case is systematically advanced or retarded depending on the direction of the voltage change.
Chen, C; Yang, R L
2013-08-01
MP [4-(3',3'-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27(KIP1) protein and p21(CIP1) mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21(CIP1), p16(INK4a) and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Xueqing; Huang Guangcun; Mei Shuang
2009-03-06
Hepatic stellate cells (HSCs) play a key role in the pathogenesis of hepatic fibrosis. In our previous studies, CCAAT enhancer binding protein-{alpha} (C/EBP-{alpha}) has been shown to be involved in the activation of HSCs and to have a repression effect on hepatic fibrosis in vivo. However, the mechanisms are largely unknown. In this study, we show that the infection of adenovirus vector expressing C/EBP-{alpha} gene (Ad-C/EBP-{alpha}) could induce HSCs apoptosis in a dose- and time-dependent manner by Annexin V/PI staining, caspase-3 activation assay, and flow cytometry. Also, over-expression of C/EBP-{alpha} resulted in the up-regulation of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) andmore » P53, while P53 expression was regulated by PPAR-{gamma}. In addition, Fas, FasL, DR4, DR5, and TRAIL were studied. The results indicated that the death receptor pathway was mainly involved and regulated by PPAR-{gamma} and p53 in the process of apoptosis triggered by C/EBP-{alpha} in HSCs.« less
Ellis, Lisa L.; Huang, Wen; Quinn, Andrew M.; Ahuja, Astha; Alfrejd, Ben; Gomez, Francisco E.; Hjelmen, Carl E.; Moore, Kristi L.; Mackay, Trudy F. C.; Johnston, J. Spencer; Tarone, Aaron M.
2014-01-01
We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions. PMID:25057905
Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping
2015-01-16
The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Chaderjian, Neal; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)
2002-01-01
A process is described which enables the generation of 35 time-dependent viscous solutions for a YAV-8B Harrier in ground effect in one week. Overset grids are used to model the complex geometry of the Harrier aircraft and the interaction of its jets with the ground plane and low-speed ambient flow. The time required to complete this parametric study is drastically reduced through the use of process automation, modern computational platforms, and parallel computing. Moreover, a dual-time-stepping algorithm is described which improves solution robustness. Unsteady flow visualization and a frequency domain analysis are also used to identify and correlated key flow structures with the time variation of lift.
Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong
2014-09-01
X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1986-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1989-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
Florea, Cristina; Tanska, Petri; Mononen, Mika E; Qu, Chengjuan; Lammi, Mikko J; Laasanen, Mikko S; Korhonen, Rami K
2017-02-01
Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit viscoelastic behavior in response to an applied stress. This has been attributed to fluid flow-dependent and flow-independent mechanisms. However, the particular mechanism that controls the local time-dependent behavior of cells is unknown. Here, a combined approach of experimental AFM nanoindentation with computational modeling is proposed, taking into account complex material behavior. Three constitutive models (porohyperelastic, viscohyperelastic, poroviscohyperelastic) in tandem with optimization algorithms were employed to capture the experimental stress relaxation data of chondrocytes at 5 % strain. The poroviscohyperelastic models with and without fluid flow allowed through the cell membrane provided excellent description of the experimental time-dependent cell responses (normalized mean squared error (NMSE) of 0.003 between the model and experiments). The viscohyperelastic model without fluid could not follow the entire experimental data that well (NMSE = 0.005), while the porohyperelastic model could not capture it at all (NMSE = 0.383). We also show by parametric analysis that the fluid flow has a small, but essential effect on the loading phase and short-term cell relaxation response, while the solid viscoelasticity controls the longer-term responses. We suggest that the local time-dependent cell mechanical response is determined by the combined effects of intrinsic viscoelasticity of the cytoskeleton and fluid flow redistribution in the cells, although the contribution of fluid flow is smaller when using a nanosized probe and moderate indentation rate. The present approach provides new insights into viscoelastic responses of chondrocytes, important for further understanding cell mechanobiological mechanisms in health and disease.
Numerical investigation of turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Kim, J.
1981-01-01
Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.
NASA Astrophysics Data System (ADS)
Lee, Ji-Seok; Song, Ki-Won
2015-11-01
The objective of the present study is to systematically elucidate the time-dependent rheological behavior of concentrated xanthan gum systems in complicated step-shear flow fields. Using a strain-controlled rheometer (ARES), step-shear flow behaviors of a concentrated xanthan gum model solution have been experimentally investigated in interrupted shear flow fields with a various combination of different shear rates, shearing times and rest times, and step-incremental and step-reductional shear flow fields with various shearing times. The main findings obtained from this study are summarized as follows. (i) In interrupted shear flow fields, the shear stress is sharply increased until reaching the maximum stress at an initial stage of shearing times, and then a stress decay towards a steady state is observed as the shearing time is increased in both start-up shear flow fields. The shear stress is suddenly decreased immediately after the imposed shear rate is stopped, and then slowly decayed during the period of a rest time. (ii) As an increase in rest time, the difference in the maximum stress values between the two start-up shear flow fields is decreased whereas the shearing time exerts a slight influence on this behavior. (iii) In step-incremental shear flow fields, after passing through the maximum stress, structural destruction causes a stress decay behavior towards a steady state as an increase in shearing time in each step shear flow region. The time needed to reach the maximum stress value is shortened as an increase in step-increased shear rate. (iv) In step-reductional shear flow fields, after passing through the minimum stress, structural recovery induces a stress growth behavior towards an equilibrium state as an increase in shearing time in each step shear flow region. The time needed to reach the minimum stress value is lengthened as a decrease in step-decreased shear rate.
A Nonparametric Approach For Representing Interannual Dependence In Monthly Streamflow Sequences
NASA Astrophysics Data System (ADS)
Sharma, A.; Oneill, R.
The estimation of risks associated with water management plans requires generation of synthetic streamflow sequences. The mathematical algorithms used to generate these sequences at monthly time scales are found lacking in two main respects: inability in preserving dependence attributes particularly at large (seasonal to interannual) time lags; and, a poor representation of observed distributional characteristics, in partic- ular, representation of strong assymetry or multimodality in the probability density function. Proposed here is an alternative that naturally incorporates both observed de- pendence and distributional attributes in the generated sequences. Use of a nonpara- metric framework provides an effective means for representing the observed proba- bility distribution, while the use of a Svariable kernelT ensures accurate modeling of & cedil;streamflow data sets that contain a substantial number of zero flow values. A careful selection of prior flows imparts the appropriate short-term memory, while use of an SaggregateT flow variable allows representation of interannual dependence. The non- & cedil;parametric simulation model is applied to monthly flows from the Beaver River near Beaver, Utah, USA, and the Burrendong dam inflows, New South Wales, Australia. Results indicate that while the use of traditional simulation approaches leads to an inaccurate representation of dependence at long (annual and interannual) time scales, the proposed model can simulate both short and long-term dependence. As a result, the proposed model ensures a significantly improved representation of reservoir storage statistics, particularly for systems influenced by long droughts. It is important to note that the proposed method offers a simpler and better alternative to conventional dis- aggregation models as: (a) a separate annual flow series is not required, (b) stringent assumptions relating annual and monthly flows are not needed, and (c) the method does not require the specification of a "water year", instead ensuring that the sum of any sequence of flows lasting twelve months will result in the type of dependence that is observed in the historical annual flow series.
Chen, Su-Feng; Xia, Jun; Lv, Ya-Ping; Liu, Jin-Lin; Li, Wan-Xiang; Yu, Xi-Ping; Hu, Wei-Xiao; Zhou, Yong-Lie
2015-04-01
Pancreatic cancer is one of the human gastrointestinal malignancies with a high mortality and poor prognosis. Approximately eighty percent of patients are diagnosed with unresectable or metastatic disease. Thus, development of novel chemicals in the treatment of pancreatic cancer is imperative. This study aimed to investigate the anticancer effects of N,N'-di-(m-methylphenyi)-3,6-dimethyl-1,4-dihydro-1,2,4,5-tetrazine-1,4-dicarboamide (ZGDHu-1), a new tetrazine derivative, on the PANC-1 pancreatic cancer cell line and clarify the underlying molecular mechanism. Using an MTT assay, we found that ZGDHu-1 significantly suppressed the proliferation of PANC-1 cells in a time- and dose-dependent manner. Moreover, according to the morphological and flow cytometric analysis, the results indicated that ZGDHu-1 induced PANC-1 cell apoptosis and G2/M cell cycle arrest in a dose-dependent manner. In the western blot analysis, expression of the pro-apoptotic Bax gene was upregulated while the anti-apoptotic Bcl-2 gene was downregulated following treatment with ZGDHu-1. ZGDHu-1 also activated pro-caspase-3 and PARP and increased the expression of NF-κB inhibitor IκB. Furthermore, the expression levels of G2/M regulatory molecules such as cyclin B1 and cdc2 were decreased while that of Chk1 was increased. These results suggested that ZGDHu-1 suppressed the proliferation of pancreatic cancer cells, rendering it a potential therapeutic drug for the treatment of pancreatic cancer.
Per a 10 activates human derived epithelial cell line in a protease dependent manner via PAR-2.
Kale, Sagar L; Arora, Naveen
2015-04-01
Protease activity of Per a 10 has been shown to modulate dendritic cells toward Th-2 polarization and to induce airway inflammation. To elucidate the role of serine protease activity of Per a 10 in inducing biochemical responses in epithelial cells. Per a 10 was inactivated by heat treatment (ΔPer a 10) or AEBSF (iPer a 10). A549 cells were exposed to either enzymatically active/inactive Per a 10. The supernatant was analyzed for the secretion of proinflammatory cytokines by ELISA. Ca(2+) mobilization was analyzed by flow cytometry. A PAR-2 derived synthetic peptide 28GTNRSSKGRSLIGKVDGTSHVTGKGVTC54 was incubated with Per a 10 and the resultant cleaved products were analyzed by LC-MS. PAR-2 activation was inhibited by PAR-2 cleavage inhibiting antibody. ΔPer a 10 was completely inactivated whereas iPer a 10 showed some residual activity. nPer a 10 having protease activity increased the secretion of IL-6, IL-8 and GMCSF from A549 in a dose and time dependent manner whereas iPer a 10 has reduced cytokine secretion. ΔPer a 10 and rPer a 10 were unable to activate the cells. nPer a 10 mobilized intracellular Ca(2+). nPer a 10 cleaved the PAR-2 derived peptide between arginine and serine residues (36R-S37) to expose PAR-2 ligand SLIGKV, as determined by LC-MS. Incubating with anti-PAR-2 cleavage antibody showed diminished cytokine secretion when treated with nPer a 10. Serine protease activity of Per a 10 activates A549 cells to secrete proinflammatory cytokines by PAR-2 activation and Ca(2+)mobilization and can be exploited therapeutically. Copyright © 2014 Elsevier GmbH. All rights reserved.
[Mechanisms of (2-methyl-n-butyl) shikonin induced apoptosis of gastric cancer SGC-7901 cells].
Wang, Hai-Bing; Ma, Xiao-Qiong
2012-06-01
This study is to investigate the effect of (2-methyl-n-butyl) shikonin (MBS) on inducing apoptosis of human gastric cancer cell line SGC-7901 and the role of ERK1/2 signal pathway in the apoptosis. MTT assay was used to detect SGC-7901 cell proliferation. DNA condensation was measured by DAPI stain. Cell apoptosis was analyzed by flow cytometry. Mitochondrial membrane potential (MMP) was analyzed by JC-1 staining. The protein expressions of Bcl-2, Bax, Survivin, cleaved caspase-9, cleaved caspase-3, cleaved PARP, p-ERK1/2, ERK1/2, p-JNK, JNK, p-p38 and p38 were detected by Western blotting. The results showed that MBS reduced the cell viability of SGC-7901 cells in a dose- and time-dependent manner. The IC50 at 24 h and 48 h for SGC-7901 cells was 10.113 and 4.196 micromolL(-1), respectively. After being treated with MBS, the typical nuclear condensation was observed in SGC-7901 cells by DAPI stain. Apoptosis in SGC-7901 cells was induced by MBS in a dose dependent manner. The protein expression of Bcl-2 was down-regulated, while the protein expressions of cleaved caspase-9, cleaved caspase-3, cleaved PARP, p-ERK1/2 and p-JNK were up-regulated after MBS treatment. U0126, a specific MAP kinase (MEK1/2) inhibitor, blocked the ERK1/2 activation by MBS. MMP was decreased by MBS treatment. It can be concluded that MBS could inhibit SGC-7901 cell proliferation and induce apoptosis. Mitochondrial apoptosis pathway, ERK1/2 signal pathway and JNK signal pathway might be involved in this process.
Wu, Szu-Ying; Leu, Yann-Lii; Chang, Ya-Ling; Wu, Tian-Shung; Kuo, Ping-Chung; Liao, Yu-Ren; Teng, Che-Ming; Pan, Shiow-Lin
2012-01-01
The aim of this study was to determine the molecular mechanisms of physalin F, an effective purified extract of Physalis angulata L. (Solanacae), in renal carcinoma A498 cells. Physalin F was observed to significantly induce cytotoxicity of three human renal carcinoma A498, ACHN, and UO-31 cells in a concentration-dependent manner; this was especially potent in A498 cells. The physalin F-induced cell apoptosis of A498 cells was characterized by MTT assay, nuclear DNA fragmentation and chromatin condensation. Using flow cytometry analysis, physalin F induced A498 cell apoptosis as demonstrated by the accumulation of the sub-G1 phase in a concentration- and time-dependent manner. Moreover, physalin F-mediated accumulation of reactive oxygen species (ROS) caused Bcl-2 family proteins, Bcl-2, and Bcl-xL degradation, which led to disruption of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-3 and caspase-9 activity, which led to poly(ADP-ribose) polymerase cleavage. However, the antioxidant N-acetyl-(L)-cysteine (NAC) and glutathione (GSH) resulted in the inhibition of these events and reversed physalin F-induced cell apoptosis. In addition, physalin F suppressed NF-κB activity and nuclear translocation of p65 and p50, which was reversed by NAC and GSH. Physalin F induced cell apoptosis through the ROS-mediated mitochondrial pathway and suppressed NF-κB activation in human renal cancer A498 cells. Thus, physalin F appears to be a promising anti-cancer agent worthy of further clinical development.
Wu, Szu-Ying; Leu, Yann-Lii; Chang, Ya-Ling; Wu, Tian-Shung; Kuo, Ping-Chung; Liao, Yu-Ren; Teng, Che-Ming; Pan, Shiow-Lin
2012-01-01
Background The aim of this study was to determine the molecular mechanisms of physalin F, an effective purified extract of Physalis angulata L. (Solanacae), in renal carcinoma A498 cells. Methodology/Principal Findings Physalin F was observed to significantly induce cytotoxicity of three human renal carcinoma A498, ACHN, and UO-31 cells in a concentration-dependent manner; this was especially potent in A498 cells. The physalin F-induced cell apoptosis of A498 cells was characterized by MTT assay, nuclear DNA fragmentation and chromatin condensation. Using flow cytometry analysis, physalin F induced A498 cell apoptosis as demonstrated by the accumulation of the sub-G1 phase in a concentration- and time-dependent manner. Moreover, physalin F-mediated accumulation of reactive oxygen species (ROS) caused Bcl-2 family proteins, Bcl-2, and Bcl-xL degradation, which led to disruption of mitochondrial membrane potential and release of cytochrome c from the mitochondria into the cytosol. These effects were associated with induction of caspase-3 and caspase-9 activity, which led to poly(ADP-ribose) polymerase cleavage. However, the antioxidant N-acetyl-L-cysteine (NAC) and glutathione (GSH) resulted in the inhibition of these events and reversed physalin F-induced cell apoptosis. In addition, physalin F suppressed NF-κB activity and nuclear translocation of p65 and p50, which was reversed by NAC and GSH. Conclusion Physalin F induced cell apoptosis through the ROS-mediated mitochondrial pathway and suppressed NF-κB activation in human renal cancer A498 cells. Thus, physalin F appears to be a promising anti-cancer agent worthy of further clinical development. PMID:22815798
Ma, Yi-ming; Zhou, Yu-bo; Xie, Chuan-ming; Chen, Dong-mei; Li, Jia
2012-01-01
Aim: To identify a novel coumarin analogue with the highest anticancer activity and to further investigate its anticancer mechanisms. Methods: The viability of cancer cells was investigated using the MTT assay. The cell cycle progression was evaluated using both flow cytometric and Western blotting analysis. Microtubule depolymerization was observed with immunocytochemistry in vivo and a tubulin depolymerization assay in vitro. Apoptosis was demonstrated using Annexin V/Propidium Iodide (PI) double-staining and sub-G1 analysis. Results: Among 36 analogues of coumarin, 6-chloro-4-(methoxyphenyl) coumarin showed the best anticancer activity (IC50 value about 200 nmol/L) in HCT116 cells. The compound had a broad spectrum of anticancer activity against 9 cancer cell lines derived from colon cancer, breast cancer, liver cancer, cervical cancer, leukemia, epidermoid cancer with IC50 value of 75 nmol/L–1.57 μmol/L but with low cytotocitity against WI-38 human lung fibroblasts (IC50 value of 12.128 μmol/L). The compound (0.04–10 μmol/L) induced G2-M phase arrest in HeLa cells in a dose-dependent manner, which was reversible after the compound was removed. The compound (10–300 μmol/L) induced the depolymerization of purified porcine tubulin in vitro. Finally, the compound (0.04–2.5 μmol/L) induced apoptosis of HeLa cells in dose- and time-dependent manners. Conclusion: 6-Chloro-4-(methoxyphenyl) coumarin is a novel microtubule-targeting agent that induces G2–M arrest and apoptosis in HeLa cells. PMID:22266726
Wang, Jun; Zhou, Hong; Zheng, Jiang; Cheng, Juan; Liu, Wei; Ding, Guofu; Wang, Liangxi; Luo, Ping; Lu, Yongling; Cao, Hongwei; Yu, Shuangjiang; Li, Bin; Zhang, Lezhi
2006-01-01
In the present study artemisinin (ART) was found to have potent anti-inflammatory effects in animal models of sepsis induced by CpG-containing oligodeoxy-nucleotides (CpG ODN), lipopolysaccharide (LPS), heat-killed Escherichia coli 35218 or live E. coli. Furthermore, we found that ART protected mice from a lethal challenge by CpG ODN, LPS, or heat-killed E. coli in a dose-dependent manner and that the protection was related to a reduction in serum tumor necrosis factor alpha (TNF-α). More significantly, the administration of ART together with ampicillin or unasyn (a complex of ampicillin and sulbactam) decreased mortality from 100 to 66.7% or 33.3%, respectively, in mice subjected to a lethal live E. coli challenge. Together with the observation that ART alone does not inhibit bacterial growth, this result suggests that ART protection is achieved as a result of its anti-inflammatory activity rather than an antimicrobial effect. In RAW264.7 cells, pretreatment with ART potently inhibited TNF-α and interleukin-6 release induced by CpG ODN, LPS, or heat-killed E. coli in a dose- and time-dependent manner. Experiments utilizing affinity sensor technology revealed no direct binding of ART with CpG ODN or LPS. Flow cytometry further showed that ART did not alter binding of CpG ODN to cell surfaces or the internalization of CpG ODN. In addition, upregulated levels of TLR9 and TLR4 mRNA were not attenuated by ART treatment. ART treatment did, however, block the NF-κB activation induced by CpG ODN, LPS, or heat-killed E. coli. These findings provide compelling evidence that ART may be an important potential drug for sepsis treatment. PMID:16801421
Evaluating antithrombotic activity of HY023016 on rat hypercoagulable model.
Chen, Qiu-Fang; Li, Yun-Zhan; Wang, Xin-Hui; Su, You-Rui; Cui, Shuang; Miao, Ming-Xing; Jiang, Zhen-Zhou; Jiang, Mei-Ling; Jiang, Ai-Dou; Chen, Xiang; Xu, Yun-Gen; Gong, Guo-Qing
2016-06-15
The generation of thrombus is not considered as an isolated progression without other pathologic processes, which may also enhance procoagulant state. The purpose of this study was to assess whether HY023016, a novel dabigatran prodrug and an oral direct thrombin inhibitor, or dabigatran etexilate, another thrombin inhibitor can improve the state of whole blood hypercoagulability in vitro/vivo. By using whole blood flow cytometry we explored the effects of HY023016 and dabigatran etexilate on thrombin and ADP-induced human platelet-leukocyte aggregation generated in vitro. With the method of continuous infusion of thrombin intravenous, we successfully established a rat hypercoagulable model and evaluated the effect of HY023016 or dabigatran etexilate in vivo. HY023016 was able to inhibit thrombin- or ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates in dose-dependent manner. Dabigatran etexilate was unable to affect ADP-induced platelet P-selectin or CD40L expression, leukocyte CD11b expression and formation of platelet-leukocyte aggregates. Based on rat hypercoagulable model, dabigatran etexilate could reverse thrombin-induced circulatory system hypercoagulable state in a concentration-dependent manner. Dabigatran etexilate also inhibited electrical stimulation induced formation of arterial thrombus in rat under hypercoagulable state, and extracorporal circulation-induced formation of thrombus in dose-dependent manner. Compared with dabigatran etexilate, HY023016 showed nearly equal or even better antithrombotic activity, regardless of reversing the cycle of rat hypercoagulable state or inhibiting platelet-leukocyte aggregation. In surrmary, HY023016 could effectively improve hypercoagulable state of circulatory system. Copyright © 2016. Published by Elsevier B.V.
LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards
NASA Astrophysics Data System (ADS)
Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.
2014-12-01
Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.
Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines.
Naderi, Saeed; Zare, Hakimeh; Taghavinia, Nima; Irajizad, Azam; Aghaei, Mahmoud; Panjehpour, Mojtaba
2018-05-01
Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was applied for observation of morphological changes due to apoptosis. Apoptotic DNA fragmentation was visualized by the agarose gel electrophoresis assay. Flow cytometric annexin V/propidium iodide (PI) measurement was used for apoptosis detection. A significant decrease in cell viability was observed after QDs treatment ( p < 0.05). Apoptotic bodies and chromatin condensation was observed by Hoechst staining. DNA fragmentation assay demonstrated a DNA ladder profile in the exposed cells and also annexin V/PI flow cytometry confirmed apoptosis in a dose-dependent manner. Our results revealed that CdTe, high yield CdTe, and CdTe/CdS core/shell QDs induce apoptosis in breast cancer cell lines in a dose-dependent manner. This study would help realizing the underlying cytotoxicity mechanism, at least partly, of CdTe QDs and may provide information for the development of nanotoxicology and safe use of biological applications of QDs.
Prevotella intermedia induces prostaglandin E2 via multiple signaling pathways.
Guan, S-M; Fu, S-M; He, J-J; Zhang, M
2011-01-01
Prostaglandin E(2) (PGE(2)) plays important roles in the bone resorption of inflammatory diseases such as rheumatoid arthritis and periodontitis via specific prostaglandin receptors (i.e., EP1-EP4). In this study, the authors examined whether Prevotella intermedia regulates PGE(2) production and EP expression in human periodontal ligament fibroblasts (hPDLs); they also explored the potential signaling pathways involved in PGE(2) production. P. intermedia induced PGE(2) production and cyclooxygenase-2 (COX-2) expression in a dose- and time-dependent manner. Indomethacin and NS-398 completely abrogated the P. intermedia-induced PGE(2) production without modulating COX-2 expression. Specific inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, phosphatidylinositol 3-kinase, and protein kinase C--but not c-AMP and protein kinase A--significantly attenuated the P. intermedia-induced COX-2 and PGE(2) expression. P. intermedia reduced EP1 expression in a concentration- and time-dependent manner. The results indicate that the COX-2-dependent induction of PGE(2) by P. intermedia in hPDLs is mediated by multiple signaling pathways.
Methods of blood flow measurement in the arterial circulatory system.
Tabrizchi, R; Pugsley, M K
2000-01-01
The most commonly employed techniques for the in vivo measurement of arterial blood flow to individual organs involve the use of flow probes or sensors. Commercially available systems for the measurement of in vivo blood flow can be divided into two categories: ultrasonic and electromagnetic. Two types of ultrasonic probes are used. The first type of flow probe measures blood flow-mediated Doppler shifts (Doppler flowmetry) in a vessel. The second type of flow probe measures the "transit time" required by an emitted ultrasound wave to traverse the vessel and are transit-time volume flow sensors. Measurement of blood flow in any vessel requires that the flow probe or sensor be highly accurate and exhibit signal linearity over the flow range in the vessel of interest. Moreover, additional desirable features include compact design, size, and weight. An additional important feature for flow probes is that they exhibit good biocompatability; it is imperative for the sensor to behave in an inert manner towards the biological system. A sensitive and reliable method to assess blood flow in individual organs in the body, other than by the use of probes/sensors, is the reference sample method that utilizes hematogeneously delivered microspheres. This method has been utilized to a large extend to assess regional blood flow in the entire body. Obviously, the purpose of measuring blood flow is to determine the amount of blood delivered to a given region per unit time (milliliters per minute) and it is desirable to achieve this goal by noninvasive methodologies. This, however, is not always possible. This review attempts to offer an overview of some of the techniques available for the assessment of regional blood flow in the arterial circulatory system and discusses advantages and disadvantages of these common techniques.
Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT.
Podesta, Mark; Nijsten, Sebastiaan M J J G; Persoon, Lucas C G G; Scheib, Stefan G; Baltes, Christof; Verhaegen, Frank
2014-08-21
Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.
Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices
Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; ...
2011-01-01
Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics ofmore » degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.« less
NASA Astrophysics Data System (ADS)
Sharma, Pankaj; Jain, Ajai
2014-12-01
Stochastic dynamic job shop scheduling problem with consideration of sequence-dependent setup times are among the most difficult classes of scheduling problems. This paper assesses the performance of nine dispatching rules in such shop from makespan, mean flow time, maximum flow time, mean tardiness, maximum tardiness, number of tardy jobs, total setups and mean setup time performance measures viewpoint. A discrete event simulation model of a stochastic dynamic job shop manufacturing system is developed for investigation purpose. Nine dispatching rules identified from literature are incorporated in the simulation model. The simulation experiments are conducted under due date tightness factor of 3, shop utilization percentage of 90% and setup times less than processing times. Results indicate that shortest setup time (SIMSET) rule provides the best performance for mean flow time and number of tardy jobs measures. The job with similar setup and modified earliest due date (JMEDD) rule provides the best performance for makespan, maximum flow time, mean tardiness, maximum tardiness, total setups and mean setup time measures.
Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.
Gibbs, M E; Johnston, G A R
2005-01-01
The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.
Park, Sang Eun; Park, Cheol; Kim, Sun Hee; Hossain, Mohammad Akbar; Kim, Min Young; Chung, Hae Young; Son, Woo Sung; Kim, Gi-Young; Choi, Yung Hyun; Kim, Nam Deuk
2009-01-21
Korean red ginseng (KRG, Panax ginseng C.A. Meyer Radix rubra) has been used to treat various diseases including cancer. However, the molecular mechanisms responsible for KRG extract induced apoptosis and telomerase inhibition remain unclear. The hot water extract from KRG was used to evaluate the mechanism of induction of apoptosis in U937 human leukemia cells and its effects on cyclooxgenase-2 (COX-2) and telomerase activity. KRG extract treatment to U937 cells resulted in growth inhibition and induction of apoptosis in a concentration-dependent manner as measured by hemacytometer counts, MTT assay, fluorescence microscopy, agarose gel electrophoresis and flow cytometry analysis. The increase in apoptosis was associated with the down-regulation of antiapoptotic Bcl-2, Bcl-X(L), and IAPs family members, and the activation of caspase-3. KRG extract treatment also decreased the expression levels of COX-2 and inducible nitric oxide synthase. Furthermore, KRG extract treatment progressively down-regulated the expression of human telomerase reverse transcriptase, a main determinant of the telomerase enzymatic activity, with inhibiting the expression of c-Myc in a concentration-dependent manner. These results provide important new insights into the possible molecular mechanisms of the anticancer activity of KRG extract.
Exploration of intrinsic and extrinsic apoptotic pathways in zearalenone-treated rat sertoli cells.
Xu, Ming-Long; Hu, Jin; Guo, Bao-Ping; Niu, Ya-Ru; Xiao, Cheng; Xu, Yin-Xue
2016-12-01
Zearalenone (ZEA) is a nonsteroidal estrogenic mycotoxin produced mainly by Fusarium. ZEA causes reproductive disorders and is both cytotoxic and genotoxic in animals; however, little is known regarding the molecular mechanism(s) leading to ZEA toxicity. Sertoli cells are somatic cells that support the development of spermatogenic cells. The objective of this study was to explore the effects of ZEA on the proliferation, apoptosis, and necrosis of rat Sertoli cells to uncover signaling pathways underlying ZEA cytotoxicity. ZEA reduced the proliferation of rat Sertoli cells in a dose-dependent manner, as indicated by a CCK8 assay, while flow cytometry revealed that ZEA caused both apoptosis and necrosis. Immunoblotting revealed that ZEA treatment increased the ratio of Bax/Bcl-2, as well as the expression of FasL and caspases-3, -8, and -9, in a dose-dependent manner. Collectively, these data suggest that ZEA induced apoptosis and necrosis in rat Sertoli cells via extrinsic and intrinsic apoptotic pathways. This study provides new insights into the molecular mechanisms by which ZEA exhibits cytotoxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1731-1739, 2016. © 2015 Wiley Periodicals, Inc.
Quantum Mechanical Study of Nanoscale MOSFET
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
The steady state characteristics of MOSFETS that are of practical Interest are the drive current, off-current, dope of drain current versus drain voltage, and threshold voltage. In this section, we show that quantum mechanical simulations yield significantly different results from drift-diffusion based methods. These differences arise because of the following quantum mechanical features: (I) polysilicon gate depletion in a manner opposite to the classical case (II) dependence of the resonant levels in the channel on the gate voltage, (III) tunneling of charge across the gate oxide and from source to drain, (IV) quasi-ballistic flow of electrons. Conclusions dI/dV versus V does not increase in a manner commensurate with the increase in number of subbands. - The increase in dI/dV with bias is much smaller then the increase in the number of subbands - a consequence of bragg reflection. Our calculations show an increase in transmission with length of contact, as seen in experiments. It is desirable for molecular electronics applications to have a small contact area, yet large coupling. In this case, the circumferential dependence of the nanotube wave function dictates: - Transmission in armchair tubes saturates around unity - Transmission in zigzag tubes saturates at two.
A Microfluidic Technique to Probe Cell Deformability
Hoelzle, David J.; Varghese, Bino A.; Chan, Clara K.; Rowat, Amy C.
2014-01-01
Here we detail the design, fabrication, and use of a microfluidic device to evaluate the deformability of a large number of individual cells in an efficient manner. Typically, data for ~102 cells can be acquired within a 1 hr experiment. An automated image analysis program enables efficient post-experiment analysis of image data, enabling processing to be complete within a few hours. Our device geometry is unique in that cells must deform through a series of micron-scale constrictions, thereby enabling the initial deformation and time-dependent relaxation of individual cells to be assayed. The applicability of this method to human promyelocytic leukemia (HL-60) cells is demonstrated. Driving cells to deform through micron-scale constrictions using pressure-driven flow, we observe that human promyelocytic (HL-60) cells momentarily occlude the first constriction for a median time of 9.3 msec before passaging more quickly through the subsequent constrictions with a median transit time of 4.0 msec per constriction. By contrast, all-trans retinoic acid-treated (neutrophil-type) HL-60 cells occlude the first constriction for only 4.3 msec before passaging through the subsequent constrictions with a median transit time of 3.3 msec. This method can provide insight into the viscoelastic nature of cells, and ultimately reveal the molecular origins of this behavior. PMID:25226269
Luo, Win-Jet
2006-03-15
This paper investigates two-dimensional, time-dependent electroosmotic flow driven by an AC electric field via patchwise surface heterogeneities distributed along the micro-channel walls. The time-dependent flow fields through the micro-channel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. The transient behavior characteristics of the generated electroosmotic flow are then discussed in terms of the influence of the patchwise surface heterogeneities, the direction of the applied AC electric field, and the velocity of the bulk flow. It is shown that the presence of oppositely charged surface heterogeneities on the micro-channel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in phase with the applied periodic AC electric field intensity. The location and rotational direction of the induced circulations are determined by the directions of the bulk flow velocity and the applied electric field.
Reynolds-number dependence of the longitudinal dispersion in turbulent pipe flow.
Hawkins, Christopher; Angheluta, Luiza; Krotkiewski, Marcin; Jamtveit, Bjørn
2016-04-01
In Taylor's theory, the longitudinal dispersion in turbulent pipe flows approaches, on long time scales, a diffusive behavior with a constant diffusivity K_{L}, which depends empirically on the Reynolds number Re. We show that the dependence on Re can be determined from the turbulent energy spectrum. By using the intimate connection between the friction factor and the longitudinal dispersion in wall-bounded turbulence, we predict different asymptotic scaling laws of K_{L}(Re) depending on the different turbulent cascades in two-dimensional turbulence. We also explore numerically the K_{L}(Re) dependence in turbulent channel flows with smooth and rough walls using a lattice Boltzmann method.
A geometry package for generation of input data for a three-dimensional potential-flow program
NASA Technical Reports Server (NTRS)
Halsey, N. D.; Hess, J. L.
1978-01-01
The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.
Time-dependent nonlinear Jaynes-Cummings dynamics of a trapped ion
NASA Astrophysics Data System (ADS)
Krumm, F.; Vogel, W.
2018-04-01
In quantum interaction problems with explicitly time-dependent interaction Hamiltonians, the time ordering plays a crucial role for describing the quantum evolution of the system under consideration. In such complex scenarios, exact solutions of the dynamics are rarely available. Here we study the nonlinear vibronic dynamics of a trapped ion, driven in the resolved sideband regime with some small frequency mismatch. By describing the pump field in a quantized manner, we are able to derive exact solutions for the dynamics of the system. This eventually allows us to provide analytical solutions for various types of time-dependent quantities. In particular, we study in some detail the electronic and the motional quantum dynamics of the ion, as well as the time evolution of the nonclassicality of the motional quantum state.
Thrombin-induced apoptosis in neurons through activation of c-Jun-N-terminal kinase.
Bao, Lei; Zu, Jie; He, Qianqian; Zhao, Hui; Zhou, Su; Ye, Xinchun; Yang, Xinxin; Zan, Kun; Zhang, Zuohui; Shi, Hongjuan; Cui, Guiyun
2017-01-01
Studies have shown that thrombin activation played a central role in cell injuries associated with intracerebral hemorrhage (ICH). Here, our study investigated the cytotoxicity of thrombin on neurons, and determined the involvement of JNK pathways in thrombin-induced neuronal apoptosis. Primary cultured neurons were treated with different doses of thrombin. Some neurons were given either SP600125 or vehicle. LDH release assay and flow cytometry were used to measure neuronal apoptosis caused by thrombin. The activation of JNK and capases-3 were measured by Western blot. Our results showed large doses of thrombin that increased the LDH release, the level of cleaved caspase-3 and apoptosis rate of neurons. JNK was activated by thrombin in a time-dependent manner. Administration of SP600125 protects neurons from thrombin-induced apoptosis. These data indicate that the activation of JNK is crucial for thrombin-induced neuronal apoptosis, and inhibition of JNK may be a potential therapeutic target for ICH.
Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.
Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi
2018-01-01
The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Turcu, Rodica; Craciunescu, Izabell; Garamus, Vasil M.; Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph; Vekas, Ladislau
2015-04-01
Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe3O4/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40-350 nm. Physical-chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure-properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting.
Lou, Chenghua; Wang, Mingyan; Yang, Guangming; Cai, Hao; Li, Yu; Zhao, Fengming; Yang, Huan; Tong, Li; Cai, Baochang
2009-08-01
2',4'-Dihydroxychalcone (TFC), one of the main components in Herba Oxytropis, belongs to the flavonoid group, which is known to have anti-tumor activity in vitro. In this study, the authors examined the effects of TFC on cell proliferation and apoptosis in human gastric cancer MGC-803 cells. The MTT assay results showed that TFC was able to induce cytotoxicity in MGC-803 cells in a concentration- and time-dependent manner. Acridine orange/ethidium bromide (AO/EB) staining analysis indicated that the cytotoxicity induced by TFC was mediated by apoptosis, and flow cytometry analysis indicated an increase in apoptotic cells after treatment with TFC. Furthermore, typical apoptotic morphology such as condensed chromatin, irregular nuclei, vacuoles, and dispersed granular material in the nuclear compartment were also observed using a transmission electron microscope. These results suggested that TFC can inhibit the growth of MGC-803 cells and induce apoptosis. However, further studies are necessary to investigate the possible mechanism.
Endothelial cell response to biomechanical forces under simulated vascular loading conditions.
Punchard, M A; Stenson-Cox, C; O'cearbhaill, E D; Lyons, E; Gundy, S; Murphy, L; Pandit, A; McHugh, P E; Barron, V
2007-01-01
In vivo, endothelial cells (EC) are constantly exposed to the haemodynamic forces (HF) of pressure, wall shear stress and hoop stress. The main aim of this study was to design, create and validate a novel perfusion bioreactor capable of delivering shear stress and intravascular pressure to EC in vitro and to characterise their morphology, orientation and gene expression. Here we report the creation and validation of such a simulator and the dual application of pressure (120/60 mmHg) and low shear stress (5 dyn/cm(2)) to a monolayer of EC established on a non-compliant silicone tube. Under these conditions, EC elongated and realigned obliquely to the direction of applied shear stress in a time-dependent manner. Furthermore, randomly distributed F-actin microfilaments reorganised into long, dense stress fibres crossing the cells in a direction perpendicular to that of flow. Finally, combinatorial biomechanical conditioning of EC induced the expression of the inflammatory-associated E-selectin gene.
Tsunami modelling with adaptively refined finite volume methods
LeVeque, R.J.; George, D.L.; Berger, M.J.
2011-01-01
Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1991-01-01
An algorithm is presented for unsteady two-dimensional incompressible Navier-Stokes calculations. This algorithm is based on the fourth order partial differential equation for incompressible fluid flow which uses the streamfunction as the only dependent variable. The algorithm is second order accurate in both time and space. It uses a multigrid solver at each time step. It is extremely efficient with respect to the use of both CPU time and physical memory. It is extremely robust with respect to Reynolds number.
Stress dependence of permeability of intact and fractured shale cores.
NASA Astrophysics Data System (ADS)
van Noort, Reinier; Yarushina, Viktoriya
2016-04-01
Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.
Nanoparticles modulate autophagic effect in a dispersity-dependent manner
NASA Astrophysics Data System (ADS)
Huang, Dengtong; Zhou, Hualu; Gao, Jinhao
2015-09-01
Autophagy plays a key role in human health and disease, especially in cancer and neurodegeneration. Many autophagy regulators are developed for therapy. Diverse nanomaterials have been reported to induce autophagy. However, the underlying mechanisms and universal rules remain unclear. Here, for the first time, we show a reliable and general mechanism by which nanoparticles induce autophagy and then successfully modulate autophagy via tuning their dispersity. Various well-designed univariate experiments demonstrate that nanomaterials induce autophagy in a dispersity-dependent manner. Aggregated nanoparticles induce significant autophagic effect in comparison with well-dispersed nanoparticles. As the highly stable nanoparticles may block autophagic degradation in autolysosomes, endocytosis and intracellular accumulation of nanoparticles can be responsible for this interesting phenomenon. Our results suggest dispersity-dependent autophagic effect as a common cellular response to nanoparticles, reveal the relationship between properties of nanoparticles and autophagy, and offer a new alternative way to modulate autophagy.
McClintock, Carlee S; Hettich, Robert L.
2012-01-01
Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708
Lewińska, Dorota; Rosiński, Stefan; Weryński, Andrzej
2004-02-01
In the medical applications of microencapsulation of living cells there are strict requirements concerning the high size uniformity and the optimal diameter, the latter dependent on the kind of therapeutic application, of manufactured gel beads. The possibility of manufacturing small size gel bead samples (diameter 300 microm and below) with a low size dispersion (less than 10%), using an impulsed voltage droplet generator, was examined in this work. The main topic was the investigation of the influence of values of electric parameters (voltage U, impulse time tau and impulse frequency f) on the quality of obtained droplets. It was concluded that, owing to the implementation of the impulse mode and regulation of tau and f values, it is possible to work in a controlled manner in the jet flow regime (U> critical voltage UC). It is also possible to obtain uniform bead samples with the average diameter, deff, significantly lower than the nozzle inner diameter dI (bead diameters 0.12-0.25 mm by dI equal to 0.3 mm, size dispersion 5-7%). Alterations of the physical parameters of the process (polymer solution physico-chemical properties, flow rate, distance between nozzle and gellifying bath) enable one to manufacture uniform gel beads in the wide range of diameters using a single nozzle.
Scaling laws of passive-scalar diffusion in the interstellar medium
NASA Astrophysics Data System (ADS)
Colbrook, Matthew J.; Ma, Xiangcheng; Hopkins, Philip F.; Squire, Jonathan
2017-05-01
Passive-scalar mixing (metals, molecules, etc.) in the turbulent interstellar medium (ISM) is critical for abundance patterns of stars and clusters, galaxy and star formation, and cooling from the circumgalactic medium. However, the fundamental scaling laws remain poorly understood in the highly supersonic, magnetized, shearing regime relevant for the ISM. We therefore study the full scaling laws governing passive-scalar transport in idealized simulations of supersonic turbulence. Using simple phenomenological arguments for the variation of diffusivity with scale based on Richardson diffusion, we propose a simple fractional diffusion equation to describe the turbulent advection of an initial passive scalar distribution. These predictions agree well with the measurements from simulations, and vary with turbulent Mach number in the expected manner, remaining valid even in the presence of a large-scale shear flow (e.g. rotation in a galactic disc). The evolution of the scalar distribution is not the same as obtained using simple, constant 'effective diffusivity' as in Smagorinsky models, because the scale dependence of turbulent transport means an initially Gaussian distribution quickly develops highly non-Gaussian tails. We also emphasize that these are mean scalings that apply only to ensemble behaviours (assuming many different, random scalar injection sites): individual Lagrangian 'patches' remain coherent (poorly mixed) and simply advect for a large number of turbulent flow-crossing times.
1993-02-01
of the bottom sediments at a given site. From long time -series measurements of the flow and sediment-transport environment on Georges Bank...significantly affect flows and sediment transport depends, in part, on timing . Biological effects on seafloor stability may be more pronounced, for example...potentially can enhance particle retention time within the tube bed via skimming flow (described earlier), although it is unclear if natural populations of
Chen, Yi-Hao; Chen, Ching-Long; Lu, Da-Wen; Liang, Chang-Min; Tai, Ming-Cheng; Chen, Jiann-Torng
2016-01-01
The objective of this study was to evaluate the effects of silibinin on cell proliferation in platelet-derived growth factor (PDGF)-treated human Tenon's fibroblasts (HTFs). The effect of silibinin on cell proliferation in PDGF-treated HTFs was determined by examining the expression of proliferating cell nuclear antigen (PCNA) and performing WST-1 assays. Cell cycle progression was evaluated using flow cytometry. The related cyclins and cyclin-dependent kinases (CDKs) were also analyzed using western blot. A modified rat trabeculectomy model was established to evaluate the effect of silibinin on cell proliferation in vivo. Western blot analysis was carried out to determine the effect of silibinin on the expression of PDGF receptor and on the downstream signaling pathways regulated by PDGF receptor. PDGF elevated the expression of PCNA in HTFs, and this elevation was inhibited by silibinin. The inhibitory effect of silibinin on cell proliferation was also confirmed via WST-1 assay. PDGF-stimulated cell cycle in HTFs was delayed by silibinin, and the related cyclin D1 and CDK4 were also suppressed by silibinin. In the rat model of trabeculectomy, silibinin reduced the expression of PCNA at the site of blebs in vivo. The effects of silibinin on PDGF-stimulated HTFs were mediated via the downregulation of PDGF receptor-regulated signaling pathways, such as ERKs and STATs, which may be partially caused by the downregulation of N-glycosylation of PDGF receptor beta (PDGFRβ). The effect of silibinin on modulation of N-glycosylation of PDGFRβ was mediated in a proteasome-dependent manner. Silibinin inhibited cell proliferation and delayed cell cycle progression in PDGF-treated HTFs in vitro. PDGF also modulated the process of N-glycosylation of the PDGFRβ in a proteasome-dependent manner. Our findings suggest that silibinin has potential therapeutic applications in glaucoma filtering surgery.
Chen, Yi-Hao; Chen, Ching-Long; Lu, Da-Wen; Liang, Chang-Min; Tai, Ming-Cheng; Chen, Jiann-Torng
2016-01-01
The objective of this study was to evaluate the effects of silibinin on cell proliferation in platelet-derived growth factor (PDGF)-treated human Tenon's fibroblasts (HTFs). The effect of silibinin on cell proliferation in PDGF-treated HTFs was determined by examining the expression of proliferating cell nuclear antigen (PCNA) and performing WST-1 assays. Cell cycle progression was evaluated using flow cytometry. The related cyclins and cyclin-dependent kinases (CDKs) were also analyzed using western blot. A modified rat trabeculectomy model was established to evaluate the effect of silibinin on cell proliferation in vivo. Western blot analysis was carried out to determine the effect of silibinin on the expression of PDGF receptor and on the downstream signaling pathways regulated by PDGF receptor. PDGF elevated the expression of PCNA in HTFs, and this elevation was inhibited by silibinin. The inhibitory effect of silibinin on cell proliferation was also confirmed via WST-1 assay. PDGF-stimulated cell cycle in HTFs was delayed by silibinin, and the related cyclin D1 and CDK4 were also suppressed by silibinin. In the rat model of trabeculectomy, silibinin reduced the expression of PCNA at the site of blebs in vivo. The effects of silibinin on PDGF-stimulated HTFs were mediated via the downregulation of PDGF receptor-regulated signaling pathways, such as ERKs and STATs, which may be partially caused by the downregulation of N-glycosylation of PDGF receptor beta (PDGFRβ). The effect of silibinin on modulation of N-glycosylation of PDGFRβ was mediated in a proteasome-dependent manner. Silibinin inhibited cell proliferation and delayed cell cycle progression in PDGF-treated HTFs in vitro. PDGF also modulated the process of N-glycosylation of the PDGFRβ in a proteasome-dependent manner. Our findings suggest that silibinin has potential therapeutic applications in glaucoma filtering surgery. PMID:28030611
43 CFR 5.9 - How long will it take to process my request?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false How long will it take to process my request? 5.9 Section 5.9 Public Lands: Interior Office of the Secretary of the Interior COMMERCIAL FILMING... filming and still photography permits in a timely manner. Processing times will vary depending on the...
43 CFR 5.9 - How long will it take to process my request?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false How long will it take to process my request? 5.9 Section 5.9 Public Lands: Interior Office of the Secretary of the Interior COMMERCIAL FILMING... filming and still photography permits in a timely manner. Processing times will vary depending on the...
Time Evolution of the Density Field of a Micro-Explosion Using Background Oriented Schlieren
NASA Astrophysics Data System (ADS)
Suriyanarayanan, P.; Venkatakrishnan, L.; Jagadeesh, G.
In recent years micro-explosions have found interesting trans-disciplinary applications in the areas of food preservation,wood science, drug delivery, gene therapy and bio-medical applications [1, 2]. Generating controlled micro-explosions in a laboratory environment in a reliable manner is essential; to study and understand some of the near field flow dynamics associated with blast waves.
Compression of freestanding gold nanostructures: from stochastic yield to predictable flow
NASA Astrophysics Data System (ADS)
Mook, W. M.; Niederberger, C.; Bechelany, M.; Philippe, L.; Michler, J.
2010-02-01
Characterizing the mechanical response of isolated nanostructures is vitally important to fields such as microelectromechanical systems (MEMS) where the behaviour of nanoscale contacts can in large part determine system reliability and lifetime. To address this challenge directly, single crystal gold nanodots are compressed inside a high resolution scanning electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. These structures load elastically, and then yield in a stochastic manner, at loads ranging from 16 to 110 µN, which is up to five times higher than the load necessary for flow after yield. Yielding is immediately followed by displacement bursts equivalent to 1-50% of the initial height, depending on the yield point. During the largest displacement bursts, strain energy within the structure is released while new surface area is created in the form of localized slip bands, which are evident in both the SEM movies and still-images. A first order estimate of the apparent energy release rate, in terms of fracture mechanics concepts, for bursts representing 5-50% of the structure's initial height is on the order of 10-100 J m-2, which is approximately two orders of magnitude lower than bulk values. Once this initial strain burst during yielding has occurred, the structures flow in a ductile way. The implications of this behaviour, which is analogous to a brittle to ductile transition, are discussed with respect to mechanical reliability at the micro- and nanoscales.
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yue, Cheng-Feng
2004-12-01
This paper investigates two-dimensional, time-dependent electroosmotic flows driven by an AC electric field via patchwise surface heterogeneities distributed along the microchannel walls. The time-dependent flow fields through the microchannel are simulated for various patchwise heterogeneous surface patterns using the backwards-Euler time stepping numerical method. Different heterogeneous surface patterns are found to create significantly different electrokinetic transport phenomena. It is shown that the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulations within the bulk flow. These circulation regions grow and decay periodically in accordance with the applied periodic AC electric field intensity. The circulations provide an effective means of enhancing species mixing in the microchannel. A suitable design of the patchwise heterogeneous surface pattern permits the mixing channel length and the retention time required to attain a homogeneous solution to be reduced significantly.
Dynamic Fluid Flow Mechanical Stimulation Modulates Bone Marrow Mesenchymal Stem Cells.
Hu, Minyi; Yeh, Robbin; Lien, Michelle; Teeratananon, Morgan; Agarwal, Kunal; Qin, Yi-Xian
2013-03-01
Osteoblasts are derived from mesenchymal stem cells (MSCs), which initiate and regulate bone formation. New strategies for osteoporosis treatments have aimed to control the fate of MSCs. While functional disuse decreases MSC growth and osteogenic potentials, mechanical signals enhance MSC quantity and bias their differentiation toward osteoblastogenesis. Through a non-invasive dynamic hydraulic stimulation (DHS), we have found that DHS can mitigate trabecular bone loss in a functional disuse model via rat hindlimb suspension (HLS). To further elucidate the downstream cellular effect of DHS and its potential mechanism underlying the bone quality enhancement, a longitudinal in vivo study was designed to evaluate the MSC populations in response to DHS over 3, 7, 14, and 21 days. Five-month old female Sprague Dawley rats were divided into three groups for each time point: age-matched control, HLS, and HLS+DHS. DHS was delivered to the right mid-tibiae with a daily "10 min on-5 min off-10 min on" loading regime for five days/week. At each sacrifice time point, bone marrow MSCs of the stimulated and control tibiae were isolated through specific cell surface markers and quantified by flow cytometry analysis. A strong time-dependent manner of bone marrow MSC induction was observed in response to DHS, which peaked on day 14. After 21 days, this effect of DHS was diminished. This study indicates that the MSC pool is positively influenced by the mechanical signals driven by DHS. Coinciding with our previous findings of mitigation of disuse bone loss, DHS induced changes in MSC number may bias the differentiation of the MSC population towards osteoblastogenesis, thereby promoting bone formation under disuse conditions. This study provides insights into the mechanism of time-sensitive MSC induction in response to mechanical loading, and for the optimal design of osteoporosis treatments.
Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation
Personick, Michelle L.; Zugic, Branko; Biener, Monika M.; ...
2015-05-28
We report a new method for facile and reproducible activation of nanoporous gold (npAu) materials of different forms for the catalytic selective partial oxidation of alcohols under ambient pressure, steady flow conditions. This method, based on the surface cleaning of npAu ingots with ozone to remove carbon documented in ultrahigh vacuum conditions, produces active npAu catalysts from ingots, foils, and shells by flowing an ozone/dioxygen mixture over the catalyst at 150 °C, followed by a temperature ramp from 50 to 150 °C in a flowing stream of 10% methanol and 20% oxygen. With this treatment, all three materials (ingots, foils,more » and shells) can be reproducibly activated, despite potential carbonaceous poisons resulting from their synthesis, and are highly active for the selective oxidation of primary alcohols over prolonged periods of time. The npAu materials activated in this manner exhibit catalytic behavior substantially different from those activated under different conditions previously reported. Once activated in this manner, they can be stored and easily reactivated by flow of reactant gases at 150 °C for a few hours. They possess improved selectivity for the coupling of higher alcohols, such as 1-butanol, and are not active for carbon monoxide oxidation. As a result, this ozone-treated npAu is a functionally new catalytic material.« less
Ozone-Activated Nanoporous Gold: A Stable and Storable Material for Catalytic Oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Personick, Michelle L.; Zugic, Branko; Biener, Monika M.
We report a new method for facile and reproducible activation of nanoporous gold (npAu) materials of different forms for the catalytic selective partial oxidation of alcohols under ambient pressure, steady flow conditions. This method, based on the surface cleaning of npAu ingots with ozone to remove carbon documented in ultrahigh vacuum conditions, produces active npAu catalysts from ingots, foils, and shells by flowing an ozone/dioxygen mixture over the catalyst at 150 °C, followed by a temperature ramp from 50 to 150 °C in a flowing stream of 10% methanol and 20% oxygen. With this treatment, all three materials (ingots, foils,more » and shells) can be reproducibly activated, despite potential carbonaceous poisons resulting from their synthesis, and are highly active for the selective oxidation of primary alcohols over prolonged periods of time. The npAu materials activated in this manner exhibit catalytic behavior substantially different from those activated under different conditions previously reported. Once activated in this manner, they can be stored and easily reactivated by flow of reactant gases at 150 °C for a few hours. They possess improved selectivity for the coupling of higher alcohols, such as 1-butanol, and are not active for carbon monoxide oxidation. As a result, this ozone-treated npAu is a functionally new catalytic material.« less
The effects of saliva collection, handling and storage on salivary testosterone measurement.
Durdiaková, Jaroslava; Fábryová, Helena; Koborová, Ivana; Ostatníková, Daniela; Celec, Peter
2013-12-20
Several endocrine parameters commonly measured in plasma, such as steroid hormones, can be measured in the oral fluid. However, there are several technical aspects of saliva sampling and processing that can potentially bias the validity of salivary testosterone measurement. The aim of this study was to evaluate the effects caused by repeated sampling; 5 min centrifugation (at 2000, 6000 or 10,000g); the stimulation of saliva flow by a cotton swab soaked in 2% citric acid touching the tongue; different storage times and conditions as well as the impact of blood contamination on salivary testosterone concentration measured using a commercially available ELISA kit. Fresh, unprocessed, unstimulated saliva samples served as a control. Salivary testosterone concentrations were influenced neither by repeated sampling nor by stimulation of salivary flow. Testosterone levels determined in samples stored in various laboratory conditions for time periods up to 1 month did not differ in comparison with controls. For both genders, salivary testosterone levels were substantially reduced after centrifugation (men F=29.1; women F=56.17, p<0.0001). Blood contamination decreased salivary testosterone levels in a dose-dependent manner (men F=6.54, p<0.01, F=5.01, p<0.05). Salivary testosterone can be considered A robust and stable marker. However, saliva processing and blood leakage can introduce bias into measurements of salivary testosterone using ELISA. Our observations should be considered in studies focusing on salivary testosterone. Copyright © 2013 Elsevier Inc. All rights reserved.
Multiple independent autonomous hydraulic oscillators driven by a common gravity head.
Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi
2015-06-15
Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s-2 h) and flow rates (0.10-63 μl min(-1)) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system.
A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells
Zhang, Zhaoxia; Knobloch, Thomas J.; Seamon, Leigh G.; Stoner, Gary D.; Cohn, David E.; Paskett, Electra D.; Fowler, Jeffrey M.; Weghorst, Christopher M.
2014-01-01
Objective Cervical cancer is the second most common female cancer worldwide, and it remains a challenge to manage preinvasive and invasive lesions. Food-based cancer prevention entities, such as black raspberries and their derivatives, have demonstrated a marked ability to inhibit preclinical models of epithelial cancer cell growth and tumor formation. Here, we extend the role of black raspberry-mediated chemoprevention to that of cervical carcinogenesis. Methods Three human cervical cancer cell lines, HeLa (HPV16−/HPV18+, adenocarcinoma), SiHa (HPV16+/HPV18−, squamous cell carcinoma) and C-33A (HPV16−/HPV18−, squamous cell carcinoma), were treated with a lyophilized black raspberry ethanol extract (RO-ET) at 25, 50, 100 or 200 μg/ml for 1, 3 and 5 days, respectively. Cell proliferation was measured by WST1 (tetrazolium salt cleavage) assays. Flow cytometry (propidium iodide and Annexin V staining) and fluorescence microscopy analysis were used to measure apoptotic cell changes. Results We found that non-toxic levels of RO-ET significantly inhibited the growth of human cervical cancer cells, in a dose-dependent and time-dependent manner to a maximum of 54%, 52% and 67%, respectively (p<0.05). Furthermore, cell growth inhibition was persistent following short-term withdrawal of RO-ET from the culture medium. Flow cytometry and fluorescence microscopy demonstrated RO-ET-induced apoptosis in all cell lines. Conclusion Black raspberries and their bioactive components represent promising candidates for future phytochemical-based mechanistic pathway-targeted cancer prevention strategies. PMID:21831414
Thrust Measurement of Dielectric Barrier Discharge (DBD) Plasma Actuators
NASA Astrophysics Data System (ADS)
Ashpis, David E.; Laun, Matthew C.
2013-11-01
DBD plasma actuators generate a wall-jet that can be used for active flow control. We used an analytical balance to measure the thrust generated by the actuator, it is a common metric of its performance without external flow. We found that the measured force is afflicted by several problems; it drifts in time, not always repeatable, is unstable, and depends on the manner the voltage is applied. We report results of investigations of these issues. Tests were conducted on an actuator constructed of 1/4 inch thick high-density polyethylene (HDPE) dielectric with 100 mm long offset electrodes, with applied voltages up to 48 kV p-p and frequencies from 32 Hz to 2.5 kHz, and pure Sine and Trapezoidal waveforms. The relative humidity was in the range of 51-55%, corresponding to moisture range of 10,500 to13,000 ppm mass. Force readings were up to 500 mg, (approximately 50 mN/m). We found that the measured force is the net of the positive thrust generated by the wall-jet and an ``anti-thrust'' acting in the opposite direction. We propose a correction procedure that yields the plasma-generated thrust. The correction is based on voltage-dependent anti-thrust measured in the low frequency range of 20-40 Hz. We found that adjacent objects in a test setup affect the measured thrust, and verified it by comparing experiments with and without a metal enclosure, grounded and ungrounded. Uncorrected thrust varied by up to approximately +/-100%, and the corrected thrust variations were up to approximately 30%. Supported by NASA's FAP/Aerospace Sciences Project.
Kuan, Yu-Hsiang; Huang, Fu-Mei; Li, Yi-Ching; Chang, Yu-Chao
2012-11-01
Bisphenol A-glycidyl-methacrylate (BisGMA), a dental composite resin and dentin bonding agent, might prompt inflammatory effects to adjacent tissues. Macrophages are a major cellular component of the inflammatory sites. Little is known about the mechanisms of BisGMA on macrophages activation. The aim of this study was to evaluate BisGMA on proinflammatory mediators generation of murine macrophage RAW264.7 cells. IL-1β and IL-6 were analyzed by enzyme-linked immunosorbent assay. Nitric oxide, extracellular superoxide anion, and intracellular reaction oxygen species were measured by Griess assay, ferricytochrome c, and 2',7'-dichlorofluorescein assay, respectively. Expression of iNOS, p-p65, IκB, and p-Akt was analyzed by Western blotting. BisGMA augmented the generation of IL-1β, IL-6, nitric oxide and the expression of iNOS in a time- and dose-dependent manner (p<0.05). BisGMA enhanced the generation of intracellular and extracellular ROS in a dose-dependent manner (p<0.05). The levels of p65 phosphorylation, IκB degradation, and Akt phosphorylation were found to be increased in a time- and dose-dependent manner (p<0.05). These results indicate that BisGMA could induce nitric oxide, ROS, and inflammatory cytokines in macrophages. In addition, BisGMA may active macrophage via NF-κB activation, IκB degradation, and p-Akt activation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.
Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola
2011-12-01
The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.
NASA Astrophysics Data System (ADS)
Lins, T. F.; Azaiez, J.
2018-03-01
Interfacial instabilities of immiscible two-phase radial flow displacements in homogeneous porous media are analyzed for constant and time-dependent sinusoidal cyclic injection schemes. The analysis is carried out through numerical simulations based on the immersed interface and level set methods. The effects of the fluid properties and the injection flow parameters, namely, the period and the amplitude, on the formation of droplets and pockets are analyzed. It was found that larger capillary numbers or smaller viscosity ratios lead to more droplets/pockets that tend to appear earlier in time. Furthermore, the period and amplitude of the cyclic schemes were found to have a strong effect on droplets/pockets formations, and depending on their values, these can be enhanced or attenuated. In particular, the results revealed that there is a critical amplitude above which droplets and pockets formation is suppressed up to a specified time. This critical amplitude depends on the fluid properties, namely, the viscosity ratio and surface tension as well as on the period of the time-dependent scheme. The results of this study indicate that it is possible to use time-dependent cyclic schemes to control the formation and development of droplets/pockets in the flow and in particular to delay their appearance through an appropriate combination of the displacement scheme's amplitude and period.
Transverse transport of Fe3O4-H2O with viscosity variation under pure internal heating
NASA Astrophysics Data System (ADS)
Mehmood, Rashid; Tabassum, R.
2018-05-01
Smart fluids are the fluids whose properties can be changed by applying an electric or a magnetic field. Such type of fluid finds tremendous applications in electronic devices, semi-active dampers, magnetic resonance imaging, in space craft propulsion and many more. This communication addresses water based magneto ferrofluid striking at a stretching surface in an oblique manner. In order to present physically realistic analysis, viscosity is assumed to be dependent upon temperature as well as volume fraction of magnetite nanoparticle. The flow governing problem is altered into nonlinear coupled system of ordinary differential equations via scaling transformation which is then solved numerically by means of Runge-kutta Fehlberg scheme. Impact of sundry parameters such as magnetic field parameter, nanoparticle volume fraction, heat generation parameter and variable viscosity parameter on velocity and temperature profile of magneto ferrofluid is presented graphically and discussed in a physical manner. Practical measures of interest namely skin friction and heat flux at the surface are computed. Streamline patterns are traced out to examine the flow pattern. It is found that skin friction and rate of heat transfer at the wall enhances by strengthening the applied magnetic field. Local heat flux can also be enhanced with increasing the volume fraction of magnetite nanoparticles.
Lu, Mengchen; Liu, Tian; Jiao, Qiong; Ji, Jianai; Tao, Mengmin; Liu, Yijun; You, Qidong; Jiang, Zhengyu
2018-02-25
Induced protein degradation by PROTACs has emerged as a promising strategy to target nonenzymatic proteins inside the cell. The aim of this study was to identify Keap1, a substrate adaptor protein for ubiquitin E3 ligase involved in oxidative stress regulation, as a novel candidate for PROTACs that can be applied in the degradation of the nonenzymatic protein Tau. A peptide PROTAC by recruiting Keap1-Cul3 ubiquitin E3 ligase was developed and applied in the degradation of intracellular Tau. Peptide 1 showed strong in vitro binding with Keap1 and Tau. With proper cell permeability, peptide 1 was found to colocalize with cellular Keap1 and resulted in the coimmunoprecipitation of Tau and Keap1. The results of flow cytometry and western blotting assays showed that peptide 1 can downregulate the intracellular Tau level in both time- and concentration-dependent manner. The application of Keap1 siRNA silencing and the proteasome inhibitor MG132 confirmed that peptide 1 could promote the Keap1-dependent poly-ubiquitination and proteasome-dependent degradation of Tau. The results suggested that using PROTACs to recruit Keap1 to induce the degradation of Tau may show promising character in the treatment of neurodegenerative disease. Besides, our research demonstrated that Keap1 should be a promising E3 ligase adaptor to be used in the design of novel PROTACs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
PUMA promotes Bax translocation in FOXO3a-dependent pathway during STS-induced apoptosis
NASA Astrophysics Data System (ADS)
Zhang, Yingjie; Chen, Qun
2009-08-01
PUMA (p53 up-regulated modulator of apoptosis, also called Bbc3) was first identified as a BH3-only Bcl-2 family protein that is transcriptionally up-regulated by p53 and activated upon p53-dependent apoptotic stimuli, such as treatment with DNA-damaging drugs or UV irradiation. Recently studies have been shown that Puma is also up-regulated in response to certain p53-independent apoptotic stimuli, such as growth factor deprivation or treatment with glucocorticoids or STS (staurosporine). However, the molecular mechanisms of PUMA up-regulation and how PUMA functions in response to p53-independent apoptotic stimuli remain poorly understood. In this study, based on real-time single cell analysis, flow cytometry and western blotting technique, we investigated the function of PUMA in living human lung adenocarcinoma cells (ASTC-a-1) after STS treatment. Our results show that FOXO3a was activated by STS stimulation and then translocated from cytosol to nucleus. The expression of PUMA was up-regulated via a FOXO3a-dependent manner after STS treatment, while p53 had little function in this process. Moreover, cell apoptosis and Bax translocation induced by STS were not blocked by Pifithrin-α (p53 inhibitor), which suggested that p53 was not involved in this signaling pathway. Taken together, these results indicate that PUMA promoted Bax translocation in a FOXO3a-dependment pathway during STS-induced apoptosis, while p53 was dispensable in this process.
Context-dependent olfactory enhancement of optomotor flight control in Drosophila.
Chow, Dawnis M; Frye, Mark A
2008-08-01
Sensing and following the chemical plume of food odors is a fundamental challenge faced by many organisms. For flying insects, the task is complicated by wind that distorts the plume and buffets the fly. To maintain an upwind heading, and thus stabilize their orientation in a plume, insects such as flies and moths make use of strong context-specific visual equilibrium reflexes. For example, flying straight requires the regulation of image rotation across the eye, whereas minimizing side-slip and avoiding a collision require regulation of image expansion. In flies, visual rotation stabilizes plume tracking, but rotation and expansion optomotor responses are controlled by separate visual pathways. Are olfactory signals integrated with optomotor responses in a manner dependent upon visual context? We addressed this question by investigating the effect of an attractive food odor on active optomotor flight control. Odorant caused flies both to increase aerodynamic power output and to steer straighter. However, when challenged with wide-field optic flow, odor resulted in enhanced amplitude rotation responses but reduced amplitude expansion responses. For both visual conditions, flies tracked motion signals more closely in odor, an indication of increased saliency. These results suggest a simple search algorithm by which olfactory signals improve the salience of visual stimuli and modify optomotor control in a context-dependent manner, thereby enabling an animal to fly straight up a plume and approach odiferous objects.
Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics
Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em
2011-01-01
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548
Visualizing Time-Varying Phenomena In Numerical Simulations Of Unsteady Flows
NASA Technical Reports Server (NTRS)
Lane, David A.
1996-01-01
Streamlines, contour lines, vector plots, and volume slices (cutting planes) are commonly used for flow visualization. These techniques are sometimes referred to as instantaneous flow visualization techniques because calculations are based on an instant of the flowfield in time. Although instantaneous flow visualization techniques are effective for depicting phenomena in steady flows,they sometimes do not adequately depict time-varying phenomena in unsteady flows. Streaklines and timelines are effective visualization techniques for depicting vortex shedding, vortex breakdown, and shock waves in unsteady flows. These techniques are examples of time-dependent flow visualization techniques, which are based on many instants of the flowfields in time. This paper describes the algorithms for computing streaklines and timelines. Using numerically simulated unsteady flows, streaklines and timelines are compared with streamlines, contour lines, and vector plots. It is shown that streaklines and timelines reveal vortex shedding and vortex breakdown more clearly than instantaneous flow visualization techniques.
McCall, Patrick M.; Gardel, Margaret L.; Munro, Edwin M.
2017-01-01
Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding how animal cells tune cortical flow through local control of network remodeling. PMID:29253848
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-04-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Solution of 3-dimensional time-dependent viscous flows. Part 2: Development of the computer code
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Mcdonald, H.
1980-01-01
There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow equations to aid in the design of helicopter rotors. The development of a computer code to solve a three dimensional unsteady approximate form of the Navier-Stokes equations employing a linearized block emplicit technique in conjunction with a QR operator scheme is described. Results of calculations of several Cartesian test cases are presented. The computer code can be applied to more complex flow fields such as these encountered on rotating airfoils.
NASA Astrophysics Data System (ADS)
Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin
2018-03-01
In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.
Automatic mechanisms for measuring subjective unit of discomfort.
Hartanto, D W I; Kang, Ni; Brinkman, Willem-Paul; Kampmann, Isabel L; Morina, Nexhmedin; Emmelkamp, Paul G M; Neerincx, Mark A
2012-01-01
Current practice in Virtual Reality Exposure Therapy (VRET) is that therapists ask patients about their anxiety level by means of the Subjective Unit of Discomfort (SUD) scale. With an aim of developing a home-based VRET system, this measurement ideally should be done using speech technology. In a VRET system for social phobia with scripted avatar-patient dialogues, the timing of asking patients to give their SUD score becomes relevant. This study examined three timing mechanisms: (1) dialogue dependent (i.e. naturally in the flow of the dialogue); (2) speech dependent (i.e. when both patient and avatar are silent); and (3) context independent (i.e. randomly). Results of an experiment with non-patients (n = 24) showed a significant effect for the timing mechanisms on the perceived dialogue flow, user preference, reported presence and user dialog replies. Overall, dialogue dependent timing mechanism seems superior followed by the speech dependent and context independent timing mechanism.
Mathematical embryology: the fluid mechanics of nodal cilia
NASA Astrophysics Data System (ADS)
Smith, D. J.; Smith, A. A.; Blake, J. R.
2011-07-01
Left-right symmetry breaking is critical to vertebrate embryonic development; in many species this process begins with cilia-driven flow in a structure termed the `node'. Primary `whirling' cilia, tilted towards the posterior, transport morphogen-containing vesicles towards the left, initiating left-right asymmetric development. We review recent theoretical models based on the point-force stokeslet and point-torque rotlet singularities, explaining how rotation and surface-tilt produce directional flow. Analysis of image singularity systems enforcing the no-slip condition shows how tilted rotation produces a far-field `stresslet' directional flow, and how time-dependent point-force and time-independent point-torque models are in this respect equivalent. Associated slender body theory analysis is reviewed; this approach enables efficient and accurate simulation of three-dimensional time-dependent flow, time-dependence being essential in predicting features of the flow such as chaotic advection, which have subsequently been determined experimentally. A new model for the nodal flow utilising the regularized stokeslet method is developed, to model the effect of the overlying Reichert's membrane. Velocity fields and particle paths within the enclosed domain are computed and compared with the flow profiles predicted by previous `membrane-less' models. Computations confirm that the presence of the membrane produces flow-reversal in the upper region, but no continuous region of reverse flow close to the epithelium. The stresslet far-field is no longer evident in the membrane model, due to the depth of the cavity being of similar magnitude to the cilium length. Simulations predict that vesicles released within one cilium length of the epithelium are generally transported to the left via a `loopy drift' motion, sometimes involving highly unpredictable detours around leftward cilia [truncated
Large-Amplitude, High-Rate Roll Oscillations of a 65 deg Delta Wing at High Incidence
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Schiff, Lewis B.
2000-01-01
The IAR/WL 65 deg delta wing experimental results provide both detail pressure measurements and a wide range of flow conditions covering from simple attached flow, through fully developed vortex and vortex burst flow, up to fully-stalled flow at very high incidence. Thus, the Computational Unsteady Aerodynamics researchers can use it at different level of validating the corresponding code. In this section a range of CFD results are provided for the 65 deg delta wing at selected flow conditions. The time-dependent, three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate the unsteady vertical flow. Two sting angles and two large- amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental pressures, forces, moments and roll angle time history. In addition, surface and off-surface flow particle streaks are also presented.
System for controlling the flow of gas into and out of a gas laser
Alger, Terry; Uhlich, Dennis M.; Benett, William J.; Ault, Earl R.
1994-01-01
A modularized system for controlling the gas pressure within a copper vapor or like laser is described herein. This system includes a gas input assembly which serves to direct gas into the laser in a controlled manner in response to the pressure therein for maintaining the laser pressure at a particular value, for example 40 torr. The system also includes a gas output assembly including a vacuum pump and a capillary tube arrangement which operates within both a viscous flow region and a molecular flow region for drawing gas out of the laser in a controlled manner.
Agarwal, Ayushi; Kasinathan, Akiladdevi; Ganesan, Ramamoorthi; Balasubramanian, Akhila; Bhaskaran, Jahnavi; Suresh, Samyuktha; Srinivasan, Revanth; Aravind, K B; Sivalingam, Nageswaran
2018-03-01
Curcumin is a natural dietary polyphenol compound that has various pharmacological activities such as antiproliferative and cancer-preventive activities on tumor cells. Indeed, the role reactive oxygen species (ROS) generated by curcumin on cell death and cell proliferation inhibition in colon cancer is poorly understood. In the present study, we hypothesized that curcumin-induced ROS may promote apoptosis and cell cycle arrest in colon cancer. To test this hypothesis, the apoptosis-inducing potential and cell cycle inhibition effect of ROS induced by curcumin was investigated in Smd4 and p53 mutated HT-29 colon adenocarcinoma cells. We found that curcumin treatment significantly increased the level of ROS in HT-29 cells in a dose- and time-dependent manner. Furthermore, curcumin treatment markedly decreased the cell viability and proliferation potential of HT-29 cells in a dose- and time-dependent manner. Conversely, generation of ROS and inhibitory effect of curcumin on HT-29 cells were abrogated by N-acetylcysteine treatment. In addition, curcumin treatment did not show any cytotoxic effects on HT-29 cells. Furthermore, curcumin-induced ROS generation caused the DNA fragmentation, chromatin condensation, and cell nuclear shrinkage and significantly increased apoptotic cells in a dose- and time-dependent manner in HT-29 cells. However, pretreatment of N-acetylcysteine inhibited the apoptosis-triggering effect of curcumin-induced ROS in HT-29 cells. In addition, curcumin-induced ROS effectively mediated cell cycle inhibition in HT-29 cells. In conclusion, our data provide the first evidence that curcumin induces ROS independent apoptosis and cell cycle arrest in colon cancer cells that carry mutation on Smad4 and p53. Copyright © 2018. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Junyan; Qiu Hong; Morisseau, Christophe
The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined.more » TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.« less
On the permeation of large organic cations through the pore of ATP-gated P2X receptors
Harkat, Mahboubi; Peverini, Laurie; Dunning, Kate; Beudez, Juline; Martz, Adeline; Calimet, Nicolas; Specht, Alexandre; Cecchini, Marco; Chataigneau, Thierry; Grutter, Thomas
2017-01-01
Pore dilation is thought to be a hallmark of purinergic P2X receptors. The most commonly held view of this unusual process posits that under prolonged ATP exposure the ion pore expands in a striking manner from an initial small-cation conductive state to a dilated state, which allows the passage of larger synthetic cations, such as N-methyl-d-glucamine (NMDG+). However, this mechanism is controversial, and the identity of the natural large permeating cations remains elusive. Here, we provide evidence that, contrary to the time-dependent pore dilation model, ATP binding opens an NMDG+-permeable channel within milliseconds, with a conductance that remains stable over time. We show that the time course of NMDG+ permeability superimposes that of Na+ and demonstrate that the molecular motions leading to the permeation of NMDG+ are very similar to those that drive Na+ flow. We found, however, that NMDG+ “percolates” 10 times slower than Na+ in the open state, likely due to a conformational and orientational selection of permeating molecules. We further uncover that several P2X receptors, including those able to desensitize, are permeable not only to NMDG+ but also to spermidine, a large natural cation involved in ion channel modulation, revealing a previously unrecognized P2X-mediated signaling. Altogether, our data do not support a time-dependent dilation of the pore on its own but rather reveal that the open pore of P2X receptors is wide enough to allow the permeation of large organic cations, including natural ones. This permeation mechanism has considerable physiological significance. PMID:28442564
UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense
Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea
2012-01-01
UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638
An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.
Oettinger, David; Haller, George
2016-10-01
Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, ξ 2 (x 0 ), of the Cauchy-Green strain tensor. This ξ 2 -system allows for the detection of LCSs in any unsteady flow by classical methods, such as Poincaré maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual ξ 2 -system to uncover both hyperbolic and elliptic LCSs from a single computation.
Wang, Jing; Yang, Dajun; Luo, Qiuyun; Qiu, Miaozhen; Zhang, Lin; Li, Baoxia; Chen, Haibo; Yi, Hanjie; Yan, Xianglei; Li, Shuxia; Sun, Jian
2017-08-01
Acute myeloid leukemia (AML) is the most common acute leukemia in adults. Despite improved remission rates, current treatment regimens for AML are often associated with a very poor prognosis and adverse effects, necessitating more effective and safer agents. B-cell leukemia/lymphoma 2 (Bcl-2) family proteins regulate apoptotic pathway that can be targeted with small molecule inhibitors. APG-1252-12A is a Bcl-2 homology (BH)-3 mimetic that specifically binds to Bcl-2 and Bcl-xl, which has shown efficacy in some Bcl-2 dependent hematological cancers. In this study, we investigated whether APG-1252-12A inhibits the growth of five leukemia cell lines in a concentration- or time-dependent manner by MTS assay. Following treatment of AML cell line HL-60 with this compound, cell apoptosis was detected using flow cytometry and nuclear condensation was observed after Hoechst 33258 dye. Immunoblotting for cytochrome c, cleaved caspase-3 and PARP-1 cleavage was used to demonstrate the mechanism of inducing mitochondria-dependent apoptosis by APG-1252-12A. Our findings showed that this new compound inhibited cell proliferation in five leukemia cell lines and induced apoptotic death. There was a link between the level of Bcl-2 protein and IC50. APG-1252-12A targeted mitochondria and induced caspase-dependent apoptosis by inducing the HL-60 cell cytochrome c released, PARP cleavage and caspase activation. These data suggested that APG-1252-12A is a candidate drug for the in vivo analysis and clinical evaluation in AML.
The Effect of Uniform Background Flow on Vortex Ring Formation and Pinch-off
NASA Astrophysics Data System (ADS)
Krueger, Paul S.; Dabiri, John O.; Gharib, Morteza
2002-11-01
Experimental investigations of vortex ring formation are extended to include the effects of a uniform background flow, in a manner relevant to the locomotion of aquatic animals utilizing jet propulsion. Gharib et. al. [J. Fluid Mech. 360, 121 (1998)] generated vortex rings using a piston/cylinder apparatus with relatively large discharge times to demonstrate that the vortex ring at the leading edge of the jet attains its maximum circulation at a piston stroke-to-diameter ratio L/D of 4. This "formation number" is robust over a range of piston motions and cylinder boundary conditions, and can be explained in terms of the Kelvin-Benjamin variational principle. To determine the effect of background flow on formation number and pinch-off of the leading vortex ring, uniform co-flow is established in a large annulus surrounding the vortex generator. The ratio of co-flow velocity to piston velocity is varied between 0 and 1. In addition, the co-flow is initiated at times both before and after the start of vortex ring formation. We present results for stroke ratios L/D = 2 and L/D = 8, in order to discern effects of the co-flow on the leading vortex ring in isolation and in the presence of a trailing jet.
Surveying unsteady flows by means of movie sequences - A case study
NASA Astrophysics Data System (ADS)
Freymuth, P.; Bank, W.; Finaish, F.
Photographic surveying techniques and their results are presented for vortical pattern development in unsteady two-dimensional flows, which depends on a multitude of parameters that have heretofore hampered broad investigation, in order to delineate the more important parametric dependencies. Samples are given from 100 films representing over 2000 sequences consisting of 400,000 photographic frames. Attention is given to the problems posed by resolution of time and lateral dimensions, spanwise vortical structure, and the dependence of angle of attack on Reynolds number and flow geometry.
NASA Astrophysics Data System (ADS)
Shoaib Anwar, Muhammad; Rasheed, Amer
2017-07-01
Heat transfer through a Forchheimer medium in an unsteady magnetohydrodynamic (MHD) developed differential-type fluid flow is analyzed numerically in this study. The boundary layer flow is modeled with the help of the fractional calculus approach. The fluid is confined between infinite parallel plates and flows by motion of the plates in their own plane. Both the plates have variable surface temperature. Governing partial differential equations with appropriate initial and boundary conditions are solved by employing a finite-difference scheme to discretize the fractional time derivative and finite-element discretization for spatial variables. Coefficients of skin friction and local Nusselt numbers are computed for the fractional model. The flow behavior is presented for various values of the involved parameters. The influence of different dimensionless numbers on skin friction and Nusselt number is discussed by tabular results. Forchheimer medium flows that involve catalytic converters and gas turbines can be modeled in a similar manner.
Water facilities in retrospect and prospect: An illuminating tool for vehicle design
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Peak, D. J.; Delfrate, J.; Skow, A. M.; Malcolm, G. N.
1986-01-01
Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady three-dimensional flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.
Lee, Miau-Rong; Lin, Chingju; Lu, Chi-Cheng; Kuo, Sheng-Chu; Tsao, Je-Wei; Juan, Yu-Ning; Chiu, Hong-Yi; Lee, Fang-Yu; Yang, Jai-Sing; Tsai, Fuu-Jen
2017-06-01
Oral cancer is a serious and fatal disease. Cisplatin is the first line of chemotherapeutic agent for oral cancer therapy. However, the development of drug resistance and severe side effects cause tremendous problems clinically. In this study, we investigated the pharmacologic mechanisms of YC-1 on cisplatin-resistant human oral cancer cell line, CAR. Our results indicated that YC-1 induced a concentration-dependent and time-dependent decrease in viability of CAR cells analyzed by MTT assay. Real-time image analysis of CAR cells by IncuCyte™ Kinetic Live Cell Imaging System demonstrated that YC-1 inhibited cell proliferation and reduced cell confluence in a time-dependent manner. Results from flow cytometric analysis revealed that YC-1 promoted G 0 /G 1 phase arrest and provoked apoptosis in CAR cells. The effects of cell cycle arrest by YC-1 were further supported by up-regulation of p21 and down-regulation of cyclin A, D, E and CDK2 protein levels. TUNEL staining showed that YC-1 caused DNA fragmentation, a late stage feature of apoptosis. In addition, YC-1 increased the activities of caspase-9 and caspase-3, disrupted the mitochondrial membrane potential (AYm) and stimulated ROS production in CAR cells. The protein levels of cytochrome c, Bax and Bak were elevated while Bcl-2 protein expression was attenuated in YC-1-treated CAR cells. In summary, YC-1 suppressed the viability of cisplatin-resistant CAR cells through inhibiting cell proliferation, arresting cell cycle at G 0 /G 1 phase and triggering mitochondria-mediated apoptosis. Our results provide evidences to support the potentially therapeutic application of YC-1 on fighting against drug resistant oral cancer in the future. © Author(s) 2017. This article is published with open access by China Medical University.
Effects of haloperidol on Kv4.3 potassium channels.
Lee, Hong Joon; Sung, Ki-Wug; Hahn, Sang June
2014-10-05
Haloperidol is commonly used in clinical practice to treat acute and chronic psychosis, but it also has been associated with adverse cardiovascular events. We investigated the effects of haloperidol on Kv4.3 currents stably expressed in CHO cells using a whole-cell patch-clamp technique. Haloperidol did not significantly inhibit the peak amplitude of Kv4.3, but accelerated the decay rate of inactivation of Kv4.3 in a concentration-dependent manner. Thus, the effects of haloperidol on Kv4.3 were estimated from the integral of the Kv4.3 currents during the depolarization pulse. The Kv4.3 was decreased by haloperidol in a concentration-dependent manner with an IC50 value of 3.6 μM. Haloperidol accelerated the decay rate of Kv4.3 inactivation and activation kinetics in a concentration-dependent manner, thereby decreasing the time-to-peak. Haloperidol shifted the voltage dependence of the steady-state activation and inactivation of Kv4.3 in a hyperpolarizing direction. Haloperidol also caused an acceleration of the closed-state inactivation of Kv4.3. Haloperidol produced a use-dependent block of Kv4.3, which was accompanied by a slowing of recovery from the inactivation of Kv4.3. These results suggest that haloperidol blocks Kv4.3 by both interacting with the open state of Kv4.3 channels during depolarization and accelerating the closed-state inactivation at subthreshold membrane potentials. Copyright © 2014 Elsevier B.V. All rights reserved.
A diffusive ink transport model for lipid dip-pen nanolithography
NASA Astrophysics Data System (ADS)
Urtizberea, A.; Hirtz, M.
2015-09-01
Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04352b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Junwei; Nagashima, Kaori; Bogart, R. S.
We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removingmore » the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s{sup -1} slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.« less
NASA Technical Reports Server (NTRS)
Zhao, Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, Alexander; Duvall, T. L., Jr.
2012-01-01
We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s-1 slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.
Global regularizing flows with topology preservation for active contours and polygons.
Sundaramoorthi, Ganesh; Yezzi, Anthony
2007-03-01
Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.
Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.
Chaudhuri, Pinaki; Horbach, Jürgen
2014-10-01
Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.
Mo, Fei; Hu, Jing-Ying; Gan, Yu; Zhao, Yang-Xing; Zhao, Xin-Tai
2008-09-01
To confirm the anti-cancer effect and mechanism of Wuxing soup. Inhibition of cellular growth under Wuxing soup treatment was observed by MTT; Apoptosis was detected by gel electrophoresis, transmission electron microscopy and FACS; The concentration of calcium was measured by fluorescence probe. After SGC-7901 cell being treated by Wuxing soup, it showed that: 1) Wuxing soup could specifically inhibit cancer cells proliferation in a time and dose dependent manner; 2) Typical apoptotic morphological changes and DNA ladder of SGC-7901 cells were observed; 3) calcium inhibitor Bapta AM could reduce the apoptotic rate and protect SGC-7901 cells in a dose dependent manner. Wuxing soup has an effective inhibition on cancer cells, and can induce SGC-7901 cells to apoptosis by calcium.
NASA Astrophysics Data System (ADS)
Dumont, Marc; Join, Jean-Lambert; Wendling, Valentin; Aunay, Bertrand
2017-04-01
Shield volcano islands come from the succession of constructive phases and destructive phases. In this complex geological setting, weathering and paleo-weathering profiles have a major impact on the critical zone hydrology. Nevertheless those underground structures are difficult to characterize, which leads to a leak of understanding of the water balance, infiltration, and ground water flows. Airborne transient electromagnetic method, as SkyTEM dispositive, allows to proceed regional 3D resistivity mapping with almost no topographic and vegetation limitations with an investigation depth higher than 300 m. Electromagnetics results are highly sensitive to conductive layers depending of clay content, water content and water mineralization. Skytem investigations are useful to characterize the thickness of the weathering profile and its lateral variations among large areas. In addition, it provides precise information about buried valleys and paleo-weathering of older lavas flows which control preferential groundwater flows. The French Geological Survey (BRGM) conducted a SkyTEM survey over Reunion Island (2500 km2). This survey yields on a dense 3D resistivity mapping. This continuous information is used to characterize the critical zone of the experimental watershed of Rivière des Pluies. A wide range of weathering profiles has been identified. Their variations are highly dependent of lava flow ages. Furthermore, 3D resistivity model highlights buried valleys characterized by specific weathering due to groundwater flows. Hydrogeological implication is a partitioning of groundwater flows in three different reservoirs: (i) deep basal aquifer, (ii) perched aquifers and (iii) superficial flows. The two latter behaviors have been characterized and mapped above our experimental watershed. The 3D manner of airborne electromagnetics results allows describing the continuity of weathering and alteration structures. The identification of specific groundwater flow paths provides a better understanding of the relation between the surface hydrology, the unsaturated medium and the basal aquifer. This study underlines the key role of volcanic underground structures in the critical zone flows.
NASA Astrophysics Data System (ADS)
Mishler, Grant; Tsang, Alan Cheng Hou; Pak, On Shun
2018-03-01
The transport of active and passive particles plays central roles in diverse biological phenomena and engineering applications. In this paper, we present a theoretical investigation of a system consisting of an active particle and a passive particle in a confined micro-fluidic flow. The introduction of an external flow is found to induce the capture of the passive particle by the active particle via long-range hydrodynamic interactions among the particles. This hydrodynamic capture mechanism relies on an attracting stable equilibrium configuration formed by the particles, which occurs when the external flow intensity exceeds a certain threshold. We evaluate this threshold by studying the stability of the equilibrium configurations analytically and numerically. Furthermore, we study the dynamics of typical capture and non-capture events and characterize the basins of attraction of the equilibrium configurations. Our findings reveal a critical dependence of the hydrodynamic capture mechanism on the external flow intensity. Through adjusting the external flow intensity across the stability threshold, we demonstrate that the active particle can capture and release the passive particle in a controllable manner. Such a capture-and-release mechanism is desirable for biomedical applications such as the capture and release of therapeutic payloads by synthetic micro-swimmers in targeted drug delivery.
Connecting Snowmelt Runoff Timing Changes to Watershed Characteristics in California
NASA Astrophysics Data System (ADS)
Stewart, I. T.; Peterson, D. H.
2008-12-01
Shifts in the timing of snowmelt runoff are an expected consequence of climatic changes and have been observed throughout western North America for the past several decades. While the snowmelt runoff has in general come earlier, the magnitude, and sometimes direction, of streamflow timing trends has varied throughout the region in a manner that is not explained by the differences in location or gauge elevation alone. The gauge-to-gauge differences in the observed streamflow timing trends, which have not been systematically explored, are investigated in this study by linking the hydrologic response of a stream to the physical characteristics of the watershed above the gauge. To this end, the very recent trends in streamflow timing measures (such as the timing of the start of the spring snowmelt pulse, the timing of the center of mass for flow, the annual flow, and the timing of the day when maximum flow occurs) for approximately 60 snowmelt-dominated gauges in California were analyzed in conjunction with a GIS-based data base of the watershed characteristics (such as elevation distribution, slope, aspect, and vegetation) through the 2008 runoff season. The improved knowledge of how a watershed has reacted to recent climatic changes can aid in the development of future adaptive strategies in managing water resources in California.
Rand E. Eads; Mark R. Boolootian; Steven C. [Inventors] Hankin
1987-01-01
Abstract - A programmable calculator is connected to a pumping sampler by an interface circuit board. The calculator has a sediment sampling program stored therein and includes a timer to periodically wake up the calculator. Sediment collection is controlled by a Selection At List Time (SALT) scheme in which the probability of taking a sample is proportional to its...
Reaction front barriers in time aperiodic fluid flows
NASA Astrophysics Data System (ADS)
Locke, Rory; Mitchell, Kevin
2016-11-01
Many chemical and biological systems can be characterized by the propagation of a front that separates different phases or species. One approach to formalizing a general theory is to apply frameworks developed in nonlinear dynamics. It has been shown that invariant manifolds form barriers to passive transport in time-dependent or time-periodic fluid flows. More recently, analogous manifolds termed burning- invariant-manifolds (BIMs), have been shown to form one-sided barriers to reaction fronts in advection-reaction-diffusion (ARD) systems. To model more realistic time-aperiodic systems, recent theoretical work has suggested that similar one-sided barriers, termed burning Lagrangian coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval. In this presentation, we use a stochastic "wind" to generate time dependence in a double-vortex channel flow and demonstrate the (locally) most attracting or repelling curves are the bLCSs.
Can we calibrate simultaneously groundwater recharge and aquifer hydrodynamic parameters ?
NASA Astrophysics Data System (ADS)
Hassane Maina, Fadji; Ackerer, Philippe; Bildstein, Olivier
2017-04-01
By groundwater model calibration, we consider here fitting the measured piezometric heads by estimating the hydrodynamic parameters (storage term and hydraulic conductivity) and the recharge. It is traditionally recommended to avoid simultaneous calibration of groundwater recharge and flow parameters because of correlation between recharge and the flow parameters. From a physical point of view, little recharge associated with low hydraulic conductivity can provide very similar piezometric changes than higher recharge and higher hydraulic conductivity. If this correlation is true under steady state conditions, we assume that this correlation is much weaker under transient conditions because recharge varies in time and the parameters do not. Moreover, the recharge is negligible during summer time for many climatic conditions due to reduced precipitation, increased evaporation and transpiration by vegetation cover. We analyze our hypothesis through global sensitivity analysis (GSA) in conjunction with the polynomial chaos expansion (PCE) methodology. We perform GSA by calculating the Sobol indices, which provide a variance-based 'measure' of the effects of uncertain parameters (storage and hydraulic conductivity) and recharge on the piezometric heads computed by the flow model. The choice of PCE has the following two benefits: (i) it provides the global sensitivity indices in a straightforward manner, and (ii) PCE can serve as a surrogate model for the calibration of parameters. The coefficients of the PCE are computed by probabilistic collocation. We perform the GSA on simplified real conditions coming from an already built groundwater model dedicated to a subdomain of the Upper-Rhine aquifer (geometry, boundary conditions, climatic data). GSA shows that the simultaneous calibration of recharge and flow parameters is possible if the calibration is performed over at least one year. It provides also the valuable information of the sensitivity versus time, depending on the aquifer inertia and climatic conditions. The groundwater levels variations during recharge (increase) are sensitive to the storage coefficient whereas the groundwater levels variations after recharge (decrease) are sensitive to the hydraulic conductivity. The performed model calibration on synthetic data sets shows that the parameters and recharge are estimated quite accurately.
Tsuchiya, Takafumi; Endo, Ayano; Tsujikado, Kyoko; Inukai, Toshihiko
2017-10-01
Resveratrol, a kind of polyphenol, has the potential to activate the longevity gene in several cells, in the same manner as calorie restriction. We investigated the effect of resveratrol and ω-3-line polyunsaturated fatty acid on surtuin 1 (SIRT1) gene expression in human monocytes (THP1) cells. We examined the gene expression of THP1 cells using real-time polymerase chain reaction and Western blotting analysis. Resveratol, eicosapentaenoic acid (EPA) and docosahexaeanoic acid (DHA) as n-3 polyunsaturated fatty acid were added on THP1 cells. We observed the changes in the SIRT1 gene expression in those cells, under various doses of agents and in time courses. Then, we examined the interaction of glucose and mannitol on those agents׳ effect of the gene expression. The concentration range of glucose and mannitol was from 5-20mM, respectively. The SIRT1 gene expression could be defined in 24 and 48 hours both in real-time polymerase chain reaction analysis and in Western blotting. Resveratrol showed SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. Although EPA at 10μM showed marked increase in SIRT1 gene expression compared to control condition in Western blotting, this phenomenon was not in dose-dependent manner. DHA did not exhibit any augmentation of SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. We refined the dose-dependent inhibition of the SIRT1 gene expression within 20mM glucose medium. Although 20mM did not exhibit any inhibition, 10μM resveratrol induced the gene expression compared to control medium. Both 5 and 15mM mannitol medium did not significantly alter basic gene expression and 10μM resveratrol-induced gene expression. The present results suggest that resveratrol and EPA, but not DHA, markedly activated the SIRT1 gene expression in THP1 cells, and that high glucose medium could inhibit the basic gene expression, but not powerful resveratrol-induced gene expression, in those cells. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.
Enhanced heat transfer with full circumferential ribs in helical pipe
NASA Astrophysics Data System (ADS)
Chang, S. W.; Su, L. M.; Yang, T. L.
2002-08-01
This paper describes an experimental study of heat transfers in the smooth-walled and rib-roughened helical pipes with reference to the design of enhanced cooling passages in the cylinder head and liner of a marine propulsive diesel engine. The manner in which the repeated ribs modify the forced heat convection in the helical pipe is considered for the case where the flow is turbulent upon entering the coil but laminar in further downstream. A selection of experimental results illustrates the individual and interactive effects of Dean vortices and rib-flows on heat transfer along the inner and outer helixes of coils. The experimental-based observations reveal that the centrifugal force modifies the heat transfer in a manner to generate circumferential heat transfer variation with better cooling performance on the outer edge relative to its inner counterpart even with the agitated flow field caused by the repeated ribs. Heat transfer augmentation factor in the range of 1.3 - 3 times of the smooth-walled level is achieved using the present ribbing geometry. A set of empirical correlations based on the experimental data has been developed to permit the evaluation of heat transfers along the inner and outer helixes of the smooth-walled and rib-roughened helical pipes.
Time dependent turbulence modeling and analytical theories of turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, R.
1993-01-01
By simplifying the direct interaction approximation (DIA) for turbulent shear flow, time dependent formulas are derived for the Reynolds stresses which can be included in two equation models. The Green's function is treated phenomenologically, however, following Smith and Yakhot, we insist on the short and long time limits required by DIA. For small strain rates, perturbative evaluation of the correlation function yields a time dependent theory which includes normal stress effects in simple shear flows. From this standpoint, the phenomenological Launder-Reece-Rodi model is obtained by replacing the Green's function by its long time limit. Eddy damping corrections to short time behavior initiate too quickly in this model; in contrast, the present theory exhibits strong suppression of eddy damping at short times. A time dependent theory for large strain rates is proposed in which large scales are governed by rapid distortion theory while small scales are governed by Kolmogorov inertial range dynamics. At short times and large strain rates, the theory closely matches rapid distortion theory, but at long times it relaxes to an eddy damping model.
NASA Astrophysics Data System (ADS)
Chen, Yiping; Xianyu, Yunlei; Sun, Jiashu; Niu, Yajing; Wang, Yu; Jiang, Xingyu
2015-12-01
This report shows that immunomagnetic beads (IMBs) can act as the optical readout for assays, in addition to serving as the carrier for purification/separation. Under the influence of an external magnet, IMBs are attracted to coat one side of a test tube. IMBs specifically bound to targets can form a narrow brown stripe, whereas free IMBs will form a diffuse, yellow coating on the side of the test tube. Target analytes can aggregate initially dispersed IMBs in a sample concentration-dependent manner, yielding a color change from yellow to brown that can be seen with the naked eye. This assay combines the convenience of a lateral flow assay, allowing a one-step assay to finish within 15 min, with the sensitivity of an enzyme-linked immonosorbent assay.This report shows that immunomagnetic beads (IMBs) can act as the optical readout for assays, in addition to serving as the carrier for purification/separation. Under the influence of an external magnet, IMBs are attracted to coat one side of a test tube. IMBs specifically bound to targets can form a narrow brown stripe, whereas free IMBs will form a diffuse, yellow coating on the side of the test tube. Target analytes can aggregate initially dispersed IMBs in a sample concentration-dependent manner, yielding a color change from yellow to brown that can be seen with the naked eye. This assay combines the convenience of a lateral flow assay, allowing a one-step assay to finish within 15 min, with the sensitivity of an enzyme-linked immonosorbent assay. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07044a
Alternariol induce toxicity via cell death and mitochondrial damage on Caco-2 cells.
Fernández-Blanco, Celia; Juan-García, Ana; Juan, Cristina; Font, Guillermina; Ruiz, Maria-Jose
2016-02-01
Alternariol (AOH), a mycotoxin produced by Alternaria sp, appears as food contaminant in fruit, vegetables and cereal products. Its toxicity has been demonstrated, but the mechanisms involved have not been elucidated yet. In this study, the pathways triggered by AOH and degradation products generated on Caco-2 cells were evaluated. Cells were exposed to AOH sub-cytotoxic concentrations of 15, 30 and 60 μM. Cell cycle disruption, the induction of apoptosis/necrosis and changes in mitochondrial membrane potential (Δψm) after 24 and 48 h was asses by flow cytometry. Also, AOH and its degradation products were evaluated after 24 and 48 h by high-performance liquid chromatography with tandem mass spectrometric (LC-MS/MS) to detect and quantify its levels. Cell cycle was significantly decreased at G1 phase and increased at S and G2/M phase at the time of exposure. AOH induced necrosis, apoptosis/necrosis and loss of Δψm in a dose and time-dependent manner. The concentrations of AOH quantified in the culture media exposed to AOH decreased as the exposure time was increased. In conclusion, AOH caused cytotoxic effects supported by blocking cell cycle, decreasing cell proliferation and increasing apoptosis/necrosis cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
MHz-Rate NO PLIF Imaging in a Mach 10 Hypersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Jiang, N.; Webster, M.; Lempert, Walter R.; Miller, J. D.; Meyer, T. R.; Danehy, Paul M.
2010-01-01
NO PLIF imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 inch Mach 10 hypersonic wind tunnel. Approximately two hundred time correlated image sequences, of between ten and twenty individual frames, were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The majority of the image sequences were obtained from the boundary layer of a 20 flat plate model, in which transition was induced using a variety of cylindrical and triangular shaped protuberances. The high speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. A series of image sequences were also obtained from a 20 compression ramp at a 10 angle of attack in which the temporal dynamics of the characteristic separated flow was captured in a time correlated manner.
NASA Astrophysics Data System (ADS)
Figuerola, Jordi; Charalambidou, Iris; Santamaria, Luis; Green, Andy J.
2010-06-01
Long distance dispersal may have important consequences for gene flow and community structure. The dispersal of many plants depends on transport by vertebrate seed dispersers. The shapes of seed shadows produced by vertebrates depend both on movement patterns of the dispersers and on the dynamics and effects of passage through the disperser’s gut (i.e. the retention time, survival and germination of ingested seeds). A combination of experiments with captive waterbirds and aquatic plant seeds was used to analyse the following: (a) the effects of inter- and intra-specific variation in seed size and duck species on seed retention time in the gut and (b) the relationship between retention time and the percent germination and germination rates of seeds. Among the three Scirpus species used, those with smaller seeds showed higher survival after ingestion by birds and longer retention times inside their guts than those with larger seeds. For Potamogeton pectinatus, only seeds from the smaller size class (<8 mg) survived ingestion. Retention time affected the percent germination and germination rate of Scirpus seeds but in a manner that varied for the different plant and bird species studied. We recorded both linear and non-linear effects of retention time on percent germination. In addition, germination rate was positively correlated with retention time in Scirpus litoralis but negatively correlated in Scirpus lacustris. Small seed size can favour dispersal over larger distances. However, the effects of retention time on percent germination can modify the seed shadows produced by birds due to higher percent germination of seeds retained for short or intermediate periods. The changes in dispersal quality associated with dispersal distance (which is expected to be positively related to retention time) will affect the probability of seedling establishment over longer distances and, thus, the spatial characteristics of the effective seed shadow.
Necroptosis contributes to methamphetamine-induced cytotoxicity in rat cortical neurons.
Xiong, Kun; Liao, Huidan; Long, Lingling; Ding, Yanjun; Huang, Jufang; Yan, Jie
2016-09-01
Necroptosis, a programmed necrosis, is involved in various types of neurodegenerative diseases. In this study, we investigated whether necroptosis contributed to neuronal damage in a methamphetamine injury model. Primary cultures of embryonic cortical neurons from Sprague-Dawley rats were subjected to different doses of methamphetamine with/without pre-treatment with a specific necroptosis inhibitor, Necrostatin-1. Necrosis was assessed by determining lactate dehydrogenase release and by Annexin V/propidium iodide double staining, while the neuronal ultra-structure was examined by electron microscopy. Tumor necrosis factor-α protein levels were determined by enzyme-linked immunosorbent assay. At early stages (12h) of post-treatment with methamphetamine, significant necrosis occurred and the viability of neurons decreased in a dose- and time-dependent manner in this model of acute neuronal injury. Pretreatment with Necrostatin-1 led to significant neuronal preservation compared with the methamphetamine-treated groups. Furthermore, tumor necrosis factor-α expression increased in a dose-dependent manner following methamphetamine exposure. Methamphetamine induced necrosis in rat cortical neurons in vitro, both time and dose dependently, and necroptosis may be an important newly identified mode of cortical neuronal death caused by single high-dose methamphetamine administration. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Mcdonald, H.
1982-01-01
A numerical scheme is developed for solving the time dependent, three dimensional compressible viscous flow equations to be used as an aid in the design of helicopter rotors. In order to further investigate the numerical procedure, the computer code developed to solve an approximate form of the three dimensional unsteady Navier-Stokes equations employing a linearized block implicit technique in conjunction with a QR operator scheme is tested. Results of calculations are presented for several two dimensional boundary layer flows including steady turbulent and unsteady laminar cases. A comparison of fourth order and second order solutions indicate that increased accuracy can be obtained without any significant increases in cost (run time). The results of the computations also indicate that the computer code can be applied to more complex flows such as those encountered on rotating airfoils. The geometry of a symmetric NACA four digit airfoil is considered and the appropriate geometrical properties are computed.
The steady part of the secular variation of the Earth's magnetic field
NASA Technical Reports Server (NTRS)
Bloxham, Jeremy
1992-01-01
The secular variation of the Earth's magnetic field results from the effects of magnetic induction in the fluid outer core and from the effects of magnetic diffusion in the core and the mantle. Adequate observations to map the magnetic field at the core-mantle boundary extend back over three centuries, providing a model of the secular variation at the core-mantle boundary. Here we consider how best to analyze this time-dependent part of the field. To calculate steady core flow over long time periods, we introduce an adaptation of our earlier method of calculating the flow in order to achieve greater numerical stability. We perform this procedure for the periods 1840-1990 and 1690-1840 and find that well over 90 percent of the variance of the time-dependent field can be explained by simple steady core flow. The core flows obtained for the two intervals are broadly similar to each other and to flows determined over much shorter recent intervals.
Konikow, Leonard F.; Sanford, W.E.; Campbell, P.J.
1997-01-01
In a solute-transport model, if a constant-concentration boundary condition is applied at a node in an active flow field, a solute flux can occur by both advective and dispersive processes. The potential for advective release is demonstrated by reexamining the Hydrologic Code Intercomparison (HYDROCOIN) project case 5 problem, which represents a salt dome overlain by a shallow groundwater system. The resulting flow field includes significant salinity and fluid density variations. Several independent teams simulated this problem using finite difference or finite element numerical models. We applied a method-of-characteristics model (MOCDENSE). The previous numerical implementations by HYDROCOIN teams of a constant-concentration boundary to represent salt release by lateral dispersion only (as stipulated in the original problem definition) was flawed because this boundary condition allows the release of salt into the flow field by both dispersion and advection. When the constant-concentration boundary is modified to allow salt release by dispersion only, significantly less salt is released into the flow field. The calculated brine distribution for case 5 depends very little on which numerical model is used, as long as the selected model is solving the proper equations. Instead, the accuracy of the solution depends strongly on the proper conceptualization of the problem, including the detailed design of the constant-concentration boundary condition. The importance and sensitivity to the manner of specification of this boundary does not appear to have been recognized previously in the analysis of this problem.
ERIC Educational Resources Information Center
Collyer, A. A.
1974-01-01
Discusses the flow characteristics of thixotropic and negative thixotropic fluids; various theories underlying the thixotropic behavior; and thixotropic phenomena exhibited in drilling muds, commercial paints, pastes, and greases. Inconsistencies in the terminology used to label time dependent effects are revealed. (CC)
A High-Resolution Capability for Large-Eddy Simulation of Jet Flows
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2011-01-01
A large-eddy simulation (LES) code that utilizes high-resolution numerical schemes is described and applied to a compressible jet flow. The code is written in a general manner such that the accuracy/resolution of the simulation can be selected by the user. Time discretization is performed using a family of low-dispersion Runge-Kutta schemes, selectable from first- to fourth-order. Spatial discretization is performed using central differencing schemes. Both standard schemes, second- to twelfth-order (3 to 13 point stencils) and Dispersion Relation Preserving schemes from 7 to 13 point stencils are available. The code is written in Fortran 90 and uses hybrid MPI/OpenMP parallelization. The code is applied to the simulation of a Mach 0.9 jet flow. Four-stage third-order Runge-Kutta time stepping and the 13 point DRP spatial discretization scheme of Bogey and Bailly are used. The high resolution numerics used allows for the use of relatively sparse grids. Three levels of grid resolution are examined, 3.5, 6.5, and 9.2 million points. Mean flow, first-order turbulent statistics and turbulent spectra are reported. Good agreement with experimental data for mean flow and first-order turbulent statistics is shown.
LIMITATIONS IN THE USE OF MAGNETIC FIELDS TO EXAMINE GAP JUNCTION COMMUNICATION
OBJECTIVE: We have previously shown that gap junction communication (GJC) in mouse primary hepatocytes can be enhanced by treatment with physiological levels of melatonin, and that 45-Hz magnetic fields can eliminate this enhancement in a time-dependent manner. The objective of t...
Calculations of steady and transient channel flows with a time-accurate L-U factorization scheme
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1991-01-01
Calculations of steady and unsteady, transonic, turbulent channel flows with a time accurate, lower-upper (L-U) factorization scheme are presented. The L-U factorization scheme is formally second-order accurate in time and space, and it is an extension of the steady state flow solver (RPLUS) used extensively to solve compressible flows. A time discretization method and the implementation of a consistent boundary condition specific to the L-U factorization scheme are also presented. The turbulence is described by the Baldwin-Lomax algebraic turbulence model. The present L-U scheme yields stable numerical results with the use of much smaller artificial dissipations than those used in the previous steady flow solver for steady and unsteady channel flows. The capability to solve time dependent flows is shown by solving very weakly excited and strongly excited, forced oscillatory, channel flows.
On the Behavior of Velocity Fluctuations in Rapidly Rotating Flows
NASA Technical Reports Server (NTRS)
Girimaji, S. S.; Ristorcelli, J. R.
1997-01-01
The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-Proudman theorem is not pertinent to I his class flows and a new result appropriate to this second category of fluctuations is derived. The present development demonstrates that the fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.
Dynamo Induced by Time-periodic Force
NASA Astrophysics Data System (ADS)
Wei, Xing
2018-03-01
To understand the dynamo driven by time-dependent flow, e.g., turbulence, we investigate numerically the dynamo induced by time-periodic force in rotating magnetohydrodynamic flow and focus on the effect of force frequency on the dynamo action. It is found that the dynamo action depends on the force frequency. When the force frequency is near resonance the force can drive dynamo, but when it is far away from resonance dynamo fails. In the frequency range near resonance to support dynamo, the force frequency at resonance induces a weak magnetic field and magnetic energy increases as the force frequency deviates from the resonant frequency. This is opposite to the intuition that a strong flow at resonance will induce a strong field. It is because magnetic field nonlinearly couples with fluid flow in the self-sustained dynamo and changes the resonance of driving force and inertial wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio
2008-05-01
Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we canmore » infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.« less
NASA Technical Reports Server (NTRS)
Rubesin, M. W.; Rose, W. C.
1973-01-01
The time-dependent, turbulent mean-flow, Reynolds stress, and heat flux equations in mass-averaged dependent variables are presented. These equations are given in conservative form for both generalized orthogonal and axisymmetric coordinates. For the case of small viscosity and thermal conductivity fluctuations, these equations are considerably simpler than the general Reynolds system of dependent variables for a compressible fluid and permit a more direct extension of low speed turbulence modeling to computer codes describing high speed turbulence fields.
Internal flow inside droplets within a concentrated emulsion during droplet rearrangement
NASA Astrophysics Data System (ADS)
Leong, Chia Min; Gai, Ya; Tang, Sindy K. Y.
2018-03-01
Droplet microfluidics, in which each droplet serves as a micro-reactor, has found widespread use in high-throughput biochemical screening applications. These droplets are often concentrated at various steps to form a concentrated emulsion. As part of a serial interrogation and sorting process, such concentrated emulsions are typically injected into a tapered channel leading to a constriction that fits one drop at a time for the probing of droplet content in a serial manner. The flow physics inside the droplets under these flow conditions are not well understood but are critical for predicting and controlling the mixing of reagents inside the droplets as reactors. Here we investigate the flow field inside droplets of a concentrated emulsion flowing through a tapered microchannel using micro-particle image velocimetry. The confining geometry of the channel forces the number of rows of drops to reduce by one at specific and uniformly spaced streamwise locations, which are referred to as droplet rearrangement zones. Within each rearrangement zone, the phase-averaged velocity results show that the motion of the droplets involved in the rearrangement process, also known as a T1 event, creates vortical structures inside themselves and their adjacent droplets. These flow structures increase the circulation inside droplets up to 2.5 times the circulation in droplets at the constriction. The structures weaken outside of the rearrangement zones suggesting that the flow patterns created by the T1 process are transient. The time scale of circulation is approximately the same as the time scale of a T1 event. Outside of the rearrangement zones, flow patterns in the droplets are determined by the relative velocity between the continuous and disperse phases.
Chen, C.; Yang, R.L.
2013-01-01
MP [4-(3′,3′-dimethylallyloxy)-5-methyl-6-methoxyphthalide] was obtained from liquid culture of Pestalotiopsis photiniae isolated from the Chinese Podocarpaceae plant Podocarpus macrophyllus. MP significantly inhibited the proliferation of HeLa tumor cell lines. After treatment with MP, characteristic apoptotic features such as DNA fragmentation and chromatin condensation were observed in DAPI-stained HeLa cells. Flow cytometry showed that MP induced G1 cell cycle arrest and apoptosis in a dose-dependent manner. Western blotting and real-time reverse transcription-polymerase chain reaction were used to investigate protein and mRNA expression. MP caused significant cell cycle arrest by upregulating the cyclin-dependent kinase inhibitor p27KIP1 protein and p21CIP1 mRNA levels in HeLa cells. The expression of p73 protein was increased after treatment with various MP concentrations. mRNA expression of the cell cycle-related genes, p21CIP1, p16INK4a and Gadd45α, was significantly upregulated and mRNA levels demonstrated significantly increased translation of p73, JunB, FKHR, and Bim. The results indicate that MP may be a potential treatment for cervical cancer. PMID:23903687
Bakshi, Hamid; Sam, Smitha; Rozati, Roya; Sultan, Phalisteen; Islam, Tajamul; Rathore, Babita; Lone, Zahoor; Sharma, Manik; Triphati, Jagrati; Saxena, Ramesh Chand
2010-01-01
Apoptosis, a widely important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus in different cancer types. The present study was designed to elucidate apoptosis induction by crocin, a main component of Crocus sativus in a human pancreatic cancer cell line (BxPC-3). Cell viability was measured by MTT assay, Hoechest33258 staining was used to detect the chromatin condensation characteristic of apoptosis, and DNA fragmentation was assessed by gel electrophoresis and cell cycle analysis by flow cytometry. Crocin induced apoptosis and G1-phase cell cycle arrest of BxPC-3 cells, while decreasing cell viability in a dose dependent and time dependent manner. Cells treated with 10μg/L crocin exhibited apoptotic morphology (brightly blue-fluorescent condensed nuclei on Hoechst 33258 staining) and reduction of volume. DNA analysis revealed typical ladders as early as 12 hours after treatment indicative of apoptosis. Our preclinical study demonstrated a pancreatic cancer cell line to be highly sensitive to crocin-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of crocin action are not yet clearly understood, it appears to have potential as a therapeutic agent.
Su, Wei-Chao; Lin, Yu-Feng; Yu, Xiang-Ping; Wang, Yu-Xia; Lin, Xiao-Dong; Su, Qiao-Zhen; Shen, Dong-Yan; Chen, Qing-Xi
2017-07-19
Cardanol monoene (CM) is the major phenolic component extracted from cashew nut shell liquid (CNSL), which has been relevant to wide range of biological effects. In this study, we found that CM could inhibit the M14 human melanoma cells proliferation in a dose dependent and time dependent manner, and the IC 50 values were determined to be 23.15 ± 2.42 μM and 12.30 ± 1.67 μM after 24 and 48 h treatment, respectively. The flow cytometric analysis demonstrated that CM induced M14 cell cycle arrest at the S phase, along with the collapse of mitochondrial membrane potential (ΔΨm) and the accumulation of reactive oxygen species (ROS) level in cells, but the apoptotic cells reduced when treated with Z-VAD-FMK (pan-caspase inhibitor). Western blotting showed that the expressions of p53, cytosol cytochrome C, cleaved-caspase-3, and cleaved-PARP were up-regulated, and the expression level of Bax/Bcl-2 ratio increased significantly. The 2527 significant differentially expressed genes were obtained by RNA-seq, which were assigned to 270 KEGG pathways. These results indicated that CM induced M14 cells apoptosis via the ROS triggered mitochondrial-associated pathways, which supports the potential application of CM for the therapy of melanoma cancer.
Zhang, X; Xu, Q; Saiki, I
2000-01-01
Quercetin has been known to have anti-tumor and anti-oxidation activities. In the present study, we have investigated its in vitro anti-metastatic activity. Quercetin inhibited the invasion and mobility of murine melanoma B16-BL6 cells in a dose-dependent manner but did not affect their adhesion to either laminin, fibronectin, or type VI collagen. Moreover, quercetin significantly inhibited the proliferation of B16-BL6 cells only in the case of time incubation longer than 48 h. Quercetin dose-dependently decreased the cell rates in S and G2-M phases of cell cycle. The effect of quercetin to cause a remarkable apoptosis of B16-BL6 cells was also demonstrated by flow cytometric assay as well as DNA fragmentation with a typical 180-bp ladder band in agarose electrophoresis and a quantitative analysis. Furthermore, quercetin markedly inhibited the expression of anti-apoptotic protein Bcl-2 but hardly influenced Bcl-XL. These results suggest that the inhibition of quercetin on invasiveness and migration of B16-BL6 cells are closely associated with the arrest of cell cycle as well as the induction of apoptosis by decreasing the Bcl-2 expression.
Cytotoxicity of lidocaine to human corneal endothelial cells in vitro.
Yu, Hao-Ze; Li, Yi-Han; Wang, Rui-Xin; Zhou, Xin; Yu, Miao-Miao; Ge, Yuan; Zhao, Jun; Fan, Ting-Jun
2014-04-01
Lidocaine has been reported to induce apoptosis on rabbit corneal endothelial cells. However, the apoptotic effect and exact mechanism involved in cytotoxicity of lidocaine are not well-established in human corneal endothelial (HCE) cells. In this study, we investigated the apoptosis-inducing effect of lidocaine on HCE cells in vitro. After HCE cells were treated with lidocaine at concentrations of 0.15625-10.0 g/l, the morphology and ultrastructure of the cells were observed by inverted light microscope and transmission electron microscope (TEM). Cell viability was measured by MTT assay, and the apoptotic ratio was evaluated with flow cytometry and fluorescent microscopic counting after FITC-Annexin V/PI and AO/EB staining. DNA fragmentation was detected by electrophoresis, and the activation of caspases was evaluated by ELISA. In addition, changes in mitochondrial membrane potential were determined by JC-1 staining. Results suggest that lidocaine above 1.25 g/l reduced cellular viability and triggered apoptosis in HCE cells in a time- and dose-dependent manner. Diminishment of ΔΨm and the activation of caspases indicate that lidocaine-induced apoptosis was caspase dependent and may be related to mitochondrial pathway. © 2013 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Hypoxic pulmonary vasoconstriction requires connexin 40–mediated endothelial signal conduction
Wang, Liming; Yin, Jun; Nickles, Hannah T.; Ranke, Hannes; Tabuchi, Arata; Hoffmann, Julia; Tabeling, Christoph; Barbosa-Sicard, Eduardo; Chanson, Marc; Kwak, Brenda R.; Shin, Hee-Sup; Wu, Songwei; Isakson, Brant E.; Witzenrath, Martin; de Wit, Cor; Fleming, Ingrid; Kuppe, Hermann; Kuebler, Wolfgang M.
2012-01-01
Hypoxic pulmonary vasoconstriction (HPV) is a physiological mechanism by which pulmonary arteries constrict in hypoxic lung areas in order to redirect blood flow to areas with greater oxygen supply. Both oxygen sensing and the contractile response are thought to be intrinsic to pulmonary arterial smooth muscle cells. Here we speculated that the ideal site for oxygen sensing might instead be at the alveolocapillary level, with subsequent retrograde propagation to upstream arterioles via connexin 40 (Cx40) endothelial gap junctions. HPV was largely attenuated by Cx40-specific and nonspecific gap junction uncouplers in the lungs of wild-type mice and in lungs from mice lacking Cx40 (Cx40–/–). In vivo, hypoxemia was more severe in Cx40–/– mice than in wild-type mice. Real-time fluorescence imaging revealed that hypoxia caused endothelial membrane depolarization in alveolar capillaries that propagated to upstream arterioles in wild-type, but not Cx40–/–, mice. Transformation of endothelial depolarization into vasoconstriction involved endothelial voltage-dependent α1G subtype Ca2+ channels, cytosolic phospholipase A2, and epoxyeicosatrienoic acids. Based on these data, we propose that HPV originates at the alveolocapillary level, from which the hypoxic signal is propagated as endothelial membrane depolarization to upstream arterioles in a Cx40-dependent manner. PMID:23093775
Karavasili, Christina; Amanatiadou, Elsa P; Kontogiannidou, Eleni; Eleftheriadis, Georgios K; Bouropoulos, Nikolaos; Pavlidou, Eleni; Kontopoulou, Ioanna; Vizirianakis, Ioannis S; Fatouros, Dimitrios G
2017-08-07
Microporous zeolites of distinct framework types, textural properties and crystal morphologies namely BEA, ZSM and NaX, have been employed as carriers to assess their effect on modulating the dissolution behavior of a BCS II model drug (indomethacin). Preparation of the loaded carriers via the incipient wetness method induced significant drug amorphization for the BEA and NaX samples, as well as high drug payloads. The stability of the amorphous drug content was retained after stressing test evaluation of the porous carriers. The dissolution profile of loaded indomethacin was evaluated in simulated gastric fluid (pH 1.2) and simulated intestinal fluids FaSSIF (fasted) and FeSSIF (fed state) conditions and was found to be dependent on the aluminosilicate ratio of the zeolites and the degree of crystalline drug content. The feasibility of the zeolitic particles as oral drug delivery systems was appraised with cytocompatibility and cellular toxicity studies in Caco-2 cultures in a time- and dose-dependent manner by means of the MTT assay and flow cytometry analysis, respectively. Intracellular accumulation of the zeolite particles was observed with no apparent cytotoxic effects at the lower concentrations tested, rendering such microporous zeolites pertinent candidates in oral drug delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Study of Valproic Acid-Enhanced Hepatocyte Steatosis
Chang, Renin; Chou, Mei-Chia; Hung, Li-Ying; Wang, Mu-En; Hsu, Meng-Chieh; Chiu, Chih-Hsien
2016-01-01
Valproic acid (VPA) is one of the most widely used antiepilepsy drugs. However, several side effects, including weight gain and fatty liver, have been reported in patients following VPA treatment. In this study, we explored the molecular mechanisms of VPA-induced hepatic steatosis using FL83B cell line-based in vitro model. Using fluorescent lipid staining technique, we found that VPA enhanced oleic acid- (OLA-) induced lipid accumulation in a dose-dependent manner in hepatocytes; this may be due to upregulated lipid uptake, triacylglycerol (TAG) synthesis, and lipid droplet formation. Real-time PCR results showed that, following VPA treatment, the expression levels of genes encoding cluster of differentiation 36 (Cd36), low-density lipoprotein receptor-related protein 1 (Lrp1), diacylglycerol acyltransferase 2 (Dgat2), and perilipin 2 (Plin2) were increased, that of carnitine palmitoyltransferase I a (Cpt1a) was not affected, and those of acetyl-Co A carboxylase α (Acca) and fatty acid synthase (Fasn) were decreased. Furthermore, using immunofluorescence staining and flow cytometry analyses, we found that VPA also induced peroxisome proliferator-activated receptor γ (PPARγ) nuclear translocation and increased levels of cell-surface CD36. Based on these results, we propose that VPA may enhance OLA-induced hepatocyte steatosis through the upregulation of PPARγ- and CD36-dependent lipid uptake, TAG synthesis, and lipid droplet formation. PMID:27034954
[Effect of different pre-oxygenation procedures on arterial oxygen status].
Duda, D; Brandt, L; Rudlof, B; Mertzlufft, F; Dick, W
1988-07-01
There are different opinions regarding efficiency, duration, and techniques of preoxygenation. It was the aim of our study to systematically investigate the effectiveness of different preoxygenation methods by means of arterial blood gas parameters (paO2, SaO2, and CaO2). METHODS. After receiving informed consent, 80 patients undergoing coronary bypass grafting (NY-HA II-III, ASA III-IV, mean age 57 years) were randomized in eight groups, each with a different preoxygenation technique (Table 1). During normocapnic preoxygenation (Table 2), the following parameters were compared: duration of preoxygenation (3 vs. 5 min), manner of holding the face mask (tightly fitting vs. one digit away from mouth and nose), and oxygen flow (6 vs. 10 l/min) via anesthesia circuit system. Arterial blood gases were analyzed with a Corning 170 pH/blood gas analyzer and a Corning 2500 CO-oximeter. For statistical analysis Student's t-test was used. P less than or equal to 0.01 was considered to be significant (*). RESULTS. As Fig. 1 shows, the different preoxygenation techniques affected paO2 values differently: oxygen flow had a greater influence than duration of preoxygenation. Most important was the manner of holding the face mask. With a tightly fitting mask, preoxygenation was more effective than with the face mask one digit away from mouth and nose, independent of preoxygenation time and oxygen flow (Table 3). The SaO2 (Fig. 2) increased in the same manner with the different preoxygenation techniques from 94.0% to 97.5% (Table 3); CaO2 (Fig. 3) was influenced in a similar way (16.7 ml/dl to 17.4 ml/dl).(ABSTRACT TRUNCATED AT 250 WORDS)
Holocinematographic velocimeter for measuring time-dependent, three-dimensional flows
NASA Technical Reports Server (NTRS)
Beeler, George B.; Weinstein, Leonard M.
1987-01-01
Two simulatneous, orthogonal-axis holographic movies are made of tracer particles in a low-speed water tunnel to determine the time-dependent, three-dimensional velocity field. This instrument is called a Holocinematographic Velocimeter (HCV). The holographic movies are reduced to the velocity field with an automatic data reduction system. This permits the reduction of large numbers of holograms (time steps) in a reasonable amount of time. The current version of the HCV, built for proof-of-concept tests, uses low-frame rate holographic cameras and a prototype of a new type of water tunnel. This water tunnel is a unique low-disturbance facility which has minimal wall effects on the flow. This paper presents the first flow field examined by the HCV, the two-dimensional von Karman vortex street downstream of an unswept circular cylinder. Key factors in the HCV are flow speed, spatial and temporal resolution required, measurement volume, film transport speed, and laser pulse length. The interactions between these factors are discussed.
Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.
2017-05-01
The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.
Jędrak, Jakub; Ochab-Marcinek, Anna
2016-09-01
We study a stochastic model of gene expression, in which protein production has a form of random bursts whose size distribution is arbitrary, whereas protein decay is a first-order reaction. We find exact analytical expressions for the time evolution of the cumulant-generating function for the most general case when both the burst size probability distribution and the model parameters depend on time in an arbitrary (e.g., oscillatory) manner, and for arbitrary initial conditions. We show that in the case of periodic external activation and constant protein degradation rate, the response of the gene is analogous to the resistor-capacitor low-pass filter, where slow oscillations of the external driving have a greater effect on gene expression than the fast ones. We also demonstrate that the nth cumulant of the protein number distribution depends on the nth moment of the burst size distribution. We use these results to show that different measures of noise (coefficient of variation, Fano factor, fractional change of variance) may vary in time in a different manner. Therefore, any biological hypothesis of evolutionary optimization based on the nonmonotonic dependence of a chosen measure of noise on time must justify why it assumes that biological evolution quantifies noise in that particular way. Finally, we show that not only for exponentially distributed burst sizes but also for a wider class of burst size distributions (e.g., Dirac delta and gamma) the control of gene expression level by burst frequency modulation gives rise to proportional scaling of variance of the protein number distribution to its mean, whereas the control by amplitude modulation implies proportionality of protein number variance to the mean squared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, Atsushi
2008-02-01
Small GTPases act as molecular switches in a wide variety of cellular processes. In fission yeast Schizosaccharomyces pombe, the directions of cell growth change from a monopolar manner to a bipolar manner, which is known as 'New End Take Off' (NETO). Here I report the identification of a gene, arf6{sup +}, encoding an ADP-ribosylation factor small GTPase, that may be essential for NETO. arf6{delta} cells completely fail to undergo NETO. arf6p localizes at both cell ends and presumptive septa in a cell-cycle dependent manner. And its polarized localization is not dependent on microtubules, actin cytoskeletons and some NETO factors (bud6p,more » for3p, tea1p, tea3p, and tea4p). Notably, overexpression of a fast GDP/GTP-cycling mutant of arf6p can advance the timing of NETO. These findings suggest that arf6p functions as a molecular switch for the activation of NETO in fission yeast.« less
A simplified orthotropic formulation of the viscoplasticity theory based on overstress
NASA Technical Reports Server (NTRS)
Sutcu, M.; Krempl, E.
1988-01-01
An orthotropic, small strain viscoplasticity theory based on overstress is presented. In each preferred direction the stress is composed of time (rate) independent (or plastic) and viscous (or rate dependent) contributions. Tension-compression asymmetry can depend on direction and is included in the model. Upon a proper choice of a material constant one preferred direction can exhibit linear elastic response while the other two deform in a viscoplastic manner.
Thankayyan R, Santhosh Kumar; Sithul, Hima; Sreeharshan, Sreeja
2012-01-01
The main aim of the present work was to investigate the potential effect of acetone extract of Ficus religosa leaf (FAE) in multiple apoptosis signalling in human breast cancer cells. FAE treatment significantly induced dose and time dependent, irreversible inhibition of breast cancer cell growth with moderate toxicity to normal breast epithelial cells. This observation was validated using Sulforhodamine B assay. Cell cycle analysis by Flow cytometry showed cell cycle arrest in G1 phase and induction of sub-G0 peak. FAE induced chromatin condensation and displayed an increase in apoptotic population in Annexin V-FITC/PI (Fluorescein isothiocyanate/Propidium iodide) double staining. FAE stimulated the loss of mitochondrial membrane potential in multiple breast cancer cell lines when compared to normal diploid cells. To understand the role of Bax in FAE induced apoptosis, we employed a sensitive cell based platform of MCF-7 cells expressing Bax-EGFP. Bax translocation to mitochondria was accompanied by the disruption of mitochondrial membrane potential and marked elevation in LEHDase activity (Caspase 9). Consistent with this data, FAE induced Caspase activation as evidenced by ratio change in FRET Caspase sensor expressing MCF-7 cell line and cleavage of prominent Caspases and PARP. Interestingly, FAE accelerated cell death in a mitochondrial dependent manner in continuous live cell imaging mode indicating its possible photosensitizing effect. Intracellular generation of reactive oxygen species (ROS) by FAE played a critical role in mediating apoptotic cell death and photosensitizing activity. FAE induced dose and time dependent inhibition of cancer cell growth which was associated with Bax translocation and mitochondria mediated apoptosis with the activation of Caspase 9 dependent Caspase cascade. FAE also possessed strong photosensitizing effect on cancer cell line that was mediated through rapid mitochondrial transmembrane potential loss and partial Caspase activation involving generation of intracellular ROS. PMID:22792212
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1979-01-01
A time dependent numerical formulation was derived for sound propagation in a two dimensional straight soft-walled duct in the absence of mean flow. The time dependent governing acoustic-difference equations and boundary conditions were developed along with the maximum stable time increment. Example calculations were presented for sound attenuation in hard and soft wall ducts. The time dependent analysis were found to be superior to the conventional steady numerical analysis because of much shorter solution times and the elimination of matrix storage requirements.
Methodology for CFD Design Analysis of National Launch System Nozzle Manifold
NASA Technical Reports Server (NTRS)
Haire, Scot L.
1993-01-01
The current design environment dictates that high technology CFD (Computational Fluid Dynamics) analysis produce quality results in a timely manner if it is to be integrated into the design process. The design methodology outlined describes the CFD analysis of an NLS (National Launch System) nozzle film cooling manifold. The objective of the analysis was to obtain a qualitative estimate for the flow distribution within the manifold. A complex, 3D, multiple zone, structured grid was generated from a 3D CAD file of the geometry. A Euler solution was computed with a fully implicit compressible flow solver. Post processing consisted of full 3D color graphics and mass averaged performance. The result was a qualitative CFD solution that provided the design team with relevant information concerning the flow distribution in and performance characteristics of the film cooling manifold within an effective time frame. Also, this design methodology was the foundation for a quick turnaround CFD analysis of the next iteration in the manifold design.
Complex motion of a vehicle through a series of signals controlled by power-law phase
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-07-01
We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.
Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions
NASA Technical Reports Server (NTRS)
Pais, Salvatore Cezar
1999-01-01
The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.
Criteria for Handling Qualities of Military Aircraft.
1982-06-01
loop precognitive manner. The pilot is able to apply discrete, step-like inputs which more or less exactly produce the desired aircraft response. Some...While closed loop operation depends upon the frequency domain response characteristics, successful precognitive control requires the time domain...represents the other extreme of the pilot task from the precognitive time response situation. Mich work was done in attempting to predict pilot opinion from
NASA Astrophysics Data System (ADS)
Delehanty, James B.; Spillmann, Christopher M.; Naciri, Jawad; Algar, W. Russ; Ratna, Banahalli R.; Medintz, Igor L.
2013-02-01
The demonstration of fine control over nanomaterials within biological systems, particularly in live cells, is integral for the successful implementation of nanoparticles (NPs) in biomedical applications. Here, we show the ability to differentially label the endocytic pathway of mammalian cells in a spatiotemporal manner utilizing fluorescent nanocolloids (NCs) doped with a perylene-based dye. EDC-based conjugation of green- and red-emitting NCs to the iron transport protein transferrin resulted in stable bioconjugates that were efficiently endocytosed by HEK 293T/17 cells. The staggered delivery of the bioconjugates allowed for the time-resolved, differential labeling of distinct vesicular compartments along the endocytic pathway in a nontoxic manner. We further demonstrated the ability of the NCs to be impregnated with the anticancer therapeutic, doxorubicin. Delivery of the drug-doped nanoconjugates resulted in the intracellular release and nuclear accumulation of doxorubicin in a time- and dose-dependent manner. We discuss our results in the context of the utility of such materials for NP-mediated drug delivery applications.
Momentum and particle transport in a nonhomogenous canopy
NASA Astrophysics Data System (ADS)
Gould, Andrew W.
Turbulent particle transport through the air plays an important role in the life cycle of many plant pathogens. In this study, data from a field experiment was analyzed to explore momentum and particle transport within a grape vineyard. The overall goal of these experiments was to understand how the architecture of a sparse agricultural canopy interacts with turbulent flow and ultimately determines the dispersion of airborne fungal plant pathogens. Turbulence in the vineyard canopy was measured using an array of four sonic anemometers deployed at heights z/H 0.4, 0.9, 1.45, and 1.95 where z is the height of the each sonic and H is the canopy height. In addition to turbulence measurements from the sonic anemometers, particle dispersion was measured using inert particles with the approximate size and density of powdery mildew spores and a roto-rod impaction trap array. Measurements from the sonic anemometers demonstrate that first and second order statistics of the wind field are dependent on wind direction orientation with respect to vineyard row direction. This dependence is a result of wind channeling which transfers energy between the velocity components when the wind direction is not aligned with the rows. Although the winds have a strong directional dependence, spectra analysis indicates that the structure of the turbulent flow is not fundamentally altered by the interaction between wind direction and row direction. Examination of a limited number of particle release events indicates that the wind turning and channeling observed in the momentum field impacts particle dispersion. For row-aligned flow, particle dispersion in the direction normal to the flow is decreased relative to the plume spread predicted by a standard Gaussian plume model. For flow that is not aligned with the row direction, the plume is found to rotate in the same manner as the momentum field.
Cai, Xiaofang; Yang, Xiaoxi; Cai, Jiye; Wu, Shixian; Chen, Qian
2010-03-25
Mitomycin C (MMC) has been shown to have a therapeutic effect against human pterygium fibroblasts (HPFs) by inducing apoptosis. However, there is little data about the effect of it on plasma membrane. In the present study, the cytotoxicity of MMC to HPFs including inhibiting cell growth, inducing apoptosis and bringing about membrane toxicity was investigated. It was found that MMC could significantly suppress the proliferation of HPFs in a dose-dependent manner by CCK-8 assay. Flow cytometric analysis also revealed that treatment with MMC resulted in increased percentages of apoptotic cells in a dose-dependent manner. Membrane lipid peroxidation level, lactate dehydrogenase (LDH) leakage, membrane surface topography, and membrane rigidity alterations were investigated to assess the membrane toxicity induced by MMC. Treatment with MMC at different concentrations accelerated membrane lipid peroxidation and potentiated LDH leakage, which was consistent with disturbance of membrane surface and decrease of membrane elasticity detected by atomic force microscopy. All the above changes led to the disturbed intracellular Ca(2+) homeostasis, which was an important signal triggering apoptosis. Hence, the membrane toxicity induced by MMC might play an important role in the process of apoptotic induction and the calcium channel may be one of the apoptosis mechanisms.
HYPERSPECTRAL REMOTE SENSING OF WATER QUALITY PARAMETERS FOR LARGE RIVERS IN THE OHIO RIVER BASIN
Optical indicators of water quality have the potential of enhancing the abilities of resource managers to monitor water bodies in a timely and cost-effective manner. However, the degree to which optical indicators are useful may depend on their applicability to data collected fr...
The dynamic nature of crystal growth in pores
Godinho, Jose R. A.; Gerke, Kirill M.; Stack, Andrew G.; ...
2016-09-12
We report that the kinetics of crystal growth in porous media controls a variety of natural processes such as ore genesis and crystallization induced fracturing that can trigger earthquakes and weathering, as well as, sequestration of CO 2 and toxic metals into geological formations. Progress on understanding those processes has been limited by experimental difficulties of dynamically studying the reactive surface area and permeability during pore occlusion. Here, we show that these variables cause a time-dependency of barite growth rates in microporous silica. The rate is approximately constant and similar to that observed on free surfaces if fast flow velocitiesmore » predominate and if the time-dependent reactive surface area is accounted for. As the narrower flow paths clog, local flow velocities decrease, which causes the progressive slowing of growth rates. We conclude that mineral growth in a microporous media can be estimated based on free surface studies when a) the growth rate is normalized to the time-dependent surface area of the growing crystals, and b) the local flow velocities are above the limit at which growth is transport-limited. Lastly, accounting for the dynamic relation between microstructure, flow velocity and growth rate is shown to be crucial towards understanding and predicting precipitation in porous rocks.« less
Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
Marcos; Yang, C; Ooi, K T; Wong, T N; Masliyah, J H
2004-07-15
This article presents an analysis of the frequency- and time-dependent electroosmotic flow in a closed-end rectangular microchannel. An exact solution to the modified Navier-Stokes equation governing the ac electroosmotic flow field is obtained by using the Green's function formulation in combination with a complex variable approach. An analytical expression for the induced backpressure gradient is derived. With the Debye-Hückel approximation, the electrical double-layer potential distribution in the channel is obtained by analytically solving the linearized two-dimensional Poisson-Boltzmann equation. Since the counterparts of the flow rate and the electrical current are shown to be linearly proportional to the applied electric field and the pressure gradient, Onsager's principle of reciprocity is demonstrated for transient and ac electroosmotic flows. The time evolution of the electroosmotic flow and the effect of a frequency-dependent ac electric field on the oscillating electroosmotic flow in a closed-end rectangular microchannel are examined. Specifically, the induced pressure gradient is analyzed under effects of the channel dimension and the frequency of electric field. In addition, based on the Stokes second problem, the solution of the slip velocity approximation is presented for comparison with the results obtained from the analytical scheme developed in this study. Copyright 2004 Elsevier Inc.
NASA Astrophysics Data System (ADS)
Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam
2018-03-01
The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.
Zhang, Zhuo-qi; Cao, Xi-chuan; Zhang, Ling; Zhu, Wen-ling
2005-06-08
To study the anti-proliferation, pro-apoptosis and cell cycle blocking effects of shikonin on rat vascular smooth muscle cell (VSMC) in vitro. VSMCs were primarily cultured by explant method from the thoracic aorta of male SD rats. Shikonin of different concentration, 4, 2, 1, 0.5, 0.25, and 0 micromol/L was added. The cell viability was detected by MTT method. Cell growth curve was drawn by trypan blue exclusion method. (3)H-thymidine incorporation was used to calculate the inhibition rate of DNA synthesis. Flow cytometry was used to detect the cell cycle. Cell apoptosis was observed by fluorescence microscopy. Western blotting was performed to detect the expression of different cell apoptosis and cell cycle regulatory proteins, such as cyclin D(1) and E, proliferating cell nuclear antigen (PCNA), p21(waf1/cip1), p27(kip1), and p53. Compared with control group, shikonin had no obvious cytotoxic effect on cell viability at the concentration of 0.25-1 micromol/L (P > 0.05). While it could inhibit, both time- and dose-dependently, the growth of VSMC, which was predominant of 1 micromol/L at 72 h (1.9 x 10(5)/well vs 5.8 x 10(5)/well, P < 0.05), and DNA synthesis was also significantly inhibited in a time- and dose-dependent manner with inhibition rate varied from 33 to 98% (P < 0.05 or P < 0.01). 1 micromol/L shikonin significantly blocked the cell cycle progression in proliferative VSMC, decreased S, G(2)/M phase (P < 0.05) and increased G(0)/G(1) phase (P < 0.05) to quiescent level with sub-G(1) apoptotic distribution at 48 h (10.9% +/- 0.3%). Shikohin at the concentration of 1-2 micromol/L significantly increased the percentage of apoptotic cells in a time- and dose-dependent manner compared with control group (2.8%-23.7% vs 0.2%-0.4%, P < 0.05), and typical apoptotic nuclear morphological changes were observed. 1 micromol/L shikonin significantly down-regulated cyclin D(1), E and PCNA expression, up-regulated p21(wif1/cip1) expression, and did not obviously influence the p27(kip1) and p53 expression. Shikonin inhibits the proliferation, promotes the apoptosis and blocks cell cycle progression of VSMC. These effects are associated with the expression changes of cell cycle regulatory proteins.
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.
2015-12-01
We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.
GC-MS based metabolite profiling of rice Koji fermentation by various fungi.
Kim, Ah Jin; Choi, Jung Nam; Kim, Jiyoung; Park, Sait Byul; Yeo, Soo Hwan; Choi, Ji Ho; Lee, Choong Hwan
2010-01-01
In this study, Aspergillus kawachii, Aspergillus oryzae, and Rhizopus sp., were utilized for rice Koji fermentation, and the metabolites were analyzed in a time-dependent manner by gas chromatography-mass spectrometry. On Principal Component Analysis, the metabolite patterns were clearly distinguished based on the fungi species. This approach revealed that the quantities of glucose, galactose, and glycerol gradually increased as a function of fermentation time in all trials rice Koji fermentation. The time-dependent changes of these metabolites showed significant increases in glucose in the A. oryzae-treated rice, and in glycerol and galactose in the A. kawachii-treated rice. In addition, glycolysis-related enzyme activities were correlated with the changes in these metabolites. The results indicate that time-dependent metabolite production has the potential to be a valuable tool in selecting inoculant fungi and the optimal fermentation time for rice koji.
Calculations of unsteady turbulent boundary layers with flow reversal
NASA Technical Reports Server (NTRS)
Nash, J. F.; Patel, V. C.
1975-01-01
The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.
A Semi-implicit Method for Resolution of Acoustic Waves in Low Mach Number Flows
NASA Astrophysics Data System (ADS)
Wall, Clifton; Pierce, Charles D.; Moin, Parviz
2002-09-01
A semi-implicit numerical method for time accurate simulation of compressible flow is presented. By extending the low Mach number pressure correction method, a Helmholtz equation for pressure is obtained in the case of compressible flow. The method avoids the acoustic CFL limitation, allowing a time step restricted only by the convective velocity, resulting in significant efficiency gains. Use of a discretization that is centered in both time and space results in zero artificial damping of acoustic waves. The method is attractive for problems in which Mach numbers are low, and the acoustic waves of most interest are those having low frequency, such as acoustic combustion instabilities. Both of these characteristics suggest the use of time steps larger than those allowable by an acoustic CFL limitation. In some cases it may be desirable to include a small amount of numerical dissipation to eliminate oscillations due to small-wavelength, high-frequency, acoustic modes, which are not of interest; therefore, a provision for doing this in a controlled manner is included in the method. Results of the method for several model problems are presented, and the performance of the method in a large eddy simulation is examined.
Boundary Conditions for Jet Flow Computations
NASA Technical Reports Server (NTRS)
Hayder, M. E.; Turkel, E.
1994-01-01
Ongoing activities are focused on capturing the sound source in a supersonic jet through careful large eddy simulation (LES). One issue that is addressed is the effect of the boundary conditions, both inflow and outflow, on the predicted flow fluctuations, which represent the sound source. In this study, we examine the accuracy of several boundary conditions to determine their suitability for computations of time-dependent flows. Various boundary conditions are used to compute the flow field of a laminar axisymmetric jet excited at the inflow by a disturbance given by the corresponding eigenfunction of the linearized stability equations. We solve the full time dependent Navier-Stokes equations by a high order numerical scheme. For very small excitations, the computed growth of the modes closely corresponds to that predicted by the linear theory. We then vary the excitation level to see the effect of the boundary conditions in the nonlinear flow regime.
Extension of the momentum transfer model to time-dependent pipe turbulence.
Calzetta, Esteban
2012-02-01
We analyze a possible extension of Gioia and Chakraborty's momentum transfer model of friction in steady turbulent pipe flows [Phys. Rev. Lett. 96, 044502 (2006)] to the case of time- and/or space-dependent turbulent flows. The end result is an expression for the stress at the wall as the sum of a steady and a dynamic component. The steady part is obtained by using the instantaneous velocity in the expression for the stress at the wall of a stationary flow. The unsteady part is a weighted average over the history of the flow acceleration, with a weighting function similar to that proposed by Vardy and Brown [J. Sound Vibr. 259, 1011 (2003); J. Sound Vibr. 270, 233 (2004)], but naturally including the effect of spatial derivatives of the mean flow, as in the Brunone model [Brunone et al., J. Water Res. Plan. Manage. 126, 236 (2000)].
NASA Astrophysics Data System (ADS)
Minakov, A.; Sentyabov, A.; Platonov, D.
2017-01-01
We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.
Wave-driven dynamo action in spherical magnetohydrodynamic systems.
Reuter, K; Jenko, F; Tilgner, A; Forest, C B
2009-11-01
Hydrodynamic and magnetohydrodynamic numerical studies of a mechanically forced two-vortex flow inside a sphere are reported. The simulations are performed in the intermediate regime between the laminar flow and developed turbulence, where a hydrodynamic instability is found to generate internal waves with a characteristic m=2 zonal wave number. It is shown that this time-periodic flow acts as a dynamo, although snapshots of the flow as well as the mean flow are not dynamos. The magnetic fields' growth rate exhibits resonance effects depending on the wave frequency. Furthermore, a cyclic self-killing and self-recovering dynamo based on the relative alignment of the velocity and magnetic fields is presented. The phenomena are explained in terms of a mixing of nonorthogonal eigenstates of the time-dependent linear operator of the magnetic induction equation. The potential relevance of this mechanism to dynamo experiments is discussed.
Shape-controlled continuous synthesis of metal nanostructures
NASA Astrophysics Data System (ADS)
Sebastian, Victor; Smith, Christopher D.; Jensen, Klavs F.
2016-03-01
A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s.A segmented flow-based microreactor is used for the continuous production of faceted nanocrystals. Flow segmentation is proposed as a versatile tool to manipulate the reduction kinetics and control the growth of faceted nanostructures; tuning the size and shape. Switching the gas from oxygen to carbon monoxide permits the adjustment in nanostructure growth from 1D (nanorods) to 2D (nanosheets). CO is a key factor in the formation of Pd nanosheets and Pt nanocubes; operating as a second phase, a reductant, and a capping agent. This combination confines the growth to specific structures. In addition, the segmented flow microfluidic reactor inherently has the ability to operate in a reproducible manner at elevated temperatures and pressures whilst confining potentially toxic reactants, such as CO, in nanoliter slugs. This continuous system successfully synthesised Pd nanorods with an aspect ratio of 6; thin palladium nanosheets with a thickness of 1.5 nm; and Pt nanocubes with a 5.6 nm edge length, all in a synthesis time as low as 150 s. Electronic supplementary information (ESI) available: ESI Fig. S1-S8. See DOI: 10.1039/c5nr08531d
Evaluation of CNS activities of aerial parts of Cynodon dactylon Pers. in mice.
Pal, Dilipkumar
2008-01-01
The dried extracts of aerial parts of Cynodon dactylon Pers. (Graminae) were evaluated for CNS activities in mice. The ethanol extract of aerial parts of C. dactylon (EECD) was found to cause significant depression in general behavioral profiles in mice. EECD significantly potentiated the sleeping time in mice induced by standard hypnotics viz. pentobarbitone sodium, diazepam, and meprobamate in a dose dependant manner. EECD showed significant analgesic properties as evidenced by the significant reduction in the number of writhes and stretches induced in mice by 1.2% acetic acid solution. It also potentiated analgesia induced by morphine and pethidine in mice. EECD inhibited the onset and the incidence of convulsion in a dose dependent manner against pentylenetetrazole (PTZ)-induced convulsion. The present study indicates that EECD has significant CNS depressant activities.
[Molecular mechanisms of cytoprotective action of the plant proanthocyanidins in gastric lesions].
Zaiachkivs'ka, O S
2006-01-01
The molecular defence mechanisms against ethanol- and stress-induced (WRS) gastric lesions under the action of plant proanthocyanidins from grapefruit-seed extract (GSE) were investigated. Pre-treatment with GSE (8-64 mg/kg/day) in dose-dependent manner attenuated gastric lesions induced by 100% ethanol and WRS; the doses of GCE reducing these lesions by 50% (ID50) were 28 and 36 mg/kg/day, respectively and this protective effect was similar to that obtained with PGE2 analogue. Lesions reduction was also accompanied by improvement of gastric blood flow, antiradical action, increased mucosal generation of PGE2, antioxidant activity.
Sóñora, Cecilia; Arbildi, Paula; Miraballes-Martínez, Iris; Hernández, Ana
2018-01-01
Phagocytosis is a fundamental process for removal of pathogens and for clearance of apoptotic cells. The objective of this work was the preparation of fluorescent microspheres by a simple method and the evaluation of its applicability in phagocytosis assays by using different human derived cells, differentiated THP-1 cell line and blood monocytes, with flow cytometry measurements for functionality assays. Our results show that microparticles are efficiently internalised in a non-opsonised form and in dose-dependent manner by both cellular types. Concerning mechanism we determined that tTG-β3 integrin signaling could be involved in the uptake of these particles.
NASA Astrophysics Data System (ADS)
Abolhasani, Milad
Flowing trains of uniformly sized bubbles/droplets (i.e., segmented flows) and the associated mass transfer enhancement over their single-phase counterparts have been studied extensively during the past fifty years. Although the scaling behaviour of segmented flow formation is increasingly well understood, the predictive adjustment of the desired flow characteristics that influence the mixing and residence times, remains a challenge. Currently, a time consuming, slow and often inconsistent manual manipulation of experimental conditions is required to address this task. In my thesis, I have overcome the above-mentioned challenges and developed an experimental strategy that for the first time provided predictive control over segmented flows in a hands-off manner. A computer-controlled platform that consisted of a real-time image processing module within an integral controller, a silicon-based microreactor and automated fluid delivery technique was designed, implemented and validated. In a first part of my thesis I utilized this approach for the automated screening of physical mass transfer and solubility characteristics of carbon dioxide (CO2) in a physical solvent at a well-defined temperature and pressure and a throughput of 12 conditions per hour. Second, by applying the segmented flow approach to a recently discovered CO2 chemical absorbent, frustrated Lewis pairs (FLPs), I determined the thermodynamic characteristics of the CO2-FLP reaction. Finally, the segmented flow approach was employed for characterization and investigation of CO2-governed liquid-liquid phase separation process. The second part of my thesis utilized the segmented flow platform for the preparation and shape control of high quality colloidal nanomaterials (e.g., CdSe/CdS) via the automated control of residence times up to approximately 5 minutes. By introducing a novel oscillatory segmented flow concept, I was able to further extend the residence time limitation to 24 hours. A case study of a slow candidate reaction, the etching of gold nanorods during up to five hours, served to illustrate the utility of oscillatory segmented flows in assessing the shape evolution of colloidal nanomaterials on-chip via continuous optical interrogation at only one sensing location. The developed cruise control strategy will enable plug'n play operation of segmented flows in applications that include flow chemistry, material synthesis and in-flow analysis and screening.
Yang, Xinyu; Wang, Haichao; Zhang, Menmen; Liu, Jin; Lv, Ben; Chen, Fangping
2015-08-06
Thrombotic diseases are a group of prevalent and life-threatening diseases. Selective inhibition of pathological thrombosis holds the key to treat variety of thrombotic diseases. The pathological thrombosis can be induced by either tissue necrosis and deregulated inflammation. HMGB1, as an important proinflammatory cytokine and a late mediator, also involves on thrombosis disease. However, the underlying mechanisms are not fully understood. Immunofluorescence, ELISA assay, Platelet Aggregation, Thromboelastogram (TEG) analyzes. Flow cytometric analysis and Western blot analysis were used to investigated the role of HMGB1 in platelet aggregation and obtained following observations. By doing so, we obtained the following observations: i) Highly purified HMGB1 recombinant protein induces platelet aggregation and secretion in a dose-dependent manner in the presence of serum. ii) Low concentration of extracellular HMGB1 could synergistically promote subthreshold concentration of collagen or thrombin induced platelet aggregation. iii) Extracellular HMGB1 promoted platelet aggregation in a platelet-expressed GPIIb/IIIa-dependent manner. iv) We proposed that extracellular HMGB1 seems to promote the phosphorylation of GPIIb/IIIa and subsequent platelet aggregation via TLR4/NF-κB and cGMP pathway. In this study, we provide evidence for the hypothesis that HMGB1 interact with platelet might play an important role in the haemostasis and thrombotic diseases. Our research might be provide an interesting avenue for the treatment of thrombotic diseases in the future.
Dynamics of the tug-of-war model for cellular transport
NASA Astrophysics Data System (ADS)
Zhang, Yunxin; Fisher, Michael E.
2010-07-01
The transport of organelles and other cargoes in living cells has been described by a kinetic tug-of-war model advanced by Müller, Klumpp, and Lipowsky, in which, as a function of time, t , a team of n+(t)=0,1,⋯,N+ molecular motors may attach a cargo to a filamentous track and pull it towards the plus end in competition with n-(t)=0,1,⋯,N- motors that pull towards the opposite end. In recent work [Y. Zhang, Phys. Rev. E 79, 061918 (2009)10.1103/PhysRevE.79.061918] this model was analyzed for N+,N-≫1 , establishing the existence, depending on the motor parameters and the ratio ν=N+/N- , of system states with either one, two, or three distinct stable stationary modes of motion. Here, adopting a theoretical perspective, we study the parametric and ν dependence of the transitions between these mono-, bi-, or tristable system states and examine their associated trajectories and domains of attraction in the flow space, (n+,n-) , of the attached motor numbers. Various sequences of winning, losing, and “stalemate” or close-to-motionless modes are uncovered. When, as realistic, N+ and N- are of order 2 to 10, fluctuations will move the system from one of two or three modes of motion to another mode. An analysis of the associated probability fluxes demonstrates that the mean time between mode-to-mode transitions increases exponentially with N+ and N- . The overall stall force, i.e., the externally imposed load under which the mean cargo velocity vanishes, is similarly elucidated and shown to vary strongly but sublinearly with N+ and N- , as well as depending in a less than transparent manner on other model parameters beyond the stall forces of the individual + and - motors.
Images and Spectra of Time Dependent Two Component Advective Flow in Presence of Outflows
NASA Astrophysics Data System (ADS)
Chatterjee, Arka; Chakrabarti, Sandip K.; Ghosh, Himadri; Garain, Sudip K.
2018-05-01
Two Component Advective Flow (TCAF) successfully explains the spectral and temporal properties of outbursting or persistent sources. Images of static TCAF with Compton cloud or CENtrifugal pressure supported Boundary Layer (CENBOL) due to gravitational bending of photons have been studied before. In this paper, we study time dependent images of advective flows around a Schwarzschild black hole which include cooling effects due to Comptonization of soft photons from a Keplerian disks well as the self-consistently produced jets and outflows. We show the overall image of the disk-jet system after convolving with a typical beamwidth. A long exposure image with time dependent system need not show the black hole horizon conspicuously, unless one is looking at a soft state with no jet or the system along the jet axis. Assuming these disk-jet configurations are relevant to radio emitting systems also, our results would be useful to look for event horizons in high accretion rate Supermassive Black Holes in Seyfert galaxies, RL Quasars.
Granular slumping on a horizontal surface
NASA Astrophysics Data System (ADS)
Lajeunesse, E.; Monnier, J. B.; Homsy, G. M.
2005-10-01
We report the results of an experimental investigation of the flow induced by the collapse of a column of granular material (glass beads of diameter d) over a horizontal surface. Two different setups are used, namely, a rectangular channel and a semicircular tube, allowing us to compare two-dimensional and axisymmetric flows, with particular focus on the internal flow structure. In both geometries the flow dynamics and the deposit morphologies are observed to depend primarily on the initial aspect ratio of the granular column a =Hi/Li, where Hi is the height of the initial granular column and Li its length along the flow direction. Two distinct regimes are observed depending on a: an avalanche of the column flanks producing truncated deposits for small a and a column free fall leading to conical deposits for large a. In both geometries the characteristic time scale is the free fall of the granular column τc=√Hi/g . The flow initiated by Coulomb-like failure never involves the whole granular heap but remains localized in a surface layer whose size and shape depend on a and vary in both space and time. Except in the vicinity of the pile foot where the flow is pluglike, velocity profiles measured at the side wall are identical to those commonly observed in steady granular surface flows: the velocity varies linearly with depth in the flowing layer and decreases exponentially with depth in the static layer. Moreover, the shear rate is constant, γ˙=0.3√g /d , independent of the initial aspect ratio, the flow geometry, position along the heap, or time. Despite the rather complex flow dynamics, the scaled deposit height Hf/Li and runout distance ΔL /Li both exhibit simple power laws whose exponents depend on a and on the flow geometry. We show that the physical origin of these power laws can be understood on the basis of a dynamic balance between acceleration, pressure gradient, and friction forces at the foot of the granular pile. Two asymptotic behaviors can be distinguished: the flow is dominated by friction forces at small a and by pressure forces at large a. The effect of the flow geometry is determined primarily by mass conservation and becomes important only for large a.
Kroes, Anneke; Broekgaarden, Colette; Castellanos Uribe, Marcos; May, Sean; van Loon, Joop J A; Dicke, Marcel
2017-01-01
Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density-dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory.
McDermott, A M; Kidd, P; Gately, M; Casey, R; Burke, H; O'Donnell, P; Kirrane, F; Dinneen, S F; O'Brien, T
2013-08-01
Diabetes is a chronic disease amenable to management in the community and outpatient setting. The increasing incidence of diabetes places outpatient endocrinology services under pressure to provide a quality service in a timely manner. Our aim was to apply lean thinking to the diabetes clinic in a tertiary referral centre in the West of Ireland to improve flow, as reflected in reduced patient journey times. The project lasted 6 months, from January to June 2011. An introductory seminar on lean thinking was arranged to inform and motivate the Diabetes Day Centre staff. Two 'rapid improvement events' took place. Value stream mapping (VSM) was the predominant lean tool employed. Patient journeys were mapped and quantified (minutes) using timesheets allocated to each step in the process at baseline, and following intervention. Data were analysed using Minitab V.16.0. VSM allowed the value-adding and problem-causing steps in the patient journey through the diabetes clinic process to be identified and addressed. Total patient journey time through the clinic was significantly reduced from 118 (± 38.02) min to 58 (± 18.30) min (p<0.001). This project reflects the successful application of VSM as a lean tool in a pilot study at our institution as evidenced by improved patient flow and a significant reduction in patient journey time through the clinic. Through the incorporation of Lean into the ethos of the hospital, we have the potential to deliver excellent care in a safe environment and in an efficient manner, while benefiting the patient, employees and tax-payer.
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)
2002-01-01
The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1993-12-01
An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.
Ghatpande, A S; Rao, S; Sikdar, S K
2001-01-01
Tetrapentylammonium (TPeA) block of rat brain type IIA sodium channel α subunit was studied using whole cell patch clamp. Results indicate that TPeA blocks the inactivating brain sodium channel in a potential and use-dependent manner similar to that of the cardiac sodium channel. Removal of inactivation using chloramine-T (CT) unmasks a time-dependent block by TPeA consistent with slow blocking kinetics. On the other hand, no time dependence is observed when inactivation is abolished by modification with veratridine. TPeA does not bind in a potential-dependent fashion to veratridine-modified channels and does not significantly affect gating of veratridine-modified channels suggesting that high affinity binding of TPeA to the brain sodium channel is lost after veratridine modification. PMID:11309247
Skin Friction Reduction Through Large-Scale Forcing
NASA Astrophysics Data System (ADS)
Bhatt, Shibani; Artham, Sravan; Gnanamanickam, Ebenezer
2017-11-01
Flow structures in a turbulent boundary layer larger than an integral length scale (δ), referred to as large-scales, interact with the finer scales in a non-linear manner. By targeting these large-scales and exploiting this non-linear interaction wall shear stress (WSS) reduction of over 10% has been achieved. The plane wall jet (PWJ), a boundary layer which has highly energetic large-scales that become turbulent independent of the near-wall finer scales, is the chosen model flow field. It's unique configuration allows for the independent control of the large-scales through acoustic forcing. Perturbation wavelengths from about 1 δ to 14 δ were considered with a reduction in WSS for all wavelengths considered. This reduction, over a large subset of the wavelengths, scales with both inner and outer variables indicating a mixed scaling to the underlying physics, while also showing dependence on the PWJ global properties. A triple decomposition of the velocity fields shows an increase in coherence due to forcing with a clear organization of the small scale turbulence with respect to the introduced large-scale. The maximum reduction in WSS occurs when the introduced large-scale acts in a manner so as to reduce the turbulent activity in the very near wall region. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-16-1-0194 monitored by Dr. Douglas Smith.
Manna, Sunil K.; Bose, Julie S.; Gangan, Vijay; Raviprakash, Nune; Navaneetha, Thota; Raghavendra, Pongali B.; Babajan, Banaganapalli; Kumar, Chitta S.; Jain, Swatantra K.
2010-01-01
The Dracaena resin is widely used in traditional medicine as an anticancer agent, and benzofuran lignan is the active component. In this report, we provide evidence that the synthetic derivative of benzofuran lignan (Benfur) showed antitumor activities. It induced apoptosis in p53-positive cells. Though it inhibited endotoxin-induced nuclear factor κB (NF-κB) activation in both p53-positive and -negative cells, the activation of caspase 3 was observed in p53-positive cells. It showed partial cell death effect in both p53-positive and -negative cells through inhibition of NF-κB. Cell cycle analysis using flow cytometry showed that treatment with this novel benozofuran lignan derivative to Jurkat T-cells, but not U-937 cells, resulted in a G2/M arrest in a dose- and time-dependent manner. It increased amounts of p21, p27, and cyclin B, but not phospho-Rb through p53 nuclear translocation in Jurkat T-cells, but not in U-937 cells. It inhibited amounts of MDM2 (murine double minute 2) by repressing the transcription factor Sp1, which was also proved in silico. It induced cell death in tumor cells, but not in primary T-cells. Overall, our data suggest that Benfur-mediated cell death is partially dependent upon NF-κB, but predominantly dependent on p53. Thus, this novel benzofuran lignan derivative can be effective chemopreventive or chemotherapeutic agent against malignant T-cells. PMID:20472557
NASA Astrophysics Data System (ADS)
Casillas, C. E.
2009-12-01
The ecologically sustainable development of economies is often discussed at the urban scale and framed in terms of the environmental threats that accompany rapid growth. The dynamics of rural economies are less complex and provide valuable insights into how resource flows may be better utilized, as well what are the critical roles and relationships of government and society. This paper will present a case study of economic and ecologically appropriate innovations that can be made to the production and consumption behavior within a community on the Atlantic Coast of Nicaragua. Orinoco is a small Garifuna community situated on the Pearl Lagoon basin. It has a population of over 1000 people and its economy is primarily based on the exploitation of declining shrimp and fish resources. This paper will quantify the monetary and material resource flows comprising the current economy, and present technically viable alternatives that would utilize the abundant natural resources in a more ecologically sustainable manner, while decreasing the dependence on imported food and fuels. Specifically, the paper will describe how recently implemented projects of energy conservation can be coupled with improved agricultural and fishing practices in order to meet local and external market demands for fish and vegetable oil. Secondary products can be utilized to eliminate the dependence on imported liquid and gas fossil fuels for cooking and electricity generation.
Rheotaxis of Bimetallic Micromotors Driven by Chemical-Acoustic Hybrid Power.
Ren, Liqiang; Zhou, Dekai; Mao, Zhangming; Xu, Pengtao; Huang, Tony Jun; Mallouk, Thomas E
2017-10-24
Rheotaxis is a common phenomenon in nature that refers to the directed movement of micro-organisms as a result of shear flow. The ability to mimic natural rheotaxis using synthetic micro/nanomotors adds functionality to enable their applications in biomedicine and chemistry. Here, we present a hybrid strategy that can achieve both positive and negative rheotaxis of synthetic bimetallic micromotors by employing a combination of chemical fuel and acoustic force. An acoustofluidic device is developed for the integration of the two propulsion mechanisms. Using acoustic force alone, bimetallic microrods are propelled along the bottom surface in the center of a fluid channel. The leading end of the microrod is always the less dense end, as established in earlier experiments. With chemical fuel (H 2 O 2 ) alone, the microrods orient themselves with their anode end against the flow when shear flow is present. Numerical simulations confirm that this orientation results from tilting of the microrods relative to the bottom surface of the channel, which is caused by catalytically driven electro-osmotic flow. By combining this catalytic orientation effect with more powerful, density-dependent acoustic propulsion, both positive and negative rheotaxis can be achieved. The ability to respond to flow stimuli and collectively propel synthetic microswimmers in a directed manner indicates an important step toward practical applications.
Flow of “stress power-law” fluids between parallel rotating discs with distinct axes
Srinivasan, Shriram; Karra, Satish
2015-04-16
The problem of flow between parallel rotating discs with distinct axes corresponds to the case of flow in an orthogonal rheometer and has been studied extensively for different fluids since the instrument's inception. All the prior studies presume a constitutive prescription of the fluid stress in terms of the kinematical variables. In this paper, we approach the problem from a different perspective, i.e., a constitutive specification of the symmetric part of the velocity gradient in terms of the Cauchy stress. Such an approach ensures that the boundary conditions can be incorporated in a manner quite faithful to real world experimentsmore » with the instrument. Interestingly, the choice of the boundary condition is critical to the solvability of the problem for the case of creeping/Stokes flow. Furthermore, when the no-slip condition is enforced at the boundaries, depending on the model parameters and axes offset, the fluid response can show non-uniqueness or unsolvability, features which are absent in a conventional constitutive specification. In case of creeping/Stokes flow with prescribed values of the stress, the fluid response is indeterminate. We also record the response of a particular case of the given “stress power-law” fluid; one that cannot be attained by the conventional power-law fluids.« less
Air pollution and fuel vapour induced changes in lung functions: are fuel handlers safe?
Chawla, Anuj; Lavania, A K
2008-01-01
Automobile exhaust derived air pollutants have become a major health hazard. Coupled with the inhalation of fuel vapour, as occurs in petrol station workers, this may lead to significant impairment of lung function. Spirometric lung functions were studied in 58 petrol station workers to examine this possibility. The forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), forced expiratory flow 25%-75% (FEF25-75) and peak expiratory flow (PEF) were recorded and analysed separately for smokers and non-smokers. The workers were divided into 5 groups for analysis of data based on the number of years of work in the petrol pumps. Outdoor air analysis was also carried out. The FVC, FEV1 and PEF declined significantly with increasing years of work in petrol stations in both smokers and non-smokers. Smoking as an independent variable was found to affect the FEV1 significantly but not FVC or PEF. The FEF25-75 was found to be the most affected spirometric value with a significant reduction with increasing years of work. Smoking as such did not affect it. Oxides of nitrogen (NOx), suspended particulate matter (SPM) and particulate matter less than 10 microns (PM10) in outdoor air were higher than the national ambient air quality standards. Exposure to automobile exhaust and fuel vapour impairs lung function in a time-dependent manner. Cigarette smoking appears to accelerate the decline.
Measurements of wall shear stress in a planar turbulent Couette flow with porous walls
NASA Astrophysics Data System (ADS)
Beuther, Paul
2013-11-01
Measurements of drag on a moving web in a multi-span festoon show a stronger than expected dependency on the porosity of the web. The experiments suggest a wall shear stress 3-4 times larger than non-porous webs or historical Couette flow data for solid walls. Previous DNS studies by Jimenez et al. (JFM Vol 442) of boundary layers with passive porous surfaces predict a much smaller increase in wall shear stress for a porous wall of only 40%. Other DNS studies by Quadrio et al. (JFM Vol 576) of porous walls with periodic transpiration do show a large increase in drag under certain periodic conditions of modest amplitude. Although those results are aligned in magnitude with this study, the exact reason for the observed high drag for porous webs in this present study is not understood because there was no external disturbance applied to the web. It can be hypothesized that natural flutter of the web results in a similar mechanism shown in the periodic DNS study, but when the natural flutter was reduced by increasing web tension, there was only a small decrease of the drag. A key difference in this study is that because of the multiple parallel spans in a festoon, any transpiration in one layer must act in the opposite manner on the adjacent span.
Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3.
Samarghandian, Saeed; Afshari, Jalil Tavakkol; Davoodi, Saeideh
2011-01-01
Honey is a common household product with many medicinal uses described in traditional medicine. Only recently has its antioxidant properties and preventive effects against disease been highlighted. Chrysin is a natural flavone commonly found in honey that has been shown to be an antioxidant agent. In this study, we investigated the antiproliferative and apoptotic effects of honey and chrysin on cultured human prostate cancer cells. Cells were cultured in RPMI medium and treated with different concentrations of honey and chrysin for three consecutive days. Cell viability was quantitated by the 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. The percentage of apoptotic cells was determined by flow cytometry using Annexin V-fluorescein isothiocyanate. The MTT assay revealed that both compounds had an antiproliferative effect on PC-3 cells in a dose- and time-dependent manner. The IC50 values for honey and chrysin against PC-3 cells were 2.5% and 24.5% after 48 h and 1.8% and 8.5% after 72 h, respectively. Chrysin induced apoptosis in PC-3 cells, as determined by flow cytometry. Our results suggest that honey has anti-proliferative effects on prostate cancer cells and the effects are mainly due to chrysin. Therefore, chrysin may be a potential compound for both cancer prevention and treatment. Further in vivo investigation is needed to support the use of chrysin in cancer therapy.
Structure of supersonic jet flow and its radiated sound
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.; Hayer, M. Ehtesham; Povinelli, Louis A.
1994-01-01
The present paper explores the use of large-eddy simulations as a tool for predicting noise from first principles. A high-order numerical scheme is used to perform large-eddy simulations of a supersonic jet flow with emphasis on capturing the time-dependent flow structure representating the sound source. The wavelike nature of this structure under random inflow disturbances is demonstrated. This wavelike structure is then enhanced by taking the inflow disturbances to be purely harmonic. Application of Lighthill's theory to calculate the far-field noise, with the sound source obtained from the calculated time-dependent near field, is demonstrated. Alternative approaches to coupling the near-field sound source to the far-field sound are discussed.
Time-dependent local density measurements in unsteady flows
NASA Technical Reports Server (NTRS)
Mckenzie, R. L.; Monson, D. J.; Exberger, R. J.
1979-01-01
A laser-induced fluorescence technique for measuring the relative time-dependent density fluctuations in unsteady or turbulent flows is demonstrated. Using a 1.5-W continuous-wave Kr(+) laser, measurements have been obtained in 0.1-mm diameter by 1-mm-long sampling volumes in a Mach 3 flow of N2 seeded with biacetyl vapor. A signal amplitude resolution of 2% was achieved for a detection frequency bandwidth of 10 kHz. The measurement uncertainty was found to be dominated by noise behaving as photon statistical noise. The practical limits of signal-to-noise ratios have been characterized for a wide range of detection frequency bandwidths that encompasses those of interest in supersonic turbulence measurements.
Parametric Characterization of Flow Inside Cererbal Aneurysms Treated with Flow-Diverting Stents
NASA Astrophysics Data System (ADS)
Barbour, Michael; Levitt, Michael; Geindreau, Christian; Johnson, Luke; Chivukula, Keshav; Aliseda, Alberto
2017-11-01
Cerebral aneurysms are often treated with a flow-diverting stent (FDS) to reduce blood flow into the aneurysm sac, promoting the development of a stable thrombus. Successful treatment is highly dependent on the degree of flow reduction and the altered hemodynamics inside the aneurysm sac following treatment. Establishing a causal connection between hemodynamic metrics of FDS-treated CAs and long-term clinical outcomes requires a rigorous parametric characterization of this flow environment. We use 3D particle image velocimetry (PIV) to measure the flow inside idealized aneurysm models treated with FDS. Physiologically realistic Reynolds numbers and increasing levels of parent vessel curvature are analyzed to understand the effect of inertia on flow development. The flow velocity into the aneurysm and the topology of the flow inside the sac is shown to be highly dependent on parent vessel Dean number (De). The role of flow pulsatility is then added to the study via time-dependent waveforms. Velocity measurements at 2 values of parent vessel Womersley number (Wo) allow us to parameterize flow inside of CAs treated with FDS as a function of De, Re and Wo, improving the fundamental understanding of how FDS alter CA hemodynamics and aiding in the development of new treatments.
Liu, Yang; Wang, Jiazhong; Yang, Peng; Lu, Hongwei; Lu, Le; Wang, Jinlong; Li, Hua; Duan, Yanxia; Wang, Jun; Li, Yiming
2015-03-01
Nonanastomotic strictures (NAS) are common biliary complications after liver transplantation (LT). Delayed rearterialization induces biliary injury in several hours. However, whether this injury can be prolonged remains unknown. The correlation of this injury with NAS occurrence remains obscure. Different delayed rearterialization times were compared using a porcine LT model. Morphological and functional changes in bile canaliculus were evaluated by transmission electron microscopy and real-time PCR. Immunohistochemistry and TUNEL were performed to validate intrahepatic bile duct injury. Three months after LT was performed, biliary duct stricture was determined by cholangiography; the tissue of common bile duct was detected by real-time PCR. Bile canaliculi were impaired in early postoperative stage and then exacerbated as delayed rearterialization time was prolonged. Nevertheless, damaged bile canaliculi could fully recover in subsequent months. TNF-α and TGF-β expressions and apoptosis cell ratio increased in the intrahepatic bile duct only during early postoperative period in a time-dependent manner. No abnormality was observed by cholangiography and common bile duct examination after 3 months. Delayed rearterialization caused temporary injury to bile canaliculi and intrahepatic bile duct in a time-dependent manner. Injury could be fully treated in succeeding months. Solo delayed rearterialization cannot induce NAS after LT. © 2014 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.
NASA Astrophysics Data System (ADS)
Oliveira, R.; Bijeljic, B.; Blunt, M. J.; Colbourne, A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.
2017-12-01
Mixing and reactive processes have a large impact on the viability of enhanced oil and gas recovery projects that involve acid stimulation and CO2 injection. To achieve a successful design of the injection schemes an accurate understanding of the interplay between pore structure, flow and reactive transport is necessary. Dependent on transport and reactive conditions, this complex coupling can also be dependent on initial rock heterogeneity across a variety of scales. To address these issues, we devise a new method to study transport and reactive flow in porous media at multiple scales. The transport model is based on an efficient Particle Tracking Method based on Continuous Time Random Walks (CTRW-PTM) on a lattice. Transport is modelled using an algorithm described in Rhodes and Blunt (2006) and Srinivasan et al. (2010); this model is expanded to enable for reactive flow predictions in subsurface rock undergoing a first-order fluid/solid chemical reaction. The reaction-induced alteration in fluid/solid interface is accommodated in the model through changes in porosity and flow field, leading to time dependent transport characteristics in the form of transit time distributions which account for rock heterogeneity change. This also enables the study of concentration profiles at the scale of interest. Firstly, we validate transport model by comparing the probability of molecular displacement (propagators) measured by Nuclear Magnetic Resonance (NMR) with our modelled predictions for concentration profiles. The experimental propagators for three different porous media of increasing complexity, a beadpack, a Bentheimer sandstone and a Portland carbonate, show a good agreement with the model. Next, we capture the time evolution of the propagators distribution in a reactive flow experiment, where hydrochloric acid is injected into a limestone rock. We analyse the time-evolving non-Fickian signatures for the transport during reactive flow and observe an increase in transport heterogeneity at latter times, representing the increase in rock heterogeneity. Evolution of transit time distribution is associated with the evolution of concentration profiles, thus highlighting the impact of initial rock structure on the reactive transport for a range of Pe and Da numbers.
The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel T-P/Re-M controller manual
NASA Technical Reports Server (NTRS)
Balakrishna, S.; Kilgore, W. Allen
1989-01-01
A new microcomputer based controller for the 0.3-m Transonic Cryogenic Tunnel (TCT) has been commissioned in 1988 and has reliably operated for more than a year. The tunnel stagnation pressure, gas stagnation temperature, tunnel wall structural temperature and flow Mach number are precisely controlled by the new controller in a stable manner. The tunnel control hardware, software, and the flow chart to assist in calibration of the sensors, actuators, and the controller real time functions are described. The software installation details are also presented. The report serves as the maintenance and trouble shooting manual for the 0.3-m TCT controller.
Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy.
Lemcke, Heiko; Voronina, Natalia; Steinhoff, Gustav; David, Robert
2017-06-19
Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.
Lee, Jungwoo; Choi, Jong-ryul; Ha, Sang Keun; Choi, Inwook; Lee, Seung Hwan; Kim, Donghyun; Choi, Nakwon; Sung, Jong Hwan
2014-08-21
Various food components are known for their health-promoting effects. However, their biochemical effects are generally evaluated in vitro, and their actual in vivo effect can vary significantly, depending on their metabolic profiles. To evaluate the effect of the liver metabolism on the antioxidant activity, we have developed a two-compartment microfluidic system that integrates the dynamics of liver metabolism and the subsequent antioxidant activity of food components. In the first compartment of the device, human liver enzyme fractions were immobilized inside a poly(ethylene glycol) diacrylate (PEGDA) hydrogel to mimic the liver metabolism. The radical scavenging activity was evaluated by the change of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) absorbance in the second compartment. Reaction engineering and fluid mechanics principles were used to develop a simplified analytical model and a more complex finite element model, which were used to design the chip and determine the optimal flow conditions. For real-time measurements of the reaction on a chip, we developed a custom-made photospectrometer system with an LED light source. The developed microfluidic system showed a linear and dose-dependent antioxidant activity in response to increasing concentration of flavonoid. We also compared the antioxidant activity of flavonoid after various liver metabolic reactions. This microfluidic system can serve as a novel in vitro platform for predicting the antioxidant activity of various food components in a more physiologically realistic manner, as well as for studying the mechanism of action of such food components.
Alarcón, Pablo; Manosalva, Carolina; Conejeros, Ivan; Carretta, María D; Muñoz-Caro, Tamara; Silva, Liliana M R; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A
2017-01-01
Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(-) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(-) lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(-) lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET) production (NETosis) in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(-) lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H 4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(-) lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1). d(-) lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(-) lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(-) lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.
Phadnis, Milind A.; Shireman, Theresa I.; Wetmore, James B.; Rigler, Sally K.; Zhou, Xinhua; Spertus, John A.; Ellerbeck, Edward F.; Mahnken, Jonathan D.
2014-01-01
In a population of chronic dialysis patients with an extensive burden of cardiovascular disease, estimation of the effectiveness of cardioprotective medication in literature is based on calculation of a hazard ratio comparing hazard of mortality for two groups (with or without drug exposure) measured at a single point in time or through the cumulative metric of proportion of days covered (PDC) on medication. Though both approaches can be modeled in a time-dependent manner using a Cox regression model, we propose a more complete time-dependent metric for evaluating cardioprotective medication efficacy. We consider that drug effectiveness is potentially the result of interactions between three time-dependent covariate measures, current drug usage status (ON versus OFF), proportion of cumulative exposure to drug at a given point in time, and the patient’s switching behavior between taking and not taking the medication. We show that modeling of all three of these time-dependent measures illustrates more clearly how varying patterns of drug exposure affect drug effectiveness, which could remain obscured when modeled by the more standard single time-dependent covariate approaches. We propose that understanding the nature and directionality of these interactions will help the biopharmaceutical industry in better estimating drug efficacy. PMID:25343005
Phadnis, Milind A; Shireman, Theresa I; Wetmore, James B; Rigler, Sally K; Zhou, Xinhua; Spertus, John A; Ellerbeck, Edward F; Mahnken, Jonathan D
2014-01-01
In a population of chronic dialysis patients with an extensive burden of cardiovascular disease, estimation of the effectiveness of cardioprotective medication in literature is based on calculation of a hazard ratio comparing hazard of mortality for two groups (with or without drug exposure) measured at a single point in time or through the cumulative metric of proportion of days covered (PDC) on medication. Though both approaches can be modeled in a time-dependent manner using a Cox regression model, we propose a more complete time-dependent metric for evaluating cardioprotective medication efficacy. We consider that drug effectiveness is potentially the result of interactions between three time-dependent covariate measures, current drug usage status (ON versus OFF), proportion of cumulative exposure to drug at a given point in time, and the patient's switching behavior between taking and not taking the medication. We show that modeling of all three of these time-dependent measures illustrates more clearly how varying patterns of drug exposure affect drug effectiveness, which could remain obscured when modeled by the more standard single time-dependent covariate approaches. We propose that understanding the nature and directionality of these interactions will help the biopharmaceutical industry in better estimating drug efficacy.
Phorbol esters alter alpha4 and alphad integrin usage during eosinophil adhesion to VCAM-1.
Kikuchi, Matsuo; Tachimoto, Hiroshi; Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S
2003-01-01
We examined the effect of the protein kinase C activator phorbol-12-myristate-13-acetate (PMA) on the human eosinophil adhesion molecule phenotype and attachment to VCAM-1 via alpha4 and alphad integrins under static and flow conditions. PMA increased surface expression of alphad integrins and decreased alpha4 integrin expression. Under static conditions, eosinophils bound well to VCAM-1, primarily via alpha4beta1 integrins, with a minor alphadbeta2 integrin component. Unexpectedly, PMA-stimulated eosinophils bound equally well to VCAM-1 and albumin in a temperature- and divalent cation-dependent manner, yet adhesion was independent of beta1 and beta2 integrins. Under flow conditions, eosinophils readily attached to VCAM-1, and adhesion was inhibited by both alpha4 and alphad mAbs (95 and 50% inhibition, respectively). Many fewer PMA-stimulated eosinophils bound to VCAM-1 under flow conditions, but both alpha4 and alphad mAbs inhibited adhesion equally. Thus, PMA alters eosinophil integrin expression and the relative contributions of alpha4 and alphad integrins during attachment to VCAM-1.
[The influence of corvitin on secretory processes and blood flow in the rat gastric mucosa].
Vovkun, T V; Ianchuk, P I; Shtanova, L Ia; Vesel'skyĭ, S P; Baranovs'kyĭ, V A
2013-01-01
We studied parameters of gastric secretion in pylorus-ligated rat and blood flow in the rat gastric mucosa under the influence of drug corvitin used intragastrically in doses of 2.5 and 5 mg/kg. Biochemical analysis of gastric juice was based on the determination of pH, total hydrochloric acid production and total protein, hexosamine and cysteine concentration. Gastric juice analysis in control rats found the presence of hexosamines-- a gastric mucus indicators and cysteine--free amino acid whith properties of a strong antioxidant. Concentration of these compounds in the gastric juice increased as a consequence of corvitin action. However, corvitin did not affect at these parameters of gastric secretion as the volume of gastric juice, pH, hydrochloric acid output rate, protein concentration. Additionally it was shown that corvitin in dose-dependent manner increased blood flow in the gastric mucosa. This results give reason to believe that corvitin can be considered as a tool that amplifies gastric mucosal defense mechanisms without affecting the secretion of gastric hydrochloric acid and total protein.
Analogy between the Navier-Stokes equations and Maxwell's equations: Application to turbulence
NASA Astrophysics Data System (ADS)
Marmanis, Haralambos
1998-06-01
A new theory of turbulence is initiated, based on the analogy between electromagnetism and turbulent hydrodynamics, for the purpose of describing the dynamical behavior of averaged flow quantities in incompressible fluid flows of high Reynolds numbers. The starting point is the recognition that the vorticity (w=∇×u) and the Lamb vector (l=w×u) should be taken as the kernel of a dynamical theory of turbulence. The governing equations for these fields can be obtained by the Navier-Stokes equations, which underlie the whole evolution. Then whatever parts are not explicitly expressed as a function of w or l only are gathered and treated as source terms. This is done by introducing the concepts of turbulent charge and turbulent current. Thus we are led to a closed set of linear equations for the averaged field quantities. The premise is that the earlier introduced sources will be apt for modeling, in the sense that their distribution will depend only on the geometry and the total energetics of the flow. The dynamics described in the preceding manner is what we call the metafluid dynamics.
NASA Astrophysics Data System (ADS)
Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.
2017-09-01
The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.
Linear and nonlinear dynamo properties of time-dependent ABC flows
NASA Astrophysics Data System (ADS)
Brummell, N. H.; Cattaneo, F.; Tobias, S. M.
2001-04-01
The linear and nonlinear dynamo properties of a class of periodically forced flows is considered. The forcing functions are chosen to drive, in the absence of magnetic effects (kinematic regime), a time-dependent version of the ABC flow with A= B= C=1. The time-dependence consists of a harmonic displacement of the origin along the line x= y= z=1 with amplitude ɛ and frequency Ω. The finite-time Lyapunov exponents are computed for several values of ɛ and Ω. It is found that for values of these parameters near unity chaotic streamlines occupy most of the volume. In this parameter range, and for moderate kinetic and magnetic Reynolds numbers, the basic flow is both hydrodynamically and hydromagnetically unstable. However, the dynamo instability has a higher growth rate than the hydrodynamic one, so that the nonlinear regime can be reached with negligible departures from the basic ABC flow. In the nonlinear regime, two distinct classes of behaviour are observed. In one, the exponential growth of the magnetic field saturates and the dynamo settles to a stationary state whereby the magnetic energy is maintained indefinitely. In the other the velocity field evolves to a nondynamo state and the magnetic field, following an initial amplification, decays to zero. The transition from the dynamo to the nondynamo state can be mediated by the hydrodynamic instability or by magnetic perturbations. The properties of the ensuing nonlinear dynamo states are investigated for different parameter values. The implications for a general theory of nonlinear dynamos are discussed.
NASA Astrophysics Data System (ADS)
Faybishenko, Boris; Witherspoon, Paul A.; Gale, John
How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.
Li, Yong-Bo; Yang, Ting; Wang, Jin-Xing; Zhao, Xiao-Fan
2018-01-01
Autophagy requires the conjugation of autophagy-related protein 12 (ATG12) to autophagy-related protein 5 (ATG5) through covalent attachment. However, the signals regulating ATG12–ATG5 conjugation are unclear. The larval midgut of lepidopteran insects performs autophagy and apoptosis sequentially during the transition of larvae to pupae under regulation by the steroid hormone 20-hydroxyecdysone (20E), thus representing a model to study steroid hormone regulation of ATG12–ATG5 conjugation. In the present study, using the lepidopteran insect Helicoverpa armigera as a model, we report that 20E regulates the conjugation of ATG12–ATG5 in a concentration and time-dependent manner. The ATG12–ATG5 conjugate was abundant in the epidermis, midgut, and fat body during metamorphosis from the larvae to the pupae; however, the ATG12–ATG5 conjugate level decreased at the time of pupation. At low concentrations (2–5 µM) over a short time course (1–48 h), 20E promoted the conjugation of ATG12–ATG5; however, at 10 µM and 72 h, 20E repressed the conjugation of ATG12–ATG5. ATG12 was localized in the larval midgut during metamorphosis. Knockdown of ATG12 in larvae caused death with delayed pupation, postponed the process of midgut programmed cell death (PCD), and repressed ATG8 (also called LC3-I) transformation to LC3-II and the cleavage of caspase-3; therefore, knockdown of ATG12 in larvae blocked both autophagy and apoptosis. Knockdown of ATG12 in H. armigera epidermis cell line cells also repressed 20E-induced autophagosome formation and caspase-3 activation. The results suggested that 20E plays key role in the regulation of ATG12–ATG5 conjugation in a concentration and time-dependent manner for autophagy or apoptosis, and that ATG12 is necessary by both autophagy and apoptosis during insect midgut PCD. PMID:29467720
Bi, Yi-Liang; Min, Min; Shen, Wei; Liu, Yan
2018-01-15
Genistein is a natural flavonoid that has been reported to exhibit anticancer effects against different types of cancers which include, but are not limited to, breast and oral squamous cell carcinoma. The present study was designed to evaluate the anticancer effects of the natural flavonoid genistein against pancreatic cancer cell lines and to explore the underlying mechanism. Antiproliferative activity was investigated by MTT assay. Apoptosis was detected by DAPI and annexin V/PI staining. DNA damage was assessed by comet assay. Reactive oxygen species (ROS) and reduction of mitochondrial membrane potential (MMP) were determined by flow cytometry. Cell migration was examined by wound healing assay. Protien expressions were determined by western blotting. Antiproliferative assay revealed that genistein reduced the cell viability of pancreatic cancer cells in a dose dependent manner with an IC 50 of 20 and 25 µM against Mia-PaCa2 and PANC-1 cancer cell lines respectively. However, its antiproliferative effects were less pronounced against non-cancerous pancreatic ductal epithelial cell line (H6C7) as evident from the IC 50 of 120 µM. Genistein induced significant morphological changes in pancreatic cancer cells and triggered cell cycle arrest in G 0 /G 1 phase. DAPI staining and flow cytometric analysis revealed that genistein induced apoptosis in a dose dependent manner through generation of substantial amounts of ROS and reduction of MMP. However, treatment of the pancreatic cancer with genistein and ascorbic acid could abrogate the effects of genistein on cell viability. Protien expression analysis revealed that genistein upregulated cytosolic cytochrome c, Bax, cleaved Caspase-3 and cleaved caspase-9 expressions with concomitant downregulation of Bcl-2 expression. Moreover, genistein inhibited the phosphorylation of signal transducer and activator of transcription STAT3 proteins and downregulated the expression of survivin, cyclin D1 and ALDH1A1 in Mia-PaCa2 cells in a dose dependent manner. Interestingly, genistein could inhibit the cell migration potential of the Mia-PaCa2 cells which was further associated with the downregulation of metalloproteinases (MPP-2 and MPP-9). Taken together, we propose that genistein exerts anticancer activity in pancreatic cancer cells through induction of ROS mediated mitochondrial apoptosis, cell cycle arrest and regulation of STAT3 and may therefore prove beneficial in the management of pancreatic cancers cancer. Copyright © 2017 Elsevier GmbH. All rights reserved.
Komorkiewicz, Mateusz; Kryjak, Tomasz; Gorgon, Marek
2014-01-01
This article presents an efficient hardware implementation of the Horn-Schunck algorithm that can be used in an embedded optical flow sensor. An architecture is proposed, that realises the iterative Horn-Schunck algorithm in a pipelined manner. This modification allows to achieve data throughput of 175 MPixels/s and makes processing of Full HD video stream (1, 920 × 1, 080 @ 60 fps) possible. The structure of the optical flow module as well as pre- and post-filtering blocks and a flow reliability computation unit is described in details. Three versions of optical flow modules, with different numerical precision, working frequency and obtained results accuracy are proposed. The errors caused by switching from floating- to fixed-point computations are also evaluated. The described architecture was tested on popular sequences from an optical flow dataset of the Middlebury University. It achieves state-of-the-art results among hardware implementations of single scale methods. The designed fixed-point architecture achieves performance of 418 GOPS with power efficiency of 34 GOPS/W. The proposed floating-point module achieves 103 GFLOPS, with power efficiency of 24 GFLOPS/W. Moreover, a 100 times speedup compared to a modern CPU with SIMD support is reported. A complete, working vision system realized on Xilinx VC707 evaluation board is also presented. It is able to compute optical flow for Full HD video stream received from an HDMI camera in real-time. The obtained results prove that FPGA devices are an ideal platform for embedded vision systems. PMID:24526303
Meridional flow in the solar convection zone. I. Measurements from gong data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kholikov, S.; Serebryanskiy, A.; Jackiewicz, J., E-mail: kholikov@noao.edu
2014-04-01
Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-timemore » differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.« less
Komorkiewicz, Mateusz; Kryjak, Tomasz; Gorgon, Marek
2014-02-12
This article presents an efficient hardware implementation of the Horn-Schunck algorithm that can be used in an embedded optical flow sensor. An architecture is proposed, that realises the iterative Horn-Schunck algorithm in a pipelined manner. This modification allows to achieve data throughput of 175 MPixels/s and makes processing of Full HD video stream (1; 920 × 1; 080 @ 60 fps) possible. The structure of the optical flow module as well as pre- and post-filtering blocks and a flow reliability computation unit is described in details. Three versions of optical flow modules, with different numerical precision, working frequency and obtained results accuracy are proposed. The errors caused by switching from floating- to fixed-point computations are also evaluated. The described architecture was tested on popular sequences from an optical flow dataset of the Middlebury University. It achieves state-of-the-art results among hardware implementations of single scale methods. The designed fixed-point architecture achieves performance of 418 GOPS with power efficiency of 34 GOPS/W. The proposed floating-point module achieves 103 GFLOPS, with power efficiency of 24 GFLOPS/W. Moreover, a 100 times speedup compared to a modern CPU with SIMD support is reported. A complete, working vision system realized on Xilinx VC707 evaluation board is also presented. It is able to compute optical flow for Full HD video stream received from an HDMI camera in real-time. The obtained results prove that FPGA devices are an ideal platform for embedded vision systems.
NASA Astrophysics Data System (ADS)
Davids, J. C.; Rutten, M.; Van De Giesen, N.
2016-12-01
Hydrologic data has traditionally been collected with permanent installations of sophisticated and relatively accurate but expensive monitoring equipment at limited numbers of sites. Consequently, the spatial coverage of the data is limited and costs are high. Achieving adequate maintenance of sophisticated monitoring equipment often exceeds local technical and resource capacity, and permanently deployed monitoring equipment is susceptible to vandalism, theft, and other hazards. Rather than using expensive, vulnerable installations at a few points, SmartPhones4Water (S4W), a form of Citizen Hydrology, leverages widely available mobile technology to gather hydrologic data at many sites in a manner that is repeatable and scalable. However, there is currently a limited understanding of the impact of decreased observational frequency on the accuracy of key streamflow statistics like minimum flow, maximum flow, and runoff. As a first step towards evaluating the tradeoffs between traditional continuous monitoring approaches and emerging Citizen Hydrology methods, we randomly selected 50 active U.S. Geological Survey (USGS) streamflow gauges in California. We used historical 15 minute flow data from 01/01/2008 through 12/31/2014 to develop minimum flow, maximum flow, and runoff values (7 year total) for each gauge. In order to mimic lower frequency Citizen Hydrology observations, we developed a bootstrap randomized subsampling with replacement procedure. We calculated the same statistics, along with their respective distributions, from 50 subsample iterations with four different subsampling intervals (i.e. daily, three day, weekly, and monthly). Based on our results we conclude that, depending on the types of questions being asked, and the watershed characteristics, Citizen Hydrology streamflow measurements can provide useful and accurate information. Depending on watershed characteristics, minimum flows were reasonably estimated with subsample intervals ranging from daily to monthly. However, maximum flows in most cases were poorly characterized, even at daily subsample intervals. In general, runoff volumes were accurately estimated from daily, three day, weekly, and even in some cases, monthly observations.
Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
Torkzaban, Saeed; Bradford, Scott A; Vanderzalm, Joanne L; Patterson, Bradley M; Harris, Brett; Prommer, Henning
2015-10-01
The release and retention of in-situ colloids in aquifers play an important role in the sustainable operation of managed aquifer recharge (MAR) schemes. The processes of colloid release, retention, and associated permeability changes in consolidated aquifer sediments were studied by displacing native groundwater with reverse osmosis-treated (RO) water at various flow velocities. Significant amounts of colloid release occurred when: (i) the native groundwater was displaced by RO-water with a low ionic strength (IS), and (ii) the flow velocity was increased in a stepwise manner. The amount of colloid release and associated permeability reduction upon RO-water injection depended on the initial clay content of the core. The concentration of released colloids was relatively low and the permeability reduction was negligible for the core sample with a low clay content of about 1.3%. In contrast, core samples with about 6 and 7.5% clay content exhibited: (i) close to two orders of magnitude increase in effluent colloid concentration and (ii) more than 65% permeability reduction. Incremental improvement in the core permeability was achieved when the flow velocity increased, whereas a short flow interruption provided a considerable increase in the core permeability. This dependence of colloid release and permeability changes on flow velocity and colloid concentration was consistent with colloid retention and release at pore constrictions due to the mechanism of hydrodynamic bridging. A mathematical model was formulated to describe the processes of colloid release, transport, retention at pore constrictions, and subsequent permeability changes. Our experimental and modeling results indicated that only a small fraction of the in-situ colloids was released for any given change in the IS or flow velocity. Comparison of the fitted and experimentally measured effluent colloid concentrations and associated changes in the core permeability showed good agreement, indicating that the essential physics were accurately captured by the model. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tesch, W. A.; Moszee, R. H.; Steenken, W. G.
1976-01-01
NASA developed stability and frequency response analysis techniques were applied to a dynamic blade row compression component stability model to provide a more economic approach to surge line and frequency response determination than that provided by time-dependent methods. This blade row model was linearized and the Jacobian matrix was formed. The clean-inlet-flow stability characteristics of the compressors of two J85-13 engines were predicted by applying the alternate Routh-Hurwitz stability criterion to the Jacobian matrix. The predicted surge line agreed with the clean-inlet-flow surge line predicted by the time-dependent method to a high degree except for one engine at 94% corrected speed. No satisfactory explanation of this discrepancy was found. The frequency response of the linearized system was determined by evaluating its Laplace transfer function. The results of the linearized-frequency-response analysis agree with the time-dependent results when the time-dependent inlet total-pressure and exit-flow function amplitude boundary conditions are less than 1 percent and 3 percent, respectively. The stability analysis technique was extended to a two-sector parallel compressor model with and without interstage crossflow and predictions were carried out for total-pressure distortion extents of 180 deg, 90 deg, 60 deg, and 30 deg.
Single polymer dynamics under large amplitude oscillatory extension
NASA Astrophysics Data System (ADS)
Zhou, Yuecheng; Schroeder, Charles M.
2016-09-01
Understanding the conformational dynamics of polymers in time-dependent flows is of key importance for controlling materials properties during processing. Despite this importance, however, it has been challenging to study polymer dynamics in controlled time-dependent or oscillatory extensional flows. In this work, we study the dynamics of single polymers in large-amplitude oscillatory extension (LAOE) using a combination of experiments and Brownian dynamics (BD) simulations. Two-dimensional LAOE flow is generated using a feedback-controlled stagnation point device known as the Stokes trap, thereby generating an oscillatory planar extensional flow with alternating principal axes of extension and compression. Our results show that polymers experience periodic cycles of compression, reorientation, and extension in LAOE, and dynamics are generally governed by a dimensionless flow strength (Weissenberg number Wi) and dimensionless frequency (Deborah number De). Single molecule experiments are compared to BD simulations with and without intramolecular hydrodynamic interactions (HI) and excluded volume (EV) interactions, and good agreement is obtained across a range of parameters. Moreover, transient bulk stress in LAOE is determined from simulations using the Kramers relation, which reveals interesting and unique rheological signatures for this time-dependent flow. We further construct a series of single polymer stretch-flow rate curves (defined as single molecule Lissajous curves) as a function of Wi and De, and we observe qualitatively different dynamic signatures (butterfly, bow tie, arch, and line shapes) across the two-dimensional Pipkin space defined by Wi and De. Finally, polymer dynamics spanning from the linear to nonlinear response regimes are interpreted in the context of accumulated fluid strain in LAOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ruizhao, E-mail: liruizhao1979@126.com; Zhang, Li, E-mail: Zhanglichangde@163.com; Southern Medical University, Guangzhou, Guangdong
Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG),more » or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway, which may present a promising target for therapeutic intervention. - Highlights: ► HG activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. ► Pretreatment with CsA or 11R-VIVIT completely blocked NFAT2 nuclear accumulation. ► The apoptosis effects induced by HG were abrogated by treatment with 11R-VIVIT. ► HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway.« less
Maeda, Yuri; Furuta, Hiroyuki; Ikawa, Yoshiya
2011-03-01
As dynamic structural changes are pivotal for the functions of some classes of RNA molecule, it is important to develop methods to monitor structural changes in RNA in a time-dependent manner without chemical modification. Based on previous reports that trans-acting RNAs can be used as probes for analysis and control of 3D structures of target RNAs, we applied this method to monitor time-dependent structural changes in RNA. We designed and performed a proof-of-principle study using a simple model RNA complex that adopts two different structures as a target. The time-dependent structural changes in the target RNA were successfully monitored using two trans-acting RNAs, which stably form a ternary complex with the bimolecular target RNA and act as a catalyst to join two RNA fragments of the target complex, respectively. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Viscoelastic Transient of Confined Red Blood Cells
Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel
2015-01-01
The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D ∼ 10−7 N⋅s⋅m−1. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D, and reconcile seemingly conflicting conclusions from previous works. PMID:25954871
Zhang, Yanmin; He, Langchong; Zhou, Yali
2008-01-01
The present study was to evaluate the effects of taspine isolated from Radix et Rhizoma Leonticsi on the growth and apoptosis of human umbilical vein endothelial cell (HUVEC) line by MTT and flow cytometer, respectively. At the same time, a series of changes were observed in HUVEC treated by taspine, including microstructure, protein expression of bax, bcl-2 and VEGF. The change of microstructure was observed by transmission electron microscope (TEM). The protein expression of bax and bcl-2 was detected by immunohistochemistry (IHC), and VEGF protein secreted was determined by enzyme-linked immunosorbent assay (ELISA). The results showed taspine could inhibit growth and induce apoptosis of HUVEC in a dose-dependent manner. Cell cycle was significantly stopped at the S phase. Under electronic microscope, the morphology of HUVEC treated with taspine showed nuclear karyopycnosis, chromatin agglutination and typical apoptotic body. Bcl-2 and VEGF expressions were decreased and bax expression was increased. All these results demonstrate that taspine has an inhibitory effect on growth of HUVEC and can induce its apoptosis.
Numerical Investigation of a Novel Microscale Swirling Jet Reactor for Medical Sensor Applications
NASA Astrophysics Data System (ADS)
Ogus, G.; Baelmans, M.; Lammertyn, J.; Vanierschot, M.
2018-03-01
A microscale swirler and corresponding reactor for a recent detection and analysis tool for healthcare applications, Fiber optic-surface plasmon resonance (FO-SPR), is presented in this study. The sensor is a 400 μm diameter needle that works as a detector for certain particles. Currently, the detection process relies on diffusion of particles towards the sensor and hence diagnostic time is rather long. The aim of this study is to decrease that diagnostic time by introducing convective mixing in the reactor by means of a swirling inlet flow. This will increase the particle deposition on the FO-SPR sensor and hence an increase in detection rate, as this rate strongly depends on the aimed particle concentration near the sensor. As the flow rates are rather low and the length scales are small, the flow in such reactors is laminar. In this study, robustly controllable mixing features of a swirling jet flow is used to increase the particle concentration near the sensor. A numerical analysis (CFD) is performed to characterize the flow and a detailed analysis of flow structures depending on the flow rate are reported.
Jones, Scott L; To, Minh-Son; Stuart, Greg J
2017-10-23
Small conductance calcium-activated potassium channels (SK channels) are present in spines and can be activated by backpropagating action potentials (APs). This suggests they may play a critical role in spike-timing dependent synaptic plasticity (STDP). Consistent with this idea, EPSPs in both cortical and hippocampal pyramidal neurons were suppressed by preceding APs in an SK-dependent manner. In cortical pyramidal neurons EPSP suppression by preceding APs depended on their precise timing as well as the distance of activated synapses from the soma, was dendritic in origin, and involved SK-dependent suppression of NMDA receptor activation. As a result SK channel activation by backpropagating APs gated STDP induction during low-frequency AP-EPSP pairing, with both LTP and LTD absent under control conditions but present after SK channel block. These findings indicate that activation of SK channels in spines by backpropagating APs plays a key role in regulating both EPSP amplitude and STDP induction.
wfip2.model/realtime.hrrr_esrl.graphics.01 (Model: Real Time)
Macduff, Matt
2017-10-27
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.
wfip2.model/realtime.rap_esrl.icbc.01 (Model: Real Time)
Macduff, Matt
2017-10-27
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.
wfip2.model/realtime.hrrr_esrl.icbc.01 (Model: Real Time)
Macduff, Matt
2017-10-27
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.
wfip2.model/realtime.rap_esrl.graphics.01 (Model: Real Time)
Macduff, Matt
2017-10-27
The primary purpose of WFIP2 Model Development Team is to improve existing numerical weather prediction models in a manner that leads to improved wind forecasts in regions of complex terrain. Improvements in the models will come through better understanding of the physics associated with the wind flow in and around the wind plant across a range of temporal and spatial scales, which will be gained through WFIP2’s observational field study and analysis.
NASA Technical Reports Server (NTRS)
Bland, S. R.
1982-01-01
Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.
Osmosis in Cortical Collecting Tubules
Schafer, James A.; Patlak, Clifford S.; Andreoli, Thomas E.
1974-01-01
This paper reports a theoretical analysis of osmotic transients and an experimental evaluation both of rapid time resolution of lumen to bath osmosis and of bidirectional steady-state osmosis in isolated rabbit cortical collecting tubules exposed to antidiuretic hormone (ADH). For the case of a membrane in series with unstirred layers, there may be considerable differences between initial and steady-state osmotic flows (i.e., the osmotic transient phenomenon), because the solute concentrations at the interfaces between membrane and unstirred layers may vary with time. A numerical solution of the equation of continuity provided a means for computing these time-dependent values, and, accordingly, the variation of osmotic flow with time for a given set of parameters including: Pf (cm s–1), the osmotic water permeability coefficient, the bulk phase solute concentrations, the unstirred layer thickness on either side of the membrane, and the fractional areas available for volume flow in the unstirred layers. The analyses provide a quantitative frame of reference for evaluating osmotic transients observed in epithelia in series with asymmetrical unstirred layers and indicate that, for such epithelia, Pf determinations from steady-state osmotic flows may result in gross underestimates of osmotic water permeability. In earlier studies, we suggested that the discrepancy between the ADH-dependent values of Pf and PDDw (cm s–1, diffusional water permeability coefficient) was the consequence of cellular constraints to diffusion. In the present experiments, no transients were detectable 20–30 s after initiating ADH-dependent lumen to bath osmosis; and steady-state ADH-dependent osmotic flows from bath to lumen and lumen to bath were linear and symmetrical. An evaluation of these data in terms of the analytical model indicates: First, cellular constraints to diffusion in cortical collecting tubules could be rationalized in terms of a 25-fold reduction in the area of the cell layer available for water transport, possibly due in part to transcellular shunting of osmotic flow; and second, such cellular constraints resulted in relatively small, approximately 15%, underestimates of Pf. PMID:4846767
Pandey, Sachin; Rajaram, Harihar
2016-12-05
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Sachin; Rajaram, Harihar
Inferences of weathering rates from laboratory and field observations suggest significant scale and time-dependence. Preferential flow induced by heterogeneity (manifest as permeability variations or discrete fractures) has been suggested as one potential mechanism causing scale/time-dependence. In this paper, we present a quantitative evaluation of the influence of preferential flow on weathering rates using reactive transport modeling. Simulations were performed in discrete fracture networks (DFNs) and correlated random permeability fields (CRPFs), and compared to simulations in homogeneous permeability fields. The simulations reveal spatial variability in the weathering rate, multidimensional distribution of reactions zones, and the formation of rough weathering interfaces andmore » corestones due to preferential flow. In the homogeneous fields and CRPFs, the domain-averaged weathering rate is initially constant as long as the weathering front is contained within the domain, reflecting equilibrium-controlled behavior. The behavior in the CRPFs was influenced by macrodispersion, with more spread-out weathering profiles, an earlier departure from the initial constant rate and longer persistence of weathering. DFN simulations exhibited a sustained time-dependence resulting from the formation of diffusion-controlled weathering fronts in matrix blocks, which is consistent with the shrinking core mechanism. A significant decrease in the domain-averaged weathering rate is evident despite high remaining mineral volume fractions, but the decline does not follow a math formula dependence, characteristic of diffusion, due to network scale effects and advection-controlled behavior near the inflow boundary. Finally, the DFN simulations also reveal relatively constant horizontally averaged weathering rates over a significant depth range, challenging the very notion of a weathering front.« less
Time-Dependent Thermally-Driven Interfacial Flows in Multilayered Fluid Structures
NASA Technical Reports Server (NTRS)
Haj-Hariri, Hossein; Borhan, A.
1996-01-01
A computational study of thermally-driven convection in multilayered fluid structures will be performed to examine the effect of interactions among deformable fluid-fluid interfaces on the structure of time-dependent flow in these systems. Multilayered fluid structures in two models configurations will be considered: the differentially heated rectangular cavity with a free surface, and the encapsulated cylindrical liquid bridge. An extension of a numerical method developed as part of our recent NASA Fluid Physics grant will be used to account for finite deformations of fluid-fluid interfaces.
NASA Astrophysics Data System (ADS)
Breidenthal, Robert
2003-11-01
Using heuristic arguments, the fundamental effect of acceleration on dissipation in self-similar turbulence is explored. If the ratio of the next vortex rotation period to the last one is always constant, a flow is temporally self-similar. This implies that the vortex rotation period is a linear function of time. For ordinary, unforced turbulence, the period increases linearly in time. However, by imposing an external e-folding time scale on the flow that decreases linearly in time, the dissipation rate is changed from that of the corresponding unforced flow. The dissipation rate depends on the time rate of change of the rotation period as well as the dimensions of the dynamic quantity controlling the flow. For almost all canonical laboratory flows, acceleration reduces the dissipation and entrainment rates. An example is the exponential jet, where the flame length increases by about 20conventional jet. An exception is Rayleigh-Taylor flow, where acceleration increases the dissipation rate.
Hybrid upwind discretization of nonlinear two-phase flow with gravity
NASA Astrophysics Data System (ADS)
Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.
2015-08-01
Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.
Development of model-based control for Bridgman crystal growth
NASA Astrophysics Data System (ADS)
Sonda, Paul; Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey. J.
2004-05-01
We study the feasibility of using crucible rotation with feedback control to suppress oscillatory flows in two prototypical vertical Bridgman crystal growth systems—a stabilizing configuration driven by a time-oscillatory furnace disturbance and a thermally destabilized configuration, which exhibits inherent time-varying flows. Proportional controllers are applied to the two systems, with volume-averaged flow speed chosen as the single controlled output and crucible rotation chosen as the manipulated input. Proportional control is able to significantly suppress oscillations in the stabilizing configuration. For the destabilized case, control is effective for small-amplitude flows but is generally ineffective, due to the exacerbating effect of crucible rotation on the time-dependent flows exhibited by this system.
Multigrid for hypersonic viscous two- and three-dimensional flows
NASA Technical Reports Server (NTRS)
Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.
1991-01-01
The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that removes the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional flow over a blunt biconic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xun, C.Q.; Ensor, C.M.; Tai, H.H.
1991-06-28
Dexamethasone stimulated 15-PGDH activity in HEL cells in a time and concentration dependent manner. Increase in 15-PGDH activity by dexamethasone was found to be accompanied by an increase in enzyme synthesis as revealed by Western blot and (35S)methionine labeling studies. In addition to dexamethasone, other anti-inflammatory steroids also increased 15-PGDH activity in the order of their glucocorticoid activity. Among sex steroids only progesterone increased significantly 15-PGDH activity. 12-0-Tetradecanoylphorbol-13-acetate (TPA) also induced the synthesis of 15-PGDH but inhibited the enzyme activity. It appears that TPA caused a time dependent inactivation of 15-PGDH by a protein kinase C mediated mechanism.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Anaesthetic modulation of nicotinic ion channel kinetics in bovine chromaffin cells.
Charlesworth, P; Richards, C D
1995-01-01
1. We have investigated the action of the anaesthetics methoxyflurane, methohexitone and etomidate on the nicotinic acetylcholine receptor channel of bovine adrenal chromaffin cells using the whole cell patch clamp technique. 2. Spectral analysis of macroscopic currents evoked by 25 microM carbachol revealed that each of the agents tested reduced the lifetime of the channel open state in a dose-dependent manner. The whole cell current was inhibited in a concentration-dependent fashion by each agent. 3. Channel gating parameters were calculated from single channel studies and the results used to test models explaining the modulation of nicotinic acetylcholine receptor channels by anaesthetics. 4. Each of the agents studied reduced the mean channel open time in a concentration-dependent manner. Anaesthetic concentrations reducing mean open time by 50% were: 370 microM methoxyflurane, 30 microM methohexitone or 23 microM etomidate. 5. Methohexitone and etomidate produced an increase in the number of brief closures within bursts, while no such increase was observed with methoxyflurane. Despite these inter-burst gaps, mean burst length was reduced by each of the agents tested. 6. It is concluded that a simple sequential blocking model fails to account for the action of these anaesthetics. An extended model, in which blocked channels can close, may be applicable. PMID:7773553
Analysis of Electrokinetic Mixing Using AC Electric Field and Patchwise Surface Heterogeneities
NASA Astrophysics Data System (ADS)
Luo, Win-Jet; Yarn, Kao-Feng; Hsu, Shou-Ping
2007-04-01
In this paper, the authors investigate the use of an applied AC electric field and microchannel surface heterogeneities to carry out the microfluidic mixing of two-dimensional, time-dependent electroosmotic flows. The time-dependent flow fields within the microchannel are simulated using the backwards-Euler time-stepping numerical method. The mixing efficiencies obtained in microchannels with two different patchwise surface heterogeneity patterns are investigated. In general, the results show that the application of an AC electric field significantly reduces the required mixing length compared with the use of a DC electric field. Furthermore, the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulation regions within the bulk flow. These circulation regions grow and decay periodically in accordance with the periodic variation of the AC electric field intensity and provide an effective means of enhancing species mixing in the microchannel. Consequently, the use of an AC electric field together with patchwise surface heterogeneities permits a significant reduction in both the mixing channel length and the retention time required to attain a homogeneous solution.
New scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times
NASA Astrophysics Data System (ADS)
Kia, Hamidreza; Ghodsypour, Seyed Hassan; Davoudpour, Hamid
2017-09-01
In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent setup times is studied. The objective of the problem is minimization of mean flow time and mean tardiness. A 0-1 mixed integer model of the problem is formulated. Since the problem is NP-hard, four new composite dispatching rules are proposed to solve it by applying genetic programming framework and choosing proper operators. Furthermore, a discrete-event simulation model is made to examine the performances of scheduling rules considering four new heuristic rules and the six adapted heuristic rules from the literature. It is clear from the experimental results that composite dispatching rules that are formed from genetic programming have a better performance in minimization of mean flow time and mean tardiness than others.